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Summary

In this thesis, we shall consider a variety of dispersive semilinear partial differential equations of

Schrödinger type that serve as models for different physical phenomena in laser optics and quantum

physics. Our results highlight a number of mathematical techniques that are employed in order to

understand emergent properties within these physical systems. The introduction is divided between

models of nonlinear optics and quantum physics.

In the first two chapters, we study two models that have recently been derived by Dumas, Lannes, and

Szeftel as an effective description for the propagation of laser beams at high intensities. This was part

of an effort to remedy some shortcomings of the classical focusing Nonlinear Schrödinger equation

(NLS) in regimes where physical observations indicate that the behavior of these beams depart from

the predictions based on the NLS. Dumas et al. derive these new extended NLS type models from the

underlying Maxwell equations by employing a slowly varying envelope approximation. In particular,

when a laser pulse propagates in a nonlinear medium, the refractive index changes according to

its intensity. This change in index induces a regularizing effect in the off-axis directions of the

beam, which creates asymmetry whilst widening or smoothing the profile of the beam. In addition,

depending on the medium, asymmetry can occur due to possible nonlinear effects of the profile

associated to the off-axis directions, causing the peak and edges of the pulse envelope to travel with

different velocities. It was posed as separate open problems by Dumas et al. whether these effects,

separately or together, provide an adequate description of these nonlinear optical phenomenon.

To this end, we shall verify that these equations are mathematically (globally) well-posed and prove

a result concerning the long time behavior of small solutions in a particular regime. In the two-

dimensional setting we shall attempt to verify that the analysis we perform is in a sense sharp by

providing several numerical simulations, even in the case when these effects above act in opposing

directions and where there are no analytical results available at present. These simulations rely on

numerically constructing nonlinear ground states as initial data, in order to determine whether their

time evolution is stable under Gaussian perturbations for given nonlinear strengths. Moreover, we
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shall compare our numerical simulations with those where these new effects are not present, i.e. the

classical focusing NLS.

In the last two chapters we shall be concerned with two mathematical models of quantum mechan-

ics. First, the focus is on a macroscopic model for weakly nonlinear wave packets in honeycomb

structures. As a means of exploiting the interesting features that arise from the geometry of these

structures, we shall spectrally localize around a conical singularity in the dispersion surface called

a Dirac point. We shall be interested in high frequency wave propagation where the wavelength

is comparable to the period of a honeycomb lattice, both of which are small relative to the length

scale of the lattice. Thus, there are two natural scales we consider, the fast scale measuring the

variations within a (microscopic) fundamental cell and the slow scale measuring variations within

the macroscopic region of interest. Starting from a macroscopic description given by a semi-classical

NLS, we derive an approximate macroscopic solution via a rigorous multi-scale expansion. We shall

see that solutions to the semi-classical NLS can be approximated by slowly modulated plane waves

whose leading order amplitudes satisfy a nonlinear Dirac system. We then prove a nonlinear stability

result which verifies that our approximate solution is indeed accurate up to small errors.

The second work concerns a model for rotating bosonic particles at temperatures near absolute zero

confined by a magnetic trap. In this setting these quantum gases are known to condense into a single

macroscopic quantum state called a Bose-Einstein condensate. In this state the gas is superfluid and

exhibits the nucleation of quantized vortices. We first show for rotational speeds that do not exceed

the trapping frequencies that there exists time-periodic solutions called ground states. Formally,

these solutions are minimizers of an associated energy functional and we prove orbital stability of

the set of ground states. In short, this says that if we prepare initial data close to a ground state,

then global solutions will remain close to some ground state solution for all time. The other aspect

of this work is on the instability properties associated to rotational speeds that exceed the smallest

trapping frequency. Here we show that the quantum mechanical mean position and momentum

satisfy the Ehrenfest equations – a coupled system of ordinary differential equations. In the case of

non-isotropic potentials, we show that solutions can develop frequencies that cause the solution to

escape the confines of the trap, in the sense that asymptotically the mass gets transferred to infinity

as time goes to infinity.
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CHAPTER 1

Introduction1

1. Models of nonlinear laser optics

1.1. Well-posedness for the NLS. Consider the initial value problem or Cauchy problem for

a general (focusing) nonlinear Schrödinger equation (NLS) in d > 1 spatial dimensions, i.e.,

(1)

 i∂tu+ ∆u+ |u|2σu = 0, t ∈ R, x ∈ Rd,

u(0,x) = u0(x),

where σ > 0 is a parameter describing nonlinear effects. The NLS is a canonical model for slowly

modulated, self-focusing wave propagation in a weakly nonlinear dispersive medium. The choice

of σ = 1 is well studied in the context of nonlinear laser optics, and thereby corresponds to the

physically most relevant case of a Kerr nonlinearity, cf. [48, 101]. The NLS thereby describes

diffractive effects which modify the propagation of slowly modulated light rays of geometrical optics

over large times. In this context, the variable “t” should not be thought of as time, but rather as

the main spatial direction of propagation of the ray.

It should be noted that solutions u = u(t,x) to (1) admit several conservation laws, in particular

one finds that

(2) ‖u(t, ·)‖2L2
x

= ‖u0‖2L2
x
,

which corresponds to the conservation of the (total) power, or intensity of the wave train. In general,

these conservation laws correspond to symmetries of the equation, i.e., phase rotation (intensity),

time translation (energy) and space translation (momentum). However, from a mathematical point

of view, solutions u to the initial value problem (1) also satisfy a certain scaling symmetry in that

1The Introduction has been expanded in places but in general is excerpted from the following works:
[5] P. Antonelli, J. Arbunich and C. Sparber. Regularizing nonlinear Schrödinger equations through partial off-axis
variations. SIAM J. Math. Anal. 51 (2019), no. 1, pp. 110–130. Copyright c©2019 Society for Industrial and Applied
Mathematics. Reprinted with permission. All rights reserved.
[7] J. Arbunich, C. Klein and C. Sparber. On a class of derivative nonlinear Schrödinger equations in two spatial
dimensions. To appear in ESAIM Math. Model. Numer. Anal.
Reproduced from [9] J. Arbunich and C. Sparber Rigorous derivation of nonlinear Dirac equations for wave propa-
gation in honeycomb structures. J. Math. Phys. 59 (2018), 011509., with the permission of AIP Publishing.
[8] J. Arbunich, I. Nenciu and C. Sparber Stability and instability properties of rotating Bose-Einstein condensates.
Lett. Math. Phys (2019) 109: 1415.
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for λ > 0 we have

(3) uλ(t,x) = λ−1/σu

(
t

λ2 ,
x
λ

)
also solves the initial value problem (1). This particular symmetry is characteristic of a variety

of physical models, in that quite frequently, these models are derived from physical considerations

whereby physical quantities are added or equated with each other in terms of the same physical units.

However, we shall see below that there exists models that do not exhibit this scaling symmetry.

When one encounters a time evolution equation such as (1), a natural question might be whether this

is indeed a well-posed problem. In the context of partial differential equations of evolutionary type,

this implies that once initial data is assigned (in a suitable function space) there must exist a unique

solution evolving from the data. Moreover, the behavior of the solution should vary continuously

with respect to changes in the initial data. As we will investigate a few variants of (1) and study the

well-posedness of such models, we shall present here a formal definition (from [31]) of well-posedness

for such initial value problems.

DEFINITION 1.1 (Well-posedness). We say that the initial value problem (1) is locally well-posed

in the Sobolev space Hs(Rd), if for any ball B ⊂ Hs(Rd), there exists a time T > 0 and a Banach

space X ⊂ L∞([−T, T ];Hs(Rd)), such that for each initial data u0 ∈ B there exists a unique solution

u ∈ X ∩ C([−T, T ], Hs(Rd)) to the integral formulation

u(t) = S0(t)u0 − i
∫ t

0
S0(t− s)(|u|2σu)(s) ds ≡ Φ(u)(t),

where S0(t) = eit∆ is the linear propagator associated to (1). Moreover, the map u0 7→ u is a

continuous map from Hs to C([−T, T ], Hs(Rd)). If the above holds for all T ∈ R, then we say that

the initial value problem is globally well-posed.

In order to show that the map Φ(u)(t) ≡ u in accordance with the definition above, the general

strategy to prove well-posedness follows by showing the map Φ(u) is a contraction in a suitable ball

and invoke Banach’s fixed point theorem. In performing this type of analysis, the time of existence

is chosen with respect to the initial data in order to close the fixed point argument, which in general

is informed by the scaling symmetry (3). In particular, let us consider the homogeneous Hs-norm

of the scaled initial data uλ,0(x) = λ−1/σu0(λ−1x) then

(4) ‖uλ,0‖Ḣs := ‖| · |sûλ,0(·)‖L2
x

= λ−s+( d2−
1
σ )‖u0‖Ḣs .
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The key point is that if we send λ → +∞, then whenever s > d
2 −

1
σ , called the Hs-subcritical

regime, the Hs-norm of the initial data u0 can be made small while the interval of existence is

made longer. This is so because uλ(t,x) lives on the time interval [−λ2T, λ2T ]. In the Hs-critical

regime, i.e. s = d
2 −

1
σ , the norm is left invariant by the scaling while the interval of existence gets

longer. Finally, in the Hs-supercritical regime when s < d
2 −

1
σ the norms grow as the existence time

decreases, which prevents one from closing a fixed point argument.

With the above dialogue concerning scaling, it is seen that (1) is L2-subcritical (s = 0) provided

σ < 2
d . In this regime, one can employ the dispersive properties (i.e. Strichartz estimates) of the NLS

and the conserved quantity (2) to obtain a global solution u ∈ C(Rt;L2(Rd)), see e.g. [25]. In the

L2-critical case, i.e. σ = 2
d , there is a sharp dichotomy characterizing the possibility of this blow-up

and a rather complete description of this phenomenon is available in this case. In particular, it is

known that global solutions exist for intensities ‖u0‖L2 < ‖Q‖L2 , where Q denotes the nonzero least

energy solution called the nonlinear ground state, which is a stationary solution associated to (1) of

the form u(t,x) = eitQ(x). Above this threshold, finite-time blow-up appears and solutions will in

general exhibit self-similar blow-up with a profile given by Q (up to symmetries). This behavior has

been analyzed in a series of works, see [85, 86, 87] and the references therein. In turn, this also

implies that stationary states of the form eitQ(x) are strongly unstable.

For 2
d 6 σ <

2
(d−2)+

one seeks solutions in u(t, ·) ∈ H1(Rd) as the problem is H1-subcritical (s = 1),

in particular this includes the cubic case in dimensions d = 2, 3. However such a solution may not

exist for all times t ∈ R, due to the possibility of finite-time blow-up in the sense that

lim
t→T−

‖∇u(t, ·)‖L2
x

= +∞

for some T <∞, depending on the initial data. It should be noted that this type of blow-up is not

a feature of the physical phenomena, but rather an indication that the model breaks down.

1.2. Regularizard NLS with off-axis variations. From the point of view of laser physics,

blow-up is usually referred to as optical collapse. However, it is known from physics experiments

that higher order effects, neglected in the derivation of (1), can arrest such a collapse and instead

yield a process called filamentation. The latter corresponds to a complicated interplay between

diffraction, self-focusing, and defocusing mechanisms present at high intensities which allow the

beam to propagate beyond the theoretical predicted blow-up point, see [48].
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In their recent mathematical study [39], Dumas, Lannes and Szeftel derive several new variants of

the NLS from the underlying Maxwell equations of electromagnetism, in an effort to incorporate

additional physical effects not present in (1). One of the new NLS type models derived in [39]

allows for the possibility of an off-axis variation of the group velocity. It takes into account the fact

that self-focusing pulses usually become asymmetric due to variations of the group velocity within

off-axis rays, a phenomenon referred to as space-time focusing in the optics literature, cf. [94].

The simplest mathematical model incorporating off-axis variations is given by

(5) iPε∂tu+ ∆u+ |u|2u = 0,

where Pε ≡ Pε(∇) is a linear, second order, self-adjoint operator such that

〈Pεu, u〉L2 & ‖u‖2L2 + ε2
k∑
j=1
‖νj · ∇u‖2L2 .

Here, 〈·, ·〉L2
x

denotes the usual L2(Rd) inner product, 0 < ε 6 1 is a small (dimensionless) parameter,

and {νj}kj=1 ∈ Rd with k 6 d are some given (linearly independent) vectors representing the off-axis

directions. The case k = d thereby corresponds to a full off-axis dependence of the group velocity,

whereas k < d is referred to as partial off-axis dependence. In the former case, the authors of [39]

have shown that solutions u(t, ·) ∈ H1(Rd) to (5) exist for all t ∈ R, and hence no finite-time blow-up

occurs. However, the situation involving only a partial off-axis dependence is much more involved

and it is an open problem posed in [39] to prove global well-posedness in this case.

In the joint work [5] with P. Anontelli and C. Sparber, we provide an answer to this question. To

this end, we consider the following initial value problem:

(6)

 iPε∂tu+ ∆u+ |u|2σu = 0, t ∈ R, x ∈ Rd,

u(0,x) = u0(x).

From now on, we shall split the spatial coordinates into x = (x, y) ∈ Rd−k ×Rk for k 6 d, with the

understanding that if k = d, we again identify y ≡ x ∈ Rd. In addition, we choose without loss of

generality νj to be the j-th standard basis vectors in Rd. Explicitly, we then have

(7) Pε = 1− ε2∆y = 1− ε2
k∑
j=1

∂2

∂y2
j

, 0 6 k 6 d.

The case k = 0 thereby corresponds to the situation with no off-axis variation, for which we will

recover (as we shall see below) the usual L2 well-posedness theory for the NLS.
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Here and in the following, P sε , for any s ∈ R, is the non-local operator defined through multiplication

in Fourier space using the symbol

P̂ sε (ξ) =
(

1 + ε2
k∑
j=1

ξ2
j

)s
, 0 6 k 6 d,

where ξ = (ξ1, .., ξd) ∈ Rd is the Fourier variable dual to x = (x1, .., xd). Moreover when ε = 1 and

k = d, note we can define the L2-based Sobolev spaces Hs(Rd) for s ∈ R via the norm

‖f‖Hs =
∥∥P s/21 f

∥∥
L2

x
:=
(∫

R2
|P̂ s/21 f̂(ξ)|2 dξ

) 1
2

.

Mathematically, (6) is related to (1), in the same way the Benjamin–Bona–Mahoney equation is

related to the celebrated Korteweg–de Vries equation for shallow, unidirectional water waves in

d = 1, see [15, 18]. The difference when compared to our case is that we are not confined to work

in only one spatial dimension. Thus we can allow for a partial regularization in k < d directions, a

possibility which seems to have not been considered for BBM-type equations in higher dimensions, see

[55]. When comparing (6) to (1), one checks that at least formally, both equations are Hamiltonian

systems which conserve the same energy functional, i.e.,

(8) E(t) = 1
2‖∇u(t, ·)‖2L2

x
− 1

2(σ + 1)‖u(t, ·)‖2σ+2
L2σ+2

x
= E(0).

However, instead of the usual L2 conservation law (2), one finds

(9) ‖P 1/2
ε u(t, ·)‖2L2

x
= ‖P 1/2

ε u0‖2L2
x

=
∫
Rd
|u0|2 + ε2|∇yu0|2 dx

in the case of (6). The identity (9) corresponds to a conservation law for (the square of) the mixed

L2(Rd−kx ;H1(Rky))-norm of u, whenever ε > 0. In order to understand the influence of partial off-axis

variations, it is therefore natural to set up a well-posedness theory in this mixed Sobolev-type space.

With this in mind, we can now state the main results of this work.

THEOREM 1.1 (Partial off-axis variation; subcritical case). Let d > k > 0 and

• either k 6 2 and 0 6 σ < 2
d−k ,

• or k > 2 and 0 6 σ 6 2
d−2 .

Then for any u0 ∈ L2(Rd−kx ;H1(Rky)) there exists a unique global-in-time solution to (6) such that

u ∈ C(Rt;L2(Rd−kx ;H1(Rky))) depends continuously on the initial data and satisfies the conservation

law (9) for all t ∈ R.
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In the result above, we have to exclude the choice k 6 2 and σ = 2
d−k , which corresponds to a critical

case that needs to be dealt with separately (see below). Regardless of that, we see that as soon as

k > 0, i.e., as soon as some partial off-axis variation is present, we can allow for L2-supercritical

powers σ > 2
d and still retain global-in-time solutions u. In other words, no finite-time blow-up

appears in the case with partial off-axis variations, and we can even allow for initial data u0 in a

space slightly larger than H1(Rd).

We now turn to the case of partial off-axis dependence with critical nonlinearity, for which we can

prove an analogue of the well-posedness results given in [27]. Note that for k = 0 (no off-axis

variation) we recover the usual L2-critical case σ = 2
d .

THEOREM 1.2 (Partial off-axis variation; critical case). Let 0 6 k 6 2, and σ = 2
d−k . Then for

any u0 ∈ L2(Rd−kx ;H1(Rky)) there exist times 0 < Tmax, Tmin 6 ∞ and a unique maximal solution

u ∈ C((−Tmin, Tmax);L2(Rd−kx ;H1(Rky))), satisfying (9) for all t ∈ (−Tmin, Tmax). In addition, we

have the following blow-up alternative: If Tmax <∞ if and only if

‖u‖
L

2(d−k+2)
d−k

(
[0,Tmax)×Rd−kx ;H

2
d−k+2 (Rky)

) =∞,

and analogously for Tmin. Finally, if the L2(Rd−kx ;H1(Rky))-norm of the initial datum is sufficiently

small, then the solution u exists for all t ∈ R.

For completeness, we shall also state a result in the case of full off-axis dependence. Note when

k = d, the mixed Sobolev space above simply becomes H1(Rd) as (9) yields an a-priori bound on

the H1-norm of u, ruling out the possibility of finite-time blow-up.

THEOREM 1.3 (Full off-axis variation). Let k = d and 0 6 σ 6 2
(d−2)+

. Then for any u0 ∈ H1(Rd)

there exists a unique global-in-time solution u ∈ C(Rt;H1(Rd)) to (6), depending continuously on

the initial data and satisfying the conservation laws (8) and (9) for all t ∈ R.

This is a slight generalization of the result given in [39], where only the cubic case is treated. Note

that we can allow for σ = 2
(d−2)+

, i.e., the H1-critical power, in contrast to the usual theory of NLS

without off-axis variations, cf. [68].

In order to prove all of these theorems, we shall employ the following change of unknown

(10) v(t,x) := P 1/2
ε u(t,x),
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and rewrite the Cauchy problem (6) in the form

(11)

 i∂tv + P−1
ε ∆v + P

−1/2
ε

(
|P−1/2
ε v|2σP−1/2

ε v
)

= 0, t ∈ R, x ∈ Rd,

v(0,x) = P
1/2
ε u0(x) ≡ v0(x).

Instead of (9), this new equation conserves

‖v(t, ·)‖2L2
x

= ‖P 1/2
ε u(t, ·)‖2L2

x
= ‖P 1/2

ε u0‖2L2
x

= ‖v0‖2L2
x
,

i.e., the usual L2 conservation law. We therefore aim to set-up an L2-based well-posedness theory

for (11), written from Duhamel’s intrgral formulation as

v(t) = eitP
−1
ε ∆v0 + i

∫ t

0
ei(t−s)P

−1
ε ∆P−1/2

ε (|P−1/2
ε v|2P−1/2

ε v)(s) ds.

The advantage of working with v instead of u lies in the fact that it allows us to exploit the

regularizing properties of the operator P−1/2
ε acting on the nonlinearity. Roughly speaking, the

action of P−1/2
ε allows us to gain a derivative in y ∈ Rk. However, we also note that the linear

semi-group

(12) Sε(t) = eitP
−1
ε ∆

is no longer dispersive in the same way as the usual Schrödinger group S0(t) = eit∆. Indeed, we

can only expect “nice” dispersive properties in the spatial directions x ∈ Rd−k, where Pε does not

act, which will play an important role in the derivation of suitable Strichartz estimates. It has been

proved in [19] that in the case of full off-axis dependence, Sε(t) does not admit Strichartz estimates.

Note that this issue is not simply an artifact of our change of unknown u 7→ v, since Sε(t) also

describes the dispersive properties of (the linear part of) the original equation (6) for u.

We shall also present the following result which extends Theorem 1.1.

THEOREM 1.4 (Small data scattering). Let k + 4 > d > k with k = 1, 2 and 2
d−k 6 σ 6 2

d−2 .

There exists λε > 0 such that for every initial data with ‖P 1/2
ε u0‖H1 6 λε there exists a unique

global-in-time solution such that P 1/2
ε u ∈ C(Rt;H1(Rd)). Moreover there exists scattering states u±

satisfying ∥∥P 1/2
ε

(
e−itP

−1
ε ∆u(t)− u±

)∥∥
H1 → 0 as t→ ±∞.

We should also mention that the sign of the nonlinearity (which is focusing) does not play a role in

the proofs given below, and hence all of our results also remain true in the defocusing case.



8

1.3. Two-dimensional derivative NLS with partial off-axis variations. The next work

is devoted to the analysis and numerical simulations for the following class of nonlinear dispersive

equations in two spatial dimensions:

(13) iPε∂tu+ ∆u+ (1 + iδ · ∇)
(
|u|2σu

)
= 0, u|t=0 = u0(x),

where x = (x1, x2) ∈ R2, δ = (δ1, δ2)> ∈ R2 is a given vector with |δ| 6 1, and σ > 0 is a parameter

describing the strength of the nonlinearity. In addition, for 0 < ε 6 1, the linear differential operator

Pε is defined in (7) for k = 1, 2. Indeed, we shall mainly be concerned with (13) rewritten in its

evolutionary form:

(14) i∂tu+ P−1
ε ∆u+ P−1

ε (1 + iδ · ∇)
(
|u|2σu

)
= 0, u|t=0 = u0(x1, x2).

In comparison to (6), i.e. δ1 = δ2 = 0, this new two-dimensional model (14) includes an additional

physical effect. We see here the addition of a nonlinearity of derivative type which incorporates

possible self-steepening of the laser pulse in the direction δ ∈ R2. As in the previous subsection

involving (6), the operator Pε describes off-axis variations of the group velocity of the beam. In

dimension two, the case k = 2 corresponds to a full off-axis dependence, whereas for k = 1 the model

incorporates only a partial off-axis dependence. It is important to note that (14), as well as (6), does

not admit the scaling invariance analogous to (1). Hence, there is no clear indication of subcritical or

supercritical regimes. At least formally though, equation (14) admits the same conservation law (9)

as equation (6). However, the situation is more complicated in the case with only a partial off-axis

variation.

In the case without self-steepening, i.e. when δ1 = δ2 = 0, it is seen from Theorem 1.1 that even

a partial off-axis variation (mediated by Pε with k = 1) can arrest the blow-up for all σ < 2. In

particular, this allows for nonlinearities larger than the L2-critical case, cf. Chapter 2 for more

details. One motivation for the present work is to give numerical evidence for the fact that the

results of Chapter 2 are indeed sharp, and that in dimension two, we can expect finite-time blow-up

as soon as σ > 2.

The aim of Chapter 3 is to extend the analysis of Chapter 2 in the two-dimensional situations

involving self-steepening (δ 6= 0), and to provide further insight into the qualitative interplay between

this effect and the one stemming from Pε. From a mathematical point of view, the addition of a

derivative nonlinearity makes the question of global well-posedness versus finite-time blow-up much

more involved. Derivative NLS and their corresponding ground states are usually studied in one
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spatial dimension only, see [4, 30, 57, 61, 81, 82, 103, 106] and references therein. For σ = 1,

the classical one-dimensional derivative NLS is known to be completely integrable. Furthermore,

there has only very recently been a breakthrough in the proof of global-in-time existence for this

case, see [65, 66]. In contrast to that, [82] gives strong numerical indications for a self-similar

finite-time blow-up in derivative NLS with σ > 1. The blow-up thereby seems to be a result of the

self-steepening effect in the density ρ = |u|2, which generically undergoes a time evolution similar

to a dispersive shock wave formation in Burgers’ equation. To our knowledge, however, no rigorous

proof of this phenomenon is currently available.

