
Adaptively Biased Sequential Importance Sampling for Rare Events in Reaction

Networks with Comparison to Exact Solutions from Finite Buffer dCME Method

Youfang Caoa) and Jie Liangb)

Department of Bioengineering, University of Illinois at Chicago, Chicago IL,

60607 USA

1



Critical events that occur rarely in biological processes are of great importance, but

are challenging to study using Monte Carlo simulation. By introducing biases to re-

action selection and reaction rates, weighted stochastic simulation algorithms based

on importance sampling allow rare events to be sampled more effectively. However,

existing methods do not address the important issue of barrier crossing, which often

arises from multistable networks and systems with complex probability landscape.

In addition, the proliferation of parameters and the associated computing cost pose

significant problems. Here we introduce a general theoretical framework for obtain-

ing optimized biases in sampling individual reactions for estimating probabilities of

rare events. We further describe a practical algorithm called adaptively biased se-

quential importance sampling (ABSIS) method for efficient probability estimation.

By adopting a look-ahead strategy and by enumerating short paths from the current

state, we estimate the reaction-specific and state-specific forward and backward mov-

ing probabilities of the system, which are then used to bias reaction selections. The

ABSIS algorithm can automatically detect barrier-crossing regions, and can adjust

bias adaptively at different steps of the sampling process, with bias determined by

the outcome of exhaustively generated short paths. In addition, there are only two

bias parameters to be determined, regardless of the number of the reactions and the

complexity of the network. We have applied the ABSIS method to four biochemical

networks: the birth-death process, the reversible isomerization, the bistable Schlögl

model, and the enzymatic futile cycle model. For comparison, we have also applied

the finite buffer discrete chemical master equation (dCME) method recently devel-

oped to obtain exact numerical solutions of the underlying discrete chemical master

equations of these problems. This allows us to assess sampling results objectively

by comparing simulation results with true answers. Overall, ABSIS can accurately

and efficiently estimate rare event probabilities for all examples, often with smaller

variance than other importance sampling algorithms. The ABSIS method is general

and can be applied to study rare events of other stochastic networks with complex

probability landscape.
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I. INTRODUCTION

Many critical events in biological processes occur rarely within the relevant physical time

scale. Bacteriophage λ in E. coli1–3 can maintain a stable dormant lysogenic lifestyle when

integrated into the E. coli genome, but can spontaneously transit to the lytic life-style of

phage outburst2,4–8 with a small probability (ca. 4× 10−7 per cell cycle9). Crossing barrier

in the free energy landscape in some slow-folding protein may be rare, but critical10. In tu-

morigenesis, cells experiencing normal growth rarely transit spontaneously to uncontrolled

tumor growth11,12. However, environmental changes, e.g., those resulting in the accumula-

tion of DNA hypermethylation in promoter CpG islands13,14, can accelerate such transitions.

Multi-stable cellular states of endogenous molecular-cellular networks and rare stochastic

transitions between them may offer a general framework to study human diseases15,16. Ac-

curate assessment of rare event probabilities is therefore important for understanding the

machineries behind many critical biological processes.

It is challenging to study rare events from the viewpoint of mechanistic theory17,18. Here

we study networks of biochemical reactions. In principle, the transition probability rates be-

tween two states can be calculated exactly, if the state space of biochemical reaction networks

are completely accounted for, e.g., when the underlying discrete chemical master equation

can be solved exactly8,19,20. However, when the state spaces and the transition matrices are

too large to be efficiently computed, a widely used approach to study stochastic behavior

of biochemical reactions is that of Monte Carlo sampling, first formulated as the stochastic

simulation algorithm (SSA)21. However, the original SSA21 is ineffective for studying rare

events, as most computing time is spent on following high-probability paths22,23.

The techniques of importance sampling and reweighting can improve sampling efficiency

significantly. They have been widely used in equilibrium sampling where the condition of

detailed balance holds24,25. However, stochastic processes in reaction networks are gener-

ally not time reversible and the condition of detailed balance is not valid. Kuwahara and

Mura developed the weighted SSA (wSSA) algorithm by applying the importance sampling

technique to study stochastic reaction networks, in which each reaction rate is biased by

a pre-determined constant, with the overall summation of reaction rates unchanged22. As

the probability for reaction selection can be biased such that rare events are sampled more

frequently while the time scale of the underlying reactions is maintained, significantly im-
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proved sampling efficiency for rare events was reported22,23,26. However, the choice of bias

constants strongly affects the effectiveness of wSSA. When there are many reactions and the

network is complex, the heuristic approach of determining bias constants by examining the

reactions does not work22. As there is no general guidance in how bias constants should be

chosen, poor choices may lead to estimations that are less accurate than the original SSA23.

Daigle et al developed the doubly-weighted SSA (dwSSA) algorithm, in which a multilevel

cross-entropy (CE) method is used iteratively to provide estimates of bias constants23. This

is achieved by running long trial simulations until a fraction of the sampled trajectories

reaches the target states23. With this automated estimation, both reaction selection and the

underlying time scale of reactions can be biased23.

A drawback of methods using constant biases such as wSSA and dwSSA is that the bias

coefficients are global and state-independent, and are not influenced by the concentrations of

molecules which evolve with time. As the apparent rate of a reaction can vary dramatically

depending on the copy number of molecules, the degree of bias for a reaction therefore need

to be adjusted according to the available copy numbers of reactants. With globally fixed bias

constants, a network with reactions of a wide range of rates will have over- and under-biased

reactions, depending on the states of the system. As a result, estimated properties of a

network will have large variance, making these methods unsuitable for complex networks27.

Roh et al developed a state-dependent biasing wSSA method (swSSA)27. By empirically

classifying reactions into groups of favored, disfavored, and neutral reactions, biases in se-

lection probability for reactions in the first two groups are calculated in a state-dependent

fashion. The swSSA method can have better estimation accuracy and efficiency than the

wSSA method27, at the expense of about twice as many biasing parameters as that of the

wSSA27. Roh et al. further developed the state-dependent doubly weighted SSA method

(sdwSSA), where reactions are further grouped into bins according to their selection prob-

abilities, and are assigned different bias constants, which are automatically estimated using

the cross-entropy method26. However, the number of parameters to be estimated using

sdwSSA is much larger than that of wSSA, dwSSA, and swSSA. For example, about 20

bias constants need to be estimated for a simple reversible isomerization system with only

two reactions26. Estimating a large number of bias constants needed for complex networks

becomes difficult.

In this study, we describe an algorithm named adaptively biased sequential importance
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sampling (ABSIS) for efficient sampling of rare events. Based on the principle of sequen-

tial importance sampling, our approach adopts the lookahead strategy, a technique well-

established in polymer and protein studies28–31, to gather future information for design of

bias parameters to enable effective barrier crossings28–33. By enumerating short paths from

the current state, bias coefficients are generated based on analysis of these short paths. Un-

like the dwSSA and sdwSSA methods, in which biases are fixed constants after parameter

estimation, the biases in ABSIS for each reaction is dynamically determined based on exact

calculation of the total probability of short κ-step forward- and backward-moving reaction

paths, without the need of binning reaction rates. Reactions with higher probability of

forward-moving are then encouraged, and reactions with higher probability of backward-

moving are discouraged. Regardless of the number of reactions in the networks, we only

need to assign two bias parameters for the whole network: the degree to encourage forward-

moving reactions and the degree to discourage backward-moving reactions, which both can

be estimated through an efficient parameter estimation algorithm.

We also take advantage of the recent development of a method that directly solves the

discrete chemical master equation. With a finite buffer, the rare event probability of a

stochastic network of modest size can be computed exactly using this method, allowing us to

have a gold standard to objectively assess the accuracy of estimated rare event probabilities

through sampling. With errors computed based on exact numerical solutions, we show with

four biological examples that the ABSIS method have improved or comparable accuracies

compared to other methods (the dwSSA method, and the swSSA and sdwSSA methods

when data available), at overall significantly reduced computational cost and much higher

success rate.

This article is organized as follows: We briefly discuss the theoretical framework of re-

action networks, the principle of sequential importance sampling, and details of the AB-

SIS method. We then apply our method to study four biological problems, namely, the

birth-death process, the reversible isomerization model, the bistable Schlögl model, and the

enzymatic futile cycle, and compare the accuracies of estimations and the success rates in

generating reaction paths reaching the target states with the SSA and dwSSA methods. We

conclude with remarks and discussions.
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II. MODEL FRAMEWORK

A. Reaction networks

We assume a well-mixed biochemical system with constant volume and temperature.

There are n different molecular species: X = {X1, X2, · · · , Xn}. We use xi(t) to denote

the copy number of molecular species Xi at time t. There are m possible different reac-

tions in the system: R = {R1, R2, · · · , Rm}. Each reaction Rk has an intrinsic reaction

rate constant rk. The microstate of the system at time t is represented by a non-negative

integer column vector: x(t) = (x1(t), x2(t), · · · , xn(t))T , where T denotes the transpose. An

arbitrary reaction Rk (k = 1, 2, · · · ,m) with intrinsic rate rk takes the general form:

c1kX1 + c2kX2 + · · ·+ cnkXn
rk→ c′1kX1 + c′2kX2 + · · ·+ c′nkXn,

which brings the system from a microstate xi to xj. The difference between xi and xj

is the stoichiometry vector sk of the reaction Rk: sk = xj − xi = (s1k, s2k, · · · , snk)T =

(c′1k − c1k, c
′
2k − c2k, · · · , c′nk − cnk)

T ∈ Zn. The stoichiometry matrix S for the reaction

network is defined as: S = (s1, s2, · · · , sm) ∈ Zn×m, where each column represents a single

reaction. The rate Ak(xi,xj) of reaction Rk that transforms microstate from xi to xj

is determined by the intrinsic rate constant rk and the combination number of relevant

reactants in the current microstate xi: Ak(xi,xj) = Ak(xi) = rk
∏n

l=1

(
xl
clk

)
, assuming the

convention
(

0
0

)
= 1.

