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SUMMARY

One of the most important concept underlines recent development of image and signal processing is

sparsity. Specifically, most applications in getting signals/images of interest can be well approximated

by a linear combination of few active elements of a dictionary. The dictionary or base is a super set

that can be used to represent the internal structure of signals. Utilization of sparsity can simplify the

problem of singals/images processing, storage and representation. However, getting a good sparsity

representation and efficient recovery from sparse data can be a very complex problem. Therefore, great

efforts have been devoted to find the optimal way of sparse representation as well as recovery algorithms

based on different purposes of applications. This thesis is dedicated to the study of sparse representation

in image processing (denoising, deblurring), image representation (clustering, classification), tensor

compressed sensing, and medical image processing.

We first present a graph Laplacian regularized sparse coding method in image representation and

restoration. As most existing sparse coding approaches failed to consider the fact that high dimensional

data naturally reside on geometrical structure of the data space. In this thesis, we proposed a generalized

framework for image restoration and representation by combining sparse coding and graph Laplacian

algorithms. We show that by adding structural and high dimensional information as regularization terms,

sparse representation can be boosted in terms of image processing and representation.

We then present a kronecker least angle regression (Kron-LARS) algorithm as a generalization of

classical vector version least-angle regression (LARS) algorithm for solving underdetermined linear

algebra problem. We demonstrated that our Kron-LARS algorithm can be used to efficiently solv-

xv



SUMMARY (Continued)

ing high-dimensional data (tensor) compressed sensing problem where vector version LARS will be

bottlenecked in terms of running memory and computational complexity. We also proposed a more

efficient N dimensional block sparse LARS (NBS-LARS) by utilizing the block sparsity property of

high-dimensional data.

Thirdly, we present a graph regularized sparse non-negative matrix factorization algorithm in med-

ical image color normalization. We show that our proposed unsupervised color normaliztion algorithm

outperforms existing popular algorithms such as ICA, PCA, NMF and SNMF both qualitatively and

quantitively.

Finally, we present a locally linear embedded sparse coding algorithm for image representation. To

solve the proposed sparse coding problem, we proposed an efficient modified online dictionary learn-

ing algorithm which converges faster than the existing algorithms for solving graph regularized sparse

coding problem.

xvi



CHAPTER 1

INTRODUCTION

Sparse representation has draw great attention recently in the field of signal and image processing.

Researchers found that natural signals/images are intrinsically sparse, where signals/images can be ef-

fectively represented with only few active elements (from a dictionary). Though attractive in concept,

finding the optimal sparse representation and recover the original data is not a trivial problem. With

the success of customized dictionary such as DCT (in JPEG) and Wavelet (in JPEG2000) in image

compression, recently, dictionary learning algorithm such as KSVD and online dictionary learning have

proved its better fidelity in terms image restoration and representation. However, most existing sparse

representation approach failed to consider the fact that high dimensional data naturally reside on ge-

ometrical structure of the data space. A combination of sparse representation with graph regularizer

becomes a natural derivation. Another successful application of sparse representation is compressed

sensing, where sparsity property can be utilized from the data acquisition process. This is very impor-

tant for applicatoins that is very expensive or time consuming in data retrival. However, when dealing

high-dimentional data (most of the cases in real world signals), most existing compressed sensing algo-

rithms relying converting high-dimensional data into vectors which is high memory and computational

expensive. Utilizing the Kronecker structure of high-dimensional data becomes a natural thought. Fi-

nally, sparse representations are also widely used in medical image processing, as fast digtal scanners

are becoming more and more popular in medical. In this thesis, we dedicated our efforts in optimizing

1
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the applications of sparse representation in the fields mentioned above. We proposed both regularization

objective functions as well as optimization algorithms to get the best outputs based on assumptions.

The first part of this thesis is about graph Laplacian regularized sparse coding method in image

restoration and representation. Sparse coding is widely used in image denoising, deblurring, clustering,

and classification. However, most existing approaches to sparse coding failed to consider the fact that

high dimensional data naturally reside on geometrical structure of the data space. It has been shown

that geometric information of the data is important for both inversion and discrimination. Here, we

proposed a generalized framework for image restoration and representation by combining sparse cod-

ing and graph algorithms. In image denoising and deblurring problems, an image is first decomposed

into cartoon layer (piecewise-smooth contents) and texture layer (textures and sharp edges) using mor-

phological component analysis (MCA); then optimal graph Laplacian regularizer (OGLR) algorithm

and simultaneous sparse coding with gaussian scale mixture prior (SSC-GSM) algorithm are applied

to cartoon layer and texture layer respectively; final restored image is by adding the outcomes from

two algorithms. Our proposed hybrid image restoration algorithm outperforms state-of-the-art image

denoising algorithms, such as BM3D on natural images, by 2 to 5 dB in terms of PSNR (not as good

in SSIM index) depending on noise level, performs comparatively in terms of image deblurring. In

image clustering and classification problems, our graph Laplacian regularized sparse coding framework

demonstrate that high dimension problem can be converted to linear constraint by manifold learning and

solved together by sparse coding. We convert our generalized framework into a novel dual graph regu-

larized sparse coding method to transform the nonlinear data space and feature space into linear space

for sparse coding. Two efficient optimization algorithms are provided for numerical implementation.
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Experimental results show that our generalized graph Laplacian and sparse coding framework perform-

s competitively with popular denoising, deblurring, clustering, and classification (none deep learning)

methods.

The second part of this thesis is called tenser least-angle regression. Sparse representation of signals

has drawn great attention recently under the assumption that signal can be well approximated by a sim-

ple linear combination of few active elements (from a basis). Many algorithms have been proposed to

find the sparsest solution of a signal by solving an underdetermined linear system of algebraic equations.

Among them, one of the most important algorithm is called Least Angle Regression (LARS), which can

be used to solve least square problem with both `0 norm and `1 norm constrain. However, most modern

signals are two dimensional or even higher, current state-of-the-art solutions are relying on converting

high dimensional into vectors and then solve the equation accordingly. Research has shown that signals

with multidimensional structure can be converted from vectors to tenors (multiway arrays) by using the

Tucker model. Thus, the goal is to solve a underdetermined linear system of equations possessing a

Kronecker structure. Here, we proposed Kronecker Least Angle Regression (Kron-LARS) algorithm

as a generalization of the classic vector version (LARS) algorithm for tensors. We demonstrate that by

utilizing the multidimensional structure of signal, Kron-LARS as an equivalent conversion of LARS

can reduce the recovery complexity and memory usage significantly. Additionally, by exploiting not

only the Kronecker structure but also block sparsity of signals, our Kron-LARS can be easily extended

as N-dimensional block sparse LARS (NBS-LARS), which is dramatically fast and memory efficien-

t. We theoretically demonstrate that NBS-LARS algorithm not only has considerably lower recovery

complexity but also has better precision under same percentage of sampling.
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The third part of this thesis is a graph regularized non-negative matrix factorization algorithm in

medical image processing. Computer based automatic medical image processing and quantification are

becoming popular in digital pathology. However, preparation of histology slides can vary widely due to

differences in staining equipment, procedures and reagents, which can reduce the accuracy of algorithms

that analyze their color and texture information. To reduce the unwanted color variations, we proposed

an unsupervised color normalization algorithm. We validated the performance of proposed algorithm

qualitatively (applying it on several difficult cases and compare with other algorithms).

The fourth part of this thesis is an locally linear embedded sparse coding algorithm for image clus-

tering and classification. Recently, sparse coding has been widely and successfully used in image clas-

sification, noise reduction, texture synthesis and audio processing. Although traditional sparse coding

method with fixed dictionaries like wavelet and curvelet can produce promising results, unsupervised

sparse coding has shown its advantage by optimizing the dictionary adaptively. However, existing un-

supervised sparse coding failed to consider the high dimensional manifold information within data. Re-

cently, a graph regularized sparse coding method has shown outstanding performance by incorporating

graph laplacian manifold information. In this paper, we proposed a sparse coding method called locally

linear embedded sparse coding, to consider the local manifold structure as well as learning the sparse

representation. We also provided a novel modified online dictionary learning method which iteratively

utilizes modified least angle regression and block coordinate descent method to solve the problem. In-

stead of getting entire coefficient matrix then update dictionary matrix, our method updates coefficient

vector and dictionary matrix in each inner iteration. Extensive experimental results have demonstrated

the efficiency and accuracy of our method in image clustering.



CHAPTER 2

GRAPH LAPLACIAN REGULARIZATION WITH SPARSE CODING FOR IMAGE

RESTORATION AND REPRESENTATION

2.1 ABSTRACT

Sparse coding is widely used in image denoising, deblurring, clustering, and classification. How-

ever, most existing approaches to sparse coding failed to consider the fact that high dimensional data

naturally reside on geometrical structure of the data space. It has been shown that geometric information

of the data are important for both inversion and discrimination. In this paper, we proposed a generalized

framework for image restoration and representation by combining sparse coding and graph based algo-

rithms. In image denoising and deblurring problems, an image is first decomposed into cartoon layer

(piecewise-smooth contents) and texture layer (textures and sharp edges) using morphological compo-

nent analysis (MCA); then optimal graph Laplacian regularizer (OGLR) algorithm and simultaneous

sparse coding with gaussian scale mixture prior (SSC-GSM) algorithm are applied to cartoon layer and

texture layer respectively; final restored image is by adding the outcomes from two algorithms. Our

proposed hybrid image restoration algorithm outperforms state-of-the-art image denoising algorithms,

such as BM3D on natural images, by 2 to 5 dB in terms of PSNR (not as good in SSIM index) de-

pending on noise level, performs comparatively in terms of image deblurring. In image clustering and

classification problems, our graph Laplacian regularized sparse coding framework demonstrate that high

dimension problem can be converted to linear constraint by manifold learning and solved together by

5
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sparse coding. We convert our generalized framework into a novel dual graph regularized sparse cod-

ing method to transform the nonlinear data space and feature space into linear space for sparse coding.

Two efficient optimization algorithms are provided for numerical implementation. Experimental results

show that our generalized graph Laplacian and sparse coding framework performs competitively with

popular denoising, deblurring, clustering, and classification (none deep learning) methods.

2.2 INTRODUCTION

Image restoration and representation are two of the major problems in computer vision, numerous

studies and research work have been dedicated into this area since decades ago. However, with emerging

of machine learning and sparse representation technology, we’ve witnessed abundance novel algorithms

with competitive results.

2.2.1 Image Restoration

Image restoration such as image denoising and deblurring are basic but challenging problems in

computer vision.

Reconstruction of a high quality image from its degraded versions (e.g., noisy, blurry) plays an im-

portant role in remote sensing, medical imaging, entertainment, and surveillance, etc. With a degraded

image y, we can formulate the image restoration (IR) problem as

y = Hx + v, (2.1)

where H is a degradation matrix, x is the original image vector and v is the additive noise vector. With

different degradation matrix H, equation (Equation 2.1) can represent different IR problems. When
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H is an identity matrix, it’s an image denoising problem; when H is a blurring operator, it’s an image

deblurring problem. Extensive studies have been conducted on developing various IR approaches during

the past decades [7–15]. Due to the ill-posed nature of IR, appropriate prior knowledge is of great

importance for regularization-based techniques to be applied. Well proposed image priors in literature

include total variation (TV) [16], sparsity prior [1] and autoregressive prior [17]. Recently, a relatively

new prior–graph signal processing (GSP)–has been applied in image restoration problems [18] [19],

which delivers much improve performance in piece-wise-smooth image (e.g. depth map) denoising. In

the mean time, numerous sparse coding image denoising algorithms have been proposed, among those,

[20] and [2] demonstrated stably better performance by combining the idea of nonlocal assumption

[21] in natural images. Numerous publications demonstrate that sparse coding methods show boosted

performance when restore images with numerous edges, curves and texture information, this can be

explain by the fact that sparse coding which could be explained by the fact that sparse coding methods

such as ICA [22] and KSVD [23] discover edge and texture like dictionaries.

In a seminal work [24], Meyer proposed to decompose images into cartoon (piece-wise-smooth)

and texture (texture and sharp edges) parts. Various methods could be used to separate the edges from

smooth parts, while others focus on texture modeling. This approach has proposed a vibrant research

on the three involved aspects: edges, textures, and decomposition.

The idea of the decomposition can be simply expressed as a decomposition of image y into cartoon

layer yc and texture layer yt, as follows:

y = yc + yt (2.2)
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where yc represents the cartoon layer and yt for texture layer. In real cases, noise can hidden within

both yc and yt.

In [25], a new biologically motivated efficient encoding algorithm has been proposed for represent-

ing natural images by projecting image into an edge subspace spanned using ICA [26] basis to capture

the texture and sharp edge features, while the residual subspace approximated using a mixture of prob-

abilistic principle component analyzer model. This is a similar alternative to image decomposition

method, which demonstrate the advantage of separated processing.

In this paper, we propose a novel image restoration algorithm by first decompose image into car-

toon (piecewise-smooth) layer and texture layer. Then restore image patches in each image layer by

optimized sparse coding algorithm and graph Laplacian regularizer respectively.

2.2.2 Image Representation

Sparse coding enables efficient representation of signals with only a few active elements. It has

shown promising results in ordinary signal processing tasks like image denoising and restoration, audio

and video processing, also enhances more complicated tasks like image classification and clustering.

When applied to natural images, sparse coding produces learned bases that can resemble the receptive

fields of neurons in the visual cortex [27]. Compared with popular methods like PCA and ICA, sparse

coding can learn over-complete basis set and doesn’t require statistical-independence of the dictionary

elements. In machine learning and statistics, a variant of sparse coding – non-negative matrix factoriza-

tion (NMF) [28] – has been successfully used to obtain interpretable basis elements.

Sparse coding finds intrinsic information within data, however, it does poorly when dealing with

high dimensional information such as image clustering and classification. To deal with high dimen-
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sional data, numerous dimension reduction methods (manifold methods) have been proposed [29–31].

One problem of manifold methods is lack of theory proof. In [32], Belkin and Niyogi take a step to-

wards closing the gap between theory and practice for a class of Laplacian-based manifolds by showing

that under centain conditions, the graph Laplacian of a point cloud converges to the Laplace-Beltrami

operator on the underlying manifold.

With graph Laplacian converting high dimensional data space into low dimensional manifold s-

pace, sparse coding for efficient representation, graph regularized sparse coding becomes a reasonable

thought. Cai [33] proposed a graph regularized nonnegative matrix factorization (GNMF) method. In-

spired by his work, Gao [34] and Zheng [35] proposed graph regularized sparse coding (GraphSC),

which explicitly considers the local geometrical structure of the data. GNMF and GraphSC show im-

provements on image clustering and classifcation compared with original NMF [36] and sparse cod-

ing [37]. Gu [38] proposed a co-clustering on manifold method to consider the duality between data

points (e.g. documents) and features (e.g. words) which can be considered as extension of GNMF [33]

and ONMF [39]. In this paper, we propose a dual graph regularized sparse coding method to consider

both data and feature space information which is an extension of [40], [41] and [42]. Compared with

NMF based methods, our method provides more sparsity and flexibility.

2.2.3 Contribution

Contributions of this paper are mainly three folds. 1) We propose a generalized graph regularized

sparse coding framework which can be applied to image restoration (denoising, deblurring) and im-

age representation (clustering, classification) problems; 2) By specializing the framework, we propose

a novel image restoration algorithm by first decomposing image into cartoon (piecewise-smooth) lay-
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er and texture (texture and sharp edges) layer based on MCA algorithm [43], then restoring the two

image layers using optimal graph Laplacian regularizer [19] and optimal sparse coding algorithm [2]

respectively. Final restored image is produced by adding the two processed image layers; 3)We propose

another special case of the generalized framework for image representation called dual graph regular-

ized saprse coding method with two optimization algorithms to consider both data and feature space to

enhance applications of image clustering and classification.

Our paper is organized as follows. We first present present notations and preliminaries of graph

Laplacian and sparse coding in Section II. Then, in Section III, we propose a generalized framework

of graph regularized sparse coding method for image restoration and representation, then show that

the objective functions of our novel image restoration and representation methods are simply special

cases of the generalized framework. Then, in Section IV, we present the novel graph regularizer with

sparse coding algorithm for image restoration. After that, in Section V, we illustrate the novel dual

graph regularized sparse coding algorithm for image clustering and classification. Then, in Section VI,

extensive experiments are presented to demonstrate the competitive performance of our algorithms in

image restoration and representation. Finally, we conclude this paper in Section VII.

2.3 Backgrounds and Related Work

We first review the concepts and related work in image denoising and deblurring with sparse coding

methods and graph Laplacian related methods. Then we go through the related work in image clustering

and classification using sparse coding and graph regularized methods.
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2.3.1 Image Restoration

2.3.1.1 Image Decomposition

Decomposing a signal or image into superposed contributions from different sources is one of the

fundamental problem in mathematics, signal and image processing, where morphologically decompose

signals into their building blocks is one of the successful attempts. In image processing, one of the

interesting and complex source separation problem is to decompose an image into piecewise-smooth

(cartoon) and texture parts.

In [43], based on sparse representation of signals, a novel decomposition method called morpho-

logical component analysis (MCA) was proposed. The basic assumption behind MCA is that a sigal is

made of a linear mixture of different layers, which is called morphological components (morphological-

ly distinct from each other). To achieve this assumption, the behavior of each component should be able

to separate and there must exist a dictionary of elements can be used to construct a sparse representation.

Then, each morphological component is further assumed to be sparsely represented in specific transform

domain. When transformation is made to a corresponding morphological component, it should lead to a

sparse representation over the component and highly inefficient in representing other components. We

can use a pursuit aglorithm to get the sparset representation which leads to optimal separation if those

dictionaries are identified. We use MCA as our driving force to decompose image into cartoon layer and

texture layer due to its robust performance across images and settings.

2.3.1.2 Sparse Coding Related Methods

Redundant representations and sparsity have been driving forces for restoration of signals in the

past descade or so. Shrinage algorithm is the sparsity candidate by considering the sparsity of wavelet
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coefficients. One reason to use redundant representations is having the shift invariant property. Also,

as regular 1-D wavelets are not optimal for processing images, several novel directional redundant and

multiscale transforms were proposed, including the contourlet [44], curvelet [45], bandlet [46], wedgelet

[47], and the steerable wavelet. At the same time, the introduction of greedy and convex optimization

algorithms such as matching pursuit [48] and the basis pursuit [49] in denoising application directed

image denoising problem as a direct sparse decomposition technique over redundant dictionaries. All

these lead to some of the best image denoising methods available today.

In [2], the authors proposed a nonlocal extension of Gaussian scale mixture (GSM) [50] model using

simultaneous sparse coding (SSC) to set regularization parameters in a principled yet spatially adaptive

fashion, which outperform all existing sparse coding related image denoising algorithms. It has been

shown that sparse representation with proper prior can better preserve sharp edges and textures. In this

paper, we adopt GSM model from the work of [2] as the optimal sparse coding to model the texture

layer of image.

2.3.1.3 Graph Laplacian Related Methods

Recently, researchers have pay much attention to the linkage between graphs and manifold counter-

parts. In [51], [32], [52] and [53], the authors showed that for both uniform measure and non-uniform

measure on submanifold, the graph Laplacian operator will converge to the continuous Laplace-Beltrami

operator. In [52], Hein further showed the convergence of the graph Laplacian regularizer to a functional

for Hölder functions on Riemannian manifolds. With this result in mind, we can conduct analysis in

both discrete domain and continuous domain depending on problems to be solved.
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Based on heat diffusion equation on a graph, a new method was proposed for smoothing both gray-

scale and color images in [54]. Image smoothing is accomplished by convolving the heat kernel with the

image, and its numerical implementation is realized by using the Krylov subspace technique. In [18],

a nonlocal based graph Laplacian regularizer method was proposed for denoising piecewise smooth

images (e.g. depth map), which gives state-of-the-art denoising result for depth map images. In [19],

the authors take a step further to analyze graph Laplacian regularizer on the image denoising problem

by constructing neighborhood graphs of pixel patches as discrete counterparts of Riemannian manifolds

and perform analysis in the continuous domain. It is shown that graph Laplacian regularizer algorithm

outperforms all other algorithms in terms of piecewise smooth image denoising. We adopt the methods

in [19] as the optimal graph Laplacian regularizer to restore cartoon layer of an image.