In two and higher dimensions, even the local-in-time existence of solutions to derivative NLS type

equations seems to be largely unknown, let alone any further qualitative properties of their solutions.

In view of this, the present work aims to shine some light on the specific variant of two-dimensional

derivative NLS given by (14). Except for its physical significance, this class of models also has the

advantage that the inclusion of (partial) off-axis variations via Pε are expected to have a strong

regularizing effect on the solution, and thus allow for several stable situations without blow-up.

Indeed we shall prove:

THEOREM 1.5. Let Pε = 1 − ε2∂2
x1

, σ = 1 and δ = (δ, 0)> for some δ 6= 0. Then for any

u0 ∈ L2(Rx2 ;H1(Rx1)) there exists a unique global solution u ∈ C(Rt;L2(Rx2 ;H1(Rx1))) to (13).

We also prove global well-posedness in the case of full off-axis dependence, i.e. Pε = 1 − ε2∆, and

general self-steepening with δ 6= 0.

2. Models of quantum physics

2.1. Modulated wave dynamics in honeycomb structures. Two-dimensional honeycomb

lattice structures have attracted considerable interest, both in the physics and applied mathematics

communities, due to the unusual transport properties associated with materials exhibiting this struc-

tural symmetry. This curiosity has been stimulated by the somewhat recent fabrication of graphene

– an allotrope of carbon consisting of a single layer of atoms arranged in a hexagonal lattice. Most

notedly, this material is known to exhibit many unusual thermal and electronic properties, a result

of the dynamics of excited electrons which behave like two–dimensional massless Dirac fermions, cf.

[24]. Honeycomb structures also appear in nonlinear optics, modeling laser beam propagation in

certain types of photonic crystals, see for instance [11, 60].
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To physically motivate the following result, we shall consider the microscopic and non-relativistic

(single electron) model for wave transport in a honeycomb structure subject to self-interaction. In

this way, the wave function Ψ = Ψ(t,x) satisfies the following Schrödinger equation

(15) i∂tΨ = −∆Ψ + Vper(x)Ψ + κ|Ψ|2Ψ, x ∈ R2, t ∈ R,

subject to initial data Ψ0 = Ψ(0,x), where Vper ∈ C∞(R2;R) denotes a smooth potential which

is periodic with respect to a honeycomb lattice Λ, with a corresponding fundamental cell Y ⊂ Λ

(see Section 1 in Chapter 4 below for more details). Hence in order to study wave dynamics in

honeycomb structures, the starting point is a two-dimensional periodic Schrödinger operator

(16) H = −∆ + Vper(x), x ∈ R2.

In [43], C. L. Fefferman and M. I. Weinstein prove that the associated quasi-particle dispersion

relation generically exhibits conical singularities at the points of degeneracy, at the so-called Dirac

points. In turn, this yields effective equations of (massless) Dirac type for wave packets spectrally

localized around these singularities, see [1, 44, 45]. To be more precise, let us recall from Bloch-

Floquet theory that the spectrum σ(H) ⊂ R is given by a union of spectral bands, which is obtained

through the following k–pseudo periodic boundary value problem:

(17)


HΦ(y; k) = µ(k)Φ(y; k), y ∈ Y,

Φ(y + v; k) = eik·vΦ(y; k), v ∈ Λ,

where k ∈ Y ∗ denotes the wave-vector (or quasi-momentum) varying within the Brioullin zone –

the fundamental cell of the dual lattice Λ∗. For each k ∈ Y ∗, this consequently yields a countable

sequence of discrete eigenvalues

µ0(k) 6 µ1(k) 6 µ2(k) 6 ...,

which are ordered including multiplicity and which tend to infinity. The corresponding pseudo-

periodic eigenfunctions Φm(· ; k) associated to the Em-th band are known as Bloch waves, see

Subsection 1.2 of Chapter 4. In the following, suppose there exists an energy band Em such that at

k = K∗, the eigenvalue µ∗ ≡ µ(K∗) has a Dirac point such that µ(k) ∼ |k| near k ∼ K∗ and

Nullspace(H − µ∗) = span {Φ1(x),Φ2(x)} ,

where Φ1,2(x) = Φ1,2(x,K∗), see Subsection 1.3 of Chapter 4.
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Furthermore, let 0 < ε� 1 be a small (dimensionless) parameter, and assume that initially Ψ0 = Ψε
0

is a wave packet, spectrally concentrated around the Dirac point, i.e.,

Ψε
0(x) = εα0,1(εx)Φ1(x) + εα0,2(εx)Φ2(x)

where α0,1, α0,2 ∈ S(R2;C) are some slowly varying and rapidly decaying amplitudes. The overall

factor ε is thereby introduced to ensure that ‖Ψε
0‖L2 = 1. It is proved in [45] that the corresponding

solution Ψε(t, ·) to the linear part of the Schrödinger equation (15) satisfies,

Ψε(t,x) ∼
ε→0

εe−iµ∗t
(
α1(εt, εx)Φ1(x) + α2(εt, εx)Φ2(x)

)
+O(ε),

provided α1,2 satisfy the following massless Dirac system:

(18)


∂tα1 + λ#

(
∂x1 + i∂x2

)
α2 = 0, α1|t=0 = α0,1,

∂tα2 + λ#
(
∂x1 − i∂x2

)
α1 = 0, α2|t=0 = α0,2,

where 0 6= λ# ∈ C is some constant depending on Bloch waves Φ1,2. This approximation is shown

to hold up to small errors in Hs(R2), over time intervals of order T ∼ O(ε−2+δ), for δ > 0. The

Dirac system (18) consequently describes the dynamics of the slowly varying amplitudes on large

time scales. Of course, since the problem is linear, solutions of any size (with respect to ε) will

satisfy the same asymptotic behavior.

From the author’s joint work with C. Sparber in [9], our aim is to generalize this type of result to

the case of weakly nonlinear wave packets. Formally, this nonlinear problem was described in [44],

but without providing any rigorous error estimates. Similarly, in [1, 2] the authors derive several

nonlinear Dirac type models by formal multi-scale expansions in the case of deformed and shallow

honeycomb lattice structures, respectively. In the latter case, the size of the lattice potential serves

as the small parameter in the expansion. In contrast, we shall not assume that the periodic potential

Vper is small, but rather keep it of a fixed size of order O(1) in L∞(R2) and independent of epsilon.

However, as always in nonlinear problems, the size of the solution becomes important, depending on

the power of the nonlinearity. We restrict ourselves to the case of a cubic nonlinearity, since this is

the most important example within the context of nonlinear wave propagation with self-interaction

(a generalization to other power law nonlinearities is straightforward). We shall also remark on the

case of Hartree nonlinearities in Section 5 below, as they are more natural in the description of the

mean-field dynamics of electrons in graphene [59, 60].
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To this end, we find it more convenient to put ourselves in a macroscopic reference frame, which

means that we rescale (15) by the change of coordinates

t 7→ t̃ = εt, x 7→ x̃ = εx, Ψε(t̃, x̃) = εΨ(εt, εx),

with ‖Ψε
0(t, ·)‖L2 = 1. We consequently consider the following semi-classical nonlinear Schrödinger

equation, after having dropped the tildes on the variables, to give

(19) iε∂tΨε = −ε2∆Ψε + Vper

(x
ε

)
Ψε + κε|Ψε|2Ψε, Ψε

t=0 = Ψε
0(x).

Notice that in this reference frame the honeycomb lattice potential Vper becomes highly oscillatory.

Furthermore, the nonlinear coupling constant κε ∈ R, is assumed to be of the form

κε = εκ, with κ = ±1.

As will become clear, this size is critical with respect to our asymptotic expansion, in the sense that

the modulated amplitudes α1,2 will satisfy a nonlinear analog of (18). It should be noted that for

values smaller than κε, the nonlinear effects will not be present in leading order as ε→ 0. Whereas

for κε larger than O(ε), we do not expect the Dirac model to be valid any longer. Alternatively,

this can be reformulated as saying that we consider asymptotically small solutions of critical size

O(
√
ε) in L∞ to (19) but with fixed coupling strength κ = O(1). The advantage of our scaling is

that it yields an asymptotic description for solutions of order O(1) in L∞ on macroscopic space-

time scales, in contrast to the setting of [1, 44], in which the size of the solution varies as ε → 0.

Another advantage is that this scaling puts us firmly in the regime of weakly nonlinear, semi-classical

NLS with highly oscillatory periodic potentials, which have been extensively studied in the works

[16, 20, 21, 22, 53], albeit not for the case of honeycomb lattices. From the mathematical point

of view, the present work will follow the ideas presented in [53] and the strategy will be adapted to

the current situation.

Our main result, described in more detail in Section 2 of Chapter 4, rigorously shows that solutions

to (19) with initial data Ψε
0 spectrally localized around a Dirac point, can be approximated via

(20) Ψε(t,x) ∼
ε→0

Ψε
app(t,x) = e−iµ∗t/ε

(
α1(t,x)Φ1

(x
ε

)
+ α2(t,x)Φ2

(x
ε

))
+O(ε),
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where the amplitudes α1,2 solve the following nonlinear Dirac system

(21)


∂tα1 + λ#

(
∂x1 + i∂x2

)
α2 = −iκ

(
b1|α1|2 + 2b2|α2|2

)
α1,

∂tα2 + λ#
(
∂x1 − i∂x2

)
α1 = −iκ

(
b1|α2|2 + 2b2|α1|2

)
α2,

subject to initial data α0,1(x), α0,2(x), respectively, and with coefficients b1,2 > 0 given by

b1 =
∫
Y

|Φ1(y)|4 dy =
∫
Y

|Φ2(y)|4 dy, b2 =
∫
Y

|Φ1(y)|2|Φ2(y)|2 dy.

We now state a simplified version of our main result, i.e. Theorem 4.1, where it should be noted

that this approximation result holds on the existence time of the nonlinear Dirac system (21).

THEOREM 1.6. Let Vper be a smooth honeycomb-lattice potential and α ∈ C([0, T ), Hs(R2)) be

the solution to (21) for some s > 4. Assume that the initial data Ψε
0 of (19) satisfies

∥∥∥Ψε
0(·)−

(
α0,1(·)Φ1

( ·
ε

)
+ α0,2(·)Φ2

( ·
ε

)
+ εu1

(
0, ·, ·

ε

))∥∥∥
L2
. ε2,

where u1 is a corrector such that 〈Φ1,2, u1〉L2(Y ) = 0. Then, for any T∗ ∈ [0, T ) there exists an

ε0 = ε0(T∗) ∈ (0, 1), such that for all ε ∈ (0, ε0), the solution Ψε ∈ C([0, T∗);Hs
ε (R2)) of (19) exists

and moreover

sup
06t6T∗

∥∥Ψε(t, ·)−Ψε
app(t, ·)

∥∥
L2 . ε

2.

In order to prove this result, we first derive sufficient regularity estimates for the approximate

solution Ψε
app and the resulting remainder of order O(ε2), see Proposition 4.10. These estimates

then allow us to perform energy estimates for the difference Ψε −Ψε
app. Using a Moser-type lemma

(Lemma 4.13) in combination with a continuity argument then allows us to control the growth of

the error under the nonlinear time evolution.

In terms of the unscaled variables used in [44, 45], our approximation result is seen to hold on

times of order O(ε−1), which is considerably shorter than the time-scale O(ε−2+δ) obtained in

[44]. However, this drawback is expected due to the influence of our nonlinear perturbation and

consistent with earlier results for linear semi-classical Schrödinger equations with periodic potentials

and additional, slowly varying non-periodic perturbations U = U(t, x), see [16]. In the case of the

latter, one also expects the appearance of purely geometric effects, such as the celebrated Berry phase

term (cf. [21, 20]). It would certainly be interesting to understand the corresponding Dirac-type

dynamics already on the linear level, when such geometric effects are present (but this is beyond

the scope of the current work). We finally note that other examples of coupled mode equations
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have been derived in [36, 37, 56, 91, 92]. However, in these models the resulting mode equations

are of transport type, and any coupling between the amplitudes stems purely from the nonlinearity,

in contrast to the Dirac model. We finally remark that discrete mode equations, valid in the tight

binding regime, have recently been studied in [2, 42].

2.2. Orbital stability and instability of rotating Bose-Einstein Gases. In the joint

work [8] with I. Nenciu and C. Sparber, we consider the dynamics of (harmonically) trapped Bose-

Einstein condensates (BEC), subject to an external rotating force. Because of their ability to display

quantum effects at the macroscopic scale, BEC have become an important subject of research, both

experimentally and theoretically. In particular, the expression of quantum vortices in rapidly rotating

BEC has been an ongoing topic of interest over the last few decades, see, e.g., [3, 13, 23, 33, 34,

47, 96] and the references therein. It is well-known that in the mean-field regime, BEC can be

accurately described by the celebrated Gross-Pitaevskii equation (GP) for ψ, the macroscopic wave

function of the condensate, see [80, 97, 98]. In dimensionless units, the GP equation with general

nonlinearity reads

(22) i∂tψ = −1
2∆ψ + V (x)ψ + a|ψ|2σψ − (Ω · L)ψ , ψ|t=0 = ψ0(x) .

Here, a ∈ R, σ > 0 and (t,x) ∈ R× Rd with d = 2, or 3, respectively. The former situation thereby

corresponds to the case of an effective two-dimensional BEC, obtained via strong confining forces,

see [84] for more details. The external potential V (x) ∈ R is assumed to be harmonic, i.e.,

(23) V (x) = 1
2

d∑
j=1

ω2
jx

2
j ,

where the parameters ωj ∈ R \ {0} represent the respective trapping frequencies in each spatial

direction. As we shall see, the smallest trapping frequency denoted by ω ≡ min
j=1,...,d

{ωj} will play a

particular role in our analysis. We shall further assume that the BEC is subject to a rotating force

along a given rotation axis Ω ∈ R3 and denote by

L = −ix ∧∇,

the quantum mechanical angular momentum operator. Note that in dimension d = 2, we always

have

(24) Ω · L = −i|Ω|
(
x1∂x2 − x2∂x1

)
,
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corresponding to the case where Ω = (0, 0, |Ω|) ∈ R3. The nonlinearity in (22) describes the mean-

field self-interaction of the condensate particles. The physically most relevant case is given by a cubic

nonlinearity, i.e. σ = 1, but for the sake of generality we shall in the following allow for more general

σ > 0. We shall also allow for both attractive a < 0 and repulsive a > 0 interactions, satisfying

Assumption 1 below. Vortices are generally believed to be unstable in the former case (see, e.g.,

[23, 32, 96]), while they are known to form stable lattice configurations in the latter [3, 33, 47].

In this work, we shall not be interested in the dynamical features of individual vortices, but rather

study bulk properties of the condensate, as described by (22). To this end, we recall that the natural

energy space associated to (22) is given by

Σ = {u ∈ H1(Rd) : |x|u ∈ L2(Rd)},

equipped with the norm

‖u‖2Σ = ‖u‖2L2 + ‖∇u‖2L2 + ‖|x|u‖2L2 .

We also impose the following subcriticality condition on the nonlinearity:

ASSUMPTION 1. One of the following holds:

• a > 0 (defocusing) and 0 < σ < 2
(d−2)+

, or

• a < 0 (focusing) and 0 < σ < 2
d .

Under these hypotheses, the existence of a unique global-in-time solution ψ ∈ C(Rt; Σ) to (22) has

been proved in [6]. In particular, the restriction σ < 2
d in the focusing case (a < 0) ensures that no

finite-time blow-up can occur. In addition, the global solution ψ(t, ·) ∈ Σ is known to conserve the

total mass, given by

N(ψ(t, ·)) =
∫
Rd
|ψ(t,x)|2 dx = N(ψ0) ∀ t ∈ R,

as well as the associated Gross-Pitaevskii energy

EΩ(ψ(t, ·)) =
∫
Rd

1
2 |∇ψ|

2 + V (x)|ψ|2 + a

σ + 1 |ψ|
2σ+2 − ψ(Ω · L)ψ dx = EΩ(ψ0), ∀ t ∈ R

Note that the last term within EΩ is sign indefinite.

In the following, we shall focus on various stability and/or instability properties of solutions ψ to

(22). Our first task will be to study the orbital stability of nonlinear ground states. These are
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solutions associated to (22) given by

ψ(t,x) = e−iµtϕ(x), µ ∈ R,

where ϕ is obtained as a constrained minimizer of the energy functional EΩ(ϕ). In [64, 97, 98], the

onset of vortex nucleation is linked to a symmetry breaking phenomenon for minimizers of EΩ(ϕ),

which is proved to happen for |Ω| above a certain critical speed Ωcrit > 0, even in the case of radially

symmetric traps V with ω1 = ω2 = ω3 (see Section 2 of Chapter 5 for more details). In our first

main result below, we shall prove that under Assumption 1 and for |Ω| < ω, the set of all energy

minimizers is indeed orbitally stable under the time evolution of (22).

THEOREM 1.7. Let |Ω| < ω = min{ωj} and suppose the nonlinearity satisfies Assumption 1.

Then, for any given mass N > 0, there exists at least one energy minimizer ϕ 6= 0, such that the

associated set of stationary solutions

GΩ = {ϕ ∈ Σ : ϕ an energy minimizer with mass N},

is orbitally stable in Σ. More precisely, for all ε > 0 there exists δ = δ(ε) > 0 such that if ψ0 ∈ Σ

satisfies

inf
ϕ
‖ψ0(·)− ϕ(·)‖Σ < δ,

then the solution ψ ∈ C(Rt,Σ) to (137) with ψ(0,x) = ψ0 ∈ Σ satisfies

sup
t∈R

inf
ϕ
‖ψ(t, ·)− ϕ(·)‖Σ < ε.

In turn, this will allow us to conclude several new results of orbital stability for a class of rotating

solutions to nonlinear Schrödinger equations without the angular momentum term, see for instance

Corollary 5.6 and 5.7.

The question of whether the condition |Ω| < ω is only needed for the existence of ground states, or

also has a nontrivial effect in the solution of the time-dependent equation (22), then leads us to our

second line of investigation. A theorem based on the Ehrenfest equations associated to (22), i.e. the

quantum mechanical mean position and momentum

X(t) := 〈ψ(t, ·),xψ(t, ·)〉L2 and P(t) := −i〈ψ(t, ·),∇ψ(t, ·)〉L2 ,

solve a coupled system of ordinary differential equations, shows that in the case of non-istotropic

potentials V , a resonance-type phenomenon can occur for |Ω| > ω.
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THEOREM 1.8. Suppose the nonlinearity satisfies Assumption 1 and Ω = (0, 0, |Ω|)>. If the

following condition holds

ω1 6= ω2 and min{ω1, ω2} 6 |Ω| 6 max{ω1, ω2},

and if ψ0 ∈ Σ is such that the associated averages (X0,P0) 6∈ H = H(ω1, . . . , ωd,Ω) a certain linear

subspace of R2d. Then the solution ψ ∈ C(Rt; Σ) satisfies

lim
t→+∞

‖ψ(t, ·)‖Σ = +∞, or lim
t→−∞

‖ψ(t, ·)‖Σ = +∞.

This leads to solutions ψ whose Σ-norm is growing (forward or backward) in time with a rate that

can even be exponential, depending on the choice of Ω and ωj . Physically, this can be interpreted

as a manifestation of non-trapped solutions of (22) whose mass is pushed towards spatial infinity.



CHAPTER 2

Regularizing nonlinear Schrödinger equations through

partial off-axis variations 1

The outline of Chapter 2 is organized as follows. In the first section we introduce some notations

and definitions, which shall hold throughout the entire thesis when applicable. Then in Section 2, we

shall study the dispersive properties of Sε(t) and derive appropriate Strichartz estimates in the case

of partial off-axis dispersion. These will then be used in Section 3 to prove global well-posedness of

(11) in the subcritical case. The critical case, and the case of full off-axis dispersion, will be treated

in Section 4. In addition, included in Section 5 we include an extension to the well-posedness theory

in [5] and prove small data scattering. Lastly, we present an approximation result in Section 6

showing that smooth global solutions to (11) converge to solutions to (1) as the parameter epsilon

goes to zero.

1. Basic notations and definitions

As mentioned in the Introduction, we shall denote x = (x, y) ∈ Rd−k × Rk with the understanding

that if either k = 0 (no off-axis dependence) or if k = d (full off-axis dependence), the variable y

does not appear. Due to the ansiotropic nature of the our problem, we will make use of the mixed

Lebesgue spaces denoted by Lp(Rd−kx ;Lq(Rky)), which will be shortly denoted by LpxLqy. These spaces

are equipped with the following norms:

‖f‖LpxLqy :=
(∫

Rd−k

(∫
Rk
|f(x, y)|q dy

) p
q

dx

) 1
p

.

When p = q, we shall denote the usual Lebesgue space Lp(Rd) by Lpx = LpxL
p
y. Note that we shall

only employ these subscript notations in Chapter 2 and 3.

We denote the usual Fourier transform of a function f = f(x, y) as

(Ff)(ξ, η) ≡ f̂(ξ, η) = 1
(2π)d/2

∫∫
Rd
f(x, y)e−i(x·ξ+y·η) dx dy,

1This Chapter is excerpted from the following work:
[5] P. Antonelli, J. Arbunich and C. Sparber. Regularizing nonlinear Schrödinger equations through partial off-axis
variations. SIAM J. Math. Anal. 51 (2019), no. 1, pp. 110–130. Copyright c©2019 Society for Industrial and Applied
Mathematics. Reprinted with permission. All rights reserved.
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whereas the partial Fourier transform with respect to the y-variable only will be denoted by

(Fy→ηf)(x, η) ≡ f̃(x, η) = 1
(2π)k/2

∫
Rk
f(x, y)e−iy·η dy.

Analogously, we denote the partial Fourier transform in x by Fx→ξ.

By recalling the (family of) differential operators Pε = 1 − ε2∆y, defined in (7) with 0 < ε 6 1,

we shall introduce the class of mixed Sobolev-type spaces Lp(Rd−kx ;Hs(Rky)) of order s ∈ R, via the

following norm

‖f‖LpxHsy :=
∥∥P s/21 f

∥∥
LpxL2

y
≡ ‖(1 + |η|2)s/2f̃‖LpxL2

η
.

Obviously, the Fourier symbol corresponding to P 1/2
1 is nothing but the well-known Japanese bracket

〈η〉 = (1 + |η|2)1/2 used in the definition of Hs. Incorporating the small parameter 0 < ε 6 1 comes

at the expense of some (possibly) ε-dependent constants. Indeed, for s > 0, we have the following

inequalities

(25) εs‖f‖Hs 6 ‖P s/2ε f‖L2 6 ‖f‖Hs ,

(26) ‖f‖H−s 6 ‖P−s/2ε f‖L2 6 ε−s‖f‖H−s .

From now on, we shall write a . b whenever there exists a universal constant C > 0, independent

of ε, such that a 6 Cb. In general this constant C may change from inequality to inequality.

Furthermore, for any time interval I ⊂ R we will also make use of the mixed space-time spaces

Lq(It, Lp(Rd−kx ;Hs(Rky))) briefly denoted by LqtL
p
xH

s
y(I), or simply LqtL

p
xH

s
y , whenever the time

interval is clear. These spaces are equipped with the norm

(27) ‖F‖LqtLpxHsy :=
(∫

I

‖F (t)‖q
LpxHsy

dt

) 1
q

.