B. State space and probability landscape

The state space S of a reaction network is defined as the set of all possible microstates that

the system can visit from a given initial condition: S = {x(t)|x(0), t ∈ (0, θ)}. We denote

the probability of each microstate at time t as p(x(t)), and the probability distribution at t

over the whole state space as p(t) = {(p(x(t))|x(t) ∈ S)}. p(t) is also called the probability

landscape of the network8. It can be visualized as a time-evolving scalar surface over the

state space, with the value at each state x taken to be p(x(t)). The volume integral under
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the surface at any arbitrary time t is always 1:

∫
x∈S

p(x, t)dx = 1.

In general, there is no assumption of detailed balance. For a reaction network with arbitrary

stoichiometries and a specific initial state p(0), its probability landscape is governed by the

discrete chemical master equation (dCME)

dp(t)

dt
= ATp(t), (1)

from which the time-evolving probability landscape p(t) and its steady state can be directly

obtained. Here A is the transition rate matrix A = {Ak(xi,xj)} ∈ R|S|×|S| 8,19.

C. Transition paths and transition probabilities

A transition path π(S,T) consists of a sequence of states: S = (x0, · · · ,xN), starting from

x0 and ending at xN , along with a sequence of time points T = (t0, · · · , tN) when each of

these states are visited. Here N is the length of the transition path. When the beginning

state x0 and the ending state xN , as well as the sequences of states S and the time points

T are unambiguous from the context, we use π(0,N) to denote the transition path π(S,T) for

convenience. This transition path is understood to move from state x0 to state xN through

a total of N steps following the specific sequence of states S and sequence of time points T.

The sequence of time points can be alternatively specified by the corresponding sequence of

time intervals: {τ0, τ1, · · · , τN−1} = {t1−t0, t2−t1, · · · , tN−tN−1}. In implementation, these

time intervals are not predefined but are small random values generated by sampling Poisson

processes, whose rates are governed by the underlying chemical reaction rates (see below).

We assume that there is a unique reaction connecting each neighboring pair of microstates

xi and xi+1 along the reaction path. The probability p(π(S,T)) of a given transition path

π(S,T) can be calculated as the product of the probability of the initial state x0, and the

probabilities of all subsequent transitions between neighboring states p(xi|xi−1, τi−1)dτi−1:

p(π(0,N)) = p(π(S,T)) = p(x0)
N∏
i=1

p(xi|xi−1, τi−1)dτi−1. (2)

8



Assuming a Poisson process, the probability p(xi|xi−1, τi−1)dτi−1 of each transition oc-

curring during an infinitesimally small dτi−1 after τi−1 can be calculated as22,34:

p(xi|xi−1, τi−1)dτi−1 = A0(xi−1)e−A0(xi−1)τi−1dτi−1 ·
Ak(xi−1)

A0(xi−1)

= Ak(xi−1)e−A0(xi−1)τi−1dτi−1,

(3)

where A0(xi−1) =
∑m

k=1 Ak(xi−1) is the sum of rates of all reactions that could happen at

the state xi−1, and A0(xi−1)e−A0(xi−1)τi−1dτi−1 is the probability that there is exactly one

reaction occurring in next time interval τi−1
35. The subscript k denotes the reaction Rk

that connects state xi−1 to state xi. The fraction Ak(xi−1)
A0(xi−1)

is the probability that the k-th

reaction Rk occurs during τi−1
22,34. Taking together, the overall probability of the transition

path π is:

p(π(0,N)) = p(x0)
N∏
i=1

Ak(xi−1)e−A0(xi−1)τi−1dτi−1. (4)

D. Macrostates and probability of rare transitions between macrostates

We define a macrostate B as a set of microstates: B = {x| ∈ S} ⊂ S. Here we are

interested in biologically motivated macrostates. For example, in a bistable genetic switch

system, most microstates belong to either the “on/off” or the “off/on” metastable states,

each of which can be regarded as a macrostate. The probability of a macrostate B can be

written as: p(B) =
∑

x∈B p(x).

For a stochastic network, if a destination macrostate D can be reached from a beginning

macrostate B, the probability of the system transiting from B to D is 1 if given infinite

amount of time. However, we are interested in the probability of transition from B to D

within a finite period of time θ. That is, we wish to estimate p(D|B, t ≤ θ), which may be

small (Fig. 1):

p(D|B, t ≤ θ) =
∑
π(S,T)

p(π(S,T)|x0 ∈ B, S ∩ D 6= ∅, tN − t0 ≤ θ)
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1. Calculating exact transition probability

The finite buffer dCME method can be used to enumerate the state space S of stochastic

networks of modest size, and is optimal both in time complexity and in space requirement8,19.

For these networks, we can directly solve the discrete chemical master equation (dCME). The

transition probabilities of specific paths connecting two macroscopic states can therefore be

calculated exactly. In this study, the probabilities of rare events in all examples are computed

both by the finite buffer dCME method and by sampling methods. The results of the former

are regarded as exact solutions, against which results from sampling methods are compared.

E. Weighted SSA and Doubly-Weighted SSA

There are potentially an enormous number of transition paths connecting two macrostates.

In general, if enumeration is infeasible, exact calculation of the transition probabilities is

not possible. We can only estimate the probabilities through Monte Carlo sampling.

A number of sampling methods for rare events have been developed based on the prin-

ciple of importance sampling. Kuwahara and Mura developed the weighted SSA (wSSA)

algorithm22, in which the rate of each reaction Ak(x) is biased by a pre-selected predilection

constant αk, which will increase or decrease the rate of a specific reaction, which may affect

the fraction of sampled paths reaching the target states. These paths are generated from

the biased reaction rate Bk(x) = αkAk(x). The biased probability p′(xi|xi−1, τi−1) of the

reaction in the time step starting at state xi−1 is calculated as:

p′(xi|xi−1, τi−1) = A0(xi−1)e−A0(xi−1)τi−1 · Bk(xi−1)

B0(xi−1)
, (5)

where reaction Rk leads xi−1 to xi, and B0(x) ≡
∑m

k=1Bk(x). A weight for correcting the

bias is also kept for this reaction:

w(k,xi−1) =
Ak(xi−1)B0(xi−1)

Bk(xi−1)A0(xi−1)
=

1

αk

B0(xi−1)

A0(xi−1)
. (6)

The true probability p(xi|xi−1, τi−1) is then recovered as p(xi|xi−1, τi−1) = w(k,xi−1) ·
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p′(xi|xi−1, τi−1). The biased probability p′(π(0,N)) for the full path is:

p′(π(0,N)) = p(x0)
N∏
i=1

p′(xi|xi−1, τi−1)dτi−1,

with the weight:

w(π(0,N)) =
N∏
i=1

w(k,xi−1) =
N∏
i=1

1

αk

B0(xi−1)

A0(xi−1)
,

The true probability of the path is then: p(π(0,N)) = w(π(0,N)) · p′(π(0,N))

In wSSA, bias is introduced through the second factor Bk(xi−1)
B0(xi−1)

in Eqn. (5), which rep-

resents the biased probability in selecting the next reaction in the wSSA scheme. The time

scale of the Poisson process underlying the reaction, namely, the first factor in Eqn. (5),

remains unchanged.

In the doubly-weighted SSA method (dwSSA)23, both the selection probability and the

Poisson time scale are biased, and the biased probability for each step in a dwSSA sampling

path is:

p′(xi|xi−1, τi−1) = B0(xi−1)e−B0(xi−1)τi−1 · Bk(xi−1)

B0(xi−1)

= Bk(xi−1)e−B0(xi−1)τi−1

(7)

where Bk(xi−1) = γkAk(xi−1) is the biased reaction rate. The weight for the k-th reaction

occurring at step i− 1 is obtained from dividing Eqn. (3) by Eqn. (7):

w(k,xi−1) =
Ak(xi−1)e−A0(xi−1)τi−1

Bk(xi−1)e−B0(xi−1)τi−1
=

1

γk
exp [(B0(xi−1)− A0(xi−1))τi−1].

The biased probability for a full dwSSA path π(0,N) is:

p′(π(0,N)) = p(x0)
N∏
i=1

p′(xi|xi−1, τi−1)dτi−1,

and its weight is:

w(π(0,N)) =
N∏
i=1

w(k,xi−1) =
N∏
i=1

1

γk
exp (B0(xi−1)− A0(xi−1))τi−1.
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The true probability of the path p(π(0,N)) can be recovered as: p(π(0,N)) = w(π(0,N)) ·

p′(π(0,N)).

A key component of the dwSSA method is an automatic method to estimate the bias

constant γk for each reaction Rk. A large number (typically 105) of full-length trial sim-

ulations are run, with some of them (typically 2%) reaching the target macrostate. The

number of each reaction that occurred in those simulations that reached the macrostate are

counted and compared to the expected number of occurrence if one were to follow a Poisson

process in the same given time under the same initial condition. Those reactions occur more

frequently than expected are biased towards. On the other hand, reactions that occur less

frequently than expected are biased against. This procedure is repeated with the biases

updated iteratively, until a predefined fraction (e.g. 2%) of full-length trial paths reach the

target macrostate. In the further developed swSSA and sdwSSA methods, the bias coeffi-

cient is not a constant but depends on the copy numbers of molecules of the current state.

In order to assign more effective bias coefficients, a refined scheme of bias assignment is used

in sdwSSA, in which each reaction is divided into multiple bins according to its probability

to be chosen, with each bin assigned its own bias coefficient.

There are a number of issues with these methods. First, estimation of the bias parameters

relies on counting the number of occurrence of a reaction, which may not be possible or

the estimate may not be reliable if reactions happens rarely. For example, gene binding

and unbinding reactions in a toggle switch system bring the system from one metastable

state to another. But this happens only once or twice during an extended time. It is

challenging to sample these binding/unbinding reactions adequately using trial simulations

where limited runs are carried out. Second, as the estimated bias parameters are either

constant or based on current state, no considerations for possible barriers in the probability

landscape is incorporated. This becomes problematic for complex systems, for example,

those with multistabilities, where steep barriers need to be crossed. In these systems, the

desirable bias may be quite different depending on the neighborhood where the system

is currently located in the landscape. Third, there is a proliferation of adjustable bias

parameters, for example, on the order of O(βm) for the sdwSSA method, with the number

of bins β = 5 to 20 for each of the m reactions, making the assignment of bias coefficients

a challenging task26. As a result, often the overall amount of computation involved is

substantial, the variance of samples generated high, and the accuracy still lacking.
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F. Adaptively Biased Sequential Importance Sampling (ABSIS)

Here we describe a new method called Adaptively Biased Sequential Importance Sampling

(ABSIS) for estimating rare transition probability between macrostates. Our approach is

based on the look-ahead strategy and the principle of sequential importance sampling31,

which have found wide applications in studies of polymers and protein biophysics29,30, where

challenging problems such as RNA loop entropy calculation, generation of protein folding

transition state ensemble, and protein packing have been investigated33,36. In Absis, bias

for each reaction is calculated based on present and future information, and is adaptively

adjusted automatically, resulting in more efficient sampling of rare events. It can be applied

to stochastic networks with complex probability landscapes.

