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The nuclear spin generator (NSG) is a high-frequency oscillator that generates and
controls the oscillations of the precessional motion of a nuclear magnetization vector in
a magnetic field. This nonlinear system was first described by S. Sherman in 1963, and
exhibits a wide variety of chaotic behavior, but it is not as well studied as the classic
Lorenz chaotic system. In this paper, chaos in the integer order nuclear spin generator
system is reviewed. In addition, using fractional order stability analysis, the chaotic
behavior of the fractional order NSG (FNSG) is studied. The numerical results are obtained
using the Adams–Bashforth–Moulton algorithm encoded in the fde12 Matlab function. In
order to confirm the numerically demonstrated chaotic behavior in the nuclear spin
generator, we prepared a bifurcation diagram. The phase portrait of the FNSG is also
depicted for different fractional orders to show the overall chaotic behavior of the system.
These results are also verified using bifurcation analysis. Our results demonstrate a
modulating effect on chaos as the fractional order decreases, which could be used to
improve the design of the controller in the NSG model. This work also demonstrates how
the fractional order model extends the dynamic behavior of the NSG system.

& 2014 Elsevier B.V. All rights reserved.
1. Introduction

Fractional order models provide a heuristic approach to
the description of complex circuits and systems. In the
‘fractional’ approach, instead of adding complexity by extend-
ing the structure, composition or number of components, we
generalize the order of the integer derivatives used to
describe the key dynamic processes (e.g., battery charging
rate, viscoelastic creep, or electric/magnetic dipole polariza-
tion). As with all models, success is characterized by the
fidelity with which the predictions fit the observed phenom-
ena, and as articulated by the Polish mathematician, M. Kac,
IB Grant EB007537
ent of Extremadura
d Blas M. Vinagre.

osseinNia),
. Vinagre).
“by the sharpness of the questions they pose about the
underlying physics” [1]. Fractional order models are some-
times criticized for what they are not – conceptual models of
fundamental laws or theories. In such cases, it is important to
identify when using them the specific properties of a complex
system that suggest fractional order generalization. Just as
Brownian motion is a stochastic model based on the assump-
tions that the component particles are identical, independent,
and have distributions with fixed time and space increments,
fractional order models appear to be the most useful for
systems that relax these assumptions, and hence, exhibit
some degrees of memory or nonlocal behavior.

Nuclear magnetic resonance (NMR), which provides the
basis for magnetic resonance imaging (MRI), is fundamentally
described by the Bloch equations: a set of linear, first-order
ordinary differential equations [2]. This description is ade-
quate for the characterization of simple liquids and for
samples with a relatively homogeneous composition [3]. As
such, the governing Bloch equations provide the basis for
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the imaging algorithms of MRI, which can be applied to
complex heterogeneous materials such as imaging the
human brain [4]. However, in order to optimize the tech-
niques of NMR spectroscopy or to enhance contrast in MRI,
it is necessary to append the basic theory with nonlinear,
nonlocal and time-dependent processes. Therefore, it is
natural to investigate ways in which generalization of the
Bloch equations to fractional order can assist in character-
izing relaxation, diffusion, and radiation damping in com-
plex tissues and materials.

Early NMR studies by Sherman [5] designed to describe
and control the spin dynamics of radiation damping led to a
nonlinear extension of the Bloch equations. These modified
equations were subsequently shown by Sachdev and Sarathy
[6], Abergel [7], Park [8], Yuan and Yang [9], Ahn [10], and
Hamri and Houmor [11] to exhibit periodic and chaotic
solutions. Such chaos (spin turbulence) was experimentally
observed by Jeener [12], Huang et al [13], and by Abergel and
Louis-Joseph [14]. Interest in applying feedback control in
NMR [15,16], in general, and to prevent chaos, in particular,
[17–19] has grown over the past 20 years. Finally, more
recently, several groups of investigators [20–22] have begun
to examine solutions to the fractional order Bloch equations.

In this paper, we examine – for the first time – chaos in
the fractional order Sherman model (nuclear spin genera-
tor, NSG) of the Bloch equations. Following an analytical
study of inherent system stability, we numerically confirm
the onset of chaos through the use of a bifurcation diagram.
Our results demonstrate a modulating effect on chaos as
the fractional order decreases, which could be used to
improve the design of the controller in the NSG model.
This work also demonstrates how the fractional order
model extends the dynamic behavior of the NSG system.
10.33 10.34 10.35 10.36 10.37 10.38 10.39 10.4
0.4

0.41

0.42

0.43

k

2. Chaos in the NSG system

2.1. Preliminary

2.1.1. Numerical method
The basic definitions and properties of the fractional

calculus used in this paper can be found in [23]. Briefly, we
M(t)

