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Abstract 19 

Motivation: New developments in high-throughput genomic technologies have enabled the 20 

measurement of diverse types of omics biomarkers in a cost-efficient and clinically-feasible man-21 

ner. Developing computational methods and tools for analysis and translation of such genomic 22 

data into clinically-relevant information is an ongoing and active area of investigation. For exam-23 

ple, several studies have utilized an unsupervised learning framework to cluster patients by inte-24 

grating omics data. Despite such recent advances, predicting cancer prognosis using integrated 25 

omics biomarkers remains a challenge. There is also a shortage of computational tools for pre-26 

dicting cancer prognosis by using supervised learning methods. The current standard approach is 27 

to fit a Cox regression model by concatenating the different types of omics data in a linear man-28 

ner, while penalty could be added for feature selection. A more powerful approach, however, 29 

would be to incorporate data by considering relationships among omics datatypes.   30 

Methods: Here we developed two methods: a SKI-Cox method and a wLASSO-Cox method to 31 

incorporate the association among different types of omics data. Both methods fit the Cox pro-32 

portional hazards model and predict a risk score based on mRNA expression profiles. SKI-Cox 33 

borrows the information generated by these additional types of omics data to guide variable se-34 

lection, while wLASSO-Cox incorporates this information as a penalty factor during model fit-35 

ting.  36 

Results: We show that SKI-Cox and wLASSO-Cox models select more true variables than a 37 

LASSO-Cox model in simulation studies. We assess the performance of SKI-Cox and wLASSO-38 

Cox using TCGA glioblastoma multiforme and lung adenocarcinoma data. In each case, mRNA 39 



expression, methylation, and copy number variation data are integrated to predict the overall sur-40 

vival time of cancer patients. Our methods achieve better performance in predicting patients’ sur-41 

vival in glioblastoma and lung adenocarcinoma. 42 

 43 
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Introduction 46 

 47 

Consideration of histological assays and population-based risk factors (such as family 48 

history, behavior, age, etc.), combined with environmental risk factors – such as assessment of 49 

exposure to environmental carcinogens - are commonly used in clinical settings in an effort to 50 

determine cancer prognosis and patient outcomes [1]. Advances in molecular biology and high-51 

throughput technology in the last two decades have precipitated the availability of new tools in 52 

the diagnostic and prognostic armament by enabling the simultaneous measurement of vast num-53 

ber of biomarkers in a single experiment. In a multi-omics landscape, for a single patient, it is 54 

well-possible for multiple types of genome-scale data such as mRNA expression, copy number 55 

variants (CNV), and methylation to be collected. 56 

 57 

Such large scale data-focused approaches have been used to predict cancer prognosis us-58 

ing mRNA expression profiles [2,3]. Several cancer survival-associated expression biomarkers 59 

have been identified. A panel of three genes (MAMDC2, TSHZ2, and CLDN11) were identified 60 

as significantly correlated with survival of breast cancer patients [4]. More recently, research 61 

groups have established a Cox regression model incorporating the expression of IL6, IL1A, and 62 

CSF to predict survival of diffuse large B-cell lymphoma patients [5]. Besides mRNA expres-63 

sion, other molecular markers also show power in predicting cancer patients outcomes. For ex-64 

ample, the PITX2 DNA methylation has shown prediction capability for prostate cancer survival 65 

[6]. Another study suggests that patients with a higher expression of microRNA-155 had signifi-66 

cantly worse recurrence-free survival [7] and CNV have been also linked to cancer prognosis in 67 

several studies [8,9].  68 



 69 

A common analytical task is to link the measurement of these genomic covariates to the 70 

patients’ survival time or time to cancer relapse, which is usually censored data. A popular strat-71 

egy is to fit a Cox regression model using these covariates for censored survival data, and then 72 

predict the cancer prognosis for a new patient based on this fitted model [10-12]. The high-di-73 

mensionality issue i.e. when p (dimension of the data) ≫	n (number of observation), introduced 74 

by high-throughput data increases the difficulty of downstream analysis [2]. To reduce the high-75 

dimensionality, variable selection is a common procedure in predicting the prognosis of cancer. 76 

LASSO and its variants (e.g. Adaptive LASSO, elastic-net, etc.), are a popular strategy to pro-77 

vide variable selection in regression analysis and have been extended to Cox regression model 78 