1. Perfect path sampling

Assume we wish to reach the macrostate D from the microstate x0. We can classify

paths π(0,N) starting at x0 and ending at xN into two sets PD and PD̄: those that reach the

macrostate D before time θ form the set of paths PD = {π(0,N)|S∩D 6= ∅, tN − t0 ≤ θ}, and

those that do not form another set of paths PD̄ = {π(0,N)|S ∩ D = ∅, tN − t0 > θ}.

Our goal is to assess the transition probability p(D|x0) from the microstate x0 to the

macrostate D. It can be calculated as

p(D|x0) =

∫
π(0,N)

I(π(0,N)) · p(π(0,N)) dπ(0,N),

where I(π(0,N)) is an indicator function such that I(π(0,N)) = 1 if π(0,N) ∈ PD, and 0 otherwise.

Namely, it is 1 if a path π(0,N) starting from state x0 reaches the macrostate D in time, and

0 otherwise. Perfect path samples for calculating p(D|x0) then can be drawn as:

π(0,N) ∼ I(π(0,N)) · p(π(0,N)).

In general, if our goal is to estimate certain property of the reaction paths, which is

expressed as a scalar function f(x) : Z+n 7→ R of the microstate x, perfect sampling of the
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reaction paths for this estimation problem is then:

π(0,N) ∼ I(π(0,N)) · f̂(π(0,N)),

where f̂(π(0,N)) = p(x0)f(x0)
∏N

i=1 p(xi|xi−1, τi−1)f(xi), and (x0, · · · ,xN) forms the path

π(0,N).

2. Optimal bias strategy and future-perfect adaptive weighting

Similarly, the probability p(D|xi) that future paths after a reaction connecting the mi-

crostate xi−1 to xi will reach the destination macrostate D in time is:

p(D|xi) =

∫
π(i,N)

I(π(i,N)) · p(π(i,N))dπ(i,N).

To estimate the transition probability p(D|xi−1), the next state xi can be sampled future-

perfectly if we draw xi as:

xi ∼ p(D|xi).

If our goal is to estimate the property f(·) of the reaction path that reaches the macrostate

D, xi can be sampled optimally as:

xi ∼
∫
π(i,N )

I(π(i,N)) · f̂(π(i,N))dπ(xi,N),

3. κ-Step Look-ahead Bias Strategy and Adaptive Weighting

As it is impossible to enumerate and examine all paths up to time θ to calculate p(D|xi)

exactly, we approximate it by adopting a κ-step look-ahead strategy. Briefly, we analyze

statistics of exhaustively generated short paths, and design biases based on estimations

made on these short paths. We first classify κ-step paths π(i,i+κ), which all have the first

step following a specific reaction connecting xi−1 to xi, into three types: forward-moving
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paths PF , backward-moving paths PB, and non-moving paths PN (Fig. 2):

Forward-Moving: πi,i+κ ∈ PF if d(xi+κ, D) < d(xi−1, D),

Backward-Moving: πi,i+κ ∈ PB if d(xi+κ, D) > d(xi−1, D),

Non-moving: πi,i+κ ∈ PN if d(xi+κ, D) = d(xi−1, D).

(8)

Here d(xi+κ, D) and d(xi−1, D) are the distances between the states xi+κ, xi−1 and

the target macrostate D, respectively. We define the distance d(x, D) as d(x, D) =

minxl∈D d(x,xl). For convenience, we use 1-norm distance. The forward-moving, backward-

moving, and non-moving probabilities after κ-steps, given that the first reaction connects

state xi−1 and xi, can be calculated as:

pF(xi) =
∑

π(i, i+κ)∈PF

p(π(i, i+κ))

pB(xi) =
∑

π(i, i+κ)∈PB

p(π(i, i+κ))

and

pN(xi) = 1− [pF(xi) + pB(xi)]

We can then have the approximations p(D|xi) ≈ pF(xi), and p(D̄|xi) ≈ pB(xi) + pN(xi),

which will be used to construct the bias functions for accelerating/decelerating the reaction

rate and for reaction selection. We can now have the approximation:

p(D|xi) =

∫
π(i,N)∈PD

I(π(i,N)) · p(π(i,N))dπ(i,N) ≈
∫
π(i,i+κ)∈PF

p(π(i,i+κ))dπ(i,i+κ).

4. Bias function with κ-Step Look-ahead

Recall that the probability of a path p(π(i,N)) is computed as

p(π(i,N)) = p(xi)
N∏
l=i

A0(xl)e
−A0(xl)τldτl

Ak(xl)

A0(xl)
.

To design bias functions that are fast to compute, we consider only the overall probability

pr(π(i, N)) of reaction choices accumulated along the path, and ignoring the rates of reactions
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for now:

pr(π(i, N)) =
N∏
l=i

Ak(xl)

A0(xl)
.

We have:

pF(xi) =
∑

π(i, i+κ)∈PF

p(π(i, i+κ)) ≈
∑

π(i, i+κ)∈PF

[
i+κ−1∏
l=i

Ak(xl,xl+1)

A0(xl)
], (9)

and

pB(xi) =
∑

π(i, i+κ)∈PB

p(π(i, i+κ)) ≈
∑

π(i, i+κ)∈PB

[
i+κ−1∏
l=i

Ak(xl,xl+1)

A0(xl)
], (10)

We can then design a bias function gk(xi−1) = f(pF(xi), pB(xi), Ak(xi−1,xi), A0(xi−1))

for selecting reaction k, and set Bk(xi−1) = gk(xi−1)Ak(xi−1) as the biased reaction rate.

The general biased probability for each step in the ABSIS sampling path is then:

pABSIS(xi|xi−1, τi−1) = B0(xi−1)e−B0(xi−1)τi−1 · Bk(xi−1)

B0(xi−1)
. (11)

Note that calculating the probability pF(xi) and pB(xi) is equivalent to follow a κ-step

Markov process p(i+ κ) = T κp(i), where the probability transition matrix is:

T = ATdiag(1/A0(xi,1), 1/A0(xi,2), · · · , 1/A0(xi,|S|)) + I,

in which A is the transition rate matrix of dCME in Eqn. (1), A0(xi) =
∑m

k=1Ak(xi,xi′),

I is the identity matrix, and {xi,1, · · · ,xi,|S|} form the state space S for this κ-step Markov

process starting from xi. The initial probability distribution p(i) for this Markov process is

such that the probability for the current state xi is 1 and 0 for all other states.

a. Biasing strategy. The bias in selecting reaction k that brings state xi−1 to xi is

based on the forward-moving and backward-moving probabilities. We first have:

gk(xi−1) =


1− λ1pF(xi) log[Ak(xi−1,xi)

A0(xi−1)
· pF(xi)], if pF(xi) > pB(xi)

min
{

1.0, − 1
λ2

(1− pB(xi)) log[Ak(xi−1,xi)
A0(xi−1)

· pB(xi)],
}
, if pF(xi) < pB(xi)

1, if pF(xi) = pB(xi)

(12)

where A0(xi−1) =
∑m

k=1Ak(xi−1,xi′). Here λ1 ≥ 0 and λ2 ≥ 0 are the parameters for biasing

towards forward-moving and against backward-moving reactions, respectively. Overall, there
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are only these two bias parameters, regardless which reaction k is considered. The surface

maps of bias function gk(xi−1) with λ1 = λ2 = 0.5 for encouraging and discouraging reaction

k at different values of pF, pB and Ak(xi−1,xi)
A0(xi−1)

are shown in Fig. 3a and b.

The construction of gk(xi−1) is based on the following consideration. The rate ratio

Ak(xi−1,xi)
A0(xi−1)

, which is the original probability of choosing the reaction k that reaches xi, is

now modified by the forward probability pF(xi) at xi, obtained by looking κ-steps ahead.

The term Ak(xi−1,xi)
A0(xi−1)

· pF(xi) therefore represents the probability of selecting reaction k and

moving forward. To encourage forward-moving reactions with lower reaction rates, we use

the term − log[Ak(xi−1,xi)
A0(xi−1)

· pF(xi)] instead. This is then further modified by pF(xi) so that

reactions with higher forward-moving probability is favored proportionally (Fig. 3a). The

bias coefficient λ1 is used to adjust the bias strength for forward-moving reactions. Larger

λ1 gives stronger encouragement. As −λ1pF(xi) log[Ak(xi−1,xi)
A0(xi−1)

· pF(xi)] falls in the interval

[0,+∞), we add the constant 1 so the function gk(xi−1) is now in the interval [1,+∞)

when reaction k should be encouraged. Setting bias according to gk(xi−1) will increase the

probability for a forward moving reaction to be selected. Overall, if a larger λ1 value is

chosen, a slower reaction with higher probability of moving forward will be encouraged more

(Fig. 3a).

Similarly, backward reactions are biased against, with stronger discouragement when us-

ing a larger λ2 value. The discouragement is also stronger for reactions with larger backward

probability pB(xi) and larger rate ratio Ak(xi−1,xi)
A0(xi−1)

(Fig. 3b). To ensure gk(xi−1) fall within

the interval (0, 1], a “min” function is used here to add an upper bound for the bias. If xi

neither advances nor backtracks the system, no bias is introduced.

b. Corrections of biases and biased reaction rates. In principle, both reaction selection

probability and the Poisson time scale can be biased. In this study, we focus on effects of

biasing reaction selection probability alone. The effects of biasing specific reaction rates are

the subject for future studies. Specifically, we now insist that the overall reaction rate of

the system is unchanged, namely,

B0(xi−1) = A0(xi−1). (13)
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As B0(xi−1) =
∑

k Bk(xi−1) =
∑

k gk(xi−1)Ak(xi−1) and A0(xi−1) =
∑

k Ak(xi−1), we use a

normalizing constant α:

α = A0(xi−1)/
∑
k

gk(xi−1)Ak(xi−1),

and the biased reaction rate is tentatively set to:

B′k(xi−1) = αgk(xi−1)Ak(xi−1). (14)

This ensures Eqn. (13) holds.

