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SUMMARY

This dissertation evaluates the performance of multiple imputation method in filling in missing

microbial data, and utilizes the chemical mass balance model and the exploratory factor analysis

for the identification of sources of fecal contamination.

The multiple imputation method was applied on surface water measurements collected on the

Chicago River from 2007 to 2009. The method was used to fill in missing values and the original

dataset was compared to the imputed dataset. Descriptive statistics show that the imputed

dataset has a similar distribution as the original dataset. In order to further evaluate the

performance of the imputation, a portion of the original dataset was deleted, and the missing

values were filled in using multiple imputation method. Results show that the imputed dataset

can provide inferential parameter estimates, and that multiple imputation can fill in missing

microbial data without distorting the distribution of the original dataset.

The chemical mass balance model and exploratory factor analysis were then utilized to identify

sources of fecal contamination in the river system. Sources identified included physicochemical

and densities of other microbes. Results from both methods suggested that microbial sources

may vary at different locations on the river system. Identified sources were then used in pre-

dicting of the risk of Acute Gastrointestinal (AGI) illness among water users. However, no

association between pollutant sources and health risk was identified.

xix



CHAPTER 1

INTRODUCTION

Recreational water quality continues to be an important issue for the public’s health. Poorly

monitored water systems prevent timely warning of high levels of fecal contamination to recre-

ators, and therefore, pose a threat to the health of water users. Health risks associated with

recreating on water systems with high levels of fecal contamination include: gastrointestinal

illnesses (GI illness), such as vomiting and diarrhea; respiratory symptoms including cough and

sore throat; eye and ear infection; and skin rash(1). Shuval(2) estimated that coastal waters

polluted by wastewater generate approximately 120 million episodes of GI illness and 50 million

acute respiratory diseases globally annually, costing $12 billion per year.

It is essential to understand water quality pollutant sources in order to develop new policies and

management strategies to protect water quality and human health. Currently, fecal indicator

bacteria (FIB) are used to indicate the water quality. Fecal indicator bacteria are bacteria, such

as E. coli, enterococci, male-specific coliphages, and somatic coliphages, which don’t frequently

cause human illness, but are present in high density in fecal material. The guidelines were

established by the U.S. Environmental Protection Agency (U.S. EPA) using epidemiological

studies assessing the risk of GI illness among swimmers exposed to fecal contaminated waters(3),

where level of fecal contamination was indicated by the density of FIB. However, FIB inputs

to water are diverse, including sewage spills, urban runoff, pet/livestock waste, waste from

1
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wildlife(4; 5), and environmental (soil, sediment, or water) reservoirs(6). This means that the

presence of FIB does not exclusively indicate the presence of human waste.

Domestic discharge and urban runoff have been identified as two major sources of water pol-

lution in the US(7), upgrades in sanitation infrastructure has reduced the release of domestic

waste water into the environment. As a result, urban runoff is now considered to be the predom-

inant source of water pollution. Urban runoff itself is a diverse source, and contains pollutants

from storm waters, households, and even untreated raw human sewage with high levels of toxic

pollutants, and infectious bacteria and pathogens(8; 9).

Bacteria, such as E. coli and enterococci, as well as coliphage viruses have been used to identify

fecal contamination in water(10). Specifically, the 1986 U.S. EPA standards for recreational

water quality use E. coli and enterococci as single sample concentration and 30 day geometric

means to define acceptable water quality. Although these indicators are generally not the

etiology of recreational waterborne illness, their density in recreational waters have been found

to be indicators of health risk(11; 12; 13). Wade et al.(14) conducted a meta-analysis to

evaluate the risks of GI illness among swimmers in fresh and marine water with point source

(PS) pollution. The authors reviewed 27 studies and concluded the use of enterococci and E.

coli in marine and fresh water respectively as the indicators of GI illness. In addition to the

association between microbial indicators and health risk, sampling and analytical methods are

another consideration because the analyses of certain bacterial levels in water require less time

and money.
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Water quality standard levels developed by U.S. EPA are based on relationship between health

risks and water quality observed in epidemiological studies. This type of studies rely on mul-

tivariable models which do not perform well when there is a large portion of missing values.

However, majority of these studies often run into missing data problem due to personnel or

laboratory factors, or participant dropoff. Gap filling techniques using imputation have been

tested in psychological and environmental fields. However, no one has applied imputation

method on microbial water quality data sets. Since the presence of missing values is an issue in

the water quality field, it is important to evaluate if imputation can also fill in unbiased values

for microbial missing data.

Bacteria concentration criteria used to monitor water quality have been set to protect swim-

mers. However, there are people conducting other recreational activities. Based on the amount

of contact with water, water recreation can be classified as “full contact” and “limited contact”.

Full contact water recreation includes activities such as swimming, diving, or jet skiing, while

limited contact water recreation includes canoeing, kayaking, or fishing. Individuals performing

activities that fall into full contact recreation face higher risk of developing waterborne diseases

due to higher amount of water exposure(15; 16; 17; 18). However, these articles found asso-

ciations in water bodies with PS of sewage treatment plants. The associations between water

bodies with only non-point source (NPS) pollution and health risks remain unknown.

Health risks associated with limited contact water activities have not been well studied or un-

derstood, even though, over 17.8 million Americans participated in activities such as kayaking,

canoeing, and rafting in 2008(19). In addition, the number of boats registered every year has
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been increasing from 8 million in 1980 to more than 12 million in 2009(20). With a growing

percentage of US population who regularly conduct limited contact water activities, it is impor-

tant to understand the relationship between limited contact water recreation and waterborne

diseases.

The Chicago Area Waterway Systems (CAWS) was the target waterway for this study. To

protect Lake Michigan as a drinking water source, in 1900 the Metropolitan Water Reclamation

District of Greater Chicago (MWRDGC) redirected the Chicago River away from Lake Michigan

by building a number of canals and locks. Today, this canal system is referred to as the

CAWS(21). The CAWS consists of the two main branches of the Chicago River (North Branch

and South Branch), as well as the North Shore Channel, the Cal-Sag Channel, and the Chicago

Sanitary and Ship Canal(22) (Figure 1). According to MWRDGC, the waterways receive over

300 million gallons per day of filtered but not disinfected wastewater that has been treated

using aerobic digestion. The discharge has bacterial counts between 700 and 340,000 fecal

coliforms per 100 mL. It is estimated that wastewater effluent accounts for 70% of the total

flow in the CAWS, and during dry weather, it accounts for over 90% of the flow. The system

was never intended to be used for recreation. However, people now consider the CAWS a source

of recreational opportunities. The Illinois Pollution Control Board (IPCB) designating most

CAWS segments for limited contact recreational use. The number of people using the CAWS

has been increasing over the years(23). Overall, there are over 150 access points along the

system and in the summer 2008, two canoe liveries each reported over 20,000 recreators. With
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the increasing number of water recreators, it is important to understand whether water quality

in the CAWS adversely impacts the health of recreators.

This study is part of the Chicago Health, Environmental Exposure, and Recreation Study

(CHEERS), funded by MWRDGC. CHEERS is a cohort study designed to find out what the

health risks are of using the Chicago River system for recreation. The study focused on the

health risks of limited contact water activities such as canoeing, fishing, kayaking, rowing, and

motor boating on the CAWS. During the study period, water samples were collected in CAWS

to analyze the concentrations of FIB and pathogens. Water recreators in CAWS were recruited

as participants for the study. Runners, walkers, and bicyclists were also recruited as the control

group. The goal of CHEERS is to use logistic regression analysis to identify the association

between water quality and health risks among water users. In the CHEERS, we encountered

similar problem of a non-neglectable amount of missing values. In addition, the association

between FIB concentrations and health risks remained unexplained.

This study explored the use of three analytical methods to improve the utility of microbial water

quality data in predicting health risk among water users. The three methods were multiple

imputation (MI), chemical mass balance (CMB) model, and exploratory factor analysis (EFA).

The linkage between microbial water quality data and health risk has been limited due to two

major issues. First, missing values of microbial data resulted in a limited amount of data that

could be linked to health outcomes. This issue was addressed by evaluating if MI method

can be applied to microbial data and provide unbiased results. Secondly, the inconsistent

performance of indicator bacteria in indicating the presence and concentration of pathogens
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Figure 1. Map of Chicago Area Water Systems
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also made it difficult to address water quality and health risk effectively. To address this

issues, two different approaches, source apportionment and factor analysis, were utilized for

identification of pollutant sources. The goal was to examine if the two methods can signal

sources that are posing human health risk.

Based on the two major issues of linking microbial water quality data to health risk, the

research hypotheses were developed accordingly. The hypotheses are discussed in the following

section.

1.1 Research Hypotheses

The questions this study aimed to answer by exploring the three analytical techniques are:

1.1.1 Hypothesis A

Can multiple imputation be used to generate unbiased values for missing microbial data while

maintaining overall variance? The underlying hypotheses are:

1.1.1.1 Assumption 1

The multiple imputation method can fill in missing values for microbial data while preserving

the structure of the original dataset and maintaining the variability as it is in the observed

data.

1.1.1.2 Assumption 2

The imputed water quality dataset can provide inferential statistic estimates as the original

dataset using a logistic regression model to regress water user health outcomes.
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1.1.2 Hypothesis B

How well can a receptor model on urban waterbodies be applied to identify sources of contam-

ination? The underlying hypotheses are:

1.1.2.1 Assumption 1

Microbial number balance approach can reach the goal of source apportionment using a chemical

mass balance model.

1.1.2.2 Assumption 2

Source profiles developed in the study using observed water quality data can be inferential of

pollutant sources in waterbodies.

1.1.2.3 Assumption 3

A logistic regression model using sources as covariates can predict acute gastrointestinal illness

(AGI) rates among water users: AGI = f(source1, source2, ...)

1.1.3 Hypothesis C

How well can a statistical approach, exploratory factor analysis (EFA), identify microbial pol-

lution sources? The underlying hypotheses are:

1.1.3.1 Assumption 1

Exploratory factor analysis can provide inference of factors that have impacts on water quality

at different pollution levels.
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1.1.3.2 Assumption 2

A logistic regression model using factors as covariates can predict AGI rates among water users

and reduce multicollinearity problems: AGI = f(factor1, factor2, ...)

The approaches used to test the hypotheses are discussed in each corresponding chapter.



CHAPTER 2

DATA COLLECTION

2.1 Water Quality Measurements

2.1.1 Sampling Strategy

Data used in the analysis portion of the study was taken from water sample and survey data

that were collected along the CAWS during three summers between 2007 and 2009. Water

samples were collected at the site of recreation or entry onto a body of water while participant

recruitment into the survey portion of the study was ongoing. Water samples collected every two

hours during participant recruitment were analyzed for Indicator microbes (E. coli, enterococci,

male-specific coliphages and somatic coliphages). As a result, water quality was measured

within two hours of recreation of each study participant. The pathogenic organisms (Giardia,

Cryptosporidium) are generally at low levels and seldom detected, therefore the samples were

only collected every six hours during participant recruitment.

2.1.2 Sampling Methods

Samples were collected following the U.S. EPA protocols. Grab sampling was used for indicators

and large-volume sampling was used for pathogens.

Grab samples were collected using a telescopic pole with a bottle attached at front facing

upstream to collect water. During the field seasons in 2007 and 2008, grab samples were

10
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TABLE I

METHODS USED TO MEASURE INDICATOR AND PATHOGEN ORGANISMS

Indicators and Pathogens Method
E. coli U.S. EPA Method 1603

Enterococci U.S. EPA MEthod 1600
Coliphages (male-specific, somatic) U.S. EPA Method 1602

Giardia, Cryptosporidium CFC (U.S. EPA Method 1623)

collected in individual containers for each indicator method. In 2009, one 2-liter grab sample

was collected and then distributed to individual containers for each indicator method.

Large-volume samples were collected by pumping 10-liter of water into containers and filtered

in the University of Illinois at Chicago laboratory before being shipped to the laboratory for

analysis.

All samples were collected by trained water sampling specialists and samples were placed into

coolers with ice and transported to various laboratories for analysis. U.S. EPA methods utilized

in measuring water quality for this study are listed in Table I. While collecting water quality

samples, samplers also recorded water chemistry data, such as dissolved oxygen (DO), pH,

conductivity, and turbidity. The instruments used to measure water chemistry data are listed

in Table II.
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TABLE II

INSTRUMENTS USED FOR WATER CHEMISTRY MEASUREMENTS

Water Property Instrument
pH Accumet AP84 Portable Waterproof pH/DO Meter
DO

Conductivity Oakton CON 6 Hand-Held Conductivity/TDS Meter
Turbidity HF Scientific MicroTPW Field Portable Turbidimeters, model 20000

2.1.3 Sampling Locations

The sampling sites for the North Branch System and Cal-Sag Channel are presented in Figure 2

and Figure 3 respectively. The sampling locations in North Branch System included Bridge

Street (BR), Skokie Rowing Center (SK), Lincoln Avenue (LA), River Park (RP), Clark Park

(CP), and North Avenue (NAM). Bridge Street and Skokie Rowing Center are located 4.2 and

0.7 km upstream of the North Side water reclamation plant (WRP). Lincoln Avenue, River

Park, Clark Park, and North Avenue were located 3.2, 5.8, 9.1, and 14.6 km downstream of

the WRP. Skokie Rowing Center was geographically upstream of the WRP, but considered a

downstream location due to the dispersion of effluent from the North Side WRP in the vicinity

of this location. Therefore, in the data analysis portion, SK was considered as a downstream

site. The sampling locations in the Cal-Sag Channel included Beaubien Woods (BA), Riverdale

Marina (RM), Alsip (AL), and Worth (WO). Beaubien Woods was located 1.3 km upstream

of the Calumet water reclamation plant. Riverdale Marina, Alsip, and Worth were located 4.8,

14.6, and 18.8 km downstream of the Calumet WRP, respectively.
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Figure 2. CAWS North Branch System sampling sites
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Figure 3. CAWS Cal-Sag Channel sampling sites
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The South Branch sampling locations included Ping Tom (PT), Lawrence Fisheries (LAW),

Canal Origins (CO), and Wester Avenue (WE). All of the South Branch sampling sites are

located downstream of the North Side WRP, but due to the long distance from the plant, they

are separate from the North Brach group. The rest of sampling sites in CAWS are Willow

Springs (WS) and Main Stem (MS). Willow Springs, downstream of the Stickney WRP, is

located on the Chicago Sanitary and Shipping Canal (CSSC). Main Stem is located downstream

of the Chicago Locks and Controlling Works on Lake Michigan.

2.1.4 Data Quality

During the study, external quality control (QC) was performed using blank samples, split

samples, and spiked samples. Split samples were used to evaluate precision; spike samples were

used to assess accuracy.

Autoclaved deionized water was used as the blank media. Results of blank samples are showed

in Table III. For E. coli, male-specific coliphages, and somatic coliphages, only two samples of

each microbe had non-zero counts. There were four enterococci blank samples had non-zero

counts.

Splits samples were collected from the water using one large container and separated into two

sample bottles. Spearman correlation coefficients in split samples are showed in Table IV.

The split analysis shows high level of precision among all microbes except Cryptosporidium

(ρ = 0.57). No specific pattern of disagreement between splits of Cryptosporidium was ob-

served.
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TABLE III

FIELD BLANK RESULTS

Indicator Bacteria (Method Blanks) Coliphages (Method Blanks)
Quantile E. coli (n=249) Enterococci (n=249) Male specific (n=242) Somatic (n=242)
100% Max 4000 547 13576 50

99% 220 200 52 20
95% 0 13 0 0
90% 0 3 0 0

75% Q3 0 0 0 0
50% Median 0 0 0 0
25% Q1 0 0 0 0
10% 0 0 0 0
5% 0 0 0 0
1% 0 0 0 0
0% 0 0 0 0

TABLE IV

SPEARMAN CORRELATION COEFFICIENTS BETWEEN SPLIT SAMPLES

Indicator Bacteria Coliphages Protozoan Pathogens
E. coli Enterococci Male specific Somatic Giardia Crypto

No. of pairs 183 184 184 184 14 14
Correlation coefficients 0.90 0.88 0.90 0.92 0.96 0.57

P-value <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.0332
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TABLE V

RECOVERIES FOR SPIKED SAMPLES

Indicator Bacteria Coliphages Protozoan Pathogens
E. coli Enterococci Male specific Somatic Giardia Crypto

Count 118 130 115 115 34 34
Average 110% 68% 94% 61% 22% 21%

EPA criteria 17-117% 63-110% Detect to 120% 48-291% 15-118% 13-111%

Spiking involved the subdivision of a water sample into two samples. A known concentration of

microbes was added into the first sample and the second sample was not manipulated. Recovery

was then calculated by dividing the microbe concentration detected in the spiked sample, by the

sum of the expected concentration added to the spiked sample and the microbe concentration

detected in the non-spiked sample. The calculated recoveries, which all fell within U.S. EPA

criteria, are showed in Table V.

During the period between 9/2008-5/2009 poor recovery results of E. coli and enterococci were

identified. Although the average recovery fell within the range recommended by the U.S. EPA

(17%-117% for E. coli, and 63%-110% for enterococci), a significant number of recoveries landed

outside the recommended range. Among all the samples collected 2007 - 2009, 7% of both E. coli

and enterococci samples, had undetectable levels of microbes. This result is surprising since

over 50% of these samples were collected downstream of the WRP. The WRP continuously

releases these microbes, and microbial concentrations are consistently in the range of 1,000

CFU/100mL. Therefore, these 7% samples are interpreted to indicate laboratory error.
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A method was developed to determine questionable samples. The method utilized involved

taking a running average of E. coli and enterococci recoveries for three consecutive sampling

days. If the three-day running average of recoveries fell outside the U.S. EPA recommended

range, all samples for that particular microbe on the middle day of the three-day period were

excluded from the dataset. After eliminating questionable data points, the final dataset had

302 (27%) and 425 (38%) missing values of E. coli and enterococci respectively. It limited the

number of available data points in modeling water quality. In addition, a large portion of health

data could not match to water quality data due to the missingness, impacting the statistical

power to detect associations between water quality and health risk among water users.

2.2 Meteorology Data

Precipitation data was obtained from the Illinois State Water Survey(24) from multiple mon-

itoring stations. Each location was matched to the nearest precipitation gauges. Rain gauge

data was recorded hourly everyday with the amount (inch) of precipitation. Before linking the

precipitation data to the water quality data, the information was converted to the magnitude

and duration of last rain, and also the duration between last rain and sampling time.

Data of combined sewage overflows (CSOs) was obtained from quarterly reports provided by the

MWRDGC to the Illinois EPA. Combined sewage overflows data includes the magnitude and

duration of last CSO event, and also the duration between the last event and the sampling time.

Each CSO event in the North Branch System and Cal-Sag Channel was defined by release from

any outfall with either branch. Two events were distinguished by 1 hour without CSO.
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2.3 Health Data

Water users health history and water activity were collected at the sampling sites. Using inter-

view surveys conducted, participants were then followed for 21 days through 3 phone interviews

to investigate the development of AGI and other illnesses, such as respiratory symptoms and

skin rash.

The analysis presented here uses health outcomes data collected via phone interviews in the 21

days subsequent to recreation. However, a large portion of data used is based on information

obtained on the day of recreation. Specifically, demography and participants’ health history

were obtained prior to recreation. Immediately after recreation, information about the type of

water activities, how wet did the participant get during the course of activity, and the water

sport concern one had were obtained.

For water sport concern, participants were asked to rank the health risk of conducting water

activities on Chicago River on a scale of 0 to 10.

After recreation, participants were also asked to report water exposure by body part (face/head,

torso, hands/arms, and feet/legs), on a scale of 0 to 5 from “not wet at all” to “submerge”.

Each body part was weighted differently assuming the risk of getting sick varies by where the

participant has water exposure. A weighted average of these response was then used as the wet

score of each participant.

A summary of participants responses is showed in Table VI.
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TABLE VI

SURVEY DATA RESULTS

Variable Mean or Percentage
Age 35

Age 10 and lower 7.9%
Age 65 and over 2.89%
Gender: female 49%
Gender: male 51%
Race: black 7.69%

Race: hispanic 4.87%
Race: other 8.22%
Race: white 79.22%

Motor boating 16.7%
Canoeing 22.3%
Fishing 10.7%
Kayaking 34.2%

Rowing and other limited contact 16.1%
Pre-existing GI illness 4.11%

Previously exposed to GI illness 3.04%
Wet scores 3.83

Water sport concern 4.70
GI illness 4.42%



CHAPTER 3

MULTIPLE IMPUTATION OF MISSING MICROBIAL WATER

QUALITY DATA

3.1 Literature Review

Missing data is a frequently encountered problem in environmental health research due to

the ubiquity of long term field sampling campaigns. Long term field sampling campaigns are

vulnerable to missing data as personnel, weather and equipment issues disrupting sampling.

Another cause of missing values is censored data, which are values under minimum detec-

tion limit reported as non-detect (ND). The presence of missing data can effect the ability to

perform modeling and statistical analysis, and it can affect the observation of an annual or

seasonal patterns. In general, if the proportion of missing values is small, listwise deletion, e.g.,

the omission of the entire observation when any of the variables are missing, is a reasonable

approach. However, as the proportion of missing data increases, deletion can introduce bias

and inaccuracies in further analyses, especially if the pattern of missing data is not completely

random. Listwise deletion also decreases the sample size, which may reduce the ability of the

study to detect a true association. Consequently, proper handling of missing data is important

in order to achieve the specified research goals.