[13-15].  79 

 80 

Briefly, the LASSO-Cox estimators maximize the Cox partial likelihood with an L-1 con-81 

straint on coefficients. To predict prognosis using LASSO-Cox, the simplest way is to concate-82 

nate measurements from various omics levels. Unfortunately, concatenation will further increase 83 

the 𝑝, making the high-dimensionality issue worse. Moreover, concatenation ignores the poten-84 

tial association between different levels of omics data. For example, strong correlation between 85 

DNA methylation and mRNA expression has been found in various diseases [16]. Therefore, to 86 

maximize the utility of information from different omics levels, sophisticated strategies for varia-87 

ble selection of multi-omics data should be designed.  88 

 89 

Herein we propose two novel methods for variable selection in cancer prognosis predic-90 

tion. Unlike traditional concatenation methods, we only use expression data to train and predict 91 



in a Cox regression framework, while other omics data is used for variable selection. The ra-92 

tionale for our method is firstly, not to dilute the already low signal-to-noise ratio in one data 93 

type, and secondly, to take the link among different types of data into account to assist variable 94 

selection. Utilizing other omics data, that is mapped at the gene level, we could draw additional 95 

marginal partial correlations that could be further summarized and integrated into a single vector 96 

representing the correlation between gene and survival. The first method, SKI (screen with 97 

knowledge integration)-Cox, based on our previous work [17], first screens genes based on the 98 

knowledge derived from other omics data, and then fits a LASSO-Cox model by mRNA expres-99 

sion profiles of selected genes. The second one, wLASSO (weighted LASSO)-Cox borrows the 100 

idea from Adaptive LASSO-Cox model [18]. In this approach, the penalty factor for each coeffi-101 

cient is adjusted by coefficients obtained by fitting survival time with other (such as methylation, 102 

CNV, etc.) omics data.  103 

 104 

This paper is organized as follows: First we briefly review the LASSO-Cox regression 105 

and present our developed methods. We then evaluate the performance of each proposed method 106 

by simulation studies and applications to two TCGA (The Cancer Genome Atlas) datasets, GBM 107 

(glioblastoma) [19] and LUAD (lung adenocarcinoma) [20]. Finally, we discuss our methods and 108 

their utility in clinical applications. 109 

 110 

Methods 111 

 112 

SKI-Cox and LASSO-Cox 113 

Suppose we have a sample size of 𝑛 patients: 𝑦&, 𝛿&, 𝑋& , 𝑦*, 𝛿*, 𝑋* , … , 𝑦,, 𝛿,, 𝑋, , 114 



where 𝑦- = min 𝑡-, 𝑢-  is the observed time (i.e. time to the death 𝑡-, or time to the last follow up 115 

𝑢-), 𝛿- is the censoring indicator (i.e. 𝛿- = 1 if 𝑡- ≤ 𝑢-), and 𝑋- ∈ 𝑅8 is the omics measurement 116 

(e.g. mRNA expression profile, methylation profile, etc.). The Cox proportional hazard model 117 

assumes the hazards (or instantaneous death rate) at time t	: 118 

𝜆 𝑡; 𝑋- = 𝜆< 𝑡 exp	(𝑋-𝛽) 119 

where 𝜆< 𝑡  is the baseline hazard, and 𝛽 = {𝛽&, 𝛽*, … , 𝛽8} is the vector of regression coeffi-120 

cients.  121 

The partial likelihood defined by Cox is:  122 

𝐿8FG 𝛽; 𝑋 =
exp 𝑋-𝛽

exp 𝑋H𝛽H∈I JK

LK,

-M&

 123 

where 𝑅 𝑡 = {𝑖: 𝑦- ≥ 𝑡} denotes the set of individuals “at risk” for death at time 𝑡. 124 

In Cox regression, the estimators are obtained by maximizing the partial log likelihood. When 125 

the dimension of 𝛽 increases, LASSO estimators are often used to introduce sparsity by maxim-126 

izing the 𝐿&-penalized partial log likelihood: 127 

𝛽QRSST = argmax
1
𝑛 𝑙

8FG 𝛽; 𝑋 − 𝜆 |𝛽H|
8

HM&

	 128 

In the multi-omics case, the predictor 𝑋- becomes {𝑋- & ,	𝑋- * ,…,	𝑋- [ }, where each 𝑋- \  repre-129 

sents a single data type with dimension	𝑝\ for each patient 𝑖. The concatenation procedure will 130 

combine all the 𝑋- \  into a concatenated vector 𝑋- with dimension 𝑝\[
\M& . 131 



We observed that such concatenation method will worsen the high-dimensional issue, and 132 

furthermore, due to the existence of high correlation among different levels of omics data, the 133 

