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Abstract—The isorefractive condition augments the set of
geometries for which electromagnetic boundary value problems
are solvable with the mode matching method. From a teaching
viewpoint, understanding the isorefractive condition enables to
appreciate the underpinnings of the special functions used in
certain coordinate systems. From a research viewpoint, the
isorefractive condition extends the set of problems for which an
exact solution is known, thus leading to new canonical problems
that can be used as challenging benchmarks to validate numerical
approaches.

I. INTRODUCTION

Uslenghi coined the term isorefractive [1] to refer to a
special condition between two media. This condition enables
the application of the mode-matching technique to solve
boundary value problems. Other authors have addressed this
condition only in the case of a dielectric wedge referring to
it as diaphanous wedge [2]. Consider two materials character-
ized by dielectric permittivity ε1 and magnetic permeability
µ1 and another with dielectric permittivity ε2 and magnetic
permeability µ2, respectively. These materials are isorefractive
when

ε1µ1 = ε2µ2, (1)

so that the wavevector does not change change going from one
medium to the other, however, the intrinsic impedance of the
material can still change since Z1 =

√
µ1/ε1 6=

√
µ2/ε2 =

Z2.

II. TEACHING PERSPECTIVE

Let us consider a simple two-dimensional scattering prob-
lem where the mode matching method cannot be applied,
unless the isorefractive condition is satisfied. Referring to
Fig. 1, a plane wave with the electric field polarized parallel
to the z axis, with wavevector β, and propagating along a
direction making the angle ϕ0 with the negative x axis is
incident upon an infinite elliptic dielectric cylinder whose axis
of symmetry is the z axis. In any plane orthogonal to z, using
elliptic coordinates x = d/2 coshu cos v, y = d/2 sinhu sin v,
where d is the interfocal distance, the cross section of the
cylinder is an ellipse with u = u1 and oriented so that
the x axis overlaps the major axis of the ellipse. Inside the
elliptic cylinder, the material has dielectric permittivity ε2
and magnetic permeability µ2 and outside the material has
permittivity ε1 and permeability µ1. For this problem, using
the notation of Stratton [3], the incident electric field may be

written as

Eiz = E0e
jβ(x cosϕ0+y sinϕ0)

=
√
8πE0

∞∑
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(2)

and the scattered electric field is

Esz =
√
8πE0
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(3)

where the radial Mathieu functions of the fourth kind Re(4)n
and Ro(4)n guarantee the satisfaction of the boundary condition
at infinity [3], [4]. The field inside the dielectric region is
written

E2z =
√
8πE0
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n=0

jn

[
cn

N
(e)
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Ro(1)n (c2, u)Son(c2, v)

]
(4)

where only the radial Mathieu functions of the first kind
Re(1)n and Ro(1)n are present to avoid any singularity. The

Fig. 1. Cross section of the problem geometry.

parameter c = βd/2 depends on the material properties and so
do the normalization coefficients, therefore they are indicated
as N (e)

1n , N (o)
1n in region 1 and as N (o)

2n , N (o)
2n in region 2.

The boundary condition on the continuity of the tangential



component of the total electric field, i.e.
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, (5)

requires that the sum of the series at the LHS equals the
sum of the series at the RHS. The terms of the series are
similar to the case of the circular cylinder in that there are
radial factors (Re(1),(4)n ,Ro(1),(4)n ) and angular factors (Sen,
Son), with the additional feature that even and odd parity are
required for both radial and angular Mathieu functions. Along
the boundary at u = u1, the angular factors at the LHS depend
on Sen(c1, v) or Son(c1, v) while at the RHS they depend
on Sen(c2, v) or Son(c2, v). Hence, for both even and odd
parts, the behavior at the LHS depends on the material outside
the elliptic cylinder, which is associated with the parameter
c1 and this is different from the behavior at the RHS that
depends on the material inside the elliptic cylinder, which
is associated with the parameter c2. Therefore, in general,
it is not possible to apply the mode-matching method thus
precluding an exact analytical solution leading to closed form
expressions of the expansion coefficients. However, when the
isorefractive condition (1) is satisfied,

c1 =
d

2
ω
√
ε1µ1 =

d

2
ω
√
ε2µ2 = c2, (6)

the angular functions at the LHS and RHS of (5) have the same
behavior and the mode matching method can be applied. Once
the boundary condition on the continuity of the total tangential
component of the magnetic field is applied, the expressions of
the expansion coefficients are obtained as
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(Z1 − Z2)Re
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(9)

Therefore an exact analytical expression for the expansion
coefficients is obtained and a new canonical problem is solved
for the isorefractive elliptic cylinder.

