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Abstract—An effective way to solve the inverse scattering from
dielectric objects relies on the Born approximation, which allows
to linearize the problem and retrieve a qualitative reconstruction
of the targets in terms of location and extent. The limits of validity
of the linear model can be extended by considering a quadratic
approximation of the operator relating the scattered field data to
the unknown object function. The use of the quadratic operator
allows on one hand to recover additional spatial variations of the
object profile and on the other hand to mitigate the local minima
(false solution) problem, typically affecting non-linear inversion
methods. In this letter, we present an experimental validation of
the quadratic inverse model for dielectric objects in free-space.
The data processing confirms that the tomographic images based
on the quadratic model are better resolved compared to the ones
provided by the inversion of the linear Born model.

Index Terms—Born approximation, quadratic approximation,
RF tomography.

I. INTRODUCTION

RADIO Frequency (RF) tomography is a diagnostic
method aiming to image targets in a scene from the

electromagnetic fields scattered by them under the illumination
of known incident fields [1]–[3]. As such, it is of timely
interest biomedical imaging [4], ground penetrating radar
imaging [5], through wall imaging [6] and urban sensing [7].

More in general, RF tomography falls within the area
of electromagnetic inverse scattering [8]. Inverse scattering
attempts to provide a quantitative description of the targets
in terms of spatial permittivity and conductivity maps. Due to
the smoothness of the radiation operator, the inverse scattering
problem is ill-posed [8]. Hence, in presence of noise on data
and model error, the existence and uniqueness of the solution
is not ensured and a generalized solution must be searched
by minimizing a suitable cost functional. Moreover, owing
to the non-linear relation between data and unknowns, local
deterministic minimization algorithms may be trapped into
local minima leading to false solutions [9].

The mathematical formulation of RF Tomography [1]–[3]
has so far relied upon the linearized model of the Born
approximation. This choice offers significant advantages in
terms of reduced computational complexity, stability of the
solution against noise, and lack of false solutions. Additionally,
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the linear model allows to investigate the reconstruction perfor-
mance of the adopted inversion scheme [10]. Of course, some
limitations are in order. First of all, the Born approximation
is valid only for weak scatterers so that only a qualitative
image of the target (i.e. position and approximate shape)
can be attained in most practical cases. Secondly, the Born
model neglects the mutual coupling among targets and the
interactions with surrounding environment thus introducing
artifacts or ghost targets [11]. A third aspect is the spatial
filtering introduced by the linear scattering operator, which
implies a limitation on the achievable resolution [12].

Improved approximations such as the extended Born ap-
proximation [13], the quasi-linear approximation [14], the di-
agonal tensor approximation [15] were proposed to overcome
the limitations of the Born approximation. Several non-linear
inversion methods were also presented (e.g. see [16]–[21]), but
their applicability in realistic scenarios still remains an open
subject. An assessment of different inversion approaches based
on the Fresnel database was reported in [22].

In this letter, we consider a second order Born approxi-
mation to extend the class of retrievable spatial variations of
the object function, which leads to a quadratic forward model
[23]–[25]. In particular, the imaging problem is cast as the
minimization of a quartic functional. The quadratic model
has the benefit that local minima can be avoided by suitably
increasing the ratio between the number of data and unknowns
[9]. Note that works [23]–[25] were mainly conceived as theo-
retical studies with source and receivers located in the far-zone
with respect to the investigation domain. This letter extends
the previous analysis to near-zone measurement configurations
providing experimental evidence of the imaging improvement
offered by the quadratic model in the case of realistic targets.
This analysis has not been reported to date and complements
preliminary numerical authors’ studies [26].

II. PROBLEM STATEMENT

The problem is tackled in a 2D space as shown in Fig. 1
and the time dependence ej2πft is assumed and suppressed.
The objects to be imaged reside in the investigation domain D
and are assumed invariant along the z-axis. The transmitting
and receiving antennas operate at fixed frequency f and are
modeled as filamentary electric currents infinitely long and
spatially invariant along the z-axis. The position of transmitters
and receivers, here denoted by rs and rr, are moved over the
measurement domain Γ so that a multiview/multistatic single
frequency configuration is achieved. The background medium
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Fig. 1. The inverse scattering problem. The rectangular area D represents the
investigation domain. Gray circles denote the transmitting/receiving antennas.

is assumed to be free-space with dielectric permittivity ε0
and magnetic permeability µ0. The targets are made of a
lossless non-magnetic (µ = µ0) dielectric material with real
permittivity εt. They are described by the contrast function

χ(r′) =
ε(r′)− ε0

ε0
, (1)

where r′ and ε(r′) represent a generic point and the permit-
tivity function in D, respectively.