As there are occasions where the bias changes direction after normalization, namely, from

< 1.0 to > 1.0, or vice versa, we further insist that:

B′k(xi−1) ≤ Ak(xi−1), if pkB(xi) ≥ 2 · pkF(xi+1)

B′k(xi−1) > Ak(xi−1), if pkF(xi) > 2 · pkB(xi+1).
(15)

To satisfy this requirement, we partition all reactions into two disjoint sets based on

whether their corresponding B′k(xi−1) satisfy the above inequalities:

RS = {k| ifB′k(xi−1) satisfies Eqn. (15)}

RU = {k| otherwise}.
(16)

Inequalities in Eqn. (15) are maintained by simply assigning no bias for all reactions in RU ,

and redistribute their surpluses and deficits evenly to all reactions in RS. As a result, the

total reaction rate B0(xi−1) is unchanged. We have the final biased reaction rates:

Bk(xi−1) = Ak(xi−1), if k ∈ RU ,

Bk(xi−1) = B′k(xi−1)(1 +
∑
l∈RU

[B′l(xi−1)− Al(xi−1)]/
∑
j∈RS

[B′j(xi−1)]), if k ∈ RS,
(17)

where B′k(xi−1) is given by Eqn. (14). The final biased probability for each step in an ABSIS

sampling path is then calculated as:

pABSIS(xi|xi−1, τi−1) = A0(xi−1)e−A0(xi−1)τi−1 · Bk(xi−1)

A0(xi−1)
. (18)
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5. Weights of ABSIS path

The weight for correcting the bias for taking the k-th reaction at step i − 1 is obtained

by dividing Eqn. (3) by Eqn. (18):

wABSIS(k,xi−1) =
Ak(xi−1)e[B0(xi−1)−A0(xi−1)]τi−1

Bk(xi−1)
. (19)

For the special case when the overall reaction rate is unchanged, namely, when B0(xi−1) =

A0(xi−1), we have wABSIS(k,xi−1) = Ak(xi−1)
Bk(xi−1)

. The weight for a full ABSIS path is then:

wABSIS =
N∏
i=1

wABSIS(k,xi−1) =
N∏
i=1

Ak(xi−1)e[B0(xi−1)−A0(xi−1)]τi−1

Bk(xi−1)
=

N∏
i=1

Ak(xi−1)

Bk(xi−1)
. (20)

The biased probability for a full ABSIS path π(0,N) is

pABSIS(π(0,N)) = p(x0)
N∏
i=1

pABSIS(xi|xi−1, τi−1)dτi−1.

The true probability of the path π(0,N) can be recovered as:

p(π(0,N)) = wABSIS(π0,N) · pABSIS(π0,N).

6. The ABSIS algorithm

We summarize the ABSIS method in Algorithm 1.

In order to improve computing efficiency, we enumerate the κ-step lookahead paths for

each microstate when encountered. As implementation and data structure greatly affect

computing speed, Ak(xi−1), A0(xi−1), Bk(xi−1), B0(xi−1), and gk(xi−1) are all calculated

only once when the microstate xi−1 is first visited, with their values stored in hash tables

using the microstate xi−1 as the key. All subsequent visits to the microstate xi−1 need only

to retrieve relevant values stored in the hash tables. This lead to dramatically improved

time efficiency.
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Algorithm 1 The ABSIS

// Input (X , R, x0, D, θ, κ, M , λ1, λ2)
Define network N ← (X ,R)
Initialize hash table H = {(xi) : [A0(xi), B0(xi), Ak(xi), Bk(xi), γk(xi)]} ← ∅
j ← 0, total weight wM ← 0, weight square vM ← 0,
Number of successful paths Ns ← 0
while j < M do

Path length i← 1
Initialize path with the initial state xi−1 ← x0

Time on current path t← 0, weight of current path w ← 1
while t < θ and d(xi−1,D) > 0 do

if xi−1 /∈ H then
Calculate reaction rates Ak(xi−1) of state xi−1 for all reactions Rk ∈ R
Calculate A0(xi−1)←

∑m
k=1 Ak(xi−1)

Enumerate all possible κ step paths π(i−1,i+κ) starting from state xi−1

Calculate pF(xi) and pB(xi) for each Rk using Eqn. (9) and (10)
Calculate bias strength gk(xi−1) for each Rk according to Eqn. (12)
Calculate tentative reaction rate B′k(xi−1) for all Rk according to Eqn. (14)
Calculate final biased reaction rate Bk(xi−1) for all Rk according to Eqn. (17)
Calculate B0(xi−1)←

∑m
k=1Bk(xi−1)

H ← H∪ {(xi−1) : [A0(xi−1), B0(xi−1), Ak(xi−1), Bk(xi−1), γk(xi−1)]}
end if
Retrieve Bk(xi−1), Ak(xi−1), B0(xi−1), A0(xi−1) and gk(xi−1) from H using key

xi−1

Generate two uniform random numbers µ1 ∼ U(0, 1) and µ2 ∼ U(0, 1)
τi−1 ← − ln(µ1)/A0(xi−1)

r ← smallest integer satisfying
∑k−1

r=1 Br(xi−1) < µ2B0(xi−1) ≤
∑k

r=1 Br(xi−1)
t← t+ τi−1, xi−1 ← xi−1 + sr

w ← w · Ak(xi−1)e(B0(xi−1)−A0(xi−1))τi−1

Bk(xi−1)

i← i+ 1
end while
if t < θ and d(xi−1,D) = 0 then wM ← wM + w, vM ← vM + w2, Ns ← Ns + 1
end if

end while
return pABSIS(x0,D, θ) = wM/M
return σ2

ABSIS(x0,D, θ) = (vM/M)− (wM/M)2

return σABSIS(x0,D, θ) =
√
σ2
ABSIS/M

return Success Rate: Ns = Ns/M

7. Determining look-ahead step κ and bias parameter λ1 and λ2

In Absis, we only have one look-ahead steps parameter κ, and two bias parameters λ1 and

λ2 to determine, regardless of the number of reactions and the overall network complexity.

In contrast, a large number of bias parameters need to be adjusted in methods such as
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Algorithm 2 Estimation of look-ahead steps κ and parameter search space l for ABSIS

1: // Input (X , R, x0, D, θ)
2: Look-ahead step: κ← 2
3: Maximum range of parameter search space: l← 1.0
4: Sample size: M ← 1000
5: Success rate: s← 0
6: while 1 do . Determine the optimal κ
7: s← s+ success rate of ABSIS(X , R, x0, D, θ, κ, M , λ1 = 0.0, λ2 = 1.0)
8: s← s+ success rate of ABSIS(X , R, x0, D, θ, κ, M , λ1 = 1.0, λ2 = 0.0)
9: s← s+ success rate of ABSIS(X , R, x0, D, θ, κ, M , λ1 = 1.0, λ2 = 1.0)
10: s← s/3
11: if s > 0.5 then
12: break
13: end if
14: κ← κ+ 1
15: end while
16: s← success rate of ABSIS(X , R, x0, D, θ, κ, M , λ1 = 0.5, λ2 = 0.5)
17: if s > 0.8 then . Determine the maximum range for parameter search: l
18: l← 0.5
19: end if
20: return κ
21: return l

dwSSA, swSSA and sdwSSA.

To determine κ, we make the reasonable assumption that longer look-ahead paths lead

to better bias parameters. Starting from κ = 2, we test different κ values with an increment

of 1 using 103 ABSIS paths. We take the first value of κ that gives an average success rate

s of > 0.50 at three different parameters locations of (λ1, λ2) = (0.0, 1.0), (1.0, 0.0), and

(1.0, 1.0). This is very efficient as it only takes 3× 103 ABSIS paths to evaluate one κ. This

is summarized in Algorithm 2.

To determine the optimal biasing parameters (λ1, λ2) ∈ [0.0, 1.0]× [0.0, 1.0], we carry out

a grid search, where 103 paths are generated at each grid point. The sample variance, success

rate, total path weight and total weight square are stored at each grid point. We assume

that the success rate s of ABSIS increases monotonically with parameters λ1 and λ2, at the

cost of reduced diversity among sampled paths. We first evaluate s at (λ1, λ2) = (0.5, 0.5)

using 103 ABSIS paths. If s > 0.8, we focus on exploring more diverse paths and restrict

our search space to (λ1, λ2) ∈ [0.0, 0.5] × [0.0, 0.5]. Otherwise, the search space remains as

[0.0, 1.0]× [0.0, 1.0].