Fig. 1. Nuclear spin generator.
employ the Caputo fractional derivative as a function of
time and assume commensurate order generalizations up
to order one. The numerical methods used for solving
ordinary differential equations (ODEs) need to be modified
for solving fractional differential equations (FDEs). A mod-
ification of Adams–Bashforth–Moulton algorithm pro-
posed by Diethelm et al. [24–26] to solve FDEs is used in
this paper by applying the Matlab code fde12 developed by
Garrappa [27]. This algorithm has been used by many
researchers who study chaos in fractional order systems,
and has been shown to be robust and reliable [28,29]. All
the numerical simulations presented in this paper were
performed using the initial conditions ðxð0Þ; yð0Þ; zð0ÞÞ ¼
ð0:2;0:05;0:2Þ, and a fixed time step size of h¼0.001s.

2.1.2. Stability and chaotic attractors
In a three-dimensional (3-D) nonlinear system, a saddle

point is an equilibrium point on which the equivalent
linearized model has at least one eigenvalue in the stable
region and one in the unstable region. In the same system,
a saddle point is called saddle point of index 1 if one of the
eigenvalues is unstable and the others are stable. A saddle
point of index 2 is a saddle point with one stable
eigenvalue and two unstable ones. In chaotic systems,
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ax

21.6 21.8 22 22.2 22.4 22.6 22.8 23
0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

k

Fig. 2. Bifurcation diagram: (a) 10:33rkr10:4 and (b) 21:5rkr23.
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it is found that scrolls are generated only around saddle
points of index 2. The saddle points of index 1 are
responsible only for connecting the scrolls. In 3-D
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Fig. 3. Phase portrait: (a) k¼10.33, (b) k¼10.35, (c) k¼10.39, (d) k
commensurate fractional order systems, like their ordinary
counterparts, the saddle points of index 2 play a key
role in the generation of scrolls [29] (for more details
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¼10.4, (e) k¼21.50, (f) k¼22.10, (g) k¼22.60, and (h) k¼23.
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see [30–33]). Consider the case of a fractional commensu-
rate order system of the form [34]:

Dqx¼ f ðxÞ ð1Þ
where 0oqo1 and xARn, the equilibrium points of
system (1) are locally asymptotically stable if all eigenva-
lues ðλÞ of Jacobian matrix J ¼ ∂f =∂x at the equilibrium
points satisfy

jargðλÞj4qπ=2: ð2Þ
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Fig. 4. Root locus of the linearized system through first equilibrium
point. (For interpretation of the references to color in this figure caption,
the reader is referred to the web version of this paper.)
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Fig. 5. Stability region for the linearized system through its first equili-
brium point ð0;0;1Þ.
2.2. Chaos in NSG system

As shown in Fig. 1 the NSG system describes the
precession of magnetization (Mx, My, Mz) in a simple
nuclear magnetic resonance (NMR) experiment. An NMR
active nuclei (typically a liquid containing H1, C13 or P31

nuclei) is positioned at the center of a strong static
magnetic field B0 and surrounded by one or more radio-
frequency (RF) coils. The direction of B0, defines the z-
direction in the laboratory reference frame. An exciting RF
coil is oriented with its axis in the x-direction, while a
pick-up RF coil is oriented with its axis in the y-direction.
A high-gain amplifier detects the voltage induced in the
pick-up coil and feeds it back to the exciting coil. The time-
dependent behavior of the components of the nuclear
magnetization vector in this case is given by the Bloch
equations with feedback, and the normalized form of the
nuclear spin system can be represented by [5,6]

_x ¼ �βxþy
_y ¼ �x�βyð1�kzÞ
_z ¼ βðαð1�zÞ�ky2Þ

8><
>: ð3Þ

where ðx; y; zÞ ¼ ðMx;My;MzÞ are the components of the
nuclear magnetization vector in the x-, y-, and z-directions,
respectively, β¼ 1=T2, α¼ T2=T1, where T1 and T2 are the
characteristic spin–lattice and spin–spin NMR relaxation
times, respectively. The parameters α;βZ0 are linear
damping terms, while the nonlinearity parameter βk is
proportional to the amplifier gain in the voltage feedback.
Physical considerations limit the parameter α to the range
0oαr1, while 0:25oβo100 [5].

Sachdev and Sarathy studied this system by finding the
values of k leading to chaotic behavior for a given ðα;βÞ
couple. They demonstrated that in the case of αr1 and
βo1, as k increases from ð1þβ2Þ=β2, the system goes from
period-doubling bifurcation to chaos [6].