2.3.2 Image Representation

In 2001, Shi and Malik [55] proposed a novel approach called normalized cut (Ncut) for solving the

perceptual grouping problem in vision by using the Laplacian eigenvalues, the algorithm can be used

both in image segmentation and clustering. Since then, numerous research results related to graph Lapla-

cian started to coming out. In [56], a unifying view of segmentation using eigenvectors was proposed

which can be easily applied in image clustering. Later, Belkin and Niyogi [57] proposed a Laplacian

eigenmaps method for dimensionality reduction, and data representation draws on the correspondence

between the graph Laplacian, the Laplace Beltrami operator on the manifold, and the connections to

the heat equation. Laplacian eigenmaps provide a computationally efficient approach to nonlinear di-

mensionality reduction that has locality-preserving properties and a natural connection to clustering.

Recently, a Laplacian regularized low-rank representation [58] has been proposed to take into account
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the non-linear geometric structures within data which extends the application of low rank represen-

tation, as low rank representation has similarity with sparse coding in terms of dimension reduction,

a reasonable thought is graph Laplacian regularized sparse coding method which has been proposed

in [35].

In this paper, our proposed dual graph regularized sparse coding model also considers both data

space (column space) and feature space (row space) in a given data matrix. However, instead of using

low-rank representation, our model is a more generalized sparse coding method by iteratively updating

learned dictionary and coefficients matrix with sparsity constrain. We show that our model is not on-

ly very functional in terms of delivering state-of-the-art clustering performance but also can enhance

classification performance.

2.4 Notation and Preliminaries

2.4.1 Graph Laplacian

Figure 1. Illustration of graph Laplacian



15

A weighted graph G = (V, E) is a set of vertices {v1, ..., vn} ∈ V and weighted edges connecting

these vertices represented by an adjacency matrixW. W is a symmetric matrix with nonnegative entries.

Recall that the Laplacian matrix of a weighted graph G is the matrix L = D−W as shown in Figure 1,

where D is a diagonal matrix D(i, i) =
∑
iW(i, j).

With a set of point {x1, ..., xn in Rk}, we can construct a graph G, whose vertices are data points.

If we use heat kernel Wt
n(i, j) = exp{−‖xi−xj‖2

4t } to calculate weight matrix, the corresponding graph

Laplacian can be represented as Ltn = Dtn−W
t
n. The relationship between heat equation and Laplacian

operator is in Appendix A.

Given a 2D image with t and n fixed, the unnormalized graph Laplacian–the most basic type of

graph Laplacian–is defined as

L = D − W (2.3)

where L has 0 as its smallest eigenvalue and a constant vector as the corresponding eigenvector; it is

symmetric and positive semi-definite [59].

2.4.2 Sparse coding

Given a data matrix X = [x1, ..., xm] ∈ Rn×m, we can represent it as a product of dictionary matrix

D and coefficient matrix A, where D = [d1, ...,dk] ∈ Rn×k, each di represents a basis column in the

dictionary, A = [α1, ...,αm] ∈ Rk×m, each column is a sparse representation for a data point.

Following [60] [37], we use `1 norm instead of `0 norm to produce similar results with affordable

computational cost. The objective function then becomes
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{D̂, Â} = arg min
D,A

‖X − DA‖2F + β
m∑
i=1

‖αi‖1 s.t. ‖di‖2 6 c, i = 1,...,k (2.4)

where β is a regularization parameter for sparsity constraint. Although the objective function is not

convex with D and A together, it is convex with either one fixed. We iteratively optimize the objective

function by minimizing over one variable with the other one fixed [61]. Thus, it becomes a `1-regularized

least squares problem with a `2-constrained least square problem.

2.5 GENERALIZED FORMULA

Graph Laplacian regularizer, sparse coding and graph regularized sparse coding are powerful meth-

ods in image denoising, deblurring, clustering and classification.

In this section, we propose a generalized framework for graph regularized sparse representation

and illustrate novel algorithms in image restoration and representation as special cases of this general

framework.

Recall the definition of graph Laplacian in Eq. (Equation 2.3) and sparse coding in Eq. (Equa-

tion 2.4). By combining sparse coding with graph Laplacian regularizer, we get the following general-

ized framework in Eq. (Equation 2.5).

{D̂, Â} = arg min
D,A

‖X − DA‖2F + γ · Tr(ULUT ) + β
m∑
i=1

‖αi‖1

s.t. ‖di‖2 6 c, i = 1,...,k

(2.5)
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where U is the generalized term for graph Laplacian regularization, X, D, L, d and α are defined as in

Eq. (Equation 2.3) and (Equation 2.4), γ is the constraint parameter of graph Laplacian regularizer, β

is sparsity constraint parameter.

2.5.1 Image Restoration Formula

Image restoration is performed by using two special case of Eq. (Equation 2.5). As our image

restoration method is patch based (8 × 8 in general), for simplicity, we represent the formula in vector

form.

2.5.1.1 Sparse Coding

In case of sparse coding, we would like to model the fast intensity changes, γ is forced to be 0. We

get the following image patch restoration equation.

α̂ = arg min
α
‖x − Dα‖2 + β‖α‖1 s.t. ‖di‖2 6 c, i = 1,...,k (2.6)

where x ∈ Rn (n is size of image patches, n = 8 in this paper) is an image patch vector, D ∈ Rn×K(n ≤

K) is the dictionary, α is coefficient vector under some sparsity constraint, β is the regularization pa-

rameter for sparsity.

2.5.1.2 Graph Laplacian Regularizer

In case of graph Laplacian regularizer, we are modeling the piecewise-smooth intensity variation

within images, therefore sparse constraint is not needed, thusβ equals to 0. The optimal graph Laplacian

L̂ is calculated from [19]. We could assume D is an identity matrix. To denoise an observed pixel patch
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Boy Texture layer Cartoon layer

Barbara Texture layer Cartoon layer

Boat Texture layer Cartoon layer

Figure 2. MCA decomposition of images into texture layer (texture and sharp edges) and cartoon layer
(piece-wise-smooth).
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Figure 3. Schematic representation illustrating the effects of the steering matrix and it components
(G = γUΛUT ) on the size and shape of the graph Laplacian

x, we combine the graph Laplacian regularizer prior uT L̂u with an `2 fidelity term computing the noisy

observation x and denoised patch u as follows

û = arg min
u
‖x − u‖2 + γ(uT L̂u) (2.7)

where γ is the regularization parameter to constrain graph Laplacian prior.

2.5.2 Image Representation Formula

In image representation problem, we model the objective function in matrix format as follows

{D̂ Â} = arg
D,A

min‖X − DA‖2F + γ · Tr(ULUT ) + β
m∑
i=1

‖αi‖1

U = (

√
λ

γ
A

√
µ

γ
DT ), L =

LA 0

0 LD.


(2.8)
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We have proposed dual graph regularized sparse coding methods for image representation here, λ and

µ are constraints of graph Laplacian regularizers. Definition of X, D, A, LA and LD are in Eq. (Equa-

tion 2.21), (Equation 2.22), (Equation 2.23), and (Equation 2.24).

2.6 GLSC FOR IMAGE RESTORATION

Here GLSC represent Graph Laplacian regularization with sparse coding methods.

2.6.1 Image Decomposition

Decomposition of an image into cartoon layer (piecewise-smooth) and texture layer (texture and

sharp edges) seems to be analogous to the high-pass and low-pass decomposition in image filtering.

However, this doesn’t work as what we want: both cartoon layer and texture layer can contain high

frequencies, so a simple filtering could not separate those two layers.

MCA method combines the basis pursuit denoising (BPDN) algorithm and the total-variation (TV)

regularized scheme. The basic idea of MCA is the use of two appropriate dictionaries, one for the

representation of textures and the other for the natural scene parts assumed to be piecewise smooth.

Both dictionaries are chosen such that they lead to sparse representations over one type of image-content

(either texture or piecewise smooth). As the need to choose proper dictionaries is generally hard, a TV

regularization is employed to better direct the separation process and reduce ringing artifacts.

MCA algorithm can be formulated as follows

{α̂t, α̂c} = arg min
αt,αc

‖αt‖1 + ‖αc‖1 + τ̃‖x − Dtαt − Dcαc‖22 + ψ̃TV(Dcαc) (2.9)
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Original Noisy, 22.13dB

Figure 4. Effects of steering matrix G for noiseless case and noisy case with AWGN σ = 20

where {Dc, αc} and {Dt, αt} are dictionary matrix and coefficient vector for cartoon layer and texture

layer respectively. TV is a total variation penalty in [16] that can direct image Dcαc to fit the piece-

wise-smooth model.

Here, we separate dictionary columns into two dictionaries by thresholding the total variation of

dictionary atoms. Figure 2 displays the results of decomposing each of Boy, Barbara, and Boat into

cartoon and texture parts.

We assume that random gaussian noise is evenly distribution within both cartoon layer and texture

layer. Thus the variance of noise in each layer will be half of the image noise before decomposition.

2.6.2 Optimal Cartoon Restoration Algorithm

Graph Laplacian regularizer [19] outperforms state-of-the-art image denoising algorithms such as

BM3D significantly in terms of depth image denoising. As depth images are mostly piecewise smooth,
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it’s a natural thought that graph based method could also perform particularly well in cartoon (piece-

wise-smooth) image denoising.

With this observation, various graph-based smoothness priors [18] has been proposed to restore

piece-wise-smooth images, [19] take a step further by providing theoretically justified explanation with

derived optimal graph Laplacian regularizer for image restoration.

The core idea of [19] is to first prove that graph Laplacian regularizer converges to its continu-

ous counter part. Then obtains the optimal solution of discrete Laplacian regularizer by exploring the

optimal solution in continuous domain.

The advantage of doing analysis in continuous domain is that it’s possible to utilize existing kernel

based method. Similar to steering kernel [62], OGLR utilizes gradient covariance to model local edge

structure.

The local edge structure is related to the gradient covariance (or equivalently, the locally dominant

orientation), where a naive estimate of this covariance matrix may be obtained as follows [62]:

G =


∑

xi∈ω gx1(xi)gx1(xi)
∑

xi∈ω gx1(xi)gx2(xi)∑
xi∈ω gx1(xi)gx2(xi)

∑
xi∈ω gx2(xi)gx2(xi),

 (2.10)

where G is a covariance matrix and often called steering matrix, gx1(. . . ) and gx2(. . . ) are the first order

derivatives along x1 and x2 directions and ω is the local analysis window around point of interest. As

G is a symmetric covariance matrix, eigenvalue decomposition is proposed to model is more efficiently

as follows
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G = γUΛUT (2.11)

U =

cos θ − sin θ

sin θ cos θ

 , Λ =

σ 0

0 σ−1

 (2.12)

where γ is a scaling factor, U is rotation matrix,Λ is the elongation matrix. Figure 3 explains how these

parameters affect the spreading of covariance matrix G along x1 and x2 direction derivative.

Figure 4 is a visual illustration of steering matrix on a variety of image structures (texture, flat,

strong edge, corner, and weak edge) of the Barbara image for both noiseless and noisy cases. We can

find that the shape and orientation of the estimated metrics (rotation, elongation and scaling) are very

close in both noisy and noiseless cases. Also, depending on the underlying features, in the flat areas,

they are relatively more spread to reduce the noise effects, while in texture areas, their spread is very

close to the noiseless case which reduces blurriness.

As graph Laplacian regularizer uTLu converges to a continuous metric space that can utilize the

power of steering matrix, we could derive the optimal discrete graph Laplacian regularizer by doing

analysis in continuous domain, detail and proofs in [19].

2.6.3 Optimal Texture Restoration Algorithm

In this section, we explain why we choose simultaneous sparse coding with Gussian scale mixture

prior (SSC-GSM) [2] as the optimal texture restoration algorithm.

Nonlocal image restoration techniques have attracted increasing attention since it’s publication. The

key motivation behind lies in the observation that in natural images, many image structures such as
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edges and textures are abundance of self-repeating patterns. Such observation has led to the formulation

of simultaneous sparse coding (SSC) [20]. However, how to achieve (local) spatial adaption within the

framework of nonlocal image restoration still remains an open question.

SSC-GSM algorithm successfully addresses the question by connecting Gaussian scale mixture

(GSM) with SSC. The idea is to model each sparse coefficient as a Gaussian distribution with a positive

scaling variable and impose a sparse distribution prior (Jeffreys prior [63] in model) over the positive

scaling variables.

Experimental results also shown that, compared with other sparse coding algorithms, SSC-GSM

based image restoration can better preserve edge sharpness and suppress undesirable artifacts in the

restored images. As texture layer (such as in Figure 2) are mostly composed of shape edges and textures,

we choose SSC-GSM as the optimal texture restoration algorithm.

Figure 5 shows the comparison between SSC-GSM and KSVD in sharp edge preservation. SSC-

GSM denoised image shows sharper edges and textures which is visually satisfactory.

Derivation of SSC-GSM is based on MAP estimator. For a given observation x = Dα+ n, where x

is an image patch vector, D is dictionary matrix, α is the sparse coefficient vector, n ∼ N(0, σ2n) denote

the additive Gaussian noise, we can formulate the following MAP estimator

α = arg max
α

logP(x|α)P(α)

= arg max
α

{logP(x|α) + logP(α)}

(2.13)

As the GSM [50] model of coefficients α decomposes coefficient vector α into the point-wise prod-

uct of a Gaussian vector β and a hidden multiplier θ, i.e. αi = θiβi, where θi is the positive scaling
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Monarch Noisy, 20.18dB

KSVD, 28.85dB SSC-GSM, 29.70dB

Figure 5. Denoising performance comparison between KSVD [1] and SSC-GSM [2].

variable with probability P(θi). Given θi, a coefficient αi is Gaussian with the standard deviation of θi.

With the assumption that θi are i.i.d and independent of βi, the GSM prior of α can be expressed as

P(α) =
∏
i

P(αi), P(αi) =

∫∞
0

P(αi|θi)P(θi)dθi (2.14)

Then the MAP estimator of α and θ becomes
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(α̂, θ̂) = arg max
α,θ

logP(x|α, θ)P(α, θ)

= arg max
α,θ

logP(x|α) + logP(α|θ) + logP(θ)

(2.15)

In Eq. (Equation 2.15), P(x|α) is a likelihood term characterized by Gaussian function with variance

σ2n. As coefficient αi is Gaussian with standard derivation of θi. Given θi, the prior term P(α|θ) can be

expressed as

P(α|θ) =
∏
i

P(αi|θi) =
∏
i

1

θi
√
2π

exp
(
−

(αi − µi)
2

2θ2i

)
. (2.16)

Instead of assuming the mean µi = 0, SSC-GSM used a biased mean µi for αi where µi is calculated

based on nonlocal means approach [21] givenm similar image patches.

By using a noninformative prior P(θi) ≈ 1
θi

– Jeffrey’s prior, Eq. (Equation 2.15) becomes

(α̂, θ̂) = arg min
α,θ

1

2σ2n
‖x − Dα‖22 +

∑
i

log(θ2i
√
2π)

+
∑
i

(αi − µi)
2

2θi

(2.17)

Where logP(θ) =
∑
i log θi. Optimization and all other details are in [2].

2.6.4 Algorithm Summary

Our proposed image restoration algorithm is a hybrid algorithm by first using MCA algorithm to

decompose image into cartoon layer and texture layer with local DCT and curvelet with fixed threshold,

then use optimal graph Laplacian regularizer [19] to restore cartoon layer, use optimal sparse coding

algorithm [2] to restore texture layer. Final restored image is by adding the processed outcomes of two

optimal algorithms.
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As our algorithm is a reasonable combination of MCA, graph Laplacian regularizer and sparse

coding algorithm, we call it MCA-GSC algorithm and summaried in Algorithm 1.

Algorithm 1 Image Restoration with MCA-GSC

1: Input: Noisy image I, noisy variance σ2I , blur matrixH.
2: Using MCA algorithm [43] to decompose degraded image into cartoon layer and texture layer with

selected dictionaries Dc and Dt (KSVD [23] learned dictionary with DCT initialization, calculate
the normalized total gradient variation and thresholded by 0.27).

3: Restore cartoon layer with optimal graph Laplacian regularizer (OGLR) [19], where cartoon layer
noise variance estimated as σ2c = 1

2σ
2
I with 11 iterations. Reconstruct whole cartoon layer image

by Eq. (Equation 2.20).
4: Aggregate those two restored image layers.
5: Output: Restored image

The standard image degradation can be modeled as

y = Hx + v, (2.18)

where x ∈ RN and y ∈ RM are the original and degraded images, H ∈ RM×N is a degradation matrix,

and v is the additive white Gaussian noise with v ∼ N(0, σ2). The whole image reconstruction can be

formulated as

x̂ = arg min
x
φ‖y − Hx‖22 +

∑
i

‖x̃i − Rix‖22 (2.19)



28

where in graph Laplacian regularizer method (OGLR), x̃i = û as in Eq. (Equation 2.7), in sparse coding

method (SSC-GSM), x̃i = Dα̂i as in Eq. (Equation 2.6), Ri ∈ Rn×N denotes a matrix extracting the

i-th patch xi from x, φ is regularization parameter. This is a quadratic form and has a closed-form

solution of the form

x̂ =
(
φHTH +

∑
i

RTi Ri
)−1(

φHTy +
∑
i

RTi x̃i
)

(2.20)

In the situation of image denoising, H is an identity matrix, while in case of image restoration, H is

a blur kernel.

2.7 Dual Graph Regularized Sparse Coding for Image Representation

In this section, we introduce a novel dual graph regularized sparse coding (DGSC) method for image

representation, as a special case of our generalized framework in Eq. (Equation 2.5). We first introduce

data graph and feature graph as the key concepts to build our method, then we provide two optimization

algorithm to efficiently solve the objective function.

2.7.1 Data Graph and Feature Graph

Give data matrix X ∈ Rn×m, we first construct a data graph GA whose vertices {x·1, ..., x·m} are

columns of X, then we build a feature graph GD whose vertices {x1·, ..., xn·} are rows of X. The binary

nearest neighbor weight matrices for data and feature are defined as

WA
ij =


1, if x·i ∈ N (x·j) or x·j ∈ N (x·i)

0, otherwise.
(2.21)



29

WD
ij =


1, if xi· ∈ N (xj·) or xj· ∈ N (xi·)

0, otherwise.
(2.22)

where N (x) represents nearest neighbor of vector x.

We define eAi =
∑m
j=1W

A
ij , eDi =

∑n
j=1W

D
ij and EA = diag(eA1 , ..., e

A
m), ED = diag(eD1 , ..., e

D
n ).

According to [31], the reasonable mappings from data graph GA to coefficient matrix A and from feature

graph GD to dictionary matrix D are

1

2

m∑
i=1

m∑
j=1

(αi − αj)
2WA

ij = Tr(ALAAT ) (2.23)

1

2

m∑
i=1

m∑
j=1

(di· − dj·)2WD
ij = Tr(D

TLDD) (2.24)

where LA = EA − WA, LD = ED − WD.

By adding data graph (Equation 2.23) and feature graph (Equation 2.24) to the original sparse coding

function (Equation 2.4), we get objective function

O = min
D,A

{‖X − DA‖2F + λTr(ALAAT ) + µTr(DTLDD) + β

m∑
i=1

‖αi‖1} (2.25)

where D is the dictionary matrix, A is the coefficient matrix with sparsity constraint, λ and β are regu-

larizer constraints for graph Laplacian and sparsity respectively.

Fixing dictionary matrix D, regularizer Tr(DTLDD) becomes a constant value, so we can eliminate

it in this step of minimization.
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As reconstruction error ‖X − DA‖2 can be written as
∑m
i=1 ‖xi − Dαi‖2 and graph data regularizer

Tr(ALAAT ) is same as
∑m
i,j=1 L

A
ijα

T
i αj.

min
αi

m∑
i=1

‖xi − Dαi‖2 + λLAiiαTi αi + αTi hi + β
m∑
i=1

‖αi‖1 (2.26)

where hi = 2λ(
∑
j 6=iαj) is a summation of i 6= j terms.

