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SUMMARY 

Congestion is a prevalent problem in almost all urban environment impacting 

numerous features of urban living. Increased number of vehicles and lack of 

parking spaces in the cities contributes to traffic congestion, fuel loss and 

adversely affects the sustainability. Ridesharing is a proven technique that 

can mitigate traffic congestion and satisfy urban commuters. Getting a taxi 

in highly congested areas (e.g. airports, conferences) is both time consuming 

and expensive. Chicago Tribune reports that wait at Chicago O’Hare 

International airport for taxi cabs can be as long as 45 minutes. Finding a 

parking space during peak time in a city is also frustrating and increases 

congestion in urban areas. This thesis addresses the traffic congestion 

problem in urban areas in two aspects: reducing the number of vehicle trips 

by proposing RSVP, a ridesharing system that uses walking and virtual pools, 

and reducing unwanted vehicle cruising (and thus vehicle miles traveled) for 

parking on urban streets by proposing Perfect Park, a low power smartphone 

application that helps cruising drivers to find and navigate to a parking space. 

In Part I of this thesis, RSVP ridesharing scheme is described with focus on a 

ridesharing model that involves walking, ridesharing algorithms, and 

evaluation of the model and algorithms using a database that recorded real 

taxi trips in NYC. In Part II of this thesis Perfect Park is introduced and its 

system level design, evaluation and performance are discussed. 
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Chapter 1  

Introduction 

 

(Previously published as J. Lin, S. Sasidharan, S. Ma and O. Wolfson, "A 

Model of Multimodal Ridesharing and Its Analysis," 2016 17th IEEE 

International Conference on Mobile Data Management (MDM), Porto, 2016, pp. 

164-173) 

This chapter briefly describes the background, motivation for the research, 

contributions and the thesis outline. Chapter 1 introduces RSVP, a 

ridesharing scheme (published manuscript (Lin et al. 2016)) and Perfect Park, 

a smartphone based parking guidance application. 

1.1. Background 

Congestion is a prevalent problem in almost all urban environment impacting 

numerous features of urban living. It is also one of the key reasons that 

transportation sector is the second largest contributor of U.S. greenhouse gas 

emissions, accounting for about 26% of total GHG emissions  (Anbarani et al. 

2016). (Schrank and Lomax 2002) reports that congestion in 75 major urban 

areas amounts to $68 billion per year in fuel and time losses to the travelling 

public. One of the promising techniques that fulfills people’s need in 

commuting and consequently reducing traffic congestion is ridesharing (Ma, 

Zheng, and Wolfson 2015). It has been recognized that sustainability in city 

logistics involves parking related activities as well (Whiteing, Browne, and 

Allen 2003). Modern day service industry is highly focused on ensuring 

enhanced mobility experience to the public not only through better service 
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but also by providing facilities that would make the customer feel more 

flexible, more economical and more satisfied. 

1.1.1. Ridesharing 

Getting a taxi in highly congested areas (e.g. airports, conferences) is both 

time consuming and expensive. Chicago Tribune reports that wait at in 

Chicago O’Hare International airport for taxi cabs can be as long as 45 

minutes (Hilkevitch 2015). While the emergence of novel Transportation 

Network Companies (e.g. Uber) has helped increase the supply of drivers 

during peak times, they have done little to reduce congestion in hubs such 

as airports, major stations, and stadiums. Creative on-demand transit service 

is needed more than ever to capture the benefits of the smartphone and 

health-consciousness revolutions. 

This dissertation proposes RSVP (Ride Sharing by Virtual Pools), a 

ridesharing system based on walking and virtual-pools, aimed mainly at 

transportation hubs. The RSVP scheme combines in a unique way three 

existing mechanisms: virtual queues, slugging (i.e. walking for the purpose of 

ride-sharing), and multiple-drop-off ride-sharing. Assume a designated taxi 

ride-sharing pickup location at a hub H (e.g., airport, train station), with 

virtual ride-sharing demand pools associated with time-intervals. For 

example, a virtual pool of ride-sharing passengers will be picked up between 

11:00am and 11:05am, followed by another pool to be picked up between 

11:05am and 11:10am, etc. Initially, each pool consists of a number n of trips, 

which after merging will be reduced to m merged (or ride-sharing) trips. m 

should not be allowed to grow beyond the number of taxi-pickups that can 

occur at a specific curb location during the time-interval associated with the 

pool (e.g. 5 minutes). 
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Upon arriving at the hub H using another mode of transportation (e.g. a 

plane), a passenger expresses interest in taxi-ridesharing by specifying her 

trip and electronically enrolling it into a pool, e.g. the 11:00-11:05 pool. The 

trip specification indicates the destination, and the bounds on walking and 

delay times that the passenger is willing to tolerate in order to enable ride-

sharing. It is envisioned that the passenger will register the trip in the earliest 

pool that allows enough time to walk from the arrival location to the ride-

sharing pickup location. For example, if the passenger deplanes at 8:00am, 

and it takes 10 minutes to walk from her arrival gate to the ride-sharing 

pickup location, then the passenger will enroll her trip in the 8:10–8:15am 

pool. A pool closes, say, one minute before its start-time, or when it is full, 

whichever occurs first.  

After a pool P closes, a MatchMaking (MM) system is run on the set of n trips 

in the pool, creating a smaller set of m merged trips, each of which will be 

served by a single taxi. Each merged trip may consist of multiple drop-off 

points of the ride-sharing passengers. The selection of drop-off points must 

satisfy the walking and delay time constraints specified by the passengers. 

Because the pick-up and drop-off points in RSVP may differ from the 

passenger’s actual origin and destination respectively within a tolerable 

walking distance, RSVP incorporates slugging (Ma and Wolfson 2013). 

The proposed scheme benefits travelers, businesses, and municipalities. 

Travelers can check in remotely, thus are freed from standing in a physical 

line, and can save money by ride-sharing. Businesses benefit from travelers 

free to spend money instead of standing in line.  Municipalities benefit from 

reduced vehicle-miles-traveled, congestion, and emissions. 
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1.1.2. Parking Search 

Finding an on parking space in urban areas at peak hours is often not an 

easy task. Therefore a well implemented parking management system 

becomes important in addressing the overall sustainability of the urban 

parking activities. A prior study (S. Mathur, T. Jin, N. Kasturirangan, J. 

Chandrasekaran, W. Xue and Gruteser 2010) found that in one area of Los 

Angeles vehicles searching for parking produced 730 tons of carbon dioxide, 

and burned 47,000 gallons of gasoline over one year. Fortunately, detection 

technologies are advancing, which makes it possible to detect the availability 

of certain parking spots in some cases. Solutions for fully automated indoor 

and outdoor car parking has been discussed in (Lan and Shih 2014; Alasaadi 

et al. 2013; Liu et al. 2012). This dissertation discusses the study and 

implementation of a low power parking guidance system in chapter 3. 

1.2. Contributions 

This dissertation presents the design and implementation of two systems that 

focus on assuaging the urban congestion. 