Associated with these spaces is the following notion of Strichartz admissibility.

DEFINITION 2.1. Let d > k > 0 be given. We say that the pair (q, r) is admissible if 2 6 r 6

∞, 2 6 q 6∞, and
2
q

= (d− k)
(

1
2 −

1
r

)
=: δ(r)

where we omit the endpoint case, i.e., (q, r) 6= (2, 2(d−k)
(d−k−2)+

) for d− k > 2.

Clearly, if k = 0, this is just the usual admissibility condition for nonendpoint Strichartz pairs

corresponding to the Schrödinger group S0(t) = eit∆ acting on Rd.
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2. Dispersive properties with partial off-axis variation

In this section, we shall derive Strichartz estimates associated to Sε(t) = eitP
−1
ε ∆ in the case of

partial off-axis variation, i.e. d > k. To this end we first derive a set of basic dispersion estimates

associated to this linear propagator.

2.1. Dispersion estimate for Sε(t). Recall the notation δ(r) > 0 introduced in Definition

2.1. Then we shall prove the following set of dispersive estimates.

PROPOSITION 2.2. Let r ∈ [2,∞], and t 6= 0. Then, for any ε > 0, the group of L2-unitary

operators Sε(t) = eitP
−1
ε ∆ continuously maps

Lr
′
(Rd−kx ;Hδ(r)(Rky))→ Lr(Rd−kx ;H−δ(r)(Rky)), for 1

r
+ 1
r′

= 1,

and it holds that

(28) ‖Sε(t)f‖LrxH−δ(r)y
6 |4πt|−δ(r)‖f‖

Lr′x H
δ(r)
y

.

Proof. The estimate (28) will in itself be a consequence of the following inequality, which is

more directly linked to the explicit form of our propagator Sε(t) = eitP
−1
ε ∆:

(29) ‖Sε(t)f‖LrxL2
y
6 |4πt|−δ(r)‖P δ(r)ε f‖Lr′x L2

y
.

Indeed, if we replace f by P−
δ(r)

2
ε f in (29) and keep in mind the basic estimates (26) and (25), we

obtain (28) through the string of inequalities

‖Sε(t)f‖LrxH−δ(r)y
6 ‖Sε(t)P

− δ(r)2
ε f‖LrxL2

y
6 |4πt|−δ(r)‖P

δ(r)
2

ε f‖Lr′x L2
y
6 |4πt|−δ(r)‖f‖

Lr′x H
δ(r)
y

,

which also ensures the continuity of Sε(t). We also point out that there are no ε-dependent constants

involved in any of these inequalities.

In order to prove (29), we first note that by density it is enough to show this for f ∈ S(Rd), the

space of smooth and rapidly decaying functions. Moreover, we shall argue by duality and rather

prove that for f, g ∈ S(Rd),

(30) |〈Sε(t)f, g〉L2
x
| 6 |4πt|−δ(r)‖P δ(r)ε f‖Lr′x L2

y
‖g‖Lr′x L2

y
.
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In the trivial case r = 2, δ(r) = 0, this estimate directly follows by Cauchy–Schwarz and the fact

that Sε(t) is unitary on L2:

(31) |〈Sε(t)f, g〉L2
x
| 6 ‖Sε(t)f‖L2

x
‖g‖L2

x
= ‖f‖L2

x
‖g‖L2

x
.

Next, we treat the case r =∞, δ(r) = d−k
2 , i.e., we want to show that for f, g ∈ S(Rd) it holds that

(32) |〈Sε(t)f, g〉L2
x
| 6 |4πt|−

d−k
2 ‖P

d−k
2

ε f‖L1
xL

2
y
‖g‖L1

xL
2
y
.

To this end, we use Plancherel’s identity to write

〈Sε(t)f, g〉L2
x

=
〈 ̂(Sε(t)f), ĝ

〉
L2

x
=

∫∫
Rd−k×Rk

e
− i(|η|

2+|ξ|2)t
1+ε2|η|2 f̂(ξ, η)ĝ(ξ, η) dξ dη

=
∫
Rk

e
− i|η|2t

1+ε2|η|2
( ∫
Rd−k

e
− i|ξ|2t

1+ε2|η|2 f̂(ξ, η)ĝ(ξ, η) dξ
)
dη.

Here, we first compute the inner integral by writing out the partial Fourier transform in ξ on ĝ to

obtain

(33)

∫
Rd−k

e
− i|ξ|2t

1+ε2|η|2 f̂(ξ, η)ĝ(ξ, η) dξ = 1
(2π) d−k2

∫
Rd−k

e
− i|ξ|2t

1+ε2|η|2 f̂(ξ, η)
∫

Rd−k

eix·ξ g̃(x, η) dxdξ

=
∫

Rd−k

g̃(x, η)
(

1
(2π) d−k2

∫
Rd−k

eix·ξe
− i|ξ|2t

1+ε2|η|2 f̂(ξ, η) dξ
)
dx

=
∫

Rd−k

g̃(x, η)F−1
ξ→x

(
e
− i|·|2t

1+ε2|η|2 f̂(·, η)
)

(x)dx,

where we have used Fubini’s theorem to change the order of integration. We now recall that for

a ∈ R,

F−1
ξ→x

(
e−

i|·|2t
a

)
(z) =

( a

2it

) d−k
2
e
ia|z|2

4t .

By setting a = 1 + ε2|η|2, we can express the integrand in the last line of (33) as

F−1
ξ→x

(
e
− i|·|2t

1+ε2|η|2 f̂(·, η)
)

(x) = 1
(2π) d−k2

(
F−1
ξ→x

(
e
− i|·|2t

1+ε2|η|2
)
∗ f̃(·, η)

)
(x)

=
(1 + ε2|η|2

4πit

) d−k
2
∫

Rd−k

e
i(1+ε2|η|2)|x−z|2

4t f̃(z, η) dz.(34)

Now it is clear by (33) and (34) that

(4πit)
d−k

2 〈Sε(t)f, g〉L2
x

=
∫∫∫

Rk×(Rd−k)2

(1 + ε2|η|2)
d−k

2 e
− i|η|2t

1+ε2|η|2 e
i(1+ε2|η|2)|x−z|2

4t f̃(z, η)g̃(x, η) dz dx dη.



22

This implies the following estimate:

|〈Sε(t)f, g〉L2
x
| 6 |4πt|−

d−k
2

∫
(Rd−k)2

(∫
Rk

(1 + ε2|η|2)
d−k

2 |f̃(z, η)||g̃(x, η)| dη
)
dx dz.

A Cauchy–Schwarz inequality in η, followed by Plancherel’s identity, then gives

|〈Sε(t)f, g〉L2
x
| 6 |4πt|−

d−k
2

∫∫
(Rd−k)2

(
‖P̂

d−k
2

ε f̃(z, ·)‖L2
η
‖g̃(x, ·)‖L2

η

)
dx dz

6 |4πt|−
d−k

2 ‖P
d−k

2
ε f‖L1

xL
2
y
‖g‖L1

xL
2
y
,

which is the desired estimate (32).

Notice that by replacing f 7→ |4πt|
(d−k)

2 P
− d−k2
ε f in (32), this yields that the operator

(35) |4πt|
d−k

2 Sε(t)P
− d−k2
ε : L1

xL
2
y → L∞x L

2
y is bounded,

with norm

‖|4πt|
d−k

2 Sε(t)P
− d−k2
ε ‖ 6 1.

We have thus proved (29) in the two endpoint cases r = 2 and r = ∞. The intermediate cases

of (29) then follow by Stein’s interpolation theorem [99, 100]. To this end, we consider, for any

z ∈ Ω := {0 6 Rez 6 1} ⊂ C, the family of interpolating operators Tz given by

F(Tzf)(ξ, η) = |4πt|
(d−k)z

2 (1 + ε2|η|2)−
d−k

2 ze−it(1+ε2|η|2)−1(|ξ|2+|η|2)f̂(ξ, η).

Clearly, for z = 0, this is nothing but the Fourier transform of Sε(t), which we know to be bounded

L2 → L2 in view of (31). For z = 1, we obtain the second endpoint case given by (35). In addition,

it is straightforward to check that {Tz}z∈Ω is an admissible family of linear operators satisfying the

hypotheses of Theorem V.4.1 in [100]. The theorem then requires us to bound Tz at the edges of

the strip Ω: For µ ∈ R, the following estimate for z = 0 + iµ uses (31) and Plancherel in y, to give

|〈T0+iµf, g〉L2
x
| = |〈S̃ε(t)

(
(|4πt|−1P̂ε)

−i(d−k)µ
2 f̃

)
, g̃〉L2 |

= ‖e
−i(d−k)µ

2 ln(|4πt|−1P̂ε)f̃‖L2
xL

2
η
‖g‖L2 = ‖f‖L2

xL
2
y
‖g‖L2

xL
2
y
.

The estimate for z = 1 + iµ follows similarly, but now using (32), so that

|〈T1+iµf, g〉L2
x
| = |4πt|

(d−k)
2 |〈S̃ε(t)

(
(|4πt|−1P̂ε)−i

(d−k)µ
2 P̂

− (d−k)
2

ε f̃
)
, g̃〉L2 |

6 ‖P̂
(d−k)

2
ε e

−i(d−k)µ
2 ln(|4πt|−1P̂ε)P̂

− (d−k)
2

ε f̃‖L1
xL

2
η
‖g̃‖L1

xL
2
η
6 ‖f‖L1

xL
2
y
‖g‖L1

xL
2
y
.
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Noting that the constants produce no growth in z ∈ C, then the quoted version of Stein interpolation

in [100] implies for 0 6 θ = 1− 2
r 6 1 and r ∈ [2,∞] the following estimate

|4πt|δ(r)‖P−δ(r)ε f‖LrxL2
y

= ‖Tθf‖LrxL2
y
6 ‖f‖Lr′x L2

y
,

which by replacing f by P δ(r)ε f and dividing the above inequality by |4πt|δ(r) gives (30). Again, we

note that there are no ε-dependent constants arising from this interpolation step. Moreover, since

the proof of this interpolation theorem exploits a density argument using simple functions, the result

directly applies also to the mixed spaces LrxL2
y under consideration. �

REMARK 2.3. Note that, as ε→ 0, the estimate (29) converges to

∥∥S0(t)f
∥∥
LrxL

2
y
6 |4πt|−(d−k)( 1

2−
1
r )∥∥f∥∥

Lr′x L
2
y
,

which is similar to the usual dispersion estimate for the Schrödinger group in dimension d− k ∈ N

and again reflects the fact that we don’t obtain dispersion in the y-coordinates when ε > 0. Deriving

estimate (28) from (29) has the advantage that we can use standard Sobolev spaces Hs, independent

of ε, to measure the regularity in y (instead of employing the operator Pε). The price to pay is

that (28) no longer converges to the classical dispersion estimate in the limit ε → 0 (except in

the case r = 2 for which δ(r) = 0). But since in this thesis we are not concerned with the limit

ε → 0 involving directly these estimates, then we shall ignore this issue in the following and base

our Strichartz estimates on (28).

2.2. Strichartz estimates. Exploiting the dispersion estimate (28), we shall now prove space-

time Strichartz estimates associated to Sε(t). These estimates also follow from abstract arguments

as in [10, 54, 67]. For the sake of concreteness and due to our somewhat unusual function spaces,

we shall give their proof in the nonendpoint case.

PROPOSITION 2.4 (Strichartz estimates). Let Sε(t) = eitP
−1
ε ∆ and (q, r), (γ, ρ) be two arbitrary

admissible Strichartz pairs with 0 < δ(r), δ(ρ) < 1. Then for any time interval I, there exist

constants C1, C2 > 0, independent of ε and I, such that

(36) ‖Sε(·)f‖LqtLrxH−δ(r)y
6 C1‖f‖L2

x
,

as well as

(37)
∥∥∥∥∫ t

0
Sε(· − s)F (s) ds

∥∥∥∥
LqtL

r
xH
−δ(r)
y

6 C2‖F‖Lγ′t Lρ
′
x H

δ(ρ)
y

.
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REMARK 2.5. The case of endpoint Strichartz estimates, i.e., (q, r) =
(
2, 2(d−k)

(d−k−2)+

)
for d−k > 2,

in principle could also be dealt with as in [67], but since we never make use of it in our analysis we

do not pursue this issue any further.

Proof. We start by first noticing that (36) is equivalent to saying that the map f 7→ Sε(t)f is

bounded as an operator L2
x → LqtL

r
xH
−δ(r)
y . Let us define the operator Tε : Lq

′

t L
r′

x H
δ(r)
y → L2

x by

TεF =
∫
R
Sε(−s)F (s) ds

and note that its formal adjoint T ∗ε is the map f 7→ Sε(t)f . Next, we shall show that

T ∗ε TεF (t) =
∫
R
Sε(t− s)F (s) ds

is bounded as an operator Lq
′

t L
r′

x H
δ(r)
y → LqtL

r
xH
−δ(r)
y .

By the generalized Minkowski’s inequality we have∥∥∥∥∫
R
Sε(· − s)F (s) ds

∥∥∥∥
LqtL

r
xH
−δ(r)
y

6

∥∥∥∥∫
R
‖Sε(· − s)F (s)‖

LrxH
−δ(r)
y

ds

∥∥∥∥
Lqt

,

and applying the dispersion estimate (28), it follows that

‖Sε(t− s)F (s)‖
LrxH

−δ(r)
y

6 |4π(t− s)|−δ(r)‖F (s)‖
Lr′x H

δ(r)
y

.

Hence recalling that δ(r) = 2
q < 1, we see it is then possible to apply the Hardy–Littlewood–Sobolev

inequality in order to obtain∥∥∥∥∫
R
Sε(· − s)F (s) ds

∥∥∥∥
LqtL

r
xH
−δ(r)
y

6

∥∥∥∥∫
R
|4π(· − s)|−δ(r)‖F (s)‖

Lr′x H
δ(r)
y

ds

∥∥∥∥
Lqt

6 C‖F‖
Lq
′
t L

r′
x H

δ(r)
y

.

We thus have proven that the operator T ∗ε Tε : Lq
′

t L
r′

x H
δ(r)
y → LqtL

r
xH
−δ(r)
y is bounded. A standard

functional analysis result for operators on Banach spaces (see [10]) states that

‖Tε‖2L(Lq
′
t L

r′
x H

δ(r)
y ;L2

x)
= ‖T ∗ε ‖2L(L2

x:LqtLrxH
−δ(r)
y )

= ‖T ∗ε Tε‖L(Lq
′
t L

r′
x H

δ(r)
y ;LqtLrxH

−δ(r)
y ).

This consequently implies that both

Tε : Lq
′

t L
r′

x H
δ(r)
y → L2

x and T ∗ε : L2
x → LqtL

r
xH
−δ(r)
y

are bounded with norms independent of epsilon. In particular, the estimate (36) is proved. Further-

more, we note that this holds for any nonendpoint admissible pair (q, r).
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Now, choose any arbitrary (nonendpoint) admissible pairs (γ, ρ) and (q, r) such that

Tε : Lγ
′

t L
ρ′

x H
δ(ρ)
y → L2

x and T ∗ε : L2
x → LqtL

r
xH
−δ(r)
y .

By combining the estimates for the operators Tε, T ∗ε , we then infer that

T ∗ε Tε : Lγ
′

t L
ρ′

x H
δ(ρ)
y → LqtL

r
xH
−δ(r)
y

is bounded, i.e., ∥∥∥∥∫
R
Sε(· − s)F (s) ds

∥∥∥∥
LqtL

r
xH
−δ(r)
y

6 C‖F‖
Lγ
′
t L

ρ′
x H

δ(ρ)
y

,

for any arbitrary (q, r), (γ, ρ). We can then invoke Theorem 1.2 from the paper [29] by Christ and

Kiselev to conclude the retarded estimate∥∥∥∥∫
s<t

Sε(· − s)F (s) ds
∥∥∥∥
LqtL

r
xH
−δ(r)
y

6 C‖F‖
Lγ
′
t L

ρ′
x H

δ(ρ)
y

.

In summary, this proves the desired result. �

3. The Cauchy problem for partial off-axis variation in the subcritical case

In this section we shall give the proof of Theorem 1.1 by proving a global L2-based well-posedness

result for (11) with subcritical nonlinearities. In a second step we shall establish the additional

H1-regularity of the solution.

3.1. Well-posedness in terms of v. We rewrite (11) using Duhamel’s formulation, i.e.,

(38) v(t) = Sε(t)v0 + i

∫ t

0
Sε(t− s)P−1/2

ε (|P−1/2
ε v|2σP−1/2

ε v)(s) ds =: Φ(v)(t).

For the sake of brevity, we shall also write

Φ(v)(t) = Sε(t)v0 +N (v)(t)

and denote

(39) N (v)(t) := i

∫ t

0
Sε(t− s)P−1/2

ε g(P−1/2
ε v(s)) ds,

where g(z) = |z|2σz with σ > 0. Of course, the basic idea is to prove that v 7→ Φ(v) is a contraction

mapping in a suitable Banach space. To this end, the following lemma is key.
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LEMMA 2.6. Let d− k > 0. Fix T > 0 and choose the admissible pair

(γ, ρ) =
(

4(σ + 1)
(d− k)σ , 2(σ + 1)

)
.

Then, in the space-time slab Rd × [0, T ] the inequality

‖N (v)−N (v′)‖
Lγt L

ρ
xH
−δ(ρ)
y

. ε−2(σ+1)T 1− (d−k)σ
2

(
‖v‖2σ

Lγt L
ρ
xH
−δ(ρ)
y

+ ‖v′‖2σ
Lγt L

ρ
xH
−δ(ρ)
y

)
‖v − v′‖

Lγt L
ρ
xH
−δ(ρ)
y

,

holds, provided 0 < σ 6 2
(d−2)+

.

The case k = 0 is classical and thus we will only give the proof for d > k > 0.

Proof. We first note that for our pair (γ, ρ) to be non-endpoint admissible for d − k > 2, we

require that γ > 2, which in turn is equivalent to σ < 2
(d−k−2)+

. However, this condition will always

be fulfilled since

σ 6
2

(d− 2)+
<

2
(d− k − 2)+

.

As a consequence, we also have that δ(ρ) = (d−k)σ
2(σ+1) < 1.

Now, as a first step we apply the Strichartz estimate (37) and note that

‖N (v)−N (v′)‖
Lγt L

ρ
xH
−δ(ρ)
y

6 C2‖P−1/2
ε (g(P−1/2

ε v)− g(P−1/2
ε v′))‖

Lγ
′
t L

ρ′
x H

δ(ρ)
y

6 ε−1C2‖g(P−1/2
ε v)− g(P−1/2

ε v′)‖
Lγ
′
t L

ρ′
x H

−(1−δ(ρ))
y

,

where we have also used the scaling (26) to obtain the factor ε−1. Next, by a Sobolev embedding

we have that Hs(Rk) ↪→ Lρ(Rk), where

s = k

(
1
2 −

1
2(σ + 1)

)
= kσ

2(σ + 1) ∈
(

0, k2

)
.

In turn, this also implies the dual embedding Lρ′(Rk) ↪→ H−s(Rk). Now, if we impose that

1 > s+ δ(ρ) = dσ

2(σ + 1) ,

which is so whenever σ 6 2
(d−2)+

, then H−s(Rk) ↪→ H−(1−δ(ρ))(Rk). Together these allow us to

estimate

‖g(P−1/2
ε v)− g(P−1/2

ε v′)‖
H
−(1−δ(ρ))
y

6 ‖g(P−1/2
ε v)− g(P−1/2

ε v′)‖H−sy

6 Cσ‖(|P−1/2
ε v|2σ + |P−1/2

ε v′|2σ)P−1/2
ε (v − v′)‖

Lρ
′
y

= (∗),
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where we have also used that for all z, w ∈ C,

|g(z)− g(w)| 6 Cσ(|z|2σ + |w|2σ)|z − w|.

Now, recall that ρ = 2(σ + 1) and hence 1
ρ′ = 2σ

ρ + 1
ρ . Thus, by first applying Hölder’s inequality

and using (26), we obtain

(∗) . (‖P−1/2
ε v‖2σLρy + ‖P−1/2

ε v′‖2σLρy )‖P−1/2
ε (v − v′)‖Lρy

. ε−(2σ+1)(‖v‖2σ
H
−(1−s)
y

+ ‖v′‖2σ
H
−(1−s)
y

)‖v − v′‖
H
−(1−s)
y

. ε−(2σ+1)(‖v‖2σ
H
−δ(ρ)
y

+ ‖v′‖2σ
H
−δ(ρ)
y

)‖v − v′‖
H
−δ(ρ)
y

,

where the last inequality follows from H−δ(ρ)(Rk) ↪→ H−(1−s)(Rk), by the same arguments as before.

Employing Hölder’s inequality once more in x, we consequently infer

‖g(P−1/2
ε v)− g(P−1/2

ε v′)‖
Lρ
′
x H

−(1−δ(ρ))
y

. ε−(2σ+1)(‖v‖2σ
LρxH

−δ(ρ)
y

+ ‖v′‖2σ
LρxH

−δ(ρ)
y

)‖v − v′‖
LρxH

−δ(ρ)
y

.

From here we compute that
1
γ′

= 1− (d− k)σ
2 + 2σ

γ
+ 1
γ
.

Thus, taking the Lγ′ norm in t and applying Hölder’s inequality yields the result of the lemma. �

Using Lemma 2.6, we are now able to prove global well-posedness for (11) in the subcritical case. In

doing so, we will require a positive exponent

α ≡ 1− (d− k)σ
2

of Tα in the estimate obtained in Lemma 2.6, i.e., we require σ < 2
d−k . Since Lemma 2.6 holds for

σ 6 2
(d−2)+

, we need to distinguish the cases k 6 2 and k > 2 in the following.

One notices immediately that for k 6 2, we have that 2
d−k 6

2
(d−2)+

, which in turn implies in this

case, that we require the stronger assumption σ < 2
d−k to ensure α > 0. However, for k > 2 (and

thus d > 3), it holds that
2

d− 2 <
2

d− k
<

2
(d− k − 2)+

,

and hence no new restriction arises. We also note that for k > 2, the exponent of Tα is positive and

is L2-subcritical in the sense that when σ = 2
d−2 then

α = 1− (d− k)σ
2 = k − 2

d− 2 > 0.
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With this in mind, we can now prove the following result.

PROPOSITION 2.7. Let d > k > 0 and

• either k 6 2 and 0 6 σ < 2
d−k

• or k > 2 and 0 6 σ 6 2
d−2 .

Then for any v0 ∈ L2(Rd), there exists a unique global solution to (11)

v ∈ C(Rt, L2(Rd)) ∩ Lqloc(Rt;Lr(Rd−kx ;H−δ(r)(Rky)))

for any (nonendpoint) admissible pair (q, r). Moreover, v depends continuously on the initial data

and satisfies

‖v(t, ·)‖L2
x

= ‖v0‖L2
x
∀ t ∈ R.

By identifying v = P
1/2
ε u, this directly yields a global-in-time solution u ∈ C(R;L2(Rd−kx ;H1(Rky)))

to (6) and thus proves Theorem 1.1. Note that here continuous dependence on the initial data

precisely means that for T > 0 the map v0 7→ v|[−T,T ] is continuous as a map

L2(Rd)→ C([−T, T ], L2(Rd)) ∩ Lq([−T, T ];Lr(Rd−kx ;H−δ(r)(Rky))).

Proof. We shall prove Proposition 2.7 in several steps.