2.7.2 Optimization Algorithms

In this section, we present two optimization algorithms: 1) Feature-sign search [64] with Lagrange

dual for learning bases (FS-LD); 2) Least angle regression [65] with Block coordinate descent for dic-

tionary update (LARS-BCD).

2.7.2.1 Feature-Sign Search with Lagrange Dual

In [35], the author utilized feature-sign search algorithm for solving graph regularized sparse coding

problem. Since we get the same objective function when dictionary D is fixed, the implementation

process is the same for this step.

Bases are updated by using Lagrange dual, which is an algorithm for solving optimization problem

over dictionary bases D with fixed coefficients A. We get the following objective function

min
D

{‖X − DA‖2F + µ‖DTLDD‖} s.t. ‖di‖2 ≤ c, i = 1, 2, ..., k. (2.27)
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Let γ = [γ1, ..., γk], and γi be the Lagrange multiplier associated with the ith inequality constraint

‖di‖2 ≤ c, then the Lagrange dual function is given by

g(γ) = inf
D
L(D,γ) = inf

D
{‖X − DA‖2F + µTr(DTLDD) +

k∑
i=1

γi(‖di‖2 − c)}. (2.28)

Let Γ be the k × k diagonal matrix whose diagonal entry Γii = γi for all i. Then L(D,γ) can be

written as

L(D,γ) = ‖X − DA‖2F + Tr(DTDΓ)c(Tr(Γ)) + µTr(DTLDD)

= Tr(XTX) − 2Tr(DTXAT ) + Tr(ATDTDA) + Tr(DTDΓ)

− c(Tr(Γ)) + µTr(DDTLD)

(2.29)

The optimal solution D∗ can be obtained by letting the first order derivative of (Equation 2.29) equal

to zero, i.e.

D∗AAT − XAT + D∗Γ + µLDD∗ = 0, (2.30)

D∗ = XAT (AAT + Γ + µLD)−1. (2.31)

Substituting (Equation 2.31) into (Equation 2.29), the Lagrange dual function becomes (Equation 2.32).

g(γ) = Tr(XTX) − 2Tr(DTXAT ) − c(Tr(Γ)) + Tr(XAT (AAT + Γ + µLD)−1AXT ) (2.32)
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By optimizing function (Equation 2.32) with Γ, we get (Equation 2.33).

min
Γ
Tr(XAT (AAT + Γ + µLD)−1AXT ) + c(Tr(Γ))

s.t. γi ≥ 0, i = 1, ..., k.
(2.33)

By solving this problem with Newton’s method, we get the optimal dictionary D∗ = XAT (AAT + Γ∗ +

µLD)−1, where Γ∗ is the optimal solution from (Equation 2.33).

2.7.2.2 Least-Angle Regression with Block Coordinate Descent

Least-angle regression (LARS) [65] is a regression method that provides a general version of for-

ward selection, which is highly efficient in solving LASSO [66]. We follow the steps presented in [67].

In step 7 of Algorithm 2, instead of using the ordinary least square solution (Equation 2.34), we utilize

the dual graph regularized least square solution (Equation 2.35) to incorporate graph information.

Substitute α(k+1)
OLS with α(k+1)

DGLS

α
(k+1)
OLS = (DTADA)

−1DTAy (2.34)

α
(k+1)
DGLS = (DTADA + λLAkkI)−1(DTAx − hk/2) (2.35)

Where I is identity matrix, hk = 2λ(
∑
k 6=j
LAkjαj), k is the kth step and A is the active set in LARS

algorithm.

By fixing coefficients matrix A, we have the same objective function as (Equation 2.27). We use

block coordinate descent with warm restarts for dictionary update that doesn’t need any learning rate
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tuning process. Since block coordinate descent method converges in polynomial time, we update dic-

tionary D with each input sparse vector αi. Different from the block coordinate descent method used

in [68], which updates one column vector dj of dictionary D at a time, our method updates one row

vector dj· of D each time to incorporate the feature graph constraint. We can rewrite objective function

(Equation 2.27) as follows

O =
1

2

n∑
i=1

(xi· − di·A)2 + µ

n∑
i,j=1

LDijd
T
j·di· (2.36)

By setting first order derivative of O with respect to row vector dj· equal to 0, we have (Equation 2.37).

0 = (dj·A − xj·)AT + µ(
n∑
i 6=j
LDijdi· + L

D
jjdj·)

⇒ dj· = [xj·AT − µ((LDj )
TD − LDjjdj·)](AAT + µLDjj I)

−1

(2.37)

where di· and dj· are rows of dictionary matrix D. We then normalize the row vector dj· to let ‖dj·‖2 ≤ 1.

2.8 EXPERIMENTAL RESULTS

We conducted extensive experiments to demonstrate the superior performance of our proposed algo-

rithms in image restoration (denoising and deblurring) and representation (clustering and classification).

2.8.1 Image Restoration

To demonstrate the effectiveness of our proposed MCA-GSC algorithm in image denoising and de-

blurring. We have compared our algorithm with other popular image restoration algorithms on bench-

mark natural images with synthesized noise and blur. We also run our MCA-GSC algorithm on real

sensor noise and blur images to demonstrate its robust performance.
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2.8.1.1 Image Denoising

We evaluate our MCA-GSC algorithm using natural images: five 512 × 512 and one 256 × 256

benchmark images (in grayscale)–Lena, Barbara, House (256× 256), Boat, Peppers, and Mandrill. We

compare our MCA-GSC with three recent methods: OGLR [19], SSC-GSM [2], and BM3D [69].

For image denoising evaluation, we corrupted test images by i.i.d. AWGN with standard deviation

σI ranging from 10 to 70. For each σI , we averaged corresponding performence, in terms of PSNR (in

dB) and the SSIM index [70], which are tabulated in Table Table I.

Besides benchmark images with synthesized noise, we also performed our algorithm on a real senor

noise image, where noise level is estimated by algorithm provided in [71]. Noisy image and denoised

pair by our MCA-GSC algorithm are shown in Figure 6.

Real sensor noise image Denoised by MCA-GSC

Figure 6. Denoise real senor noise image with proposed MCA-GSC
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The sparse coding part and graph Laplacian Regularizer part of our MCA-GSC algorithm are all

iterative denoising method. We show in Fig Figure 7 the impact of iterative noise reduction, our MCA-

GSC algorithm uses 11 iteration to get stable results.

Figure 7. Relation between Iteration Number and Gain in PSNR with AWGN σ = 20
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Original Noisy, 22.13dB MCA-GSC, 36.02dB

OGLR, 33.79dB SSC-GSM, 34.05dB BM3D, 33.77dB

Figure 8. Denoising of the natural image Hourse, where the original image is corrupted by AWGN
with σI = 20

Fig Figure 8, Figure 9 and Figure 10 are visual comparisons between our MCA-GSC algorithm

and three recent state-of-the-art denoising algorithms. We found that although our algorithm achieves a

relatively high PSNR, it’s not the most visually pleasant one. Our algorithm tends to blur the texture a

little bit and looks more blurry compared with BM3D and SSC-GSM algorithms.

From the results on benchmark images with synthesized i.i.d Gaussian noise in Table Table I, we

can find out that our MCA-GSC significantly outperforms the other 3 state-of-the-art image denoising
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Original Noisy, 14.16dB MCA-GSC, 31.37dB

OGLR, 27.09dB SSC-GSM, 27.45dB BM3D, 27.23dB

Figure 9. Denoising of the natural image Barbara
The original image is corrupted by AWGN with σI = 50

algorithms in PSNR. However, the performance is not as good if evaluated by SSIM index [70]. PSNR

is about variance of image difference, while SSIM index is more related to image structure similarity.

We are unclear why our algorithm gets low score in SSIM index, but one reasonable thought is the

process of decomposition of image into two different layers could potentially damage the structure of

original image.
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Original Noisy, 8.14dB MCA-GSC, 32.23dB

OGLR, 25.62dB SSC-GSM, 26.19dB BM3D, 25.95dB

Figure 10. Denoising of the natural image Lena
The original image is corrupted by AWGN with σI = 100

2.8.1.2 Image Deblurring

For image deblur evaluation, we corrupted Ten 512 × 512 natural images by Gaussian blur with

standard deviation σI = 1.6. We compare our MCA-GSC with three other deblur algorithms: FISTA

[72], IDD-BM3D [73], and SSC-GSM [2], the average performance results, in PSNR (in dB) and SSIM

index are tabulated in Table Table III.
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Fig Figure 12 shows image deblur visual performance of our proposed MCA-GSC algorithm on

three classic benchmark images: Cameraman, Barbara and Lena.

We also applies our algorithm onto real sensor blur image. We use the real blur image case in [3]

with its estimated kernel. Figure 11 shows the visual result of real sensor blur image deburred by our

MCA-GSC algorithm.

Real sensor blur image Denoised by MCA-GSC

Figure 11. Restore real senor blur image [3] with proposed MCA-GSC

2.8.1.3 Running Time

The proposed MCA-GSC algorithm was implemented under Matlab and running on a Windows 10

laptop with i7 2.6 GHz CPU and 8GB RAM. for a gray 512 × 512 image, the running time of image

denoising is 400 ∼ 600 seconds, the running time of image deblurring is 900 ∼ 1500 seconds.
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Blurred, 20.76dB Deblurred, 28.30dB

Blurred, 22.42dB Deblurred, 29.01dB

Blurred, 22.89dB Deblurred, 31.51dB

Figure 12. Image deblur by proposed MCA-GSC algorithm on Cameraman, Barbara and Lena
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2.8.2 Image Representation (Previously published as Lingdao Sha, Dan Schonfeld (2017) Dual

graph regularized sparse coding for image representation, 2017 IEEE Visual Communications and

Image Processing (VCIP), 14. )

We apply our dual graph regularized sparse coding algorithm into application of image clustering

and classification on 4 benchmark datasets: CMU-PIE, COIL20, COIL100, USPS. Data sample of those

4 datasets are shown in Figure 13.

2.8.2.1 Image Clustering

We investigate the clustering performance of our proposed DGSC method on 3 real world datasets:

CMU-PIE, COIL20 and COIL100 1. CMU-PIE face database contains 1428 images of 68 objects (21

images per object); COIL20 contains 1440 images of 20 objects (72 images per object with rotation

from 5to360); COIL100 complete the COIL20 with additional 80 objects and consists of 7200 images.

For all of the above three datasets, each image is 32× 32 with 256 grey levels per pixel.

To evaluate the clustering results, we adopt the two standard performance measures which are widely

used for clustering: Clustering Accuracy (CA) and Normalized Mutual Information (NMI) [4].

We compare the clustering results of our DGSC method with Kmeans, Normalized Cut (NCut) [55],

Sparse Coding (SC), and GraphSC [35]. We also compare the computation efficiency of our proposed

optimization algorithms FS-LD and LARS-BCD.

1http://www.cad.zju.edu.cn/home/dengcai/Data/MLData.html
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CMU-PIE Dataset Sample

COIL Dataset Sample

USPS Dataset Sample

Figure 13. Samples of CMU-PIE, COIL, and USPS Datasets

In order to show the consistency of clustering performance, we further divide each dataset into 5

ascending sub-datasets. For example, sub-dataset of CMU-PIE has clusters ranging from 4 to 68. Table

Table V, Table VI and Table VII are the clustering results on CMU-PIE, COIL20 and COIL100 dataset

respectively.

From the image clustering experiments, our DGSC method outperforms all other listed methods on

all three datasets, with a slight improvement on CMU-PIE and relatively significant improvements on
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COIL-20 and COIL100 datasets. Those promising results corroborate with our thought that both data

and feature graph are helpful in image data representation.

We then compare the clustering computational efficiency of FS-LD and LARS-BCD on all three

image datasets. Both algorithms are implemented with Matlab and running on a Windows 10 machine

with Intel Core i7 2.6GHz CPU and 8GB RAM. While FS-LD algorithm iteratively updates coefficient

matrix A and dictionary matrix D until converge, LARS-BCD algorithm updates dictionary matrix D

with each sparse vector input αi. As a result, LARS-BCD needs less sparse coding steps than FS-LD,

meaning LARS-BCD looks more efficient in image clustering tasks than FS-LD on all three datasets.

Figure Figure 14 illustrates the result.

2.8.2.2 Image Classification

Our proposed method not only enhances image clustering but also improves image classification re-

sults. We present experiments on the benchmark USPS handwritten digits dataset 1, which is composed

of 7291 training images and 2007 testing images of size 16× 16.

The process of using our DGSC method to enhance classification is straightforward, instead of

training and testing directly on original image matrix, we do training and testing on the coefficient matrix

from DGSC methods. To evaluate the classification performance of our method, we use public available

software LIBSVM [74] to train linear SVM classifiers on subset of training set coefficient vectors αi

(i ∈ {1, ..., 7291}) and then test on testing set coefficient vectors αj (j ∈ {7292, ..., 9298}). Parameters

are tuned by grid search and best pair are used for each corresponding case. We train linear SVM with

1http://www.cad.zju.edu.cn/home/dengcai/Data/MLData.html
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5-folds cross-validation on training dataset and test on the testing dataset. Table Table IV shows the

test results on original image, coefficients from sparse coding (SC), coefficients from GrapgSC [35] and

coefficinet from our DGSC algorithm. As can be seen, our algorithm outperforms the rest 3 cases. This

assures that data graph and feature graph are both important in capturing discriminative features of the

images.

2.8.2.3 Summary of DGSC

Kmeans, Normalized Cut, Sparse coding, are 3 very popular and robust algorithm in data clustering.

However, from the experiment results, even the graph regularized sparse coding method outperform

those 3 algorithms in a relatively large margin. Our dual-graph regularized sparse coding method even

outperforms the graph regularized sparse coding by adding one more graph constraint for dictionary.

This constraint is useful in control of the variation of dictionary elements. The improvement on CMU-

PIE dataset is relatively small, however, the advantage really shines in COIL data set. The reason behind

it is: COIL datasets contain objects with 72 orientations which is hard to capture the similarity between

two images using Euclidean distance. In our dual graph-regularized sparse coding method, we add a

feature constraint to control the variation of dictionary matrix, which can result in more robust mapping

from high-dimension image data to coefficients. Our dual graph regularized sparse coding method can

also be used to enhance the image classification results, as shown in table Table IV.

2.9 Conclusion

In this paper, we present a generalized graph Laplacian regularized sparse coding framework for

both image restoration and image representation problems. We come up with a relatively novel image

decomposition restoration algorithm by specializing our generalized framework. With the help of MCA
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(CMU-PIE) (COIL20) (COIL100)

Figure 14. Computation time vs NMI [4]
Run time comparison of LARS-BCD and FS-LD optimization algorithms on three datasets, evaluated by NMI

algorithm, we are able to decompose natural image into cartoon layer (piece-wise-smooth) and textur

layer (texture and sharp edges), we then restore each layer with optimal graph Laplacian regularizer

and sparse coding algorithm respectively. Our proposed algorithm outperforms state-of-the-art image

denoising algorithms in PSNR, also competitive in image deblurring. However, compared with state-

of-the-art image denoising algorithms such as BM3D and SSC-GSM, our algorithm is relatively poor

in SSIM index evaluation. We also developed a novel dual graph regularized sparse coding (DGSC)

algorithm as another special case application (image representation) of our generalized framework. By

considering both data graph and feature graph as regularizers in sparse representation, our learned co-

efficient vector is both efficient and effective in image clustering and classification tasks. Experimental

results in image clustering and classification on 4 popular bench mark datasets show that our proposed

algorithm outperforms 4 popular algorithms in image clustering, also enhances the linear SVM classi-
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fication results. We also proposed two efficient numerical optimization algorithm for application of our

DGSC algorithm.
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TABLE I

NATURAL IMAGE DENOISING WITH MCA-GSC
In each cell, the PSNR and SSIM index [70] evaluation results of the four denoising methods are reported in the
following order: TOP LEFT:OGLR [19]. TOP RIGHT: BM3D [69]. BOTTOM-LEFT:SSC-GSM [2]. BOTTOM
RIGHT: (Proposed) MCA-GSC

Image

OGLR BM3D
Standard Deviation σI

SSC-GSM MCA-GSC

10 20 30 40 50 60 70

Lena

35.62 35.89 32.93 33.02 31.22 31.23 30.06 29.82 28.86 29.00 28.19 28.20 27.46 27.50
0.912 0.915 0.874 0.876 0.842 0.843 0.821 0.813 0.785 0.796 0.768 0.776 0.742 0.756
35.96 37.96 32.58 35.66 31.40 34.45 30.32 33.68 29.05 33.12 28.34 32.70 27.63 32.46
0.915 0.893 0.879 0.843 0.848 0.812 0.823 0.783 0.797 0.762 0.788 0.745 0.764 0.730

Barbara

34.46 34.96 31.45 31.75 29.63 29.79 28.31 28.00 27.36 27.23 26.42 26.30 25.62 25.51
0.937 0.942 0.902 0.905 0.867 0.867 0.838 0.822 0.801 0.794 0.768 0.759 0.734 0.727
35.27 37.00 32.06 34.06 29.69 32.66 28.37 31.86 27.45 31.37 26.56 31.10 25.59 30.95
0.941 0.925 0.910 0.860 0.873 0.801 0.835 0.746 0.799 0.700 0.793 0.660 0.763 0.625

House

36.57 36.71 33.80 33.77 32.05 32.09 30.68 30.65 29.20 29.69 28.42 28.74 27.57 27.91
0.923 0.907 0.877 0.869 0.845 0.850 0.822 0.813 0.784 0.797 0.766 0.779 0.738 0.763
36.70 38.28 34.08 35.95 32.44 35.06 31.15 34.39 30.02 33.76 0.0 32.97 0.0 32.40
0.912 0.883 0.871 0.846 0.851 0.825 0.829 0.805 0.801 0.785 0.784 0.761 0.768 0.736

Boat

32.83 33.92 29.45 30.88 27.55 29.12 26.25 27.74 25.25 26.78 24.50 26.02 23.85 25.4
0.914 0.895 0.840 0.803 0.780 0.771 0.733 0.717 0.685 0.674 0.651 0.634 0.618 0.625
33.89 35.67 30.87 33.46 28.88 32.65 27.73 32.19 26.75 31.89 25.98 31.66 25.52 31.48
0.882 0.843 0.818 0.756 0.757 0.700 0.724 0.651 0.689 0.618 0.665 0.593 0.645 0.572

Peppers

34.91 35.02 32.67 32.75 31.23 31.23 30.10 29.93 28.83 29.09 28.20 28.26 27.42 27.54
0.879 0.879 0.842 0.845 0.818 0.820 0.798 0.795 0.762 0.782 0.751 0.763 0.729 0.746
34.83 37.22 31.41 35.46 31.57 34.60 30.22 34.02 26.82 33.58 28.31 33.26 27.49 33.01
0.873 0.858 0.846 0.825 0.825 0.802 0.807 0.781 0.785 0.761 0.778 0.744 0.765 0.728

Mandrill

33.84 33.58 31.35 31.60 30.56 30.56 27.40 27.09 26.59 26.35 25.99 25.74 25.47 25.28
0.883 0.897 0.786 0.792 0.706 0.702 0.650 0.617 0.595 0.549 0.546 0.498 0.500 0.459
34.06 33.27 31.99 30.74 30.64 29.94 27.43 29.62 26.76 29.48 25.89 29.41 25.91 29.36
0.886 0.851 0.784 0.677 0.673 0.520 0.602 0.410 0.520 0.361 0.484 0.339 0.439 0.324
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TABLE II