1.2.1. Ridesharing system  

The proposed ridesharing scheme differs from existing taxi ridesharing 

studies in two aspects. First it applies the virtual queue concept to create 

ride-sharing pools and efficiently manage the ride-sharing demand. Second it 

considers SLuggIng-Multiple-drop-off (SLIM), a hybrid form of ride-sharing that 

combines slugging (Ma and Wolfson 2013) and multiple-drop-off ride-sharing 

(Gidofalvi et al. 2008),(Ma, Zheng, and Wolfson 2015),(Santi et al. 2014),(Tian 

et al. 2013).  The research formally prove that this increases the ride-sharing 

opportunities. 
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In summary, the contributions of the proposed ridesharing scheme can be 

summarized as: 

1. The SLIM (SLuggIng-Multiple-dropoffs) ridesharing problem is 

formalized and mathematically proved that some trips are shareable 

only if they allow slugging. 

2. Efficient algorithms are proposed, including a performance-

improvement technique based on Euclidean filtering, for producing a 

SLIM ride-sharing plan on a virtual pool.  

3. The ridesharing scheme is evaluated with a database of real taxi trips 

in NYC, and demonstrate that it produces savings of 25-40% in terms 

of the total number of trips. 

4. Benefits of adding walking to multiple-drop-off ride-sharing are 

quantified. 

1.2.2. Parking guidance system 

The parking navigation system is an Android based smartphone application 

that utilizes low energy techniques to provide turn by turn voice navigation 

instructions to the user upon request. This OpenStreetMap based mobile 

application make use of the concept of geofences (virtual boundaries) and 

eliminates unnecessary polling of GPS data thereby reducing battery 

consumption. The application is also designed to require minimum user 

interaction. 

1.3. Thesis Organization    

The rest of thesis are presented as follows: In Part I of this thesis, RSVP 

ridesharing scheme is described with focus on a ridesharing model that 

involves walking, ridesharing algorithms, and evaluation of the model and 

algorithms (Chapters 2 to 5). In Part II of this thesis, Perfect Park smartphone 
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application for parking guidance is introduced and its system level design, 

evaluation and performance are discussed (Chapter 6). 

Chapter two presents the literature review on ridesharing techniques 

Chapter three explains the theoretical and mathematical background of the 

systems developed for ridesharing and the efficiency assessment of the 

system.  

Chapter four describes the ridesharing system experimentation and 

evaluation process 

Chapter five discusses the various results and performance of the proposed 

techniques.  

Chapter six studies and discuss the implementation of parking guidance 

system. 

Chapter seven concludes the thesis and outlines the future improvements for 

the proposed ridesharing and parking guidance systems. 
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Part I: Mitigating urban traffic 

congestion via ridesharing 
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Chapter 2  

Literature Review - Ridesharing 

 

(Previously published as J. Lin, S. Sasidharan, S. Ma and O. Wolfson, "A 

Model of Multimodal Ridesharing and Its Analysis," 2016 17th IEEE 

International Conference on Mobile Data Management (MDM), Porto, 2016, pp. 

164-173) 

This chapter briefly describes research already carried out in the area of taxi 

ridesharing. 

2.1. Taxi Ridesharing 

There have been several studies on wait line management for taxi cabs (Curry, 

De Vany, and Feldman 1978; Anwar, Volkov, and Rus 2013) and attempts to 

enhance the taxi cab operations (da Costa and de Neufville 2012; Yazici, 

Kamga, and Singhal 2013) at various service stations. However, these 

techniques fall short at eliminating physical queues at the taxi cab service 

stations. Taxi cab demand prediction engines (Anwar, Volkov, and Rus 2013) 

and decision making systems (Yazici, Kamga, and Singhal 2013) may help in 

better taxi cab operations, but do not guarantee service on demand without 

entering a physical queue. 

There has been extensive research on traditional ridesharing, where driving 

is the only mode of transportation. Detailed overviews of this research can be 

found in surveys on vehicle routing problem (Laporte 2009), and ridesharing 

(Agatz et al. 2012). Few works have studied multimodal ridesharing where 
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other mode of transport (especially walking or biking) are allowed. In (Ma and 

Wolfson 2013) the authors studied  the slugging form of ridesharing, where 

passengers walk to the origin of the driver to get on, then get off at the 

destination of the driver, and finally walk back to their original destination. 

The challenge there is to assign the role of driver and passenger to ridesharing 

participants, and group passengers to ridesharing plans. Therefore, the 

problem of choosing pickup/drop-off points for passengers is not tackled in 

(Ma and Wolfson 2013). Sester et.al. studied ridesharing with walking in a 

setting where the role of drivers and passengers are known as input, and each 

driver is assigned with passengers with the same destination (Rudnicki, 

Anders, and Sester 2008; Czioska, Mattfeld, and Sester 2016). The main 

problems in both (Czioska, Mattfeld, and Sester 2016; Rudnicki, Anders, and 

Sester 2008) is to determine a rendezvous point for each passenger to be 

picked up by the assigned driver. In (Rudnicki, Anders, and Sester 2008) each 

driver is matched with only one driver, whereas a driver is matched with 

multiple passengers using Integer Linear Programming (ILP) in (Czioska, 

Mattfeld, and Sester 2016); and subsequently the passenger pickup order is 

determined for each driver. ILP is NP-hard and thus not applicable to large 

problem instances. Neither (Rudnicki, Anders, and Sester 2008) nor (Czioska, 

Mattfeld, and Sester 2016) provides a formal model in which to determine 

whether trips are shareable.  

(Aissat and Oulamara 2015; Stiglic et al. 2015) also studied the benefit of 

meeting points (i.e. middle points for pickup/dropoff) for ridesharing systems. 

In (Aissat and Oulamara 2015) the match is between a single driver and a 

single rider. And the (Aissat and Oulamara 2015) model provides constraints 

in terms of time windows instead of maximum walking time. (Stiglic et al. 

2015) provides a solution in which sources, destinations, and intermediate 

points are in the Euclidean plane rather than networks. From a 

computational perspective, similar to our approach here, both (Aissat and 
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Oulamara 2015; Stiglic et al. 2015) devise and apply heuristics to reduce the 

search space for meeting points thus speed-up computation. However, note 

that the heuristics used in this paper prune the search space without 

compromising optimality of the solution. Furthermore, in (Rudnicki, Anders, 

and Sester 2008; Czioska, Mattfeld, and Sester 2016; Aissat and Oulamara 

2015) each driver has its own destination. In contrast, in our model a driver 

does not have an individual destination. 

This work is also relevant to existing work on taxi ridesharing(Ma, Zheng, and 

Wolfson 2015; Tian et al. 2013). Those works differ from our paper in: 1) they 

do not consider walking as a second mode; 2) they do not build a ridesharing 

plan from a time windowed pool of requests. That is, in those papers, 

whenever a ride request arrives, all taxis are considered for matching the new 

query. Thus, they focus on quickly finding candidate taxis for ridesharing 

based on spatial indexing. In terms of savings, (Ma, Zheng, and Wolfson 2015) 

reports about 25%~35% more  taxi requests can be served if ridesharing with 

at most two passengers is allowed (depending on taxi shortage, modeled by 

parameter Δ). This is similar to our results here.  

Similar to the work here, both (Ma and Wolfson 2013; Santi et al. 2014) 

consider matching trips in a small time window. (Ma and Wolfson 2013) does 

not consider multiple drop-offs, and as a result, it requires a higher similarity 

between trips that can be merged. Unlike this paper, where trips are bounded 

within New York City, all trips in (Santi et al. 2014) are bounded within 

Manhattan. Thus all the destinations are in a denser area than NYC as a 

whole, thus ridesharing is more probable. In terms of savings, (Santi et al. 