Step 1 (Existence): Fix the admissible pair (γ, ρ) =
(

4(σ+1)
(d−k)σ , 2(σ + 1)

)
. Let M,T > 0 to be

determined later and denote I = [0, T ], and set

XT,M = {v ∈L∞t L2
x(I) ∩ LqtLrxH−δ(r)y (I) : ‖v‖L∞t L2

x
+ ‖v‖

Lγt L
ρ
xH
−δ(ρ)
y

6M}.

We note that XT,M is a complete metric space equipped with the distance

d(v, w) = ‖v − w‖L∞t L2
x

+ ‖v − w‖
Lγt L

ρ
xH
−δ(ρ)
y

.

Let v ∈ XT,M . Then the Strichartz estimates obtained in Proposition 2.4 together with Lemma 2.6

imply that

‖Φ(v)‖
Lγt L

ρ
xH
−δ(ρ)
y

6 ‖Sε(·)v0‖Lγt LρxH−δ(ρ)y
+ ‖N (v)‖

Lγt L
ρ
xH
−δ(ρ)
y

6 Cσ,ε
(
‖v0‖L2

x
+ T 1− (d−k)σ

2 M2σ+1
)
,
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as well as

‖Φ(v)‖L∞t L2
x
6 ‖v0‖L2

x
+ C2‖P−1/2

ε g(P−1/2
ε v)‖

Lγ
′
t L

ρ′
x H

δ(ρ)
y

6 Cσ,ε
(
‖v0‖L2

x
+ T 1− (d−k)σ

2 M2σ+1
)
.

Together, these yield

‖Φ(v)‖L∞t L2
x

+ ‖Φ(v)‖
Lγt L

ρ
xH
−δ(ρ)
y

6 2Cσ,ε
(
‖v0‖L2

x
+ T 1− (d−k)σ

2 M2σ+1
)
.

We now choose M such that

3M = 8Cσ,ε‖v0‖L2
x

and choose T > 0 such that

(40) 2Cσ,εT 1− (d−k)σ
2 M2σ+1 6

M

4 .

Then it follows that Φ(v) ∈ XT,M for all v ∈ XT,M so that Φ(XT,M ) ⊂ XT,M . Now, let v, w ∈ XT,M .

Then by Lemma (2.6) and using (40) we have

‖N (v)−N (w)‖
Lγt L

ρ
xH
−δ(ρ)
y

6 2Cσ,εM2σT 1− (d−k)σ
2 ‖v − w‖

Lγt L
ρ
xH
−δ(ρ)
y

6
1
4‖v − w‖Lγt LρxH−δ(ρ)y

,(41)

which together with the same estimate for the L∞t H1-norm gives

d(Φ(v),Φ(w)) 6 1
2d(v, w), ∀v, w ∈ XT,M .

Thus Φ is a contraction map on XT,M and Banach’s fixed point theorem yields the existence of a

unique fixed point v ∈ XT,M . Furthermore, since the solution v satisfies the integral equation (38),

we infer continuity in time, i.e., v ∈ C(I;L2(Rd)).

Moreover, if v ∈ XT,M , then v ∈ LqtLrxH
−δ(r)
y (I) for any admissible pair (q, r), since by our Strichartz

estimates

‖v‖
LqtL

r
xH
−δ(r)
y

≡ ‖Φ(v)‖
LqtL

r
xH
−δ(r)
y

6 C1‖v0‖L2
x

+ C2‖P−1/2
ε g(P−1/2

ε v)‖
Lγ
′
t L

ρ′
x H

δ(ρ)
y

,

which is estimated as in the proof of Lemma 2.6.

Step 2 (Uniqueness): Let I = [0, T ] and v, w ∈ C(I;L2
x) ∩ LqtLrxH

−δ(r)
y (I) be two solutions to (38)

with v0 = w0 = ϕ. Then as in Step 1, we have v, w ∈ XT,M with 3M = 8Cσ,ε‖ϕ‖L2
x

and T given by



30

(40). Since the difference of v and w is given by

(v − w)(t) = N (v)(t)−N (w)(t),

then we can apply (41) from Step 1 on the interval I to obtain

‖v − w‖
Lγt L

ρ
xH
−δ(ρ)
y (I) ≤

1
4‖v − w‖Lγt LρxH−δ(ρ)y (I).

From this we conclude (local) uniqueness

‖v − w‖
Lγt L

ρ
xH
−δ(ρ)
y (I) = 0,

i.e., v = w on I = [0, T ].

In addition, the solution depends continuously on the initial data, as can be seen by taking two

solutions v, ṽ on a common time interval Ic = min{I, Ĩ}. Then by what was done above, we have

that v, ṽ ∈ XT,M with 3M = 8 max{‖v0‖L2
x
, ‖ṽ0‖L2

x
} and T = |Ic| satisfying (40) so that

d(v, ṽ) 6 ‖v0 − ṽ0‖L2
x

+ 1
2d(v, ṽ),

which proves the continuous dependence on the initial data, after extending the argument to the

interval Ic.

Step 3 (Global existence): In order to show that the solution obtained in Step 1 indeed exists for all

times t ∈ R, let

Tmax = sup{T > 0 : there exists a solution v(t, ·) on [0, T )}.

We claim that

if Tmax < +∞, then lim
t→Tmax

‖v(t)‖L2
x

= +∞.

Suppose, by contradiction, that Tmax < ∞ and that there exists a sequence tj → Tmax such that

‖v(tj)‖L2
x
6 M . Now choose some integer J such that tJ is close to Tmax where by assumption

‖v(tJ)‖L2
x
6 M . But by Step 1, using the initial data v(tJ) we can extend our solution to the

interval [tJ , tJ + T ] where we now choose tJ such that tJ + T > Tmax. This gives a contradiction to

the definition of Tmax.

Next, we shall prove that the L2-norm of v is conserved along the time-evolution. To this end,

we adapt an elegant argument given in [90], which has the advantage that it does not require an

approximation procedure using a sequence of sufficiently smooth solutions (as is classically done, see
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[25]). First note that by Step 1 we have v ∈ C([0, T ];L2(Rd)) for any T < Tmax. We then rewrite

Duhamel’s formula (38), using the continuity of the semigroup Sε to propagate backward in time

(42) Sε(−t)v(t) = v0 + Sε(−t)N (v)(t).

The fact that Sε(·) is unitary in L2 implies ‖v(t)‖L2
x

= ‖Sε(−t)v(t)‖L2
x
. The latter of which can be

expressed using the above identity to obtain

‖v(t)‖2L2
x

= ‖v0‖2L2
x

+ 2Re
〈
Sε(−t)N (v)(t), v0

〉
L2

x
+ ‖Sε(−t)N (v)(t)‖2L2

x

=: ‖v0‖2L2
x

+ I1 + I2.

We want to show that I1 + I2 = 0. In view of (39) we can rewrite

I1 = −2Im
〈 ∫ t

0
Sε(−s)P−1/2

ε g(P−1/2
ε v)(s) ds, v0

〉
L2

= −2Im
∫ t

0

〈
P−1/2
ε g(P−1/2

ε v)(s), Sε(s)v0
〉
L2 ds.

By duality in y and Hölder’s inequality in both x and t we find that this quantity is indeed finite

|I1| 6 2‖P−1/2
ε g(P−1/2

ε v)‖
Lγ
′
t L

ρ′
x H

δ(ρ)
y
‖Sε(s)v0‖Lγt LρxH−δ(ρ)y

<∞.

Denoting for simplicity Gε(·) = P
−1/2
ε g(P−1/2

ε v)(·), we perform the following computation:

I2 ≡
〈 ∫ t

0
Sε(−s)Gε(s) ds,

∫ t

0
Sε(−s′)Gε(s′) ds′

〉
L2

x

=
∫ t

0

〈
Sε(−s)Gε(s),

(∫ s

0
+
∫ t

s

)
Sε(−s′)Gε(s′) ds′

〉
L2

x
ds

=
∫ t

0

〈
Gε(s),

∫ s

0
Sε(s− s′)Gε(s′) ds′

〉
L2

x
ds+

∫ t

0

∫ t

s

〈
Sε(s′ − s)Gε(s), Gε(s′)

〉
L2

x
ds′ ds

=
∫ t

0

〈
Gε(s),−iN (v)(s)

〉
L2

x
ds+

∫ t

0

〈 ∫ s′

0
Sε(s′ − s)Gε(s) ds,Gε(s′)

〉
L2

x
ds′

= 2Re
∫ t

0

〈
Gε(s),−iN (v)(s)

〉
L2

x
ds.

Using the integral formulation (38), we can express −iN (v)(s) and write

(43) I2 = 2Re
(∫ t

0

〈
Gε(s), iSε(s)v0

〉
L2

x
ds+

∫ t

0

〈
Gε(s),−iv(s)

〉
L2

x
ds
)
.

Here we note that the particular form of our nonlinearity implies

Re
〈
Gε(·),−iv(·)

〉
L2

x
= Im

〈
g(P−1/2

ε v)(·), P−1/2
ε v(·)

〉
L2

x
= Im ‖P−1/2

ε v(·)‖2σ+2
L2σ+2

x
= 0,
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and thus the second term on the right-hand side of (43) simply vanishes. In summary, we find

I2 = 2Re
∫ t

0

〈
Gε(s), iSε(s)v0

〉
L2

x
ds = 2Im

∫ t

0

〈
Sε(−s)Gε(s) ds, v0

〉
L2

x
≡ −I1,

which proves that

‖v(t)‖L2
x

= ‖v0‖L2
x
∀t ∈ [0, T ].

This conservation law allows us to reapply Step 1 as many times as we wish, thereby preserving the

length of the maximal interval in each iteration, and yielding Tmax = +∞. Since the equation is

time-reversible modulo complex conjugation, this yields a global solution for all t ∈ R. �

3.2. Higher order regularity. In this subsection, we are going to prove that the global-in-

time L2-solution obtained in Proposition 2.7 enjoys persistence of regularity. Namely, if the initial

datum v0 ∈ H1, then the corresponding solution v(t, ·) remains in H1 for all times t ∈ R. We will

prove this property by exploiting the Strichartz estimates stated in Proposition 2.4 and the global

well-posedness result in L2. Similar arguments can be used to obtain a solution v(t, ·) ∈ Hs, s > 1,

provided the nonlinearity is sufficiently smooth, i.e., σ ∈ N.

PROPOSITION 2.8. Let v ∈ C(Rt, L2(Rd)) ∩ Lqloc(Rt;Lr(Rd−kx ;H−δ(r)(Rky))) be the solution

obtained in Proposition 2.7 with initial data v0 ∈ L2(Rd). If, in addition, v0 ∈ H1(Rd), then

v ∈ C(Rt;H1(Rd)).

Proof. Let us fix a 0 < T <∞. We are going to show that

(44) ‖∇v‖L∞t L2
x([0,T ]) 6 K(T, ‖∇v0‖L2

x
).

Having in mind the conservation property of the L2-norm of v, this estimate is sufficient to conclude

the desired result. To obtain (44), we first recall from Proposition 2.7 that

‖v‖
Lγt L

ρ
xH
−δ(ρ)
y ([0,T ]) 6 C(T, ‖v0‖L2

x
) =: CT ,

where (γ, ρ) =
(

4(σ+1)
(d−k)σ , 2(σ + 1)

)
is the admissible pair used in Lemma 2.6. Let λ > 0 be a

small parameter to be chosen later on. We then divide [0, T ] into N = N(λ,CT ) subintervals, i.e.,

[0, T ] = ∪Nj=1Ij , where Ij = [tj−1, tj ] and 0 = t0 < t1 < . . . < tN = T , such that

(45) ‖v‖
Lγt L

ρ
xH
−δ(ρ)
y (Ij)

6 λ, j = 1, . . . , N.
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First we estimate the gradient of (39) by a similar strategy as in Lemma 2.6 with v′ = 0. By

applying the Strichartz estimate (37) and the appropriate embeddings in y gives

‖∇N (v)‖
Lγt L

ρ
xH
−δ(ρ)
y (Ij)

6 ε−1C2‖∇g(P 1/2
ε v)‖

Lγ
′
t L

ρ′
x L

ρ′
y
.

Since the nonlinearity is smooth, this allows us to estimate in y as follows:

‖∇g(P 1/2
ε v)‖

Lρ
′
y
6 (2σ + 1)‖P−1/2

ε v‖2σLρy‖P
−1/2
ε ∇v‖Lρy

. ε−(2σ+1)‖v‖2σ
H
−δ(ρ)
y
‖∇v‖

H
−δ(ρ)
y

.

Combining this with a Hölder estimate in x and t, similarly as in Lemma 2.6 above, we obtain

‖∇N (v)‖
Lγt L

ρ
xH
−δ(ρ)
y (Ij)

. ε−2(σ+1)|Ij |1−
(d−k)σ

2 λ2σ‖∇v‖
Lγt L

ρ
xH
−δ(ρ)
y (Ij)

.

Hence on each subinterval Ij we have that

‖∇v‖L∞t L2
x(Ij) + ‖∇v‖

Lγt L
ρ
xH
−δ(ρ)
y (Ij)

6 Cε
(
‖∇vj−1‖L2

x
+ |Ij |1−

(d−k)σ
2 λ2σ‖∇v‖

Lγt L
ρ
xH
−δ(ρ)
y (Ij)

)
for j = 1, . . . , N where we write ∇vj−1 to denote ∇v(tj−1). Now choose λ = λ(Cε, T ) such that

CεT
1− (d−k)σ

2 λ2σ < 1.

Since |Ij | 6 T we infer the estimate

‖∇v‖L∞t L2
x(Ij) + ‖∇v‖

Lγt L
ρ
xH
−δ(ρ)
y (Ij)

6 Kε
j ‖∇vj−1‖L2

x
,

for some constant Kε
j which depends on ε. In particular, for j = 1, . . . , N we have

‖∇vj‖L2
x
6 Kε

j ‖∇vj−1‖L2
x
.

Using this, we iterate the argument on each subinterval Ij , j = 1, . . . , N , to obtain the desired

estimate (44). �

REMARK 2.9. Notice that we cannot obtain uniform-in-time bounds on the H1-norm of v by

invoking the energy (8). Indeed the energy functional, written in terms of v, reads

E(t) = 1
2‖P

−1/2
ε ∇v‖2L2

x
− 1

2(σ + 1)‖P
−1/2
ε v‖2σ+2

L2σ+2
x

,

which cannot provide a uniform bound on the full gradient of v.
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The proposition above yields a solution u to (6) such that v(t, ·) = P
1/2
ε u(t, ·) ∈ H1(Rd) globally in

time. In particular, since

‖u(t, ·)‖H1 6 ‖P 1/2
ε u(t, ·)‖H1 ,

we infer u(t, ·) ∈ H1(Rd) for all t ∈ R, provided P 1/2
ε u0 ∈ H1. This shows that for a restricted class

of initial data, the solution u exhibits a sufficient amount of regularity to rule out the possibility of

finite-time blow-up in the usual sense. We will see below in Section 5 that we can achieve another

higher order regularity result for σ > 2
d−k , and prove small data global existence in this regime.

4. The critical case and the case of full off-axis dispersion

In this section, we treat the two “extreme” cases and consequently prove Theorems 1.2 and 1.3.

4.1. Partial off-axis dispersion with critical nonlinearity. In the case of partial off-axis

dispersion with critical nonlinearity, i.e., σ = 2
d−k and 0 6 k 6 2, we see that the estimate obtained

in Lemma 2.6 no longer yields a positive power α of T . Hence the fixed point argument employed

in the subcritical case breaks down. In order to overcome this obstacle, we shall employ the same

type of arguments as in [27]. To this end, we first note the particular choice of admissible pair (q, r)

obtained for

q = r = 2(d− k + 2)
d− k

and introduce the following mixed space for any I ⊂ Rt:

W (I) = L
2(d−k+2)
d−k

(
I × Rd−kx ;H−

d−k
d−k+2 (Rky)

)
.

Then, we have the following local well-posedness result for v, which directly yields Theorem 1.2 for

u via v = P
1/2
ε u.

PROPOSITION 2.10. Let d − k > 0 with k 6 2, and σ = 2
d−k . Then for any v0 ∈ L2(Rd), there

exist times 0 < Tmax, Tmin 6∞ and a unique maximal solution v ∈ C((−Tmin, Tmax);L2(Rd))∩W (I)

to (11), where I denotes any closed time interval I ⊂ (−Tmin, Tmax). Furthermore, Tmax <∞ if and

only if

(46) ‖v‖W ([0,Tmax)) =∞,

and analogously for Tmin. Finally, if ‖v0‖L2
x

is sufficiently small, then the solution is global.
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Note that here the maximal existence time depends not only on the size of the initial datum but

rather on the whole profile of the solution, or more precisely on the W (I)-norm of v.

Proof. We shall only give a sketch of the proof for t > 0, since our arguments follow along the

same lines as those in [27, Section 3]; see also [25, Chapter 4.7].

Firstly, given a T > 0, we claim that by choosing δ > 0 sufficiently small and such that

(47) ‖Sε(·)v0‖W ([0,T ]) < δ,

we obtain a unique solution v ∈ C([0, T ];L2(Rd)) ∩W ([0, T ]) to (11). Indeed, under assumption

(47), the operator v 7→ Φ(v), defined by (38) with σ = 2
d−k , admits a unique fixed point in

ZT,δ = {v ∈W ([0, T ]) s.t. ‖v‖W ([0,T ]) < 2δ}.

As in Proposition 2.7, by means of the Strichartz estimates one can then show that v ∈ LqtLrxH
−δ(r)
y (0, T )

for every admissible pair (q, r). Moreover, since the solution v satisfies the integral equation (38), we

also infer v ∈ C([0, T ];L2(Rd)). To see that Φ(v) has a fixed point, we use (41) with γ = ρ = 2(d−k+2)
d−k

and (47), to obtain

‖Φ(v)‖W ([0,T ]) 6 δ + Cε‖v‖
4+d−k
d−k

W ([0,T ]).

Since 4+d−k
d−k > 1, choosing δ small enough guarantees that Φ : ZT,δ → ZT,δ. Next, Lemma 2.6

implies the estimate

‖Φ(v)− Φ(w)‖W ([0,T ]) 6 Cε

(
‖v‖

4
d−k
W ([0,T ]) + ‖w‖

4
d−k
W ([0,T ])

)
‖v − w‖W ([0,T ]),(48)

where Cε is independent of T . Here, the fact that 4
d−k > 0 and δ > 0 is sufficiently small (independent

of v0 and T ) implies that v 7→ Φ(v) is a contraction on ZT,δ. That this choice of δ > 0 is always

possible follows from our Strichartz estimate and from

(49) ‖Sε(t)v0‖W ([0,T ])
T→0−−−→ 0.

Consequently, for T > 0 small enough assumption (47) is satisfied, yielding a unique local-in-time

solution v(t, ·) for t ∈ [0, T ].

By a similar argument as in Proposition 2.7 (see also [25, 27]), one can prove uniqueness by letting

v = Φ(v), w = Φ(w) ∈W ([0, T ]) and having in mind that(
‖v‖

4
d−k
W ([0,T ]) + ‖w‖

4
d−k
W ([0,T ])

)
T→0−−−→ 0.
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From (48), we thus conclude that v = w for T > 0 sufficiently small. We can then iterate this

argument to find a maximal existence time 0 < Tmax 6 ∞ for which the unique solution exists for

every admissible pair (q, r).

Next, we shall prove the blow-up alternative (46) by contradiction. Namely, let Tmax < ∞ and let

us assume that ‖v‖W ([0,Tmax)) <∞. Let t ∈ [0, Tmax), then for any s ∈ [0, Tmax− t) we write in view

of (38) that

Sε(s)v(t) = v(t+ s)−N (v(t+ ·))(s).

Applying again Lemma 2.6 we can estimate

‖Sε(·)v(t)‖W ([0,Tmax−t)) 6 ‖v‖W ([t,Tmax)) + Cε‖v‖
4+d−k
d−k

W ([t,Tmax))

and thus, for t sufficiently close to Tmax, we have

‖Sε(·)v(t)‖W ([0,Tmax−t)) < δ.

This implies we can extend the solution after the time Tmax, contradicting its maximality.

Finally, in order to conclude global existence of small solutions, we note that, by a global-in-time

Strichartz estimate,

‖Sε(·)v0‖W (R) 6 C1‖v0‖L2 .

This implies that if ‖v0‖L2 is small enough depending on δ > 0, we have

‖Sε(·)v0‖W (R) < δ.

Hence, assumption (47) is satisfied for all T ∈ R and the same continuity argument as before allows

one to repeat the contraction argument with T = ±∞, cf. [25, Remark 4.7.5]. In summary, this

yields a unique global solution v(t, ·) ∈ L2(Rd) for sufficiently small initial data. �

4.2. The case of full off-axis dispersion. We finally turn to the case of full off-axis disper-

sion, i.e., d = k. It is clear from our admissibility condition in Definition 2.1, that in this case, we

cannot expect to have any Strichartz estimates (see also [19] for more details). We thus resort to a

more basic fixed point argument to prove the following result.

LEMMA 2.11. Let d = k > 1 and σ 6 2
(d−2)+

. Then, for any v0 ∈ L2(Rd), there exists a unique

global solution v ∈ C(Rt, L2(Rd)) to (11), depending continuously on the initial data and satisfying

‖v(t, ·)‖2L2
x

= ‖v0‖2L2
x
∀ t ∈ R.
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Proof. To prove this result it suffices to show that v 7→ Φ(v) is a contraction on

YT,M = {v ∈ L∞([0, T ];L2(Rd)) : ‖v‖L∞t L2
x
6M}.

Let v, v′ ∈ YT,M , and recall that Sε(t) is unitary on L2. Using Minkowski’s inequality and the scaling

argument (26) then yields

‖N (v)(t)−N (v′)(t)‖L2
x
6 ε−1

∫ t

0
‖g(P−1/2

ε v)− g(P−1/2
ε v′)‖

H
− dσ

2(σ+1)
(s) ds,

provided dσ
2(σ+1) 6 1, i.e., σ 6 2

(d−2)+
.

By a similar embedding strategy as in Lemma 2.6 one finds

‖g(P−1/2
ε v)− g(P 1/2

ε v′)‖
H
− dσ

2(σ+1)

6 (‖P−1/2
ε v‖2σLρx + ‖P−1/2

ε v′‖2σLρx)‖P−1/2
ε (v − v′)‖Lρx

6 ε−(2σ+1)(‖v‖2σL2
x

+ ‖v′‖2σL2
x
)‖v − v′‖L2

x
,

which consequently implies that

‖N (v)−N (v′)‖L∞t L2
x
6 ε−(2σ+1)T (‖v‖2σL∞t L2

x
+ ‖v′‖2σL∞t L2

x
)‖v − v′‖L∞t L2

x
.

Choosing T > 0 sufficiently small, Banach’s fixed point theorem directly yields a local-in-time

solution v ∈ C([0, T ], L2(Rd)). The conservation property of the L2-norm of v can then be shown

analogously as in the proof of Proposition 2.7. This consequently allows us to extend the local

solution v for all t ∈ R. �

This directly yields Theorem 1.3 for u, since in the case of full-off axis dispersion v = P
1/2
ε u ∈ L2(Rd)

implies u ∈ H1(Rd) for any ε > 0. In addition, the L2-conservation for v directly yields (9), whereas

(8) is a standard computation, and valid for any H1-solution u. Finally, it is straightforward to

extend the solution to v(t, ·) ∈ Hs(Rd) for any s > 0 provided the initial data satisfies v0 ∈ Hs(Rd).

REMARK 2.12. Note that (9) also implies a uniform-in-time bound on the H1-norm of u(t, ·) for

any ε > 0. In turn, this means that both the kinetic and the nonlinear potential energy remain

uniformly bounded for all t ∈ R.
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5. H1
xy-subcritical theory with partial off-axis variations

In this section we shall extend the well-posedness results of [5], to the case when k = 1, 2, where there

is an apparent breakdown in the fixed point argument, see the dialogue following Lemma 2.6. In

particular, we prove small data global existence and scattering for nonlinearities 2
d−k 6 σ 6

2
(d−2)+

.