DESCRIPTION OF THE CLUSTERING DATASETS
Data Set # images # pixels # classes

CMU-PIE 1428 1024 68
COIL20 1440 1024 20

COIL100 7200 1024 100

TABLE III

NATURAL IMAGE DEBLUR WITH MCA-GSC
Performance comparison of our proposed MCA-GSC algorithm against 3 popular image deblurring algorithms:
FISTA, IDD-BM3D, and SSC-GSM.

````````````Algorithms
Images Gaussian blur with standard deviation 1.6, σI =

√
2

Butterfly Boats C. Man Starfish Parrot Lena Barbara Peppers Leaves House

FISTA [72] 30.36 29.36 26.80 29.65 31.23 29.47 25.03 29.42 29.33 31.50
0.937 0.851 0.824 0.888 0.907 0.854 0.738 0.835 0.948 0.825

IDD-BM3D [73] 30.73 31.68 28.17 31.66 32.89 31.45 27.19 29.99 31.40 34.08
0.947 0.904 0.871 0.916 0.932 0.910 0.823 0.881 0.964 0.882

SSC-GSM [2] 31.12 31.78 28.40 32.26 33.30 31.52 28.42 30.18 32.02 34.65
0.952 0.905 0.872 0.925 0.938 0.911 0.846 0.877 0.969 0.883

MCA-GSC 31.26 31.91 28.31 32.35 33.18 31.58 28.80 30.36 32.26 34.41
0.932 0.878 0.839 0.903 0.911 0.896 0.822 0.852 0.950 0.871
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TABLE IV

CLASSIFICATION ACCURACY ON USPS
N is the size of training set, M is methods

HHH
HHM
N Classification Accuracy (%)

100 500 1000 2000 5000 7291
Orignal 75.1 87.2 89.6 90.3 91.5 93.0

SC 80.3 87.8 88.2 89.5 91.7 93.5
GraphSC 82.8 88.6 90.3 91.3 93.9 94.1
DGSC 82.6 89.9 90.5 92.0 94.4 95.8

TABLE V. CLUSTERING RESULTS ON CMU-PIE DATASET
#C IS # OF CLUSTER, M IS METHOD

HH
HHH#C

M Accuracy (%) Normalized Mutual Information (%)
Kmeans NCut SC GraphSC DGSC Kmeans NCut SC GraphSC DGSC

4 48.6 99.1 100 100 100 33± 5.6 98.6 100 100 100
20 38.4 78.3 88.4 94.2 95.1 55± 3.3 88.6 91± 1.1 96± 1.3 97± 1.1
36 34.9 75.6 77.9 88.5 90.5 60± 3.9 88.9 88± 2.3 95± 1.2 95± 1.5
52 33.2 72.6 69.6 84.6 86.7 61± 2.2 89.1 83± 2.1 93± 1.2 95.6
68 31.7 70.8 60.4 82.1 84.3 55 88.3 77.6 93.4 95.2

TABLE VI. CLUSTERING RESULTS ON COIL20 DATASET
#C IS # OF CLUSTER, M IS METHOD

HH
HHH#C

M Accuracy (%) Normalized Mutual Information (%)
Kmeans NCut SC GraphSC DGSC Kmeans NCut SC GraphSC DGSC

4 80.1 79.4 90.2 96.8 96.5 73± 3.3 75 84± 6.3 89± 2.8 97± 1.1
8 72.4 70.9 84.6 89.2 91.7 64± 4.6 73.4 82± 5.2 85± 1.7 94± 1.1
12 68.1 74.1 81.9 90.1 91.1 68± 3.9 79.1 82± 2.4 84± 1.4 92.3± 1.2
16 72.1 70.9 74.7 83 89 73± 2.5 77.7 81± 3.3 83± 2.1 91± 0.6
20 62.2 67.1 73.8 78.6 85.5 72.4 77.3 78.5 83.3 90.2
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TABLE VII. CLUSTERING RESULTS ON COIL100 DATASET
#C IS # OF CLUSTER, M IS METHOD

HH
HHH#C

M Accuracy (%) Normalized Mutual Information (%)
Kmeans NCut SC GraphSC DGSC Kmeans NCut SC GraphSC DGSC

20 63.4 67.3 68.9 78.4 85± 1.1 71.2± 5.6 77.3 78± 0.5 82± 1.5 89± 1.5
40 51.4 64.3 61.4 74.3 80± 1.1 66± 3.3 78.4 76± 1.1 80± 1.3 88± 0.4
60 49.4 62.1 65.9 71.3 77± 0.9 69± 3.9 75.4 75± 1.3 80± 1.5 86± 0.8
80 53.9 59.9 62.0 69.6 75± 1.1 75± 1.2 73.7 72± 0.8 79± 1.2 86± 0.3
100 50.5 62.3 60.4 69.3 74.7 74.3 75.1 72.1 78.6 85.5



CHAPTER 3

KRONECKER LEAST ANGLE REGRESSION

3.1 ABSTRACT

Sparse representation of signals has draw great attention recently with the finding that we can well

approximate a signal by linear combination of dictionary elements. Enormous research has been de-

voted to find the sparsest solution of a singal by solving a underdetermined linear system of algebraic

equations. Least Angle Regression (LARS) is one of the most important algorithms, which can be used

to solve least square problem with both `0 norm and `1 norm constrain. However, most modern signals

are two dimensional or even higher, current state-of-the-art algorithms are relying on converting high

dimensional data into vectors which are not considering structure information within data.

Research has shown that signals with multidimensional structure can be converted from vectors to

tenors (mutliway arrays) with the utilization of Tucker model. Thus, the problem is converted to solving

an underdetermined linear system with Kronecker structure. In this paper, we proposed Kronecker Least

Angle Regression (Kron-LARS) algorithm as a generalization of the classic vector version (LARS)

algorithm for tensors. We demonstrate that by utilizing the multidimensional structure of signal, Kron-

LARS as a equivalent conversion of LARS can reduce the recovery complexity and memory usage.

Additionally, by exploiting not only the Kronecker structure but also block sparisty of signals, our Kron-

LARS can be easily extened asN-dimensional block sparse LARS (NBS-LARS), which is dramatically

51



52

fast and memory efficient. We demonstrate that NBS-LARS algorithm not only has considerably lower

recovery complexity but also has better precision under same percentage of sampling.

We compared the recovery results and efficiency of our Kron-LARS and NBS-LARS algorithms

with classical LARS algorithm on 1D, 2D and 3D signals. We also demonstrate that compared with

exiting greedy algorithms, our algorithms preserve the good property of LARS algorithm which can be

used to solve `1 norm (better precision and recovery success rate – convex optimization) with the effi-

ciency of greedy algorithms. The NBS-LARS algorithm is a very fast solution for compressed sensing

(CS) problem with large-scale data sets, such as 2D compressive imaging (CI), 3D MRI and hyperspec-

tral CI, we show examples with real-world signals.

3.2 Introduction

Sparsity is one the most remarkable concept underlines recent developments of image and signal

processing. Compression protocols such are JPEG, MPEG and JPEG2000 that are utilizing sparsity

of signals have had big success delivering high compression ratios with minimal loss of information.

The reason behind is by nature, signals living in a vector space that do not uniformly covering the entire

space [75]. Specificly, most applications in getting signals (images) of interest can be well approximated

by a linear combination of few active elements of a dictionary [76]. Those dictionaries or bases is a

super set that can be used to represent the internal structure of sigals. Moreover, dictionaries could

be overcomplete where the number of atoms is large than signal size. Most well know dictionaries

are, for example, those generated from Discrete Cosine Transform (DCT) [77], the Wavelet Transform

(WT) [78], etc.
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Central to much of recent work about sparsity representation is the paradigm of compressed sensing

(CS), also know under the concept of compressed sensing or compressive sampling [79–81]. Com-

pared with traditional signal acquisition process which are based on sampling of analog singals at a high

Nyquist rate and only storing the most significant coefficients, CS theory is a more compelling idea

that the sampling process can be greatly simplified by fetching relatively few linear measurements of

the signal while still allowing almost perfect reconstruction via nonlinear recovery process. The first

intuitive approach to a reconstruction algorithm consists in searching for the sparsest vector that is con-

sistent with the linear measurements. However, this is a `0-minimization problem which is NP-hard in

general and mostly computationally infeasible. There are essentially two approaches for tractable alter-

native algorithms. The first is convex relaxation, leading to `1-minimization [82], also known as basis

pursuit [83], whereas the second constructs greedy algorithms such as MP [84] and OMP [85]. Both

convex relaxation and greedy algorithms have their advantages and disadvantages. Thoery for sparse re-

covery by `1-minimization is well established known as convex optimization, and basic properties of the

measurement matrix are also well known: the null space property (NSP) [86] and the restricted isometry

property (RIP) [87]. Also, there exists a wide range of cases where `1-minimization is known to find the

sparsest solution while greedy algorithms such as OMP failed [83, 85, 88]. However, greedy algorithms

are computational more efficient, hence applicable to larger data set. To this end, HOMOTOPY [89]

gives in some sense the best of both worlds by a single algorithm: speed where possible, sparsity where

possible. One of the most important algorithm to solve underdetermined linear equations is LARS [65],

which can be obtained from HOMOTOPY by simply removing teh sign constraint check. Also, LARS
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is greedy in nature which solves a linearly penalized least-square probem while less greedy compared

with OMP. So same as HOMOTOPY, LARS algorithm is a good combination of speed and sparsity.

An intrinsic limitation in conventional CS theory is that it relies on data representation in vector

forms. However, in modern applications, signals tends to have multidimensional structure. To list a few,

2D images, 3D images such as computed tomography (CT), magnetic resonance imaging (MRI) and

hyperspectral images. In those cases, multidimensional signal or image is stored in memory as a tensor

Y ∈ RI1×I2×I3 , where tensor is the generalization of vectors and matrices to higher dimensions and can

also be referred as N-way arrays or Multiway arrays. Due to curse of dimensionality problem, finding

sparse representations ofN-way arrays can be very expensive in memory storage and computation load

due to the number of entries grows exponentially with the number of dimensions.

Therefore, the higher-order extension of CS theory for multidimensional data has become an e-

merging topic. There are mainly two directions. One direction attempts to find the best rank-R tensor

approximation as a recovery of the original data tensor such as [90], where the authers proved the ex-

istence and uniqueness of the best rank-R tensor approximation in the case of 3rd order tensors under

appropriate assumptions. In [91], the authors proposed multi-way CS (MWCS) for sparse low-rank

tensors by a two-step recovery process: fitting a low-rank model in compression domain, followed by

per-mode decompression, which is appealing in terms of computational complexity and memory capac-

ity. However, the performance of MWCS is relied on the estimation of tensor rank, which is a NP-hard

problem. The other direction [92] uses Kronecker product matrices in CS to act as sparsifying bases that

jointly model the structure present in all of the signal dimensions as well as to represent the measure-
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ment protocols. However, the recovery procedure, due to the vectorization of multidimensional signals,

more efficient algorithms are needed.

In [93], a generalized tensor compressed sensing model based on Tucker [94] and CANDECOM-

P/PARAFAC (CP) decomposition [95] is proposed as a unified framework of low-rank approximation

and kronecker product for compressed sensing. The author demonstrated reduced computational com-

plexity at reconstruction, however, compared with [92], the compression ratios are worse. In [96] [97]

and [5], the authors proposed a generalized OMP [85] algorithm called Kronecker-OMP and Tensor-

OMP to compute sparse and block-sparse of a tensor with respect to a Kronecker basis and demonstrat-

ed faster and more precise sparse representations of tensors compared with classical OMP. Although

speedy, OMP failed in [83, 85, 88] due to its local optimal nature, where `1-minimization is more ro-

bust in finding the sparsest solution as it’s convex and global optimal solutions are secured. Inspired

by [5, 96, 97] and relationship between OMP, LARS, and HOMOTOPY algorithms [89], we general-

ized the classical LARS algorithm to efficiently compute both sparse and block-sparse of a tensor with

respect to Kronecker basis in both `0-norm and `1-norm minimization. We demonstrate that the new

algorithms – Kron-LARS and NBS-LARS – share the good properties of HOMOTOPY algorithm with

fast speed and sparsest solution, we also show that those new algorithms outperform classical LARS

algorithm in both memory storage and computational complexity in multidimensional signals.

This paper is organized as follows. In section II, we instroduce the basic notation, concepts and

some important previous results. In section III, we describe our new Kron-LARS and NBS-LARS

algorithms for the cases of multidimensional sparsity and multiway block sparsity. In section IV, we

show the performance guarantee, memory consumption as well as computation complexity of Kron-
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LARS and NBS-LARS. In section V, we present extensive simulations using synthetic data as well real-

world multidimensional signals to demonstrate the extrodenary performance of proposed algorithms. In

section VI, we conclude this work with main contributions and discussions.

3.3 Notation and Preliminaries

Throughout this discussion, we represent vectors by boldface lowercase letters, matrices (two-

dimensional array) by bold uppercase letters and tensor (N-dimensional array) by underlined bold-

face capital letters. For example, a ∈ RI, A ∈ RI×M and A ∈ RI1×I2×···×IN are vector, matrix

and tensor respectively. The i-th entry of a vector is denoted by ai, the element (i, j) of a ma-

trix A is represented by A(i, j) = ai,j. We use same notation for N-dimensional array by ‖A‖F =√∑
i1

∑
i2
· · ·
∑
iN
a2i1i2···iN . For block sparsity representation, following [5] we use block (sub-

array) notation by restricting the indices to belonging to certain subsets of indices. For example,

given subsets of Sn indices In = {i1n, i
2
n, ..., i

Sn
n } in each mode n = 1, 2, ..., N, and the subarray

A(I1, I2, ..., IN) ∈ RS1×S2×···×SN is obtained by keeping the entries of the original tensor Y at the

selected subsets of indices In(n = 1, 2, ..., N). The cardinality of a subset of indices I is denoted by

|I |.
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3.3.1 Multilinear Algebra

Definition 1. (Kronecker product). Given two matrices A ∈ RI×M and B ∈ RJ×N, their Kronecker

product A⊗ B ∈ RIJ×MN is defined by:

A⊗ B =



a11B a12B ... a1MB

a21B a22B ... a2MB

· · · ·

aI1B aI2B ... aIMB


(3.1)

Properties 1. (Properties of Kronecker product)

(A⊗ B)T = (AT ⊗ BT )

(A⊗ B)(C⊗ D) = (AC)⊗ (BD)

(3.2)

Definition 2. (Khatri-Rao product). Given two matrices A ∈ RI×K and B ∈ RJ×K, their Khatri-Rao

product A� B ∈ RIJ×k is defined by:

A� B =

(
a1 ⊗ b1 a2 ⊗ b2 ... aK ⊗ bK

)
(3.3)

Properties 2. (Properties of Khatri-Rao product)

(A� B)† = ((ATA) ∗ (BTB))†(A� B)T (3.4)
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Definition 3. (Tucker decomposition [98])

Y = G×1 A1 ×2 A2 · · · ×N AN, (3.5)

where G ∈ RR1×R2×···×Rn is core tensor and An ∈ RIn×Rn are factor matrices.

Properties 3. (relationship between the Tucker model and a Kronecker representation of an N-way

array) [5]. Given Y ∈ RI1×I2···×IN , X ∈ RM1×M2···×MN , Bn ∈ RIn×Mn(n = 1, 2, ...,N), x = vec(X)

and y = vec(Y), the following two representations are equivalent:

Y = X×1 B1 ×2 · · · ×N BN, (3.6)

y = (BN ⊗ BN−1 ⊗ · · · ⊗ B1)x. (3.7)

Definition 4. (CANDECOMP/PARAFAC (CP) Decomposition [95]). For a tensor Y ∈ RI1×I2×···×IN ,

the CP decomposition is to find R components that best approximates Y, i.e., to find

min ‖Y − Ŷ‖2 (3.8)

with Ŷ =
∑R
r=1 λrA1(:, r)◦A2(:, r)◦· · ·◦AN(:, r). where λr is a scalar, An(:, r) is the r column vector of matrix

An, (n = 1, 2, ..., N).

Definition 5. (Multiway block-sparsity) [5]. A multidimensional signal (N-way array) Y ∈ RI1×I2···×IN

is (S1, S2, ..., SN)-block sparse with respect to the factors Bn ∈ RIn×Mn(n = 1, 2, ...,N) if it admits
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a Tucker representation based only on few Sn selected columns of each factor Sn ≤ Mn, i.e. if In =

[i1n, i
2
n, ..., i

Sn
n ] denote a subset of indices for mode n(n = 1, 2, ...,N), then

Y = X×1 B1 ×2 B2 ×3 · · · ×N BN, (3.9)

with xi1i2···iN = 0 ∀(i1, i2, ..., iN) /∈ I1 × I2 × · · · × BN,

Typically, we assume that Sn � Mn and Mn ≥ In. In other words, multiway block-sparsity

assumes that the non-zero entries of the core tensor X are located within a subarray (block) defined by

X(I1, I2, ..., IN).

Properties 4. (Multiway Block Sparsity implies Sparsity of the vectorized version of the signal) [5].

If an N-way array Y ∈ RI1×I2···×IN is (S1, S2, ..., SN)-block sparse with respect to factor matrices

Bn ∈ RIn×Mn (n = 1, 2, ...,N) then its vectorized version y = vec(Y) ∈ RI1I2···IN is K-sparse

(K = S1S2 · · ·SN) with respect to the Kronecker dictionary B = BN ⊗ BN−1 ⊗ · · · ⊗ B1.

Proof 1. If we use the equivalence of equation and the definition of Multiway Block Sparsity we con-

clude that the vector of coefficients x = vec(X) has at most K = S1S2 · · ·SN none-zero entries which

means that y has a K-sparse representation on the dictionary BN ⊗ BN−1 ⊗ · · · ⊗ B1.

3.3.2 Compressed Sensing and Sparse Solutions of Underdetermined Linear Systems.

Compressed sensing is a framework for reconstruction of signals that have sparse representations.

A vector x ∈ RM is called K-sparse if it has at most K nonzero entries. The CS measurement protocol

measures the signal x with the measurement matrix B ∈ RI×M where I < M and information is encoded
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as y ∈ RI where y = Bx. The core problem becomes recovery of x from y given measurement matrix

B. Since I < M, this is a underdetermined linear system which has infinitely many solutions.

However, if x is known to be sparse enough, almost perfect recovery of x is possible both theoreti-

cally and practically, which establishes the fundamental tenet of CS thoery.

The recovery is achieved by finding a solution û satisfying either `0 minimization or `1 minimizatoin

as Eq. (Equation 3.10) and (Equation 3.11) respectively.

û = arg min{‖u‖0, Bu = y} (3.10)

û = arg min{‖u‖1, Bu = y} (3.11)

Such û coincides with original signal x under certain condition. To be able to recover the x uniquely,

dictionary matrix B needs to satisfy Eq. (Equation 3.12) [85]

K <
1

2

(
1+

1

µ(B)
)

(3.12)

where 2K is the maximum number of columns of B that are linearly dependent, µ(B) = maxi 6=j |bTi bj| is

the coherence of two columns of dictionary, and dictionary matrix B has unit-norm columns (‖bi‖22 =

1, i = 1, 2, ...,M).

Typically, when Eq. (Equation 3.10) is satisfied, we can find a unique sparsest solution with `0

minimization. However, solving `0 minimization such as Eq. (Equation 3.10) is NP-hard (requires

combinatorial optimzation) and generally computational infeasible. Most research work are focusing
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on its convex relaxation i.e. `1 minimization, which is more tractable. Additionally, when the answer to

Eq. (Equation 3.10) is sparse, it can be the same answer to Eq. (Equation 3.11). One well known result

states that each K-sparse signal can be recovered uniquely if B satisfies the null space property of order

K [81], denoted as NSPK. That is, if Bw = 0, w ∈ RN \ {0}, then for any subset S ⊂ {1, 2, ..., N} with

cardinality |S| = K holds that ‖vS‖1 < ‖vSc‖1, where vS represents the vector that coincides with v on

the index set S and is set to zero on Sc. Another result states that if the observation y is noisy, for a given

integer K, the matrix B ∈ RI×N satisfies the restricted isometry property (RIPK) [87] is if

(1− δK)‖x‖2 ≤ ‖Bx‖2 ≤ (1+ δK)‖x‖2 (3.13)

for all K-sparse x ∈ RM and for some δK ∈ (0, 1).

3.3.3 Multidimensional and Block Sparsity Compressed Sensing

In this paper, the generalization of CS theory to higher dimensions is based on assumption of

Kronecker structure of the dictionary and sensing matrix which was proposed in [79] for 2D signal-

s and [92] for the general N-dimensional signal cases. The vectorization of a N-dimension tensor

U ∈ RM1×M2×···×MN with K-sparse representation on a Kronecker basis can be expressed as Eq. (E-

quation 3.14).

u = (DN ⊗ DN−1 · · · ⊗ D1)x, with ‖x‖0 ≤ K. (3.14)

Then, with Kronecker structure sensing matrixΨ = ΨN⊗ΨN−1⊗· · ·⊗Ψ1, we get a large-scale under-

determined linear system of equations as Eq. (Equation 3.7), where Bn = ΨnDn (n = 1, 2, ..., N).
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Another useful finding of real world signals is that the nonzero coefficients are not evenly distribut-