LASSO procedure could be unstable [21]. To overcome that, some research groups have argued 134 

that only variables with the most direct effect on cancer clinical outcomes such as mRNA ex-135 

pression should be used, while other measurements (such as methylation) that affect outcomes 136 

through regulating mRNA expression could be ignored [22]. Our approach agrees partially with 137 

this argument by fitting LASSO-Cox regression model using only mRNA expression data. How-138 

ever, we believe that data from other omics types could potentially improve the variable selection 139 

procedure. Therefore, we implement two methods to facilitate variable selection using multi-om-140 

ics information.  141 

In essence, our approach is as follows: let’s suppose that we have mRNA expression data, 142 

methylation data and CNV data profiles available. All data types are first standardized and then 143 

the target values are calculated at the gene level. For example, in the case of Illumina 450K-array 144 

based methylation data, a gene methylation value could be calculated by taking the mean signal 145 

values of probes for each gene [23]. Finally, for each patient 𝑖 and each gene 𝑗,  𝑋-H =146 

{𝑋-H
^_8G , 𝑋-H

`,a , 𝑋-H
b^cdJe }, where 𝑋-H

^_8G , 𝑋-H
`,a , 𝑋-H

b^cdJe  are the values for mRNA expres-147 

sion, copy number variance and methylation, respectively. The idea of SKI-Cox is based on vari-148 

able screening in Cox's model [24]. First, a single-covariate Cox regression model for each gene 149 

𝑗 at each omics type 𝑘, is fitted and the marginal utility 𝑈H\: 150 

𝑈H
(c) = max

hi

1
𝑛 𝑙

8FG(𝛽H; 𝑋(\)) 151 

, defined as the maximum of the partial likelihood of gene 𝑗 is obtained. Once we have obtained 152 



all marginal utilities 𝑈H
(\) for 𝑗 = 1,2, … , 𝑝, we could rank all covariates at 𝑘th omics type by cor-153 

responding marginal utility in descending order. Following that, we combine ranks at different 154 

omics types to generate a novel rank as: 155 

𝑅H = 𝑟𝑎𝑛𝑘
1
3 (𝑅H

^_8G + 𝑅H
`,a + 𝑅H

b^cdJe )  156 

Though average ranks were used in our approach, weighted average or other function (e.g. min, 157 

max, median, etc.) could be tried or learned from data if the observation set is big enough. Sub-158 

sequently we selected the top d ranked (e.g. 2000) covariates and denote ℳ as the index set of 159 

these d covariates. We acknowledge that the number of variables selected in this step is subjec-160 

tive and heuristic, better strategy [25] could be used to determine this number. However, it is out 161 

of the scope of this study. We further fitted a LASSO-Cox regression model using	𝑋ℳ
^_8G . 162 

𝛽S[p = argmax
1
𝑛 𝑙

8FG 𝛽; 𝑋ℳ
^_8G − 𝜆 |𝛽H|

8

HM&

	 163 

and wLASSO-Cox implementing an extended LASSO-Cox regression model.  164 

𝛽q = argmax
1
𝑛 𝑙

8FG 𝛽; 𝑋 ^_8G − 𝜆 𝛽H

8

HM&

𝜏H	 165 

where 𝜏H =
s

hi
tuvw x|hi

yz{ x|hi
|t}~�� , and 𝛽H

\  is the maximizer of the log partial likelihood of a 166 

single covariate 𝑙8FG 𝛽H; 𝑋(\) . The logic behind it is similar to Adaptive LASSO. If the coeffi-167 

cients carry more information across different omics types; then less penalty will be applied. 168 

However, in adaptive LASSO case, the penalty factors are obtained by fitting a full log partial 169 



likelihood, while in our case, the information contributed for a same variable across different om-170 

ics types might not be consistent (i.e. the coefficient values could be different). Therefore, we se-171 

lect the maximizers of the marginal log partial likelihood as our penalty factors. 172 

Simulation methodology  173 

The performance of our proposed methods were first tested in a simulation study. We fo-174 

cused on whether using the information brought by multi-omics data could help select important 175 

covariates in a single-omics (e.g. mRNA expression) model. In our simulation, we generated 500 176 

patients, and 20,000 covariates (i.e. mRNA expression). We assumed the first 20 covariates were 177 

related to the cancer prognosis (i.e. survival time) through a Cox hazards proportional model. 10 178 

coefficients were generated from the following uniform distribution: 𝑈𝑛𝑖𝑓(−1,−0.1), and an-179 

other 10 were generated from: 𝑈𝑛𝑖𝑓 0.1,1 .	 180 

For the values of covariates, we first generated a 500×20,000 dataset 𝑋(&) from 181 