The scattering phenomenon can be described by two scalar
integral equations [27]. The first one is the external equation
which relates the scattered field Es (data) to the contrast
function χ (unknown)

Es(rr, rs) = k20

∫∫
D

χ(r′)Et(r′, rs)ge(r
r, r′)dr′, (2)

where k0 = 2πf/c0 is the propagation constant in free-space
(c0 is the wavespeed), Et(r′, rs) is the total field in D and

ge(r
r, r′) = − j

4
H

(2)
0 (rr, r′) (3)

is the external Green’s function. H(2)
0 (·) is the Hankel function

of second kind of zero order.
The total field Et in D is related to χ by the internal

equation

Et(r′, rs) = Ei(r′, rs)+k20

∫∫
D

χ(r′′)Et(r′′, rs)gi(r
′, r′′)dr′′,

(4)
where Ei is the incident field (i.e. the field in absence of
targets) and gi(r

′, r′′) is the internal Green’s function [28].
According to eq. (4), the total field is the superposition of
two contributions. The first one is the incident field whereas
the second term, defined as an integral over D, accounts for
mutual interactions between different scatterers or between the
same parts of a scatterer [24], [25], [27].

Equations (2) and (4) can be rewritten in operator form as

Es = Ae

[
χEt

]
(5)

Et = Ei + Ai

[
χEt

]
(6)

where Ae and Ai represent the external and internal radiation
operators. The above expressions can be manipulated in order
to obtain the functional relation

Es = Ae

[
χ(I−Aiχ)−1Ei

]
. (7)

where I is the identity operator.
According to eq. (7), a nonlinear relationship is established

between the unknown contrast function and the scattered
field data. Nonlinear inversion procedures allow in principle
a quantitative reconstruction of the contrast function [16]–
[19]. However, deterministic minimization algorithms may be
trapped into local minima yielding false solutions [9], [18],
[24]. On the other hand, the application of global optimization
schemes is often not viable due to the high computation cost
when a great number of unknowns must be searched for.

III. INVERSION APPROACHES: LINEAR AND QUADRATIC
MODEL

Approximate linearized models can be exploited when qual-
itative reconstructions are of concern. The most usual one is
based on Born approximation [27]. In particular, under the
assumption that ||Aiχ|| � 1, it is possible to expand around
the origin the nonlinear relation (7) as

(I−Aiχ)−1 = I + Aiχ+ (Aiχ)2 + . . .+ (Aiχ)n, (8)

The Born approximation consists in dropping all but the
first term in the summation

Es ≈ Ae

[
χEi

]
= A [χ] , (9)

i.e. approximating the total field in D as the incident field.
Eq. (9) is linear with respect to χ and different schemes
can be used to invert it [10]. In addition, even if the Born
model strictly holds for weak scatterers, it can be relaxed
and applied also to the shape reconstruction of non weakly
scattering targets [1], [29].

A possibility to improve the accuracy of the model is to
retain the second term of the series in (8). This leads to a
quadratic model with respect to the unknown χ [23]–[25]:

Es ≈ Ae

[
χEi

]
+ Ae

[
χAi

[
χEi

]]
(10)

The introduction of the quadratic term has the benefit of
providing a better approximation of the scattering phenomenon
[23]–[25]. Moreover, it has been shown to enhance the spatial
resolution because additional spatial harmonics beat each other
and their folding maps at base band (i.e. the range of the
linear operator A). The interested reader can refer to [24],
[25] for a more detailed explanation of this phenomenon.
However, the resolution improvement comes at the cost of
a major computation complexity and the introduction of a
non-linearity that can produce local minima in the inversion
stage. According to [9], [18], the local minima problem can be
overcome if the ratio between the number of data and number
of unknowns is sufficiently large. Turning to the numerical
implementation of the inversion methods, the contrast function
is here represented in terms of a finite Fourier series [25]:
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Fig. 2. Photo of the experimental set-up.