21
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3.1.1 Missing Mechanisms

Rubin(25) categorized missing patterns into three types, missing at random (MAR), missing

completely at random (MCAR), and missing not at random (MNAR) based on the different

mechanisms that caused missing data. The mechanisms describe the relationship between

missing data and other measured variables in a dataset. Missing at random indicates that

missingness of the variable is not related to its value, but to the value of some other variable.

In other words, the probability that variable, Y, is missing depends on another observed variable,

X, but not on variable Y itself. Missing completely at random describes the pattern that the

missing values are not related to any other observed data. This means the distribution of

the variable with missing values and the relationships between variables are preserved in the

dataset, and the missing data is a random subset of the original dataset (26). Missing not

at random means the probability of missing data being associated with the values that are

missing.

If the data are MCAR or MAR, a gap filling technique, such as mean replacement or multiple

imputation, can be applied because the missing data is a random subset of the original data.

However, if the data are NMAR, the missing mechanism cannot be simply ignored. There are

two methods used for NMAR data to model missing mechanism, selection models and pattern

mixture (27; 28). In a selection model, one simultaneously models the variable with missing

values and the probability of the values being missing. In a pattern mixture approach, one

performs multiple imputation with different assumptions about the missing mechanism. This
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allows exploration of how sensitive the results are to the assumption about missing mecha-

nism.

There is no specific method to determine the missing mechanism in a dataset. Instead, the

data is explored to determine what assumptions about the missing mechanism are plausible

and appropriate. It is more important to determine if the data are MNAR than if the data are

MCAR or MAR because techniques of the treatment of MNAR data are unique from these for

MCAR or MAR.

The two major causes of missing values are (1) lack of sample collection, and (2) censored data.

In both cases, the missing patterns are seldom MCAR. In the first case, the missing values

could be systematically related to a certain location, instrument, or personnel. In the later

case, the missing values are clustered at low values. These missing mechanisms can, however,

be classified as MAR as long as variables causing the missingness are included in the data

set.

Collins et al.(29) tested many realistic cases and concluded that an incorrect assumption of

MAR would only cause slight effect on parameter estimates and standard errors. When a

dataset needs a treatment of missing data and clearly the missing mechanism is not MNAR, a

gap filling method should be considered to fill in missing values.

3.1.2 Traditional Gap-Filling Methods

Arithmetic mean imputation (AMI) is one of many single imputation methods. It replaces

missing values with the arithmetic mean of the non-missing values. The advantage of AMI is
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the generation of unbiased parameter estimates if the data is MCAR because the missing values

are being replaced by the mean which lands on the regression line. However, the limitation

of AMI is that it changes the distribution of the original data by narrowing the variance (30).

Similarly, in median replacement, missing values are replaced by the median. This method

shares the same limitation as AMI method.

In contrast with AMI or median replacement, regression imputation regresses the variable

with missing values using other variables in the dataset and improves some of the problems in

reducing the variance AMI and median replacement methods encounter (31). However, since

all the imputed values fall on the regression line, the variance is still not as large as the original

dataset. Stochastic regression imputation (SRI) additionally addresses variance distortion by

adding a randomly sampled residual to each imputed value. SRI is thus considered to be one

of the best traditional missing-data techniques.

3.1.3 Modern Gap-Filling Methods

Improved computer technology has allowed researchers to apply computational methods to

these problems. Modern missing-data techniques include direct maximum likelihood (DML)

and multiple imputation (MI), both of which use a likelihood approach to address missing

values and maintain the distribution of the original data set (28).

DML does not physically impute values to fill in missing data. Instead, it estimates model

parameters and standard deviations directly using observed data. The DML procedure uses a

particular set of parameters to estimate the likelihood that a missing value will occur. It runs
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a series of iterations by replacing different values for the unknown parameters and converges

to a single set of parameters with the highest probability of matching the observed data. The

algorithm can be explained by the following equation (30):

logLi = Ki −
1

2
log |Σi|−

1

2
(xi − µi)

�Σ−1
i (xi − µi) (3.1)

Where, xi is a vector of observed data of all available variables in observation i, µi is the vector

of mean estimates of the available variables in i, Σi is the estimated covariance matrix, and

Ki is a constant. Based on the missing pattern, the size and contents in the equation change

accordingly for each observation i. For each observation i, the log likelihood is calculated, and

the parameter estimates are determined by maximizing the log likelihood. Since DML does not

replace the missing values, one cannot confirm that the fitted coefficients reflect an imputed

data set, which has the same distribution as the set of measured values.

Multiple imputation is a simulation-based method that creates m data sets with replaced miss-

ing values. Multiple imputation enables the variation introduced by imputation to be compared

across the m imputed data sets (27).

There are two major imputation algorithms, [1] propensity score with the approximate Bayesian

bootstrapping technique and [2] regression model with data augmentation (DA) algorithm. In

the propensity score method, a logistic regression is used in which the dependent variable is

wether or not an observation is missing. The estimated logistic regression model is then used to

calculate the probability of the observation being missing. According to the probability of the
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observation being missing, a propensity score is generated for each missing value in each variable.

The observations are then broken into groups based on the propensity scores and an approximate

Bayesian bootstrap imputation is applied. The DA algorithm generates a regression equation

from measured data set. The generated regression equation along with random noise are then

used to fill in missing values. In the next step, it simulates a sequence of random draws

of each parameter from the posterior distribution and then concludes another imputed data

set. Allison (32) compared the two imputation algorithms, the propensity score and the DA

algorithm, and concluded that when MAR was violated, the propensity score method generated

more biased parameter estimates. In addition, propensity score method should be only applied

to data sets with monotone missing patterns. A data set has a monotone missing pattern if

an ithobservationhasamissingvalueinvariableX2 then the ithobservationofvariableXj , j > 2,

are missing as well. If a data set has a non-monotone missing pattern, DA approach should

be utilized (33). In the current study, the missing data of indicator microbes does not follow

a monotone pattern. Consequently, the DA method was preferred over the propensity score

approach.

The DA algorithm was proposed by Schafer (34) to include cyclic repletion of an imputation

step (I-step) and a posterior step (P-step). Initially, the DA uses the Expectation Maximization

(EM) algorithm and ML estimation to generate a covariance matrix. During the I-step, missing

values are filled in with imputed numbers based on a multivariate regression equation. To avoid

the imputed values falling on the regression surface, random noise is added to each imputed

value by randomly selecting a residual from a normal distribution. In the end of the I-step,
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a new covariance matrix and mean vector are generated using the complete imputed dataset.

In the P-step, random noise is added to the regression equation previously used to generate

the imputed data, this prevents MI from generating the same sets of missing values. During

P-step, new elements of a covariance matrix and mean vector are randomly selected from a

posterior distribution based on the imputed data in I-step. The newly constructed estimates of

the covariance matrix and mean vector are used to predict a new set of imputed values for the

next, I-step. The iteration between I-step and P-step is repeated a large number of times until

the regression model converges, at which point the “final” set of imputed data is generated.

The iteration is repeated until m sets of imputation data is generated (usually m=5 - 10).

In addition to Schafer’s (34) DA algorithms, Richman et al. (35) proposed machine learning

algorithms for use with MI methods. Support vector machines (SVM) and artificial neural

networks (ANN) were proposed to fill in missing values following four steps of imputation:

1. Separate the original dataset into two datasets, one with no missing values (set 1), and

the second with missing values (set 2).

2. Begin the first iteration for each variable that has missing data in set 2 using the regression

equation constructed from set 1.

3. Begin the second iteration by merging set 1 with the imputed set and constructing the

regression equation using the merged set. Fill in missing values in set 2 by using the

newly constructed regression equation.

4. Repeat step 3.
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The SVM was developed by Vapnik (36). With a set of training rules {(xi, yi)}li=1 of l obser-

vations, the target is to construct a function for the dependent variable y, using the following

equation:

y = f(�x) = �w·�x+ b (3.2)

Where, �w represents the weight vector and b is bias. The formula of SVMs is explained in detail

by Vapnik(36). Artificial neural network is a network constructed with computational nodes of

one input layer, one or more hidden layers, and an output layer (37). Figure 4 shows a design

of an ANN with four inputs, two hidden layers, and an output layer. The first hidden layer

contains eight variables and the second layer contains four variables. The model theory and

construction of ANNs is explained by Haykin (37).



29

Figure 4. An artificial neural network design

3.1.4 Comparison Between Traditional and Modern Gap-Filling Methods

Multiple studies have compared MI to traditional methods including listwise deletion, mean

imputation, and median replacement using artificial data sets (30; 38; 31). All studies concluded

that MI constructs the closest variance to the original dataset and yields a better estimation of

the mean in comparison with traditional gap-filling methods.
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Richman et al. (35) compared results of using MI with machine learning algorithms (SVM and

ANN) to data deletion, mean replacement, simple linear regression, and multiple regression.

The methods were tested against a data set with 5%, 10%, and 20% of missing values. Overall,

SVM has the least errors in the mean and variance of the estimates when compare to traditional

missing-data methods. Machine learning algorithms yield the best parameter estimates in the

data set with the least amount of missing data. As the percentage of missing data increases,

the ANN algorithm performance, measured by the errors in the parameter estimates, decreases

and may reach performance levels similar to those obtained by traditional mean substitution

methods.

MI has been evaluated for treatment of left-censored data. Because non-detect data clusters at

the low range of values which imply a MNAR mechanism, it is questionable that MI is adequate

for gap-filling. However, Chen et al. (39) applied MI in a simulation study to a pesticide data

set to handle non-detect data and concluded that imputed and complete data sets can yield

consistent parameter estimates.

The goal of filling in missing values in this study is to provide inferential statistic estimates

from an incomplete dataset by preserving the structure of the original dataset and also ensuring

that uncertainty remains as it is in the data. All the studies found that modern missing-data

techniques can better achieve the goal than tradition methods. Therefore, modern imputation

techniques were applied to replace missing microbial indicator data in this study.
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3.1.5 Appropriate Variables for Gap-Filling Methods

A challenge in the use of the MI method is the identification of variables included in the

imputation model. Collins et al. (29) addressed this question by comparing parameter estimates

obtained using various amount of variables in imputation model and found that with the more

number of variables in the model, the imputation results improved.

A study conducted by Zhou et al. (38) also used MI on an dataset with artificially created

missing values and tested the parameter estimates obtained using imputed data sets. The

authors imputed four sets of data using different numbers of variables in the imputation model.

All the models were found to introduce bias into the dataset. However the model with the most

variables introduced the least amount of bias.

3.1.6 Treatments of Missing Data in Microbial Water Quality

In water quality research, data sets often contain missing values. Whitman et al. (40) found

that one of five years of E. coli data was missing, which limited observation of E. coli patterns in

that year. Whitman et al. (40) decided to omit the data from that year and only reported years

with available data. While Nevers et al. (41) chose to fill in missing values using the average of

the three previous and three subsequent values. The authors from both of the studies did not

report the percent of missing values in the data and the reasons that led to the treatment of

missing values. In the context of censored data, both Whitman et al. (40), and Boehm et al.

(42) in identifying pollutant sources encountered either values under or over detection limit. In
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both studies, the authors determined that the percent of censored data did not have significant

effect on statistical inferences. Therefore, omitted the censored data from any analyses.

Based on my review of the methodology, under certain circumstances researchers should consider

applying the MI method to solve major missing data problems. These circumstances are:

1. when the proportion of missing values reaches a level that is not ignorable;

2. when the assumption of MAR is plausible which includes cases that the factors causing

MNAR are also in the imputation model as variables;

3. and, the percent of missing values makes designed statistical analysis less reliable or

impossible;

Imputation technique should be limited to independent variables. Even though Schafer et

al. (43) stated that missing values on independent variables and missing values on dependent

variables are not fundamentally different, in order to avoid the concern of ”making up data,”

gap filling techniques should be only utilized to fill in missing values of independent variables, so

in such matters all the observed values of the dependent variable can be used in modeling.

3.2 Methods

Data collected for the CHEER study encountered missing data problems. The samples were

collected and analyzed. However, due to questionable laboratory performance, E. coli and ente-

rococci concentrations measured on selected dates were excluded, and considered as “missing”.

Out of the 1,123 water samples collected and analyzed, 302 sample (27%) results for E. coli and
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425 (38%) for enterococci were excluded due to quality control issues. The large proportion

of missing data limited the number of water users which could be matched to water quality

measurements, thereby reducing the sample size for the analysis of associations between health

outcomes and water quality.

A MI method, Schafer’s (34) DA algorithm was utilized to replace missing values of the two

independent variables, E. coli and enterococci, in this study. Missing patterns were examined

first to ensure the plausibility of MAR assumption. The goal was to identify a gap filling method

that can be applied to microbial water quality data and provide unbiased statistic inference if

missing values are not ignorable. Multiple imputation method is easy-to-use and there are a

number of freeware of commercial software packages supporting MI method, it is selected over

machine learning approach.

First, the imputed data set was compared to the original data set using descriptive statistics.

Next, a subset dataset was created excluding all the observations with a missing value of either

E. coli or enterococci. This complete data set was used to fit a logistic regression model to

predict GI illness. The obtained coefficient estimates were considered as the “true parameter

estimates”. I then calculated new probability of GI illness data using the true parameter values

and converted it to a binary outcome variable. In the next step, a portion of E. coli and

enterococci values was randomly deleted to create an artificial data set. Multiple imputation

was applied to fill in missing values in the artificial data set. The imputed dataset was used to

fit the logistic regression model to predict newly calculated GI illness outcomes. The resulting

parameter estimates were then compared to the true parameter estimates.
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In this chapter, “original data set” indicates the data set of 1,123 observations collected in the

summer from 2007 to 2009. In addition, “complete data set” represents the subset of data,

containing 573 observations, from the original dataset with no missing values of E. coli or

enterococci. Another term, “artificial data set”, represents two types of data: one with partial

E. coli values deleted and one with partial enterococci values deleted. Missing values of artificial

data sets were then imputed using MI method.

3.2.1 Orignal Data Set

Before the application of multiple imputation, the observations with or without E. coli values

were grouped separately in order to examine the missing mechanism. For each group, the

mean and standard deviation of each variable were calculated. If the means are not different

between missing value group and non-missing value group, the assumption of MAR is plausible.

Same procedure was repeated for enterococci data. Figure 5 is an example of the means and

standard deviations of measured microbes compared between two groups, and it shows no

significant difference between groups.

S-PLUS R� software was used for MI method, implementing Markov chain Monte Carlo (MCMC)

imputation mechanism. The function used to impute missing values was S+MISSINGDATA,

available by loading library named “missing”. Yuan (33) showed marginal relative efficiency

increased significantly when the sets of imputation changed from 3 to 5 and remained constant

when the number increased from 5 to 10. Therefore, five sets of imputation were generated in

this study. One thousand iterations within each imputation in a single chain were conducted.
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(a) With/Without E. coli values

(b) With/Without enterococci values

Figure 5. Comparison of mean and standard deviation between observations with missing
values and observations without missing values



36

The first 100 iterations of each imputation were discarded to ensure the independence between

each single imputation.

E. coli and enterococci data was log10-transformed to meet the normality assumption criteria.

Based on Zhou’s (38) finding that parameter estimate bias is minimized by the inclusion of

numerous variables, I included all possible variables in the imputation. Specifically, variables

included for both E. coli and enterococci models are: location, concentration of Giardia, Cryp-

tosporidium, somatic coliphages, and male-specific coliphages, sampling hour, pH, dissolved

oxygen, conductivity, turbidity, water temperature, time since last rain, time since last com-

bined sewer overflow (CSO) event, duration of last rain/CSO, and magnitude of last rain/CSO.

The variable location is categorical, while all others are continuous. In addition, for the E. coli

imputation, enterococci was included, and visa-versa.

3.2.2 Artificial Dataset

The complete dataset with 573 observations was used to create an artificial data set with missing

values. Both complete data set and artificial data set were used to fit the logistic regression

model and the resulting parameter estimates were compared to each other.

3.2.2.1 Missing Pattern

In order to create a MAR pattern, the complete dataset was broken down into three subgroups

based on the somatic coliphage concentrations. Log10-transformed somatic coliphage concen-

tration was used as the criterion to decide the percent of data deletion. The concentrations

ranged from 0 to 5 and were classified into three subgroups, low concentration (0 to <1.5),
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TABLE VII

PERCENT AND NUMBER OF SAMPLES DELETED FROM THE ARTIFICIAL DATA
SET

Number of samples in complete data set Dataset1 Dataset2
Concentration levels Percent (Number) E. coli Enterococci E. coli Enterococci

LOW 30% (171) 15% (86) 15% (86) 5% (29) 9% (52)
MED 43% (246) 10% (57) 10% (57) 11% (63) 15% (86)
HI 27% (156) 10% (57) 10% (57) 8% (46) 12% (69)

medium concentration (1.5 to <3), and high concentration ( 3 to ≤5). In the original data

set, there are 5%, 11%, and 8% of missing E. coli data in low, medium, and high concentra-

tion groups. Nine percent, 15%, and 12% of enterococci data are also missing in the three

groups.

In order to test the effect of different missing patterns, two sets of missing data were generated.

Data set 1 was created by randomly deleting 15%, 10%, and 10% of E. coli and enterococci

data from the low, medium, and high concentration groups. Data set 2 was created following

the missing patterns of the original data set. The number of total samples in each concentration

level and the number of E. coli and enterococci in data set 1 and 2 are listed in Table VII.

For each set of missing data, MI was utilized to fill in five sets of imputed values. Each set

of imputed data was used to fit a logistic regression model. Variables used in the E. coli

and enterococci logistic regression models are listed in Table VIII and Table IX respectively.

Covariates included in the logistic regression models were those having biological plausibility,
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TABLE VIII

VARIABLES USED IN THE E. COLI LOGISTIC REGRESSION MODEL TO PREDICT
GI ILLNESS

Dependent GI illness
Independent E. coli concentration

Age 1-10
Age 65over
Gender
Hispanic
White

Other race
Pre-existing GI

Previous exposed to GI
Wet score

Duration since last rain
Boating
Canoeing
Kayaking
Rowing

Water sport concern
CSO within 24 hours

and those identified as potential confounders. Backwards model selection was used to evaluate

if the identified covariates should be included in the model, applying an α = 0.05 significance

criterion.
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TABLE IX

VARIABLES USED IN THE ENTEROCOCCI LOGISTIC REGRESSION MODEL TO
PREDICT GI ILLNESS

Dependent GI illness
Independent Enterococci concentration

Age 1-10
Age 65over
Gender
Hispanic
White

Other race
Pre-existing GI

Previous exposed to GI
Wet score

Duration since last rain
Boating
Canoeing
Kayaking
Rowing

Water sport concern
CSO within 24 hours

Interaction term between enterococci conc. and wet score

The resulting parameter estimates and standard deviations were used to calculate the final

parameter value and standard deviation following the method presented by Rubin (27).
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Suppose that Q̂ is the parameter estimate in the logistic model for the jth imputed data set,

where j(j = 1, 2, ...,m), and Uj be the standard deviation of Q̂j . Then, the best estimate of Q̂,

the true parameter, is the average of the Q̄.

Q̄ =
1

m

m�

j=1

Q̂j. (3.3)

To calculate the overall variance, one has to calculate the within-imputation variance (Equa-

tion 3.4) and between-imputation variance (Equation 3.5):

Ū =
1

m

m�

j=1

Uj . (3.4)

B =
1

m− 1

m�

j=1

(Q̂− Q̄)2 (3.5)

The total variance, T , is:

T = Ū + (1 +
1

m
)B (3.6)

The calculated parameter estimates and standard deviations were then compared between two

missing pattern data sets for the examination of the impact caused by different missing pat-

terns.
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3.2.2.2 Using Artificial Dataset To Predict Health Outcomes

The complete E. coli data set was used to fit the logistic regression model against which

the parameter estimate based on the imputed data are compared. The resulting parameter

estimates were considered as true values. The fitted GI illness probabilities were then calculated

based on the parameter estimates. Since logistic regression model is used for data with binary

outcome variable, a threshold of 0.013 was used to convert the calculated probabilities back

to binary GI illness outcomes. The value, 0.013, was the probability of GI illness contributed

by conducting limited contact water recreation on the CAWS. Setting a threshold to convert

the probabilities to binary outcomes unfortunately introduces uncertainty to the parameter

estimates and they can no longer be considered as “true parameter estimates.” However, using

the threshold developed from this specific data set was the best approach to keep the uncertainty

minimum. The imputed data sets were then used to regress the fitted GI illness outcomes. The

resulting parameter estimates were compared to the ones obtained from using complete data

set. This procedure was also repeated for the enterococci model.

In order to estimate the bias introduced by threshold 0.013, the data sets were used to regress

fitted logit using a multivariate linear regression analysis. The fitted logit were calculated

following Equation 3.7, where Pi is the calculated probability, βS are the parameter estimates,

and Xi,j are the variables in the model. This procedure avoided using threshold, 0.013, to

convert fitted probability to binary health outcome variable, and therefore eliminated the bias
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introduced during the conversion. The resulting parameter values using the artificial data set

were then compared to the ones obtained using the complete data set.

log
Pi

1− Pi
= β0 + β1X1,i + ...+ βkXk,j (3.7)

3.3 Results

Results of applying the MI method to original data set and artificial data set in addition to

results of using imputed data to regress GI illness outcomes are discussed in the following

sections. E. coli and enterococci models are evaluated separately.