𝑈𝑛𝑖𝑓 −1.5,1.5 . In order to mimic the possible interaction among genes, we used  Gram–182 

Schmidt ortho-normalization [26] to construct its normalized orthogonal basis 𝐴 =183 

{𝑎&, 𝑎*, … , 𝑎*<} and 𝐵 = {𝑏&, 𝑏*, … , 𝑏��<}, where A is the linear space expanded by X&:*<(&). We 184 

then generated the expression levels for the rest of the genes from the linear space 𝐶 = 𝐵 + 𝐴𝐸, 185 

where 𝐸 ∈ 𝑅*<×��< could be any matrix. In our simulation, we set the values in 𝐸 all equal to a 186 

single number e. We note when 𝑒 = 0, then the expression of the rest of the genes are independ-187 

ent of the first 20 genes. The correlation could be adjusted by controlling the size of 𝑒. Three e’s 188 

(0.1, 0.2, 0.3) were generated to represent different strength of correlations.  189 

The survival times were then generated from a Weibull distribution with shape 𝑣 = 5 and scale 190 



𝜆 = 5. The time was generated according to [27,28]: 191 

𝑡- = −
log 𝑢

𝜆 exp 𝑋-𝛽

&
a
 192 

where 𝑢~𝑈𝑛𝑖𝑓 0,1 . 193 

The censoring times 𝑢- were generated from 𝑈𝑛𝑖𝑓 2,10 , and we then generated the observation 194 

time 𝑦-
(&) = min 𝑡-, 𝑢- . Based on above setting, we could expect a censoring rate is about 40%. 195 

We also generated another three datasets - {𝑋 * , 𝑦 * , 𝛿(*)}, {𝑋 s , 𝑦 s , 𝛿(s)}, and 196 

{𝑋 � , 𝑦 � , 𝛿(�)} to represent other types of omics data using the same procedure described 197 

above. Two settings were considered. In the first setting, the first 20 coefficients were set as non-198 

zero in all data types, though the values of coefficient for the same covariate could be different 199 

across different types of omics data. In the second one, in each data type except for 200 

{𝑋 & , 𝑦 & , 𝛿(&)}, 12 of the first 20 coefficients were randomly sampled and set as nonzero, and 201 

the rest 8 were set as zero.  202 

Data processing and performance evaluation in TCGA data application 203 

 To further demonstrate the utility of our proposed methods, we applied them to predict 204 

TCGA patient survival data. Processed clinical data, mRNA-sequencing based expression data, 205 

Illumina 450K based methylation data, and SNP-array based copy number variance data were 206 

downloaded through the FirebrowseR provided by TCGA consortium [29]. For a given gene, the 207 

expression value was represented as 𝑙𝑜𝑔(𝑅𝑆𝐸𝑀), where 𝑅𝑆𝐸𝑀 estimate the relative transcripts 208 



abundance by effectively using ambiguously-mapped reads [30]. Methylation values were sum-209 

marized as the mean value of all the probes annotated within this gene. CNV data were first pro-210 

cessed by GISTIC2.0 [31], and then the value of a specific CNV segment, representing amplifi-211 

cation and deletion status, was assigned to each gene located within its genomic region. More so-212 

phisticated strategy could be applied or even learned from the data to infer these mapping rela-213 

tionship [32]. However, more parameters are introduced if we employ this strategy, and this 214 

could further complicate the problem. Thus this heuristic-based and easy-to-implement mapping 215 

strategy was used here. 216 

We used mRNA expression data to predict patient overall survival with variable selection facili-217 

tated by methylation and CNV data. We used C-index with 10-fold cross validation to evaluate 218 

the performance. Briefly, C-index measures the fraction of patient pairs, where the observation 219 

with the higher survival time have the higher survival score predicted by the models [33]. The 220 

concordance.index function in the R package survival was used for implementation. Survival 221 

scores were calculated as a linear combination of coefficients and covariates: 222 