We start at (λ1, λ2) = (0.0, 0.0), and move first along the direction of λ2, and then
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Algorithm 3 Estimation of Bias Parameters λ1, λ2 for ABSIS

1: // Input (X , R, x0, D, θ, κ, l)
2: Sample size: M ← 1000
3: Bias parameters: λ1 ← 0, λ2 ← 0
4: Grid size: ∆ = 0.1 and refined grid size: ∆′ = 0.02
5: Initialize hash tables H1{(λ1, λ2) : [v1(λ1,λ2), s1(λ1,λ2),M1(λ1,λ2)]} ← ∅
6: Initialize hash tables H2{(λ1, λ2) : [v2(λ1,λ2), s2(λ1,λ2),M2(λ1,λ2)]} ← ∅
7: Total sample size for parameter estimation: Mtot ← 0
8: while 1 do
9: while λ1 ≤ l do
10: while λ2 ≤ l do
11: for i = 1→ 2 do
12: if (λ1, λ2) ∈ Hi AND si(λ1,λ2) /∈ [0.1, 0.8] then
13: λ2 ← λ2 + ∆
14: Go to line 11
15: end if
16: [vi(λ1,λ2), si(λ1,λ2)] = ABSIS(X , R, x0, D, θ, κ, M , λ1, λ2)
17: Mtot ←Mtot +M
18: if (λ1, λ2) /∈ Hi then
19: Hi ← H1 ∪ {(λ1, λ2) : [vi(λ1,λ2), si(λ1,λ2),M ]}
20: else
21: Update [vi(λ1,λ2), si(λ1,λ2),Mi(λ1,λ2)] ∈ Hi using Mi(λ1,λ2) +M samples
22: end if
23: if (si(λ1,λ2) − si(λ1,λ2−∆)) > 0.5 then
24: Repeat line 16–22 for refined grids in [λ2 −∆, λ2] with interval ∆′

25: end if
26: if (si(λ1,λ2) − si(λ1−∆,λ2)) > 0.5 then
27: Repeat line 16–22 for refined grids in [λ1 −∆, λ1] with interval ∆′

28: end if
29: end for
30: λ2 ← λ2 + ∆
31: end while
32: λ1 ← λ1 + ∆
33: end while
34: if arg min(λ1,λ2)∈H1,s1(λ1,λ2)∈[0.1,0.8]{v1(λ1,λ2)} = arg min(λ1,λ2)∈H2,s2(λ1,λ2)∈[0.1,0.8]{v2(λ1,λ2)}

then Exit
35: end if
36: end while
37: return λ1 and λ2

38: return total sample size: Mtot.

continue at an increased λ1 value, all with an interval of ∆ = 0.1. We stop our search along

the λ2 direction if s > 0.8. If s at a specific point of (λ1, λ2) is 0.5 better than both its

visited neighbors in the λ1 and the λ2 directions, we retrospectively increase the grid points

in that direction with a finer interval of ∆′ = 0.02, and carried out searches on these grid
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points. After the search concludes, grid points with the smallest variance and s ∈ [0.1, 0.8]

are taken as candidates.

We repeat this search process starting at (0.5, 0.5) again. The first candidate grid point

that is again identified from a second independent search is taken as our final choice. When

no candidate grid points are found in two independent searches, we repeat the overall search

process, and update the stored sampling variances and success rates with results from new

samples, until an optimal parameter pair is found. To further reduce computing costs, we

skip grid points with previous s outside the range of [0.1, 0.8] when updating variance and

success rates. The procedure for parameter estimation is summarized in Algorithm 3.
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III. BIOLOGICAL EXAMPLES

Below we describe examples of applying ABSIS to four biochemical reaction networks.

We show that ABSIS can provide accurate estimation of transition probabilities with ef-

ficient computation. Results are then compared with those obtained using other methods

(the dwSSA23, as well as the swSSA method27 and sdwSSA26 method when possible), with

differences discussed.

A. Birth-death process

The birth-death process is a simple chemical reaction system that involves one molecular

species and two reactions. Synthesis and degradation are the only reactions, and there is

only one molecular species. The network and parameters are specified as follows:

R1 : ∅ k1→ X, k1 = 1,

R2 : X
k2→ ∅, k2 = 0.025.

(21)

We study the problem of estimating the rare event probability, p(x(t) = 80|x(0) = 40, t ≤ θ),

that the system transits from the initial state x(0) = 40 to the target state x(t) = 80 within

the time threshold θ = 100. This same problem was studied in Daigle et al23 and Roh et

al27.

a. Exact probability landscape and transition rate. We first enumerate the full state

space S of the birth-death model of Eqn. (21), starting from the initial state of x(0) = 40

using the finite state buffer dCME method with a buffer size of 2008,19. There are a total of

241 microstates. To calculate the exact rare event transition probability of p(80|40, t ≤ θ),

the 241 × 241 transition rate matrix A is modified by making the target states x = 80

as an absorbing state, following the approach of Ref. 20. The exact transition probability

p(80|40, t ≤ θ) can then be computed from the modified Aabs:

p(θ) = p(0) exp(−Aabsθ),

where the initial state probability landscape p(0) has p(0)x=40 = 1 and 0 for all other 240

states. p(80|40, t ≤ θ) is obtained from p(θ)x=80. We use the matrix exponential software
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EXPOKIT37 to calculate p(80|40, t ≤ θ) for θ = 100 numerically. The exact transition

probability is found to be 2.986 × 10−7. This indicates that there would be only about 3

successful transition paths observed in 10 million sampled paths if the unmodified original

SSA were used.

The time-evolving probability landscape of the system calculated using EXPOKIT37 is

plotted in Fig. 4a. The blue and black curves show the landscapes at time t = 100 and at

the steady state, respectively. There is one high probability region centered at x = 40 in

both landscapes (green dots in Fig. 4a). The target state x = 80 (red dots in Fig. 4a) is

located at a region with very low probability. Transitions from x = 40 to x = 80 is therefore

of very low probability, as crossing a large barrier between these two states is necessary.

b. Determination of look-ahead steps and bias parameters. The look-ahead steps for

ABSIS is determined to be κ = 2, and the parameter search space is determined to be 0.5

by running Algorithm 2. The Algorithm 3 is then used to determine λ1 and λ2 from the

search space [0, 0.5]× [0, 0.5]. The optimal parameters are determined to be λ1 = 0.50 and

λ2 = 0.18, which has a success rate of 0.63. Fig. 4b and 4c shows the variances of sampling

weights and success rates of reaching the target state at different values of λ1 and λ2. The

optimal parameters λ1 = 0.50 and λ2 = 0.18 are located in the lowest variance region of

the parameter space (yellow dot in Fig. 4b). The total sample size for parameter search is

9.5× 104, which is much smaller than the reported sample size of 7× 105 in dwSSA23.

c. Estimated transition probability. The estimated transition probability and variance

from four independent simulations are plotted in Fig. 4d for sample sizeM of 104, 105, 106, 107

and 108 used for each simulation. The estimated rare transition probability with M = 107

is:

pABSIS(80|40, t ≤ 100) = 2.981× 10−7 ± 0.001× 10−7,

which is very close to the exact value of 2.986 × 10−7 (red line in Fig. 4d). In addition,

ABSIS converge rapidly as the sample size increases.

We now compare our results with those from the dwSSA method, which was implemented

following Ref. 23. We use the exact bias constants of γ1 = 1.454 and γ2 = 0.686 as in Daigle

et al23. The probability estimated from dwSSA is 2.937×10−7±0.017×10−7 using a sample

size of M = 107, which is accurate but less so than that of ABSIS. Additionally, the ABSIS

method has a higher success rate (0.63) than the dwSSA method (0.59). The comparisons
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of mean standard deviations between ABSIS and dwSSA calculated from four independent

simulations using different sample size are plotted in Fig. 4e. ABSIS has a standard deviation

about one order of magnitude smaller than dwSSA. In addition, ABSIS requires much less

samples to achieve the same accuracy of dwSSA. For example, 104 samples of ABSIS has a

smaller standard deviation than 106 samples of dwSSA. We also compare ABSIS estimation

with the results from swSSA as reported in Roh et al27. The estimation of 95% confidence

interval from 105 samples of ABSIS is 2.986× 10−7 ± 0.020× 10−7, which is comparable to

the estimation of swSSA 2.986× 10−7 ± 0.019× 10−7 using the same sample size27.

The sample variances of the ABSIS method when using different sample sizes are shown

in Fig. 4f (blue line), along with variances using dwSSA sampling (red line, Fig. 4f). Overall,

ABSIS gives consistently small variance. At M = 107, the variance (1.0×10−13) is two orders

of magnitude smaller than the variance of 3.1× 10−11 when using the dwSSA method. We

further note that the variance of estimated transition probabilities using dwSSA seems to

increase with the sample size.

Overall, our results show that the ABSIS method converges rapidly to the true transition

probability when sample size is increased, whereas the dwSSA method converges less rapidly

and has larger variance.

d. Bias Mechanism of ABSIS. Examining the forward-moving probability (Fig. 5a

and 5b, green) and the backward-moving probability (red) of both reactions R1 and R2 at

different states helps to gain insight into how ABSIS works. The synthesis reaction R1 has

a much higher forward-moving than backward-moving probability in majority of the states,

and the degradation reaction R2 has a much higher backward-moving probability in majority

of the states. These observations suggest that in most cases, one should bias to encourage

reaction R1 and to discourage reaction R2.

As the system approaches the target state, the forward-moving probability of R1 (green

line in Fig. 5a) decreases dramatically, while the backward-moving probability of R2 (red

line in Fig. 5b) increases. This is due to the fact that the propensity for backward-moving

becomes stronger as the rate of the degradation reaction R2 increases monotonically with

the copy number of X, while the rate of the synthesis reaction R1 remains constant.

It is clear that constant biases will not work well for this problem, as the rare event

transition requires overcoming the steep probability barrier between the two states of x = 40

and x = 80 (Fig. 5c, blue line). The optimal bias strengths will need to depend on the current
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propensity of forward moving, and should be adaptive.

For this problem, the ABSIS strategy of designing biases based on estimations from look-

ahead paths works well. The bias strengths generated by the ABSIS algorithm for both

reactions R1 and R2 are plotted in Fig. 5c and 5d (black), along with the steady state

probability landscape (blue) as reference. In general, the biases for R1 are all favorable

(Fig. 5c), and the biases for R2 are all unfavorable (Fig. 5d). However, the strength of

the bias is adaptively adjusted following changes in the reaction propensity, as well as the

need for overcoming the probability barriers. When approaching the target state, bias is set

such that R1 is much more strongly encouraged to produce more X, whereas R2 is severely

repressed to reduce the degradation of X.

Overall, by utilizing future information from κ = 2 look-ahead paths, ABSIS can identify

automatically the reaction to encourage, as well as the reaction to discourage at any given

state. The forward and backward-moving probabilities estimated from look-ahead paths can

aid in crossing the probability barrier of rare event transitions. By adaptively changing biases

according to changes in reaction propensity and future information about the probability

barrier, the ABSIS method can provide estimates for the birth-death model with much

smaller sampling variance compared to methods using constant biases such as the dwSSA

method23.