III. RESEARCH PERSPECTIVE

The isorefractive condition led to many new exact analytical
solutions for canonical geometries in many coordinate sys-
tems, including: the circular cylinder [5], the elliptic cylinder
[6], [7], the oblate spheroidal [8], the prolate spheroidal [9],
and the paraboloidal [10]. These new solutions provide ad-
ditional benchmarks for the validation of computational elec-
tromagnetic software. For example, computational software is
frequently tested in the 2D case by making comparisons with
the exact solution for the circular cylinder. However, a com-
parison with the isorefractive geometry of Fig. 2, investigated
in [11], would provide a more challenging test due to the
presence of a cavity, sharp edges, an aperture, and different
materials.

Fig. 2. Sample 2D geometry for a more challenging benchmark.

ACKNOWLEDGEMENT

The research described was supported by the US DoD under
AFOSR MURI Award award number F49620-01-0436 and
AFOSR award FA9550-12-1-0174.

REFERENCES

[1] P. Uslenghi, “Exact scattering by isorefractive bodies,” IEEE Trans.
Antennas Propag., vol. 45, no. 9, pp. 1382–1385, Sept. 1997.

[2] L. Knockaert, F. Olyslager, and D. DeZutter, “The diaphanous wedge,”
IEEE Trans. Antennas Propag., vol. 45, no. 9, pp. 1374–1381, Sept.
1997.

[3] J. A. Stratton, Electromagnetic Theory. New York: McGraw-Hill, 1941.
[4] D. Erricolo and G. Carluccio, “Algorithm 934: Fortran 90 subroutines to

compute mathieu functions for complex values of the parameter,” ACM
Transactions on Mathematical Software, vol. 40, no. 1, Sept 2013.

[5] V. Daniele and P. Uslenghi, “Closed-form solution for a line source at
the edge of an isorefractive wedge,” IEEE Trans. Antennas Propag.,
vol. 47, no. 4, pp. 764–765, April 1999.

[6] S. Canta and D.Erricolo, “Exact 2D Scattering Analysis of a slot backed
by a semielliptical cavity and covered by a multilayer diaphragm,” Radio
Sci., 2008, doi:10.1029/2007RS003809.

[7] O. Akgol, V. Daniele, D. Erricolo, and P. Uslenghi, “Radiation from a
line source shielded by a confocal elliptic layer of DNG metamaterial,”
IEEE Antennas Wirel. Propag. Lett., vol. 10, pp. 943–946, 2011.

[8] C. Berardi, D. Erricolo, and P. L. E. Uslenghi, “Exact dipole radiation for
an oblate spheroidal cavity filled with isorefractive material and aperture-
coupled to a half space,” IEEE Trans. Antennas Propag., vol. 52, no. 9,
pp. 2205–2213, Sept. 2004.

[9] D. Erricolo and P. Uslenghi, “Exact Radiation for Dipoles on Metallic
Spheroids at the Interface Between Isorefractive Half-Spaces,” IEEE
Trans. Antennas Propag., vol. 53, no. 12, pp. 3974–3981, Dec. 2005.

[10] J. Liang and P. Uslenghi, “Exact scattering by isorefractive paraboloidal
radomes,” IEEE Trans. Antennas Propag., vol. 55, no. 6, 1, pp. 1546–
1553, Jun 2007.

[11] D. Erricolo, M. Lockard, C. Butler, and P. Uslenghi, “Currents on
conducting surfaces of a semielliptical-channel-backed slotted screen in
an isorefractive environment,” IEEE Trans. Antennas Propag., vol. 53,
no. 7, pp. 2350–2356, July 2005.


	Introduction
	Teaching perspective
	Research perspective
	References