5.1. Strichartz Spaces. In order to make clear the distinction between what has been proven

above, from now on we denote the space where the conserved quantity (9) is well-defined by

H0
xy := L2

x(Rd−k;H1
y (Rk)) with norm ‖f‖H0

xy
:= ‖f‖L2

xH
1
y
' ‖P 1/2

1 f‖L2
x
.

In particular, under the conditions of Theorem 1.1, we have that for u0 ∈ H0
xy, there exists a unique

solution u ∈ C(R;H0
xy). By the persistence of regularity result of Proposition 2.8, if we define the

space

H1
xy :=

{
u ∈ H0

xy : P 1/2
1 u ∈ H1(Rd)

}
,

then for k = 1, 2 and σ < 2
d−k , or k > 2 and σ 6 2

d−2 , then we have that for data u0 ∈ H1
xy there

are global solutions u ∈ C(R;H1
xy). This space can consequently be viewed as

(50) H1
xy := H0

xy ∩
(
L2
xḢ

2
y ∩H1

xH
1
y

)
,

where Ḣ2
y is the inhomogeneous Sobolev space. This is the natural space in which one can define

the conserved linear momentum, i.e., the following quantity

(51) Pε(t) := −2Im〈Pεu∇u〉L2
x

= −2Im
∫
Rd
u0∇u0 + ε2∂yu0∇∂yu0 dx,

which we see to be the usual conserved linear momentum when ε = 0. With these spaces, we may

rewrite the Strichartz estimates (36) and (37) respectively in the following way:

(52) ‖Sε(·)f‖LqtLrxH1−δ(r)
y (I) 6 C1‖f‖H0

xy
,

(53)
∥∥∥∥P−1

ε

∫ t

0
Sε(· − s)F (s) ds

∥∥∥∥
LqtL

r
xH

1−δ(r)
y (I)

6 ε−2C2‖F‖Lγ′t Lρ
′
x H

δ(ρ)−1
y (I).

This can be seen if we replace f in (36) by P
1/2
1 f and F by P−1

ε P
1/2
1 F in (37) respectively, and

notice from (25) and (26) the equivalence of the space-time norms.
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Now given any time interval I, we define the Strichartz space S0
xy(I) by the norm

‖f‖S0
xy

:= sup
(q,r),admissible

‖f‖
LqtL

r
xH

1−δ(r)
y

.

We remark that since (∞, 2) is admissible then S0
xy(I) ⊂ L∞t H0

xy(I). Moreover we define the dual

N0
xy(I) := (S0

xy(I))∗ by the norm

‖f‖N0
xy
6 ‖f‖

Lγ
′
t L

ρ′
x H

δ(ρ)−1
y

,

where (γ, ρ) is an admissible pair to be chosen. In order to simplify certain notations in the H1
xy

well-posedness theory to follow, we introduce

‖u‖S1
xy

:= ‖u‖S0
xy

+ ‖∇u‖S0
xy

and ‖u‖N1
xy

:= ‖u‖N0
xy

+ ‖∇u‖N0
xy
,

where it is clear that S1
xy(I) ⊂ L∞t H1

xy(I) as the pair (∞, 2) is admissible.

5.2. Local well-posedness in H1
xy. In this subsection, we first prove a nonlinear estimate

similar to (2.6), which will allow us to construct a fixed point argument and prove local existence in

the space H1
xy. In order to streamline the analysis and to show a contrast in techniques, we shall not

employ the change of unknown (10) as is done before. Instead, we shall directly employ the integral

formulation for the Cauchy problem (6) and write

(54) u(t) = Sε(t)u0 + iP−1
ε

∫ t

0
Sε(t− s)(|u|2σu)(s) ds =: Φ(u)(t).

As before, we shall shortly write the integral equation as Φ(u)(t) = Sε(t)u0 + N (u)(t), where we

denote the nonlinear term in (54) by

(55) N (v)(t) := iP−1
ε

∫ t

0
Sε(t− s)(|u|2σu)(s) ds.

LEMMA 2.13. Let 6 > d > k. Fix an interval 0 ∈ I and choose the admissible pair

(γ, ρ) =
(

4(σ + 1)
(d− k)σ , 2(σ + 1)

)
.

Then, in the space-time slab I × Rd the following inequality

‖N (u)−N (u′)‖S1
xy
. ε−2|I|1−δ(ρ)

(
‖u‖S1

xy
+ ‖u′‖S1

xy

)2σ
‖u− u′‖S1

xy
,

holds provided that 1
2 6 σ 6

2
(d−2)+

.
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Proof. We first note that for our pair (γ, ρ) to be (nonendpoint) admissible for d− k > 2, we

require that γ > 2, which in turn is equivalent to σ < 2
(d−k−2)+

. However, this condition will always

be fulfilled since

σ 6
2

(d− 2)+
<

2
(d− k − 2)+

.

As a consequence, we also have that δ(ρ) = (d−k)σ
2(σ+1) < 1. Furthermore, if we impose that σ 6 2

(d−2)+

then it is clear that kσ
2(σ+1) + δ(ρ) 6 1 where ρ = 2(σ+ 1). Hence for estimates involving y ∈ Rk, we

have by inclusion and Sobolev embedding the following

(56) H1−δ(ρ)(Rk) ⊆ H
kσ

2(σ+1) (Rk) ↪→ Lρ(Rk),

and moreover we have the dual of (56) given by

(57) Lρ
′
(Rk) ↪→ H

−kσ
2(σ+1) (Rk) ⊆ Hδ(ρ)−1(Rk),

For x ∈ Rd we will take advantage of the following inclusion and Sobolev embedding

(58) H1(Rd) ⊆ H
dσ

2(σ+1) (Rd) ↪→ Lρ(Rd),

which holds again provided that σ 6 2
(d−2)+

.

We note from the Strichartz estimate (53) applied to the difference of N (u) and N (u′) that

‖N (u)−N (u′)‖S1
xy
6 ε−2C2

∥∥|u|2σu− |u′|2σu′∥∥
N1
xy

:= ε−2C2
(
Q1 +Q2

)
In order to control the N1

xy-norm we perform the respective computations on the non-gradient term

Q1 and gradient term Q2 in N0
xy. In particular, we deduce from (56) in the y-variables that

‖f‖N0
xy
6 ‖f‖

Lγ
′
t L

ρ′
x H

δ(ρ)−1
y

6 ‖f‖
Lγ
′
t L

ρ′
x L

ρ′
y
.(59)

The term in N0
xy without the gradient follows from (59) and Hölder’s inequality in x and y with

1
ρ′ = 2σ

ρ + 1
ρ , which by the above program yields

‖|u|2σu− |u′|2σu′‖
Lρ
′
x L

ρ′
y
6
(
‖u‖2σLρ + ‖u′‖2σLρ

)
‖(u− u′)‖LρxLρy

6
(
‖u‖2σH1 + ‖u′‖2σH1

)
‖u− u′‖

LρxH
1−δ(ρ)
y

,(60)

where in the last inequality we use (56) and (57) on the difference term.
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Consequently, using the above estimates and Hölder’s inequality in t with

1
γ′

= 1− 2
γ

+ 1
γ

= 1− δ(ρ) + 2σ
∞

+ 1
γ

we have our first notable estimate, namely

Q1 :=
∥∥|u|2σu− |u′|2σu′∥∥

N0
xy
6 |I|1−δ(ρ)

(
‖u‖2σS1

xy
+ ‖u′‖2σS1

xy

)
‖u− u′‖S1

xy
.(61)

Secondly, we treat the Q2 term, which requires a bit more care. We note by a direct computation

that

∣∣∇(|u|2σu)−∇(|u|2σu)∣∣ 6 Cσ(|u|2σ|∇(u− u′)|+
(
|u|2σ−1 + |u′|2σ−1)|∇u′||u− u′|)

= G1(u, u′) +G2(u, u′),

whose terms of which are integrable in every LqxL
p
y-space provided we impose that σ > 1

2 . For the

first term we use the same analysis as in (61) with no gradient to give

‖G1(u, u′)‖N0 6|I|
1− 2

γ ‖u‖2σL∞t H1‖∇(u− u′)‖
Lγt L

ρ
xH

1−δ(ρ)
y

6 |I|1−δ(ρ)‖u‖2σS1
xy
‖u− u′‖S1

xy
.(62)

Next for the term involving G2 we note that 1
ρ′

= 2σ − 1
ρ

+ 1
ρ

+ 1
ρ

which we use to apply Hölder’s

inequality in x and y and estimate as before to give

‖G2(u, u′)‖
Lρ
′
x L

ρ′
y
6
(
‖u‖2σ−1

H1 + ‖u′‖2σ−1
H1

)
‖∇u′‖

LρxH
1−δ(ρ)
y

‖u− u′‖H1 .

To finish off the space-time estimate for G2 we apply Hölder in t, noting the numerology

1
γ′

= 1− 2
γ

+ 1
γ

= 1− δ(ρ) + 2σ − 1
∞

+ 1
γ

+ 1
∞
,

which in turn gives the space-time estimate for the G2 term as follows

‖G2(u, u′)‖N0
xy
6 |I|1−δ(ρ)

(
‖u‖2σ−1

S1
xy

+ ‖u′‖2σ−1
S1
xy

)
‖u′‖S1

xy
‖u− u′‖S1

xy
.(63)

Collecting both estimates (62) and (63), we then obtain

Q2 :=
∥∥∇(|u|2σu)−∇(|u|2σu)∥∥

N0
xy

. |I|1−δ(ρ)
(
‖u‖2σ−1

S1
xy

+ ‖u′‖2σ−1
S1
xy

)(
‖u‖S1

xy
+ ‖u′‖S1

xy

)
‖u− u′‖S1

xy
.(64)

Combining the estimates (61) and (64) gives the desired result. �
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Using Lemma 2.13, we are now able to prove local well-posedness for (6) in the H1-subcritical cases

for v, i.e. the cases not covered by Propositions 2.7 and 2.8. In doing so, we will require a positive

exponent

α ≡ 1− δ(ρ) > 0

of |I|α in the estimate obtained in Lemma 2.13, which always holds. Hence there is only the

restriction on the nonlinearity 1
2 6 σ 6

2
(d−2)+

.

PROPOSITION 2.14. Let d > k > 0 and 1
2 6 σ 6 2

(d−2)+
. Then for any u0 ∈ H1

xy, there exists a

unique maximal solution to (11) such that u ∈ C(Imax;H1
xy)∩S1

xy(Imax), where 0 ∈ Imax(‖u0‖H1
xy

).

Moreover, u depends continuously on the initial data, and satisfies the blow-up alternative: If

|Imax| <∞ then

lim
t→|Imax|

(
‖∆yu(t, ·)‖L2

x
+ ‖∇xu(t, ·)‖H0

xy

)
= +∞.

Proof. (Existence): Let M,T > 0 and denote I = [0, T ] to be determined later, and set

BT,M = {u ∈ S1
xy(I) : ‖u‖S1

xy(I) 6M},

equipped with the metric d(u,w) = ‖u− w‖S1
xy
.

Let u ∈ BT,M . From the nonlinear estimate of Lemma 2.13 with u′ = 0, one finds after applying

the Strichartz estimates that

‖Φ(u)‖S1
xy
6 C1

(
‖u0‖H0

xy
+ ‖∇u0‖H0

xy

)
+ 2ε−2Cσ,2|I|1−δ(ρ)M2σ+1,

Given u0 ∈ H1
xy, we make way for the contraction by setting M = 4C1‖u0‖H1

xy
and choose T > 0

such that

Cσ,2|I|1−δ(ρ)M2σ+1 6
Mε2

4 .

From this choice, it follows that Φ(u) ∈ BT,M for all u ∈ BT,M so that Φ(BT,M ) ⊂ BT,M . Now, let

u, u′ ∈ XT,M , then directly from Lemma 2.13 follows the continuity

(65) ‖Φ(u)− Φ(u′)‖S1
xy
6

1
4‖u− u

′‖S1
xy
, for all u, u′ ∈ BT,M .

Thus Φ is a contraction map on BT,M and Banach’s fixed point theorem yields the existence of a

unique fixed point u = Φ(u) ∈ BT,M .
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We remark that since u ∈ BT,M then u,∇u ∈ LqtLrxH1−δ(r)(I) for any admissible pair (q, r), since

‖u‖
LqtL

r
xH

1−δ(r)
y

+ ‖∇u‖
LqtL

r
xH

1−δ(r)
y

6 ‖Φ(u)‖S1
xy
6M.

Moreover we can show the solution u ∈ C(I;H1
xy). We first note that u ∈ S1

xy(I) ⊂ L∞t (I;H1
xy) and

the solution satisfies the integral equation (54). From Stone’s theorem Sε(t) is a strongly continuous

unitary group in H1
xy, so it is clear that the linear term Sε(·)u0 ∈ C(I;H1

xy). For the nonlinear part

of (54), we note from Lemma 2.13 that N (u) ∈ L∞(I;H1
xy) since we have for each t ∈ I that

‖N (u)(t)‖H1
xy
6 ‖N (u)(t)‖S1

xy
6 2Cσ,ε|I|1−δ(ρ)‖u(t)‖2σ+1

S1
xy

<∞.

The continuity of this term then follows for fixed 0 6 t 6 |I| by writing

N (u)(t+ h)−N (u)(t) = i

∫ t+h

t

Sε(t+ h− s)F (s) ds+ i
(
Sε(h)− 1

) ∫ t

0
Sε(t− s)F (s) ds,

where F (·) = (|u|2σu)(·). Moreover it is clear that the continuity follows, since the above goes to

zero in norm as h→ 0, after employing the same estimates as before.

Step 2: (Uniqueness and Blow-up alternative) Let I = [0, T ] and suppose there exists another

solution w ∈ S1
xy(I) to (11) with w0 = u0 = ϕ. From the integral equation (54), we write

(u− w)(t) = Φ(u)(t)− Φ(w)(t) =
(
N (u)−N (w)

)
(t).

On an interval Iµ = [0, µ] ⊂ I where µ > 0 to be determined later, we note by Lemma 2.13 that

‖u− w‖S1(Iµ) = ‖N (u)−N (w)‖S1
xy(Iµ)

6 Cσ,εµ
1−δ(ρ)

(
‖u‖S1

xy(Iµ) + ‖w‖S1
xy(Iµ)

)2σ
‖u− w‖S1

xy(Iµ).

Since we have fixed the solutions u,w ∈ BT,M with M = 4C1‖ϕ‖H1
xy

, then we obtain

‖u− w‖S1
xy(Iµ) 6

1
2‖u− w‖S

1
xy(Iµ),

where we choose µ such that Cσ,εµ1−δ(ρ)‖ϕ‖2σH1
xy
. 1

2 . To extend uniqueness to the whole interval I,

one merely repeats this argument T
µ times using the continuity of the integral equation. From the

uniqueness we can consequently construct a maximal solution on an interval Imax.

Next we deduce the blow-up alternative by a similar contradiction argument as in Proposition 2.7.

However we note from (50) that part of the H1
xy-norm is conserved. Namely, the H0

xy-norm which
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corresponds to the conserved quantity (9). Hence we see that if |Imax| < +∞, then

lim
t→|Imax|

‖u(t)‖H1
xy

= ‖u0‖H0
xy

+ lim
t→|Imax|

(
‖∆yu(t)‖L2

x
+ ‖∇xu(t)‖H0

xy

)
=∞.

We remark that this statement of the blow-up alternative does not preclude blow-up in infinite time.

Step 3:(Continuous dependence on the initial data) Let u, u′ be two such solutions. The continuous

dependence follows directly from the estimate (65), where we set u = Φ(u), u′ = Φ(u′) so that

‖u− u′‖S1
xy
6 C1‖u0 − u′0‖H1

xy
+ 1

4‖u− u
′‖SIxy .

This concludes the local well-posedness in H1
xy. �

5.3. Small data scattering in H1
xy. In this subsection we shall focus on the asymptotic

behavior of solutions to (6). Firstly, we prove the existence of small data global solutions in the case

k = 1, 2 and 2
d−k 6 σ 6 2

d−2 . Secondly, we show that these solutions evolve to the associated free

solution for large times. More precisely, if the limit

u± = lim
t→±∞

Sε(−t)u(t)

exists in H1
xy, then we say that the global solution u scatters and we shall call u± the scattering

states of u0 at ±∞.

PROPOSITION 2.15 (Small data global existence). Let k + 4 > d > k with k = 1, 2, and suppose

that 2
d−k 6 σ 6 2

(d−2)+
. There exists λε > 0 such that for every initial data u0 ∈ H1

xy with

‖u0‖H1
xy
6 λε, the corresponding maximal solution u of Proposition 2.14 is global and satisfies

u ∈ C(Rt;H1
xy) ∩ LqtLrxH2−δ(r)

y (R) and ∇xu ∈ LqtLrxH1−δ(r)
y (R)

for any (non-endpoint) admissible pair (q, r).

Proof. We first note that in the case d − k > 4 that 2
d−k 6

1
2 6 σ. Hence, we assume that

d 6 k + 4 and that 2
d−k 6 σ 6 2

d−2 for the duration of the proof. Given the maximal solution of

Proposition 2.14, we define the quantity

H(T ) = ‖u‖L∞t H1
xy(0,T ) + ‖u‖

Lγt L
ρ
xH

1−δ(ρ)
y (0,T ) + ‖∇u‖

Lγt L
ρ
xH

1−δ(ρ)
y (0,T ),

for 0 < T < Tmax.
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We first note the latter two terms of H(T ) go to zero as T → 0+ and because u ∈ C([0, T ];H1
xy)

then we have

(66) H(T )→ ‖u0‖H1
xy

as T → 0+.

By way of the Strichartz estimates and the integral formulation, we deduce

H(T ) 6 2C1‖u0‖H1
xy

+ 2ε−2C2‖|u|2σu‖N1 .(67)

The latter term is computed with a similar strategy as in Lemma 2.13, and so using (59) we obtain

‖|u|2σu‖N1 6
(
‖|u|2σu‖

Lγ
′
t L

ρ′
x L

ρ′
y

+ ‖∇(|u|2σu)‖
Lγ
′
t L

ρ′
x L

ρ′
y

)
,

where (γ, ρ) is the admissible pair with ρ = 2(σ + 1). Lets compute first in x and y and use

|∇g(w)| 6 Cσ|w|2σ|∇w| and Remark 1.3.1 in [25] followed by Hölder’s inequality and (56) to give

‖|u|2σu‖
Lρ
′
x L

ρ′
y

+ ‖∇(|u|2σu)‖
Lρ
′
x L

ρ′
y
. ‖u‖2σLρxLρy

(
‖u‖

LρxH
1−δ(ρ)
y

+ ‖∇u‖
LρxH

1−δ(ρ)
y

)
.

We now perform a similar analysis as in Lemma 2.13. However we shall eliminate the factor |I|α

arising when employing Hölder’s inequality in t. To do so, we choose the t-exponents such that

1
γ′

= γ − 2
γ

+ 1
γ

= 2σ
s

+ 1
γ
,

then in combining the above estimates we have in total the following

‖|u|2σu‖N1 6 ε−2‖u‖2σLstLρxLρy
(
‖v‖

Lγt L
ρ
xH

1−δ(ρ)
y

+ ‖∇v‖
Lγt L

ρ
xH

1−δ(ρ)
y

)
6 ε−2H(T )‖u‖2σLstLρxLρy .(68)

We now notice that γ 6 s = 2σγ
γ−2 <∞ provided that 2

d−k 6 σ. From this, we see immediately that

if σ = 2
d−k (in particular for the case when k = 2) that s = γ = ρ and one yields the same estimate

(70) to follow. Then for k = 1, we suppose σ > 2
d−1 and interpolate in time between the exponents

γ and ∞ with θ = 1− γ
s ∈ (0, 1) and use the Sobolev embedding (50) and (58) so that

‖u‖LstLρxLρy 6 ‖u‖
θ
L∞t L

ρ
x
‖u‖1−θ

Lγt L
ρ
xL

ρ
y
6 ‖u‖θL∞t H1‖u‖1−θ

Lγt L
ρ
xH

1−δ(ρ)
y

6 H(T ).(69)

This consequently implies from (68) that inequality (67) may be estimated further to yield

(70) H(T ) 6 2C1‖u0‖H1
xy

+ 2ε−2C2H(T )2σ+1

for all 0 < T < Tmax and σ > 2
d−k .
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With this inequality in hand, we take the limit as T → 0+ and employ (66) to give

H(0) 6 2‖u0‖H1
xy

(
C1 + ε−2C2‖u0‖2σH1

xy

)
.

Hence there exists λε > 0 such that for ‖u0‖H1
xy
6 λε with C2λ

2σ
ε 6 C1ε

2 it follows that

H(0) 6 4C1λε.

However, in general we note that H(0) 6 H(T ) for T < Tmax. Since the interval (0, Tmax) is

connected, then either H(T ) > 4C1λε or H(T ) 6 4C1λε. Suppose, by way of contradiction, that

H(T ) > 4C1λε for T > 0, then from (70) we obtain

2C1λε < C1λε + ε−2C2H(T )2σ+1

which is equivalent to

C2λ
2σ+1
ε 6 C1ε

2λε < C2H(T )2σ+1,

i.e. λε < H(T ) for T > 0. However from (66) and the continuity of H(T ) we deduce that

λε < lim
T→0+

H(T ) = ‖u0‖H1
xy
,

which yields a contradiction on our choice of λε.

This consequently implies that

‖u‖L∞t H1
xy((0,T )) + ‖u‖S1

xy((0,T )) 6 4C1‖u0‖H1
xy

for all 0 < T < Tmax.

In particular, we see from the continuity of H(T ) that

‖u‖L∞t H1
xy((0,Tmax)) = lim

T→Tmax
‖u‖L∞t H1

xy((0,T )) <∞,

which implies by the blow-up alternative of Proposition 2.14 that Tmax =∞ and so it follows we have

a global solution u ∈ C(R;H1
xy). Moreover it follows from the Strichartz estimates that u ∈ S1

xy(R)

since

(71) ‖u‖
LqtL

r
xH

1−δ(r)
y (R) + ‖∇u‖

LqtL
r
xH

1−δ(r)
y (R) 6 ‖u‖S1

xy(R) . λε,

holds for every admissible pair (q, r).
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We note that u ∈ LqtLrxH
1−δ(r)
y ([T,∞)) for any T > 0, and by monotone convergence we have

(72) ‖u‖
LqtL

r
xH

1−δ(r)
y ([T,∞)) + ‖∇u‖

LqtL
r
xH

1−δ(r)
y ([T,∞)) → 0 as T →∞,

for every admissible pairs (q, r) 6= (∞, 2), a fact which will be important in the scattering result

below. �

Now that we have proven small data global existence, we can proceed to prove the existence of

scattering states. To this end, we first rewrite the integral equation (54) as

(73) Sε(−t)u(t) = u0 + Sε(−t)N (u)(t)

and note that in this case the scattering states (if these exist) are informally given by

(74) u± = u0 + iP−1
ε

∫ ±∞
0

Sε(−s)(|u|2σu)(s) ds.

In this way, scattering reduces to showing the convergence of the improper integral above. The key

feature we use to prove scattering comes from the global Strichartz bounds i.e. u ∈ S1
xy(R).

PROPOSITION 2.16 (Existence of Scattering States). Suppose u is a global solution satisfying

the hypothesis of Proposition 2.15 with initial data u0 such that ‖u0‖H1
xy
6 λε. Then there exists

scattering states u± ∈ H1
xy such that

lim
t→±∞

‖Sε(−t)u(t)− u±‖H1
xy

= 0.