B. Reversible isomerization

We also apply the ABSIS method to the reversible isomerization network taken from

the Ref. 26, where the state-dependent doubly weighted stochastic simulation algorithm

(sdwSSA) was applied26. The reversible isomerization network involves two molecular species

and two reactions:

R1 : A
k1→ B, k1 = 0.12,

R2 : B
k2→ A, k2 = 1.

(22)

We estimate the rare event probability p(xB = 30|x(0), t ≤ 10) that the system transitions

from an initial state x(0) = {(100, 0)} to any state with 30 copies of B within the time

interval of t ≤ 10.
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e. Exact probability landscape and transition rate. We first enumerate the full state

space S of the reversible isomerization model in Eqn. (22), starting from the initial state

x(0) = (100, 0) using the dCME method. This reversible isomerization model is a closed

system, therefore no buffer is needed. There are a total of 101 microstates in the state

space S. The exact transition probability of the rare event p(xB = 30|x(0), t ≤ 10) is

calculated by solving the matrix exponential problem p(10) = p(0) exp(−Aabs · 10) using

the EXPOKIT software37, where Aabs is the modified transition rate matrix by making the

target states {x|xB = 30} absorbing states, following the approach of Ref. 20. The exact

transition probability is found to be 1.1911× 10−5.

The time-evolving probability landscape of the system is calculated using EXPOKIT37,

and its projection to B is plotted in Fig. 6a. The blue and black curves show the landscape

at t = 10, and at the steady state, respectively. There is one high probability region centered

at xB = 10 (red circles in Fig. 6a). The target state xB = 30 (red dots in Fig. 6a) is located

in a region with very low probability. Transitions from xB = 0 (green dots in Fig. 6a) to

xB = 30 therefore has very low probability, as a large barrier between these two states need

to be crossed.

f. Determination of look-ahead steps and bias parameters. The look-ahead steps for

ABSIS is determined to be κ = 2 and parameter search space to be l = 0.5 by running

Algorithm 2. Algorithm 3 is used to determine λ1 and λ2 from the search space [0, 0.5] ×

[0, 0.5]. The optimal parameters are determined to be λ1 = 0.20 and λ2 = 0.16, which has

a success rate of 0.76. Fig. 6b and 6c shows the variances of sampling weights and success

rates of reaching the target state at different values of λ1 and λ2. The optimal parameter

pair λ1 = 0.20 and λ2 = 0.16 is located in the lowest variance region of the parameter space

(yellow dot in Fig. 6b). The total sample size for parameter search is 9.1 × 104, which is

much smaller than the reported 7× 105 samples for parameter estimations for dwSSA and

sdwSSA in Ref. 26.

g. Estimated transition probability. The estimated transition probability and standard

deviation by averaging four independent simulations using different sample size of M =

104, 105, 106, 107 and 108 are plotted in Fig. 6d. ABSIS simulation provide accurate estimate

of 1.1909 × 10−5 ± 0.0004 × 10−5 using the sample size of M = 107. In addition, ABSIS

converge rapidly to the exact rare event probability (red line in Fig. 6d) as the sample size

increases. When the same sample size M = 106 as that of Roh et al26 is used, the ABSIS

28



method gives the estimation of 1.192×10−5±0.001×10−5, with its standard deviation about

only one half of the estimation 1.193×10−5±0.002×10−5 from the sdwSSA method26. When

using the same sample size M = 105 as in Roh et al27, the ABSIS method gives the 95%

confidence interval estimation as 1.191×10−5±0.007×10−5, which has a much smaller 95%

confidence interval than the estimation of swSSA 1.190× 10−5± 0.011× 10−5 with the same

sample size27.

We also compare our results with those from the dwSSA method. For dwSSA sampling,

we use bias constants (γ1 = 1.301, γ2 = 0.719) for the two reactions in the network as taken

from Roh et al26. The rare event probability estimated from dwSSA using the sample size of

M = 107 is 1.278× 10−5± 0.060× 10−5, and the success rate is only 0.07. The comparisons

of mean standard deviations between ABSIS and dwSSA calculated from four independent

simulations using different sample size are plotted in Fig. 6e. ABSIS results show 1–2 orders

of magnitude smaller standard deviation (Fig. 6e) than dwSSA in estimating the rare event

probability. In addition, ABSIS requires much less samples to achieve the same accuracy of

dwSSA. In this example, 104 samples of ABSIS has a much smaller standard deviation than

dwSSA with 108 samples.

The ABSIS method gives more accurate estimations than dwSSA (1.191×10−5 vs 1.278×

10−5 at M = 107, 1.192× 10−5 vs 1.201× 10−5 at M = 106 and 1.191× 10−5 vs 1.075× 10−5

at M = 105 compared to the exact value of 1.191 × 10−5), and have higher success rate

(0.76) compared to the dwSSA method (0.07). The ABSIS method also gives estimations

with much smaller standard deviations than swSSA (at M = 105, where data is reported

in Ref. 27) and sdwSSA (at M = 106, where data is reported in Ref. 26). In addition, it

gives consistently smaller sample variances (1.3× 10−10 at M = 107), which is four orders of

magnitude smaller than the variance 4.2 × 10−6 obtained when using the dwSSA method.

The sample variance of ABSIS using different sample size are shown in log-scale in Fig. 6f

(blue line), along with variances using dwSSA sampling (red line, Fig. 6f).

C. Bistable Schlögl model

Schlögl model is a one-dimensional bistable system first proposed in Ref. 38, and exten-

sively studied subsequently39–41. It is an auto-catalytic networks consisting of one molecular
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species (X) whose concentration can change through four reactions38,39:

R1 : A+ 2X
k1→ 3X, k1 = 3

R2 : 3X
k2→ A+ 2X, k2 = 0.6

R3 : B
k3→ X, k3 = 0.25

R4 : X
k4→ B, k4 = 2.95,

(23)

where A and B are species with constant concentrations (set to a = 1 and b = 2, respec-

tively). Values of reaction rate constants k1, k2, k3 and k4 are all from Vellela et al39.

The volume of the system is fixed as V = 25. Following Vellela et al39, the reaction rates

are calculated using formulas A1(x) = ak1x(x−1)
V

, A2(x) = k2x(x−1)(x−2)
V 2 , A3(x) = bk3V , and

A4(x) = k4x, respectively. Our task is to estimate the probability p(92|0, t ≤ θ) that the

Schlögl system transitions from an initial state x = 0 to the target state x = 92 within a

given time threshold of θ = 2.

h. Exact probability landscape and transition rate. We first enumerate the full state

space S of the Schlögl model of Eqn. (23), starting from the initial state of x = 0 using

the dCME method with a buffer size of 1, 000. There are 1, 001 microstates in the state

space S. The exact transition probability of the rare event p(92|0, t ≤ 2) is calculated by

solving the matrix exponential problem p(θ) = p(0) exp(−Aabs · 2) using the EXPOKIT

software37, where Aabs is the modified transition rate matrix by making the target states

x = 92 an absorbing state, following the practice of Ref. 20. The calculated exact transition

probability is 5.419×10−5. That is, if 105 paths are sampled using the original SSA method,

there will be only about 5 successful transition paths.

The time-evolving probability landscape of the system calculated using EXPOKIT37 is

plotted in Fig. 7a. The blue and black curves show the landscape at time t = 2 and at

the steady state, respectively (Fig. 7a). There are two high probability regions centered at

x = 4 (red circle on black curve) and x = 92 (red dot on black curve), respectively, on the

steady state probability landscape (black curve). They are separated by a low probability

barrier. The probability landscape at time t = 2 (blue curve) shows a much sharper peak

centered at x = 3 (red circle on blue curve). It is clear that transition paths from x = 0 to

x = 92 within t = 2 have a steep barrier to cross.

30



i. Determination of look-ahead steps and bias parameters. The look-ahead steps for

ABSIS in Schlögl model is determined to be κ = 2, and the parameter search space is

determined to be 0.5 by running Algorithm 2. Algorithm 3 is then used to determine λ1

and λ2 from the search space [0, 0.5] × [0, 0.5]. The optimal parameters are determined

to be λ1 = 0.10 and λ2 = 0.40, which has a success rate of 0.15. Fig. 7b and 7c shows

the variances of sampling weights and success rates of reaching the target state at different

values of λ1 and λ2. The optimal parameter pair λ1 = 0.10 and λ2 = 0.40 is located in the

lowest variance region of the parameter space (yellow dot in Fig. 7b). The total sample size

for parameter search is 3.28 × 105, which is much smaller than the typical sample size of

7× 105 reported in dwSSA23.

j. Estimated transition probability. The estimated transition probability and variance

by averaging four independent simulations using different sample size ofM = 104, 105, 106, 107

and 108 are plotted in Fig. 7d. With the sample size M of 107, ABSIS simulation provide

an accurate estimate of pABSIS(92|0, t ≤ 2) = 5.394 × 10−5 ± 0.009 × 10−5, which is very

close to the exact value of 5.419 × 10−5. In addition, ABSIS converge rapidly (Fig. 7e) as

the sample size increases.

We also compare our results with those obtained using the dwSSA method. For dwSSA

sampling, we followed the original authors’ recommendation of choosing parameters such

that the minimum fraction ρ of trajectories reaching the target states is 0.0223. This gives

the bias constants of γ1 = 1.115, γ2 = 0.967, γ3 = 1.171, and γ4 = 0.872 for reaction

1 − 4 in the network, respectively. The rare event probability estimated from dwSSA is

5.976×10−5±0.342×10−5 using a sample size M = 107, which is considerably less accurate

than that of ABSIS (5.394× 10−5± 0.009× 10−5 vs. the exact value of 5.419× 10−5). It also

has a low success rate of 0.02 compared to ABSIS (0.15). The comparisons of mean standard

deviations between ABSIS and dwSSA calculated from four independent simulations using

different sample size are plotted in Fig. 7e. ABSIS results show about one order of magnitude

smaller standard deviation (Fig. 7e) than dwSSA in estimating the rare event probability in

Schlögl model. In terms of computing efficiency, ABSIS sampling is able to achieve better

accuracy than dwSSA with 1/10 of samples.