2014) reports a 50% reduction in # of trips with ridesharing allowing at most 

one more passenger and maximum delay of 5 minutes, using a 3 minute pool 

size. In contrast, our study finds a 28% ~ 35% (depending on the pool size) 

reduction in the number of trips, with ridesharing allowed between at most 
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two trips, and maximum 10% travel time delay. The difference between the 

savings in the two papers are attribute to multiple factors: 1) aforementioned 

denser destinations in (Santi et al. 2014); 2) requests with different origin 

locations are merged as well in (Santi et al. 2014); 3) the impact of walking on 

the total travel time delay. Furthermore, (Santi et al. 2014) performs an offline 

analysis and does not address issues of real-time algorithm efficiency. 

While the hybrid walking-and-driving mode in SLIM ridesharing provide 

flexibility for ridesharing opportunities, it also greatly complicates the 

ridesharing algorithm, especially for pairwise shareability determination (see 

Chapter 3 for more details), the process of determining whether or not two 

trips are sharable (i.e. mergeable to form one ride-sharing trip). Since in SLIM 

passengers can be dropped off at intersections away from their respective final 

destinations, the search space for ridesharing paths is dramatically 

expanded. For example, given a walking time of five minutes, we find that a 

destination in New York can have 20~30 candidate drop-off points on average. 

There have been some works on calculating shortest path for multimodal 

networks, especially for transit networks (Abbaspour and Samadzadegan 

2010)(Lozano and Storchi 2001), however, these do not consider ride-sharing. 

In this paper we describe the shareability determination procedure only for 

trip pairs. It can be extended to combining more than two trips. In this case, 

after the ride-sharing plan is obtained, a variant of the Traveling Salesman 

Problem (TSP) with 3 or more stops needs to be solved to determine the rote 

of each vehicle. Existing TSP solvers (David Applegate, Ribert Bixby, Vasek 

Chvatal 2006)(Dubois-lacoste, Hoos, and Stützle 2015) obtain the optimal 

solution for large instances of TSP problems, e.g. the Concorde TSP solver can 

solve optimally an instance consisting of more than eighty-five thousands 

stops. 
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Chapter 3  

Multimodal Ridesharing Model 

 

(Previously published as J. Lin, S. Sasidharan, S. Ma and O. Wolfson, "A 

Model of Multimodal Ridesharing and Its Analysis," 2016 17th IEEE 

International Conference on Mobile Data Management (MDM), Porto, 2016, pp. 

164-173) 

This chapter briefly reviews the theoretical and mathematical background 

required for the multimodal ridesharing scheme. The chapter discuss the 

road network structure, definition of trips, trip constrains and shareability in 

the context of ridesharing. It also presents the algorithms and theoretical 

proofs required for the ridesharing scheme. 

3.1. The Road Network and Multimodal Paths 

A road network is a directed graph; the vertices are the intersections of the 

roads, and the edges are the road segments connecting the intersections. 

Assume that there are n vertices in the road network, denoted vi, where i 

=1,2,…,n, and let edge eij be the edge from vertex vi to vertex vj.  Each edge e 

in the network has a length L(e). We assume that there is a walking speed 

which is the same for all edges (e.g. 3 mi/hr) and is denoted WS.  The walking 

time of e, denoted WT(e), is L(e)/WS. Additionally, each edge e has a maximum 

driving speed mDS(e), e.g. 60mi/hr on a highway edge. To compute the drive 

time on an edge e we use a congestion fraction denoted cf, where 0<cf<1. This 

is a fraction used to compute the driving-time on each edge e by assuming 

that the driving speed on e is mDS(e)*cf. In other words, we assume that cf is 

the same for all edges. In practice, cf is determined by the time of day, e.g., at 



13 
 

rush hour all maximum speeds are cut in half. Of course, this fraction can 

be adapted to the type of road, but we ignore this refinement here. 

Thus the driving time on an edge e, denoted DT(e), is L(e)/(mDS(e)*cf). 

Intuitively, DT(e) is the time it takes to traverse the edge at a speed reflected 

by the congestion cf; if driving (in the direction of the edge) is not allowed, 

then the speed is 0 and the driving time is infinity.  

Consequently, for every path p in the road network, the walking time on p, 

denoted WT(p), is the sum of the walking times of edges of p, i.e.,  






pe

ij

ij

eWTpWT )()(  

the driving time on p denoted DT(p) is the sum of the driving times of edges of 

p, i.e.,  






pe

ij

ij

eDTpDT )()(

 

In this paper we consider paths that are unimodal, i.e. consist of a single 

mode, either walking or driving. Consequently, the time of a path p is either 

its walking time or its driving time. If p is the shortest (in terms of walking- 

or driving-time) path between two vertices v and w, then WT(p) and DT(p) are 

also denoted WT(v,w) and DT(v,w) respectively. The pickup intersection is 

called the hub, denoted by H. For a vertex v, for conciseness we denote by 

SP(v) the time DT(H,v), i.e. the drive-time on the fastest-drive path from H to 

v. 
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3.2. Trips and Their Constraints 

A trip A is a triplet: <destination-address dest(A), number-of-travelers-in-party, 

constraints>. We assume that dest(A) is a vertex, i.e. intersection, and a trip 

starts at time 0. Denote SP(dest(A)) by SP(A). Namely, SP(A) is the drive-time 

on the fastest-drive path from H to dest(A). The constraints are:  

(1) Maximum walking time, denoted W(A), from the drop-off point, 

denoted d(A), to the final destination dest(A), and  

(2) Maximum delay (including the walking time from d(A) to dest(A)) 

denoted D(A). In other words, D(A) is the maximum difference 

between the total travel time to dest(A) in a ride-share (including 

driving and walking), denoted  TT(A), and SP(dest(A)); i.e., TT(A)-SP(A) 

≤ D(A). 

The number of travelers is used in match-making. For example, two trips, 

each of which has two travelers, cannot be combined in a taxi with 3 

passenger seats. 

3.3. Shareability of Trips 

A trip pair (A,B) is shareable with A first if there exist:  

(1) a driving path dp(A,B) starting at H, and having two dropoff vertices, 

d(A) and d(B), where d(B) is the last vertex of dp(A,B), (see Fig.1), and  

(2) at most two walking paths wp(A) and wp(B), from d(A) to dest(A) and 

from d(B) to dest(B), respectively, 

that satisfy the following 2 conditions:  
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(1) If d(A) is the same vertex as dest(A), then wp(A) is empty (this means 

that the dropoff point of A is its destination); otherwise there is a 

walking path wp(A) from d(A) to dest(A) that satisfies the following 

conditions: 

 )())(( AWAwpWT 
 (1) 

 )()())(()( ADASPAwpWTqDT 
 (2) 

Equation (1) says the walking time on the path wp(A) is no greater than 

the maximum walking time limit on A, i.e., )(AW .  In (2), q is the prefix 

of the path dp(A,B) from H to d(A). Then (2) indicates that the total travel 

time from H to dest(A) is no greater than the sum of the shortest path 

from H to dest(A) and the maximum tolerable delay.  This, to comply 

with constraint (2) of the trip definition because 

 𝐷𝑇(𝑞) + 𝑊𝑇(𝑤𝑝(𝐴)) = 𝑇𝑇(𝐴) (3) 

(2) Similarly, if d(B) is the same vertex as dest(B), then wp(B) is empty 

(this means that the dropoff point of B is its destination) and 

DT(dp(A,B)) – SP(B) ≤ D(B); otherwise there is a walking path wp(B) 

from d(B) to dest(B) that satisfies the following conditions: 

 )())(( BWBwpWT 
 (4) 
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 )()())(()),(( BDBSPBwpWTBAdpDT 
 (5) 

H

dest(A)

dest(B)

d(A)

d(B)

Shortest path

q

driving path walking path

dp(A, B) 
wp(A)

wp(B)

 

Figure 1: Illustration of shareability of trip pair (A,B) 

The following proposition indicates that adding walking times enriches ride-

sharing possibilities. 
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Figure 2: Trips A and B that are shareable if walking is allowed, but not 
otherwise 

Proposition 1: There exist trips A and B that are shareable if their maximum 

walking times, W(A) and W(B), are greater than 0, but not otherwise. This is 

true even if the walking time is slower than the driving time for each edge.  