χ(x, y) =

M∑
m=−M

N∑
n=−N

cmne
j2πmx/Lxej2πny/Ly , (11)

where

cmn =
1

LxLy

∫∫
χ(x, y)e−j2πmx/Lxe−j2πny/Lydx dy.

(12)

In eqns. (11) and (12), x and y are the coordinates of a
point in the investigation domain, Lx and Ly are the sizes of
D, m and n are the indexes of the Fourier coefficients cmn,
and 2M + 1 and 2N + 1 are the total number of coefficients
to be searched for along x and y, respectively.

The inversion task is formulated as an optimization problem
where a cost functional has to be globally minimized over the
coefficients cmn. The cost functionals for both linear and the
quadratic cases are so defined:

ΨBorn(c) = ‖Es −Ae

[
χEi

]
‖2, (13)

Ψquad(c) = ‖Es −Ae

[
χEi

]
−Ae

[
χAi

[
χEi

]]
‖2. (14)

where c = {cmn}n=−N,...,Nm=−M,...,M is the vector of unknowns.
A Levenberg-Marquardt algorithm is adopted in this study

to minimize the functionals in eqns. (13) and (14). The
algorithm is implemented by the MATLAB built-in function
lsqnonlin, which solves non-linear least-squares problems. The
maximum number of iterations is set at 400 (default value) and
the termination tolerance on the functional value is equal to
1e-6. The degree of the regularization is imposed by searching
for a finite number of Fourier harmonics, which implies the
smoothness of the solution. Once the vector c is calculated,
the contrast function χ is recovered via eq. (11). The spatial
map defined by the magnitude of χ is herein referred to as
tomographic image.

IV. EXPERIMENTAL SET-UP

The experiments were conducted in the Andrew Electro-
magnetic Laboratory at the University of Illinois at Chicago.
The antenna positioning system is depicted in Fig. 2 and
consists of two stepper motors that move two antennas around
concentric circles, guaranteeing a positioning precision smaller
than 1◦. A computer coordinates the movement of the motors
and the measurement of the electric field at each antenna
position. For each transmitter position, all receiver positions
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Fig. 3. Sketch of the measurement configuration. Red squares denote the
transmitters while blue circles are the receivers.

are sampled so that a multiview/multistatic configuration is
obtained. The transmitting and receiving antennas are log-
periodic (model Ramsey LPY26) and operate at fixed fre-
quency of 5 GHz, which corresponds to a propagating wave-
length λ equal to 6 cm. The data are collected by using a
vector network analyzer (VNA, model HP 8753ES).

As shown in Fig. 3, the transmitting antenna moves around
the outer circle of radius 43.2 cm (7.2λ), illuminating the tar-
get from 15 positions uniformly spaced along an arc spanning
280◦1. The receiving antenna moves around the inner circle
of radius 32.8 cm (5.5λ), sampling the field at 80 positions
uniformly spaced along the circle.

As well-known, the VNA measures the scattering parameter
S12 accounting for transmission between the transmitting
and receiving antennas. This parameter is recast in terms of
scattered electric field according to the following two steps:
background subtraction and calibration.

Background subtraction works as follows. For every mea-
surement, two sets of data are collected: in the first set no
object is present in the area under investigation, thus obtaining
Si
12; in the second set the object to reconstruct is placed in the

area under investigation and values of St
12 are collected at the

same positions used in the first set. The two datasets are then
subtracted obtaining Ss

12, which is a measure of the scattered
electric field. Note that the stepper motors allow high precision
in the positioning of the antennas to guarantee repeatability of
the measurements.

In order to obtain the scattered electric field Es from Ss
12,

a calibration stage is performed. First, for a given transmitter
position rs and receiver position rr, the incident electric field
is calculated as

Ei(rr) = − k20
4ωε0

H
(2)
0 (k0|rr − rs|) (15)

Then, the scattered electric field Es at each receiver position
is obtained as

Es(rr) =
Ei(rr)

Si
12

Ss
12 (16)

1The mechanical set-up does not allow for a full 360◦ rotation.
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Fig. 4. Tomographic reconstructions of the two HDPE cylinders at 5 GHz versus M and N . Linear model (upper panels). Quadratic model (lower panels).

This procedure is reliable provided that Si
12 can be measured

with reasonable accuracy. In practice, not all antenna locations
are equally good for this purpose, because some are disturbed
by the presence of the antenna positioner itself. The most reli-
able values of Si

12 are measured when transmitter and receiver
antennas are facing each other. Therefore, for each transmitter
position, the values of Ei(rr) and Si

12 corresponding to the
opposite receiver are used in eq. (16).