The sample variance of ABSIS using different sample size are shown in Fig. 7f (blue

line), along with variances using dwSSA sampling (red line). Overall, ABSIS sampling gives

consistently small sample variances (8.712× 10−8 at M = 107), which is roughly four orders
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of magnitude smaller than the variance 3.233× 10−4 when using the dwSSA method.

k. Bias Mechanism of ABSIS. By examining the forward-moving probability (green

line in Fig. 8a, b, c and d) and the backward-moving probability (red line) of all four

reactions at different states, we found that the synthesis reactions R1 and R3 have much

higher forward-moving than backward-moving probability in majority of the states, and the

degradation reactions R2 and R4 have much higher backward-moving probability in majority

of the states. These observations suggest that reactions R1 and R3 should be encouraged

and reactions R2 and R4 should be discouraged.

Obviously, constant biases will not work well for this problem, because the steep barrier

crossing region between the initial and the target state (blue curve in Fig. 8e). The optimal

bias strengths should be adaptive and should be determined by the complex probability

landscape of the system.

For the Schlögl model, the ABSIS strategy works well. The bias strengths calculated

by the ABSIS algorithm for all four reactions are plotted in Fig. 8e, f, g and h (black),

along with the steady state probability landscape as a reference (blue). The biases for R1

and R3 are all favorable (Fig. 8e and g), and the biases for R2 and R4 are all unfavorable

(Fig. 5f and h). Interestingly, the strongest biased region of R1, R3 and R4 overlapped with

the steepest barrier crossing region in the landscape (Fig. 8e, g, and h), which shows that

ABSIS can capture the urgent need for overcoming the probability barriers at the time.

The insignificant bias of R2 is due to its smaller reaction rates, although it has a similar

backward-moving probability as R4 (Fig. 8e).

Estimating rare event probability for Schlögl model is a difficult task for methods with

constant biases, as reported in Ref. 34. However, by utilizing future information from 3-

step look-ahead paths, ABSIS successfully estimated the probability of rare event transition

in the bistable Schlögl model with accuracy and small sampling variance compared to the

constant biased dwSSA method23.

D. Enzymatic futile cycle

Enzymatic futile cycle is a ubiquitous network motif consisting of six different molecular

species and six reactions. Samoilov et al studied this network in detail42. The molecular

species, reactions, and corresponding reaction rate constants of the enzymatic futile cycle
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system are as follows:

R1 : X1 +X2
k1→ X3, k1 = 1,

R2 : X3
k2→ X1 +X2, k2 = 1,

R3 : X3
k3→ X1 +X5, k3 = 0.1,

R4 : X4 +X5
k4→ X6, k4 = 1,

R5 : X6
k5→ X4 +X5, k5 = 1,

R6 : X6
k6→ X4 +X2, k6 = 0.1.

(24)

Estimating rare event probability of the enzymatic futile cycle system has been the subject

of recent studies using the wSSA method22 and the dwSSA method23. Here our goal is to

estimate the probability p(x5 = 25|x(0), t < θ) that the system starts from the initial state

x(0) = {(1, 50, 0, 1, 50, 0)} to any other states with exactly 25 copies of X5 within the

time-threshold of θ = 100. The same task was also studied in Daigle et al using dwSSA23.

l. Exact probability landscape and transition rate. We first enumerate the full state

space S of the futile cycle model of Eqn. (24), starting from the initial state x(0) =

(1, 50, 0, 1, 50, 0) using the dCME method. As the futile cycle model is a closed system, no

buffer is needed for the dCME method. There are a total of 400 microstates in the state space

S. The exact transition probability of the rare event p(x5 = 25|(1, 50, 0, 1, 50, 0), t < 100)

is calculated by solving the matrix exponential problem p(100) = p(0) exp(−Aabs · 100) us-

ing the EXPOKIT software37, where Aabs is the modified transition rate matrix by making

the target states {x|x5 = 25} absorbing states. The exact transition probability is calculated

to be 1.738× 10−7. That is, if we use the original SSA method, there will be only about 2

successful transition paths sampled in 10 million different sampled trajectories.

The time-evolving probability landscape of the system is calculated using EXPOKIT37,

and its projection to X5 is plotted in Fig. 9a. The inset figure in Fig. 9a shows the time-

evolving landscape from time t = 1 to t = 100, and the main figure shows the time frame

from t = 100 to t = 104. The blue and black curves show the landscape at t = 100, and at

steady state, respectively. There is only one high probability region in the projected steady

state probability landscape (black curve), which is centered at x5 = 50 (green dots). The

probability landscape at time θ = 100 (blue curve) shows a much sharper peak centered at

the same location x5 = 50. It is clear that transition paths from x5 = 50 to x5 = 25 within
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t ≤ 100 have a steep barrier to cross, although there is no steep barrier if sampling time is

not restricted.

m. Determination of look-ahead steps and bias parameters. The look-ahead steps for

ABSIS in the futile cycle model is determined to be κ = 3, and the parameter search space

is determined to be l = 1.0 by running Algorithm 2. Algorithm 3 is then used to determine

λ1 and λ2 from the search space [0, 1.0] × [0, 1.0]. The optimal parameters are determined

to be λ1 = 0.60 and λ2 = 0.40, which has a success rate of 0.41. Fig. 9b and 9c shows

the variances of sampling weights and success rates of reaching the target state at different

values of λ1 and λ2. The optimal parameter pair λ1 = 0.60 and λ2 = 0.40 is located in the

lowest variance region of the parameter space (yellow dot in Fig. 9b). The total sample size

for parameter search is 2.11 × 105, which is much smaller than the reported sample size of

7× 105 in dwSSA23.

n. Estimated transition probability. The estimated transition probability and standard

deviation by averaging four independent simulations using different sample size of M =

104, 105, 106, 107 and 108 are plotted in Fig. 9d. ABSIS simulation provides an accurate

estimate of 1.730× 10−7 ± 0.001× 10−7 using the sample size M = 107, which is very close

to the exact value of 1.738 × 10−7. The success rate is 0.41. In addition, ABSIS converge

rapidly to the exact rare event probability (red line in Fig. 9d) as the sample size increases.

We also compared our results with those obtained using the dwSSA method. For dwSSA

sampling, we use bias constants (γ1 = 1.000, γ2 = 1.003, γ3 = 0.320, γ4 = 1.003, γ5 =

0.993, γ6 = 3.008) taken from Daigle et al23 for the six reactions in the network. The rare

event probability estimated from dwSSA is 1.741× 10−7 ± 0.001× 10−7 using a sample size

M = 107, which is slightly better than the estimate from ABSIS, with a higher success rate of

0.67. The comparisons of mean standard deviations between ABSIS and dwSSA calculated

from four independent simulations using different sample size are plotted in Fig. 9e. ABSIS

results show about 1.5 times larger standard deviations (Fig. 9e) than dwSSA in estimating

the rare event probability in futile cycle model. In terms of computing efficiency, ABSIS

sampling needs about 1.5 times more samples to achieve the same accuracy as dwSSA with.

The sample variance of ABSIS using different sample size are shown in Fig. 9f (blue

line), along with variances using dwSSA sampling (red line, Fig. 9f). ABSIS sampling gives

consistently small sample variances (1.708× 10−13 at M = 107), although it is about twice

as large as the variance of 7.901× 10−14 when using the dwSSA method. It has also a lower
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success rate of 0.41.

o. Bias Mechanism of ABSIS. The enzymatic futile cycle network has different char-

acteristics from the other networks studied here. This network includes two enzymes, and

each has its active and inactive forms, which amount to a total of four enzyme molecu-

lar species, with the first enzyme X1 and its inactive form X3, and the second enzyme

X4 and its inactive form X6. However, as each enzyme has only one copy in the system

(X1 + X3 = 1, and X4 + X6 = 1), the occurrence of reactions is highly restricted by the

availability of the enzymes. To study the biasing mechanism of the reactions, we project the

forward-moving probability and the backward-moving probability of each reaction to the

space of species X5 and fixed combinations of X1 and X4 (Fig. 10(a-f) for forward-moving

probabilities and Fig. 10(g-l) for backward-moving probabilities). We found that the sur-

faces of forward and backward-moving probabilities are rather rugged. The forward and

backward-moving probabilities for the same reaction can be very different for microstates

with only one copy difference in X1 or X4. For example, the pF of R1 at X1 = 1, X4 = 0 (red

histograms in Fig. 10a) is close to 1, but with only one copy difference in X4, the pF of R1 at

X1 = 1, X4 = 1 is very close 0 (yellow histograms in Fig. 10a). This ruggedness is due to the

fact that neighboring microstates have different available enzymes, therefore very different

reactions occur according to Eqn. (24). In fact, no microstates can have all six reactions

occurring simultaneously. The ruggedness of the surfaces of forward and backward-moving

probabilities lead to varying biases for the same reaction (as shown in Fig. 11), potentially

offer no improvement for reducing sampling variance compared with dwSSA.

Although reactions R1, R2, R4 and R6 have overall larger forward-moving probabilities

(Fig. 10) and should be encouraged, and reactions R3 and R5 have overall larger backward-

moving probabilities and should be discouraged, the ABSIS biases for reactions R1, R2, R4

and R5 are all very close to 1, and only reactions R3 and R6 are significantly biased (Fig. 11),

as they have the slowest rates among all six reactions and thus biased. Biases for R3 are

clustered into two nearly flat biases with different mean 0.3364 and 0.4651, respectively

(Fig. 11c). There are also two different nearly flat biases for R6 around the mean 2.6330 and

3.5129, respectively (Fig. 11f). In general, the biases by ABSIS for the futile cycle network

are not very different from the bias constants of dwSSA used in Daigle et al23.

Overall the ABSIS method is comparable to the dwSSA method for studying the futile

cycle network. It can provide accurate estimates of the rare event probability. The sampling
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variance is constantly small at around 1.7 × 10−13, regardless of sample sizes. ABSIS also

correctly identifies reactions that need to be encouraged and to be discouraged, although the

sampling variance of ABSIS is about twice as large as that of dwSSA due to the ruggedness

of the surfaces of forward and backward-moving probabilities.