3.3.1 Multiple Imputation Using Original Data Set

Descriptive statistics of both original and imputed data sets for E. coli and enterococci were

compared in Table X and Table XI respectively. The imputed data set presents a similar

distribution as the original data set. A boxplot of the two indicators in the original and

imputed data sets shows the similarity in the distributions of the two sets, Figure 6. This

analysis showed that MI provided a good simulation for gap filling and could be applied on

water quality data sets.
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TABLE X

COMPARISONS OF E. COLI VALUES IN ORIGINAL DATASET AND IMPUTED
DATASET

Dataset N Means Std. Dev Q1 Q3 Minimum Maximum
Original dataset 821 2.67 1.06 2.04 3.44 -1.00 5.23
Imputed dataset 1123 2.68 0.99 2.07 3.40 -1.00 5.23

TABLE XI

COMPARISONS OF ENTEROCOCCI VALUES IN ORIGINAL DATASET AND IMPUTED
DATASET

Dataset N Means Std. Dev Q1 Q3 Minimum Maximum
Original dataset 698 2.22 0.79 1.76 2.75 -1.00 4.50
Imputed dataset 1123 2.17 0.81 1.65 2.73 -1.00 4.50

Figure 6. Comparison of distribution
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TABLE XII

MEANS AND STANDARD ERRORS WITH DATA DELETION (DD), AVERAGE
REPLACEMENT (AR), MEDIAN REPLACEMENT (MR), AND MULTIPLE

IMPUTATION (MI) METHODS

E. coli DD AR MR MI
No. 821 1123 1123 1123
Mean 2.671 2.671 2.692 2.682

Standard Errors 1.057 0.903 0.903 0.987
Enterococci DD AR MR MI

No. 698 1123 1123 1123
Mean 2.224 2.224 2.228 2.175

Standard Errors 0.795 0.626 0.626 0.807

The means and standard errors using traditional gap filling techniques and multiple imputation

were also calculated for comparison, Table XII. The results agree with the conclusions of the

limitations of traditional methods, which average replacement and median replacement methods

tend to narrow down the shape of the distribution and the data deletion method has limited

number of samples.
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TABLE XIII

COMPARISONS OF E. COLI VALUES IN ORIGINAL COMPLETE DATASET AND
IMPUTED ARTIFICIAL DATASET

Dataset N Means Std. Dev Q1 Q3 Minimum Maximum
Complete dataset 573 2.72 0.98 2.13 3.43 -1.00 4.78

Data set 1 573 2.71 0.93 2.15 3.40 -1.00 4.78
Data set 2 573 2.69 0.95 2.11 3.39 -1.00 4.37

TABLE XIV

COMPARISONS OF ENTEROCOCCI VALUES IN ORIGINAL COMPLETE DATASET
AND IMPUTED ARTIFICIAL DATASET

Dataset N Means Std. Dev Q1 Q3 Minimum Maximum
Complete dataset 573 2.18 0.80 1.71 2.72 -1.00 4.46

Data set 1 573 2.16 0.75 1.68 2.72 -1.00 4.35
Data set 2 573 2.16 0.78 1.67 2.72 -1.00 4.46

3.3.2 Multiple Imputation Using Artificial Data Set

Descriptive statistics of E. coli and enterococci for the complete data set, and data sets 1 and

2 (different artificial missing patterns) are listed in Table XIII and Table XIV. The parame-

ter estimates and standard deviations obtained from the two artificial data sets are listed in

Table XV and Table XVI. The two data sets did not yield major different imputation results

or parameter estimates. Accordingly, data set 2, the one created using the original missing

pattern, was selected for further analysis of MI performance.
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TABLE XV

ESTIMATED COEFFICIENT PARAMETER OF E. COLI AND ITS ASSOCIATED
STANDARD DEVIATION

Dataset E. coli Coefficient Parameter Estimated Standard Deviation
Data set 1 0.2187 0.5631
Data set 2 0.1723 0.4919

TABLE XVI

ESTIMATED COEFFICIENT PARAMETER OF ENTEROCOCCI AND ITS
ASSOCIATED STANDARD DEVIATION

Dataset Enterococci Coefficient Parameter Estimated Standard Deviation
Data set 1 -0.1281 0.6471
Data set 2 -0.0804 0.5938

3.3.3 Multiple Imputation in Logistic Regression Models

Descriptive statistics between the original complete data set and imputed artificial data sets

for E. coli and enterococci are listed in Table XVII and Table XVIII respectively. The imputed

dataset and the complete dataset show the same shape of distribution with relatively identical

means.

Table XIX shows the modeling results using the E. coli complete dataset. P-value, 0.5950,

indicates that E. coli is not a significant parameter in the model to predict GI illness status.

Similar results were also observed in enterococci model (Table XX).



47

TABLE XVII

COMPARISONS OF E. COLI IN COMPLETE DATASET AND IMPUTED ARTIFICIAL
DATASET

Dataset N Means Std. Dev Q1 Q3 Minimum Maximum
Complete set 878 2.89 0.83 2.32 3.57 0.778 4.51

Imputed artificial 878 2.88 0.87 2.31 3.15 0.778 4.62

TABLE XVIII

COMPARISONS OF ENTEROCOCCI IN COMPLETE DATASET AND IMPUTED
ARTIFICIAL DATASET

Dataset N Means Std. Dev Q1 Q3 Minimum Maximum
Complete set 878 2.13 0.78 1.85 2.72 -1.00 4.46

Imputed artificial 878 2.13 0.75 1.80 2.74 -1.00 4.46

The parameter estimates of E. coli and enterococci obtained using artificial data set 2 are listed

in Table XXI and Table XXII, along with the parameter values from the complete data set.

The percent difference of parameter values, β, were calculated following Equation 3.8.

Bias(%) =
βArtificialDataWithImputedV alues − βCompleteData

βCompleteData
(3.8)

where, βArtificialDataWithImputedV alues and βCompleteData are the parameter estimates of E. coli

from the artificial and complete data sets respectively.
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TABLE XIX

PARAMETER ESTIMATES OF E. COLI MODEL USING COMPLETE DATASET

Response GI illness: 35
No GI illness: 843

Parameter Estimate Standard Error p-value
Intercept -3.86 1.16 0.0008
E. coli 0.14 0.27 0.5950

Age 10 and under -0.70 0.80 0.3861
Gender 0.16 0.35 0.6562

Age 65 and over -12.64 619.0 0.9837
RaceHispanic 1.04 0.84 0.2172
RaceWhite 0.18 0.73 0.8046
RaceOther 0.81 0.80 0.3098

Pre-exist GI 0.46 0.78 0.5537
Previously exposed to GI -12.90 612.6 0.9832

Wet score 0.09 0.07 0.2023
Duration of last rain -0.03 0.04 0.5336

Boat -1.46 0.72 0.0420
Canoe -1.25 0.73 0.0872
Kayak -1.49 0.72 0.0388
Row -1.20 0.78 0.1260

Water sport concern 0.13 0.07 0.0493
Previous CSO -12.62 1234.2 0.9918
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TABLE XX

PARAMETER ESTIMATES OF ENTEROCOCCI MODEL USING THE COMPLETE
DATASET

Response GI illness: 35
No GI illness: 843

Parameter Estimate Standard Error p-value
Intercept -3.24 1.08 0.0027

Enterococci -0.12 0.33 0.7273
Age 10 and under -0.69 0.80 0.3877

Gender 0.13 0.36 0.7180
Age 65 and over -12.60 628.3 0.9840
RaceHispanic 1.07 0.84 0.2015
RaceWhite 0.17 0.73 0.8157
RaceOther 0.81 0.80 0.3103

Pre-exist GI 0.37 0.79 0.6410
Previously exposed to GI -12.88 622.6 0.9835

Wet score -0.13 0.18 0.4611
Duration of last rain -0.03 0.04 0.5415

Boat -1.27 0.74 0.0867
Canoe -1.17 0.74 0.1123
Kayak -1.41 0.73 0.0540
Row -1.06 0.82 0.1998

Water sport concern 0.13 0.07 0.0661
Previous CSO -12.81 1229.0 0.9917

Enterococci*Wet score 0.10 0.07 0.1703
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TABLE XXI

ESTIMATED COEFFICIENT PARAMETER OF E. COLI AND ITS ASSOCIATED
STANDARD DEVIATION USING ARTIFICIAL DATA SET AND COMPLETE DATA SET

TO REGRESS FITTED OUTCOMES

Dataset Coefficient Parameter Estimated Standard Deviation Percent Difference
Complete Data Set 6.98 3.04
Artificial Data Set -0.29 0.53 -104%

TABLE XXII

ESTIMATED COEFFICIENT PARAMETER OF ENTEROCOCCI AND ITS
ASSOCIATED STANDARD DEVIATION USING ARTIFICIAL DATA SET AND

COMPLETE DATA SET TO REGRESS FITTED OUTCOMES

Dataset Coefficient Parameter Estimated Standard Deviation Percent Difference
Complete Data Set 5.70 3.06
Artificial Data Set -0.26 0.56 -104%

The results show the estimated parameters using imputed data sets are extremely different than

the ones obtained from the complete data sets with -104% bias. This finding was consistent in

both E. coli model and enterococci model.

The results of using artificial data sets and complete data sets to regress fitted logit using a

multivariate linear regression model are showed in Table XXIII and Table XXIV. By avoiding

setting a threshold, the bias dropped to 2% and -33% for E. coli and enterococci data. The bias

introduced by the MI method dramatically improved in E. coli model but not in enterococci

model. There is no standard deviation for the complete dataset because the fitted logits were
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TABLE XXIII

ESTIMATED COEFFICIENT PARAMETER OF E. COLI AND ITS ASSOCIATED
STANDARD DEVIATION USING ARTIFICIAL DATA SET AND COMPLETE DATA SET

TO REGRESS CALCULATED LOGITS

Dataset Coefficient Parameter Estimated Standard Deviation Percent Difference
Complete Data Set 0.14 N/A
Artificial Data Set 0.14 0.29 2%

TABLE XXIV

ESTIMATED COEFFICIENT PARAMETER OF ENTEROCOCCI AND ITS
ASSOCIATED STANDARD DEVIATION USING ARTIFICIAL DATA SET AND

COMPLETE DATA SET TO REGRESS CALCULATED LOGITS

Dataset Coefficient Parameter Estimated Standard Deviation Percent Difference
Complete Data Set -0.12 N/A
Artificial Data Set -0.08 0.34 -33%

calculated using the complete dataset, and therefore, all the fitted points fell on the regression

line. The parameter estimate is the true parameter with no standard deviation.

3.4 Conclusions

3.4.1 Summary of Findings

In the original data set, there were a total of 1,123 samples, out of which 302 (27%) and

425 (38%) QC sample parameters for E. coli and enterococci, respectively, were not satisfied.

Multiple imputation was utilized to fill in the missing values for subsequent analysis. Testing



52

confirmed the MI method was successful in filling in these gaps with values which generated

the same distribution as the original data set.

For the artificial data set, MI was applied to two different artificial missing patterns created

under the assumption of MAR. Results indicate that the MI method can be used to fill in

missing values and still produces the same distribution as the original dataset. In other words,

the imputed data set has a mean and a standard deviation that are close to the original data

set and this approach solves the distortion problem of the data distribution caused by the use

of traditional imputation methods.

3.4.2 Implication of the Multiple Imputation

In comparison to other gap filling methods, MI is a technique to fill in missing values with

the consideration of the uncertainty of missing data. It does not invent any more information

than traditional gap filling methods, such as mean replacement or single imputation methods,

which consider no uncertainty between imputations and view imputed values as the same as

the observed values.

Case deletion is the most simple and straightforward method to deal with missing values. When

the proportion of missing values is small, less than 5%, case deletion could be an acceptable

approach. However, if the proportion of missing values is larger than 5%, for the purpose

of data modeling, case deletion method would generate invalid inferences unless the data is

MCAR.
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Therefore, prior to any data analysis, the amount and pattern of missing data in microbial

indicator data sets should be examined first. If the purpose of a study is to use microbial

data for modeling and the proportion of the missing values is not ignorable, then the proper

approach of handling missing values should be determined accordingly. Among all the gap

filling methods, MI should be considered for its consistent performance in imputing missing

values for data sets of indicator microbes. However, if the goal of a study is to simply examine

the patterns of microbial counts due to climate change or other effects, one should only use

available data instead of imputed data to observe patterns.

In the analysis of artificial data set, we observed 2% and -33% of the bias being introduced by

the MI method to E. coli and enterococci missing data. The percentage of missing values of

E. coli and enteroccoci, 24% and 36% respectively, can be the cause of the different results of

bias. Further study should evaluate MI with different percentages of microbial missing values to

demonstrate the maximum percentage of missing values for which MI can generate parameter

estimates with bias under certain level.

3.4.3 Strengths

Multiple imputation method has previously not been applied to fill in missing microbial data.

In this study, we have a large sample size that allows us to create an artificial data set with a

MAR pattern of E. coli and enterococci missing values to compare the imputed values to the

observed values. This approach shows that even with the missing of 24% of E. coli, MI can

provide parameter estimates of microbial data that are close to the ones generated using the
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complete data set. The standard deviations of the parameter estimates are also close to the

ones from the complete data set.

3.4.4 Limitations

Since there is no standard method to test if a data is MCAR, MAR, or MNAR, it is the major

limitation of MI method. Even though Collins et al. (29) concluded that in majority of the

cases the violation of MAR assumption would only result in minor impact on inferences, it

is essential to examine the missing mechanism to ensure that there is no evidence of MNAR.

In order to investigate any violation of MAR assumption, a sensitivity analysis of results to

departures can be conducted. Various realistic assumptions of variables using in imputation

model can be applied to examine how sensitive the parameter estimates are. One can also apply

MI to a microbial data set with known MNAR mechanism to evaluate the MI performance if

MAR assumption is violated.

In addition, while major software programs provide MI method function, many of them employ

regression or propensity scores methods as default, both of which require a monotone missing

pattern. However, for an arbitrary missing pattern, such as the data set in this study, MCMC

method should be applied instead. All the software programs provide a function of checking

the missing pattern. Researchers need to have an understanding of the assumptions of the MI

method in order to conduct the analysis properly.



CHAPTER 4

SOURCE IDENTIFICATION ANALYSIS USING RECEPTOR

MODELING

4.1 Literature Review

4.1.1 The Advantage of Source Identification

Indicator bacteria have been used as water quality criteria since 1986. However, bacterial

indicators come from various sources, such as animal waste, treated human waste, or untreated

raw human waste (4; 5; 6). Not all the sources are equally dangerous to water recreators.

In addition, the associations between water users health and water bodies with only non-

point source (NPS) pollution, land runoff, precipitation, or atmospheric deposition, remain

uncertain.

The need of identifying sources of contamination has stimulated the development of microbial

source tracking, a method that identifies the original source of fecal waste. There are two

types of microbial source tracking, library-dependent and library-independent. Both types

face disadvantages in application. For each study area, the library-dependent method requires

a great amount of resources to collect, identify, and store all the potential organisms that

might be present. The library-independent method uses genome sequences (RNA and DNA) to

identify genomic markers of organisms which are unique to different sources, such as human or

55
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animal feces. However, the source markers do not exist in large quantities in the environment

and QPCR detects all cellular DNA regardless of viability. The two methods were compared

by Santo Domingo et al. (44) and the authors concluded that library-dependent method tends

to result in larger number of false positives and false negatives then the library-independent

method.

Identifying fecal pollutant sources is essential for water quality management. Two approaches,

other than microbial source tracking, were used to identify sources of contamination in this

study. One was utilizing receptor modeling (current chapter) to identify pollutant sources, and

another approach (Chapter 5) was performing exploratory factor analysis (EFA) to indicate

factors that affect bacteria levels in the system.

4.1.2 Receptor Modeling

Various receptor models have been applied in air quality management during the last three

decades (45; 46; 47). These types of models identify different pollutant sources using particle

size, chemical composition, and concentration patterns. The proportion of contribution of each

source to the receptor is calculated using mathematical or statistical approaches. The modeling

process does not require information such as pollution emission rates or environmental fate of

chemical transformation. Therefore, it can be applied with limited emission information. There

are two fundamental assumptions in receptor models (48),

1. The mass of pollutants at the receptor is a linear combination of the mass released from

the sources;
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2. The mass and pollutant composition remains constant from emission to collection, and

there is no interaction between pollutants.

Receptor modeling works by comparing the profiles of pollution sources with pollution measured

at locations of interest to infer the relative contribution of each source. These type of models

consistently provide close predictions of sources in air quality data (49; 50; 51). The U.S. EPA

has developed three main receptor models, Chemical Mass Balance (CMB) model, UNMIX

models, and the Positive Matrix Factorization (PMF) model, using in air quality management

(52). Among all, CMB model was the only one that has been applied to water pollution

data.

The CMB model has been used for air quality monitoring (53; 54), and the performance of the

model has been adequate that the U.S. EPA has suggested to use it as a regulatory monitoring

technique. Many approved State Implementation Plans have also used CMB as the analytical

method (55).

Only a few attempts have applied the CMB model to water pollution data, which limited the

literature review that follows. Li et al. (56) used the CMB model to identify the main sources

of polycyclic aromatic hydrocarbons (PAHs) measured in the sediment of Lake Calumet in

Chicago. The authors used source profiles selected from literature and the model can almost

explained 100% of the total PAHs (R2=0.993). The identified main contributors were coke

ovens used in steel making and traffic. This study demonstrated the applicability of the CMB

model to identify various sources in an urban river system.
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Saada (57) also applied the CMB model to a water related dataset, analyzing volatile organic

contaminants (VOCs) in ground water, Battle Creek, Michigan. The CMB model was found

to be a valuable method for source apportionment in a water setting as well.

4.1.3 Receptor Modeling in CAWS

The goal of this study was to examine the ability of the CMB receptor model to identify

the relative contributions of four sources (background, rain, combined sewer overflows, water

reclamation plants) to microbial density in surface water. Chemical mass balance model was

utilized in this study because it has been previously applied to water data sets in providing

inference of source contributions and the results were satisfactory. The model can be explained

using Equation 4.1:

Ci =
J�

j=1

Mij ∗ Sj + ei (4.1)

Where, Ci is the total concentration of a certain elemental contaminant i (ex. E. coli or

enterococci), and Sj is the jth sources included in the model. Mij is the fraction of contribution

from each source j to the elemental component i. Only if i is larger than j, a unique solution for

each Mij can then be calculated using weighted least square (WLS) method, which calculates

the smallest sum of squares of the differences between measured mass and modeled mass from

Equation 4.1.
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The CAWS are designated as limited contact use waters and the water quality in CAWS varies

in a wide range of bacterial levels between locations. It is crucial to identify the sources of

contamination in the system in order to develop appropriate solutions to maintain the water

quality and protect public health. In this study, instead of using the CMB to idenfity chemical

sources, we focused on microbial concentrations in water samples, using a number balance

approach.

4.2 Methods

According to the users manual (58), the following five steps should be implemented in CMB

modeling:

1. Identify the types of source contributing to the system;

2. determine the proper species to be included in the model calculations;

3. use observed data or information in the literature to develop source profiles of the fraction

of each species presenting in each source type;

4. evaluate the uncertainty present in both concentration data and source profiles;

5. use source profiles, concentration data, and uncertainty information to calculate the chem-

ical mass balance equations.

The five steps were followed in this study and then the model results were evaluated by com-

paring the modeled concentrations to the measured concentration. In addition, the predicted
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sources were used to fit a logistic regression model to predict health outcomes and the results

were compared to the ones obtained using water quality parameter as predictors.

The EPA-CMB8.2 software was used in this analysis. The software can be downloaded from the

U.S. EPA’s Support Center For Regulatory Air Models (SCRAM) website (http://www.epa.gov/scram001).

The Users Manual (58) provided a detailed explanation of the model. The minimum require-

ments for running EPA-CMB8.2 software include:

• IBM R� PC compatible desktop, portable, or laptop computer with 386 processor and

16MB RAM.

• Hard disk drive with storage of 4MB.

• Windows R� 9x or higher operating system.

The recommended hardware configuration is:

• IBM R� compatible Intel Pentium R� with 64MB RAM and 100MB storage.

• Super VGA video graphics adapter and monitor.

• Graphics capable printer

• Windows R� XP or NT 4.0 operating system.

In this study, four contributing sources were first identified, water reclamation plant, river

background, combined sewer overflow (CSO), and rainfall. The reclamation plant was chosen

because it discharges high amount of indicator microbes. River background was chosen to

explain environmental and human contributions to water quality through routs other than
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the WRP, CSO, or precipitation, such as the effluent from the lake or sources from upriver.

Combined sewer overflow events were chosen because they are a source of raw sewage and

bacteria following storm events. Edge et al. (59) demonstrated that in urban waters, the

effluent from CSOs is particularly important since the levels of indicator microbes are much

higher than in wet-weather flows or stormwater. Consequently, CSO events need to be addressed

in monitoring recreational water quality. The last source, rainfall, was selected because studies

have shown a significant association between rainfall and indicator bacteria concentrations and

pathogen detection (60; 61; 62).

The CMB model has not been used to balance the number of microbes in water, and there is

a lack of information in the literature that can be used as source profiles. Instead, the four

indicators (E. coli, enterococci, male-specific/somatic coliphages) and two pathogens (Giardia,

Cryptosporidium) collected in the CHEERS were used to develop source profiles.

The CAWS North Branch System and CAWS Cal-Sag Channel were analyzed separately. The

upstream sampling sites in the North Branch System and Cal-Sag Channel were Bridge Street

(BR) and Baubien Woods (BA). The downstream sampling sites right after the North Side

WRP and Calumet WRP were Skokie Rowing Center (SK) and Riverdale Marina (RM) re-

spectively.