Proof. Let us write w(t) = Sε(−t)u(t) as in (73) then for 0 < t < τ , we consider the difference

w(τ)− w(t) = iP−1
ε

∫ τ

t

Sε(−s)(|u|2σu)(s) ds.

Hence using that the propagator Sε(t) is an isometry on H1(Rd) and by the above we have

‖w(τ)− w(t)‖H1
xy

= ‖Sε(t)P 1/2
ε (w(t)− w(τ))‖H1 6 ‖N (u)‖L∞t H1

xy((t,τ)).

In the case k = 2 and σ = 2
d−2 , i.e. for γ = ρ = 2(σ + 1), by similar analysis as in Lemma 2.6, we

obtain by employing (72) that

‖N (u)‖L∞t H1
xy((t,τ))

. ε−2‖u‖2σ
Lγt L

ρ
xH

1−δ(ρ)
y (t,τ)

(
‖u‖

Lγt L
ρ
xH

1−δ(ρ)
y (t,τ) + ‖∇u‖

Lγt L
ρ
xH

1−δ(ρ)
y (t,τ)

)
→ 0, as t, τ →∞.
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Lastly, in the case k = 1 and σ > 2
d−1 , we have from the same estimates of (68) and (69) that

‖N (u)‖L∞t H1((t,τ))

. ε−2‖u‖2σθL∞t H1
xy(t,τ)‖u‖

2σ(1−θ)
Lγt L

ρ
xH

1−δ(ρ)
y (t,τ)

(
‖u‖

Lγt L
ρ
xH

1−δ(ρ)
y (t,τ) + ‖∇u‖

Lγt L
ρ
xH

1−δ(ρ)
y (t,τ)

)
.

Now, since ‖v‖L∞t H1(t,τ) 6 ‖v‖L∞t H1(R) = M , then it follows from (72) that

‖w(τ)− w(t)‖H1
xy

6 CεM
2σθ‖u‖2σ(1−θ)

Lγt L
ρ
xH

1−δ(ρ)
y (t,τ)

(
‖u‖

Lγt L
ρ
xH

1−δ(ρ)
y (t,τ) + ‖∇u‖

Lγt L
ρ
xH

1−δ(ρ)
y (t,τ)

)
→ 0 as t, τ →∞.

This is enough to conclude the convergence of the integral term in (74). Moreover from (71) it is

clear by the above estimates that we obtain

‖u+‖H1
xy
. C1λε + C2ε

−2λ2σ+1
ε 6 2C1λε,

which implies u+ ∈ H1
xy. Thus, for 2

d−k 6 σ 6 2
d−2 , there exists a scattering state u+ ∈ H1

xy such

that

w(t) = Sε(−t)u(t)→ u+ as t→ +∞.

By the same analysis we deduce the existence of a scattering state u− ∈ H1
xy as t→ −∞. �

In summary this yields Theorem 1.4.

6. Approximation result

This final section is dedicated to the limiting behavior of solutions to (11), in either the full or partial

off-axis case. It is clear that at least formally Pε converges to the identity operator as ε → 0, and

so in some sense solutions to (11) should converge to the solution to (1) the focusing NLS as ε→ 0.

From the persistence of regularity result, Proposition 2.8, one can construct global solutions vε ∈

C(R, Hs(Rd)) for s > d
2 to equation (6) with σ ∈ N and σ 6 2

(d−2)+
. We remark that in the case

when k = 1, 2 and 2
d−k 6 σ 6 2

(d−2)+
, we obtain global solutions for data ‖vε0‖H1 6 λε. Moreover,

by standard arguments in [25], solutions to the focusing NLS (1) admit local-in-time solutions

u ∈ C([0, T ], Hs(Rd)) for some T > 0. The following theorem shows that smooth solutions to (6)

indeed converge on the existence time of the limiting equation whenever solutions are sufficiently

smooth.
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THEOREM 2.1. Let σ ∈ N. Denote the solution vε to (11) and u the local solution to (1) such

that vε|t=0 = u|t=0. Further suppose u ∈ L∞([0, T ];Hs+4(Rd)), for some s > d
2 . Then

‖u− vε‖L∞([0,T ];Hs(Rd)) . ε
2

Proof. Fix s > d
2 and choose M > 0 such that the solutions satisfy ‖vε‖Hs , ‖u‖Hs+4 6 M for

all t ∈ [0, T ]. Let us denote the difference wε ≡ u − vε with wε(0,x) = 0, where upon taking the

difference of (1) and (11) gives the equation

i∂tw
ε + P−1

ε ∆wε = (P−1
ε − 1)∆u+ P−1/2

ε g(P−1/2
ε vε)− g(u),

where again we denote the nonlinearity g(z) = |z|2σz.

By Duhamel’s formulation this yields the integral equation

wε(t) = i

∫ t

0
Sε(t− s)

(
(1− P−1

ε )∆u+
(
g(u)− P−1/2

ε g(P−1/2
ε vε)

))
ds.(75)

We first perform a few preliminary estimates on the integral formulation above. The estimates are

identical whether we are in the case of full or partial off-axis variation. We recall the use of the

Fourier variables x = (x, y) 7→ (ξ, η) = ξ, where in the former case there is no distinction between

η and ξ. We first note that we can rewrite the symbol ̂(1− P−1
ε )(η) = ε2|η|2

1 + ε2|η|2
, and estimate the

first term in Hs as follows

‖(1− P−1
ε )∆u‖Hs 6 ε2∥∥(1 + ε2|η|2)−2∥∥1/2

L∞
ξ,η

‖〈ξ〉s+2|η|2û‖L2
ξ,η
6 ε2‖u‖Hs+4 .

For the second term one estimates by first adding and subtracting P
−1/2
ε g(u), and then applying

the triangle inequality to give

‖g(u)− P−1/2
ε g(P−1/2

ε vε)‖Hs 6 ‖P−1/2
ε g(u)− P−1/2

ε g(P−1/2
ε vε)‖Hs + ‖g(u)− P−1/2

ε g(u)‖Hs

6 ‖g(u)− g(P−1/2
ε vε)‖Hs + ‖

(
1− P−1/2

ε

)(
|u|2σu

)
‖Hs = Q1 +Q2,

where in the first term we used the boundedness of P−1/2
ε i.e. ‖P−1/2

ε f‖L2 6 ‖f‖L2 .

The bound for Q1 begins by repeated application of the normed algebra property followed by the

boundedness of P−1/2
ε to give

Q1 6 Cσ
(
‖P−1/2

ε vε‖2σHs + ‖u‖2σHs
)
‖u− P−1/2

ε vε‖Hs 6 2CσM2σ‖u− P−1/2
ε vε‖Hs .



50

To finish the estimate Q1, we add and substract P−1/2
ε u and apply the triangle inequality so that

‖u− P−1/2
ε vε‖Hs 6 ‖P−1/2

ε (u− vε)‖Hs + ‖(1− P−1/2
ε )u‖Hs

6 ‖u− vε‖Hs + ε2∥∥(1 + ε2|η|2)−1(1 +
√

1 + ε2|η|2)−1∥∥
L∞
ξ,η

‖|η|2u‖Hs .

Hence, we see in total that we have the estimate

Q1 . ‖wε‖Hs + ε2M2σ‖u‖Hs+2 .

The second estimate for Q2 follows similarly as above

Q2 6 ε
2∥∥P̂−1

ε (1 + P̂ 1/2
ε )−1∥∥

L∞
ξ,η

‖〈ξ〉s|η|2ĝ(u)‖L2
ξ,η
6 ε2‖g(u)‖Hs+2 6 ε2‖u‖2σ+1

Hs+2 ,

where the last inequality follows by the normed algebra property for Hs.

After applying the Hs-norm to the integral equation, one applies Minkowski’s inequality and uses

that Sε(·) is an isometry on Hs and the estimates for Q1 and Q2 above to obtain for t ∈ [0, T ] that

‖wε(t)‖Hs . ε2T‖u‖L∞Hs+4

(
1 + ‖u‖2σL∞Hs+4

)
+
∫ t

0
‖wε(s)‖Hs ds.

After an application of Gronwall’s lemma this implies the main result

‖wε(t)‖Hs . ε2TeT ‖u‖L∞Hs+4

(
1 + ‖u‖2σL∞Hs+4

)
for t ∈ [0, T ].

�



CHAPTER 3

On a class of derivative Nonlinear Schrödinger-type

equations in two spatial dimensions 1

The outline of Chapter 3 is organized as follows. In Section 1, we shall numerically construct

nonlinear stationary states to

(76) iPε∂tu+ ∆u+ (1 + iδ · ∇)
(
|u|2σu

)
= 0, u|t=0 = u0(x),

or equivalently the evolution equation

(77) i∂tu+ P−1
ε ∆u+ P−1

ε (1 + iδ · ∇)
(
|u|2σu

)
= 0, u|t=0 = u0(x1, x2).

These simulations also include the well-known ground states for the classical NLS. For the sake of

illustration, we shall also derive explicit formulas for the one dimensional case and compare them

with the well-known formulas for the classical (derivative) NLS. Certain perturbations of these

stationary states will form the class of initial data considered in the numerical time-integration of

(77). The numerical algorithm used to perform the respective simulations is detailed in Section 2.

Here, we also include several basic numerical tests which compare the new model (77) to the classical

(derivative) NLS. Analytical results yielding global well-posedness of (77) with either full or partial

off-axis variations are given in Sections 3 and 5, respectively. In the former case, the picture is much

more complete, which allows us to perform a numerical study of the (in-)stability properties of the

corresponding stationary states, see Section 4. In the case with only partial off-axis variations, the

problem of global existence is more complicated and one needs to distinguish between the cases

where the action of Pε is either parallel or orthogonal to the self-steepening. Analytically, only the

former case can be treated at the present moment (see Section 5). Numerically, however, we shall

present simulations for both of these cases in Section 6.

1This Chapter is excerpted from the following work: [7] J. Arbunich, C. Klein and C. Sparber. On a class of
derivative nonlinear Schrödinger equations in two spatial dimensions. To appear in ESAIM Math. Model. Numer.
Anal.
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1. Stationary states

In this section, we focus on stationary states, i.e., time-periodic solutions to (76) given in the following

form:

(78) u(t, x1, x2) = eitQ(x1, x2).

The profile Q then solves

(79) PεQ = ∆Q+ (1 + iδ · ∇)(|Q|2σQ),

subject to the requirement that Q(x) → 0 as |x| → ∞. Every non-zero solution Q(x) ∈ C gives

rise to a solitary wave solution (with speed zero) to (76). These solitary waves will be an important

benchmark for our numerical simulations to follow. Note that in (78) we only allow for a simple

time-dependence exp(iωt) with ω = 1 in (78). This is not a restriction for the usual 2D NLS, given

its scaling invariance, but it is a restriction for our model in which this invariance is broken (see also

[57, 81] for the connection between ω and the speed of stable solitary waves).

For the classical NLS, when ε = 0 and | δ | = 0, there exists a particular solution Q, called the

nonlinear ground state, which is the unique radial and positive solution to (79), cf. [48, 101]. Recall

that in dimensions d = 2 the NLS is already L2-critical and thus ground states in general cannot

be obtained as minimizers of the associated energy functional (which is the same for both ε = 0

and ε > 0, see [39]). As we shall see below for ε > 0, the regularization via Pε yields a natural

modification of the ground state Q by smoothly widening its profile (while conserving positivity).

We shall thus also refer to these solutions Q as the ground states for (79) with | δ | = 0 and ε > 0.

At present, there are unfortunately no analytical results on the existence and uniqueness of such

modified ground states available. However, our numerical algorithm indicates that they exist and

are indeed unique (although, in general no longer radially symmetric).

The situation with derivative nonlinearity | δ | 6= 0 is somewhat more complicated, since in this case

the profiles Q to (79) are always complex-valued and hence the notion of a ground state does not

directly extend to this case (recall that uniqueness is only known for positive solutions). At least in

d = 1, however, explicit calculations (see below) show, that there is a class of smooth δ-dependent

stationary solutions to (79), which for | δ | = 0 yield the family of ε-depedent ground states.



53

1.1. Explicit solutions in 1D. In one spatial dimension, equation (79) allows for explicit

formulas, which will serve as a basic illustration for the combined effects of self-steepening and

off-axis variations. Indeed, in one spatial dimension, equation (76) simplifies to

(80) i(1− ε2∂2
x)∂tu+ ∂2

xu+ (1 + iδ∂x)(|u|2σu) = 0.

Seeking a solution of the form (78) thus yields the following ordinary differential equation:

(81) (1 + ε2)Q′′ + (|Q|2σ − 1)Q+ iδ(|Q|2σQ)′ = 0.

To solve this equation, we shall use the polar representation for Q(x) ∈ C

Q(x) = A(x)eiθ(x), A(x), θ(x) ∈ R

where we impose the requirement that A(x) > 0 and limx→±∞A(x) = 0. Plugging this ansatz into

(81), factoring eiθ out and isolating the real and imaginary part yields the following coupled system:

(
1 + ε2)A′′ + (A2σ − 1)A−Aθ′

(
(1 + ε2)θ′ + δA2σ

)
= 0,(

1 + ε2)(Aθ′′ + 2θ′A′
)

+ (2σ + 1)δA2σA′ = 0.

Multiplying the second equation by A and integrating from −∞ to x gives

(1 + ε2)θ′ = − (2σ + 1)δA2σ

2(σ + 1) ,

where here we implicitly assume that A2θ′ vanishes at infinity. Using the above, we infer that the

amplitude solves

(82)
(
1 + ε2)A′′ + (A2σ − 1)A+ (2σ + 1)δ2

4(1 + ε2)(σ + 1)2A
4σ+1 = 0,

while the phase is given a-posteriori through

(83) θ(x) = − (2σ + 1)δ
2(1 + ε2)(σ + 1)

∫ x

−∞
A2σ(y) dy.

After some lengthy computation, similar to what is done for the usual NLS, cf. [48], the solution to

(82) can be written in the form

(84) A(x) =

 2(σ + 1)
1 +Kε,δ cosh

(
2σx√
1+ε2

)
1/(2σ)

,
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where Kε,δ =
√

1 + δ2

1+ε2 > 0. In view of (83), this implies that the phase function θ is given by

(85) θ(x) = − sgn(δ)(2σ + 1) arctan
(√

1 + ε2

|δ|

(
1 +Kε,δe

2σx√
1+ε2

))
,

where we omitted a physically irrelevant constant in the phase (clearly, Q is only unique up to

multiplication by a constant phase).

Note that in the case with no self-steepening δ = 0, the phase θ is zero. Thus, Q(x) ≡ A(x) and we

find

Q(x) = (σ + 1)1/(2σ) sech1/σ
(

σx√
1 + ε2

)
.

For ε = 0, this is the well-known ground state solution to (150) in one spatial dimension, cf.

[48, 101]. We notice that adding the off-axis dispersion (ε > 0) widens the profile, causing it to

decay more slowly as x → ±∞ as can be seen in Fig. 1 on the left. On the right of Fig. 1, it is

shown that the maximum of the ground state decreases with σ but that the peak becomes more

compressed.
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Figure 1. Ground state solution to (84) with δ = 0: On the left for σ = 1 and
ε = 0 (blue), ε = 0.5 (green) and ε = 1 (red). On the right for ε = 1 and σ = 1
(blue), σ = 2 (green) and σ = 3 (red).

REMARK 3.1. The (σ-generalized) one-dimensional derivative NLS can be obtained from (80) by

putting ε = 0, rescaling u(t, x) = δ−1/(2σ)ũ(t, x), and letting δ →∞. Note that ũ solves

i∂tũ+ ∂2
xũ+ (δ−1 + i∂x)(|ũ|2σũ) = 0.

Denoting Q̃ = Ãeiθ̃(x), we get from (84) and (85) the well-known zero-speed solitary wave solution

of the derivative NLS, i.e.,

Ã(x) =
(
2(σ + 1) sech(2σx)

)1/(2σ)
, θ̃(x) = −(2σ + 1) arctan(e2σx).
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The stability of these states has been studied in the works [30, 57, 81].

1.2. Numerical construction of stationary states. In more than one spatial dimension, no

explicit formula is known for Q. Instead, we shall numerically construct Q by following an approach

similar to those in [74, 76]. Since we can expect Q to be rapidly decreasing, we use a Fourier

spectral method and approximate

F(Q) ≡ Q̂(ξ1, ξ2) = 1
2π

∫∫
R2
Q(x1, x2)e−ix1ξ1e−ix2ξ2 dx1dx2

by a discrete Fourier transform which can be efficiently computed via the Fast Fourier Transform

(FFT). In an abuse of notation, we shall in the following use the same symbols for the discrete and

continuous Fourier transform. To apply FFTs, we will use a computational domain of the form

(86) Ω = [−π, π]Lx1 × [−π, π]Lx2 ,

and choose Lx1 , Lx2 > 0 sufficiently large so that the obtained Fourier coefficients of Q decrease to

machine precision, roughly 10−16, which in practice is slightly larger due to unavoidable rounding

errors.

Now, recall that for a solution of the form (78) to satisfy (76), the function Q needs to solve (79).

In Fourier space, this equation takes the simple form

Q̂(ξ1, ξ2) = Γ̂εF(|Q|2σQ)(ξ1, ξ2),

where

Γ̂ε(ξ1, ξ2) = (1− δ1ξ1 − δ2ξ2)
1 + ξ2

1 + ξ2
2 + ε2∑k

i=1 ξ
2
i

.

For δ1 = δ2 = 0, the solution Q can be chosen to be real, but this will no longer be true for δ1,2 6= 0.

In the latter situation, we will decompose

Q(x1, x2) = α(x1, x2) + iβ(x1, x2),

and separate (79) into its real and imaginary part, yielding a coupled nonlinear system for α, β. By

using FFTs, this is equivalent to the following system for α̂ and β̂:
α̂(ξ1, ξ2)− Γ̂εF

((
α2 + β2)σα)(ξ1, ξ2) = 0,

β̂(ξ1, ξ2)− Γ̂εF
((
α2 + β2)σβ)(ξ1, ξ2) = 0.
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Formally, the system can be written as M(q̂) = 0 where q̂ = (α̂, β̂)> and solved via a Newton

iteration. One thereby starts from an initial iterate q̂(0) and computes the n-th iterate via the well

known formula

(87) q̂n = q̂n−1 − J
(
q̂n−1

)−1
M
(
q̂n−1

)
n ∈ N,

where J is the Jacobian of M with respect to q̂. Since our required numerical resolution makes

it impossible to directly compute the action of the inverse Jacobian, we instead employ a Krylov

subspace approach as in [95]. Numerical experiments show that when the initial iterate q̂(0) is

sufficiently close to the final solution, then we obtain the expected quadratic convergence of our

scheme and reach a precision of order 10−10 after only 4 to 8 iterations.

As a basic test case, we compute the ground state of the standard two-dimensional focusing NLS

with σ = 1, using as an initial iterate

q(0)(x1, x2) = sech2
(√

x2
1 + x2

2

)
on the computational domain (86) with Lx1 = Lx2 = 5. By choosing Nx1 = Nx2 = 29 many Fourier

modes, we have after seven iterations of (87) a residual smaller than 10−12. The obtained solution

is given on the left of Fig. 2. As expected, the solution is radially symmetric.

Figure 2. Ground state solution to equation (76) with σ = 1 and δ = 0: On the
left for ε = 0, in the middle for ε = 1 and k = 1 (partial off-axis dependence), on
the right for ε = 1 and k = 2 (full off-axis dependence).

The numerical ground state solution hereby obtained will then be used as an initial iterate for the

situation with non-vanishing ε and δ, as follows:

Step 1: In the case without self-steepening δ1 = δ2 = 0, the iteration is straightforward even for

relatively large values such as ε = 1. It can be seen in the middle of Fig. 2, that the ground state for

ε = 1 and k = 1 is no longer radially symmetric. As an effect of the partial off-axis variation, the

solution is elongated in the x1-direction. In the case of full off-axis dependence, the ground state for
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the same value of ε = 1 can be seen in Fig. 2 on the right. The solution is again radially symmetric,

but as expected less localized than the ground state of the classical standard NLS. This is consistent

with the explicit formulas for Q found in the one dimensional case above.

Step 2: In the case with self-steeping δ1 = δ2 = 1, smaller intermediate steps have to be used in the

iterations: We increment δ, by first varying only δ2 in steps of 0.2, always using the last computed

value for Q as an initial iterate for the slightly larger δ. The resulting solution Q can be seen in

Fig. 3. Note that the imaginary part of Q is of the same order of magnitude as the real part.

Figure 3. The stationary state solution Q to equation (76) with σ = 1, ε = δ1 = 0
and δ2 = 1: On the left, the real part of Q, on the right its imaginary part.

Step 3: In order to combine both effects within the same model, we shall use the (zero speed) solitary

solution obtained for ε = 0 and δ 6= 0 as an initial iterate for the case of non-vanishing epsilon. In

Fig. 4 we show on the left the stationary state for ε = 1, k = 1, δ1 = 0 and δ2 = 1, when the action of

Pε is orthogonal to the self-steepening. When compared to the case with ε = 0, the solution is seen

to be elongated in the x1-direction. Next, we simulate when Pε acts parallel to the self-steepening,

that is when ε = 1, k = 1, δ1 = 1 and δ2 = 0. The result is shown in the middle of Fig. 4. In

comparison to the former case, the imaginary part of the solution is essentially rotated clockwise by

90 degrees. The elongation effect in the x1-direction is still visible but less pronounced.

Step 4: For σ > 1 stationary states become increasingly peaked, as is seen from the 1D picture in

Figure 1. Hence, to construct stationary states for higher nonlinear powers in 2D, we will conse-

quently require more Fourier coefficients to effectively resolve these solutions. To this end, we work

on the numerical domain (86) with Lx1 = Lx2 = 3 and use Nx1 = Nx2 = 210 Fourier modes. We use

the ground state obtained for σ = 1 as an initial iterate for the case σ = 2, 3, and follow the same

program as outlined above.
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Figure 4. Real and imaginary parts of the stationary state Q to equation (76)
with σ = 1: On the left for ε = 1, k = 1, δ1 = 0 and δ2 = 1, in the middle for ε = 1,
k = 1, δ1 = 1 and δ2 = 0, and on the right for ε = 1, k = 2, δ1 = 0 and δ2 = 1.

2. Numerical method for the time evolution

2.1. A Fourier spectral method. In this section, we briefly describe the numerical algorithm

used to integrate our model equation in its evolutionary form (77). After a Fourier transformation,

this equation becomes

∂tû = −iP̂−1
ε (ξ)

(
|ξ|2û− (1− δ · ξ) ̂(|u|2σu)

)
, ξ ∈ R2.

Approximating the above by a discrete Fourier transform (via FFT) on a computational domain Ω

given by (86), yields a finite dimensional system of ordinary differential equations, which formally

reads

(88) ∂tû = Lεû+Nε(û).

Here Lε = −iP−1
ε |ξ|2 is a linear, diagonal operator in Fourier space, and Nε(û) has a nonlinear and

nonlocal dependence on û. Since ‖Lε‖ can be large, equation (88) belongs to a family of stiff ODEs,

for which several efficient numerical schemes have been developed, cf. [69, 73] where the particular

situation of semi-classical NLS is considered. Driscoll’s composite Runge-Kutta (RK) method [38]

has proven to be particularly efficient and thus will also be applied in the following simulations. This

method uses a stiffly stable third order RK method for the high wave numbers of Lε and combines it

with a standard explicit fourth order RK method for the low wave numbers of Lε and the nonlinear
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part Nε(û). Despite combining a third order and a fourth order method, this approach yields fourth

order in time convergence in many applications. Moreover, it provides an explicit method with much

larger time steps than allowed by the usual fourth order stability conditions in stiff regimes.