ed which can be well modeled by block sparsity. In [99], algorithms and theories are provided for

efficient recovery of vector signal with block sparse assumption. In [5], Caiafa et al. proposed algo-

rithms and performance guarantees by further assuming the N-way block sparsity of multidimensional

signals, which results in much less memory storage and computation consumption. Based on this work,

we generalize the classical vector LARS as Kron-LARS and NBS-LARS to fit the multidimensional

sparsity and block sparisty structure with respect to Kronecker bases. We show that the generalized

LARS agorithms outperforms classical LARS from both memory usage and computational complex-

ity perspective. Additionally, they inherit the good properties of HOMOTOPY algorithm which is a

combination of speed and sparsity.

3.4 Kronecker LARS and N-way Block Sparse LARS

In this section, we first present the classical LARS algorithm, and its relation to HOMOTOPY [89]

algorithm and greedy algorithm such as OMP [85], then we present our novel Kronecker LARS andN-

way Block Sparse LARS algorithm by exploiting signal’s multidimensional and block sparse structure

with Kronecker dictionary.

In following subsections, we compute sparse representation of vector y with fixed dictionary B

where B ∈ RI×M. For a multidimensional signal (tensor) Y ∈ RI1×I2···×IN we compute its sparse

representation with a fixed dictionary B = BN ⊗ BN−1 ⊗ · · · ⊗ B1, where Bn ∈ RIn×Mn .

3.4.1 Least Angle Regression (LARS)

LARS [100] is a regression method that has a more gentle version of forward selection and is orig-

inally proposed to estimate a sparse coefficient vector in a noisy over-determined linear system. LARS
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Figure 15. LARS ILLUSTRATION
vector α1 has the largest correlation with y (θ1(1) < θ1(2)), instead of using the least squares solution (project y
on to α1), LARS algorithm move along the direction α1 to a point where α2 has same correlation with residual

vector as α1, i.e. θ2(1) = θ2(2).

outputs estimates for all shrinkage and constraint parameters (HOMOTOPY) and is well suited for Basis

Pursuit (BP) [83] in real case.

3.4.1.1 Relation to HOMOTOPY algorithm for solving `1 minimization

Generally, to solve `1 minimization such as Eq. (Equation 3.11), one could use simplex algorithm,

basis pursuit [83] or interior-point method [101], which starting with a dense solution and converges to

solutions of Eq. (Equation 3.11) in a sequence of iterations, each iteration with the solution of entire

linear system. Where, in contrast, the HOMOTOPY method starts at 0 element, and building up a

sparse solution by adding or removing elements from an active set. It’s easy to see that with a sparse

assumption, HOMOTOPY method is more efficient by reaching solution in few steps.

LARS is an alternative version of the HOMOTOPY algorithm from geometric perspective. It’s

derived from stagewise regression methods in statistics. Similar to HOMOTOPY algorithm, the LARS
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Figure 16. LARS VS OMP ON HIGHLY CORRELATED COLUMNS
LARS and OMP recovery of vector y with highly correlated column vectors {α1, α2, α3}

algorithm keeps an active set of nonzero elements composing the current solution. Then, for each step,

the algorithm adds a new element to active set by taking a step along an equiangular direction, which

is, a direction that has equal angles with the new element and vectors in the active set, such as in Fig.

(Figure 15) .

Specifically, HOMOTOPY algorithm is very similar to LARS except that when adding a new el-

ement, HOMOTOPY algorithm may remove existing elements from active set. Thus, LARS with

LASSO [60] modification as a variant of LARS is proposed, which is identical to the HOMOTOPY

algorithm.
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3.4.1.2 Relation to OMP algorithm

Conceptually, LARS algorithm is very similar to OMP as greedy algorithms. The difference can

be easily summarized as follows: instead of taking a step size that yields least squares solution in each

step, we shorten the step length and stop when a inacitve element has same correlation with the residual

vector as the active element. We added the corresponding element from inactive set to active set and

calculated a new direction. As all active elements are uncorrelated with the residual vector at least

squares solution, we will therefore always get shorter step length for next active candidate compared

with least squares solution.

In [100], experimental results show that the solution from LARS algorithm is often identical to the

LASSO [60] solution. This equality is very interesting as LARS is so similar to OMP as a greedy

algorithm. Both algorithm starts with an empty active set, each step adding a new element to the active

set and ensuring that new element is most important among other candidates. However, at each step,

LARS is finding the updating direction which has equal angles between new candidate and active set.

This makes LARS less greedy and more global. Figure 16 is an example of vector y represented by 3

highly correlated vectors, where x is the mixing vector, x̂LARS and x̂OMP are recovered mixing vectors

by LARS and OMP algorithms. In this case, OMP failed because of its greedy steps – residual is

orthogonal to selected vector.

LARS algorithm’s property can be summarized as follows: an algorithm for `0 minimization run-

s just as fast as OMP; an algorithm conceptually very similar to OMP but can be as effective as `1

minimization.
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3.4.1.3 LARS algorithm basic derivation

LARS starts with an empty set of active variables, variable with the highest correlation with response

is added to the model as first variable. We then use the least squares solution with this active variable

as the first direction. Moving along this direction, we measure the angles between the ative variables

and the residual vectors. The angles between them will chnage as it moves along the direction, and the

correlation between the the active variable and residual vectors will shrink linearly towards 0. Before

getting to the stage of 0 correlation, there may another variable that has the same correlation with respect

to the residual vector as with the active variable. The new variable from inactive vector set is added to

the active set and the move stops. We then get a new direction of moving towards the least squares

solution of those two active variables. The move and new direction go on as above steps. After p steps,

the full least squares solution will be reached.

The LARS algorithm is very efficient as we can get closed form solution for the step length at each

iteration step. Denoting the model estimate of y at iteration k by ŷ(k) and the least squares solution

including the newly added active variable ^yk+1OLS, the walk from ŷ(k) towards ŷ(k+1)OLS can be formulated

(1−γ)ŷ(k)+γŷ(k+1)OLS where 0 ≤ γ ≤ 1. Estimating ŷ(k+1), the position where the next active variable is

to be added, then amounts to estimating γ. We seek the smallest positive γ where correlations become

equal, that is

bTi∈I(y − (1− γ)ŷ(k) − γŷ(k+1)OLS ) = bTj∈A(y − (1− γ)ŷ(k) − γŷ(k+1)OLS ) (3.15)
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Solving this expression for γ, we get

γi∈I =
(bi − bj)T (y − ŷ(k))

(bi − bj)T (ŷ
(k+1)
OLS − ŷ(k))

=
(bi − bj)Tr
(bi − bj)Td

(3.16)

where d = ŷ(k+1)OLS − ŷ(k) is the direction of the walk, and j ∈ A. Now, b is the orthogonal projection of r

onto the plane spanned by the variables in A, therefore we have bTj r = bTj b = c, representing the angle

at the current breakpoint ŷ(k). Furthermore, the sign of the correlation between variables is irrelevant.

Therefore, we have

γ = min
i∈I

{
bTi r − c
bTi d − c

,
bTi r + c
bTi d + c

}
, 0 < γ ≤ 1, (3.17)

where the two terms are for correlations/angles of equal and opposite sign respectively. The coefficients

at this next step are given by

α(k+1) = (1− γ)α(k) + γα
(k+1)
OLS . (3.18)

Given these key pieces of the LARS algorithm, we state the entire procedure in Alg. (2)

black

3.4.2 Kronecker LARS (Kron-LARS) Algorithm : generalized LARS algorithm with Kronecker

dictionary

Popular algorithms such as Basis Pursuit and OMP with Kronecker dictionary have been exploited

in [102] and [96], however, they are either very slow as general convex optimization algorithm or greedy

algorithm that will not always finds the sparsest solution. Here, we proposed Kron-LARS algorithm
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Algorithm 2 Least Angle Regression [100]
Require: Given over-complete dictionary with B ∈ RI×M, signal y ∈ RI, tolerance ε
Ensure: Sparse representation y = Bx with ‖x‖0 ≤ K (‖x‖0 represent number of nonzero elements.)

1: Initialize the coefficient vector α(0) = 0 and the fitted vector vec(ŷ(0)) = 0,
2: Initialize the active set A = ∅ and inactive set I = {1...p}

3: for k = 0 to p− 2 do
4: Update the residual r = y − ŷ(k)
5: Find the maximal correlation c = maxi∈I |bTi r|
6: Move variable i corresponding to c from I to A, A = A

⋃
{i}

7: Calculate the least square solution α(k+1)
OLS = (BTABA)−1BTAy

8: Calculate the current direction d = BAα
(k+1)
OLS − ŷ(k)

9: Calculate the step length γ = min+i∈I
{bTi r − c

bTi d − c
,

bTi r + c
bTi d + c

}
, 0 < γ ≤ 1

10: Update regression coefficients α(k+1) = (1− γ)α(k) + γα
(k+1)
OLS

11: Update the fitted vector ŷ(k+1) = ŷ(k) + γd
12: end for
13: Let α(p) be the full least square solution α(p) = (BTB)−1BTy
14: Output the series of coefficients A = [α(0)...α(p)]

(Alg. 3) as a generalization of classical LARS or HOMOTOPY algorithm to keep the speed and sparsity

properties at the same time.

Here we exploit the Kronecker structure of the dictionary to avoid storage of extra large dictionary

and saves memory. To be specific, instead of caculating vector residual and correlation between vectors

as Step 4, 5 in LARS (Alg. 2), we calculate tensor residual and multiway product as Step 4, 5 shown

in Kron-LARS (Alg. 3). Additionally, in Step 5 of Kron-LARS (Alg. 3), we also get much less

computation complexity compared with same Step 5 of LARS (Alg. 2). Assuming that I1 = I2 =

· · · = IN = I and M1 =M2 = · · · =MN =M, note that, we are solving underdetermined system of

equations, so the number of dictionary elements M is usually large than number of rows (I) at a scale
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of M = nI, n = 2 ∼ 10. We achieve a complexity of order O((nI)N+1), which is smaller than the

computational complexity of the same Step 5 in LARS (Alg. 2) to vectorized signal (aboutO(nN+1InN)

where usually n = 2 ∼ 10).

Another memory and computation intensive task in LARS (Alg. 2) is Step 7, i.e. least squares (LS)

problem, which will need to inverse a very large dictionary.

For a N-dimensional tenosr that has K-sparse representation with Kronecker dictionary can have

an equivalent Tucker representation as shown in Property 3 with a sparse core tensor X that has only

K nonzero elements. If we define the location of the nonzero entries in X by (ik1 , i
k
2 , ...., i

k
N) with

k = 1, 2, ..., K, then we can express theN-way array Y as a weighted sum of K rank-1N-way arrays as

Y =

K∑
k=1

xik1 i
k
2 ···i

k
N

B1(:, ik1) ◦ B2(:, ik2) ◦ · · · ◦ BN(:, ikN) (3.19)

where ◦ represent outer product between vectors. From CP decomposition in Definition 4 and Kruskal

operator defined in [91] chapter 5, we can interpret Eq. (Equation 3.19) as the following expression:

y = vec(Y) = (CN � CN−1 � · · · � C1)x (3.20)

where Cn ∈ RIn×K, Cn(:, k) = Bn(:, ikn), n = 1, 2, ..., N and k = 1, 2, ..., K; � represent Khatri-Rao

product as defined in Definition 2.

Thus, in multidimensional signal, the least square solution, i.e. Step 7 in LARS (Alg. 2) can be

represented as

x̂ = (CN � CN−1 � · · · � C1)†y, (3.21)
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Based on properties of Khatri-Rao product as in Property 2, the large matrix inverse problem can be

converted to as follows:

x̂ = F†(CN � CN−1 � · · · � C1)Ty, (3.22)

where F = (CTNCN) ∗ (CTN−1CN−1) ∗ · · · ∗ (CT1C1), † represents the sudo inverse and ∗ represents the

elementwise product.

As CTnCn, n = 1, 2, ..., N is sysmetric and positive definite, based on Schur complement inversion

formula in [103], each step of the calculation complexity is only O(IN), where I = I1 = I2 · · · =

IN−1 = IN and N represents number of dimensionals. Compared with LARS, solving least square

with Kronecker dictionary save significant amount of memory and computation complexity. The imple-

mentation of LARS for N-dimensional tenosr using a Kronecker dictionary (Kron-LARS) is given in

algorithm 3.

black

3.4.3 NBS-LARS Algorithm: an Algorithm to Find Multiway Block-Sparse Representations

In this subsection we exploit signal with not only multidimensional structure but also block sparsity

(similar to the work in [5]) assumption and come up with a very efficient algorithm calledN-dimensional

block sparse LARS (NBS-LARS) (as present in Alg. 4). The goal is to find a (S1, S2, ..., SN)-block

sparse representation of an N-dimensional tensor with respect to the factors Bn ∈ RIn×Mn(n =

1, 2, ..., N). We further show that, as nonzero elements are located within a subarray of size S1 ×

S2×· · ·×SN, they can be quickly identified with much fewer iterations as compared to both LARS and

Kron-LARS presented.
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Algorithm 3 Kron-LARS Algorithm
Require: mode-n dictionaries {B1,B2, · · · ,BN} with Bn ∈ RIn×Mn(n = 1, 2, ...,N), signal Y ∈
RI1×I2×···×IN , tolerance ε
Ensure: Sparse representation vec(Y) ≈ (BN ⊗ BN−1 ⊗ · · · ⊗ B1)vec(X) with ‖vec(X)‖0 ≤ K (with
nonzero entries given by ak = xik1 ,ik2 ,...,ikN , k = 1, 2, ..., K)

1: Initialize the coefficient vector α(0) = 0 and the fitted vector vec(Ŷ(0)
) = 0

2: Initialize the active set A = ∅ and the inactive set I = {1, ..., K}, k = 0.
3: while k ≤ K and ‖R‖F > ε do
4: Update the residual tensor R = Y − Ŷ(k)

5: Find the maximal correlation cmax = max[i1i2...iN] |R ×1 BT1 (:, i1) ×2 · · · ×N BTN(:, iN)|; c =

R×1 BT1 (:, i1)×2 · · · ×N BTN(:, iN);
6: Move variable corresponding to cmax from I to A. A = [A, ikn](n = 1, 2, ...,N); Cn(:, k) =

Bn(:, ikn), (n = 1, 2, ...,N)

7: Calculate the least square solution α(k+1)
OLS = arg minα ‖(CN�CN−1� · · ·�C1)α− vec(Y)‖2F;

8: Calculate the current direction d = (CN � CN−1 � · · · � C1)α
(k+1)
OLS − vec(Ŷ(k)

)

9: Calculate the step length γ = min+i∈I
{ c− cmax
cd − cmax

,
c+ cmax
cd + cmax

}
, 0 < γ ≤ 1, where Dd =

reshape{d, (I1, I2, ..., IN)}, cd = (CN(:, N)� CN−1(:, N− 1) · · · � C1(:, 1))Td.
10: Update the regression coefficients α(k+1) = (1− γ)α(k) + γα

(k+1)
OLS

11: Update the fitted vector vec(Ŷ(k+1)
) = vec(Ŷ(k)

) + γd
12: k = k+ 1

13: end while
14: Output coefficient tensor A = reshape{α, (M1,M2, ...,MN)}
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Algorithm 4 NBS-LARS Algorithm
Require: mode-n dictionaries {B1,B2, · · · ,BN} with Bn ∈ RIn×Mn (n = 1, 2, ...,N), signal Y ∈
RI1×I2×···×IN , maximum number of non-zero entries Kmax, tolerance ε
Ensure: Sparse representation Y ≈ X×1 B1×2 B2×3 · · · ×N BN with xi1i2···iN = 0, ∀(i1, i2, ..., iN) /∈
A1 ×A2 × · · · × AN (with non-zero entries given by X(A1,A2, ...,AN) = A).

1: Initialize the coefficient vector α(0) = 0 and the fitted tensor Ŷ(0)
= 0

2: Initialize the active set An = [∅](n = 1, 2, ...,N) and the inactive set I = [I1, I2, ..., IN], k = 0.
3: while |I1||I2| · · · |IN| < Kmax and ‖R‖F > ε do
4: Update the residual R = Y − Ŷ(k)

5: Find the maximal correlation cmax = max[i1i2...iN] |R ×1 BT1 (:, i1) ×2 · · · ×N BTN(:, iN)|; c =

R×1 BT1 (:, i1)×2 · · · ×N BTN(:, iN);
6: Move variable corresponding to c from I to A. An = An ∪ [ikn]; Hn(:, k) = Bn(:, ikn); (n =
1, 2, ..., N)

7: Calculate the least square solution by Cholesky factorization of the Hermitian matrix: α(k+1)
OLS =

arg minα ‖(HN ⊗HN−1 ⊗ · · · ⊗H1)α− vec(Y)‖2F;
8: Calculate the current direction Dd = A(k+1)

OLS ×1 H1 ×2 · · · ×N HN − Ŷ(k)

9: Calculate the step length γ = min+i1i2···iN∈I1×I2×···×IN

{ c− cmax
cd − cmax

,
c+ cmax
cd + cmax

}
, 0 < γ ≤ 1,

where cd = Dd ×1 HT
1 (:, 1)×2 · · · ×N HT

N(:, N), i1i2 · · · iN ∈ I1 × I2 × · · · × IN
10: Update the regression coefficients A(k+1) = (1− γ)A(k) + γA(k+1)

OLS

11: Update the fitted tensor Ŷ(k+1)
= Ŷ(k)

+ γDd
12: k = k+ 1;

13: end while
14: Output coefficient tensor A
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If we represent submatrices as Hn ∈ RIn×Sn by restricting the mode-n dictionary to columns

indicated by indices In, i.e. Hn = Bn(:, In), the approximation of singal by Tucker model can be

represented as follows using Property 3.

y ≈ ŷ = (HN ⊗HN−1 ⊗ · · · ⊗H1)u (3.23)

where u ∈ RK (K =
∏N
n=1 Sn) is the vectorized version of theN-dimensional tensor consisting of only

nonzero elements. Thus, we get the following least square problems:

α = arg min
u
‖(HN ⊗HN−1 ⊗ · · · ⊗H1)u − y‖22, (3.24)

where y ∈ RI1I2···IN is the vectorized version of the N-dimensional tensor Y. It is also shown as Step 7

in Alg. 4.

By defining H = HN ⊗ HN−1 ⊗ · · · ⊗ H1, we see that the solution of this problem is give by

a = [HTH]−1Hy, which means that [HTH]a = Hy. This allows us to write

HT
1H1A(1)

(
HT
NHN ⊗ · · · ⊗HT

2H2

)
= HT

1Y(1)(HT
N ⊗ · · · ⊗HT

2 ).
(3.25)

By denoting Z(1) = A×1 I×2 HT
2H2 · · · ×N HT

NHN and P = Y×1 HT
1 ×2 · · · ×N HT

N, we have

HT
1H1(Z(1))(1) = P(1), (3.26)
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which can be solved for (Z(1))(1) efficiently by using a Cholesky factorization of the Hermitian matrix

HT
1H1. As HT

1H1 is only |I1| × |I1|, this is a small computation problem. Then, by using the solution

Z(1) of the subproblem, we can write its mode-2 unfolded version as

HT
2H2A(2)(HT

NHN ⊗ · · · ⊗HT
3H3 ⊗ I) = (Z(1))(2), (3.27)

where with Z(2) = A×1 I×2 I×3 HT
3H3 · · · ×N HT

NHN, we can solve the following simple subproblem

efficiently also using the Cholesky factorization of the Hermitian matrix HT
2H2:

HT
2H2(Z(2))(2) = (Z(1))(2). (3.28)

After N steps of iteratively applying this procedure, we finally get the desired matrix A(N), which

maps to the coefficients in a mode-N matrix format for selected indices in the current iteration. The

NBS-LARS algorithm optimizes the not only memory storage but also iterations compared to the clas-

sisc LARS algorithm as the maximum number of iterations is kmax � K = S1S2 · · ·SN, with K being

the number of nonzero entries within the core tensor X.

3.5 Performance Guarantee, Memory Consumption and Computational Complexity Analysis

In this section, we first analyze the performance guarantee of classical LARS and our proposed

Kron-LARS and NBS-LARS algorithms. Then we demonstrate the memory storage and computation

efficiency of our Kron-LARS and NBS-LARS algorithms.
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3.5.1 Algorithm performance guarantee

3.5.1.1 Performance guarantee of LARS

In [104], the authors addressed two question for a given dictionary B ∈ RI×M and signal y ∈ RI:

• Uniqueness: Under which conditions is a highly sparse representation necessarily the sparsest

possible representation?

• Equivalence: Under which conditions is a highly sparse solution to the `0 minimization problem

also necessarily the solution to the `1 minimization problem?

To met those conditions, matrix B needs to satisfy following constrains [104] [91]:

• Large spark: spark (B > 2K), where the spark of a given matrix is the smallest number of

columns that are linearly dependent.

• Low coherence: µ(B) < 1/(2K − 1), where the coherence is defined as the largest normalized

absolute inner product between any two columns, i.e. µ(B) = maxi6=j |bTi bj|

where K is the number of nonzero coefficients with respect to known dictionary B.

3.5.1.2 Performance guarantee of Kron-LARS

As for Kron-LARS, we can use Property 3 to build relation between tensor and vector format easily.

Thus, we have

vec(Y) = Bx (3.29)
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where vec(Y) = y ∈ RIN (with I = I1 = · · · = IN) and B = BN⊗BN−1⊗ · · · ⊗B1. We prove that the

sparsity guarantee of Kron-LARS is

K <
1

2
(1+

1

µ
) (3.30)