𝑠𝑐𝑜𝑟𝑒- = −𝑋-𝛽 223 

Results 224 

Our proposed methods successfully recovered more true variables in the simulation study 225 

by incorporating the information from other omics data, and achieved better performance in pre-226 

dicting patients’ survival in glioblastoma and lung adenocarcinoma. 227 

Variable selection in simulation study 228 

To see whether our proposed method could use other omics data to improve the selection 229 



of true variables in a single-omics dataset, we compared our methods with a regular LASSO-Cox 230 

based method which only uses {𝑋 & , 𝑦 & , 𝛿(&)} (e.g. mRNA expression). To make the results 231 

comparable, we modified the tuning parameters until 200 variables were selected in each 232 

method. Table 1 shows the number of true variables selected using the three methods under dif-233 

ferent settings. When the correlation between true covariates and others are low, all three meth-234 

ods perform very well. Our proposed methods perform slightly better than a LASSO-Cox regres-235 

sion. With the increase of the correlation, the capability of LASSO-Cox to select true covariates 236 

drop dramatically, while the false positive rate of SKI-Cox and wLASSO-Cox could still remain 237 

at a relatively low level. When the maximum correlation increases to about 0.4, the task becomes 238 

extremely difficult due to strong collinearity among the covariates. LASSO-Cox could not find 239 

even one true variable, while SKI-Cox and wLASSO-Cox were able to identify at least one true 240 

variable.  241 

We also simulated the situation when the different types of omics data do not predict the 242 

prognosis consistently. When the shared proportion of informative variables between omics data 243 

drops to 60%, we observed the performance of SKI-Cox and wLASSO-Cox decline when the 244 

task is easy (i.e. low correlation). However, we observed that the number of true positive rate of 245 

SKI-Cox and wLASSO-Cox could still exceed LASSO-Cox when the task becomes more and 246 

more complicated (i.e. high correlation). Overall, wLASSO-Cox tends to perform slightly better 247 

than SKI-Cox. 248 

 249 

Predictions in glioblastomas (GBM) and lung adenocarcinoma (LUAD) 250 

We then applied our models in two cancer dataset in TCGA, lung adenocarcinoma 251 



(LUAD) and glioblastomas (GBM). The overall survival time is longer for lung adenocarcinoma 252 

patients than that for glioblastomas patients, and thus results in a higher censoring rate in LUAD 253 

dataset. We also observe high correlations among genes at each omics type. From the learnings 254 

in our simulation, it is very likely that we could not find a true signal when a high correlation ex-255 

ists. Therefore, we focused our comparison on survival prediction. The clinical information and 256 

overall omics information were summarized in Table 2. 257 

We compared our methods with four other methods. LASSO-Coxexpr uses only expression 258 

data to predict survival time, LASSO-Coxcnv uses only CNV data, LASSO-Coxmethyl uses only 259 

methylation data, and LASSO-Coxconcat first concatenates the omics data and then fits a LASSO-260 

Cox regression model to predict survival using the concatenated matrix. In general, the perfor-261 

mance is better in LUAD than the performance in GBM, which is likely due to that fact that 262 

more patients have omics data available in LUAD. In the single-omics case, mRNA expression 263 

achieves a better performance (average C-index 0.53 and 0.58) than methylation (average C-in-264 

dex 0.51 and 0.51) and CNV (average C-index 0.51 and 0.56).  265 

In both cancers, using CNV and methylation omics data by simple concatenation do not 266 

bring additional predictive power. Instead, the prediction performance declines (average C-index 267 

0.51 and 0.57) likely due to the extra noise introduced by the additional omics data. However, 268 

our proposed methods do improve the prediction in both cancers by introducing the other (meth-269 

ylation and CNV) omics data in variable selection procedures. In GBM, SKI-Cox (average C-270 

index 0.62) works better than wLASSO-Cox (average C-index 0.59), while wLASSO-Cox per-271 

forms better in LUAD (average C-index 0.60 vs. 0.63).  272 

To identify the variables selected by different methods, we used bootstrap (100 times) to 273 



show the most frequently selected genes (Table 4 and Table 5).  In both GBM and LUAD, the 274 

most frequently selected variables using concatenated LASSO-Coxconcat are from mRNA expres-275 

sion data, which further confirms the assumption that mRNA expression, which has the most di-276 

rect impact on phenotypes, could have the most predictive power. The variables selected in 277 

LASSO-Coxconcat and LASSO-Coxexpr are very similar despite the frequency is higher in LASSO-278 

Coxexpr, which is likely due to the more variables in LASSO-Coxconcat. Comparing to CNV and 279 

methylation based model, the frequency of specific most often selected variables is higher in the 280 

model consisting of mRNA expression, indicating a higher model stability when we use expres-281 

sion based data. The stability increases even more in our proposed two models. For example, the 282 

expression of STXBP4 and MBLAC2 have been frequently selected in GBM as the predictive 283 

variables, and their selection frequency is much higher in our proposed models. Moreover, with 284 

the addition of information from methylation and CNV, some genes not selected before will 285 

show their predictive powers (ARPC1A and INHA). mRNA expression of INHA, a tumor sup-286 

pressor, was altered in adrenocortical carcinoma patients (ACC) [34]. The alteration of 287 