Criteria used for defining each source profile are listed in Table XXV. Samples collected at two

upstream locations, BR and BA, and two downstream locations, SK and RM, were used for

developing profiles. The number of microbes going through each sampling location per second
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TABLE XXV

CRITERIA USED FOR SOURCE PROFILE DEVELOPMENT

Source Background Rain CSO Plant
Criteria Last CSO > 144 hrs Last CSO > 144 hrs Last CSO Last CSO > 144 hrs

Last rain > 144 hrs Last rain ≤ 24 hrs ≤ 48hrs Last rain > 144 hrs
Accumulation > 0.5 in.

were calculated by multiplying the concentration (counts/100mL) by the river flow (100mL/sec).

Mass measured at two upstream sites, BR and BA, were used to develop background, rain, and

CSO source profiles. To do so, samples that satisfied the listed criteria were included and the

average mass of each species was calculated. In order to develop the plant profile, samples

collected upstream and downstream were matched by sampling date and hour. The mass

for each species was then calculated by subtracting the counts at upstream location from the

downstream location. It was considered as the plant contribution, and the samples that satisfied

the criteria were used to calculate the average mass of each species. Each source profile was

then defined by the fraction of every species in the specific source.

The number of samples for each microbe used in developing source profiles are showed in

Table XXVI. In order to create clean source profiles, only samples collected under extreme

weather conditions were used. This resulted in part of the source profiles being determined by

a small number of samples.



63

TABLE XXVI

NUMBER OF SAMPLES PER MICROBE USED IN SOURCE PROFILE DEVELOPMENT

North Branch System Giardia Crypto E. coli somcoli malcoli enterococci
Background 5 5 5 5 5 5
Rainfall 4 4 10 10 10 10
CSO 30 30 46 41 41 46
WRP 4 4 5 5 5 5

Cal-Sag Channel Giardia Crypto E. coli somcoli malcoli enterococci
Background 6 6 10 10 10 10
Rainfall 4 4 5 4 4 5
CSO 2 2 3 3 3 3
WRP 5 5 9 9 9 9

Once source profiles were developed, the uncertainty for each microbe was determined by the

measured concentration in the system and the detection limit of the analysis method. The

difference between detection limits for each microbe was within a certain range (less than ten

fold), but the measured concentration varied significantly. Therefore, uncertainties of 10% and

20% were assigned to indicators (E. coli, enterococci, male-specific coliphages, and somatic

coliphages) and pathogens (Giardia and Cryptosporidiums) respectively. In general, the CMB

model requires a species that represents the composition of the majority of the chemicals present

such as particulate matters (PM). However, in our study, a similar species was not present.

Therefore, a species named “total” was created with the sum of the concentrations of all six

species. A 20% uncertainty was assigned to the total species.
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Once the source profiles and uncertainties were determined, EPA CMB8.2 was used for source

proportion analyses. Since the North Branch System and the Cal-Sag Channel had their own

unique source profiles, the two systems were analyzed separately. Concentration data of all

six species from different locations and various weather conditions were used as inputs to the

model. For upstream locations, only background, rain, and CSO sources were included in the

analyses and for downstream sites all four sources were applied. Modeling results were then

compared to the rain and CSO patterns to examine if the CMB model can accurately identify

the rain and CSO sources.

The agreement between measured microbial concentrations and the predicted concentrations

were plotted against each other, using a perfect fit line (y = x) as an agreement standard.

Bland-Altman plot was also applied to examine the association between the agreement and the

concentrations of microbes.

The data with estimated source contributions was then matched with the recreators GI illness

status. The E. coli logistic regression model used in chapter 3 was applied using sources as

independent variables instead of the observed parameters. The results were examined for any

advantages of using pollution sources as predictors of recreators GI illness.

4.3 Results

The EPA CMB8.2 model was fitted using source profiles developed individually for the two

systems, North Branch System and Cal-Sag Channel. The percent mass explained by the
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model using pollutant sources were calculated for the examination of model performance. The

association between pollutant sources and GI illness was evaluated.

4.3.1 Source Profiles

Source profiles of the six microbes developed for the North Branch System along with the

percentage of each microbe in each source are showed in Figure 7 and Table XXVII. Source

profiles for the Cal-Sag Channel along with the percentage of each microbe in each source are

showed in Figure 8 and Table XXVIII. The profile patterns from different sources are more

distinguishable in the Cal-Sag Channel then the North Branch System. In addition, Cal-Sag

Channel and the North Branch System share the same plant profile.

In the North Branch System, over 90% of the plant source is contributed by E. coli (63.7%)

and somatic coliphages (27.4%). E. coli, 94.7%, is the dominant species in the rain source.

Over 90% of CSO source is attributed by E. coli (52.1%), enterococci (22.3%), and somatic

coliphages (22.1%). E. coli (54.1%) and enterococci (36.8%) attribute over 90% of background

source.

In the Cal-Sag Channel, over 90% of the plant source is contributed by E. coli (57.6%) and

somatic coliphages (36.6%). Over 90% of the rain source is attributed by E. coli (70.2%) and

enterococci (25.3%). CSO source is dominated by somatic coliphages (49.9%), male-specific

coliphages (29.3%), and E. coli (19.1%). Over 90% of the background source is attributed by

E. coli (71.8%), enterococi (15.25%), and somatic coliphages (10.2%).
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TABLE XXVII

PERCENTAGE OF MICROBES IN PLANT, RAIN, CSO, AND BACKGROUND SOURCE
PROFILES IN THE NORTH BRANCH SYSTEM. VALUES IN THE PARENTHESES

INDICATE STANDARD DEVIATIONS.

Source Giardia Crypto E. coli somcoli malcoli enterococci
Plant 1.02 (0.48) 0.25 (0.20) 63.73 (37.42) 27.35 (20.86) 0.90 (0.56) 6.76 (8.30)
Rain 0.07 (0.02) 0.02 (0.04) 94.70 (235.31) 1.58 (3.89) 0.02 (0.01) 3.62 (4.40)
CSO 0.16 (0.32) 0.29 (1.02) 52.08 (194.1) 22.08 (54.01) 3.06 (9.47) 22.34 (71.58)
BKGD 2.18 (2.61) 0.97 (1.53) 54.06 (62.21) 5.35 (6.74) 0.62 (0.86) 36.82 (43.06)

TABLE XXVIII

PERCENTAGE OF MICROBES IN PLANT, RAIN, CSO, AND BACKGROUND SOURCE
PROFILES IN CAL-SAG CHANNEL

Source Giardia Crypto E. coli somcoli malcoli enteroccoci
Plant 0.33 (0.34) 0.02 (0.03) 57.63 (41.93) 36.61 (25.01) 0.83 (1.01) 4.58 (5.65)
Rain 0.06 (0.07) 0.00 (0.00) 70.17 (94.90) 4.35 (5.62) 0.09 (0.11) 25.33 (30.39)
CSO 0.05 (0.07) 0.24 (0.08) 19.11 (25.93) 49.90 (15.82) 29.26 (40.28) 1.45 (1.92)
BKGD 0.04 (0.05) 0.04 (0.05) 71.84 (84.03) 10.24 (16.43) 2.59 (7.27) 15.25 (18.01)
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(a) Water reclamation plant (b) Rainfall

(c) CSO (d) Background

Figure 7. Source profiles of the North Branch System

(a) Water reclamation plant (b) Rainfall

(c) CSO (d) Background

Figure 8. Source profiles of the Cal-Sag Channel
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4.3.2 North Branch System

Table XXIX shows CMB model setting for each location in the North Branch System. The

overall results of the analyses are showed at the bottom of Table XXIX, note that large sample

sizes at all locations except River Park. R-squared values between the predicted and mea-

sured total concentrations (sum of six microbes) were all above 0.60. At Clark Park, Lincoln

Avenue, and North Avenue, the model presented stronger fits, with r-squared values of 0.87,

0.84, and 0.80 respectively. Percent mass (%Mass) indicates the percentage of observed mass

being explained by the model and the results show the CMB model explains the downstream

locations more precisely than the upstream location except River Park, which might be due to

an insufficient sample size.

At each location, the three measurements of model performance (r-squared, chi-squared, and

%Mass) are plotted against each sample, in Figure 9 and Figure 10. In general, the model

performance is considered consistent and can closely predict concentrations. However, the three

indicators of model performance varies widely across samples at upstream location, Bridge

Street. It can be the cause of fewer sources in the model creating a greater proportion of

unexplained information. Downstream locations, on the other hand, have relatively consistent

results.

Model results were further examined using Bland-Altman analysis. Firstly, the paired results

of measured and calculated concentrations for each sample were plotted with the y=x line, to

visually present the agreement between the pairs, Figure 11. The closer the data points are to
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TABLE XXIX

SUMMARY OF CMB MODEL SETTINGS AND RESULTS IN THE NORTH BRANCH
SYSTEM. %MASS REPRESENTS THE PERCENTAGE OF TOTAL MEASURED

CONCENTRATIONS BEING EXPLAINED BY THE MODEL.

OPERATION # 1 2 3 4 5 6
Location BR CP LA NAM RP SK

SPECIES INCLUDED
E. coli x x x x x x

Entercocci x x x x x x
Male-specific coliphages x x x x x x

Somatic coliphages x x x x x x
Giardia x x x x x x

Cryptosporidium x x x x x x
SOURCES INCLUDED

Plant x x x x x
Rain x x x x x x
CSO x x x x x x

Background x x x x x x
RESULTS

n 90 26 94 30 8 34
R square 0.69 0.87 0.84 0.80 0.66 0.77
Chi square 29.07 19.11 23.68 24.36 45.52 27.60
%Mass 67.88 111.87 92.89 83.17 68.47 88.11
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(a) Bridge Street

(b) Skokie Rowing Center

(c) Lincoln Avenue

Figure 9. CMB model performance by sample in the North Branch System



71

(a) River Park

(b) Clark Park

(c) North Avenue

Figure 10. CMB model performance by sample in the North Branch System (continued)
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the line, the higher agreement between the measured and the calculated concentration. The

plot shows that approximately half of the points fall roughly along the straight line, however a

portion of the data points are under-estimated. Secondly, the difference between the measured

and calculated concentrations was plotted against their average in order to identify trends in

agreement related to microbial concentrations, Figure 12. The solid line represents the average

of the difference and the dashed lines are the upper and lower bounds for the two standard

deviations. The plot shows that more dispersions occurred at higher concentration levels than

at lower levels. The spearman correlation coefficient between the measured and the calculated

concentrations is 0.8852 with a p-value less than 0.0001.

The total measured concentrations at each location are listed in Table XXX along with the cal-

culated contributions from all four sources. Majority of the microbial counts are attributed from

the plant and rain sources. Background source contributes less than 2% in each location.

Table XXXI shows results of sampling days with extremely large magnitude of CSOs (values

above the 90 percentile), indicating as CSOHiDays, and low magnitude of CSOs (values below

the 10 percentile), CSOLowDays, separately. Model predicted CSO contributions were calculated

for these two groups, along with the percentage of total measured microbes explained by CSO

source. This approach helps us to examine if CMB accurately predicts CSO events. Same

analysis was applied to sampling days with extreme high (RainHiDays) or low (RainLowDays)

amount of precipitations (Table XXXII). Location RP only has one data point for each extreme

condition, and therefore, is not listed.
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Figure 11. Scatter plot of measured and calculated concentration using CMB model in the
North Branch System
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Figure 12. Bland-Altman plot of measured and calculated concentration using CMB model in
the North Branch System
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TABLE XXX

THE AVERAGE OF TOTAL MEASURED MICROBIAL CONCENTRATIONS
(COUNTS/100ML) AND CALCULATED CONTRIBUTIONS FROM PLANT, RAIN, CSO,

AND BACKGROUND SOURCES BY LOCATION IN NORTH BRANCH SYSTEM.
STANDARD DEVIATIONS ARE SHOWED IN THE PARENTHESES.

Total Conc. Plant Percentage Rain Percentage
BR 1960.1 (6817.7) NA NA 897.3 (6295.1) 45.8%
CP 7121.5 (6857.5) 1723.1 (1707.5) 24.2% 936.9 (1424.6) 13.2%
LA 10276.7 (6901.6) 4082.5 (3989.8) 39.7% 1263.2 (2389.0) 12.3%

NAM 10708.5 (23990.4) 2008.4 (2147.6) 18.8% 1517.1 (3361.5) 14.2%
RP 4125.3 (3982.0) 1603.1 (2345.5) 38.9% 772.6 (1601.4) 18.8%
SK 5823.6 (12585.0) 1469.3 (3014.3) 25.2% 2784.4 (7515.3) 47.8%

Total Conc. CSO Percentage Background Percentage
BR 1960.1 (6817.7) 425.0 (2375.4) 21.7% 1.7 (278.5) 0.1%
CP 7121.5 (6857.5) 324.1 (808.0) 4.6% 20.5 (201.3) 0.3%
LA 10276.7 (6901.6) 919.7 (2097.8) 8.9% 133.0 (474.9) 1.3%

NAM 10708.5 (23990.4) 1239.6 (1756.6) 11.6% 148.8 (457.0) 1.4%
RP 4125.3 (3982.0) 2540.4 (3766.6) 61.6% 32.4 (87.6) 0.8%
SK 5823.6 (12585.0) 1299.2 (2269.6) 22.3% 68.1 (153.3) 1.2%
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The results (Table XXXI and Table XXXII) show that the model can capture the real CSO

events, except in SK. The model predicts higher microbial concentration on CSOHiDays at

location SK, but the percentage of total measured concentrations attributed by CSO source

is lower in comparison to CSOLowDays data. The large standard deviations indicate that the

performance of the model is inconsistent. The model can also capture precipitation impacts in

terms of predicted concentrations, except at Lincoln Avenue (LA) where the model predicted

higher contribution of rain source on low precipitation days than high precipitation days. The

large standard deviations of the rain source contributions also show the inconsistency of the

model performance. The percentage of total measured concentrations being explained by the

rain source is not as stable as the CSO source performance given that at BR and SK, it has lower

percent on high precipitation days then the low precipitation days. The inconsistent results can

indicate that the model does not provide a good prediction of the rain impact. It could also be

the reason that in the system rainfalls bring up microbial concentrations from all other sources

as well, and therefore, the percentage does not increase as much as expected.
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TABLE XXXI

MEAN PREDICTED CSO CONTRIBUTIONS (COUNTS/100ML), STANDARD
DEVIATIONS (INDICATED IN THE PARENTHESES), AND PERCENTAGE OF TOTAL
MEASURED MICROBES ON SAMPLING DAYS WITH EXTREME CSO EVENTS IN
NORTH BRANCH SYSTEM. CSO HIDAYS ARE DAYS WITH MAGNITUDE OF CSOS
ABOVE THE 90 PERCENTILE. CSO LOWDAYS ARE DAYS WITH MAGNITUDE OF

CSOS BELOW THE 10 PERCENTILE.

Location CSOHiDays Percentage CSOLowDays Percentage
Overall 845.6 (1341.8) 30.11% 361.8 (1321.3) 13.40%
BR 507.2 (930.3) 66.97% 35.4 (55.7) 29.16%
CP 751.0 (1413.3) 8.64% 15.3 (14.6) 0.63%
LA 1246.6 (1887.6) 51.36% 701.1 (2063.3) 11.47%

NAM 910.0 (895.8) 83.62% 532.3 (416.0) 37.00%
SK 94.5 (185.7) 0.87% 61.5 (26.5) 16.87%

TABLE XXXII

MEAN PREDICTED RAIN CONTRIBUTIONS (COUNTS/100ML), STANDARD
DEVIATIONS (INDICATED IN THE PARENTHESES), AND PERCENTAGE OF TOTAL
MEASURED MICROBES ON SAMPLING DAYS WITH EXTREME PRECIPITATIONS
IN NORTH BRANCH SYSTEM. RAIN HIDAYS ARE DAYS WITH MAGNITUDE OF

RAIN ABOVE THE 90 PERCENTILE. RAIN LOWDAYS ARE DAYS WITH
MAGNITUDE OF RAIN BELOW THE 10 PERCENTILE.

Location RainHiDays Percentage RainLowDays Percentage
Overall 2310.6 (6006.9) 21.52% 316.2 (420.1) 20.75%
BR 619.9 (1072.8) 29.84% 115.0 (169.1) 38.20%
CP 1255.0 (1475.6) 18.11% 448.8 (429.0) 13.61%
LA 465.1 (713.4) 8.53% 559.6 (431.9) 5.17%

NAM 7774.3 (8086.8) 37.72% 0 (0) 0.00%
SK 8000.0 (14259.4) 41.08% 334.7 (632.6) 66.13%
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A close look at source proportions for each sample collected at each location coupled with

the patterns of magnitude of last rain and CSO events are showed in Figure 13, Figure 14,

Figure 15, Figure 16, Figure 17, and Figure 18 for BR, SK, LA, RP, CP, and NAM respectively.

At downstream locations, matching patterns of rain and CSO events with the predicted sources

are easily identified. By contrast, the rain and CSO patterns do not particularly follow the

predicted sources at upstream site.
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Figure 13. Bridge Street source proportion
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Figure 14. Skokie Rowing Center source proportion
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Figure 15. Lincoln Avenue source proportion
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Figure 16. River Park source proportion
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Figure 17. Clark Park source proportion
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Figure 18. North Avenue source proportion
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4.3.3 Cal-Sag Channel

Table XXXIII shows four sets of operations conducted using the CMB model in Cal-Sag Chan-

nel. Sample sizes of the four locations are relatively equal, and r-squared values between mea-

sured and predicted total concentrations are all above 0.7, except upstream location Beaubien

Woods which has a r-squared value equal to 0.64. Percent mass indicates that the model ex-

plained the concentrations well at all three downstream locations. Conversely, the percent mass

at upstream location explained by the model is comparatively low which was consistent with the

CMB model results from the North Branch System. The measurements of model performance,

r-squared, chi-squared, and %mass, per sample at each location are showed in Figure 19.

Comparisons of the two systems, Figure 19 for the Cal-Sag Channel versus Figure 9 and Fig-

ure 10 for the North Branch System, the model performance measurements are more inconsis-

tent in the Cal-Sag Channel.

Figure 20 shows the majority of the points fall closely along the straight line, and only a small

proportion of the data points are under-estimated. Figure 21 shows that all points fall within

the two standard deviations, but more dispersions appeared at higher concentration levels. The

spearman correlation coefficient (between the measured and the calculated concentrations) is

0.8932 with a p-value less than 0.0001.

The total measured concentrations at each location are listed in Table XXXIV along with

the calculated contributions from all four sources. in contrast to the North Branch System,
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TABLE XXXIII

SUMMARY OF CMB MODEL SETTINGS AND RESULTS IN THE CAL-SAG CHANNEL.
%MASS REPRESENTS THE PERCENTAGE OF TOTAL MEASURED

CONCENTRATIONS BEING EXPLAINED BY THE MODEL.

OPERATION # 1 2 3 4
Location AL RM BA WO

SPECIES INCLUDED
E. coli x x x x

Entercocci x x x x
Male-specific coliphages x x x x

Somatic coliphages x x x x
Giardia x x x x

Cryptosporidium x x x x
SOURCES INCLUDED

Plant x x x
Rain x x x x
CSO x x x x

Background x x x x
RESULTS

n 36 31 22 21
R square 0.74 0.81 0.64 0.78
Chi square 17.86 12.39 15.31 11.86
%Mass 98.85 91.19 82.99 103.87
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(a) Beaubien Woods

(b) Riverdale Marina

(c) Alsip

(d) Worth

Figure 19. CMB model performance by sample in Cal-Sag Channel
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Figure 20. Scatter plot of measured and calculated concentration using CMB model in the
Cal-Sag Channel
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Figure 21. Bland-Altman plot of measured and calculated concentration using CMB model in
the Cal-Sag Channel
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TABLE XXXIV

THE AVERAGE OF TOTAL MEASURED MICROBIAL CONCENTRATIONS
(COUNTS/100ML) AND CALCULATED CONTRIBUTIONS FROM PLANT, RAIN, CSO,
AND BACKGROUND SOURCES BY LOCATION IN CAL-SAG CHANNEL. STANDARD

DEVIATIONS ARE SHOWED IN THE PARENTHESES.

Total Conc. Plant Percentage Rain Percentage
BA 1113.0 (2994.0) NA NA 122.4 (288.9) 11.0%
AL 1853.2 (4460.1) 451.1 (602.4) 24.3% 42.3 (2543.7) 2.3%
RM 3252.7 (4161.6) 1617.3 (1281.0) 49.7% 1656.3 (1878.5) 50.9%
WO 815.6 (1080.6) 420.2 (496.1) 49.5% 557.3 (1923.4) 65.6%

Total Conc. CSO Percentage Background Percentage
BA 1113.0 (2994.0) 16.2 (68.0) 1.5% 509.0 (1075.8) 45.7%
AL 1853.2 (4460.1) 9.2 (171.2) 0.5% 1100.4 (1639.1) 58.5%
RM 3252.7 (4161.6) 140.5 (163.4) 4.3% 1847.6 (6506.7) 56.8%
WO 815.6 (1080.6) 81.3 (146.4) 10.0% 100.7 (1515.3) 11.9%

the background source is one of the major contributors to the microbial concentrations in the

Cal-Sag Channel.