The investigation domain D is a square of side equal to
20 cm (3.3 λ), which is partitioned into square pixels of side
approximately equal to 1.2 cm (λ/5).

V. RECONSTRUCTION RESULTS

Two experimental tests are described in this Section. The
first one pertains to two high-density polyethylene cylinders
(HDPE, εt ≈ 2.26ε0) of diameter 2.54 cm (0.42λ), whose
outer edges are spaced by 2 cm (0.33λ). The inversions have
been performed by searching for different values of M and N
(M = N = 4, M = N = 5, and M = N = 6) to analyze how
the number of unknowns impacts on the achieved solution.

The images in Fig. 4 confirm that, when M = N = 4 and
M = N = 5, both Born and quadratic models lead to satis-
factory results in terms of position and shape reconstruction
capabilities. In particular, the focusing performance of linear
and quadratic models look similar for M = N = 4. However,
when M = N = 5, the inversion performed according to
the quadratic model is clearly superior to the one obtained
with the Born approximation. Indeed, it is easily recognized
that the contours of the cylinders are more clearly defined
and the image has less artifacts overall. This is because when
searching for a higher number of coefficients, spatial harmon-
ics outside the range of the linear operator can be imaged by
the quadratic operator [25]. When M = N = 6, both models
produce an unstable solution due to the ill-posedness of the
inverse scattering problem. It must be also noticed that, when
M = N = 4 and M = N = 5, the value of the reconstructed
contrast in the quadratic case is slightly larger than in linear

case, i.e. the solution of quadratic approach is closer to the true
contrast (χ = 1.26). However, both solutions under-estimate
the true contrast because the considered HDPE cylinders
are beyond the limit of validity of both Born and quadratic
models (||Aiχ|| = 15.1). This behavior has been confirmed
by numerical simulations reproducing the experiment, whose
results are omitted for space limitation. The similarity between
synthetic and real data inversion has also confirmed that the
data are mainly affected by model error. Indeed, the SNR of
the measurement system has been estimated around 53 dB for
the scattered field.

The second test-case refers to an L-shaped object made of
plexiglass (εt ≈ 2.6ε0). The object is 6.9 cm (1.15λ) and
5.6 cm (0.93λ) long along x and y respectively, and the
thickness of each arm is about 0.5 cm (0.08λ). The most
accurate solution is attained when M = N = 4 (see Figs.
5 and 6). In spite of the small thickness of the L arms, which
is lower than system resolution, the reconstructions of Figs.
5 and 6 confirm the superior focusing of the quadratic model
with respect to the linear one. The model error is not negligible
also in this case (||Aiχ|| = 9.9), thus the retrieved contrast
does not allow to estimate the target permittivity.

The resolution improvement provided by the quadratic
model is quantified in terms of the normalized sum of squared
intensity:

C =

∑Q
q=1 |χ(xq, yq)|4(∑Q
q=1 |χ(xq, yq)|

)4 (17)

where (xq, yq) are the coordinates of pixel q in the image, and
Q is the total number of pixels. Note that a greater value of C
correspond to a higher image sharpness. The Cquad/CBorn

ratio summarized in Tab. I confirm that the tomographic
images obtained with the quadratic model always have higher
sharpness than those achieved inverting the linear model, save
for the the L-shaped target when M = N = 5 because the
quadratic solution (not shown) is approaching instability.
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Fig. 5. Tomographic reconstructions of the L-shaped plexiglass object at 5
GHz. Linear model using M = N = 4.
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Fig. 6. Tomographic reconstructions of the L-shaped plexiglass object at 5
GHz. Quadratic model using M = N = 4.

VI. CONCLUSION

We have proposed an experimental validation of the
quadratic model for RF Tomography. The object function has
been represented as a finite summation of spatial Fourier
harmonics, and the forward model has been inverted by
minimizing a cost functional using a Levenberg-Marquardt
algorithm. For comparison, the same inversion procedure has
been applied to the linear Born model. The quadratic model
generally provides superior performance in terms of artifact
mitigation and spatial resolution. However, its validity is
limited by the constraint ||Aiχ|| � 1, which restricts the class
of targets that can be reconstructed in a quantitative manner.
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