ARPC1A, which is another tumor suppressor, has also been observed in multiple cancers pro-288 

gress including GBM [35,36]. This fact underscores the capability of our approach to discover 289 

potentially clinically-useful biomarkers not captured by other models.  290 

 291 

Discussion 292 

Application of multi-omics data based approaches towards the goal of informing patient-293 

focused decision making has gained popularity in recent years. Several methods have utilized 294 

multi-omics data to perform patient clustering. iCluster developed a joint Gaussian latent variable 295 



model for integrated multi-omics clustering [37]. Subtypes showing poor survival were discov-296 

ered by applying iCluster algorithm in breast and lung cancers using mRNA expression and copy 297 

number data. SNF used network fusion techniques to build patient similarity network by integrat-298 

ing mRNA expression, DNA methylation and microRNA (miRNA) expression data. Survival 299 

risk could be predicted using a Cox regression model with penalty applied to control the patient 300 

similarity [38]. PARADIGM inferred the pathway activity using multi-omics data and clustered 301 

patients based on these activities [39]. Most of these approaches require all types of omics data 302 

available for both training and prediction. 303 

Unlike such methods, our methods do not incorporate all data types into one model. In-304 

stead, we only used mRNA expression as a basic data type to train the model, while other types 305 

of omics data were only used to facilitate variable selection. In the SKI-Cox approach, variables 306 

(i.e. genes) are first screened from different genomic points of view based on omics data types, 307 

and then ranked based on their average marginal utility in survival prediction. The final model is 308 

trained using the mRNA expression data of these screened genes. The other model, wLASSO-309 

Cox puts a penalty factor to take the information derived from other (CNV and methylation) om-310 

ics data into account. The more predictive power a gene shows in other omics data, the less pen-311 

alty it has in an mRNA expression-based regression model. The idea of SKI was first developed 312 

in our previous study [17], in which informative variables were first screened based on prior bio-313 

logical knowledge. In this current application, multi-omics data could be regarded as a layer of 314 

knowledge. Similarly, wLASSO extended the idea of Bergersen and his colleagues’ work [40], 315 

in which prior knowledge was integrated into a LASSO regression model as a penalty factor. 316 

However, both of the previous works only considered a simple linear regression model. In our 317 

case, we extended the work to a Cox regression model. 318 



An obvious advantage of our approach is that different omics data could be measured in 319 

different patients. For example, we could have methylation data measured for one group of pa-320 

tients to derive the predictive power of each gene from methylation perspective, and then apply 321 

this to another group of patients to train an mRNA expression-based Cox regression model. 322 

Since mRNA expression is the most commonly measured genome-scale marker in clinical appli-323 

cations, such a model setting allows us to collect more training samples, which could be essential 324 

when handling the multi-dimensionality (𝑝 >> 𝑛) issue. On the other hand, a prediction based 325 

on our model only requires the sample to be measured in a single omics level (e.g. mRNA ex-326 

pression). Considering the still-high price to measure genomic-scale data and relative small 327 

amounts of biopsy materials available for measurement, our methods could maximize its utility 328 

in clinical applications. The reason we selected mRNA expression to train the final model is in-329 

spired by the observation that mRNA expression has higher predictive power than the other ge-330 

nomic measurements, which is an expected result since mRNA expression has the most direct 331 

effect on cancer clinical outcomes [22]. Furthermore, as the most mature genome-scale technol-332 

ogy, mRNA-expression is the most popularly applied clinical tool to measure genomic-scale 333 

data, which could make our methods more widely adopted and useful in the clinical setting. 334 

Besides the prediction tasks, our methods enjoy the sparsity property as a result of 335 

LASSO-based regression. The final variables selected in our model (e.g. 𝛽 ≠ 0) could be down-336 

stream-validated and designed as a gene panel for future clinical usage. Since we incorporated 337 

other omics data in variable selection, it is more likely the final variables are those driver genes, 338 

due to the fact that the upstream regulators of these genes also show predictive power in survival 339 

prediction. Here our assumption is that the “signal” is sparse. It is possible that many genomic 340 

features could contribute to the cancer prognosis. Then other feature reduction methods such as 341 