IV. DISCUSSIONS AND CONCLUSIONS

Sampling rare events is an important task for studying key events important for biological

processes. In this work, we described a general theoretical framework for obtaining optimized

bias in sampling individual reactions to estimate probabilities of rare events. We further

developed a practical algorithm named adaptively biased sequential importance sampling

(ABSIS) for efficient estimation of probabilities of rare events. By adopting a look-ahead

strategy and by examining κ-step look-ahead paths following each reaction from the current

microstate, we can estimate the reaction-specific and state-dependent forward-moving and

backward-moving probabilities of the system. These probabilities are then used to adaptively

adjust biases towards selecting each reaction. Overall, ABSIS is well suited for studying rare

events in networks with complex probability landscape and steep probability barrier.

Our method addresses a major challenge in estimating rare event probability in biological

networks, namely, the need to cross barriers on the probability landscape. As reactions in a

network proceeds, the local neighborhood of the probability landscape changes, and different

biases are often necessary for barrier-crossing. Unlike previous importance sampling methods

such as sdwSSA26 and swSSA27, in which biases are only based on reaction rates in the

current state with no consideration of future information, the ABSIS method can detect

barrier-crossing region in the probability landscape by incorporating future information.

The bias introduced by the ABSIS method not only depends on the current state, but

also depends on the need to cross the probability barrier, which are detected by the κ-

step look-ahead strategy. The calculation of κ-step forward-moving and backward-moving

probabilities is equivalent to solving a small local version of a chemical master equation of

κ-steps19.

Our method also address the issue of proliferation of parameters and associated computa-

tional costs. Regardless of the number of reactions in the system and the complexity of the

network, bias strengths for all reactions in ABSIS are adjusted using only two general param-
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eters: λ1 for promoting forward-moving reactions, and λ2 for repressing backward-moving

reactions. The biasing scheme is designed such that forward-moving reactions with lower

reaction rates are encouraged, and backward-moving reactions with higher reaction rates

are repressed. As κ is small, bias strengths can be determined without lengthy simulations.

We have applied the ABSIS method to four biological networks: the birth-death process,

the reversible isomerization, the bistable Schlögl model, and the enzymatic futile cycle model.

ABSIS can accurately and efficiently estimate rare event probabilities for all examples. For

the birth-death process and Schlögl model, the rare event probabilities can be estimated by

ABSIS with a variance of about 1/100 of that of the dwSSA method23, and for the reversible

isomerization model, sampling variance of ABSIS is only about 1/10, 000 of that of the

dwSSA. ABSIS also shows significant improvements in standard deviations in comparisons

to dwSSA. For the reversible isomerization, ABSIS estimates the rare event probability

with only about 1/100 standard deviation of that of dwSSA. For the birth-death model and

bistable Schlögl model, the standard deviation of ABSIS sampling is less than 1/10 than that

of dwSSA. In terms of computing efficiency, smaller standard deviation indicates ABSIS can

achieve the same accuracy as dwSSA with only a small fraction of sample size that dwSSA

needs.

Although ABSIS has no significant advantages over constant biasing methods such as

dwSSA in studying the futile cycle model, as the current ABSIS scheme also gives nearly

constant biases, the sampling variances of ABSIS are comparable to those of dwSSA. Fu-

ture work include designing more sophisticated bias functions that captures the ruggedness

of the probability landscape may provide better solutions to problems such as the model

of enzymatic futile cycle. In addition, replacing enumeration of κ-steps of the reactions

with longer term look-ahead path sampling of comparable computational costs may help to

explore potential for barrier-crossing at a longer time scale. Computational costs can be

further reduced for larger networks by only sampling a fraction of all possible short κ-step

look-ahead paths, with various designed biasing strategies applied. It may also be possible

to classify reaction networks based on their topology and rate constants and design different

bias schemes.
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State B is the initial state, and D is the target state. The thickness of lines indicates

reaction rates. The color of circles at the end state of each path indicates moving forward
(green, PF ), backward (red, PB), and non-moving (yellow, PN).
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FIG. 4: The birth-death model of Eqn. (21). (a): Its time-evolving probability landscape.
The blue and black curves highlight the landscape at t = 100 and at the steady state,
respectively. There is one high probability region located at x = 40 in both landscapes

(green dots), which is also the initial state. The target state (red dots) is outside the high
probability region. (b) and (c) The variance (b) and success rate (c) of pilot ABSIS
sampling during parameter search using a total sampling size of M = 9.2× 104 and

look-ahead path length of κ = 2. The yellow dot in (b) shows the location of the optimal
parameters. (d) The estimated transition probability and sample convergence using

ABSIS. The solid red line indicates the exact probability calculated from dCME. Black
bars and heights of the box-plots are the mean and its standard deviations of estimated

transition probability calculated from 4 independent simulations, each for a different
sample size of M = 104, 105, 106, 107, and 108, respectively. (e) Standard deviations of
ABSIS (blue) and dwSSA (red) at different sample sizes. (f) Sample variances of the

ABSIS (blue) and the dwSSA (red) method at different sample sizes.
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FIG. 5: Forward and backward moving probabilities. (a) and (b) Probability of
moving-forward and moving-backward for two reactions R1 and R2 in birth-death model.
The x-axis is the system state, i.e. the copy number of molecular species X, and y-axis is
the forward-moving (green) and backward-moving (red) probabilities of reaction R1 and

R2 in each state. (c) and (d) The final ABSIS bias strengths for both reactions in
birth-death model. Blue lines show the steady state probability landscape of birth-death
model. The black lines in (c) and (d) show the curves of bias strengths for reactions R1

and R2, respectively. Green and red vertical lines indicate the start and end state.
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FIG. 6: Rare event estimation of the reversible isomerization network model. (a) Its
time-evolving probability landscape projected to B. The blue and black curves show the

landscape at t = 10, and at the steady state, respectively. There is only one high
probability region in both landscapes, which is located at xB = 10 (red circles). The

probability landscape at time t = 10 (blue curve) largely overlaps with that of the steady
state (black curve). The initial state xB = 0 (green dots) is on the tail of the left-side of

the probability peak, and the target state xB = 30 (red dots) is on the far right-side of the
low probability region. (b) and (c): The variances (b) and success rates (c) of pilot ABSIS

sampling during parameter search using a total sample size of M = 8.8× 104 and
look-ahead steps κ = 2. The yellow dot in (b) shows the location of the optimal

parameters. (d) The estimated rare event probability and sampling convergence using
ABSIS. The solid red line represents the exact probability calculated from directly solving

dCME. The black bars and the box heights are the means and standard deviations
calculated from 4 independent simulations, for different sample sizes of M104, 105, 106, 107,

and 108. (e) Standard deviations of ABSIS (blue) and dwSSA (red) at different sample
sizes. (f) Sampling variances of ABSIS (blue) and dwSSA (red) for different sample sizes.
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FIG. 7: The Schlögl model. (a) Its time-evolving probability landscape. The blue and
black curves show the landscape at t = 2 and at the steady state, respectively. There are
two high probability regions at steady state (black curve) located at x = 4 (red circle on
black curve) and x = 92 (red dot on black curve), respectively. The initial state x = 0
(green dot) is near the first peak, and the target state (red dot) is at the center of the

second peak. (b) and (c) Variance and success rate of pilot ABSIS sampling during
parameter search using a total sampling size of M = 3.28× 105 and look-ahead steps
κ = 2. The yellow dot in (b) shows the location of the optimal parameters. (d) The

estimated transition probability and convergence behavior using ABSIS. The solid red line
indicates the exact probability calculated from dCME. The black bars and the heights of
boxes in the box-plots are the average means and standard deviations calculated from 4
independent simulations, for a different sample size of M = 104, 105, 106, 107 and 108. (e)

Standard deviations of ABSIS (blue) and dwSSA (red) at different sample sizes. (f)
Sampling variances of ABSIS (blue) and dwSSA (red) for different sample sizes.
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FIG. 8: Forward and backward-moving probabilities and ABSIS biases for each reactions.
(a), (b), (c) and (d) Probability of moving-forward and moving-backward for four reactions
in Schlögl model. The x-axis is the system state, i.e. the copy number of molecular species

X, and y-axis is the forward-moving (green) and backward-moving (red) probabilities of
reaction R1, R2, R3 and R4 in each state. (e), (f), (g) and (h) The final ABSIS bias
strengths for reactions in Schlögl model. Blue lines show the steady state probability

landscape of birth-death model. The black lines show the curves of bias strengths for four
reactions, respectively.
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FIG. 9: The enzymatic futile cycle model. (a) Its time-evolving probability landscape
projected to X5. The inset figure shows the time-evolving landscape from time t = 1 to
t = 100, and the main figure shows the time frame from t = 100 to t = 104. The blue

curves show the landscape at t = 100, and the black curve shows the landscape at steady
state. There is only one high probability region, which is located at x5 = 50 (green dots).
The probability landscape at time t = 100 (blue curve) shows a much sharper peak also
centered at x5 = 50. The initial state with x5 = 50 (green dots) is at the height of the

probability peak, and the target state at x5 = 25 (red dots) is in the low probability region
to the left of the peak. (b) and (c) shows the variance (b) and success rate (c) of pilot

ABSIS sampling during parameter search using a total sampling size of M = 2.11× 105

and look-ahead steps of κ = 3. The yellow dot in (b) shows the location of the optimal
parameters. (d) The estimated transition probability and convergence behavior using

ABSIS. The solid red line represents the exact probability calculated from dCME. The
black bars and the box-plots are the means and standard deviations calculated from 4

independent simulations using a sample size of M of 104, 105, 106, 107, and 108. (e)
Standard deviations of ABSIS (blue) and dwSSA (red) at different sample sizes. (f)

Sample variances of ABSIS (blue) and dwSSA (red) at different sample sizes.
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FIG. 10: ABSIS forward and backward-moving probabilities for each reactions in the
enzymatic futile cycle model. (a-f) Projected forward-moving probabilities of all six
reactions on the space of X5 and four different combinations of X1 and X4 shown in

different colors. (g-l) Projected backward-moving probabilities of all six reactions on the
same space of X5 and four different combinations of X1 and X4.
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FIG. 11: ABSIS biases for each reaction in futile cycle model. (a), (b), (c), (d), (e) and (f)
The final ABSIS bias strengths for each reaction in enzymatic futile cycle model.
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