Fig. 2 shows the bifurcation diagram of the NSG system
for α¼ 0:15 and β¼ 0:75. As can be seen in Fig. 2(a) the
periodic behavior occurs when ko10:34, and when
10:34oko10:385 and 10:385oko10:393 the system
shows period-doubling and period-quadrupling behavior
respectively. The system exhibits chaos at k� 10:393, and
this chaotic behavior persists until k� 22:08. Above this
value of k, there is a qualitative change. As k increases
further, the evolution of the trajectories from one half-
plane to the other slows down, and the single strange
attractor bifurcates into two symmetric strange attractors;
the trajectories move into one or the other, depending on
their initial conditions (see Fig. 3). As illustrated in Fig. 2(b)
the system shows period-quadrupling when k increases
from 22.08 to 22.22. Finally, the system will show the
period-doubling and periodic behavior for the intervals
22:3oko23 and k423, respectively. Fig. 3 shows the
phase portrait of the system in the y–z plane for different
values of k that are in agreement with the bifurcation
diagram. Fig. 3(a) and (h), for example, shows the periodic
behavior for k¼10.33 and k¼23, respectively. The phase
portrait of system for k¼10.35 and k¼22.6 shows period-
doubling in Fig. 3(b) and (g), and for k¼10.39 and k¼22.1
it shows period-quadrupling in Fig. 3(c) and (f), respectively.
Finally, chaotic behavior can be seen in Fig. 3(d) and (e) for
k¼10.4 and k¼21.5, respectively.
3. Chaos in the fractional order NSG system

By replacing the first-order integer derivative by a
Caputo fractional derivative of order q (Dq) in (3), we
obtain a fractional commensurate order version of the NSG
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system (FNSG) as

Dqx¼ �βxþy

Dqy¼ �x�βyð1�kzÞ
Dqz¼ βðαð1�zÞ�ky2Þ

8><
>: ð4Þ

The aim of the paper is to study the chaotic behavior of
this FNSG system. Linearization will be used at the
following three equilibrium points:
0.8 Chance of Chaos
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Fig. 7. Stability region for linearized system through second and third
equilibrium points.
where c¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αðβ2ðk�1Þ�1Þ

q
=kβ2 and k4 ð1þβ2Þ=β2. The

Jacobian matrix of the system evaluated at the equilibrium
points ðxi; yi; ziÞ; i¼ 1;2;3 is

�β 1 0
�1 �βð1�kziÞ kβyi
0 �2kβyi �βα

2
64

3
75: ð5Þ

Using this information, we can analyze the stability of the
system and determine its chaotic behavior for each equili-
brium point: the system (4) will be stable if and only if the
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ilibrium points: (a) 2:78rko2:99 and (b) kZ2:99.
eigenvalues of the Jacobian matrix satisfy (2), that is, λ1 ¼
�βα, and 2λ2;3 ¼ βðk�2Þ7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2β2�4

q
for ðx1; y1; z1Þ ¼ ð0;

0;1Þ. As noted in Section 2.1, the system will show chaotic
behavior if λ2;3 are complex conjugates with a positive real
part when 2oko2=β; 80oβo1; therefore, the integer
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order system can be chaotic. The root locus of the system for
the values of α¼ 0:15 and β¼ 0:75 is shown in Fig. 4. In this
figure each color shows each λ for all k40. For fractional
order, the system can be chaotic if jargðλ2;3Þjoqπ=2. In order
to show the probable chaotic region of the system the stability
region of the linearized version is shown in Fig. 5 by plotting q
versus k.

Now, let us consider the second and third equilibrium
points. The corresponding linearized systems are

Dqx¼ �βxþy

Dqy¼ �xþ1
β
yþβ2kcz

Dqz¼ �βαz�2β2kcy

8>>>><
>>>>:

ð6Þ
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Fig. 9. Phase portrait: (a) q¼0.75, (b) q¼0.76, (c) q¼0.
and

Dqx¼ �βxþy

Dqy¼ �xþ1
β
y�β2kcz

Dqz¼ �βαzþ2β2kcy

8>>>><
>>>>:

ð7Þ

respectively. The Jacobian matrix of (6) and (7) is respec-
tively given by

�β 1 0

�1 1
β kβ2c

0 �2kβ2c �βα

2
664

3
775; ð8Þ
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794, (d) q¼0.795, (e) q¼0.978, and (f) q¼0.979.
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and