PCA (principle component analysis) [41] and PLS (partial least squares) [42]should be imple-342 

mented in a Cox-regression framework.  343 

In conclusion, we have developed two methods SKI-Cox and wLASSO-Cox to facilitate 344 

variable selection in Cox-regression model using multi-omics data. The performance has been 345 

validated by both simulation and real case studies. More true variables could be recovered in the 346 

simulation study. Better performance is achieved in predicting overall survival time in glioblas-347 

toma and lung adenocarcinoma patients using TCGA dataset. Our methods introduce a novel 348 

framework for variable selection in Cox-regression model using multi-omics data. Its easy-to-349 

implement property makes it very promising and useful in building a clinically applicable predic-350 

tive model. The procedure we applied could also help identify driver genes and shed the light in 351 

explaining cancer development, prognosis, and relation to patient-specific outcomes. 352 
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 367 
 t MAC 𝛽 Overlap # of True variables 

(among 200) 
LASSO-Cox 0.1 0.132 1 18.7 
SKI-Cox 0.1 0.132 1 19.9 
wLASSO-Cox 0.1 0.132 1 20 
LASSO-Cox 0.1 0.132 0.6 18.8 
SKI-Cox 0.1 0.132 0.6 14.5 
wLASSO-Cox 0.1 0.132 0.6 16.1 
LASSO-Cox 0.2 0.256 1 6.3 
SKI-Cox 0.2 0.256 1 10.9 
wLASSO-Cox 0.2 0.256 1 12.1 
LASSO-Cox 0.2 0.256 0.6 6.4 
SKI-Cox 0.2 0.256 0.6 6.6 
wLASSO-Cox 0.2 0.256 0.6 7.9 
LASSO-Cox 0.3 0.411 1 0 
SKI-Cox 0.3 0.411 1 1.2 
wLASSO-Cox 0.3 0.411 1 3 
LASSO-Cox 0.3 0.411 0.6 0 
SKI-Cox 0.3 0.411 0.6 0.3 
wLASSO-Cox 0.3 0.411 0.6 0.8 

 368 
Table 1. Simulation results showed number of true non-zero β variables selected using three dif-369 
ferent methods under different scenarios. MAC: maximal absolute correlations among variables. 370 
 371 
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 375 
 376 
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 379 
 380 
 381 
 382 
 383 
 384 
 385 
 386 
 387 
 388 
 389 



 390 
  GBM LUAD 
Clinical 
outcomes 

Number of patients 591 509 
Average overall survival (month) 501.0+ 909.9+ 
Event rate 82.91% 35.95% 

Omics 
summary  

# of genes measured 18,218 18,309 
# of patients with mRNA expression 151 390 
# of patients with methylation 280 333 
# of patients with CNV 554 389 
MAC among mRNA expression 0.98 0.97 
MAC among methylation 0.94 0.95 
MAC among CNV 1 1 

 391 
Table 2. Clinical and omics data summary of GBM and LUAD. MAC: maximal absolute corre-392 
lation; LUAD: lung adenocarcinoma; GBM: glioblastomas. 393 
 394 
 395 
 396 
 397 
 398 
 399 
 400 
 401 
 402 
 403 
 404 
 405 
 406 
 407 
 408 
 409 
 410 
 411 
 412 
 413 
 414 
 415 
 416 
 417 
 418 
 419 
 420 
 421 
 422 
 423 
 424 



Method C-index (standard error) 
GBM LUAD 

LASSO-Coxexpr 0.53 (0.02) 0.58 (0.03) 
LASSO-Coxcnv 0.51 (0.02) 0.56 (0.01) 

LASSO-Coxmethyl 0.51 (0.01) 0.51 (0.02) 
LASSO-Coxconcat 0.51 (0.03) 0.57 (0.03) 

SKI-Coxexpr 0.62 (0.01) 0.60 (0.01) 
wLASSO-Coxexpr 0.59 (0.02) 0.63 (0.02) 

 425 
Table 3. C-index obtained by 10-fold cross-validation of different methods. LUAD: lung adeno-426 
carcinoma; GBM: glioblastomas.  427 
 428 
 429 
 430 
 431 
 432 
 433 
 434 
 435 
 436 
 437 
 438 
 439 
 440 
 441 
 442 
 443 
 444 
 445 
 446 
 447 
 448 
 449 
 450 
 451 
 452 
 453 
 454 
 455 
 456 
 457 
 458 
 459 
 460 
 461 