Model predicted CSO and rain contributions were calculated for these sampling days with ex-

treme CSO or rain events, Table XXXV and Table XXXVI respectively. The results show

that the model can capture the real CSO events by predicting higher microbial concentrations

attributed by CSO source, except for location Riverdale Marina (RM). The large standard de-

viations indicate that the performance of the model is inconsistent. The results of percentage,

however, show inconsistency in comparison between CSOHiDays and CSOLowDays data. The

model can also capture precipitation impacts except at Riverdale Marina (RM) and Baubien

Woods (BA) where the model predicted higher contribution of rain source on low precipitation
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TABLE XXXV

MEAN PREDICTED CSO CONTRIBUTIONS (COUNTS/100ML), STANDARD
DEVIATIONS (INDICATED IN PARENTHESES), AND PERCENTAGE OF TOTAL
MEASURED MICROBES ON SAMPLING DAYS WITH EXTREME CSO EVENTS IN

CAL-SAG CHANNEL. CSO HIDAYS ARE DAYS WITH MAGNITUDE OF CSO ABOVE
THE 90 PERCENTILE. CSO LOWDAYS ARE DAYS WITH MAGNITUDE OF CSO

BELOW THE 10 PERCENTILE.

Location CSOHiDays Percentage CSOLowDays Percentage
Overall 137.7 (210.6) 6.64% 78.2 (132.0) 10.21%
BA 112.3 (180.0) 8.17% 3.7 (6.4) 3.86%
RM 127.8 (225.5) 0.58% 174.0 (234.4) 5.16%
WO 267.8 (278.9) 17.73% 42.8 (42.8) 6.65%
AL 36.8 (73.5) 0.47% 64.0 (72.2) 17.54%

days than high precipitation days. More inconsistency is observed in terms of the predicted per-

centage of microbial concentrations attributed by rain source. Overall, the model performance

is not as stable as it is in the North Branch System.

A close look at source proportion at each location along with the patterns of magnitude of last

rain and CSO events are showed in Figure 22, Figure 23, Figure 24, and Figure 25 for BA, RM,

AL, and WO respectively. In contrast to the North Branch System, background source in the

Cal-Sag Channel is the main contributor out of all sources. This finding indicates that there

could be other sources affecting water quality from the upriver, and therefore, cause unstable

pattern of background source. At downstream sites, predicted plant source patterns are also

closely related to the patterns of rain and CSO events. In addition, at two downstream sites,

Worth and Alsip, well matched patterns of rain source and rain events are identified. At the
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TABLE XXXVI

MEAN PREDICTED RAIN CONTRIBUTIONS (COUNTS/100ML), STANDARD
DEVIATIONS (INDICATED IN PARENTHESES), AND PERCENTAGE OF TOTAL

MEASURED MICROBES ON SAMPLING DAYS WITH EXTREME PRECIPITATIONS
IN CAL-SAG CHANNEL. RAIN HIDAYS ARE DAYS WITH MAGNITUDE OF RAIN

ABOVE THE 90 PERCENTILE. RAIN LOWDAYS ARE DAYS WITH MAGNITUDE OF
RAIN BELOW THE 10 PERCENTILE.

Location RainHiDays Percentage RainLowDays Percentage
Overall 769.7 (1336.6) 81.05% 367.6 (673.8) 179.22%
BA 0 (0) 0.00% 38.8 (45.4) 21.64%
RM 1309.5 (2619.0) 5.92% 1034.4 (958.7) 504.04%
WO 1024.8 (499.6) 216.46% 105.8 (211.5) 18.14%
AL 595.6 (727.2) 81.46% 205.7 (503.8) 120.98%

two locations, the effect of plant source is decreasing, and therefore, the rain and CSO sources

become more significant. Source proportion results per sample at different locations also reveal

more noise in the Cal-Sag Channel than in the North Branch System.
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Figure 22. Beaubien Woods source proportion
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Figure 23. Riverdale Marina source proportion
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Figure 24. Alsip source proportion
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Figure 25. Worth source proportion
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4.3.4 Using Pollutant Sources as Predictors of GI Illness

Estimated source contributions were used to fit the E. coli logistic regression model and evaluate

the effectiveness of using pollutant sources to predict water users health outcomes. Two E.

coli logistic regression models were tested. The first was the original model using both water

and subject parameters as predictors, the second model only included water parameters as

independent variables. The reason of utilizing the second model approach was to avoid the

influence of subject parameters in the model. As described previously, E. coli is not a significant

parameter in the model to predict health outcomes. Therefore, with the subject parameters

in the model, it could be more difficult for us to observe any advantages of using sources over

water quality parameters as predictors.

4.3.4.1 Model with Subject Variables

The E. coli logistic regression model in previous section was used for testing the power of

pollutant sources on predicting health outcomes. The original model and the model with

water parameters replaced by sources were compared to investigate any improvements of using

sources as predictors. The North Branch System and the Cal-Sag Channel were evaluated

separately.

4.3.4.1.1 North Branch System

The modeling results of using observed water variables or sources are listed in Table XXXVII

and Table XXXVIII, respectively. Statistically speaking, both models are not significant and

the results are relatively similar. Only the“age 10 or younger” parameter is marginal significant
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in predicting GI illness. Variance inflation factor (VIF) (63) is a measurement of multicolin-

earity. Any variable with a VIF larger than 10 indicates that it has a linear relationship with

another variable in the model. In both models, water activities, canoeing and kayaking, have

multicollinearity problem. Overall, no improvement is observed using pollutant sources over wa-

ter quality parameters. The expected observation of plant or CSO sources, which are considered

as human fecal contamination, as strong predictors of GI illness is not found.
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TABLE XXXVII

E. COLI LOGISTIC REGRESSION MODEL RESULTS IN THE NORTH BRANCH
SYSTEM

Parameter β SE (β) p VIF
Intercept -15.6266 196.1 0.9365 0
E. coli 1.2164 1.0521 0.2476 4.0545
Age0-10 2.0238 1.0952 0.0646 1.0861
Gender 0.6329 0.7579 0.4037 1.0926

Age 65 and over -10.4638 517.1 0.9839 1.1063
RaceHispanic 11.9870 196.0 0.9512 1.6731
RaceWhite 9.8334 196.0 0.9600 3.6840
RaceOther -0.5931 301.8 0.9984 3.3062

Pre-exist GI -10.1366 362.0 0.9777 1.0888
Previously exposed to GI -9.8601 649.7 0.9879 1.0431

Wet score 0.1026 0.1885 0.5861 1.4339
Duration of last rain 0.0340 0.1102 0.7573 2.0945

Boat -12.8950 348.1 0.9704 2.3467
Canoe -3.3301 2.3113 0.1496 12.3077
Kayak -3.9179 2.6772 0.1433 10.3161
Row -1.7477 1.8198 0.3369 8.9807

Water sport concern 0.1238 0.1675 0.4597 1.1486
Previous CSO -0.5419 1.6748 0.7463 1.8557

Test p

Overall model evaluation
Likelihood ratio test 0.6784

Score test 0.4992
Wald test 0.9379
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TABLE XXXVIII

E. COLI LOGISTIC REGRESSION MODEL RESULTS USING SOURCES AS
PREDICTORS IN THE NORTH BRANCH SYSTEM

Parameter β SE (β) p VIF
Intercept -12.6136 193.7 0.9481 0

Plant source 0.3108 0.3375 0.3570 1.5857
Rain source 0.2981 0.8436 0.7238 6.7081
CSO source -0.2921 0.3587 0.4153 1.1958

Background source 0.0075 0.3458 0.9827 1.3144
Age0-10 2.2435 1.0792 0.0376 1.0611
Gender 0.4879 0.7727 0.5277 1.1143

Age 65 and over -10.6380 607.8 0.9860 1.0798
RaceHispanic 11.5451 193.7 0.9525 1.6664
RaceWhite 9.7833 193.6 0.9597 3.6275
RaceOther -1.0763 315.4 0.9973 3.3108

Pre-exist GI -10.1247 404.4 0.9800 1.0922
Previously exposed to GI -10.1373 692.2 0.9883 1.0424

Wet score 0.0889 0.1736 0.6087 1.3289
Boat -12.4618 420.5 0.9764 2.2313
Canoe -2.8753 3.5466 0.4175 16.3570
Kayak -3.7637 4.1251 0.3616 14.4067
Row -1.9884 1.9572 0.3097 9.4425

Water sport concern 0.1098 0.1662 0.5088 1.1436
Test p

Overall model evaluation
Likelihood ratio test 0.6931

Score test 0.5096
Wald test 0.9513
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4.3.4.1.2 Cal-Sag Channel

Modeling results of using original observed water parameters and pollutant sources as predictors

are listed in Table XXXIX and Table XL, respectively. During the analysis of the original

model, four variables were excluded due to linearity with other variables in the model. These

four variables were three water activity types (canoeing, kayaking and rowing) and the hours

since previous CSO event. In the source model, three water activity types (canoeing, kayaking,

and rowing) were also excluded from the analysis due to the same reason. None of the variables

were significant as predictors of health outcomes in both models. In addition, the improvement

of predictive power of using the source model over the water parameter model could not be

identified.
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TABLE XXXIX

E. COLI LOGISTIC REGRESSION MODEL RESULTS IN THE CAL-SAG CHANNEL

Parameter β SE (β) p VIF
Intercept -22.5304 512.2 0.9649 0
E. coli 0.5504 2.5711 0.8305 1.7596
Age0-10 -9.6288 256.6 0.9701 1.4048
Gender -0.3531 1.3200 0.7891 1.0878

Age 65 and over -9.7291 267.0 0.9709 1.3858
RaceHispanic -0.0511 489.6 0.9999 4.4048
RaceWhite 9.0876 401.3 0.9819 4.9427
RaceOther -3.1857 860.1 0.9970 1.9285

Pre-exist GI -9.1844 401.3 0.9817 1.3704
Previously exposed to GI -8.4210 484.1 0.9861 1.0906

Wet score 0.1853 0.1786 0.2996 1.2607
Duration of last rain -0.0349 0.1568 0.8239 1.4389

Boat 9.7868 318.2 0.9755 1.1869
Canoe 0 . . .
Kayak 0 . . .
Row 0 . . .

Water sport concern -0.1470 0.2026 0.4681 1.2878
Previous CSO 0 . . .

Test p

Overall model evaluation
Likelihood ratio test 0.9788

Score test 0.9839
Wald test 0.9994



103

TABLE XL

E. COLI LOGISTIC REGRESSION MODEL RESULTS USING SOURCES AND SUBJECT
INFORMATION AS PREDICTORS IN THE CAL-SAG CHANNEL

Parameter β SE (β) p VIF
Intercept -16.6025 304.6 0.9565 0

Plant source -0.6242 0.6203 0.3143 2.1368
Rain source -0.2908 0.9915 0.7693 5.8721
CSO source 0.7758 1.3933 0.5776 8.5447

Background source 0.0041 0.9867 0.9967 8.6349
Age0-10 -7.6863 142.4 0.9570 1.4323
Gender -0.0560 1.5218 0.9706 1.0960

Age 65 and over -7.7125 139.5 0.9559 1.3854
RaceHispanic -0.2101 276.8 0.9994 4.0525
RaceWhite 7.2028 254.3 0.9774 4.5909
RaceOther -3.5744 526.8 0.9946 1.8616

Pre-exist GI -6.9554 254.3 0.9782 1.4134
Previously exposed to GI -8.4850 261.8 0.9741 1.2297

Wet score 0.1223 0.1950 0.5304 1.3223
Boat 8.3243 167.7 0.9604 1.2913
Canoe 0 . . .
Kayak 0 . . .
Row 0 . . .

Water sport concern -0.3170 0.2658 0.2330 1.5983
Test p

Overall model evaluation
Likelihood ratio test 0.9432

Score test 0.9163
Wald test 0.9979
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4.3.4.2 Models with Only Water Parameters

Logistic regression analyses using only water parameters were performed separately in the North

Branch System and the Cal-Sag Channel. In the water parameter model, the six microbes, (E.

coli, enterococci, somatic coliphages, and male-specific coliphages, Giardia and Cryptosporid-

ium), which were used for development of source profiles, were utilized as independent vari-

ables.

4.3.4.2.1 North Branch System

The results of the two models are listed in Table XLI and Table XLII. Overall, the model which

uses the six microbes as predictors is significant. Among the six microbes, Cryptosporidium

is the strongest predictor in the model (p-value = 0.0191). Giardia is marginally significant

(p-value = 0.0575). The four indicators are not significant as predictors of health outcomes.

In addition, the analysis of VIF indicates that the model has multicollinearity problems given

that male-specific coliphages and somatic coliphages both have VIFs around 10.

The model of using four sources as predictors is not significant in predicting health outcomes.

However, this model does not encounter any multicollinearity problems.
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TABLE XLI

E. COLI LOGISTIC REGRESSION RESULTS USING INDICATORS AND PATHOGENS
AS PREDICTORS IN THE NORTH BRANCH SYSTEM

Parameter β SE (β) p VIF
Intercept -8.1868 2.2389 0.0003 0

Cryptosporidium -1.2364 0.5275 0.0191 1.6466
Giardia 2.3107 1.2163 0.0575 1.6374

Somatic coliphages 0.8389 1.5966 0.5993 9.1760
Male-specific coliphages -1.5039 1.4035 0.2839 10.1973

E. coli 0.5930 0.8405 0.4805 3.7577
Enterococci -0.5865 0.8518 0.4912 1.8106

Test p

Overall model evaluation
Likelihood ratio test 0.0042

Score test 0.0042
Wald test 0.0204

TABLE XLII

E. COLI LOGISTIC REGRESSION MODEL RESULTS USING ONLY SOURCES AS
PREDICTOR IN THE NORTH BRANCH SYSTEM

Parameter β SE (β) p VIF
Intercept -3.5680 0.8661 <0.0001 0

Plant source 0.3102 0.2667 0.2447 1.1335
Rain source -0.0259 0.2010 0.8975 1.0388
CSO source -0.1062 0.2545 0.6763 1.0313

Background source -0.0696 0.2672 0.7944 1.1761
Test p

Overall model evaluation
Likelihood ratio test 0.7587

Score test 0.7874
Wald test 0.8099
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TABLE XLIII

E. COLI LOGISTIC REGRESSION MODEL RESULTS USING INDICATORS AND
PATHOGENS AS PREDICTORS IN THE CAL-SAG CHANNEL

Parameter β SE (β) p VIF
Intercept -3.2482 447.4 0.9942 0

Cryptosporidium 7.9377 77.7807 0.9187 1.9698
Giardia -1.4824 112.3 0.9895 1.8088

Somatic coliphages 7.7053 195.6 0.9686 4.5129
Male-specific coliphages -2.8647 135.2 0.9831 5.0766

E. coli -15.9473 166.7 0.9238 6.7967
Enterococci 11.9979 130.5 0.9267 8.2656

Test p

Overall model evaluation
Likelihood ratio test 0.5865

Score test 0.6169
Wald test 1.0000

4.3.4.2.2 Cal-Sag Channel

The results of the two models applied to the Cal-Sag Channel are listed in Table XLIII and

Table XLIV. Both models are not significant and none of the regressors is a strong predictor.

This finding differs from the result of the North Branch System. In addition, the model in

the Cal-Sag Channel using sources as predictors does not provide too much improvement in

multicollinearity problem, which however, was not significant in both models (VIFs < 10).
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TABLE XLIV

E. COLI LOGISTIC REGRESSION MODEL RESULTS USING ONLY SOURCES AS
PREDICTORS IN THE CAL-SAG CHANNEL

Parameter β SE (β) p VIF
Intercept -1.9783 1.7193 0.2499 0

Plant source -0.4607 0.4469 0.3026 1.5122
Rain source -0.3968 0.8921 0.6565 4.7502
CSO source 0.1605 1.5460 0.9173 7.5021

Background source -0.3674 0.9553 0.7005 7.5903
Test p

Overall model evaluation
Likelihood ratio test 0.6891

Score test 0.6140
Wald test 0.6982
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4.4 Conclusions

4.4.1 Summary of Findings

This study shows that the CMB model can well explain observed fecal indicator bacteria concen-

trations using microbial number balance approach and provide inference of source distributions

in a urban river environment.

In our study area, generally the percentage of enterococci presenting in each source is higher

in the North Branch System than in the Cal-Sag Channel. The plant source profiles for the

two systems are almost identical, which indicates the combinations of microbes in the discharge

from the two plants are similar. Except of plant source, other source profiles are different

between the North Branch System and Cal-Sag Channel. In the North Branch System, E.

coli and enterococci are two dominant species in the background source profile while in the

Cal-Sag Channel the profile is dominated by E. coli. In the North Branch System, E. coli is

dominant (over 90%) in the rain source profile and in the Cal-Sag Channel, the source profile

is dominated by E. coli and enterococci. For the CSO source, in the North Branch System,

E. coli, enterococci and somatic coliphages are dominant species in the source profile and in

the Cal-Sag Channel the dominant species are somatic coliphages followed by male-specific

coliphages and E. coli respectively.

Bland-Altman analysis shows good agreement between total measured microbial concentrations

and the concentrations calculated by the CMB model. The Spearman correlation coefficients

in the Cal-Sag Channel and in the North Branch System are 0.893 and 0.885 respectively.
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However, for each sample the percent of mass being explained by the model is less consistent in

the Cal-Sag Channel than in the North Branch System. The r-squared values between estimated

and measured concentrations are above 0.8 in the North Branch System and above 0.7 in the

Cal-Sag Channel. Overall, the model can well reproduce observed microbial concentrations

using source profiles. A future study comparing microbial source tracking results in the system

to CMB model results using conventional FIB data can further validate if suggested CSO and

plant sources are human fecal contamination.

4.4.2 Implication of the CMB Model

As mentioned previously, for each sample, the model does not reproduce the measured con-

centrations in the Cal-Sag Channel as well as in the North Branch System. The difference in

topography and uses of the two systems is a potential cause of the differential predictive ability.

Table XXIX and Table XXXIII show that the percentage of mass in the North Branch System

and Cal-Sag Channel being explained by CMB are very different. The Cal-Sag Channel is a

deeper and wider channel (around 200 feet wide by 26 feet deep) and therefore, it has heavy

commercial boat traffic. The channel of North Branch System varies in width from 90 to 200

feet with the depth of 21 feet and the system is used primarily for canoeing and kayaking. Ac-

cording to data file kindly provided by the MWRDGC, the average flows from Lake Michigan

into the Cal-Sag Channel is three times more than the North Branch System, 150 and 40 cubic

feet per second (cfs) respectively. Therefore, the Cal-Sag Channel may have more complicated

sources that were not considered in the model.
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In the North Branch System, the dominant sources are rain, CSO, and plant. Except of plant

source which is a unique source in our system, CSO events and urban runoff are two common

sources of bacteria in urban waterbodies. The finding of urban runoff as one leading sources of

FIB concentrations agrees with EPA National Water Quality Inventory report (64) which states

that runoff from urban area is the major source of impairments to estuaries and lakes.

4.4.2.1 Approaches for Mitigation of Pollutant Sources

In May 2011, U.S. EPA ordered the City of Chicago to disinfect the discharge from the water

reclamation plant and make the river swimmable. According to MWRDGC, the discharge,

which has bacterial counts between 700 and 340,000 fecal coliforms per 100 mL, accounts for

70% and 90% of the total flow during wet and dry weather respectively. Once disinfection is

implemented, it should reduce the water quality impact of plant source.

Animal sources of fecal indicator bacteria in urban runoff include pets or waste of urban wildlife

such as geese, pigeons, and deer. One way to reduce the source is to educate pet owners to

pick up pet waste from the street. Another way is to control the wildlife populations. In the

Great Lakes area, more than 50% of E. coli in the lakes is contributed by gulls (65). Therefore,

controlling wildlife population can well reduce the bacteria in urban runoff. Furthermore,

wetlands can act as a sink for FIB which will later be diminished by sunlight (66). For new

developments, having vegetation instead of pavement when possible can reduce the amount of

urban runoff so less animal waste will flow into the water.
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Chicago has a combined septic and stormwater system. A new design separating stormwater

drainage and sewage systems is in theory a way to eliminate CSO source of bacteria into

waterbodies. Separation devices of sudden large rainfall can also be installed in existing storm

sewer system, however, the work can only be done during major upgrades (67).

4.4.3 Strengths

This is the only study applying the CMB model to evaluate sources of microbial contaminations,

unlike other published studies, which use microbial source tracking to evaluate sources of FIB.

The area of this study is a relatively uncomplicated system with a major point source of

FIB from the water treatment plant. One can easily determine the sources in this type of

systems and in this case CMB is an adequate approach to evaluate the effects of sources.

For a specific water system, once the source profiles are developed, this approach can explain

the contribution of fecal bacterial concentration from each source without the knowledge of

emissions from the sources in a timely manner. This can help researchers to quickly identify

impacting sources.

The large sample size with variability of weather conditions in this study allows us to develop

a clean profile for each source using extreme weather conditions to evaluate rain and CSO

effects. This can help the model easily to identify the difference between any two sources. In

addition, multiple sampling sites (upstream and downstream from the WRPs) under different

weather conditions also allow us to develop clean profile for plant source for evaluation of the

effects.
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The requirement of disinfection will be beneficial to evaluate the predictions of the CMB model.

Before disinfection is taking place, CMB model can be utilized to predict the water quality

with limited plant impact in the model. The results can then be compared to the observed

concentrations after disinfection to validate the model performance.

4.4.4 Limitations

The design of this study was to identify the association between water quality and water users

health. Therefore, water samples were only collected while participants were conducting water

recreations. This resulted in the cancellation of water sampling events during heavy rainfall or

storms and these events always relate to higher counts of FIB. It limits the patterns of FIB

concentrations driven by rain or CSO events we could possibly observe.