Proof: Consider the road network of Fig. 2, giving the driving time and walking 

time on each edge. And consider trips A and B starting at H with maximum 

delays D(A)=D(B)=5 and destinations dest(A) and dest(B) respectively. If the 

maximum walking times are W(A)=W(B)=10, then the two trips are shareable 

with either A first or B first. In either case, both travelers are driven to vertex 

d(A)=d(B) and are dropped off there, from which they walk, each to their 

respective destination. The total shared trip time for A is the driving time, 45, 

plus the walking time, 10, i.e. 55 in total. Since the driving time directly from 

H to dest(A) along the shortest path is 50, the maximum walking and delay 

constraints are satisfied for A. And similarly for B.   

A B

H

DT = 6
WT = 10

DT = 6
WT = 10

DT = 50
WT = 2000

DT = 50
WT = 2000

dest (A) dest (B)
d (B)d (A)

DT = 45

W (A) = W (B) = 10
D (A) = D (B) = 5
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Now, it is easy to see that if the maximum delays are kept at 5, but the 

maximum walking times are reduced to 0 for both trips, then A and B are not 

shareable with A first, nor with B first.  The reason is that the drive from H to 

dest(A) is 50, and from dest(A) to dest(B) is 12, exceeding the maximum delay 

for B. Thus the trips are not shareable with A first. Similarly for B first. 

3.4. The MatchMaking (MM) System 

In this section we describe the MM system. We first give an overview of the 

approach (A), then devise the PST algorithm that produces the shareability 

graph and analyze its complexity (B); finally we discuss Euclidean filtering, a 

step executed before a pool of trips is fed into the PST algorithm to eliminate 

in constant time pairs of trips that are not shareable (C). 

3.4.1. The Approach 

After a pool P closes, a MatchMaking (MM) system is run on the set of n trips 

in the pool, creating a smaller set of m merged trips, each of which will be 

served by a taxi. Obviously, among the m trips there will be some that have 

not been merged. This will be the case for a trip A in which the constraints do 

not allow its merging with any other trip. For example, if all the trips in A’s 

pool allow a delay of at most 5 minutes, and any other destination in the same 

pool is at least 10 miles away from the shortest path to A’s destination, then 

A cannot be merged with any other trip.  

The output of the MM system is a set of merged trips. For each merged trip 

T, MM produces the route to be taken by the taxi servicing T and the drop-off 

points, such that the constraints of all the individual trips merged into T are 

satisfied. If some drop-off point is not a destination, then MM will also 

produce the walking path that the passenger has to follow to reach her 

destination. 
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Now we discuss the approach used by the MM system. MM consists of two 

stages: (1) construction of a shareability graph (SG), and (2) finding the 

maximum matching of SG. The first stage finds all the possible pairs that can 

be merged in a way that satisfies the constraints of the two trips. In other 

words, it constructs a graph in which the nodes are the trips, and each edge 

indicates that the two connected trips can be merged.  

To see the need for the second stage, suppose a pool initially consists of 4 

trips, and that at the end of the first stage we have a graph of 4 nodes A, B, 

C, D and 3 edges A-B, B-C, and C-D. If B and C are merged, then no more 

trips can be merged, and the total number of resulting trips in the pool is 3. 

If, on the other hand, A and B are merged, and C and D are merged, the 

resulting number of trips is two, which is superior to the first option. 

Thus, the second stage finds, for an arbitrary graph, the merging of pairs 

which results in the minimum number of merged trips in the pool. For finding 

the maximum matching we use a standard existing algorithm (Galil 1986). 

3.4.1.1. Building the Shareability Graph 

A shareability graph is a graph in which the vertices are trips and the edges 

indicate that the trip pair connected by the edge is shareable. The shareability 

graph is constructed as follows. 

First, to speed up the graph-building process, we perform following 

precomputations: (assuming that drop-off points and trip destinations are 

always intersections). For each intersection P, we precompute only once the 

following: 



20 
 

a) 
}),({)( CiPWTiP I
, i.e., the set of the neighboring intersections, from 

which the walking time to intersection P is no greater than C. 

Intuitively, these are candidate drop-off points for trips that have P as 

a destination assuming that the maximum walking time of any trip is 

C (say 10 minutes). 

b) 𝐷𝑇(𝐻, 𝑃), i.e. the driving time from the hub H to intersection P, using the 

speed limits of road segments. 

Second, the following pairwise shareability test (PST), which uses the above 

precomputations, is applied to check whether or not trip a pair (A,B) is 

shareable with A first. 

Discussion of the PST Algorithm: Line 1 checks whether the route driving 

from H to dest(A) (along the shortest path), and from there to dest(B), satisfies 

the maximum delay of B. If so, then this route satisfies the delay constraints 

of both trips, thus they are shareable.  

Otherwise, the rest of the PST algorithm checks for every pair of feasible drop-

off points, one of A and the other of B, whether they satisfy the delay 

constraints of A and B.  

Line 4 checks whether the drop-off point satisfies the delay constraint of A, 

and if not the drop-off point is abandoned. Line 11 checks the same condition 

for the delay constraint of B, with a lower bound given by the Euclidean 

distance. Lines 4, 9, and 11 use calculations that involve only constants and 
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precomputed values1. They serve as defenses, to avoid the expensive shortest 

path calculations executed by Line 13. 

Line 13 calls PathSearch function, which tries to find a path from a drop-off 

point 𝑖 of dest(A) to some drop-off point j of dest(B) within a given travel time 

budget that satisfies the delay constraint of B. This is expensive because the 

drive-time between i and j is not precomputed (the table giving the shortest 

drive-path between every pair of intersections would be too large to search 

efficiently). And executing the shortest path computation between every pair 

of feasible drop-off points, one of A and the other of B, involves hundreds of 

shortest-path computations (we find out that each destination usually have 

20~30 drop-off points for a 5 minutes walk). The Path Search Algorithm (PSA, 

Algorithm 2) improves the efficiency by using the following idea. First, do a 

single-source shortest path computation from a drop-off point of A to all the 

feasible drop-off points of B. The resulting shortest-path tree T may contain 

multiple drop-off points of A; and if for any pair of drop-off points in T, one 

for A and the other for B, the budgetleft is not exceeded, then A and B are 

shareable with A first. Otherwise, the single-source-shortest-path 

computation is repeated for other feasible drop-off points of A, with the 

following cutoff improvement. If a vertex v that was “seen” in previous single-

source-shortest-path computations is reached, and if the shortest path to v 

is not improved, then v is “cutoff”, i.e. not expanded. In other words, PSA 

combines multiple single-source-shortest-path computations. Specifically, 

PSA is executed at most once for each drop-off point of A. 