�β 1 0

�1 1
β �kβ2c

0 2kβ2c �βα

2
664

3
775; ð9Þ

and the characteristic polynomials corresponding to both
systems are

λ3þ βþαβ�1
β

� �
λ2þ 2αβ2k�αβ2�3α

� �
λ þ2αβ3 k�1ð Þ�2αβ: ð10Þ
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Fig. 10. Phase portrait: (a) q¼0.81, (b) q¼0.82, (c) q¼0
Therefore, both linearized systems through the equilibrium
points (b) and (c) have the same characteristic polynomials,
hence the same eigenvalues. As mentioned before, the equili-
brium points (a) and (b) are valid for k4ð1þβ2Þ=β2. There-
fore, the root locus of the system is depicted in Fig. 6 for the
values of α¼ 0:15 and β¼ 0:75, kZ2:78. As can be seen, the
two eigenvalues of the system are complex conjugates with a
positive real part when kZ2:99, so that the systemmay show
chaotic behavior in this range. Fig. 7 shows the probable
chaotic region of the fractional order system plotted versus k.
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.867, (d) q¼0.868, (e) q¼0.975, and (f) q¼0.977.
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Table 1
Selected examples of chaotic systems ð0:9941oqo1Þ.

System Dynamics

Lorenz Dqx¼ 10ðy�xÞ
Dqy¼ xð28�zÞ�y

Dqz¼ xy�8
3z

8><
>:

Chen Dqx¼ 35ðy�xÞ
Dqy¼ 25x�xzþ28y
Dqz¼ xy�3z

8><
>:

Lü Dqx¼ 36ðy�xÞ
Dqy¼ �xzþ20y
Dqz¼ xy�3z

8><
>:

Liu Dqx¼ �x�y2

Dqy¼ �4xzþ2:5y
Dqz¼ 4xy�5z

8><
>:

Rössler Dqx¼ �y�z

Dqy¼ xþ0:2y
Dqz¼ 0:2þzðx�5:7Þ

8><
>:

Newton-Leipnik Dqx¼ 0:4xþyþ10yz
Dqy¼ �x�0:4yþ5xz
Dqz¼ 0:175z�5xy

8><
>:

Financial Dqx¼ zþðy�1Þx
Dqy¼ 1�0:1y�x2

Dqz¼ �x�z

8><
>:

Volta Dqx¼ �x�19y�zy
Dqy¼ �y�11x�xz

Dqz¼ 0:73zþxyþ1

8><
>:

FNSG Dqx¼ �0:75xþy

Dqy¼ �x�0:75yð1�10:5zÞ
Dqz¼ 0:75ð0:15ð1�zÞ�ky2Þ

8><
>:

RD Dqx¼ �0:4πyþ30zð0:1721x�0:9851yÞ�0:4x
Dqy¼ 0:4πx�zþ30zð0:1721yþ0:9851xÞ�0:4y
Dqz¼ y�5:1642ðx2þy2Þ�0:2ðz�1Þ

8><
>:
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Now, the chaotic behavior of the fractional order
system will be analyzed. For this purpose, the bifurcation
diagram of the FNSG system is depicted in Fig. 8. From
Fig. 2 we know that the system has chaotic behavior for
the interval from k¼10.5 to k¼21.5. Therefore, the chaotic
behavior of the system is shown using the bifurcation
diagram of the system for two different cases i.e., k¼10.5
and k¼21.5, in Fig. 8(a) and (b), respectively. From both
the figures we can see that as we decrease the fractional
order of the derivative, the system goes from chaotic
behavior to period-doubling and again goes to chaotic
behavior until it achieves the stable region. From Fig. 8(a)
the system shows chaotic behavior for 0:751oqo0:795
and 0:978oqo1 and shows period-doubling for
0:795rqr0:978. Also from Fig. 8(b) the system shows
chaotic behavior for 0:818oqo0:868 and 0:975oqo1,
and shows period-doubling for 0:868rqr0:975.

To verify the bifurcation diagram results, phase portraits
of the system are shown in Figs. 9 and 10 for k¼10.5, and
k¼21.5, respectively. Figs. 9(a) and 10(a) show the system to
be stable for q¼ 0:75; k¼ 10:5, and q¼ 0:81; k¼ 21:5,
respectively. Figs. 9(b), (c), and (f) and 10(b), (c), and (f)
show the chaotic behavior of the system for
q¼ 0:76; q¼ 0:794; q¼ 0:979; k¼ 10:5, and for q¼ 0:82;
q¼ 0:867; q¼ 0:977; k¼ 21:5. Finally, the system shows
period-doubling for q¼ 0:795; q¼ 0:978; k¼ 10:5 and
q¼ 0:868; q¼ 0:975; k¼ 21:5 which is shown in Figs. 9(d)
and (e) and 10(d) and (e). The results verify the bifurcation
and stability analysis.