Due to the cost of sampling and analytical method of pathogens, and unknown of which

pathogens are the real cause of GI illness, we only collected one water sample a day analyzed

for Giardia and Cryptosporidium. Therefore, only a small amount (less than 10) of pathogen

data was included in each source profile. Since pathogens are the cause of illness, the small

amount presenting in the source profile could be one of the reasons that we did not observe

any association between the sources and the health outcomes. A way to solve this problem

is to use a less restrict criteria to define weather conditions. This approach will allow more

samples to be considered, however, it is a trade-off between sample size and clean source pro-

files. A further study should evaluate how the trade-off affects the model in predicting source

contributions.
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In this study, CMB model is utilized to partition sources in a system where potential sources of

FIB are easily to determine. However, in order to model a more complex system with unknown

sources, a strong knowledge of modeling site is crucial to identify potential emission sources.

It requires personnel who are familiar with the system and a large number of data in order

to develop source profiles properly. Furthermore, in a complex system, one could combine

microbial source tracking to identify potential sources and CMB model to predict the source

contributions. A harbor estuary in a highly urbanized area with inputs of multiple rivers

could be considered as a complex system because of the multiple input directions of human

sewage (from WRPs or CSOs), urban runoffs, leaking sewer systems, or upriver non-point

sources.

The CMB model explains the concentrations received at the endpoint using source profiles to

trace back the contributions from each source. It assumes the direction of pollutants coming

straight for the emission point to the endpoint. Therefore, it can be applied to a river setting

when the direction of pollutant movement is consistent with limited diffusion. However, it is

not adequate to apply this method to model ocean or harbor systems where flow patterns are

more complicated.

The association between pollution sources and health risks remains unexplained in this study.

The rationale of using sources of FIB to predict health is that the sources can be classified as

human sources and non-human sources and human sources of FIB, especially untreated human

sewage, are more likely to have pathogens that could infect other humans. Therefore, I was
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expecting to see the CSO and plant sources being strong predictors of GI illness. The lack of

the association will be discussed in Chapter 6.



CHAPTER 5

FACTOR ANALYSIS OF THE EFFECTS OF WATER QUALITY ON

HEALTH

5.1 Literature Review

Water quality measurements are generally highly correlated to one another. Hidden variables,

such as seasons, weather, or rainfall, maybe responsible for the correlation. Factor analysis

is a method to identify these hidden variables. It is a multivariate statistical technique that

describes the variance of observed variables using a minimum number of latent variables called

factors.

Loehlin (68) classified factor analysis into two types, exploratory factor analysis (EFA) and

confirmatory factor analysis (CFA). In EFA, one seeks to identify the latent variables that can

cause the interrelations of a set of observed variables. On the other hand, in CFA, one tests

a hypothesized structure using available data to see how it relates to the observed variables.

In this research, the goal was to indicate any latent variables that could account for the re-

lationships between observed covariates in the dataset, therefore, the EFA method was used.

Exploratory factor analysis is a method to identify the relationships among observed variables.

The underlying assumption of the analysis is that the factors can be used to explain the cor-

relation among the observed variables. If all factors are held constant, theoretically correlation
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among observed variables would then be zero and each variable could be represented in a linear

regression of factors, Equation 5.1.

xi = αi1f1 + αi2f2 + αi3f3 + ...+ αikfk + εi (5.1)

Where, xi is the ith observed variable, f1 to fk are the k factors, and εi is the residual of xi on

the factors. The loadings of each factor on variable xi is indicated by αi1 to αik.

An example of a single layer of paths between latent variables and factors is showed in Figure 26.

F1 and F2 are two common factors shared by observed variables X1, X2, X3, and X4. The

unique factors for each observed variable are represented by e1, e2, e3, and e4. This specific

model assumes that no correlation between these unique factors exist, allowing the two factors

to explain all of the correlation found between pairs of observed variables.

Figure 26. Example of a factor analysis model
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Loehlin (68) suggested a series of steps of conducting the EFA. First, select a factor extraction

method, then estimate communalities, determine the proper number of factors, establish the

method of rotations, and finally interpret the factors and estimate factor scores. Details of each

step are explained in the follow paragraphs.

5.1.1 Factor Extraction Methods

There are several different factor extraction methods including maximum-likelihood (ML) fac-

tor, principal component, principal factor, unweighted least-square factor, and alpha factor.

The two most common factor extraction methods are ML factor and principal factor. The

ML method requires variables to be normally distributed, principal factor method in contrast,

because violation of the normality assumption causes distortion (69). The major limitation

of the principal factor method is that it cannot compute condifence intervals and significant

tests. Fabrigar et al. (70) compared the two methods in regards to the violation of the nor-

mal distribution assumption, and suggested only when transformations fail to create a normal

distribution, should principal factor method be used.

5.1.2 Communalities

Once the factor extraction method is determined, the communalities can be calculated for the

examination of the relationships between observed variables. The communality of a variable is

the proportion of the variance that is shared with other variables. Estimation of communalities

is needed for EFA since the analysis aims to recognize the latent variables that explain the

common variance. The most straight forward way to estimate communalities is to use the
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largest value of absolute correlation ( Pearson or Spearman correlation based on the normality

of variables) between the variable of interest and all other variables as the estimate. A more

advanced method of estimating communalities utilizes the squared multiple correlation between

the variable of interest and all other variables as the estimate.

5.1.3 Number of Factors

Determination of the number of factors is the most important and difficult step in EFA. Common

methods for determining the factors include Kaiser-Guttman rule, scree plot test, percentage of

variance, and parallel analysis. The Kaiser-Guttman rule extracts the number of factors that

have an eigenvalue greater than one. The threshold is set to one because of the assumption that

factors should have variances as large as the unity. Kaiser-Guttman rule is the only method

used in Principal Component Analysis (PCA) component extraction. Principal Component

Analysis is also a variable reduction technique that has been frequently mistaken as EFA. The

major difference between the two techniques is that PCA is to discover components that can

explain the maximal amount of variance among observed variables. On the other hand, EFA is

a technique to identify the factors that account for common variance among observed variables

(71). Since the goal of this study was to identify the latent variables that are influencing the

observed variables, EFA was utilized.

Another common method is examining a scree plot which represents a relationship curve be-

tween eigenvalues and the number of extracted factors; an example of a scree plot is showed in

Figure 28. Interpreting a scree plot involves locating the “elbow” in the plot, where the slope
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of the line changes. For example, Figure 28 shows an obvious slope change at the fourth factor.

In this case, the scree plot suggests four factors be extracted. However, some scree plots may

have a more ambiguous shape and it could result in various interpretations.

Figure 27. Example of scree plot

The percentage of variance is another criterion used for determining the number of factors. In

this method, the researcher decides the preferred amount of variance being explained by the

factors and then the number of factors that fit this criterion are extracted accordingly.

Another common method is the parallel analysis method, which is based on the concept that the

eigenvalues of the reduced correlation matrix should be bigger than the expected eigenvalues
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derived from repeated random datasets with the same sample size and number of variables.

The number of factors extracted are determined at the point where the eigenvalue drops lower

than the expected value.

Finally, the fifth common method is the interpretability. In EFA, the goal is to identify the

hidden factors and their influence on observed variables, therefore, interpretable factors supply

more information than non-interpretable factors. In other words, a four factor model with

interpretability is more useful then a five factor model with an extra factor with no explanations.

Most researchers tend to use one method to decide the number of factors and ignored the

criterion of interpretability. In spite of this, interpretability is the most essential criterion and

should always be included in an EFA study.

5.1.4 Methods of Rotation

Once factors are extracted, rotation is applied in order to obtain more interpretable factors.

The factors are rotated simultaneously to reach as many zero loadings for each factor as possible

that is to get as many coefficients equal to zero. This highlights which variables are important.

Based on the correlation between factors, a set of data can be either orthogonal or oblique,

that require different rotation methods. Data is considered orthogonal when all the extracted

factors are orthogonal (not correlated). Otherwise, data is considered oblique. When data was

considered orthogonal, the most common method is varimax method. For oblique data, promax

is preferred (68).
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5.1.5 Interpretation

Interpretation is the final step in factor analyses. Based on the factor loadings of each variable,

each factor is given a meaningful name that relate to a potential latent variable in the system.

Researchers can then use these factors to conduct further analyses.

Many water quality measures are correlated to each other and are affected by other variables,

such as locations or seasons. A regular regression model would run into problems of multi-

collinearity. If the goal is simply predict Y, such as health outcomes, then multicollinearity

is not a problem. The overall model predictions will still be accurate. However, if the goal

is to understand how the various water parameters, such as microbial concentrations, pH, or

water temperature, impacting Y, then multicollinearity would be a big problem. The individ-

ual P-value can be non-significant even though a variable is important, and therefore, mislead

the interpretation. The use of EFA can avoid multicollinearity problem and pinpoint the real

variables that relate to the variations in the water quality. Furthermore, the observed variables

might not be significant in a regression analysis, mainly because the variance shared between

the variables yields too much noise. Regular water quality measures such as pH, water tem-

perature, or dissolved oxygen (DO) vary seasonally, and the impact of these measures on water

quality change by season as well. Therefore, EFA is a tool to evaluate the temporal and spacial

variations of water quality by grouping variables with similar variations together.
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Exploratory Factor Analysis has been used on water quality data in many studies to identify

different pollutant sources at sites with various pollution levels (72; 73; 74). In these studies, the

extracted factors also provided a way to observe the seasonal variations in water quality.

Recently, Li and Zhang (75) used EFA to successfully identify the seasonal metal sources in the

Upper Han River in China and then conducted health risk assessment accordingly. Since the

metal sources changed seasonally, the health risk assessment combined with EFA could estimate

the risk more accurately by taking seasonal effects into account. Li and Zhang showed that

using the latent variables identified by EFA can help to observe the association between water

quality and human health.

Applying EFA to this study can help us to identify the different sources of bacterial microbes

in various levels of polluted areas. Despite the number of studies that have applied EFA to

water quality data, none of them examined if factors extracted from a water quality dataset

can be used to predict disease rates among water users. The goal of this study is to evaluate

the performance of using factors in predicting health risks.

5.2 Methods

The following approaches were developed in order to test the research hypothesis that one can

apply exploratory factor analysis to water quality data and use the factors to regress water

users health outcomes.

i) Apply EFA on North Branch System and Cal-Sag Channel separately to identify the dif-

ferent factors impacting the water quality.
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ii) Perform EFA based on different levels of pollution (upstream or downstream of the WRPs)

to test if influencing factors vary considerably by pollution levels.

iii) Evaluate the performance of using factors as predictors of health outcomes.

The analyses were conducted in SAS R�, version 9, using command PROC FACTOR. Exploratory

factor analysis was applied to all the samples collected in the CAWS and to the two systems

separately to examine any different factors influencing water quality presenting in the systems.

Furthermore, for each system, upstream and downstream sites were also analyzed individually

for identification of potential different factors at various pollution levels. In this study, measured

values of water parameters varied in a wide range in regards to different locations; complete

results are described in Appendix A. This could indicate the presence of certain temporal

unobserved variables.

The variables used to extract factors were four indicators, dissolved oxygen (DO) concentration,

pH, turbidity, conductivity, water temperature, accumulated solar radiation, last CSO event

(hours since last CSO), magnitude of last CSO, duration of last CSO, intensity (gal/hour) of

last CSO, last rain event (hours since last rain), magnitude of last rain, duration of last rain, and

intensity (inch/hour) of last rain event. Transformations were used to convert the variables to

normal distributions, however, even with the transformation, violations of normality, skewness

> 2 or kurtosis > 7, were still present in some of the variables. Hence, principle factor method

was used in this study for factor extraction.
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After the extraction method had been selected, the communalities between observed variables

were estimated. In this step, the squared multiple correlation coefficient (SMC) of one variable

with all other variables, also known as r-squared, was used for communality estimation. The

SMC of a variable multiplied by 100 represented the percent of variation of the variable being

explained by all other variables. This was the portion which EFA attempted to explain by

extracting latent variables.

Once communalities were calculated, the number of factors was determined. Initially, six factors

were extracted based on four criteria: Kaiser-Guttman rule, percentage of variance preferred

to be explained, scree plot test, and parallel analysis, Figure 28. However, while examining

the variable loadings for each factor, not all the factors were interpretable. Factor five and

six seemed to present the unexplained information remaining in the system but they were not

inferential. Therefore, four factors were chosen for this study.

The correlation between the four extracted factors was examined. Ideally, in factor analysis,

the goal is to extract non-correlated factors. However, in this study, the four selected factors

were not orthogonal. In this case, one of the options was to apply EFA on the four factors in

order to obtain a second tier of factors to resolve the correlation problem, but this would result

in fewer factors with no interpretability, so this approach was not considered for the purposes

of this study.

Before giving any interpretations to the four factors, factor rotations were performed. Promax

rotation was selected over varimax method since the four factors were not orthogonal. The
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Figure 28. Scree plot and non-graphical solutions of scree test
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rotated factors were then interpreted based on the combination of variables with high loading

in each factor. Factor scores for CAWS, Cal-Sag Channel, North Branch System, upstream and

downstream of the North Branch System were calculated and compared for the identification

of different factor patterns from various sites.

The goal of applying the EFAmethod to this study was to identify the sources that are impacting

the water quality and examined how sources can predict the health outcomes among water

users. In order to accomplish the goal, the data with factor scores was matched with the health

outcome data and then used to fit the E. coli logistic regression model previously used. The

parameter estimates were compared with the ones obtained from using individual water quality

parameters as predictors.

5.3 Results

The EFA method was applied on the CAWS, the North Branch System and the Cal-Sag Chan-

nel, and, in addition to the whole North Branch System, upstream and downstream sites in the

North Branch System. Initially the EFA method was to be applied on the upstream and down-

stream sites in the Cal-Sag Channel, but due to an insufficient sample size it was impossible to

conduct EFA.

5.3.1 CAWS Overall

Factor loadings in CAWS are showed in Table XLV. 47% variation was explained by the

four factors. The standard criteria used to determine the significancy of a factor loading are:

factor loadings from 0.3 to less than 0.6 are considered moderate, indicating the factor only has
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moderate effects on the variables, and loadings of 0.6 and above are defined as strong, indicating

strong factor effect. In Table XLV bold and underlined values indicated strong and moderate

loadings respectively. Based on the factor loadings, factor 1 was named as the weather factor

and factor 2 was identified as the indicator factor. The separation of an indicator factor from a

weather factor was apparent. Factor 3 and 4, on the other hand, were not as manifest as factor

1 or 2. Factor 3 was identified as the unexplained influence of weather factor and factor 4 was

considered water chemistry factor. The CAWS contains a mix of sampling sites with various

pollution levels, upstream and downstream, and also unique location characteristics. Therefore,

I hypothesized that it is complicated to observe meaningful factors without grouping samples by

pollution levels or location characteristics. Figure 29 shows a two dimensional map of variable

loadings of factor 1 and 2 of the CAWS. One can notice that the separation of variables started

to occur while only two factors were considered. It indicates the presence of latent variables

that are impacting the observed water parameters.

5.3.2 North Branch System Versus Cal-Sag Channel

Factor loadings in the North Branch System and Cal-Sag Channel are listed in Table XLVI.

In the North Branch System, a strong indicator factor, factor 1, exists while by contrast, the

same factor is not identified in the Cal-Sag Channel. In addition, the separation of an indicator

factor from a weather factor is more clear in the North Branch System than in the Cal-Sag

Channel. In the Cal-Sag Channel, indicators are distributed across different factors. Also, the

factor loading for conductivity is related to the indicator factor in the North Branch System.
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TABLE XLV

FACTOR LOADINGS AT CAWS LOCATIONS

Variation explained by factors: 47% (n=559)
Factor 1 Factor 2 Factor 3 Factor 4

Somatic coliphages (PFU/100mL) 0.23 0.87 0.07 0.18
Male-specific coliphages (PFU/100mL) 0.32 0.83 0.21 0.13

E. coli (CFU/100mL) 0.03 0.73 0.08 0.06
Enterococci (CFU/100mL) -0.26 0.74 0.01 -0.14

DO (mg/L) -0.13 -0.31 -0.06 -0.43
pH 0.14 -0.28 -0.01 -0.21

Turbidity (NTU) 0.07 0.17 0.07 0.37
Conductivity (mmho/cm) 0.17 0.32 -0.35 0.12
Water temperature (◦C) -0.12 -0.03 -0.12 0.62
Solar radiation (W/m2) -0.14 -0.03 -0.20 0.51

Last CSO (hour) -0.14 -0.21 -0.50 0.11
CSO magnitude (gallon) 0.75 0.13 0.19 0.02
CSO duration (hour) 0.58 0.08 0.09 -0.09

CSO intensity (gallon/hour) 0.60 0.17 0.26 0.01
Last rain (hour) 0.58 -0.18 0.06 0.06

Rain magnitude (inch) 0.85 0.05 0.68 0.12
Rain duration (hour) 0.78 0.10 0.57 -0.05

Rain intensity (inch/hour) 0.42 0.14 0.59 0.12
Bold and underlined values indicate strong and moderate loadings respectively



129

Figure 29. Factor loadings of factor 1 and factor 2 of CAWS
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This finding is consistent with the overall CAWS and can indicate the relationship between

indicators and conductivity. However, while a disparity between the two systems is noticeable,

one has to keep in mind that the North Branch System is characterized by twice as many

samples as the Cal-Sag Channel. The small sample size at the Cal-Sag Channel may impact

identification of factors.
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TABLE XLVI

FACTOR LOADINGS AT NORTH BRANCH SYSTEM AND CAL-SAG CHANNEL

North Branch system
Variation explained by factors: 51% (n=312)
Factor 1 Factor 2 Factor 3 Factor 4

Somatic coliphages (PFU/100mL) 0.90 0.07 0.19 0.16
Male-specific coliphages (PFU/100mL) 0.86 0.14 0.31 0.05

E. coli (CFU/100mL) 0.77 -0.08 0.15 0.24
Enterococci (CFU/100mL) 0.72 -0.36 0.04 0.18

DO (mg/L) -0.28 -0.09 -0.14 -0.47
pH -0.27 0.15 -0.02 -0.34

Turbidity (NTU) 0.10 -0.06 0.26 0.28
Conductivity (mmho/cm) 0.51 0.22 -0.12 -0.24
Water temperature (◦C) 0.08 -0.09 0.08 0.76
Solar radiation (W/m2) -0.01 -0.11 -0.16 0.51

Last CSO (hour) -0.06 -0.01 -0.34 -0.03
CSO magnitude (gallon) 0.09 0.84 0.40 -0.12
CSO duration (hour) 0.05 0.64 0.10 -0.12

CSO intensity (gallon/hour) 0.05 0.64 0.42 -0.09
Last rain (hour) -0.17 0.60 0.08 -0.17

Rain magnitude (inch) 0.08 0.73 0.85 -0.29
Rain duration (hour) 0.13 0.61 0.65 -0.49

Rain intensity (inch/hour) 0.20 0.27 0.65 0.02
Cal-Sag Channel

Variation explained by factors: 64% (n=152)
Factor 1 Factor 2 Factor 3 Factor 4

Somatic coliphages (PFU/100mL) 0.18 0.77 0.27 0.22
Male-specific coliphages (PFU/100mL) 0.30 0.85 0.44 0.16

E. coli (CFU/100mL) 0.02 0.02 -0.05 0.72
Enterococci (CFU/100mL) -0.66 0.17 -0.02 0.23

DO (mg/L) 0.01 -0.30 -0.01 -0.63
pH 0.28 -0.12 0.23 -0.31

Turbidity (NTU) 0.07 0.15 -0.22 0.33
Conductivity (mmho/cm) -0.09 -0.39 -0.59 0.05
Water temperature (ĉircC) -0.29 -0.43 0.10 -0.38
Solar radiation (W/m2) -0.19 -0.09 -0.41 -0.02

Last CSO (hour) -0.28 -0.71 -0.12 -0.45
CSO magnitude (gallon) 0.82 0.55 0.80 -0.01
CSO duration (hour) 0.91 0.56 0.63 -0.01

CSO intensity (gallon/hour) 0.45 0.76 0.77 -0.26
Last rain (hour) 0.80 0.14 -0.09 -0.10

Rain magnitude (inch) 0.92 0.55 0.64 0.15
Rain duration (hour) 0.92 0.61 0.54 0.23

Rain intensity (inch/hour) 0.87 0.41 0.30 0.26
Bold and underlined values indicate strong and moderate loadings respectively



132

5.3.3 North Branch System: Upstream Versus Downstream

Factor loadings for upstream and downstream of the North Branch System are showed in

Table XLVII. It is noticeable that the strongest factor in the downstream system is the indicator

factors. In the upstream location, conversely, the most significant factor is the weather factor.

This implies that the observed indicator factors downstream could be the influence of the North

Side WRP. In addition, the trend of conductivity correlated with the indicator factor is also

identified in the downstream sites. Furthermore, separation of rain factor and CSO factor can

be identified in the downstream sites as well. This is the first time this separation occurred

in all analyses. Downstream sites have more samples with similar pollution levels and site

characteristics, and it makes the identification of weather factors in the system more clear.

This can be the reason that clustering of variables with high factor loadings are more apparent

at downstream sites than at the upstream site.