whereK is the number of nonzero coefficients with respect to dictionary B and µ = max{µ(B1), µ(B2), ..., µ(BN)}.

Proof 2. It’s easy to see that, from performance guarantee of LARS and Eq. (Equation 3.12), we can

get

K <
1

2

(
1+

1

µ(B)
)

(3.31)

where 2K is the maximum number of columns of B that are linearly dependent, µ(B) = maxi 6=j |bTi bj| is

the coherence of two columns of dictionary, and dictionary matrix B has unit-norm columns (‖bi‖22 =

1, i = 1, 2, ...,M). As signal is K sparse, from Eq. (Equation 3.19) and Eq. (Equation 3.20), we can

get bi = CN(:, i) ⊗ CN−1(:, i) ⊗ · · · ⊗ C1(:, i) and bj = CN(:, j) ⊗ CN−1(:, j) ⊗ · · · ⊗ C1(:, j) Using

Property 1 of Kronecker product, we can get

bTi bj = (CTN(:, i)CN(:, j))⊗ · · · ⊗ (CT1 (:, i)C1(:, j)) (3.32)

According Theorem 3.5. and Corollary 3.6. in [105], we can get

max
i 6=j

|bTi bj| = max
1≤n≤N

max
i 6=j

|CTn(:, i)Cn(:, j)| = µ (3.33)
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Hence, µ(B) = µ. And we can get the following sparsity guarantee

K <
1

2
(1+

1

µ
) (3.34)

3.5.1.3 Performance guarantee of NBS-LARS

From the performance guarantee of N-way block sparse OMP algorithm in [5], the performance

guarantee is same and summarized as follows:

Theorem 1. (NBS-LARS performance guarantee). Given the multiway decomposition Y = X ×1

B1×2B2 · · ·×NBN, with a fixed N-way array Y ∈ RI×I×···×I and known dictionaries Bn ∈ RI×M with

coherences µn(n = 1, 2, ...,N), if a (S, S, ..., S)-block sparse solution exists satisfying

(Sµ)N < 2− (1+ (S− 1)µ)N, (3.35)

with µ = max{µ1, µ2, ..., µN}. Then NBS-LARS (Alg. 4) is guaranteed to find this sparse representation

in K iterations with S ≤ K ≤ NS, see proof in [5].

3.5.2 Memory usage and computational complexity

3.5.2.1 Memory usage

In Figure 17, the memory required to store the resulting explicit matrix B for 1D, 2D and 3D signals

(tensors) for the case ofMn = In/2(N = 1, 2, 3) are shown. If we use 16GB as the limit memory size,

the dictionary for a 2D signal with a size of 304× 304 can be store and for the 3D case it corresponds

to a tensor with size 51× 51× 51.
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TABLE VIII

COMPLEXITY ANALYSIS

Iterations and operations required at iteration k for standard LARS, Kronecker-LARS and NBS-LARS
algorithms for an N-way array Y ∈ RI×I×I···×I with dictionaries Bn ∈ RI×M and the block sparsity

parameter S (usually S� I,M ≥ I)
Complexity Analysis

LARS Kronecker-LARS NBS-LARS
# Iter. SN SN ≤ NS

STEP 5 2(MI)N + 2MN 2MNI

(
1− (I/M)N

1− I/M

)
+ 2MN 2MNI

(
1− (I/M)N

1− I/M

)
+ 2MN

STEP 7 (kI)N + 3k(2N) 2IN + 2NkNI+ (N+ 4)kN + 7k2N ≤ 2Nk(I+ 1) +Nk2 + 2NkN+1

STEP 8 2(Ik)N + IN N(N− 1)IN + IN 2kIN + IN

STEP 9 2(Ik)N + 2IN N(N− 1)IN + 2IN 2kIN + 2IN

Asymptotical cost per iter. (IM)N I(M)N I(M)N

Total cost (SIM)N I(SM)N INS(M)N

Run-time memory usage analysis between LARS, Kronecker-LARS and NBS-LARS are listed in

Table Table IX.

3.5.2.2 Computational cost

As LARS algorithm is greedy in nature, it starts from empty active set and added one variable

from inactive set to active set at each iteration/step. As number of active variables grow from 0 to

K gradually, the computation cost of each iteration/step is low, compared with classical Basis Pursuit

(BP) algorithm which updates all coefficients in every iteration/step. As a result, LARS is preferred

over BP specially when the number of nonzero coefficeints is small. Let us consider the case of the

recovery of N-dimensional tensors from the measurements given by W ∈ RM×M···×M having a block

sparse representation W = X ×1 B1 × B2 · · · ×N BN with factors matrices Bn ∈ RM×I(M < I) and a
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Figure 17. MEMORY USAGE

Memory usage on 1D, 2D and 3D data with mode size In

(S, S. ..., S) block -sparse core tensor X ∈ RI×I···×I, i.e. with non-zero coefficients concentrated in a

S× S× · · ·S subtensor.

3.5.2.3 Complexity Analysis

Here we analyze the computational complexity of LARS, Kronecker-LARS and NBS-LARS. We

assume an N-way array Y ∈ RI×I×···×I and mode-n dictionaries given by matrices Bn ∈ RI×M. We

also assume that an (S, S, ..., S)-block sparse representation of Y with factors Bn(n = 1, 2, ...,N),

which means that there are SN nonzero coefficients. We consider the arithmetic operations required by

step 5(maximum correlated atom detection), step 7 (least squares estimation of nonzero coefficients),

and step 4 (residual update) in all algorithms at iteration number k in terms of I (mode size),M (number

of atoms per mode), and N (number of dimensions). The comparative results are summarized in Table
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TABLE IX

RUN-TIME MEMORY ANALYSIS

Iterations and operations required at iteration k for standard LARS, Kronecker-LARS and NBS-LARS
algorithms for an N-way array Y ∈ RI×I×I···×I with dictionaries Dn ∈ RI×M and the block sparsity

parameter S (usually S� I)
Run-time Memory Analysis

LARS Kronecker-LARS NBS-LARS
# Iter. SN SN ≤ NS

STEP k (IM)N IN +NIM IN +NIM

3.5.1.3 (see details in the appendix) where the advantage of NBS-LARS over Kronecker-LARS and

LARS is evident. From this table, we observe that for very sparse representations with S� I < M, the

complexity is dominated by step 5, which is exactly the same for Kronecker-LARS and NBS-LARS. The

key advantage of NBS-LARS over the other algorithms is that it requires many fewer iterations (O(S)

against O(SN) iterations in LAR/Kronecker-LAR). In addition, in step 5, the NBS-LAR algorithm

complexity in terms of the number of entries IN is sublinear compared to a linear dependence of the

standard LAR and the Kronecker-LAR algorithms. In section V, we show several numerical results with

comparisons of the computation times required by different algorithms applied to multidimensional

signals.

3.6 Exerimental Results

In this section, we present several simulation results on both synthetically generated signals and

real-world signals in order to compare the performance of our proposed Kron-LARS and NBS-LARS
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Figure 18. 2D COMPRESSED SENSING ON SYNTHETIC DATA

Sparse core matrix is X ∈ R32×32, DCT dictionaries of mode-1 and mode-2 are D1 ∈ R32×32 and
D2 ∈ R32×32, sensing matrices of mode-1 and mode-2 are Ψ1 ∈ R32×24 and Ψ2 ∈ R32×24.

algorithms against similar greedy algorithms Kron-OMP and NBOMP proposed in [5] as well as classic

algorithms such as LARS, OMP. All those algorithms and their best fitted data sparsity are listed in

Table Table X.

We first apply proposed Kron-LARS and NBS-LARS algorithms to 2D synthetic data to show that

our algorithms can recover the 2D signal exactly. Then, we compare our algorithm with classic OMP

and LARS in real-world 2D images. Next, we apply algorithms on 3D signals, such as MRI and hy-
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perspectral imaging. Finally, we run our algorithms on video clips and show its efficient and accurate

performance.

3.6.1 2D synthetic data compressed sensing

3.6.1.1 2D unstructured synthetic data

we start with 2D unstructured synthetic data. Given 2D signal Y, by using Tucker decomposition,

we can get

Y = X×1 D1 ×2 D2 (3.36)

where X is sparse core matrix, D1 and D2 are mode 1 and mode 2 dictionary from DCT respectively.

With compressed measurement matrix W, mode 1 sensing matrix Ψ1 and mode 2 sensing matrix Ψ2,

we have

W = Y×1 Ψ1 ×2 Ψ2 (3.37)

TABLE X

COMPUTING SPARSE REPRESENTATIONS OF MULTIDIMENSIONAL SIGNALS
Dictionary D Sparsity type Algorithms

Non-structured Non-structured classical OMP / LARS
Kronecker Non-structured Kron-LARS / Kron-OMP
Kronecker N-dim Block-Sparsity NBOMP, NBS-LARS
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Combining Eq. (Equation 3.36) and Eq. (Equation 3.37), we get

W = X×1 Ψ1D1 ×2 Ψ2D2 (3.38)

With compressed measurement signal W, dictionary matrix Dn and sensing matrixΨn (n = 1, 2) given,

we can restore the core sparse matrix X as shown in Figure 18 by applying Kron-LARS algorithm.

As Kron-OMP is the most similar algorithm to our proposed Kron-LARS algorithm in terms of both

memory usage and computational complexity. We apply both algorithms to the generated synthetic data

with 105 nonzero points out of 1024. This is far beyong the theoretical limit of sparsity for a perfect

restoration, but it turns out both algorithms can restore the core matrix exactly at certain sampling ratio.

However, it turns out Kron-LARS can restore the core matrix at lower sampling ratio which makes it

more appealing. We also find to it may take more steps for Kron-LARS, but it’s actually faster than

Kron-OMP in terms of computation time. Figure 19 shows the core matrix restoration by both Kron-

OMP and Kron-LARS at sampling ratio of 56%. Kron-LARS can restore the core matrix exactly well

Kron-OMP restored in low PSNR. Table Table XI is a list of comparison results in terms of PSNR (dB),

STEPS taken, and rum time (S) between Kron-OMP and Kron-LARS on different sampling ratios.

3.6.1.2 2D structured synthetic data

structured data is also happening very often in real life, such as circles, squares, rectangles, sym-

metric objects, etc. Here we created a 25 nonzero dots square matrix (out of 1024 dots) as in Figure 20

(a).
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(a) (b) (c)

Figure 19. Kron-LARS vs Kron-OMP compressed sensing on synthetic data

(a) Sparse core matrix; (b) Kron-OMP algorithm [5] recovered core matrix; (c) Proposed Kron-LARS
algorithm recovered core matrix. At sampling ratio of 56%, Kron-OMP recovered core matrix PSNR is

13.34 dB, proposed Kron-LARS recovered core matrix PSNR is 267.89 dB (almost exact).

TABLE XI

KRON-OMP VS KRON-LARS ON SYNTHETIC DATA RESTORATION

(PSNR (dB), STEPS and Run-Time vs Sampling Ratio (%))

%
Kron-OMP Kron-LARS

PSNR STEPS Time (s) PSNR STEPS Time (s)
14 9.78 144 6.11 9.40 142 0.20
19 9.83 196 10.52 10.82 194 0.38
25 9.47 256 17.74 11.79 254 1.03
32 11.61 324 27.60 13.66 253 0.88
39 11.04 400 43.82 15.15 279 1.29
47 11.28 484 66.08 23.69 293 1.71
56 13.34 145 6.86 Inf 184 0.72
66 15.10 134 6.27 Inf 166 0.63
77 Inf 84 3.14 Inf 119 0.36
87 Inf 97 3.99 Inf 132 0.48
100 Inf 102 4.39 Inf 142 0.75
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Although Kron-OMP and Kron-LARS can restore the core matrix efficiently, but they all need at

least 25 steps. Structure is the key here to reduce the computation complexity i.e. iteration steps. Our

proposed NBS-LARS algorithm is an extension of the existing NBOMP algorithm where the core algo-

rithm is inherited from LARS instead of OMP. Both NBOMP and NBS-LARS algorithms set number

of nonzero constrain on each mode of the data matrix, in this case it’s row and columns. Each step they

will add active variable into both row active set and column active set. Thus, ideally, our 25 nonzero

core matrix could be resored in 5 steps if the steps are going through the diagonal.

Figure 20 (b) and (c) are the core matrix restoration results and steps from NBOMP and NBS-LARS

respectively. They take 8 and 9 steps respectively to restore the core matrix which are both less than 25

steps. It’s easy to find out although NBS-LARS takes more steps in restoration, it’s in a more tracktable

pattern along the diagonal and potentially more stable and consistent in terms of high dimensional data

compressed sensing.

Figure 21 shows tensor recovery percentage versus sample ratio over 50 simulations with (32 ×

32×32) tenosr signals having (5×5×5) block sparse representation with a Kronecker DCT dictionary

shown in Figure 22.

3.6.2 Real-world 2D image compressed sensing

Applying compressed sensing into real-world images is also called compressed imaging (CI) [106].

CI can save efforts in collecting large amount of pixel data and store them after compression by only

collecting the non-redundant data in acquisition step.

To evaluate the performance of our algorithms in CI, we selected 3 widely used benchmark images

as shown in Figure 23.
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(a) (b) (c)

Figure 20. NBOMP [5] vs NBS-LARS in structured synthetic data restoration

(a) Sparse core matrix; (b) NBOMP algorithm [5] recovered core matrix; (c) Proposed NBS-LARS
algorithm recovered core matrix. NBOMP and NBS-LARS only take 8 and 9 steps respectively to fully

restore 25 nonzero points. Red circle with number indicate the step and activated nonzero point.

Figure 21. Recovery percentage versus sample ratio over 50 simulations with (32× 32× 32) tensor
signals having (5× 5× 5) block sparse representation with a Kronecker DCT dictionary.
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Figure 22. 3D tensor (32× 32× 32) having (5× 5) block sparse representation.

Phantom Cameraman Lena

Figure 23. Three benchmark images for compressed sensing testing
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Here, we compare the performance of our Kron-LARS and NBS-LARS against LARS, Kron-OMP

and N-BOMP algorithms. We evaluate the average performance of each algorithm on 3 benchmark

images with size from 8 × 8 to 512 × 512, by restricting the recovery PSNR to ≥ 50dB, we got

computation time versus image size plot as in Figure 24. We can see that when image data size is

relatively small, LARS algorithm is slightly faster than Kron-OMP and Kron-LARS as it stores the

entire large dictionary in memory. However, when data size grow larger, the advantage of computation

reduction of Kron-OMP and Kron-LARS is more significant than dictionary multiplication, thus, both of

them outperform LARS. Another important thing to point out, as LARS stores the entire large dictionary

in memory, it goes to more than 10 GB and freezes the program when image size is 128×128 and above.

Figure 25 are an example of restoration on phantom (X ∈ R256×256) by NBOMP and NBS-LARS

algorithms. The recovery by NBS-LARS is almost exact while NBOMP is only at 20 dB in PSNR. In

this example, we use sensing matrix without sampling.

3.6.3 3D Magnetic Resonance Imaging (MRI) and Hyperspectral image compressed sensing

Other important applications of compressed sensing in high dimensional signal are MRI and hyper-

spectral image compressed sensing, which is an extension of CI by stacking 2D image slices together as

a 3D image. Similar to Eq. (Equation 3.38), by adding a mode 3 dictionary D3 ∈ RI and sensing matrix

Ψ3, we can get the following expression

W = X×1 Ψ1D1 ×2 Ψ2D2 ×3 Ψ3D3 (3.39)
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Figure 24. Computation Efficiency of Kron-LARS, NBS-LARS, Kron-OMP, N-BOMP, and LARS
algorithms on 3 bench mark images. (PSNR≥ 50dB).

3.6.3.1 CS Magnetic Resonance Imaging (MRI)

MRI and Computer Tomographic (CT) technologies have been major motivations of the develop-

ment of CS theory since the publication of [79] that proves structured singals can be almost perfectly

recovered from Fourier samples. CS MRI has becoming a mature technology during the last decade,

which is a real application of CS theory that can reduce the data acquisition process significantly.

Despite the success of CS theory in MRI, computation efficient is still a major concern for high-

dimensional and large dataset. To this end, Kronecker structure is a good fit of MRI to reduce memory

storage and computation complexity.
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NBOMP NBS-LARS

Figure 25. NBOMP and proposed NBS-LARS restoration of phantom (X ∈ R256×256).

Figure 26 shows a 3D MRI brain image, 75% and 50% sampling ratio reconstruction by Kron-

LARS. 75% sampling reconstruction PSNR is 44.65 dB and 50% sampling reconstruction PSNR is

37.24 dB.

3.6.3.2 CS hyper-spectral imaging

Another specific application of CS using Kronecker structure is Hyper-spectral compressed imaging

(HCI) which stacks 2D images at several spectral bands to form a 3D signal. In real case, matrices Ψ1

and Ψ2 determine the separable sensing operator applied to each 2D slice and matrix Ψ3 is the identity

matrix.

Figure 27 shows hyperspectral image compressed sensing at different slices (best and worst) by

NBS-LARS algorithm. Hyperspectral image source is sence 7 of data set in [6].
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Original Brain

Figure 26. MRI reconstruction by Kron-LARS on 75% and 50% sampling.

3.7 Conclusion

Real world signals have intrinsic sparsity property, however, to inverse the original signal from a

sparsity representation is a computational intensive process. More efficient algorithms and assumptions

are needed for large datasets. As modern signals are often high-dimensional with sparisty structure,

efficient algorithms that using signals’ multidimensional structure become a emerging research area.

In this paper, we extend the classical LARS algorithm to Kron-LARS and NBS-LARS by utilizing

Kronecker structure as well as N-dimension block sparsity assumption. We demonstrate that the new

algorithms have the good property of classical LARS – very fast and very sparse – and more efficient

in memory usage and computational complexity when processing high-dimensional data. We apply
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Original Slice 13
(1024× 1024)

NBS-LARS Slice 13 Recovery
PSNR: 40.33 dB

Original Slice 1
(1024× 1024)

NBS-LARS Slice 1 Recovery
PSNR: 32.27 dB

Original Slice 13 ZoomNBS-LARS Slice 13 Zoom Original Slice 1 Zoom NBS-LARS Slice 1 Zoom

Figure 27. Hyperspectral image compressed sensing by NBS-LARS algorithm applied on sence 7 of
data set in [6].

our algorithms into 2D synthetic data, 2D real-world image, 3D MRI and 3D HSI compressed sensing.

Simulation results show that our Kron-LARS performances better than LARS in terms of memory usage

and computation time as the dimension increases. Additionally, when block-sparsity assumption is true,

NBS-LARS algorithm can further reduce the memory and complexity dramatically. NBS-LARS can

better recover signals based on sample ratio when block assumption is reasonable.
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4.1 ABSTRACT

Computer based automatic medical image processing and quantification are becoming popular in

digital pathology. However, preparation of histology slides can vary widely due to differences in stain-

ing equipment, procedures and reagents, which can reduce the accuracy of algorithms that analyze their

color and texture information. To reduce the unwanted color variations, various supervised and unsuper-

vised color normalization methods have been proposed. Compared with supervised color normalization

methods, unsupervised color normalization methods have advantages of time and cost efficient and uni-

versal applicability. Most of the unsupervised color normalization methods for histology are based on

stain separation. Based on the fact that stain concentration cannot be negative and different parts of the

tissue absorb different stains, nonnegative matrix factorization (NMF), and particular its sparse version

(SNMF), are good candidates for stain separation. However, most of the existing unsupervised color nor-

malization method like PCA, ICA, NMF and SNMF fail to consider important information about sparse

manifolds that its pixels occupy, which could potentially result in loss of texture information during

93
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color normalization. Manifold learning methods like Graph Laplacian have proven to be very effective

in interpreting high-dimensional data. In this paper, we propose a novel unsupervised stain separation

method called graph regularized sparse nonnegative matrix factorization (GSNMF). By considering the

sparse prior of stain concentration together with manifold information from high-dimensional image da-

ta, our method shows better performance in stain color deconvolution than existing unsupervised color

deconvolution methods, especially in keeping connected texture information. To utilized the texture in-

formation, we construct a nearest neighbor graph between pixels within a spatial area of an image based

on their distances using heat kernal in lαβ space. The representation of a pixel in the stain density space

is constrained to follow the feature distance of the pixel to pixels in the neighborhood graph. Utilizing

color matrix transfer method with the stain concentrations found using our GSNMF method, the color