REMARK 3.2. The evolutionary form of our model (77) is in many aspects similar to the well-

known Davey-Stewartson (DS) system, which is a non-local NLS type equation in two spatial dimen-

sions, cf. [35, 101]. In [73, 75, 77], the possibility of self-similar blow-up in DS is studied, using

a numerical approach similar to ours.

As a first basic test of consistency, we apply our numerical code to the cubic NLS in 2D i.e. equation

(1) with σ = 1. As initial data u0 we take the ground state Q, obtained numerically as outlined

in Section 1 above. We use Nt = 1000 time-steps for times 0 6 t 6 1. In this case, we know that

the exact time-dependent solution u is simply given by u = Qeit. Comparing this to the numerical

solution obtained at t = 1 yields an L∞-difference of the order of 10−10. This verifies both the

code for the time evolution and the one for the ground state Q which in itself is obtained with an

accuracy of order 10−10. Thus, the time evolution algorithm evolves the ground state with the same

precision as with which it is known.

For general initial data u0, we shall control the accuracy of our code in two ways: On the one

hand, the resolution in space is controlled via the decrease of the Fourier coefficients within (the

finite approximation of) û. The coefficients of the highest wave-numbers thereby indicate the order

of magnitude of the numerical error made in approximating the function via a truncated Fourier

series. On the other hand, the quality of the time-integration is controlled via the conserved quantity

defined in (9). Due to unavoidable numerical errors, the latter will numerically depend on time. For

sufficient spatial resolution, the relative conservation of (9) will overestimate the accuracy in the

time-integration by 1− 2 orders of magnitude.

2.2. Reproducing known results for the classical NLS. As already discussed in the in-

troduction of this paper, the cubic NLS in two spatial dimensions is L2-critical and its ground state

solution Q is strongly unstable. Indeed, any perturbation of Q which lowers the L2-norm of the

initial data below that of Q itself, is known to produce purely dispersive, global-in-time solutions

which behave like the free time evolution for large |t| � 1. However, perturbations that increase

the L2-norm of the initial data above that of Q are expected to generically produce a (self-similar)

blow-up in finite-time. This behavior can be reproduced in our simulations.
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To do so, we first take initial data of the form

(89) u0(x1, x2) = Q(x1, x2)− 0.1e−x
2
1−x

2
2 ,

and work on the numerical domain Ω given by (86) with Lx1 = Lx2 = 3. We will use Nt = 5000

time-steps within 0 6 t 6 5. We can see on the right of Fig. 5 that the L∞-norm of the solution

decreases monotonically, indicating purely dispersive behavior. The plotted absolute value of the

solution at t = 5 confirms this behavior. In addition, the L2-norm (2) is conserved to better than

10−13, indicating that the problem is indeed well resolved in time.
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Figure 5. Solution to classical NLS (150) with σ = 1 and initial data (89): on the
left |u| at t = 5, and on the right the L∞-norm of the solution as a function of t.

REMARK 3.3. Note that we effectively run our simulations on Ω ' T2, instead of R2. As a

consequence, the periodicity will after some time induce radiation effects appearing on the opposite

side of Ω. The treatment of (large) times t > 5 therefore requires a larger computational domain to

suppress these unwanted effects.

Next, for initial data of the form

(90) u0(x1, x2) = Q(x1, x2) + 0.1e−x
2
1−x

2
2 ,

we again use Nt = 5000 time steps for 0 6 t 6 2. As can be seen in Fig. 6 on the right, there is

numerical indication for finite-time blow-up. The code is stopped at t = 1.89 when the relative error

in the conserved L2-norm (2) drops below 10−3. The solution for t = 1.88 can be seen on the left

of Fig. 6. This is in accordance with the self-similar blow-up established by Merle and Raphaël, cf.

[85, 87]. In particular, we note that the result does not change notably if a higher resolution in

both x and t is employed.
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Figure 6. Solution to classical NLS (150) with σ = 1 and initial data (90): on the
left |u| at t = 1.88 and on the right the L∞-norm of the solution as a function of t.

REMARK 3.4. We want to point out that there are certainly more sophisticated methods available

to numerically study self-similar blow-up, see for instance [76, 82, 101] for the case of NLS type

models, as well as [71, 72] for the analogous problem in KdV type equations. However, these methods

will not be useful for the present work, since as noted before, the model (76) does not admit a simple

scaling invariance, which is the underlying reason for self-similar blow-up in NLS and KdV type

models. As a result, all our numerical findings concerning finite-time blow-up have to be taken with

a grain of salt. An apparent divergence of certain norms of the solution or overflow errors produced

by the code can indicate a blow-up, but might also just indicate that one has run out of resolution.

The results reported in this paper therefore need to be understood as being stated with respect to the

given numerical resolution. However, we have checked that they remain stable under changes of the

resolution within the accessible limits of the computers used to run the simulations.

2.3. Time-dependent change of variables in the case with self-steepening. In the case

of self-steepening, the ability to produce an accurate numerical time integration in the presence

of a derivative nonlinearity (δ 6= 0) becomes slightly more complicated. The inclusion of such a

nonlinearity can lead to localized initial data moving (relatively fast) in the direction chosen by δ.

In turn, this might cause the numerical solution to ”hit” the boundary of our computational domain

Ω. To avoid this issue, we shall instead perform our numerical computations in a moving reference

frame, chosen such that the maximum of |u(t, x)| remains fixed at the origin. More precisely, we

consider the transformation

x 7→ x− y(t),
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and denote v(t) = ẏ(t). The new unknown u(t, x− y(t)) solves

(91) i∂tu− iv · ∇u+ P−1
ε ∆u+ P−1

ε (1 + iδ · ∇)
(
|u|2σu

)
= 0.

The quantity v(t) = (v1(t), v2(t)) is then determined by the condition that the density ρ = |u|2 has

a maximum at (x1, x2) = (0, 0) for all t > 0. We get from (91) the following equation for ρ:

∂tρ = v · ∇ρ+ i
(
ūP−1

ε ∆u− uP−1
ε ∆ū

)
+ i
(
ūP−1

ε (ρσu)− uP−1
ε (ρσū)

)
− ūP−1

ε δ · ∇(ρσu)− uP−1
ε δ · ∇(ρσū).

Differentiating this equation with respect to x1 and x2 respectively, and setting x1 = x2 = 0 yields

the desired conditions for v1 and v2. Note that the computation of these additional derivatives

appearing in this approach is expensive, since in practice it needs to be enforced in every step of

the Runge-Kutta scheme. Hence, we shall restrict this approach solely to cases where the numerical

results appear to be strongly affected by the boundary of Ω. In addition, we may always choose a

reference frame such that one of the two components of δ is zero, which consequently allows us to

set either v1, or v2 equal to zero.

2.4. Basic numerical tests for a derivative NLS in 2D. As an example, we consider the

case of a cubic nonlinear, two-dimensional derivative NLS of the following form

(92) i∂tu+ ∆u+ (1 + iδ2∂x2)
(
|u|2u

)
= 0, u|t=0 = u0(x1, x2).

which is obtained from our general model (77) for ε = 0 and δ1 = 0. We take initial data u0 given

by (90). Here, Q is the ground state computed earlier for this particular choice of parameters, see

Fig. 3. We work on the computational domain (86) with Lx1 = Lx2 = 3, using Nx1 = Nx2 = 210

Fourier modes and 105 time-steps for 0 6 t 6 5. We also apply a Krasny filter [78], which sets

all Fourier coefficients smaller than 10−10 equal to zero. For δ2 = 1 the real and imaginary part

of the solution u at the final time t = 5 can be seen in Fig. 7 below. Note that they are both

much more localized and peaked when compared to the ground state Q shown in Fig. 3, indicating

a self-focusing behavior within u. Moreover, the real part of u is no longer positive due to phase

modulations.

Surprisingly, however, there is no indication of a finite-time blow-up, in contrast to the analogous

situation without derivative nonlinearity (recall Fig. 6 above). Indeed, the Fourier coefficients of



63

Figure 7. Real and imaginary part of the solution to (92) with δ2 = 1 at time
t = 5 corresponding to u0 = Q + 0.1e−x2

1−x
2
2 , where Q is the stationary state in

Fig. 3.

|u| at t = 5 are seen in Fig. 8 to decrease to the order of the Krasny filter. In addition, the L∞-

norm of the solution, plotted in the middle of the same figure, appears to exhibit a turning point

shortly before t ≈ 4. Finally, the velocity component v2 plotted on the right in Fig. 8 seems to

slowly converge to a some limiting value v2 ≈ 2. The latter would indicate the appearance of a

stable moving soliton, but it is difficult to decide such questions numerically. All of these numerical

findings are obtained with (9) conserved up to errors of the order 10−11.
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Figure 8. Solution to (92) with δ2 = 1 and perturbed stationary state initial data:
The Fourier coefficients of |u| at t = 5 on the left; the L∞-norm of the solution as
a function of time in the middle, and the time evolution of its velocity v2 on the
right.

It might seem extremely surprising that the addition of a derivative nonlinearity is able to suppress

the appearance of finite-time blow-up. Note however, that in all the examples above we have used

only (a special case of) perturbed ground states Q as initial data. For more general initial data, the

situation is radically different, as can be illustrated numerically in the following example. We solve

(92) with purely Gaussian initial data of the form

(93) u0(x1, x2) = 4e−(x2
1+x2

2)
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on a numerical domain Ω with Lx1 = Lx2 = 2, using Nx1 = Nx2 = 210 Fourier coefficients and

Nt = 105 time steps for 0 6 t 6 0.25. This case appears to exhibit finite-time blow-up, as is

illustrated in Fig. 9. The conservation of the numerically computed L2-norm i.e. (2) drops below

10−3 at t ≈ T = 0.1955 which indicates that plotting accuracy is no longer guaranteed. Consequently

we ignore data taken for later times, but note that the code stops with an overflow error for t ≈ 0.202.
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Figure 9. The modulus of the solution to (92) with δ2 = 1 for Gaussian initial
data u0 = 4e−x2

1−x
2
2 , at time t = 0.195. On the right, the L∞-norm of the solution

as a function of time.

REMARK 3.5. These numerical findings are consistent with analytical results for derivative NLS

in one spatial dimension. For certain values of σ > 1 and certain velocities v, the corresponding

solitary wave solutions are found to be orbitally stable, see [30, 57, 81]. However, for general initial

data and σ > 1 large enough, one expects finite-time blow-up, cf. [82].

3. Global well-posedness with full off-axis variation

In this section we will analyze the Cauchy problem corresponding to (77) in the case of full off-axis

dependence, i.e. k = 2, so that

Pε = 1− ε2∆.

In this context, we expect the solution u of (77) to be very well behaved due to the strong regularizing

effect of the elliptic operator Pε acting in both spatial directions.

To prove a global-in-time existence result, we rewrite (77), using Duhamel’s formula,

(94) u(t) = Sε(t)u0 + i

∫ t

0
Sε(t− s)P−1

ε (1 + iδ · ∇)
(
|u|2σu

)
(s) ds ≡ Φ(u)(t),
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where Sε(t) = eitP
−1
ε ∆ is the corresponding linear propagator introduced in Chapter 2, which we

recall is an isometry on Hs(R2) for any s ∈ R. It is known that in the case with full off-axis variation,

Sε(t) does not allow for any Strichartz estimates, see [19]. However, the action of P−1
ε allows us to

”gain” two derivatives and offset the action of the gradient term in the nonlinearity of (94). By way

of a fixed point argument, we can therefore prove the following result, which is similar in spirit to

Lemma 2.11.

THEOREM 3.1 (Full off-axis variations). Let ε > 0, k = 2 and σ > 1
4 . Then for any δ ∈ R2 and

any u0 ∈ H1(R2), there exists a unique global-in-time solution u ∈ C(Rt;H1(R2)) to (77), depending

continuously on the initial data. Moreover, we have the uniform-in-time estimate

‖u(t, ·)‖H1 6 C(ε, ‖u0‖H1), ∀ t ∈ R.

Proof. Let T,M > 0. We aim to show that u 7→ Φ(u) is a contraction on the ball

XT,M = {u ∈ L∞([0, T );H1(R2)) : ‖u‖L∞t H1
x
6M}.

To this end, let us shortly denote

(95) Φ(u)(t) = Sε(t)u0 +N (u)(t),

where for g(u) = |u|2σu, we write

N (u)(t) := i

∫ t

0
Sε(t− s)P−1

ε (1 + iδ · ∇)g(u(s)) ds.

Now, let u, u′ ∈ XT,M . Using Minkowski’s inequality and recalling that Sε(t) is an isometry on

H1(R2) yields

∥∥(N (u)(t)−N (u′)(t)
)∥∥
H1 6 ε

−2(1 + | δ |)
∫ t

0
‖g(u)− g(u′)‖L2

x
(s) ds.

To bound the integrand, we first note that

(96) |g(u)− g(u′)| 6 Cσ(|u|2σ + |u′|2σ)|u− u′|.

If we impose σ > 1
4 , then we have by Sobolev’s embedding that

H1(R2) ⊂ H
(4σ−1)

4σ (R2) ↪→ L8σ(R2) and H
1
2 (R2) ↪→ L4(R2).
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This allows us to estimate further after using (96) and Hölder’s inequality in space to give

‖g(u)− g(u′)‖L2
x
6
(
‖u‖2σL8σ

x
+ ‖u′‖2σL8σ

x

)
‖u− u′‖L4

x

6
(
‖u‖2σH1 + ‖u′‖2σH1

)
‖u− u′‖H1 .

Together with Hölder’s inequality in t, we can consequently bound

∥∥N (u)−N (u′)
∥∥
L∞t H

1 6 2ε−2(1 + | δ |)TM2σ‖u− u′‖L∞t H1 .

By choosing T > 0 sufficiently small, Banach’s fixed point theorem directly yields a unique local-in-

time solution u ∈ C([0, T ], H1(R2)). Standard arguments (see, e.g., [25]) then allow us to extend this

solution up to a maximal time of existence Tmax = Tmax(‖u0‖H1
x
) > 0 and we also infer continuous

dependence on the initial data.

Next, we shall prove that

(97) ‖P 1/2
ε u(t)‖L2

x
= ‖P 1/2

ε u0‖L2
x
, for all t ∈ [0, T ] and T < Tmax.

For ε > 0, this conservation law yields a uniform bound on the H1-norm of u, since

cε‖P 1/2
ε ϕ‖L2

x
6 ‖ϕ‖H1 6 Cε‖P 1/2

ε ϕ‖L2
x
, Cε, cε > 0.

We consequently can re-apply the fixed point argument as many times as we wish, thereby preserving

the length of the maximal interval in each iteration, to yield Tmax = +∞. Since the equation is

time-reversible modulo complex conjugation, we obtain a global H1-solution for all t ∈ R, provided

(97) holds.

To prove (97), we adapt and (slightly) modify an elegant argument given in [90], used as in the proof

of Theorem 2.7. The advantage of this argument resides in that it does not require an approximation

procedure via a sequence of sufficiently smooth solutions (as is classically done, see e.g. [25]).

Let t ∈ [0, T ] for T < Tmax. We first rewrite Duhamel’s formula (94), using the continuity of the

semigroup Sε to propagate backwards in time

(98) Sε(−t)u(t) = u0 + Sε(−t)N (u)(t).

As Sε(·) is unitary in L2, we have ‖P 1/2
ε u(t)‖L2

x
= ‖Sε(−t)P 1/2

ε u(t)‖L2
x
. The latter can be expressed

using the above identity:



67

‖P 1/2
ε u(t)‖L2

x
= ‖P 1/2

ε u0‖L2
x

+ 2Re
〈
Sε(−t)P 1/2

ε N (u)(t), P 1/2
ε u0

〉
L2

x
+ ‖Sε(−t)P 1/2

ε N (u)(t)‖2L2
x

≡ ‖P 1/2
ε u0‖L2

x
+ I1 + I2.

We want to show that I1 + I2 = 0. In view of (95) we can rewrite

I1 = −2Im
〈 ∫ t

0
Sε(−s)P−1/2

ε (1 + iδ · ∇)g(u)(s) ds, P 1/2
ε u0

〉
L2

x
ds

= −2Im
∫ t

0

〈
(1 + iδ · ∇)g(u)(s), Sε(s)u0

〉
L2

x
ds.

By the Cauchy-Schwarz inequality we find that this quantity is indeed finite, since

|I1| 6 2T‖(1 + iδ · ∇)g(u)‖L∞t L2
x
‖Sε(·)u0‖L∞t L2

x
<∞.

Denoting for simplicity Gε(·) = P−1
ε (1 + iδ · ∇)g(u)(·), we find after a lengthy computation (see

Proposition 2.7 for more details) that the integral

I2 = 2Re
∫ t

0

〈
PεGε(s),−iN (u)(s)

〉
L2

x
ds.

We can express −iN (u)(s) using the integral formulation (98) and write

(99) I2 = 2Re
(∫ t

0

〈
PεGε(s), iSε(s)u0

〉
L2

x
ds+

∫ t

0

〈
PεGε(s),−iu(s)

〉
L2

x
ds
)
.

Next, we note that the particular form of our nonlinearity implies

Re
〈
PεGε,−iu

〉
L2

x
= Im

〈
(1 + iδ · ∇)g(u), u

〉
L2

x

= Im ‖u‖2σ+2
L2σ+2

x
− Re

〈
g(u), (δ · ∇)u

〉
L2

x
.

Here, the first expression in the last line is obviously zero, whereas for the second term we compute

Re
〈
g(u), (δ · ∇)u

〉
L2

x
=
∫
R2
|u|2σRe

(
u(δ · ∇)u

)
dx = 1

2(σ + 1)

∫
R2

(δ · ∇)(|u|2σ+2) dx = 0,

for H1-solutions u. In summary, the second term on the right-hand side of (99) simply vanishes and

we find

I2 = 2Im
∫ t

0

〈
(1 + iδ · ∇)g(u)(s), Sε(s)u0

〉
L2

x
ds = −I1.

This finishes the proof of (97). �



68

4. (In-)stability properties of stationary states with full off-axis variation

In this section, we shall perform numerical simulations to study the orbital stability or instability

properties of the (zero speed) solitary wave Qeit in the case with self-steepening | δ | 6= 0 and full

off-axis variation k = 2. In view of Theorem 3.1, we know that there cannot be any strong instability,

i.e., instability due to finite-time blow-up. Nevertheless, we shall see that there is a wealth of possible

scenarios, depending on the precise choice of parameters, σ, δ, and on the way we perturb the initial

data.

To be more precise, we shall consider initial data to equation (77) with k = 2, given by

(100) u0(x1, x2) = Q(x1, x2)± 0.1e−x
2
1−x

2
2 ,

where Q is again the stationary state constructed numerically as described in Section 1. We will use

Nx1 = Nx2 = 210 Fourier modes, a numerical domain Ω of the form (86) with Lx1 = Lx2 = 3, and a

time step of ∆t = 10−2.

Recall that in a stable regime, the time-dependent solution u typically oscillates around some time-

periodic state plus a (small) remainder which radiates away as t→ ±∞ (see, e.g., [?, Section 4.5.1]

for more details). In our simulations, however, we work on T2 instead of R2 which implies that

radiation cannot escape to infinity. Thus, we will not be able to numerically verify the precise

behavior of u for large times. Having this in mind, we take it as numerical evidence for (orbital)

stability, if both perturbations (100) of Q generate stable oscillations of ‖u(t, ·)‖L∞ , see also [74, 76]

for similar studies.

4.1. The case without self-steepening. Let us first address the case δ1 = δ2 = 0 for non-

linear strengths σ = 1, 2, 3. This subsection is then dedicated to the two dimensional simulations of

the previous chapter in the case of partial off-axis dependence.

For σ = 1, we find that the perturbed ground state is unstable, and that the initial pulse disperses

towards infinity as can be seen in Fig. 10. The modulus of the solution at t = 10 in the same figure

on the right shows that the initial pulse disperses with an annular profile. A “ − ” perturbation in

(100) leads to the same qualitative behavior and a corresponding figure is omitted.

The situation is found to be different for σ = 2, where Q appears to be stable, see Fig. 11. The

L∞-norm of the solution thereby oscillates for both signs of the perturbation.
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Figure 10. Solution to equation (77) with σ = 1, ε = 1, k = 2, δ = 0, and initial
data (100) with the “+” sign: On the left the L∞-norm of the solution as a function
of t, and on the right the modulus of the solution for t = 10.
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Figure 11. L∞-norm of the solution to equation (77) with σ = 2, ε = 1, k = 2,
δ = 0, and initial data (100): On the left for the “− ” sign, and on the right for the
“ + ” sign.

Finally, for σ = 3 we find that the behavior depends on how we perturb the initial ground state Q.

Perturbations with a “ + ” sign in (100) again exhibit an oscillatory behavior of the L∞-norm, see

the right of Fig. 12. However, a “ − ” perturbation yields a monotonically decreasing L∞-norm of

the solution. The latter is again dispersed with an annular profile.

4.2. The case with self-steepening. In this subsection, we shall perform the same numerical

study, but in the case with self-steepening, i.e. δ1,2 6= 0. For σ = 1, the corresponding stationary

state Q seems to remain stable, since both types of perturbations yield an oscillatory behavior of the

L∞-norm in time, see Fig. 13. This is in sharp contrast to the σ = 1 case without self-steepening

depicted in Fig. 10 above. In addition, we see that the solution no longer displays an annular

profile. This stable behavior is lost in the case of higher nonlinearities. More precisely, for both
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Figure 12. L∞-norm of the solution to equation (77) with ε = 1, k = 2, σ = 3,
δ = 0 and initial data (100): On the left for the “− ” sign, on the right for the “ + ”
sign.
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Figure 13. Solution to equation (77) with ε = 1, k = 2, σ = 1, δ1 = 0, δ2 = 1,
and initial data (100): On the left the L∞-norm for the “− ” sign, in the middle |u|
plotted at the final time, and on the right the L∞-norm for the solution with the
“ + ” sign.

σ = 2 and 3 we find that the behavior of the solution u depends on the sign of the considered

Gaussian perturbation. On the one hand, for the “ + ” perturbation in (100), both σ = 2 and σ = 3

yield an oscillatory behavior of the L∞-norm, see Fig. 14. On the other hand, the “−” perturbation

for both nonlinearities produce a solution with decreasing L∞-norm in time. Although for σ = 2

this decrease is no longer monotonic.

REMARK 3.6. Our numerical findings are reminiscent of recent results for the (generalized) BBM

equation, see [18]. In there, it is found that for p > 5, the regime where the underlying KdV equation

is expected to exhibit blow-up, solitary waves can be both stable and unstable and are sensitive to the

type of perturbation considered. The main difference to our case is of course that these earlier studies

are done in only one spatial dimension.
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Figure 14. Solution to equation (77) with ε = 1, k = 2, σ = 3, δ1 = 0, δ2 = 0.1,
and initial data (100): On the left, the L∞-norm for the “− ” perturbation, in the
middle |u| plotted at the final time, and on the right the L∞-norm for the solution
with the “ + ” sign.

5. Well-posedness results for the case with partial off-axis variation

From a mathematical point of view, the most interesting situation arises in the case where there is

only a partial off-axis variation. To study such a situation, we shall without loss of generality assume

that Pε acts only in the x1−direction, i.e.

Pε = 1− ε2∂2
x1
.

In this case (76) becomes

(101) i(1− ε2∂2
x1

)∂tu+ ∆u+ (1 + iδ · ∇)(|u|2σu) = 0, u|t=0 = u0(x1, x2).