133

TABLE XLVII

FACTOR LOADINGS AT CAWS NORTH BRANCH SYSTEM UPSTREAM AND
DOWNSTREAM

Upstream
Variation explained by factors: 60% (n=63)
Factor 1 Factor 2 Factor 3 Factor 4

Somatic coliphages (PFU/100mL) 0.42 0.77 0.72 0.29
Male-specific coliphages (PFU/100mL) 0.51 0.66 0.75 0.27

E. coli (CFU/100mL) -0.01 0.72 0.10 0.15
Enterococci (CFU/100mL) -0.52 0.65 -0.11 0.18

DO (mg/L) -0.25 -0.33 -0.32 -0.67
pH 0.01 -0.15 0.01 -0.54

Turbidity (NTU) 0.10 0.46 0.15 0.14
Conductivity (mmho/cm) 0.17 -0.11 0.67 -0.17
Water temperature (◦C) 0.07 0.28 -0.18 0.74
Solar radiation (W/m2) -0.09 -0.13 -0.17 0.44

Last CSO (hour) -0.23 -0.45 0.02 -0.28
CSO magnitude (gallon) 0.94 0.29 0.64 0.18
CSO duration (hour) 0.68 -0.00 0.17 0.08

CSO intensity(gallon/hour) 0.69 0.42 0.54 0.23
Last rain (hour) 0.73 -0.16 0.04 -0.01

Rain magnitude (inch) 0.92 0.37 0.71 0.17
Rain duration (hour) 0.72 0.21 0.76 -0.01

Rain intensity (inch/hour) 0.63 0.45 0.40 0.14
Downstream

Variation explained by factors: 48% (n=249)
Factor 1 Factor 2 Factor 3 Factor 4

Somatic coliphages (PFU/100mL) 0.84 0.02 0.17 -0.03
Male-specific coliphages (PFU/100mL) 0.80 0.07 0.33 -0.13

E. coli (CFU/100mL) 0.72 -0.05 0.10 0.11
Enterococci (CFU/100mL) 0.77 -0.26 -0.01 0.03

DO (mg/L) -0.09 -0.04 -0.01 -0.46
pH -0.20 0.17 0.07 -0.26

Turbidity (NTU) 0.03 -0.09 0.19 0.38
Conductivity (mmho/cm) 0.42 0.23 -0.10 -0.42
Water temperature (◦C) -0.01 -0.10 -0.01 0.77
Solar radiation (W/cm2) -0.14 -0.11 -0.17 0.45

Last CSO (hour) -0.06 0.05 -0.31 -0.03
CSO magnitude (gallon) 0.01 0.85 0.37 -0.07
CSO duration (hour) -0.01 0.67 0.12 -0.16

CSO intensity (gallon/hour) -0.03 0.63 0.39 -0.07
Last rain (hour) -0.28 0.58 0.10 -0.22

Rain magnitude (inch) 0.05 0.59 0.92 -0.19
Rain duration (hour) 0.12 0.50 0.72 -0.43

Rain intensity (inch/hour) 0.26 0.17 0.59 0.13
Bold and underlined values indicate strong and moderate loadings respectively
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5.3.4 Using Factor Loadings As Predictors of Health Outcomes

Four factor model of the CAWS was used to fit the E. coli logistic regression model. The two

variables, duration of last rain and hour since last CSO, were removed from the model since the

rain and CSO variables were included in the four factors. However, the expected improvement

was not observed. Possible reasons are: factors do not link to the health outcomes, the latent

variables that cause the cluster of observed variables do not affect health outcomes, and some

of the subject variables are significant in the model and affect any observation of improvements

contributed by the factors. In order to test the second hypothesis, an approach of logistic

regression modeling without subject variables was utilized.

5.3.4.1 Logistic Regression: Full Models with Subject Variables

The CAWS data was used to fit the logistic regression model using factor loadings and survey

data. The results are listed in Table XLVIII.

The factor model was not significant. As mentioned previously, this might be because the

subject variables in the model have a stronger effect predicting GI illness rates among water

users. Since the goal of this part of study was to evaluate if factors can predict GI illness better

than individual water parameters, the analysis was adjusted by using only water parameters or

factors in the model to compare the results. The model with only water parameters contained

only the eighteen variables used in extracting factors. The results are showed in the following

sections.
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TABLE XLVIII

LOGISTIC REGRESSION ANALYSIS USING FACTORS

Parameter β SE (β) p VIF
Intercept -3.7476 0.9644 0.0001 0
Factor 1 -0.5558 0.5280 0.2925 2.2828
Factor 2 0.2870 0.3728 0.4414 3.1146
Factor 3 -0.6378 0.4027 0.1133 1.6103
Factor 4 -0.2911 0.3663 0.4269 1.7645
Age0-10 0.1374 0.6174 0.8239 1.1648
Gender 0.4741 0.3569 0.1841 1.0325

Age 65 and over -12.5607 573.5 0.9825 1.0377
RaceHispanic 0.7587 0.8031 0.3448 1.5270
RaceWhite -0.3373 0.6467 0.6020 2.6441
RaceOther 0.3931 0.7609 0.6054 1.9920

Pre-exist GI 1.3983 0.6993 0.0455 1.0397
Previously exposed to GI -12.8966 600.9 0.9829 1.0157

Wet score 0.2072 0.0591 0.0005 1.4662
Boat -0.8611 0.6581 0.1907 2.9482
Canoe -1.7350 0.772 0.0256 4.2993
Kayak -2.0296 0.9043 0.0248 4.0406
Row -1.4486 0.8442 0.0862 2.2032

Water sport concern 0.0448 0.0645 0.4868 1.0854
Test p

Overall model evaluation
Likelihood ratio test 0.0240

Score test 0.0241
Wald test 0.0985
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5.3.4.2 Logistic Regression: Models With Only Water Parameters

The variables in the water parameter model are four indicators, (E. coli, enterococci, somatic

coliphages, and male-specific coliphages), D.O., pH, water temperature, turbidity, conductivity,

cumulative sun, hours since last CSO event and rain event, magnitude of last CSO and rain,

duration of last CSO and rain, and interval of last CSO and rain. There are a total of 18

variables in the water parameter model and a total of four parameters in the factor model. The

logistic regression models were applied to the complete CAWS dataset, Cal-Sag Channel, North

Branch System, North Branch System downstream locations, and also upstream locations in

the North Branch System. However, at the upstream site of North Branch System, the majority

of the water parameter variables were linear combinations of the other variables in the model,

which resulted in the model returning error message and the parameter estimates were not

able to be obtained. This might be because all the data points were from one site (BR). The

lack of variability of site characters might result in the linear relationship between the water

parameter variables. The small sample size might also impact the ability to detect the true

correlation. The results of the two different models at each location group are listed in the

following sections.

5.3.4.2.1 CAWS

The results of the two logistic regression models are listed in Table XLIX and Table L. Again,

the results show no improvement when using factors as predictors instead of water parame-

ters individually. Overall, both models are not significant statistically. The model using water
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parameters does not have strong multicollinearity problems given that all the VIFs are un-

der 10. However, one can manifest the improvement of VIFs in the model using factors as

predictors.

5.3.4.2.2 Cal-Sag Channel

The results of modeling Cal-Sag Channel are listed in Table LI and Table LII. Results in-

dicate no improvement when using factors as variables instead of water parameters. Overall

model evaluation indicates that neither models are statistically significant; the likelihood ratio

test of p-value=0.03 in water parameter model is only marginally significant. The individual

p-value for each factor in the factor model are all larger than 0.05, indicating that factors are

not stronger predictors than water parameters. However, the factor model solves the multi-

collinearity problem the water parameter model encountered.

5.3.4.2.3 North Branch System

The results of modeling North Branch System are listed in Table LIII and Table LIV. Overall

model evaluation results indicate that neither models are statistically significant. In addition, in

the factor model, there is no multicollinearity problem that is observed in the water parameter

model.

5.3.4.2.4 North Branch System - Downstream Sites

The results of modeling the North Branch System downstream sites are listed in Table LV and

Table LVI respectively. There is no improvement noticed when using factors as variables instead
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TABLE XLIX

LOGISTIC REGRESSION ANALYSIS USING ONLY WATER PARAMETERS: CAWS

Parameter β SE (β) p VIF
Intercept -3.6549 4.9189 0.4575 0

Somatic coliphages 0.4006 0.4223 0.3427 7.0243
Male-specific coliphages -0.6834 0.4355 0.1166 5.9349

D.O. 0.1533 0.1250 0.2201 1.4313
p.H. 0.1756 0.6602 0.7903 1.4097

Water Temperature -0.1790 0.0757 0.0181 4.1218
Turbidity 0.0048 0.0295 0.8698 1.8487
Last CSO 0.0037 0.0013 0.0033 2.2850
Last rain -0.0118 0.0047 0.0125 2.6049
CSO-Mag -655E-13 5.2E-11 0.2077 8.2868

CSO-Duration 0.0060 0.0043 0.1599 4.8011
Rain-Intensity 0.0938 1.7085 0.9562 2.6913
CSO-intensity 3.37E-9 4.83E-9 0.4849 2.9684
Rain-Duration -0.0639 0.0561 0.2546 3.8574

Rain-Mag 0.1197 0.2307 0.6039 6.2286
Conductivity 0.0007 0.0007 0.3278 1.8255

E. coli 0.4216 0.4335 0.3307 3.9047
Enterococci -0.2572 0.5034 0.6094 3.7193
Sun-Cum 0.1878 0.0952 0.0484 2.3440

Test p

Overall model evaluation
Likelihood ratio test 0.0881

Score test 0.1037
Wald test 0.1697
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TABLE L

LOGISTIC REGRESSION ANALYSIS USING ONLY FACTORS: CAWS

Parameter β SE (β) p VIF
Intercept -3.1585 0.2449 <0.0001 0
Factor 1 -0.3017 0.4319 0.4848 2.0818
Factor 2 -0.1432 0.2385 0.5481 1.4813
Factor 3 -0.5852 0.3416 0.0867 1.4364
Factor 4 -0.0911 0.2625 0.7286 1.1083
Test p

Overall model evaluation
Likelihood ratio test 0.2913

Score test 0.3416
Wald test 0.3317

of water parameters individually. The results of the overall model evaluation, indicate that both

models are not statistically significant, and consequently, factors are not stronger predictors

than water parameters in predicting water users health outcomes. However, the factor model

reduces the multicollinearity problem that occurred in the water parameter model.
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TABLE LI

LOGISTIC REGRESSION ANALYSIS USING ONLY WATER PARAMETERS: CAL-SAG
CHANNEL

Parameter β SE (β) p VIF
Intercept -48.1751 56.1655 0.3910 0

Somatic coliphages -2.5483 2.4892 0.3060 8.6040
Male-specific coliphages -0.6860 2.4412 0.7787 7.5914

D.O. -2.4773 1.4812 0.0944 6.5679
p.H. 4.2490 4.9360 0.3893 2.6327

Water Temperature -0.1947 0.3775 0.6060 7.7722
Turbidity -0.1067 0.1185 0.3678 2.2331
Last CSO 0.0460 0.0473 0.3312 7.7859
Last rain -0.2085 0.2539 0.4115 22.7555
CSO-Mag -7.47E-8 1.25E-7 0.5483 53.5393

CSO-Duration 0.9385 4.8614 0.8469 29.1803
Rain-Intensity -5.9919 43.9390 0.8915 5.7478
CSO-intensity 1.00E-6 1.81E-6 0.5805 10.0624
Rain-Duration 0.9323 2.4249 0.7006 60.7826

Rain-Mag 0.2357 34.3882 0.9945 109.1240
Conductivity 0.0191 0.0127 0.1322 3.1859

E. coli -2.9634 2.3915 0.2153 3.4544
Enterococci 3.6199 3.4536 0.2946 4.0588
Sun-Cum 1.0289 0.4941 0.0373 1.9584

Test p

Overall model evaluation
Likelihood ratio test 0.0324

Score test 0.1917
Wald test 0.8215
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TABLE LII

LOGISTIC REGRESSION ANALYSIS USING ONLY FACTORS: CAL-SAG CHANNEL

Parameter β SE (β) p VIF
Intercept -4.9877 1.6730 0.0029 0
Factor 1 -3.1945 2.5013 0.2016 1.4052
Factor 2 -1.3607 1.0032 0.1750 1.2570
Factor 3 -1.5167 2.4117 0.5294 1.4602
Factor 4 0.3375 0.9018 0.7082 1.1505
Test p

Overall model evaluation
Likelihood ratio test 0.1462

Score test 0.3746
Wald test 0.4470

5.4 Conclusions

5.4.1 Summary of Findings

In the comparison of the North Branch System to the Cal-Sag Channel, an indicator factor is

only identified in the North Branch System. In the Cal-Sag Channel, the indicator microbes do

not cluster together. Studies have found that the levels of indicator microbes were consistently

higher in the North Branch System than in the Cal-Sag Channel (76; 77). It could be one of

the reasons why a clear indicator factor is observed in the North Branch System.

The difference between the North Branch System and Cal-Sag Channel is also observed using

CMB model for source apportionment. As mentioned previously, the heavy commercial traffic
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TABLE LIII

LOGISTIC REGRESSION ANALYSIS USING ONLY WATER PARAMETERS: NORTH
BRANCH SYSTEM

Parameter β SE (β) p VIF
Intercept 4.8419 13.0925 0.7115 0

Somatic coliphages 2.4510 1.1065 0.0268 8.8242
Male-specific coliphages -0.8721 0.7030 0.2148 6.7993

D.O. 0.5250 0.3638 0.1490 2.7766
p.H. -0.7192 1.7228 0.6763 1.7976

Water Temperature -0.5492 0.2516 0.0290 8.1835
Turbidity 0.0740 0.0971 0.4461 3.7005
Last CSO 0.0058 0.0039 0.1355 4.9039
Last rain -0.0275 0.0120 0.0213 3.4141
CSO-Mag -184E-12 1.22E-10 0.1312 12.9076

CSO-Duration 0.0169 0.0083 0.0408 5.7385
Rain-Intensity 3.4552 3.4122 0.3113 3.5650
CSO-intensity 9.57E-9 9.32E-9 0.3044 3.7423
Rain-Duration -0.0990 0.1016 0.3296 3.0721

Rain-Mag 0.0038 0.4730 0.9937 7.4537
Conductivity -0.0011 0.0025 0.6599 3.2863

E. coli 0.2836 0.8843 0.7484 6.8341
Enterococci 0.2836 0.8843 0.7484 4.4760
Sun-Cum 0.4247 0.2225 0.0563 3.8208

Test p

Overall model evaluation
Likelihood ratio test 0.1970

Score test 0.3749
Wald test 0.6352
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TABLE LIV

LOGISTIC REGRESSION ANALYSIS USING ONLY FACTORS: NORTH BRANCH
SYSTEM

Parameter β SE (β) p VIF
Intercept -3.1729 0.2632 <0.0001 0
Factor 1 -0.1268 0.3585 0.7237 1.9066
Factor 2 0.2473 0.3258 0.4479 2.1148
Factor 3 -0.0925 0.4592 0.8403 1.5462
Factor 4 -0.1330 0.4258 0.7548 1.5159
Test p

Overall model evaluation
Likelihood ratio test 0.7782

Score test 0.7774
Wald test 0.7858

and more complicated environment in the Cal-Sag Channel could also influences the separations

between factors.

In the comparison between the North Branch upstream and downstream sites, separation of a

rain factor and CSO factor is only observed in the downstream system. The downstream sites

also show stronger separations between water treatment plant factor (indicator factor), rain

factor, and CSO factor. The North Branch System is a narrow channel with limited traffic,

majorly canoes or kayak. It does not have heavy commercial boat traffic as in the Cal-Sag

Channel. This characteristic of the North Branch System can explain the reason why the

potential sources impacting the water quality can be well explained by the plant, rain, and

CSO factors.
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TABLE LV

LOGISTIC REGRESSION ANALYSIS USING ONLY WATER PARAMETERS: NORTH
BRANCH DOWNSTREAM SITES

Parameter β SE (β) p VIF
Intercept 4.2228 13.8357 0.7602 0

Somatic coliphages 2.5541 1.2196 0.0362 7.8942
Male-specific coliphages -0.8857 0.7043 0.2085 5.7118

D.O. 0.4778 0.3854 0.2150 2.8347
p.H. -0.6932 1.7987 0.6999 1.8267

Water Temperature -0.5334 0.2571 0.0381 8.8915
Turbidity 0.0762 0.0951 0.4232 3.9877
Last CSO 0.0050 0.0046 0.2766 6.6496
Last rain -0.0251 0.0142 0.0778 3.8427
CSO-Mag -188E-12 1.26E-10 0.1351 12.9773

CSO-Duration 0.0176 0.0089 0.0476 5.9846
Rain-Intensity 2.9250 3.8550 0.4480 3.7844
CSO-intensity 9.83E-9 9.44E-9 0.2977 3.7768
Rain-Duration -0.1173 0.1302 0.3677 3.3321

Rain-Mag 0.0325 0.4946 0.9476 7.4105
Conductivity -0.0013 0.0026 0.6263 3.4363

E. coli 0.1995 0.9326 0.8306 6.0555
Enterococci -1.3104 1.6977 0.4402 4.5753
Sun-Cum 0.4265 0.2235 0.0564 3.7941

Test p

Overall model evaluation
Likelihood ratio test 0.2559

Score test 0.4349
Wald test 0.6717
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TABLE LVI

LOGISTIC REGRESSION ANALYSIS USING ONLY FACTORS: NORTH BRANCH
DOWN STREAM SITES

Parameter β SE (β) p VIF
Intercept -3.1933 0.2684 <0.0001 0
Factor 1 -0.1388 0.3084 0.6525 1.5343
Factor 2 0.1927 0.2568 0.4532 1.7300
Factor 3 -0.0310 0.4469 0.9447 1.3060
Factor 4 -0.1879 0.4103 0.6469 1.4207
Test p

Overall model evaluation
Likelihood ratio test 0.7962

Score test 0.8047
Wald test 0.8115

5.4.2 Implications of the Factor Analysis

In the downstream of North Branch System, plant factor is the strongest contributor of FIB.

This finding can be validated once the disinfection of plant discharge is implemented. If the

FA model can explaining the plant factor correctly, with the implementation of disinfection the

domination of the plant factor is expected to be reduced.

In order to protect the health of water users, it is important to distinguish the human fecal

contamination from animal waste in urban storm runoff. Several studies have demonstrate

a strong relationship between FIB contributed from sewage outfalls and the rates of illness

among water users (78; 15). However, our knowledge of the association between GI illness rates

and FIB concentrations in water bodies without known source of domestic sewage is limited.
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Fleisher et al. (79) addressed this issue in an epidemiological study and concluded that the

risk of GI illness among exposed group is not significantly higher than the non-exposed group.

In this study, we differentiated between point source (PS), such as the plant, and non-point

source (NPS), such as rain, using factor analysis and examined how can PS and NPS predict GI

illness rates. In the findings, the separation between CSO and rain factors in the downstream

North Branch System suggests CSO input as human fecal contamination, and rain factor as

non-point source urban runoff. A logistic regression model can then examine the association

between NPS FIB concentrations and risks of illness by evaluating if the rain factor is a strong

predictor.

5.4.3 Strengths

This is the first application of an exploratory factor analysis for source identification of microbial

water quality data. This study shows that EFA is able to identify the latent variables using

observed water quality variables. The factors identified may be related to particular sources

affecting the CAWS. For example, indicator factor could be the plant source and rain factor

could be the urban runoffs. The finding of strong indicator factor in the downstream locations

agreed with the CMB model results (Chapter 4).

In comparison to the CMB model, EFA does not require any prior knowledge of the flow or

source emission. Consequently, EFA can be applied more widely to systems with complicated

flow patterns.
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Majority of the physical phenomena of the environment are related. Correlation in these data

was amplified by the “matching” of one measurement to many participants. This can cause

multicollinearity situation and result in the parameter estimates changing inconsistently in

respond to small changes in the data or the model. Furthermore, computer software packages

will not be able to calculate parameter estimates with a high degree of multicollinearity. This

study shows that EFA provides a way of capturing important information that is contained in

latent variables.

5.4.4 Limitations

This study shows that the EFA can identify latent variables that are impacting the water

quality. It is important to validate the finding before drawing any conclusion. One way to

verify it is to compare the results to fecal Bacteroides spp. QPCR assay designed by Converse

et al. (80). This method has been proved that it can detect human fecal contamination even

when high concentration of animal contamination is in present, especially bird feces, which is

the dominant animal contamination in the Great Lakes area. A well agreement between human

fecal contamination from QPCR analysis and indicator factors can prove that the indicator

factor is plant source in the system.

Exploratory factor analysis is a method requiring a large number of variables and observations.

The preferred ratio of factors to variables is at least 1:4. Due to the constraint of sample size, the

comparison between upstream and downstream in the Cal-Sag Channel could not be analyzed.

Giardia and Cryptosporidium were excluded from the analysis because of the small number
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of observations. However, Giardia and Cryptosporidium are the pathogens that cause illness

among water users. Therefore, the exclusion of these two pathogens limits the potential link

with health outcomes. Furthermore, for a system with more complex sources, more variables are

needed to identify these sources. For example, in order to examine the source of boat traffic in

the Cal-Sag Channel, information such as traffic counts, noise pollution, or even concentrations

of liquid petroleum hydrocarbon for potential oil spills would be useful.

The association between FIB concentrations and rates of GI illness using factors as predictors

remained unexplained. Possible reasons will be discussed in Chapter 6.



CHAPTER 6

DISCUSSION

6.1 Multiple Imputation On Microbial Water Quality Data

This is the first study to utilize multiple imputation to fill in missing microbial density values.

In these data (n= 1,123), microbial density values were missing due laboratory quality issues:

A total of 27% of E. coli and 38% of enterococci density values were missing.

Multiple imputation techniques are evaluated at two levels. On the first level, the method

is evaluated with respect to how well the imputed data match the true values of the missing

data. On the second level, the method is evaluated with respect to the bias introduced into

coefficients of statistical models fitted with the imputed data relative to the coefficients fitted

with the true data. To address both of these levels, I identified a subset of the dataset for

which all observations were complete (n=573) , and introduced two patterns of missingness to

these data, with an overall missingness of 24%. I found that the imputed values were similar

to the true values (Table XIII and Table XIV). Coefficients in a logistic regression model of

GI illness fitted with the computed data had bias less than 2% relative to those fitted with the

true, complete data (Table XXIII). This strategy was taken because in a true application, the

missing values are unknown. As a result, I evaluated the performance of multiple imputation

149
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for the original data set (n = 1,123), and found that the probability distribution of the data

after imputation was similar to that of the data before imputation.