normalization performance was also better than existing methods.

4.2 INTRODUCTION

Digital histopathology is a research field where image processing techniques and pattern recognition

methods are exploited to enable computers to understand histopathology images and to aid diagnosis

decisions. Recently, with fast development of machine learning in computerized artificial intelligence,

automatic medical image processing has shown its impact in the field of digital pathology. It makes

quantitative analysis of large number of histology slides both time and cost efficient. However, slide

preparation can vary widely due to different stain manufacturers (as shown in Figure Figure 28, stain

variation exists when scanned by two different scanners, even with the same tissue section), different

staining procedures and different storage times. Unwanted stain color effects is less a problem for

trained pathologists, but it can reduce the accuracy of computational methods.
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Aperio Scanner Hamamatsu Scanner

Figure 28. Same tissue section under Aperio and Hamamatsu scanner

To overcome the color variation and distortion problem. One way is to only analyze gray level

images, it will perform very well when gray level intensity is the primary cue - Basavanhally [107] uses

the fact that nuclei is much darker than surrounding anatomy for lymphocytes detection. However, many

important features are related to colors and wealth of information in the color representation are used

routinely by pathologists. Another way is color normalization, which is a process proposed to reduce

the adverse effects of stain variation. Sethi [108] made an empirical comparison of color normalization

methods for epithelial-stromal classification in HE images in which they concluded that it helps the

classification task, irrespective of the color normalization techniques tested. However, there are also

concerns that it will add distortions or artifacts to normalized images. Hence, stable and high quality

color normalization is long seeking in digital histopathology.

With strong desire of well performing color normalization methods, biologists and computer sci-

entists are working together to come up with various categories of methods. The existing color nor-
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malization methods can be briefly separated into three categories. The first category is RGB histogram

matching, which is done by matching the histograms of RGB channels of target and source images.

Histogram matching is the basic method in digital image processing, it is well known and easy to im-

plement. However, this is an ill-posed method, histogram matching often results color distortion and

background staining. The second category is matching histogram statistics (mean and standard devi-

ation). Representation of this method is Reinhard [109]’s color transfer method, which first convert

image from RGB color space to lαβ color space then match the histogram statistics (mean and vari-

ance) of each channel. This method also facing the problem of background staining. The third category

is normalization after separating RGB image into channels of stain concentration or we say normaliza-

tion after color deconvolution. Most of the existing state-of-the-art color normalization methods are in

this category, our method mainly focus on making the color deconvolution process accurate, stable and

automatic, hence it’s also in category three.

Here we introduce several state-of-the-art color normalizations and their limitation. Magee [110]

proposed a enhanced Reinhard’s method by adding automatic image segmentation before statistics

matching, and then use color deconvolution method for color normalization. He utilizes a supervised

method to estimate the image specific color deconvolution vectors. The color normalization process

can easily fail if this supervised estimation processed is biased or failed. Almost at the same time, Ma-

cenko [111] proposed a unsupervised color normalization method by first create plane from the SVD

directions of optical density corresponding to the two largest singular values, then project data onto this

plane. However, SVD modifies the color distribution of both source and target images, which is not

desirable as we want reference image to stay unchanged for an automatic system. Recently, Khan [112]
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proposed a nonlinear mapping approach using image-specific color deconvolution, which is a supervised

method. It showed great performance with standard HE stained images. However, it’s not universally

applicable to other stains such as DAB and Feulgen stains. Additionaly, its performance is not stable

when deal with low-quality histology images. Vahadane [113] and Xu [114] both proposed a sparse

non-negative matrix factorization method which preserves the structure of histological images by spar-

sity control. However, there is a potential of losing texture details with this method. Li [115] proposed a

complete color normalization approach by using color cues computed from saturation-weighted statis-

tics. However, it is sensitive to quality of histology images. With low contrast stain, the results are

misleading.

Compared with supervised color normalization method, unsupervised color normalization methods

are less expensive, less time consuming and easier to use. Various unsupervised color normalization

methods based on ICA, PCA, NMF and SNMF have been proposed. They show great performance in

general color normalization process, but do not preserve texture information properly.

In this paper, we propose a new unsupervised color deconvolution method called graph regularized

sparse nonnegative matrix factorization (GSNMF). By interpreting high-dimensional texture informa-

tion with graph Laplacian and stain concentration with sparsity constrain, GSNMF can better grasp

detain texture information during the color deconvolution process.

4.3 Color Separation Methods

In 2001, Ruifrok and Johnston [116] proposed a CD framework with potential application in histopathol-

ogy image analysis. The CD framework transforms the RGB color space to a new color space (optical

density) defined by the stains used for staining the tissue section. For example, an 2D image I is trans-
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formed to Y in optical density space via Lambert-Beers law as follows:

I = I0 exp(−Y), Y = log(
I0
I
) (4.1)

Where I0 is the illuminating light on the sample.

Recall that NMF [117] tries to find a set of basis vectors that can be used to best approximate the

data. One might further hope that the basis vectors can respect the intrinsic Riemannian structure of the

image patches. A natural assumption here is that if two data points are close in the intrinsic geometry of

the data distribution, then the representations of these two points with respect to the new basis, are also

close to each other. This assumption is usually referred to as local invariance assumption, which plays

an essential role in the development of various kinds of algorithms including dimensionality reduction

algorithms and semi-supervised learning algorithms.

Recent studies in spectral graph theory and manifold learning have demonstrated that the local geo-

metric structure can be effectively modeled through a nearest neighbor graph on a scatter of data points.

Cai [33] proposed and demonstrated that a graph regularized NMF outperforms NMF in data repre-

sentation. Zhu [118] proposed a graph regularized sparse NMF framework to solved the hyperspectral

unmixing problem. Our graph regularized sparse NMF is another extension and application of Cai [33]

and Zhu [118]’s work in histopathology.

Consider a graph with N vertex where each vertex corresponds to a data point. For each data point,

we find its n nearest neighbors and construct edges between it and its neighbors. To do this, we first

transfer image from RGB color space to lαβ color space. Recall we have transformed image from RGB

color space to optical density color space in equation (1), why we again transform image from RGB
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color space to lαβ? The reason is that these two transformation are for two different purposes. Matrix

Y in equation (1) is for further stain separation, however, transformed image in lαβ space is used for

graph matrix or weight matrix calculation.

There are enormous ways of calculating weights between data points. Here, we adopt Heat Kernel

(HK) method, cause it best represents differences and ranges from 0 to 1. Heat kernel for two data points

in lαβ color space is as follows:

Wij =


HK(li, lj), li ∈ N (lj) and lj ∈ N (li)

0, otherwise

Where HK(li, lj) = e−
‖li−lj‖

2

σ , l = vector(L),L = RGB2lαβ(I)

(4.2)

To meet the criterion of being point li’s nearest neighbors, a point lj needs to first be within a spatial

distance. This is done by making a n × n(n = 5) local window which centers at point li, if point lj is

in this local window, it is a local neighbor and will be used for weights calculation, otherwise, it’s 0 in

weight matrix. Second, among those n2 neighbors, only Heat kernel weights within the top 50% will

be kept (empirical threshold), the lower 50% will be force to 0. This is summarized as follows:

• Nearest spatial distance, i.e. lj is in the n× n(n = 5) local window centers at li.

• Nearest feature distance, i.e. calculate the HK(li, lj), weights with top 50% values will be kept,

otherwise, force to 0.

Figure Figure 29 explains the effects of local window and merging local windows with structure group-

ing.
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Figure 29. Highly similar neighboring pixels could be grouped by local structures. (a) H&E image
patch, (b) Even smaller patch from (a) with complex texture, (c) local neighboring window examples,
(d) highly similar pixels in local structure within a window are grouped together, (e) when the local

structures are combined, the highly similar pixels in the two windows are grouped together.

4.3.1 Proposed color separation method

Assume the separated coefficient vector is x, the coefficient distance correspond and regularization

term is:

d(xi, xj) = ‖xi − xj‖2 (4.3)

By multiplying the coefficient distance with Heat kernel weight matrix, it will help forcing the two

coefficient vector to close when we minimize the cost function and their weight coefficient is nonzero.

R =
1

2

N∑
i,j=1

‖xi − xj‖2Wij + α

N∑
n=1

‖xn‖1 =
N∑
i=1

xTi xiEii −
N∑
i,j=1

xTi xjWij + α

N∑
n=1

‖xn‖1

= Tr(XTEX) − Tr(XTWX) + α

N∑
n=1

‖xn‖1 = Tr(XTLX) + α‖X‖1

(4.4)
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Where Tr(·) denote the trace of a matrix and E is a diagonal matrix whose entries are column (or row,

since W is symmetric) sums of W, Eii =
∑
jWij. L = E − W, which is called graph Laplacian.

Objective function is defined as

O =
1

2
‖Y − DX‖2F +

λ

2
Tr(XTLX) + α‖X‖1 (4.5)

Where λ ≥ 0, α ≥ 0,D,X ≥ 0, ‖D(:, j)‖22 = 1, j = 1, 2, ..., r.

Optimization for GSNMF

min
D,X

1

2
‖Y − DX‖2F +

λ

2
Tr(XTLX) + α

K∑
k=1

N∑
n=1

Xkn, s.t.D ≥ 0, X ≥ 0 (4.6)

Let θlk, φkn be the Laplacian multipliers for constraint Dlk ≥ 0 and Xkn ≥ 0 respectively, and Θ =

[θlk] ∈ RL×K+ , Φ = [φkn] ∈ RK×N+ . The Lagrange L is given by

L =
1

2
‖Y − DX‖2F +

λ

2
Tr(XTLX) + α

K∑
k=1

N∑
n=1

xkn + Tr(ΘDT) + Tr(ΦXT) (4.7)

We can further obtain the partial derivative of L with respect to D and X as

∂L
∂D

= DXXT − YXT +Θ,
∂L
∂X

= DTDXT − XTY + α+Φ (4.8)
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Based on the Karush-Kuhn-Tucker conditions θlkDlk = 0 and φknXkn = 0, we could obtain the

following equations by letting the above partial derivatives equal to zero and multiplying both sides

with Dlk and Xkn respectively,

(DXXT)lkDlk − (YXT)lkDlk = 0

(DTDXT)knXkn − (XTY)knXkn + λ(XL)knXkn + αXkn = 0

(4.9)

With equation L = E − W, we get

[(DTDX)knXkn + λ(LE)knXkn + α]Xkn = [(DTY)kn + λ(LW)kn]Xkn (4.10)

We can get the updating rules as

Dlk ← Dlk
(YXT)lk
(DXXT)lk

, Xkn ← Xkn
(DTY + λXW)kn

(DXXT + λXE + α)kn
(4.11)

4.3.2 System Illustration

Figure Figure 30 is a vivid illustration of our GSNMF system. Image I is transformed to lαβ

color space for calculating weight matrix, it’s also transformed to optical density color space for stain

separation. Normalization step is done by exchanging the color matrix.
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Figure 30. Illustration of GSNMF Color Normalization System.

4.4 Color Transfer

As our main focus of this paper is on color deconvolution, we utilize the similar color transfer

method as Vahadane [113] and Macenko [111]. From equation (6), D can be considered as color matrix

and X as coefficient matrix, we exchange the color matrix between source image and target image.

Yscource = DsourceXsource, Ytarget = DtargetXtarget (4.12)

We calculate 95 percentile of each row of Xsource and Xtarget as XS−extreme(i) and XT−extreme(i) then

come up with a scale matrix

Hscale(i, 1) =
XT−extreme(i)

XS−extreme(i)
(4.13)
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Where i = 1, ..., r which is the row number in coefficient matrix X. In our case of color normalization

r = 2.

The scale row of Xsource are represented as

Xs−scaled(i, :) = Xsource(i, :)Hscale(i, 1) (4.14)

New transferred image in optical density space

Ytransferred = DtargetXs−scaled (4.15)

From optical density space back to RGB space

Inormalized = I0 exp(−Ytransferred) (4.16)

Where I0 = 255

4.5 Experiments and Results

4.5.1 Stain Separation

4.5.1.1 H&E stain

The quality of stain separation is essential cause it has the significant influence on color normaliza-

tion result. Here we qualitatively compare our stain separation results with state-of-the-art unsupervised

stain separation methods: NMF and SNMF. Figure Figure 31 shows stain separation experiments on

two H&E stained breast tissue section. It’s easy to find out NMF gives the worst separation result. With
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SNMF, the separation of nucleus and epithelium is great, however, it tends to be clear cut and losing

texture details especially in the area where nucleus resides. Our proposed GSNMF method, because of

grouping effects, sparse separation and smooth texture are well reserved at the same time. The separa-

tion of nucleus and epithelium are smoothly and naturally, you can easily find from figure Figure 31, the

separated epithelium area still has very light tissue there instead of white space which is usually true in

nature - nuclei are surrounded by tissues. They are not 100% isolated, they are slightly connected.

4.5.1.2 H&DAB stain

Another very popular stain for breast histopathology research is H&DAB stain. This can show an

important advantage of our method - unsupervised. It will automatically adapted to the case for stain

separation instead of retrain or use predefined stain matrix for stain separation, which can increase the

separation accuracy. In figure Figure 32, both SNMF and our GSNMF easily outperforms NMF method

in H&DAB stain separation. Since the contrast between H stain and DAB stain is more obvious than

most H stain and E stain, it’s hard to tell the difference between SNMF and GSNMF separation results.

4.5.2 Color Normalized Image Comparison

To further show the outstanding performance of our color normalization method. We compare our

color normalization results with normalized outputs from several other state-of-the-art color normal-

ization methods: Khan [112]’s nonlinear mapping color normalization method, Li [115]’s color cues

method and Vahadane [113]’s sparse NMF method.

Since both SNMF and our GSNMF methods are coming from same nonnegative assumption, we

first demonstrate the advantage of our method against SNMF method. Figure Figure 33 shows the color

normalization results of a breast tissue section by both SNMF method and our GSNMF method. It’s easy
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H&E image H&E image

NMF H stain and E stain NMF H stain and E stain

SNMF H stain and E stain SNMF E stain

GSNMF H stain and E stain GSNMF H stain and E stain

Figure 31. H&E images color deconvolution by NMF, SNMF and GSNMF
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H&DAB image H&DAB image

NMF H stain and DAB stain NMF H stain and DAB stain

SNMF H stain and DAB stain SNMF H stain and DAB stain

GSNMF H stain and DAB stain GSNMF H stain and DAB stain

Figure 32. H&DAB images color deconvolution by NMF, SNMF and GSNMF
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Original Target Image Original Source Image

Normalized by SNMF method Normalized by proposed GSNMF method

Figure 33. Slides detail capturing by SNMF and Propose GSNMF methods

to find from the magnified images that SNMF method is losing texture details where GSNMF well kept.

In digital histopathology, one of the most important concern is image distortion. Our GSNMF method

show excellent performance in keeping texture detail while color deconvolution and normalization.

To compare all four methods simultaneously, we choose the low quality of contrast example which

has been used by Vahadane [113]. From figure Figure 34, we can find image from Khan’s method is

over-saturated and distorted; image from Li’s method is slightly different from original source image,

which means color normalization is almost ineffective; SNMF color normalized image shows shift-
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ed color which is different from both source and target image. Our GSNMF method gives the most

reasonable result by showing correctly transfer color and contrast.

4.6 Conclusion

In this paper, we proposed a novel graph regularized sparse NMF method for histology slides color

normalization. This can reduce the slides’ color variation, rescue faded or distorted slides. Compared

with the state-of-the-art color normalization methods, our method has the advantage of being stable,

highly accurate, responsive and self-adaptive. Highly accurate stain separation plus texture preserving

ensures us not losing any information during the process of color normalization. Unsupervised nature of

our method makes it easy to use without any training, labeling and annotation from biologist. Stability

and speed of processing of GSNMF makes it practical to be used for color normalization on whole slide

images.
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Original Target Image Original Source Image

Normalized by Khan’s SCD method Normalized by Li’s color cues method

Normalized by SNMF method Normalized by proposed GSNMF method

Figure 34. Low constrast H&E image color normalization by Khan’s, Li’s, SNMF and Proposed
GSNMF methods



CHAPTER 5

LOCALLY LINEAR EMBEDDED SPARSE CODING FOR IMAGE

REPRESENTATION (PREVIOUSLY PUBLISHED AS L. SHA AND D. SCHONFELD

AND J. WANG (2017) LOCALLY LINEAR EMBEDDED SPARSE CODING FOR

IMAGE REPRESENTATION, 2017 IEEE INTERNATIONAL CONFERENCE ON

ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2527-2531. )

5.1 ABSTRACT

Recently, sparse coding has been widely and successfully used in image classification, noise re-

duction, texture synthesis and audio processing. Although traditional sparse coding method with fixed

dictionaries like wavelet and curvelet can produce promising results, unsupervised sparse coding has

shown its advantage by optimizing the dictionary adaptively. However, existing unsupervised sparse

coding failed to consider the high dimensional manifold information within data. Recently, a graph

regularized sparse coding method has shown outstanding performance by incorporating graph laplacian

manifold information. In this paper, we proposed a sparse coding method called locally linear embed-

ded sparse coding, to consider the local manifold structure as well as learning the sparse representation.

We also provided a novel modified online dictionary learning method which iteratively utilizes modified

least angle regression and block coordinate descent method to solve the problem. Instead of getting