 

                                       
1 the precomputed driving times are multiplied by the congestion fraction (cf) parameter. 
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Algorithm 1: Pairwise Sharability Test (PST) 
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Algorithm 2: Path Search Algorithm 
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Complexity of Constructing the Shareability Graph:  In the worst case, the 

PST Algorithm constructs a shortest-path tree for each drop-off point of A. 

This takes 𝑂(|𝐸| + |𝑉|𝑙𝑜𝑔|𝑉|). Since the number of drop-off points that are at 

most C time-units (e.g. C = 10 minutes) away from any destination is a 

constant, this is also the complexity of the PST algorithm. Since A and B are 

shareable if and only if they are shareable with A first or with B first, and 

since the number of trips in a pool is bounded by a constant (in our 

experiments the average number of trips ranges between 25 and 40 

depending on the length of the time interval), the above is the asymptotic 

complexity of constructing the shareability graph.  

Complexity of finding the Maximum Matching of the Shareability Graph: 

The maximum matching can be found in O(|E||V|1/2), where |V| is the 

number of trips, and |E| is the number of edges in the shareability graph 

(see (Galil 1986)). Since the number of trips is a constant, finding the 

maximum matching can be done in a negligibly small constant time. 

Incremental updating the Shareability Graph: After the shareablity graph 

is built, a maximal matching M is computed on the graph. Then all nodes and 

links that are included in M are removed from the graph, and each pair boards 

a vehicle. At this point there are 2 possibility for the unmatched trips. They 

can remain in the pool and board at the same time-interval as single-trips, or 

drop back to the next pool, attempting to be matched there. If the second 

option is selected, the remaining part of the graph can be incrementally 

reused for constructing the new shareability graph. That is, given a pool of 

trips consisting of c old trips and d new trips, to build the new sharability 

graph, we only need to run the PST algorithm d(d+c) times instead of  (d+c)2 

times. 
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3.4.2. Euclidean Filtering 

In order to eliminate the infeasible pairs of trips quickly, rather than feeding 

them through the PST algorithm directly, the MM method uses the principles 

of Euclidian geometry. We call this Euclidean filtering. More specifically, in 

this subsection we present an inequality, (9), which, if not satisfied, for a pair 

of trips, then the trip-pair cannot be shareable; thus the pair does not need 

to be fed to the PST algorithm. Furthermore, (9) can be computed using only 

the precomputed tables, but independently of the road network, i.e. in 

constant time.  

H

A
RA

RB

B
d(A)X

Z

driving path waling path

Y

d(B)

 

Figure 3: Demonstration of the proof of Theorem 2 

Denote by Smax the maximum driving speed among all edges (e.g. 60 mi/hr) 

without congestion, i.e. when cf=1. We trivially assume that (Smax * cf)>WS 

(Otherwise, walking from H to the destination would be faster than driving). 

Given two points X and Y in the Euclidean space, denote by by DX,Y  the 

Euclidean distance between two points X and Y, and by 𝑇𝑋,𝑌 the time to cover  

DX,Y  at speed (Smax * cf).  
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Theorem 2: If A and B are two trips that are shareable with A first, then: 

 𝑇𝐻,𝑑𝑒𝑠𝑡(𝐴) + 𝑇𝑑𝑒𝑠𝑡(𝐴),𝑑𝑒𝑠𝑡(𝐵) − 2 ∗ 𝑊(𝐴) < 𝑆𝑃(𝐵) +  𝐷(𝐵) (9) 

Proof: Consider the two shareable trips A and B with drop-off points d(A) and 

d(B), as represented in Fig 3. A, B represent the destination locations of the 

two trips respectively, and 𝑅𝐴, 𝑅𝐵 represent the maximum distances that can 

be covered in times W(A) and W(B), respectively, at a walking speed of WS.   

We will prove that: 

 𝑇𝐻,𝑑𝑒𝑠𝑡(𝐴) − 𝑊(𝐴) < 𝑆𝑃(𝑑(𝐴)) (10) 

and,    

 𝑇𝑑𝑒𝑠𝑡(𝐴),𝑑𝑒𝑠𝑡(𝐵) − 𝑊(𝐴) < 𝐷𝑇(𝑑(𝐴), 𝑑(𝐵)) + 𝑇(𝑤𝑝(𝐵)) (11) 

Recall from sec. III.A that  SP(d(A)) is the shortest drive-time from H to the 

d(A), and DT(d(A), d(B)) is the shortest driving-time from the drop-off point of 

A to that of B.  

Thus, combining (10) and (11), we have 
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𝑇𝐻,𝑑𝑒𝑠𝑡(𝐴) + 𝑇𝑑𝑒𝑠𝑡(𝐴),𝑑𝑒𝑠𝑡(𝐵) − 2 ∗ 𝑊(𝐴)

< 𝑆𝑃(𝑑(𝐴)) + 𝐷𝑇(𝑑(𝐴), 𝑑(𝐵))

+ 𝑊𝑇(𝑤𝑝(𝐵)) 

(12) 

where the right side of (12) is the total travel time for B in any ridesharing 

plan with A first, thus not larger than 𝑆𝑃(𝐵) +  𝐷(𝐵); the theorem follows. 

Now we prove (10). Denote by X the point on the straight line from H to dest(A) 

such that 𝐷𝑋,𝑑𝑒𝑠𝑡(𝐴) = 𝐷𝑑(𝐴),𝑑𝑒𝑠𝑡(𝐴). In other words, X is the point on the straight 

line whose Euclidean distance from dest(A) is the same as the Euclidean 

distance between d(A) and dest(A). 

Since a straight line is the shortest distance between two points in Euclidean 

space, then 𝐷𝐻𝑋 ≤ 𝐷𝐻,𝑑(𝐴) ≤ 𝐷(𝑑(𝐴)), where 𝐷(𝑑(𝐴))is the distance of the 

shortest-time driving path from H to d(A). Thus we have TH,X ≤ 𝑇𝐻,𝑑(𝐴)  ≤

 
𝐷(𝑑(𝐴))

𝑆𝑚𝑎𝑥∗𝑐𝑓
≤  SP(d(A)). Also, since (Smax * cf)> WS,   𝑇𝑋,𝑑𝑒𝑠𝑡(𝐴) < 𝑊𝑇(𝐷𝑋,𝑑𝑒𝑠𝑡(𝐴)) ≤ 𝑊(𝐴). 

Thus: TH,dest(A) = TH,X + TX,dest(A) < SP(d(A)) + W(A), giving (10). 

Now we prove (11). Denote by Y the point on the straight line between dest(A) 

and dest(B) such that 𝐷𝑑𝑒𝑠𝑡(𝐴),𝑌 = 𝐷𝑑𝑒𝑠𝑡(𝐴),𝑑(𝐴), and by Z the point on the same 

line such that  𝐷𝑍,𝑑𝑒𝑠𝑡(𝐵) = 𝐷𝑑(𝐵),𝑑𝑒𝑠𝑡(𝐵). Since (Smax * cf)> WS, 𝑇𝑑𝑒𝑠𝑡(𝐴),𝑌 < 𝑊(𝐴) 

and𝑇𝑍,𝑑𝑒𝑠𝑡(𝐵) < 𝑊𝑇(𝐷𝑑(𝐵),𝑑𝑒𝑠𝑡(𝐵)), then𝑇𝑑𝑒𝑠𝑡(𝐴),𝑑𝑒𝑠𝑡(𝐵) ≤ 𝑇𝑑𝑒𝑠𝑡(𝐴),𝑌 + 𝑇𝑌𝑍 + 𝑇𝑍,𝑑𝑒𝑠𝑡(𝐵) <

𝑇𝑌𝑍 + 𝑊(𝐴) + 𝑊𝑇(𝐷𝑑(𝐵),𝑑𝑒𝑠𝑡(𝐵)).     