Overall, this analysis suggests that multiple imputation may introduce some bias in the pa-

rameter estimates of statistical models. However, for these data as missingness of 24% was

associated with bias of less than 2%. It may be that the bias introduced, however, is out-

weighed by the benefit of a larger sample size. This work suggests that multiple imputation

may be a useful technique for the treatment of missing microbial water quality data. Other

investigators considering the use of MI, should evaluate (1) the amount of missing values in the

data set, (2) the missing mechanism, and (3) the analytical method that will be applied on the

data set to determine if the sample size benefits of MI outweigh the bias introduced by MI, or

the bias introduced by other methods.

6.2 Comparisons between EFA and CMB model

Objective 2 and 3 in this study explored the use of CMB model and EFA as alternatives

for predicting health outcomes due to microbial problem. I hypothesized that sources of fecal

contamination identified by CMB model can predict health outcomes, and the factors impacting

the variance of microbial concentrations identified by EFA have an association with health

outcomes.

The EFA is a method analyzing mathematical relationship of variance between sample to sam-

ple. Variables that are associated with potential factors have to be included in the EFA model

in order for the extracted factors to make physical sense. Bzdusek et al. (81) applied EFA to
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apportion the sources of PAHs and identified the impacting factors as the power plant, coke

oven, gasoline engine, diesel engine, etc. The extracted factors are known for the emission of

PAHs. Therefore, the source profiles can well explain the source attribution.

Variables which believed to be linked to potential factors in CAWS, such as WRP factor, rain

factor, or CSO factor, were included in this study for EFA modeling. The EFA identified the

clusters of indicator microbes, CSO events, and rain (Table XLV, Table XLVI, Table XLVII).

However, a cluster of rain and indicator microbes, or CSO and indicator microbes was not

observed. The lack of relationship indicates that the method needs other variables that can

well associate with potential factors such as rain and CSO events.

The CMB model uses measured microbial concentrations to define sources in the system. It

explains the biological association between microbial concentrations and pollutant sources in

the system. This is the first study utilizing the CMB model to evaluate sources of microbial

contaminations in a water system. The results show that CMB model perform well in the

North Branch System for source attributions correctly predicting high and low CSO days (Ta-

ble XXXI). Future studies are desired for the validation of CMB model results in the North

Branch System. Such a study would determine the possibility of using CMB model to monitor

water quality regularly in the CAWS. The proposed disinfection of wastewater “plant” inputs

will be a natural experiment to evaluate the CMB model. Before disinfection is taking place,

one can utilize CMB model to predict the water quality with limited plant impact in the model.

The results can then be compared to the observed concentrations after disinfection under the

same weather conditions. Microbial source tracking is another approach to validate the model
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performance because genetic fingerprints could be used to differentiate the sources. Once the

model is validated, it can be utilized to monitor the impacts of different sources in the system,

and provide knowledge to direct mitigation strategies and new management.

The results in the Cal-Sag Channel have more impact from the background source than in the

North Branch System, and the CSO events are not as well predicted in the Cal-Sag Channel

than in the North Branch System. There are two possible explanations. First, the Cal-Sag

Channel is a deep and wide channel (around 200 feet wide by 26 feet deep) with heavy com-

mercial boat traffic. Second, the average flows from Lake Michigan into the Cal-Sag Channel

is three times more than the North Branch System, according to data file provided by the

MWRDGC. The Cal-Sag Channel might have more pollutant sources than what were mod-

eled in this study. Further studies should explore the improvement of including source of boat

traffic in explaining the total microbial concentrations in the Cal-Sag Channel. This approach

requires the knowledge of traffic counts, noise pollution, or concentrations of liquid petroleum

hydrocarbon for potential oil spills.

6.3 Pollutant Sources in CAWS and Potential Mitigations

The three major sources identified by the CMB model in the CAWS are plant source, rain

source, and CSO source. The plant source of microbial concentrations would be reduced once

the disinfection required by U.S. EPA is implemented. Approaches of the reduction of bacterial

concentrations from urban runoff include educating pet owners to pick up pet waste from the

street, controlling the wildlife populations, and the use of design of constructed wetlands. The
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CSO source can be reduced through a new design separating stormwater drainage and sewage

system. However, the work would require a lot of time and money.

6.4 Pollutant Sources as Health Predictors

The CMB model and the EFA were used to identify pollutant sources that are impacting FIB

concentrations in the CAWS. The sources predicted by both approaches were then used as

predictors to model rates of GI illness among water users. The association between sources and

water users health was not identified in either approach in this study. Possible explanations are

water exposure, dose-response relationship, data collection method, and study design.

The amount of water exposure during limited contact water activities could be a cause of

the lack of association between FIB concentrations and GI illness rates. Previous studies that

identified an association between FIB concentrations and health risks were focused on swimmers

(11; 12; 13; 14). On average, limited contact water users ingest three times less water than

swimmers during the activities (82) and therefore, the water exposure might be too low to

observe any association.

Dose-response curves are in general S-shaped, which indicates that there is a threshold dose

above which an effect manifests and also a maximum effect dose above which the effect stops

increasing and remains constant. The CAWS receives wastewater directly from water treatment

plants without disinfection and has higher concentration of pathegens than other recreational

waterbodies in previous epidemiological studies. Awareness of the water quality could have

caused some participants to be cautious while recreating and helped to significantly reduce



154

exposures, while other participants, who were not as cautious, might have high-dose exposure

due to the high counts of microbes. These two types of exposures fall within the range of

the two flat ends of the dose-response curve. Consequently, no dose-response relationship is

observed.

Water samples were collected at times and locations where participants entered the water.

However, participants could spend hours on the water, traveling long distances. Since we do

not have the information of the location where water exposures happened, the measured FIB

concentrations might not necessary relate to the water quality participants experienced while

recreating. In addition, part of the survey data relied on self-reported information, such as

water ingestion, onset time of the symptoms, and severity of symptoms which are susceptible

to recall bias.

This study is a non-randomized cohort study with confounders. Examples of confounders in our

study could be a group of CAWS users who exercise regularly and as a result are healthier than

the general population; or a group of users who are aware of the water quality and minimize

exposure. Even though efforts have been made to reduce the confounders during data collection

and analysis, unknown confounders might be the cause of the unexplained association between

water quality and health risks.

Conclusions made from this study regarding the association between water quality data and

water users health outcomes are limited. Future studies should focus on estimating the wa-

ter exposure for limited contact water activities, conducting water sampling during and near
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where water exposures happen, distinguishing human and animal fecal contamination in urban

stormwater, and evaluating rates of GI illness among water users on surface waters with and

without point source pollution.
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Appendix A

DESCRIPTIVE STATISTICS OF WATER QUALITY PARAMETERS BY

LOCATION
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Appendix A (Continued)

TABLE LVII

WATER QUALITY PARAMETERS
Locations AL
Variables Ave SD Median Min Max

log10(E. coli) 2.13 0.85 2.30 -1 4.40
log10(Enterococci) 1.91 0.64 1.85 0.30 3.76
log10(Somcoli) 2.29 0.54 2.34 1 3.83
log10(Malcoli) 0.93 0.65 0.85 0 2.72
DO (mg/L) 6.38 1.29 5.96 4.48 9.01

pH 6.83 0.34 6.83 5.74 7.52
Turbidity (NTU) 23.28 13.94 21.13 7.42 110

Conductivity (mmho/cm) 935.56 240.44 913.00 405 1434
Water temp (◦C) 23.64 2.98 23.40 17.5 30.1

Solar radiation (W/m2) 4.98 3.31 4.30 0.04 11.82
Last CSO (hour) 426.85 362.30 308.80 0 1365.8

CSO magnitude (gallon) 4E08 1E08 1E06 1E05 5E09
CSO duration (hour) 14.86 30.82 0.73 0.25 121.07
CSO interval (hour) 8E06 1E07 5E06 5E04 5E07
Last rain (hour) 84.98 81.95 58.00 0 282

Rain magnitude (inch) 2.52 6.44 0.31 0.01 27.94
Rain duration (hour) 11.06 13.82 7.00 1 61
Rain interval (hour) 0.10 0.12 0.05 0.005 0.46

Locations BR
Variables Ave SD Median Min Max

log10(E. coli) 2.31 0.84 2.26 -1 4.78
log10(Enterococci) 2.11 0.67 2.09 0.16 4.35
log10(Somcoli) 1.49 0.79 1.00 0 3.97
log10(Malcoli) 0.36 0.80 0 -1 3.62
DO (mg/L) 8.34 3.23 7.94 0.96 19.09

pH 7.10 0.57 7.02 6.17 9.38
Turbidity (NTU) 14.76 11.48 12.54 4.53 85.34

Conductivity (mmho/cm) 476.69 379.42 304.00 184 1813
Water temp (◦C) 19.16 4.59 20.40 3.3 28.6

Solar radiation (W/m2) 3.20 2.78 2.32 0 10.4
Last CSO (hour) 158.74 173.22 92.43 0 980.3

CSO magnitude (gallon) 4E09 9E09 3E08 8E03 3E10
CSO duration (hour) 46.95 72.47 18.07 0.03 282.12
CSO interval (hour) 4E07 7E07 6E07 8E03 2E08
Last rain (hour) 53.94 64.47 35.00 0 353

Rain magnitude (inch) 3.30 6.82 0.59 0.01 25.27
Rain duration (hour) 14.12 16.20 7.00 1 67
Rain interval (hour) 0.15 0.18 0.08 0.003 0.97



159

Appendix A (Continued)

TABLE LVIII

WATER QUALITY PARAMETERS (CONTINUED-1)
Locations BA
Variables Ave SD Median Min Max

log10(E. coli) 1.96 0.76 2.07 -1 4.15
log10(Enterococci) 1.48 0.62 1.46 0.09 3.45
log10(Somcoli) 1.40 0.64 1.00 0 3.29
log10(Malcoli) 0.38 0.76 0 0 3.37
DO (mg/L) 7.08 1.82 7.50 3.58 11.15

pH 7.22 0.47 7.15 6.02 8.09
Turbidity (NTU) 27.21 14.12 25.20 10.95 69.2

Conductivity (mmho/cm) 660.58 281.60 571.50 311 1096
Water temp (◦C) 22.32 2.09 22.45 18.3 26.5

Solar radiation (W/m2) 3.94 3.68 2.43 0.01 10.83
Last CSO (hour) 348.83 312.92 277.58 0 1365.8

CSO magnitude (gallon) 7E08 1E09 4E07 1E05 5E09
CSO duration (hour) 21.53 39.69 1.12 0.25 121.07
CSO interval (hour) 1E07 2E07 5E06 5E04 5E07
Last rain (hour) 80.65 79.44 55.00 0 277

Rain magnitude (inch) 4.19 8.91 0.33 0.01 27.94
Rain duration (hour) 14.49 18.36 7.00 1 61
Rain interval (hour) 0.13 0.16 0.06 0.004 0.46

Locations SK
Variables Ave SD Median Min Max

log10(E. coli) 2.80 0.86 2.83 1.08 4.76
log10(Enterococci) 2.33 0.75 2.24 -1 4.50
log10(Somcoli) 1.86 1.02 1.48 0 3.81
log10(Malcoli) 0.65 0.90 0 0 2.45
DO (mg/L) 7.11 2.01 7.40 2.06 10.99

pH 6.92 0.57 6.88 5.44 8.3
Turbidity (NTU) 19.73 8.74 19.92 4.84 41.97

Conductivity (mmho/cm) 459.21 411.87 312.00 131.8 2470
Water temp (◦C) 21.55 4.51 21.40 6.7 33.2

Solar radiation (W/m2) 4.30 2.75 4.32 0 11.09
Last CSO (hour) 146.64 135.76 120.88 0 664.53

CSO magnitude (gallon) 5E09 1E10 1E08 8E03 3E10
CSO duration (hour) 46.04 68.48 28.02 0.03 209.4
CSO interval (hour) 5E07 8E07 6E07 8E03 2E08
Last rain (hour) 46.90 60.14 28.50 0 352

Rain magnitude (inch) 2.35 4.12 1.29 0.01 25.27
Rain duration (hour) 12.75 12.52 8.00 1 68
Rain interval (hour) 0.17 0.21 0.08 0.005 0.87
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Appendix A (Continued)

TABLE LIX

WATER QUALITY PARAMETERS (CONTINUED-2)
Locations LA
Variables Ave SD Median Min Max

log10(E. coli) 3.60 0.60 3.69 -1 4.66
log10(Enterococci) 2.86 0.54 2.87 1.41 4.32
log10(Somcoli) 3.31 0.43 3.36 0 4.00
log10(Malcoli) 1.97 0.47 1.98 0 3.88
DO (mg/L) 7.78 1.68 7.68 2.77 13.81

pH 6.80 0.37 6.78 5.91 7.9
Turbidity (NTU) 12.01 7.95 10.60 1.69 45.02

Conductivity (mmho/cm) 809 291 730 315 1682
Water temp (◦C) 20.00 4.30 21.20 6.5 26.1

Solar radiation (W/m2) 3.64 2.83 2.77 0.01 11.09
Last CSO (hour) 151 167 85.28 0 980

CSO magnitude (gallone) 5E09 1E10 7E08 8E03 3E10
CSO duration (hour) 49.29 72.92 19.80 0.03 282.12
CSO interval (hour) 4E07 7E07 7E07 8E03 2E08
Last rain (hour) 55.78 62.95 37.00 0 353

Rain magnitude (inch) 3.49 7.10 1.01 0.01 25.27
Rain duration (hour) 14.38 16.45 7.00 1 68
Rain interval (hour) 0.16 0.19 0.08 0.003 0.97

Locations CP
Variables Ave SD Median Min Max

log10(E. coli) 3.56 0.59 3.58 -1 4.63
log10(Enterococci) 2.70 0.41 2.70 1.63 3.80
log10(Somcoli) 3.15 0.38 3.16 1.48 3.91
log10(Malcoli) 1.75 0.49 1.79 0 3.07
DO (mg/L) 6.88 1.70 6.49 4.83 12.45

pH 6.80 0.35 6.77 5.79 7.71
Turbidity (NTU) 16.17 10.66 12.61 5.1 51.36

Conductivity (mmho/cm) 807 221 793 441 2080
Water temp (◦C) 24.16 5.09 24.50 15.1 37.6

Solar radiation (W/m2) 5.23 2.79 5.02 0.31 10.77
Last CSO (hour) 175 157 133 0 611

CSO magnitude (gallon) 4E09 9E09 3E08 1E05 3E10
CSO duration (hour) 61.53 90.08 28.02 0.07 282.12
CSO interval (hour) 3E07 5E07 6E07 2E05 2E08
Last rain (hour) 52.72 49.32 36.00 0 222

Rain magnitude (inch) 0.84 0.88 0.44 0.01 2.75
Rain duration (hour) 6.96 5.89 5.00 1 25
Rain interval (hour) 0.13 0.16 0.09 0.006 0.87
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Appendix A (Continued)

TABLE LX

WATER QUALITY PARAMETERS (CONTINUED-3)
Locations RP
Variables Ave SD Median Min Max

log10(E. coli) 3.05 0.60 2.88 2.07 4.19
log10(Enterococci) 2.67 0.51 2.47 1.69 4.10
log10(Somcoli) 2.82 0.46 2.73 2 3.88
log10(Malcoli) 1.58 0.96 1.49 0 4.10
DO (mg/L) 7.10 1.68 6.65 4.92 11.25

pH 7.08 0.31 7.10 6.21 7.62
Turbidity (NTU) 29.17 17.40 22.87 7.69 62.88

Conductivity (mmho/cm) 1155 712 1048 478 2410
Water temp (◦C) 22.69 3.10 23.49 17.3 28.6

Solar radiation (W/m2) 4.39 2.03 4.29 0.92 9.47
Last CSO (hour) 104 115 73.81 0 469

CSO magnitude (gallone) 8E09 1E10 1E09 2E06 3E10
CSO duration (hour) 65.15 79.04 28.02 2.92 209.4
CSO interval (hour) 7E07 9E07 4E07 5E05 2E08
Last rain (hour) 74.2 60.52 64 0 162

Rain magnitude (inch) 4.23 8.46 0.79 0.01 25.27
Rain duration (hour) 14.93 16.80 9 1 54
Rain interval (hour) 0.18 0.24 0.88 0.01 0.87

Locations WO
Variables Ave SD Median Min Max

log10(E. coli) 2.07 0.71 2.12 -1 3.43
log10(Enterococci) 1.64 0.60 1.62 0.17 3.54
log10(Somcoli) 2.07 0.53 2.14 1 3.72
log10(Malcoli) 0.75 0.60 0.78 0 2.73
DO (mg/L) 6.67 1.31 6.53 4.48 9.74

pH 6.89 0.46 6.89 5.74 7.9
Turbidity (NTU) 23.31 16.72 19.32 8.5 133

Conductivity (mmho/cm) 919 239 897.50 336 1364
Water temp (◦C) 24.87 3.49 24.80 15.9 31.4

Solar radiation (W/m2) 4.98 3.47 4.36 0.05 12.14
Last CSO (hour) 459 415 307.63 0 2057

CSO magnitude (gallon) 4E08 1E09 2E06 1E05 5E09
CSO duration (hour) 15.75 32.63 0.73 0.25 121.07
CSO interval (hour) 6E06 1E07 5E06 5E04 4E07
Last rain (hour) 80.17 76.30 54.50 0 282

Rain magnitude (inch) 2.97 6.77 0.33 0.005 27.94
Rain duration (hour) 11.80 15.05 6.00 1 61
Rain interval (hour) 0.12 0.14 0.06 0.003 0.46
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Appendix A (Continued)

TABLE LXI

WATER QUALITY PARAMETERS (CONTINUED-4)
Locations NAM
Variables Ave SD Median Min Max

log10(E. coli) 3.10 0.73 3.01 -1 5.23
log10(Enterococci) 2.42 0.58 2.36 1.23 4.46
log10(Somcoli) 2.95 0.53 2.92 1.78 4.82
log10(Malcoli) 1.44 0.55 1.30 0 3.27
DO (mg/L) 6.36 1.67 6.03 3.36 11.76

pH 6.78 0.49 6.76 5.2 8.2
Turbidity (NTU) 15.90 6.08 14.41 8.93 45.17

Conductivity (mmho/cm) 744.95 204.02 771 392 1474
Water temp (◦C) 22.83 5.80 22.4 5.6 36.9

Solar radiation (W/m2) 4.96 3.03 4.40 0 10.72
Last CSO (hour) 223.83 197.44 209.08 0 983.3

CSO magnitude (gallon) 5E08 2E09 1E08 1E05 2E10
CSO duration (hour) 28.46 54.06 11.20 0.07 282.12
CSO interval (hour) 2E07 5E07 2E07 5E05 2E08
Last rain (hour) 49.68 50.61 37.00 0 223

Rain magnitude (inch) 1.02 2.53 0.43 0.01 25.27
Rain duration (hour) 8.13 8.29 5.00 1 54
Rain interval (hour) 0.12 0.17 0.07 0.003 0.87

Locations RM
Variables Ave SD Median Min Max

log10(E. coli) 2.72 1.01 2.96 -1 4.26
log10(Enterococci) 1.76 0.69 1.78 0.01 3.66
log10(Somcoli) 2.67 0.40 2.70 1.70 3.56
log10(Malcoli) 1.21 0.56 1.23 0 2.56
DO (mg/L) 7.59 2.34 7.06 5.09 13.43

pH 6.98 0.43 6.84 5.94 7.74
Turbidity (NTU) 15.82 10.96 12.14 6.5 54.54

Conductivity (mmho/cm) 830.9 237.03 854 478 1285
Water temp (◦C) 24.04 4.50 23.80 17.7 33.8

Solar radiation (W/m2) 4.73 3.66 3.84 0.04 10.88
Last CSO (hour) 374.63 291.24 308.13 0 1366

CSO magnitude (gallon) 6E08 2E09 2E06 1E05 5E09
CSO duration (hour) 19.64 38.46 0.73 0.25 121.07
CSO interval (hour) 8E06 1E07 5E06 5E04 5E07
Last rain (hour) 77.13 80.30 46.50 0 281

Rain magnitude (inch) 3.83 8.65 0.31 0.01 27.94
Rain duration (hour) 12.97 18.09 6.00 1 61
Rain interval (hour) 0.14 0.16 0.06 0.004 0.46
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This dissertation explores the use of three analytical methods to improve 

the utility of microbial water quality data, collected on the Chicago River from 

2007 to 2009, in predicting health risk among water users. The Multiple 

Imputation(MI) method was applied to fill in microbial missing values and the 

ability of the method to reduce bias was evaluated, chemical mass balance model 

and exploratory factor analysis were then utilized to identify sources of fecal 

contamination in the river system. Sources Identified as contributing to fecal 

contamination were used in predicting health risk. 

The results showed that by introducing a 2% bias to the parameter 

estimates, the MI method was able to recover 24% of missing data. However, in 

order to fill in 36% of missing values, 33% of bias was introduced. Chemical mass 

balance model and exploratory factor analysis both identified the water 

reclamation plant, combine sewer overflows (CSOs), and the precipitation as 

sources of fecal contamination in the river system. However, no association 

between pollutant sources and health risk were observed.  