Fig. 11 shows the stability region of the fractional order
system versus parameters α and β. As can be seen in the
figure, reduction of the fractional order parameter q leads
to a greater likelihood of chaos in the system. It is clear
that the system is unstable for almost all values of the
fractional order parameter, and for all β less than 0.35.
There is a high chance of chaos for a wide range of the
fractional order parameter q when 0oβo0:8. On the
other hand, for a high value of β, chaos only appears with
integer order or when the fractional order is close to one. It
also has to be mentioned that except for a very small range
of α i.e., αo0:2, the stability region is almost unchanged
for the entire set of β and q values examined. Therefore,
the parameters β, i.e., 1=T2 and q have the most significant
effects on the stability of the fractional order NSG system.

4. Discussion

The NSG model is an example of a simple – laboratory
based – system that exhibits a spectrum of chaotic
behavior (e.g., period doubling, intermittency, and the
gluing of strange attractors) [6]. Since the behavior of the
NSG system is relatively unknown, here we compare the
onset of chaos for the FNSG system in the context of the
fractional order generalization of a few classic chaotic
systems [35,36]. In addition, we connect the FNSG system
with the fractional order model of radiation damping (RD)
[37] studied by Bhalekar and coworkers. Table 1 sum-
marizes the governing equations for a group of fractional
order models. Fig. 12 shows, for a fixed set of model
parameters, the order for which each system exhibits
chaotic behavior. For the models examined, the Lorenz
system showed the narrowest range for chaos
ð0:9941oqo1Þ, whereas the NSG system showed the
widest range ð0:7521oqo1Þ.
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Fig. 12. Comparison of the chaotic regions of classic chaotic systems.
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Moving down Table 1 from the Lorenz to the RD case, the
models, in general, become more nonlinear. We note, for
example, that the Rössler chaotic system has just one
nonlinearity (xz in the third equation), while in the Lorenz,
Chen, and Lü systems the nonlinearities occur both in the
second equation (xz) and in the third equation (xy). A new
nonlinearity term (y2) appears in the first equation of Liu
systems, and Newton–Leipnik systems have nonlinear terms
in all three equations, which makes their dynamics more
complicated. The Financial system, the Rössler and the Volta
models are examples of systems with a constant added in
one of the equations, which results in a system without the
zero equilibrium points. The Volta system and the Newton–
Leipnik systems have the same core nonlinear terms, but
they exhibit different chaotic behavior. The FNSG system is
very similar to the classic models shown above, with only
two nonlinear terms, plus a constant, thus it is somewhat
surprising that it exhibits the full spectrum of chaotic
behavior. The radiation damping model (RD) is quite a bit
more complex when compared with the other well-known
chaotic systems. This is largely due to its derivation from
fundamental NMR phenomena, Hamri and Houmor [11],
where internal feedback generates the xz and xy cross terms
in the first two equations, and the squared terms x2 and y2 in
the third equation; nevertheless, the chaotic behavior in the
fractional order system is considerable. In fact, a simple
generalization of the Sherman experiment, [5], using pairs of
RF coils on both the x and the y axes, gives the same cross
terms. So, all together, the FNSG system provides a good case
study for chaos and a simple model of the effects of feedback
in NMR.

Finally, it should be noted that the chaotic behavior in
the selected systems should be studied in both the
transient and Steady state responses. However, transient
chaos is not a critical concern in control applications of
chaos. Therefore, in this paper we studied the occurrence
of steady-state chaos in the FNSG system using a bifurca-
tion diagram. But, in order to provide a fair comparison
with other systems, the transient response of the FNSG
was also included in the results shown in Table 1. More
explicitly, the FNSG system studied in Table 1 shows
chaotic behavior including transient chaos only for
q40:7521, but when considering just the steady-state
response, this system shows chaotic behavior for
0:751oqo0:795 and 0:978oqo1 (see bifurcation dia-
gram shown in Fig. 8(a)).

5. Conclusion

Chaos in the fractional order spin generator system is
studied in this paper. The FNSG has been shown by both
theoretical and numerical methods to exhibit chaotic
behavior for the fractional derivative order qZ0:7521 for
the selected damping parameters. This behavior extends
over a relatively larger range than several of the commonly
studied fractional order systems. In addition, the nonlinear
characteristics of the FNSG system provide a good case
study for the onset of chaos in a fractional order system.
The application of FNSG in NMR demonstrates its potential
as a model system for demonstrating chaotic behavior in
the laboratory, and the extension of this model to clinical
imaging systems may provide a domain for future control
applications in MRI.
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