Since a straight line is the shortest distance between two points in Euclidean 

space, DYZ ≤ fp(d(A),d(B)) where fp(d(A),d(B)) is the length of the path that gives 

the shortest driving-time between d(A) and d(B). Since Smax is maximum  

speed of all road segments along the shortest path between d(A) and d(B), we 
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have TYZ ≤ DT(d(A), d(B)). Thus:𝑇𝑑𝑒𝑠𝑡(𝐴),𝑑𝑒𝑠𝑡(𝐵) − 𝑊(𝐴) < 𝐷𝑇(𝑑(𝐴), 𝑑(𝐵)) +

𝑊𝑇(𝑤𝑝(𝐵)), which is (11). 

If between every pair of intersections driving is faster than walking, then the 

lower bound of Th. 2 can be improved by replacing 𝑇𝐻,𝑑𝑒𝑠𝑡(𝐴) by the higher 

SP(A). Precisely: 

Theorem 3: If A and B are two trips that are shareable with A first, and 

between every pair of intersections the driving time is shorter than the 

walking time, then: 

 𝑆𝑃(𝐴) + 𝑇𝑑𝑒𝑠𝑡(𝐴),𝑑𝑒𝑠𝑡(𝐵) − 2 ∗ 𝑊(𝐴) < 𝑆𝑃(𝐵) +  𝐷(𝐵) (13) 

Proof: In this case the proof of Th. 2 can be repeated verbatim, except that 

(10) is: SP(A) – W(A) ≤ SP(d(A)); and it holds for the following reason. If SP(A) 

– W(A) > SP(d(A)), then SP(A) can be shortened as follows: drive from H to d(A) 

along the shortest path (which will take less than SP(A) – W(A)) and then drive 

from d(A) to dest(A) (which will take less than W(A)).  
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Chapter 4  

Evaluation of RSVP 

 

(Previously published as J. Lin, S. Sasidharan, S. Ma and O. Wolfson, "A 

Model of Multimodal Ridesharing and Its Analysis," 2016 17th IEEE 

International Conference on Mobile Data Management (MDM), Porto, 2016, pp. 

164-173) 

 

This chapter briefly describes the methodology adopted for evaluating the 

proposed ridesharing scheme. The experiment set up and the data set used 

for evaluation is discussed in this chapter.  

4.1. Databases 

 

The first database used in the evaluation of the MM system is the NYC taxi 

trip database (see((DOITT) 2015),(Donovan and Work 2014)). This database 

records over four years of taxi operations in New York City (NYC) and includes 

nearly 700 million trips. The database is stored in CSV format, organized by 

year and month. In each file, each row represents a single taxi trip described 

by fields such as taxi ID, timestamped origin and destination, travel time and 

distance, and passengers count. The database does not provide GPS 

sequences for a trip. Reference (Swoboda 2015) provides a detailed 

description of the NYC taxi data. 

 

4.2. Experiment 

 

The experiment was conducted on randomly selected pools formed from 1.8 

million trips. These trips originated from LaGuardia airport with destinations 
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in NYC, during 261 weekdays in 2013 between 10am and 10pm.  The pools 

were created based on the departure time. So, if the pool size is 5 minutes, 

the input (before merging) trips in the Jan. 15th, 10:00-10:05a pool are all the 

trips that departed on that date between 10:00 and 10:05, as reflected in the 

dataset. As Fig. 8 indicates, the average number of input trips ranges from 

20 (for a 5 minute pool) to 40 (for a 10 minute pool), assuming that 90% of 

the trips can be shared. Observe that this method of generating the pools is 

conservative in the sense that it does not model unsatisfied demand. More 

precisely, it is possible that many passengers faced with a taxi line have 

decided to, for example, take the bus. A less conservative approach would 

have inflated the actual demand reflected in the database to model this 

unsatisfied demand, leading to a higher number of trips per pool, and thus 

to higher savings resulting from ride-sharing. 

In this paper, the results presented in section D are based on a hundred pools 

randomly chosen from the above trip database. We observe that a hundred 

random pools yield an acceptable confidence level of the statistics to be 

presented in Section D.  For example, consider 100 random 5-minute pools 

extracted for the following experimental setup: percentage of willingness to 

ride share = 90%, Max Delay = 10% of the individual shortest path trip time, 

and Maximum Walk Time = 5 min (see Fig. 4). The result indicates that the 

average number of trips saved per pool is 6.25 with a standard deviation of 

5.29.  If a normal distribution is assumed, then there is at least 88% 

confidence level that the average number of trips saved per pool is not lower 

than 90% of the mean value.   

The second database used in the experiments is the road network. For 

creating the street network of New York City, the data from openstreetmap.org 

was used, consisting 486,746 road links and 261,187 intersections (i.e. 

vertices). 
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4.3. Metrics 

RSVP is evaluated according to the following performance metrics.  

 Computation time. Since ride-sharing plans must be computed 

continuously as customers arrive and depart the virtual queue, efficient 

computation is important.  

 Reduction in total number of trips in RSVP. It is expected that trip 

reduction is related to a number of factors including the willingness to 

ride share by passengers, the pool size, maximum walking time 

tolerated, maximum total delay tolerated, and traffic condition 

(reflected by traffic speed).  We examine the trip savings with respect to 

each of those key input parameters in the experiment. 

 

4.4. Setup of Experiment 

The congestion fraction: For determining the shareability of trips A and B, 

travel time was assigned to each road segment based on the road type, its 

maximum travel-speed (e.g. 40mi/hr on an arterial road), and a congestion 

fraction cf computed as follows. Denote by cf1 the fraction = (travel-time from 

the hub to dest(A) at maximum speed allowed by each edge)/(actual travel 

time of trip A from the hub to dest(A)). And denote by cf2 the fraction = travel-

time from the hub to dest(B) at maximum speed allowed by each edge)/(actual 

travel time of trip B from the hub to dest(B)). Then the congestion fraction 

cf=(cf1+cf2)/2. In other words, cf is the average of the congestions reflected by 

trips A and B. 

Destinations: The trip destinations were matched to the nearest 

intersections on the road map, using a kd-tree based KNN search. 

Intersections from the openstreetmap data were computed using QGIS. For 
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each intersection a collection of neighboring intersections within 10 minutes 

walking distance (at 3mi/hr) were precomputed using Breadth-First-Search. 

Taxi capacity: We assume that each taxi cab has 4 passenger seats. 

Therefore trip combinations with a total passenger count of at most four can 

be merged. For example, a trip with 2 passengers can be merged with another 

trip with 2 passengers but not with a 3-passenger trip.  
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Chapter 5  

Results and Discussions 

 

(Previously published as J. Lin, S. Sasidharan, S. Ma and O. Wolfson, "A 

Model of Multimodal Ridesharing and Its Analysis," 2016 17th IEEE 

International Conference on Mobile Data Management (MDM), Porto, 2016, pp. 