LASSO-Cox-
concat 

LASSO-
Coxexpr 

LASSO-Coxme-

thyl 
LASSO-Coxcnv SKI-Coxexpr wLASSO-

Coxexpr 
STXBP4expr 

0.75 
STXBP4 

0.78 
USP49 
0.45 

ZC3H12C 
0.45 

STXBP4 
1.00   

STXBP4 
0.99 

ARHGAP42expr 

0.38 
SH2D6 

0.47 
FAM3B 
0.41 

RDX 
0.40 

MBLAC2 
0.89 

MBLAC2 
0.89 

FAM3Bmethyl 

0.37 
HLA-DRB6 
0.45 

LRRC8E 
0.37 

AHDC1 
0.39 

ARPC1A 
0.74 

LIMA1 
0.84 

SH2D6expr 

0.33 
NSUN5 
0.40 

CAB39 
0.35 

FGR 
0.33 

C11orf35 
0.69 

TXN 
0.82 

MBLAC2expr 

0.27 
MBLAC2 
0.34 

A4GALT 
0.31 

R3HDM2 
0.29 

USP6NL 
0.61 

TMEM44 
0.68 

FAHD2Aexpr 

0.24 
CUL5 
0.33 

GDNF 
0.28 

AKAP6 
0.29 

C19orf73 
0.43 

ARPC1A 
0.65 

RPS28expr 

0.22 
GPR126 
0.33 

CYB5R3 
0.25 

FDX1 
0.28 

INHA 
0.40 

INHA 
0.64 

SLC2A2methyl 

0.21 
NFXL1 
0.33 

AGPAT1 
0.22 

ACSM3 
0.28 

CPNE2 
0.36 

B4GALT5 
0.51 

CUL5expr 

0.19 
ARHGAP42 
0.32 

PIK3IP1 
0.22 

LINC00290 
0.26 

C21orf2 
0.35 

HEY1 
0.37 

GPR126expr 

0.19 
FAM35A 
0.30 

FUT9 
0.21 

FAM138F 
0.26 

MAML2 
0.32 

DCAF17 
0.31 

 462 
Table 4. 10 most frequently selected variables of GBM in different models using bootstrap 463 
methods. expr: mRNA expression features; methyl: methylation features. 464 
 465 
 466 
 467 
 468 
 469 
 470 
 471 
 472 
 473 
 474 
 475 
 476 
 477 
 478 
 479 
 480 
 481 
 482 
 483 
 484 
 485 



LASSO-Cox-
concat 

LASSO-
Coxexpr 

LASSO-Coxme-

thyl 
LASSO-Coxcnv SKI-Coxexpr wLASSO-Coxexpr 

PLEKHB1expr 

0.80 
PLEKHB1 
0.82 

ZFAND2A 
0.80 

SEPT14 
0.43 

MYLIP 
0.88   

MYLIP 
1 

MYLIPexpr 

0.77 
MYLIP 

0.80 
PDZD8 
0.72 

MRPS17 
0.39 

FUT4 
0.86 

ZNF330 
0.92 

RGS20expr 

0.59 
FAM117A 
0.59 

XPA 
0.71 

LINC00351 
0.36 

ABAT 
0.69 

FUT4 
0.88 

FAM117Aexpr 

0.51 
RGS20 
0.59 

CDC42EP3 
0.58 

FGGY 
0.31 

E2F7 
0.64 

TSR1 
0.77 

CLIC6expr 

0.45 
FUT4 

0.54 
FAM160A1 
0.52 

TM4SF4 
0.31 

XCR1 
0.62 

SRR 
0.74 

FUT4expr 

0.41 
CLIC6 
0.53 

HNRNPM 
0.49 

RN7SL855P 
0.31 

MLF1IP 
0.46 

STK17B 
0.62 

IRX5expr 

0.39 
IRX5 
0.48 

NR2F2 
0.48 

LRP1B 
0.29 

ERO1L 
0.43 

PHTF2 
0.56 

ZFAND2Ame-

thyl 

0.39 

PAOX 
0.39 

IVD 
0.46 

ZNF713 
0.29 

PSMD2 
0.43 

SEPT2 
0.51 

PDZD8methyl 

0.32 
CLEC17A 
0.35 

MEX3C 
0.39 

FOCAD 
0.28 

TFDP1 
0.38 

C20orf11 
0.50 

PAOXexpr 

0.29 
TYRP1 
0.23 

FAM53B 
0.33 

ZNF733P 
0.27 

ZNF557 
0.32 

RFC4 
0.48 

Table 5. 10 most frequently selected variables of LUAD in different models using bootstrap 486 
methods. expr: mRNA expression features; methyl: methylation features. 487 
 488 
  489 
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