entire coefficient matrix then update dictionary matrix, our method updates coefficient vector and dic-
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tionary matrix in each inner iteration. Extensive experimental results have demonstrated the efficiency

and accuracy of our method in image clustering.

5.2 Introduction

Sparse coding enables successful representation of stimuli with only a few active coefficients. It has

shown state-of-art results in ordinary signal processing tasks like image denoising [119] and restora-

tion [120], audio [121] and video processing [122], as well as more complicated tasks like image clas-

sification [123] and image clustering [35]. When applied to natural images, sparse coding produces

learned bases that can resemble the receptive fields of neurons in the visual cortex [27], which is similar

to the results of Independent Component Analysis (ICA) [124] and Gabor filter [125]. Compared with

other unsupervised methods like PCA and ICA, sparse coding can learn overcomplete basis sets and

doesn’t require statistical-independence of the dictionary prototype signals. In machine learning and

statistics, slightly different matrix factorization problems such as non-negative matrix factorization, its

variants [117] [28] and sparse principal component analysis [126] have been successfully used to obtain

interpretable basis elements.

When dealing with high dimensional feature space in image clustering and classification, sparse

coding with dimensionality reduction becomes a reasonable thought. Cai [33] proposed a graph regu-

larized nonnegative matrix factorization (NMF) method, inspired by his work, Gao [34] and Zheng [35]

proposed graph regularized sparse coding (GraphSC), which explicitly considers the local geometrical

structure of the data. In those epic work, graph regularized NMF and sparse coding show big improve-

ment on image clustering compared with existing NMF and sparse coding. However, all of these graph

regularized work are based on graph laplacian method, which is only one of the many manifold learning
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methods. In this paper, we proposed a locally linear embedded sparse coding method (LLESC) together

with a novel modified online dictionary learning method (MODL) to solve the objective function effi-

ciently.

The rest of this paper is organized as follows: In Section II, we give a brief description of sparse cod-

ing problem and popular methods to solve the sparse coding problem. Section III introduces the LLESC

algorithm, as well as the MODL solution. Experimental results on image clustering are presented in

Section IV.

5.2.1 Contribution

• Use K-SVD instead of PCA for preprocessing, less processing time for convergence.

• Locally linear embedding method (LLE) [30] compared with Graph Laplacian [31] for constrains.

• A novel modified online dictionary learning algorithm to solve the graph regularized sparse coding

problem efficiently.

• Use SIFT compared with Euclidean distance for weight matrix calculation.

5.3 A brief review of sparse coding

Given a data matrix X = [x1, ..., xm] ∈ Rn×m, let D = [d1, ...,dk] ∈ Rn×k, where each di represents

a basis vector in the dictionary, and A = [α1, ...,αm] ∈ Rk×m be the coefficient matrix, where each

column is a sparse representation for a data point. A good dictionary and coefficient pair should min-

imize the empirical loss function, which can be represented as
∑m
i=1 ‖xi − Dαi‖p. The typical norms

used for measuring the loss function are the Lp norms where p = 1, 2 and∞. Here we concentrate on

least square loss problems when p = 2.
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The objective function of sparse coding can be formulated as:

min
D,A
‖X − DA‖2F + β

m∑
i=1

f(αi) s.t. ‖di‖2 6 c, i = 1, ..., k (5.1)

where f is a function to measure the sparseness of αi and ‖· ‖F denotes the matrix Frobenius norm.

Following [60] [37], we adopt the idea of L1 norm instead of L0, which can produce similar results

with affordable computational cost. The objective function then becomes:

min
D,A
‖X − DA‖2F + β

m∑
i=1

‖αi‖1 s.t. ‖di‖2 6 c, i = 1, ..., k (5.2)

Although the objective function is not convex with D and A together, it is convex with either one

fixed. We iteratively optimize the objective function by minimizing over one variable with the other

one fixed. Thus, it becomes an L1-regularized least squares problem with an L2-constrained least square

problem.

5.4 Locally linear embedded sparse coding (LLESC)

5.4.1 Algorithm Outline

Locally linear embedding (LLE) is an unsupervised learning algorithm that computes low dimen-

sional, neighborhood preserving embedding of high dimensional data. LLE attempts to discover nonlin-

ear structure in high dimensional data by exploiting the local symmetries of linear reconstruction [30].

Given a set of m dimensional data points x1, ..., xm, we can characterize the local geometry of these

patches by linear coefficients that reconstruct each data point from its neighbors. Reconstruction errors

are:
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1

2

m∑
i=1

|xi −
∑
j

Wijxj|
2
= Tr(XLXT ) (5.3)

where L = (I − W)T(I − W), I is identity matrix, W is weight matrix.

Nearest neighbor is a necessary step to compute the weight matrix. Besides using Euclidean dis-

tance, we also utilizes scale-invariant feature transform (SIFT) [127] for nearest neighbor calculation,

which shows better performance in situations with scaled and rotated image objects.

LLE constructs a neighborhood preserving mapping: xi 7→ αi. By incorporating the LLE regular-

izer into the original sparse coding, we can get the following objective function of LLESC:

min
D,A
‖X − DA‖2F + λTr(ALAT ) + β

m∑
i=1

‖αi‖1 s.t. ‖di‖2 6 c, i = 1, ..., k (5.4)

where λ > 0 is the regularization parameter.

5.4.2 Coefficients Learning and Dictionary Learning

In this section, we show how to solve Equation 5.4 with modified online dictionary learning algo-

rithm.

Fixing dictionary D, the objective function becomes:

min
A
‖X − DA‖2F + λTr(ALAT ) + β

m∑
i=1

‖αi‖1 (5.5)

As Equation 5.5 is convex, global minimum can be achieved [61].
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With modified online dictionary learning, we update each vector αi individually, while keeping

all the other vectors constant. In order to solve the problem by optimizing over each αi, we rewrite

Equation 5.5 in vector form.

Reconstruction error ‖X − DA‖2F can be written as:

m∑
i=1

‖xi − Dαi‖2 (5.6)

As matrix L is symmetric in LLE, the regularizer Tr(ALAT ) can be rewritten as:

Tr(ALAT ) = Tr(
m∑
i,j=1

Lijαiα
T
j ) =

m∑
i,j=1

Lijα
T
i αj (5.7)

We combine reconstruction error with LLE regularizer, add sparsity constrain to it, the objective

function becomes:

min
αi

m∑
i=1

‖xi − Dαi‖2 + λ
m∑
i,j=1

Lijα
T
i αj + β

m∑
i=1

‖αi‖1 (5.8)

When updating αi, the other vectors {αj}j6=i are fixed [35] [68]. Thus, we get the following opti-

mization problem:

min
αi
‖xi − Dαi‖2 + λLiiαTi αj + αTi hi + β

k∑
j=1

|α
(j)
i | (5.9)

Where hi = 2λ(
∑
j6=i Lijαj) and α(j)

i is the j-th coefficient of αi.

In algorithm 5 of modified online dictionary learning (MODL), we keep dictionary D fixed, opti-

mizing each individual coefficient αi with all other coefficients fixed for each input data xi. The method
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used is modified least angle regression which will be explained in 6. Dictionary update is by block

coordinate descent method, please reference [68] for detail.

Algorithm 5 Modified Online Dictionary Learning
Require: x ∈ Rm from p(x) (x sequentially aligned in p(x)), β ∈ R (regularization parameter),
D0 ∈ Rm×k (initial dictionary), T (number of samples in data set p(x)).

1: A0 ∈ Rk×k ← 0, B0 ∈ Rm×k ← 0 (Reset the “past”information)
2: for t = 1 to T do
3: Draw xt from p(x) (sequentially drawn)
4: Sparse coding: compute using modified LARS (algorithm 6):

αt , arg min
α∈Rk

1

2
‖xt − Dt−1α‖22 + λLttα

Tα+ αTht + β‖α‖1 (5.10)

5: At←At−1 + αtαTt
6: Bt←Bt−1 + xtαTt
7: Compute Dt using block coordinate descent method [68], with Dt−1 as warm restart, so that

Dt , arg min
D∈C

1

t

t∑
i=1

(
1

2
‖xi − Dαi‖22 + λ

m∑
i,j=1

Lijα
T
i αj + β

m∑
i=1

‖αi‖1)

= arg min
D∈C

1

t
(
1

2
Tr(DTDAt) − Tr(DTBt))

(5.11)

where C , {D ∈ Rm×k s.t. ∀j = 1, ..., k,dTj dj 6 1}.

8: Return DT , A for complete dictionary and coefficients learning.

5.4.3 Modified Least Angle Regression

Least Angle Regression (LARS) [65] is a regression method that provides a general version of

forward selection, which is highly efficient in solving LASSO [66]. We follow the steps presented
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in [67]. In step 7 of algorithm 6, instead of calculating the ordinary least square solution (OLS) of

Equation 5.12, we calculate the locally linear embedded least square solution (LLELS) of Equation 5.13

to incorporate structure information.

α
(k+1)
OLS = (DTADA)

−1DTAy (5.12)

α
(k+1)
LLELS = (DTADA + λLkkI)−1(DTAx − hk/2) (5.13)

where I is identity matrix and hk = 2λ(
∑
k 6=j
Lkjαj).

5.5 Experimental results

In this section, we present image clustering experiments on CMU-PIE and COIL data set 1, data

statistics are shown in table Table XII. We compared clustering accuracy of our method (LLESC)

against several unsupervised methods. We also compared the computation efficiency between LLESC

and GrapSC methods [34] [35].

All clustering tasks are based on a Windows 10 machine with Intel Core i7-2820M 2.3GHz CPU and

16GB RAM. Algorithms were implemented and executed in MATLAB environment. We used VLFeat

toolbox 2for SIFT calculation.

1http://www.cad.zju.edu.cn/home/dengcai/Data/MLData.html

2http://www.vlfeat.org/
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Algorithm 6 Modified Least Angle Regression

1: Initialize the coefficient vector α(0) = 0 and the fitted vector x̂(0) = 0.
2: Initialize the active set A = φ and the inactive set I = 1, ..., p.
3: for k = 0 to p− 2 do
4: Update the residual ε = x − x̂(k)
5: Find the maximal correlation c = maxi∈I |dTi ε|
6: Move variable corresponding to c from I to A
7: Calculate the graph constrained least square solution:

α
(k+1)
LLELS = (DTADA + λLkkI)

−1
(DT
Ax− hk/2) (5.14)

where I is identity matrix and hk = 2λ(
∑
k 6=j
Lkjαj)

8: Calculate the current direction: d = DAα
(k+1)
LLELS - x̂(k)

9: Calculate the step length: γ = min+i∈I {
dTi ε− c
dTi d− c

,
dTi ε+ c
dTi d+ c

}, 0 ≤ γ ≤ 1

10: Update regression coefficients: α(k+1) = (1− γ)α(k)+γα(k+1)
LLELS

11: Update the fitted vector x̂(k+1) = x̂(k) + γd
12: Let α(p) be the full graph constrained least square solution:

α(p) = (DTADA + λL(p−1)(p−1)I)
−1
(DTAx − hp−1/2) (5.15)

where I is identity matrix and hp−1 = 2λ(
∑
p−1 6=j

L(p−1)jαj)

13: Output: the series of coefficients A = [α(0), ...,α(p)]
Note: di is column of Dictionary D, d is direction.
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We use both PCA and K-SVD for preprocessing (pick the best results), after getting the coefficient

matrix (A) by GraphSC and LLESC, K-means method will be used to cluster those coefficients. We use

computation time from matlab as efficiency evaluation metric, normalized mutual information (NMI)

[33] [35] as clustering accuracy evaluation metric.

Table Table XIII, figure Figure 35, table Table XIV and figure Figure 36 shows LLESC clustering

results on CMU-PIE and COIL data set. Figure Figure 37 shows an example of SIFT matching of two

images with different orientations. Figure Figure 38 and figure Figure 39 show LLESC and LLESCsift

(LLESC with SIFT) clustering results with different regularization parameter λ and number of clusters

k on CMU-PIE and COIL data set. We can easily find LLESCsift performances slightly better than

LLESC on COIL, as COIL data set contains images with different orientations and SIFT is better than

Euclidean in finding similar images in those data sets. Finally, figuer Figure 40 shows our LLESC with

MODL algorithm is more efficient than GraphSC in clustering on CMU-PIE and COIL data set.

TABLE XII

STATISTICS OF THE DATA SET
Data set Size(N) Dimensionality (M) # of class (K)
CMU-PIE 1428 1024 68
COIL20 1440 1024 20
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TABLE XIII

CLUSETERING PERFORMANCE ON CMU-PIE (K IS NUMBER OF CLUSTERS)
Normalized Mutual Information (%)

K Kmeans PCA KSVD SC LLESC
4 33± 5.6 44± 6.2 100 100 100

12 52± 4.8 55± 5.1 91± 2.2 95± 1.2 97± 1.1
20 55± 3.3 59± 4.5 75± 2.6 91± 1.1 96± 1.3
28 59± 3.7 60± 3.4 76± 2.8 90± 1.2 96± 1.1
36 60± 3.9 63± 1.6 77± 3.1 88± 2.3 95± 1.2
44 60± 2.4 65± 1.1 74± 2.7 85± 1.5 95± 1.1
52 61± 2.2 62± 1.9 76± 2.2 83± 2.1 94± 1.3
60 65± 3.5 66± 2.1 78± 1.9 80± 1.4 94± 1.0
68 63 66 75 77 93
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Figure 35. Normalized mutual information versus the number of clusters on CMU-PIE data set
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TABLE XIV

CLUSETERING PERFORMANCE ON COIL20 (K IS NUMBER OF CLUSTERS)
Normalized Mutual Information (%)

K Kmeans PCA KSVD SC LLESC
2 67± 8.5 54± 9.1 66± 8.8 81± 5.2 83± 9.6
4 65± 8.3 63± 9.2 64± 6.9 84± 6.3 84± 9.9
6 66± 9.4 59± 8.1 70± 8.1 78± 4.3 83± 9.2
8 61± 8.6 61± 9.7 79± 6.4 82± 5.2 79± 8.9
10 59± 9.6 60± 7.9 72± 5.5 84± 2.1 80± 8.6
12 62± 7.9 69± 6.5 70± 4.6 82± 2.4 81± 8.4
14 66± 7.7 65± 6.7 69± 5.1 76± 2.9 83± 6.3
16 71± 6.5 61± 5.5 72± 2.3 81± 3.3 82± 6.7
18 70± 4.4 60± 4.9 71± 1.4 76± 1.6 78± 5.9
20 72.4 66.7 74.1 77.3 80.3
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Figure 36. Normalized mutual information versus the number of clusters on COIL20 data set
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Figure 37. SIFT matching example
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Figure 38. Clustering performance with different values of regularization parameter (λ) and the
number of nearest neighbors (k) on CMU-PIE face database.
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Figure 39. Clustering performance with different values of regularization parameter (λ) and the
number of nearest neighbors (k) on COIL20 face database.

(a) On CMU-PIE data set (b) On COIL20 data set

Figure 40. Clustering time between LLESC and GraphSC on CMU-PIE and COIL20 data set.



CHAPTER 6

CONCLUSION

This thesis summarized our research in generalized graph regularized sparse coding and fast ten-

sor compressed sensing algorithms in image restoration, representation, medical image processing and

tensor compressed sensing applications. It mainly consisted of a generalized graph regularized sparse

coding method for image restoration and representation in Chpater 2, a Kronecker least angle regression

algorithm for efficient tensor compressed sensing in Chapter 3, a graph regularized NMF algorithm for

histology image color normalization in Chapter 4, and a locally linear embedded sparse coding algorith-

m for image representation in Chapter 5. We have discussed these methods and algorithms in detail and

showed their performance with extensive computer simulation based experiments and compared with

popular state-of-the-art algorithms.

Despite the good performance of proposed methods and algorithms. Many parts deserve further

study to be more robust and mathematically proved. In Chapter 2, we proposed a generalized framework

to combine graph Laplacian regularizer with sparse coding, which can be used for image restoration

and representation. The proposed MCA-GSC algorithm outperforms state-of-the-art in terms of image

denoising measured by PSNR, however, shy in SSIM evaluation. The deblurting performance is also

comparable. In terms of image clustering and classification, the proposed dual graph regularized sparse

coding method outperforms the popular clustering algorithm and slightly better in classification results.

In Chapter 3, the proposed Kron-LARS and NBS-LARS algorithms are effective and efficient in 2D

and 3D image data compressed sensing. They are efficient in both memory and computation, they
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outperforms the greedy algorithm Kron-OMP and NBOMP in terms of recovery PSNR versus sampling

ratio. We still need to prove the robustness of the algorithms. In Chaper 4, our proposed GSNMF

algorithm in histology image color normalization is effective and visually pleasing. It normalizes the

image without destroying the texture and structure of the image. Besides qualitative results, quantative

comparison is still pending. Last, in Chapter 5, we proposed locally linear embedded sparse coding

algorithm for image representation, although efficient in testing dataset, we still lack of theratically

guaranttee and extensive application in real-world datasets.
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Appendix A

LARS ALGORITHM (ALGORITHM 2)

We start with analysis of Alg. 2 with its recent optimized implementation presented in [128]. The

LARS algorithm has input vector y ∈ RIN and an explicit dictionary B ∈ RIN×MN with M > I

(overcomplete dictionary).

Assuming that the algorithm takes K iterations/steps to converge:

Step 5: In this step, we calculate the correlation between dictionary columns and residual vector BTr,

then take the maximum absolute value. It takes (2(MI)N + 2MN) operations.

Step 7: By using the Cholesky factorization method, this step requires computing (kI)N + 3k2N oper-

ations

Step 8: This step includes computing B(:, I)a and subtracting it from y (2(Ik)N + IN operations)
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Appendix B

KRONECKER-LARS ALGORITHM (ALGORITHM 3)

Same as LARS case, we assume that the proposed Kron-LARS converges in K iterations/steps:

Step 5: In this step, we calculate correlation with R×1 BT1 (:, i1)×2 BT2 (:, i2) · · · ×N BTN(:, iN)(2M
N+

2MN−1I2 + · · · + 2MIN = 2MNI(
1− (I/M)N

1− I/m
)operations) and take its maximum absolute-

value. It takes 2MN operations.

Step 7: This step computes (cN⊗cN−1⊗· · ·⊗c1)Ty (2INoperations), b = (CTNcN)∗(C
T
N−1cN−1)∗

· · · ∗ (CT1c1) ((2NkNI +NkN) operations), d = (Z(k−1))−1b (2k2N operations), dTd (2kN oper-

ations), updating the inverse matrix is (2kN + 3k2N), and computing the nonzero coefficients is

(2k2N). Thus, giving a total number of operations equals 2IN + 2NkNI+ (N+ 4)kN + 7k2N.

Step 8: This step includes computing (CN � CN−1 � · · · � C1)a and subtracting it from vec(Y)

(N(N− 1)IN + IN operations).
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Appendix C

NBS-LARS ALGORITHM (ALGORITHM 4)

A distinctive characteristic of this algorithm compared to the previous ones is that, assuming that

the algorithm is granted to obtain the true sparse representation, it will require much less iterations.

More specifically, after the maximum correlated atom is detected in step 5, its position within the (M×

M × · · · ×M) multiway array determines the indices ik1 , i
k
2 , ..., i

k
N to be added to the current In (n =

1, 2, ...,N) subsets. Some of these indices may already be included in the correspoding mode indices

subsets. It is granted that at least one new index in one mode will be added. Thus, at every iteration, a

situation between the following two extreme cases can happen: case 1: only one subset of indices In is

incremented by 1 for some n; case 2: a new index is selected compexity for the worst case (case 2). We

note that the minimum number of iterations is S (case 2) and the maximum number of iterations is NS

(case 1):

Step 5: The same as for the Kronecker-LARS algorithm (2MNI+ 2MN−1I2 + · · ·+ 2MIN =

2MNI
(1− (I/M)N

1− I/M

)
+ 2MN operations).

Step 7: The update of the Cholesky facotrization for each mode, similar to the case of the algorithm

1, requires 2kI + k2 + 2k operations and solving a set of N equations using again the Cholesky

factorization, requires 2NkN+1 operations. Thus, in the worst case (case 2) where the Cholesky

factorizatio update is needed for every mode, the total number of operations is 2NkI + Nk2 +

2Nk+ 2NkN+1.
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Appendix C (Continued)

Step 8: This step includes computing A×1B1×2B2 · · ·×NBN (2kIN(
1− (I/k)N

1− I/k
) ≈ 2kIN operations)

and subtracting it from Y, giving us approximately 2kIN + IN operations where we assumed that

I� k.
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