164-173) 

 

This chapter presents the results of the evaluation of ridesharing scheme 

described in the previous chapter 5.  

 

5.1. Trip Reduction vs. Passengers’ willingness to 

Rideshare 

 

Figure 10 shows the percentage of trip reduction by percentage of passengers’ 

willingness to ride share starting at 10%.   It is assumed the maximum 

walking time is 5 minutes, pool size is in a 5-minute interval, and the 

maximum delay tolerated is 10% of the individual shortest path trip time.  As 

expected, as more passengers are willing to ride share, the percent trip 

reduction increases.   
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Figure 4: % trips reduction by willingness to ride share 

 

5.2. Trip Reduction vs. Driving Speed 

Figure 11 gives the percent trip reduction as a function of the driving speed.  

 

Figure 5: % trips reduction by congestion fraction 
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This speed is given as a percentage of the corresponding maximum speed, 

depending on the road type. So for example, 50% indicates that on a highway 

the average speed is 30mi/hr, and on an arterial road (where the maximum 

speed without traffic is 40mi/hr) is 20mi/hr. It is assumed here that the 

percent passenger willingness to ride share (rf) is 90%, the maximum walking 

time is 5 minutes, pool size is in a 5-minute interval, and the max delay 

tolerated is 10% of the individual shortest path trip time.  It is interesting to 

see that the % trip reduction remains at about 28% regardless of the network 

driving speed.  In other words, RSVP will consistently deliver a significant trip 

reduction regardless of the network traffic condition.  That is an encouraging 

finding. 

5.3. Trip Reduction vs. Average Maximum Delay 

When the average maximum delay tolerated varies from 5% to 20% of the 

travel time, percent trip reduction goes up from 18% to 36% accordingly 

(Figure 12).  That should come as no surprise - as passengers are more flexible 

with their travel time budget more trips can be shared and thus the total 

number of trips is further reduced.   
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Figure 6: % trips reduction by average maximum delay 

 

5.4. Trip Reduction vs. Maximum Walk Time Tolerated 

One of the important features of RSVP is the incorporation of walking option 

from the drop-off point to the final destination by allowing passengers to 

specify the maximum tolerable walk time to their destinations after drop-off.  

It was hypothesized that RSVP would increase ride-sharing by incorporating 

this feature.  Figure 13 confirms the hypothesis.  Moreover, when the 

maximum walk time goes from zero to a mere 3-minute bound, it results in 

15% additional trip reduction, which is a significant reduction.   
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Figure 7: % trip reduction by maximum walk time 

 

Notice that the % trip reduction levels off after 5 minutes, which suggests a 

5-minute walk time tolerance would be a good cut-off point in practice. 

5.5. Trip Reduction vs. Pool Size 

Another interesting feature to observe is that percent trip reduction seemingly 

has little to do with the pool size (Figure 14). This is a desirable feature 

because it implies that the similar ride sharing result will be obtained 

regardless of how the trips are pooled.  Therefore, in practice the pool size 

should be 6 minutes, the point at which the savings levels off. The reason for 

this is as follows. In a pool of size n minutes, the average wait to board is n/2 

minutes. Thus, to minimize this wait, the pool size should be the smallest 

such that beyond it the savings is marginal. 

Figure 14 also gives the actual numbers of trips before and after 

MatchMaking, for each pool-size. 
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Figure 8:  % trip reduction by pool size 

 

5.6. Computation time vs. Pool Size 

Computation time of the MM system is investigated as a function of the pool 

size.   
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Figure 9: Computation time by pool size 

 

The MM system was implemented in Java, and run on a single system 

equipped with 2.5 GHz CPU and 16 GB RAM using a single thread. Two cases 

were analyzed – with and without Euclidean filtering.  Figure 15 shows the 

result, assuming a 90% willingness to ride share (rf), a 5-min maximum 

walking time, and a 10% max delay tolerated.  The Euclidean filtering 

algorithm is proved to be effective in reducing the computation time by a 

factor ranging from 33% to over 50%.  Without the Euclidean elimination 

algorithm, the computation time escalates 2.5 times when the pool size 

increases from 5 minutes to 10 minutes.   
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Part II: Reducing vehicle cruising 

for parking via Perfect Park 
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Chapter 6  

Parking Navigation System 

 

This chapter introduces Perfect Park, the parking navigation system designed 

for users searching for parking near to their destination. The chapter starts 

with a brief introduction of the application and proceeds with the 

implementation details and the advantages of the system for sustainable 

parking solutions. 

6.1. Introduction 

Finding parking slots in urban areas is considered as a major transportation 

challenge. (Shoup 2006) concludes that 30% of city road traffic is searching for 

available parking spots. Putting this in aggregate, parking space search in the city 

of Chicago resulted in 63 million vehicle-miles-traveled, 3.1 million gallons of 

gasoline consumption, and 48,000 tons of CO2 emissions per year (Ayala et al. 

2011). Fortunately, with the advancement of sensor based detection technologies 

it is possible to detect the availability of certain parking spots in some cases (e.g. 

SFPark project in San Francisco). But the implementation and maintenance cost of 

such systems are expensive. Solutions for fully automated indoor and outdoor car 

parking has been discussed in (Lan and Shih 2014; Alasaadi et al. 2013; Liu et al. 

2012).  

Perfect Park mobile application discussed in this dissertation is capable of 

providing turn by turn route guidance to the users while they approach their 

destination. The application solves the problem of unwanted cruising for parking 
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in urban areas. The Perfect Park software is designed focusing on two key aspects: 

(1) Minimum user intervention (2) Minimum smartphone battery usage during the 

trip. Traditional smartphone navigation applications are less useful when it comes 

to navigating in parking lots since many outdoor and indoor parking areas and 

approach roads are unmapped. High power consumption of GPS sensors in 

smartphone is a disadvantage for most smartphone navigation applications. The 

proposed system solves these problems by benefiting from the capabilities of 

Android platform to localize the vehicles using low power localization techniques 

and it smooth integration with OpenStreetMap APIs.  

6.2. System Architecture 

The Perfect Park parking guidance system has two modules – the Android client 

module and a web server module that performs computations and stores 

information on a database server. The client navigation system is an 

OpenStreetMap (OSM) based application that runs on Android platform. The 

Android client application is carefully designed to reduce the overall power 

consumption. The parking related information is stored in the server so that it can 

be accessed real time by the Android client application.  
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Figure 10: Android Client Subsystem 

 

6.2.1. Database Server 

The Perfect Park relies on the data collected by UPDetector application (Ma, 

Wolfson, and Xu 2014). Perfect Park tracks the parking and deparking activities 

detected by the UPDetector background process and send it to the database server. 

The database server consists of several tables that stores the real time parking 

status and the historic information. The techniques used to compute the parking 

availability at street level is discussed in (Xu et al. 2013).  

A Jetty web server is implemented using Spark web framework and RESTful API 

services is used to establish client – server communication. The webserver is 

provided with SQL interfaces to push and retrieve real time and historic data from 

a MYSQL database server when required. The street blocks with parking 

availability, parking restrictions, real time and historic parking information are 

stored in the database server.  
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6.2.2. Android Client 

The smartphone navigation application is designed to utilize low energy 

techniques such as Wi-Fi Localization and Geofencing. The system is most useful 

in the areas where the GNSS satellite visibility is poor (in cities due to urban 

canyon effect, indoor structures etc.) and the GPS system often fail to resolve 

position coordinates precisely. The application depend on hybrid localization 

technique for high accuracy and low power consumption. Hybrid positioning uses 

a combination of several positioning technologies such as assisted GPS (A-GPS), 

Wi-Fi positioning etc. for localization. The location monitoring is set to run as a 

background service and GPS is used only for navigation purpose once the user is 

closer to his destination thereby reducing the smartphone battery consumption 

which is a very critical for GPS based apps. This also minimizes the user 

intervention while driving. Once the destination is set, the application exits and 

will automatically starts once the user crosses the geofence. A geofence is a virtual 

barrier that can trigger events when the client enters or exits the virtual fence. In 

case the access of GPS is restricted, Wi-Fi localization is predominantly used for 

localization. The application is also capable of providing turn by turn instructions 

with voice to the user to navigate within the parking space. 

Android powered by Google location Services are capable of providing a powerful 

high level frame work that promises automatic handling of location providers 

such as assisted GPS and Wi-Fi localization with minimum power usage (“Google 

and Open Handset Alliance N.d. Android API Guide.,” n.d.). This application 

primarily make use of Android’s Fused Location API and Geofencing API to 

provide a low power navigation solution.  

The client subsystem diagram is presented in Figure 4.  
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For displaying interactive map, Perfect Park application uses OpenStreetMap API. 

The user can select his destination interactively using the map user interface. Once 

the destination is selected, the mobile client application queries the webserver to 

gather information on the nearest parking blocks. The server acknowledges by 

sending the parking space recommendations near the desired destination. The 

client application logic then automatically creates a Geofence of half mile radius 

around the selected parking location and exits the Perfect Park application. Once 

the user crosses the Geofence, a notification is generated and it internally triggers 

the Perfect Park application. At this point, the mode of operation will be switched 

to high accuracy mode while navigating inside the Geofence i.e. closer to the 

recommended parking space. Open Source Routing Machine (OSRM) computes 

the navigation route from the current user location to the recommended parking 

space.  

6.2.3. Digital Map and Localization 

 

The Perfect Park supports street parking, indoor parking structures with sufficient 

Wi-Fi access points (for hybrid positioning in case GPS is unavailable) and open 

parking spaces. Unmapped parking spaces need to be mapped manually and 

uploaded using OpenStreetMap editor. For indoor parking structure, floor plan 

blue prints can be uploaded using JOSM OpenStreetMap editor. The floor plans 

will be available on the OSM Map server after moderation. The street parking 

information is collected from various 3rd party sources and stored in the database 

server. Inside the geofence, the GPS values are read every 5 millisecond. 
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Figure 11: Perfect Park Screen Shots: Destination selection 
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Figure 12: Perfect Park Screen Shots: Route Display 

 

 

 

 

Figure 13: Perfect Park Screen Shots: Turn by turn instructions 
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Figure 14: Subsystem Decomposition 
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6.3. Experiment and Observation 

The experiment was conducted near University of Illinois at Chicago campus 

open parking lot at 1100 W Harrison Street. Since this parking lot was 

unmapped on OpenStreetMap, the boundaries, road segments, entrances, 

exits and point of interests were marked manually using OpenStreetMap 

Editor Software. Bing satellite image was used to match the ground features 

on the map data. The OpenStreetMap data is then parsed and stored in the 

webserver to reflect the availability information.  

 

 

Figure 15: Parking lot mapping 

 

Perfect Park application was tested in driving and walking mode multiple 

times. To evaluate the power efficiency of the designed application, a replica 

of the software was created that depend GPS for localization and navigation. 

The application power handling was approximately computed using various 

3rd party power monitoring tools. A power reduction up to 40% was reported 

for the Perfect Park application compared to the replicated software version.  
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Chapter 7  

Conclusion and Future Work 

 

This chapter presents the conclusion and future work of the thesis. 

7.1. Conclusion 

The RSVP scheme proposed in this dissertation facilitates ride-sharing at 

transportation hubs. The scheme combines in a unique way three existing 

mechanisms: virtual queues, slugging, and multiple-drop-off ridesharing. The 

scheme produces pools of trips, which are then consolidated into ride-sharing 

plans by the MatchMaking (MM) system.  Technically, the heart and novelty 

of the MM system is a combination of two components: (1) Euclidean filtering 

that uses Euclidean geometry to reduce the complexity of finding an optimal 

ride-sharing plan, and (2) the PST algorithm which uses a middle ground 

between single-source-shortest-path and all-pairs-shortest-path.  

The RSVP scheme is then evaluated on 100 random pools formed from 1.8 

Million trips that originated from LaGuardia Airport (LGA) in NYC. The results 

indicate that:  

(1) The trip-savings enabled by RSVP-ride-sharing are significant, e.g., 

about 25% of the trips are saved if about 75% of the passengers are 

willing to ride-share. This is true for a modest delay of 10% of the trip 

time, and a maximum walk of 5 minutes. 

 

(2) Walking is valuable in combination with multiple-drop-off ride-sharing. 

For example, if passengers allow a 10-minutes walk, then the trips-

reduction by ride-sharing increases from about 10% to about 30%. 
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Considering that at airports passengers often walk for 10 minutes from 

the gate to the curb, this assumption seems reasonable. 

 

(3) The computation time for a 6 minutes pool of trips is less than 1 

minute. 

 

(4) Euclidean filtering is effective, reducing the computation time by 30%-

50%.  

In Part II of this thesis the design, implementation and evaluation of Perfect 

Park, a smartphone based low power vehicle parking navigation and guidance 

application is presented. The application utilizes hybrid positioning and 

geofencing techniques to provide a low power turn by turn navigation solution 

with voice guidance to the users. The overall system design focus on two 

aspects: (1) Minimum user intervention to start the parking guidance while 

the user is driving (2) Minimum smartphone battery usage during the trip. 

The application has the capability to auto trigger itself when the user 

approaches his destination and the evaluation indicates that the Perfect Park 

behaves the same as traditional navigation applications in terms of quality 

and usability, while achieving around 40% energy savings.  

7.2. Future Work 

Much remains to be done in terms of future work for RSVP ridesharing 

scheme. First, the optimization criteria needs to be refined to travel-time per 

vehicle rather than number of trips. Second, the sharing of more than two 

trips needs to be investigated, although (Santi et al. 2014) determined that 

the additional savings from allowing the sharing of 3 trips is marginal. Third, 

the results need to be compared with other hubs. Finally, the RSVP schemes 

can be reversed to traveling to the hub, rather than from it. In other words, 

instead of having a single source, the passengers would have a single 
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destination, the hub. And they would walk to pick-up locations, rather than 

from drop-off locations. 

On the Perfect Park client side, the next step is to introduce design and 

algorithms for navigation in indoor parking structures. Though hybrid 

positioning is capable of navigating indoors, its performance is restricted by 

the availability of Wi-Fi access points. On the web server side, parking 

recommendation algorithms such as (Guo and Wolfson 2016) can be 

incorporated to improve resource search experience.  
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Appendix A 

 

A.1 Perfect Park class diagram 

 

 

Figure 16: Perfect Park class diagram 
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A.2 Perfect Park sequence diagram 

 

Figure 17: Perfect Park sequence diagram 
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