When δ = (δ, 0)> and σ = 1, this is precisely the model proposed in [39, Section 4.3]. Motivated by

this, we shall in our analysis only consider the case where the regularization Pε and the derivative

nonlinearity act in the same direction. Numerically, however, we shall also treat the orthogonal case

where, instead, δ = (0, δ)>, see below.

5.1. Change of unknown and Strichartz estimates. In [5], which treats the case without

self-steepening, the following change of unknown is proposed in order to streamline the analysis:

(102) v(t, x1, x2) := P 1/2
ε u(t, x1, x2).

Rewriting the evolutionary form of (101) with δ = (δ, 0)> in terms of v yields

(103) i∂tv + P−1
ε ∆v + (1 + iδ∂x1)P−1/2

ε (|P−1/2
ε v|2σP−1/2

ε v) = 0,

subject to initial data

v|t=0 = v0(x1, x2) ≡ P 1/2
ε u0(x1, x2).
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Instead of (9), as before one finds the new conservation law

(104) ‖v(t, ·)‖2L2
x

= ‖P 1/2
ε u(t, ·), ‖2L2

x
= ‖P 1/2

ε u0‖2L2
x

= ‖v0‖2L2
x
,

where we recall that P 1/2
ε only acts in the x1-direction, via its Fourier symbol

P̂
s/2
1 (ξ) = (1 + ξ2

1)s/2, ξ1 ∈ R.

This suggests to work in the two-dimensional mixed Sobolev-type spaces Lp(Rx2 ;Hs(Rx1)), which

for any s ∈ R are defined through the following norm:

‖f‖Lpx2H
s
x1

:=
∥∥P s/21 f

∥∥
Lpx2L

2
x1

:=
(∫

R

(∫
R
|P s/21 f(x1, x2)|2 dx1

) p
2

dx2

) 1
p

.

We will also make use of the mixed space-time spaces LqtLpx2
Hs
x1

(I) for some time interval I, or simply

LqtL
p
x2
Hs
x1

when the interval is clear from context, see Section 1 of Chapter 2 for more notation.

We recall Strichartz admissibility and the corresponding Strichartz estimates from Section 2 of

Chapter 2 in the case of (d, k) = (2, 1). To this end, we say that a pair (q, r) is Strichartz admissible,

if

(105) 2
q

= 1
2 −

1
r
, for 2 6 r 6∞, 4 6 q 6∞.

Now, let (q, r), (γ, ρ) be two arbitrary admissible pairs. It is proved in Proposition 2.4 that there

exist constants C1, C2 > 0 independent of ε, such that

(106) ‖Sε(·)f‖
LqtL

r
x2H

− 2
γ

x1

6 C1‖f‖L2
x
,

as well as

(107)
∥∥∥∥∫ t

0
Sε(· − s)F (s) ds

∥∥∥∥
LqtL

r
x2H

− 2
q

x1

6 C2‖F‖
Lγ
′
t L

ρ′
x2H

2
γ
x1

.

Here, one should note the loss of derivatives in the x1-direction.

5.2. Global existence results. Using the Strichartz estimates stated above, we shall now

prove some L2-based global existence results for the solution v to (103). In turn, this will yield

global existence results (in mixed spaces) for the original equation (101) via the transformation

v = P
1/2
ε u. To this end, we first recall Theorem 1.1 in dimension two, in the case without self-

steepening δ = 0. In particular, for σ < 2 and u0 ∈ L2(Rx2 ;H1(Rx1)), there exists a unique



73

global-in-time solution u ∈ C(Rt;L2(Rx2 ;H1(Rx1))) to

(108) i(1− ε2∂2
x1

)∂tu+ ∆u+ |u|2σu = 0, u|t=0 = u0(x1, x2).

We shall see that our numerical findings in the next section indicate that this result is indeed sharp,

that is for σ > 2 global existence in general no longer holds.

In the next result, we shall take into account the effect of self-steepening, and rewrite (103) using

Duhamel’s formula:

(109) v(t) = Sε(t)v0 + i

∫ t

0
Sε(t− s)P−1/2

ε (1 + iδ∂x1)(|P−1/2
ε v|2σP−1/2

ε v)(s) ds ≡ Φ(v)(t).

To prove that Φ is a contraction mapping, the following lemma is key.

LEMMA 3.7. Let g(z) = |z|2σz with σ ∈ N. For t ∈ [0, T ] denote

(110) N (v)(t) := i

∫ t

0
Sε(t− s)P−1/2

ε (1 + iδ∂x1)g(P−1/2
ε v(s)) ds,

and choose the admissible pair (γ, ρ) =
( 4(σ+1)

σ , 2(σ + 1)
)
. Then for ε, δ > 0, it holds:

∥∥N (v)−N (v′)
∥∥
Lγt L

ρ
x2H

− 2
γ

x1

. ε−2(σ+1)(1 + δ)T 1−σ2
(
‖v‖2σ

Lγt L
ρ
x2H

− 2
γ

x1

+ ‖v′‖2σ
Lγt L

ρ
x2H

− 2
γ

x1

)
‖v − v′‖

Lγt L
ρ
x2H

− 2
γ

x1

.

Proof. First it is easy to check that

(γ, ρ) =
(4(σ + 1)

σ
, 2(σ + 1)

)
is admissible in the sense of (105). Moreover, since γ > 4 we have 2

γ <
1
2 , from which we infer that

H1− 2
γ (R) is indeed a normed Banach algebra, a fact to be used below. Using the Strichartz estimate

(107) we have

∥∥N (v)−N (v′)
∥∥
Lγt L

ρ
x2H

− 2
γ

x1

6 C2
∥∥P−1/2

ε

(
1 + iδ∂x1

)(
g(P−1/2

ε v)− g(P−1/2
ε v′)

)∥∥
Lγ
′
t L

ρ′
x2H

2
γ
x1

.

For simplicity we shall in the following denote u = P
−1/2
ε v, u′ = P

−1/2
ε v′ in view of (102). Keeping

t and x2 fixed we can estimate

∥∥P−1/2
ε

(
1 + iδ∂x1

)(
g(P−1/2

ε v)− g(P−1/2
ε v′)

)∥∥
H

2
γ
x1

6 ε−1‖
(
1 + iδ∂x1

)(
g(u)− g(u′)

)∥∥
H

2
γ
−1

x1

6 ε−1(1 + δ)‖g(u)− g(u′)‖
H

1− 2
γ

x1

,
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where in the last inequality we have used the fact that H1− 2
γ (R) ⊂ H

2
γ (R). Next, use again (96)

which together with the algebra property of H1− 2
γ (R) for σ ∈ N implies

‖g(u)− g(u′)‖
H

1− 2
γ

x1

.
(
‖u‖2σ

H
1− 2

γ
x1

+ ‖u′‖2σ
H

1− 2
γ

x1

)
‖u− u′‖

H
1− 2

γ
x1

. ε−2(σ+1)
(
‖v‖2σ

H
− 2
γ

x1

+ ‖v′‖2σ
H
− 2
γ

x1

)
‖v − v′‖

H
− 2
γ

x1

.

It consequently follows after Hölder’s inequality in x2, that we obtain

∥∥N (v)−N (v′)
∥∥
Lρx2H

− 2
γ

x1

. ε−(2σ+1)(1 + δ)
(
‖v‖2σ

Lρx2H
− 2
γ

x1

+ ‖v′‖2σ
Lρx2H

− 2
γ

x1

)
‖v − v′‖

Lρx2H
− 2
γ

x1

.

The result then follows after applying yet another Hölder’s inequality in t. �

This lemma allows us to prove the following global existence result for (101).

THEOREM 3.2 (Partial off-axis variation with parallel self-steepening). Let σ = 1 and δ =

(δ, 0)> for δ ∈ R. Then for any u0 ∈ L2(Rx2 ;H1(Rx1)) there exists a unique global solution

u ∈ C(Rt;L2(Rx2 ;H1(Rx1))) to (101).

Here, the restriction σ = 1 is due to the fact that this is the only σ ∈ N (required for the normed

algebra property above) for which the problem is subcritical. Indeed, in view of the estimate in

Lemma 3.7, the exponent 1− σ
2 > 0 yields a contraction for small times.

Proof. We seek to show that v 7→ Φ(v) is a contraction mapping in a suitable space. To this

end, we denote as before

Φ(v)(t) = Sε(t)v0 +N (v)(t),

where N (v) is given by (110). Let T,M > 0 and denote

YT,M ={v ∈ L∞([0, T );L2(R2)) ∩ L8([0, T );L4(Rx2 ;H− 1
4 (Rx1))) : ‖v‖L∞t L2

x
+ ‖v‖

L8
tL

4
x2H

− 1
4

x1

6M}.

The Strichartz estimates (106) and (107) together with Lemma 3.7 imply that for any admissible

pair (q, r) and solutions v, v′ ∈ YT,M that

‖Φ(v)− Φ(v′)‖
LqtL

r
x2H

− 2
q

x1

6 ‖Sε(t)(v0 − v′0)‖
LqtL

r
x2H

− 2
q

x1

+ ‖N (v)−N (v′)‖
LqtL

r
x2H

− 2
q

x1

6 C1‖v0 − v′0‖L2
x

+ C2
∥∥P−1/2

ε

(
1 + iδ∂x1

)(
g(P−1/2

ε v)− g(P−1/2
ε v′)

)∥∥
L

8
7
t L

4
3
x2H

1
4
x1

6 Cσ,ε
(
‖v0 − v′0‖L2

x
+ T 1/2M2‖v − v′‖

L8
tL

4
x2H

− 1
4

x1

)
.
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Choosing M = M(‖v0‖L2
x
) and T sufficiently small, it is clear that Φ is a contraction on YT,M .

Banach’s fixed point theorem and a standard continuity argument thus yield the existence of a unique

maximal solution v ∈ C([0, Tmax), L2(R2)) where Tmax = Tmax(‖v0‖L2
x
). Continuous dependence on

the initial data follows by classical arguments.

The conservation property (104) for v follows similarly as in the proof of Proposition 2.7 above and

we shall therefore only sketch its main steps below. By the unitary of Sε(·) in L2 we obtain

‖v(t)‖L2
x

= ‖v0‖L2
x

+ 2Re
〈
Sε(−t)N (v)(t), v0

〉
L2

x
+ ‖Sε(−t)N (v)(t)‖2L2

x
=: ‖v0‖L2

x
+ I1 + I2.

To show that I1 + I2 = 0, we use (95) and rewrite

I1 = −2Im
∫ t

0

〈
P−1/2
ε (1 + iδ∂x1)g(P−1/2

ε v)(s), Sε(s)v0
〉
L2
x
ds.

By duality in x1 and Hölder’s inequality in t and x2 we find that this quantity is indeed finite, since

|I1| 6 2‖P−1/2
ε (1 + iδ∂x1)g(P−1/2

ε v)‖
Lγ
′
t L

ρ′
x2H

2
γ
x1

‖Sε(·)v0‖
Lγt L

ρ
x2H

− 2
γ

x1

<∞.

Once again we find, after a lengthy computation (see Proposition 2.7 for more details), that

I2 = 2Re
∫ t

0

〈
P−1/2
ε (1 + iδ∂x1)g(P−1/2

ε v)(s),−iN (u)(s)
〉
L2

x
ds.

We express −iN (u)(s) using the integral formulation (109) and write

I2 = 2Re
∫ t

0

〈
P−1/2
ε (1 + iδ∂x1)g(P−1/2

ε v)(s), iSε(s)u0
〉
L2

x
ds

+
∫ t

0
Im ‖P−1/2

ε v(s)‖2σ+2
L2σ+2
x
− δRe

〈
g(P−1/2

ε v), ∂x1P
−1/2
ε v

〉
L2

x
(s) ds.

Here the second time integral vanishes entirely, and as in the full off-axis case, the latter term in the

integrand vanishes due to

Re
〈
g(P−1/2

ε v), ∂x1P
−1/2
ε v

〉
L2

x
= 2

(σ + 1)

∫
R

∫
R
∂x1(|P−1/2

ε v|2σ+2) dx1dx2 = 0.

In summary, we find that

I2 = 2Im
∫ t

0

〈
P−1/2
ε g(P−1/2

ε v)(s), Sε(s)u0
〉
L2

x
ds = −I1,

which finishes the proof of (104). We can thus extend v to become a global solution by repeated

iterations to conclude Tmax = +∞. Finally, we use that v = P
1/2
ε u to obtain a unique global-in-time

solution u ∈ C(Rt;L2(Rx2 ;H1(Rx1))) which finishes the proof. �
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REMARK 3.8. It is possible to treat the critical case σ = 2 using the same type of arguments as in

[27] (see also Section 4). Unfortunately, this will only yield local-in-time solutions up to some time

T = T (u0) > 0, which depends on the initial profile u0 (and not only its norm). Only for sufficiently

small initial data ‖u0‖L2
x2H

1
x1
< 1, does one obtain a global-in-time solution. But since it is hard to

detect small nonlinear effects numerically, we won’t be concerned with this case in the following. We

also mention the possibility of obtaining (not necessarily unique) global weak solutions for derivative

NLS, which has been done in [4] in one spatial dimension.

We note that Theorem 3.2 covers the situation in which a partial off-axis regularization acts par-

allel to the self-steepening. At present, no analytical result for the case where the two effects act

orthogonal to each other is available. However, numerically it is possible to study such a scenario.

To this end, we recall that from the physics point of view, both ε and | δ | have to be considered

as (very) small parameters. With this in mind, we study the time-evolution of (101) with σ = 1,

Gaussian initial data of the form (93), and a relatively small self-steepening, furnished by δ1 = 0

and δ2 = 0.1. In the case where ε = 0, it can be seen on the left of Fig. 15 that the L∞-norm of the

solution indicates a finite-time blow-up at t ≈ T = 0.1445. In the same situation with a small, but

nonzero ε = 0.1, one can see that, instead, oscillations appear within the L∞-norm of the solution

for t > T .
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Figure 15. L∞-norm of the solution to (101) with σ = 1, δ = (0, 0.1), and initial
data u0 = 4 exp−x2

1−x
2
2 : On the left for ε = 0, on the right for ε = 0.1.

Note that these oscillations appear to decrease in amplitude, which indicates the possibility of an

asymptotically stable final state as t→ +∞. A similar behavior can be seen for different choices of

parameters and also for a full, two-dimensional off-axis variation (not shown here).
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6. Numerical studies for the case with partial off-axis variation

In this section we present numerical studies for the model (101) with ε = 1 and different values of

the self-steepening parameter δ, as well as σ > 0. We will always use Nx1 = Nx2 = 210 Fourier

coefficients on the numerical domain Ω given by (86) with Lx1 = Lx2 = 3. The time step is

∆t = 10−2 unless otherwise noted. The initial data is the same as in (100), i.e. a numerically

constructed stationary state Q perturbed by respectively adding and subtracting small Gaussians.

6.1. The case without self-steepening. We shall first study the particular situation fur-

nished by equation (108) with ε = 1. It is obtained from the general model (76) in the case without

self-steepening δ1 = δ2 = 0, i.e. equation (6) from Chapter 2.

In the case σ = 1, the ground state perturbation in (100) with a “ + ” sign is unstable and results in

a purely dispersive solution with monotonically decreasing L∞-norm, see Fig. 16. The modulus of

the solution at time t = 2.5 is shown on the right of the same figure. Interestingly, the initial hump

appears to separate into four smaller humps and we thus lose radial symmetry of the solution. The

situation is qualitatively similar for perturbations corresponding to the “ − ” sign in (100) and we

thus omit a corresponding figure.
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Figure 16. Solution to (108) with ε = 1, σ = 1, and initial data (100) with a “ + ”
sign: On the left the L∞-norm in dependence of time, on the right the modulus of
u at t = 2.5.

The situation changes significantly for σ = 2, as can be seen in Fig. 17. While the L∞-norm of the

solution obtained from initial data (100) with the “− ” sign is again decreasing, the “ + ” sign yields

a monotonically increasing L∞-norm indicating a blow-up at t ≈ 0.64. The modulus of the solution

at the last recorded time t = 0.6405 is shown in Fig. 18 on the left. It can be seen that it is strongly
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Figure 17. Time-dependence of the L∞-norm of the solution to (108) with ε = 1,
σ = 2, and initial data (100): On the left, the case with a “ − ” perturbation; on
the right the case with “ + ” sign.

compressed in the x2-direction. The corresponding Fourier coefficients are shown on the right of the

same figure. They also indicate the appearance of a singularity in the x2-direction.

Figure 18. Solution to (108) for ε = 1, σ = 2 and initial data (100) with the “ + ”
sign: On the left the modulus of the solution at the last recorded time t = 0.6045;
on the right the corresponding Fourier coefficients of u given by û.

These numerical findings indicate that the global existence result stated in Theorem 1.1 is indeed

sharp. It also shows that the two-dimensional model with partial off-axis variation essentially behaves

like the classical one-dimensional focusing NLS in the unmodified x2-direction, that is the direction

in which Pε does not act. Recall that for the classical one-dimensional (focusing) NLS, finite-time

blow-up is known to appear as soon as σ > 2.

6.2. The case with self-steepening parallel to the off-axis variation. In this subsection,

we include the effect of self-steepening and consider equation (101) with ε = 1, δ2 = 0, and δ1 > 0.
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For σ = 1, the stationary state Qeit appears to be stable against all studied perturbations. Indeed,

the situation is found to be qualitatively similar to the case with full off-axis perturbations (except

for a loss of radial symmetry) and we therefore omit a corresponding figure.

When σ = 2, the stationary state no longer appears to be stable. However, we also do not have

any indication of finite-time blow-up in this case. Indeed, given a “ − ” perturbation in the initial

data (100), it can be seen on the left of Fig. 19 that the L∞-norm of the solution simply decreases

monotonically in time.
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Figure 19. Solution to (101) with ε = 1, σ = 2, and δ = (0.3, 0)>: On the left,
the L∞-norm of the solution obtained for initial data (100) with the “− ” sign, on
the right for the “ + ”, and in the middle |u| at t = 5 for the “− ” sign perturbation.

Notice, that there is still an effect of self-steepening visible in the modulus of the solution |u|, depicted

in the middle of the same figure. The behavior of the L∞-norm in the case of a “ + ” perturbation

is shown on the right of Fig. 19. It is no longer monotonically decreasing but still converges to zero.

For σ = 3, a “ − ” perturbation of (100) is found to be qualitatively similar to the case σ = 2 and

we therefore omit a figure illustrating this behavior. However, the situation radically changes if we

consider a perturbation with the “ + ” sign, see Fig. 20. The L∞-norm of the solution indicates a

blow-up for t ≈ 0.1555, where the code stops with an overflow error. In this particular simulation

we have used 104 time steps for t ∈ [0, 0.17] and Nx1 = 210, Nx2 = 211 Fourier modes (since the

maximum of the solution hardly moved, it was not necessary to use a co-moving frame). The solution

is still well-resolved in time at t = 0.155 since (9) remains numerically conserved up to the order

of 10−11. But despite the higher resolution in x2 used for this simulation, the Fourier coefficients

indicate a loss of resolution in the x2-direction. The modulus of the solution at the last recorded

time is plotted in Fig. 21. Note that |u| is still regular in the x1-direction in which P−1
ε acts, but it

has become strongly compressed in the x2-direction.
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Figure 20. L∞-norm of the solution to (101) with ε = 1, σ = 3, δ1 = (0.1, 0)>,
and initial data (100) with the “ + ” sign. On the right the modulus of the Fourier
coefficients of the solution at time t = 0.155.

Figure 21. The modulus of the solution to equation (101) with ε = 1, σ = 3,
δ1 = (0.1, 0), and initial data (100) with the “ + ” sign, plotted at time t = 0.155.

6.3. The case with self-steepening orthogonal to the off-axis variation. Finally, we

shall consider the same model equation (101) with ε = 1, but this time we let δ1 = 0 for non-

vanishing δ2 > 0. This is the only case, for which we do not have any analytical existence results

at present. For σ = 1, it can be seen that a “ − ” sign in the initial data (100) yields a purely

dispersive solution with monotonically decreasing L∞-norm, see Fig. 22 which also shows a picture

of |u| at t = 20. The “+” sign again leads to oscillations of the L∞-norm in time, indicating stability

of the ground state. The situation for σ = 2 is qualitatively very similar and hence we omit the

corresponding figure. For σ = 3 and a “ − ” sign in the initial data (100), we again find a purely

dispersive solution. However, the behavior of the solution obtained from a perturbation of Q with

the “ + ” sign is less clear. As one can see in Fig. 23, the solution is initially focused up to a certain

point after which its L∞-norm decreases again.
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Figure 22. Solution to (101) with ε = 1, σ = 1, and δ1 = (0, 1)>. On the left the
L∞-norm of the solution for initial data (100) with the “− ” sign, on the right for
the one with “ + ” sign, and in the middle |u| at time t = 20 for the “− ” sign.
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Figure 23. Solution to (101) with ε = 1, σ = 3, δ1 = (0, 0.1)>, and initial data
(100) with the “ + ” sign: On the left the L∞-norm of u as a function of time, on
the right the Fourier coefficients û at t = 0.25.

This simulation is done with Nx1 = 210, Nx2 = 211 Fourier modes and Nt = 104 time steps for

t ∈ [0, 0.5]. The relative conservation of the numerically computed quantity (9) is better than 10−10

during the whole computation indicating an excellent resolution in time. The spatial resolution is

indicated by the Fourier coefficients of the solution near the maximum of the L∞-norm as shown on

the right of Fig. 23. Obviously, a much higher resolution is needed in the x2-direction, but even near

the maximum of the L∞-norm the modulus of the Fourier coefficients decreases to the order of 10−5.

The modulus of the solution at time t = 0.5 can be seen in Fig. 24. It shows a strong compression

in the x2-direction but nevertheless remains regular for all times. This is in stark contrast to the

analogous situation with parallel self-steepening and off-axis variations, cf. Figures 20 and 21 above.
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Figure 24. The modulus of the solution to (101) with ε = 1, σ = 3, δ1 = (0, 0.1)>,
and initial data (100) with the “ + ” sign, plotted at t = 0.5.



CHAPTER 4

Rigorous derivation of nonlinear Dirac equations for wave

propagation in honeycomb structures 1

The outline of Chapter 4 is as follows. In Section 1 we recall some basic properties of honeycomb

lattice structures, the associated spectrum of Λ-periodic Schrödinger operators and Dirac Points.

Then, we shall perform a formal multi-scale expansion in Section 2, for which we will set up a

rigorous framework in Section 3. As a last step, we shall prove in Section 2 that the approximate

solutions thereby obtained are stable under the nonlinear time evolution of (19). Finally, we shall

briefly discuss the case of Hartree nonlinearities in Section 5.

1. Dynamics in Honeycomb Structures

1.1. Honeycomb lattice structures. In the context of electron wave dynamics in graphene,

we consider a physical domain where we fix identical carbon atoms in a periodic, two dimensional

hexagonal or honeycomb structure. In particular, a honeycomb structure H is the union of two

triangular sub-lattices ΛA = A + Λ and ΛB = B + Λ, cf. [43, 44], where A and B preserve the

rotational symmetry of the lattice. We recall the basic geometry of a triangular lattice Λ = Zv1⊕Zv2

spanned by the basis vectors

v1 = a


√

3
2

1
2

 , v2 = a


√

3
2

− 1
2

 , a > 0.

Due the symmetry, it is enough to focus on simply one such triangular lattice Λ. Also, since the

lattice Λ is a periodic structure which can be reproduced by proper translations along the basis

vectors and rotations by 2π/3, it makes sense to define a unit cell which defines the characteristic

symmetry of the lattice. We define the fundamental cell by the following region

Y = {θ1v1 + θ2v2 : 0 6 θj 6 1, j = 1, 2}.

1This Chapter has been excerpted from the following work:
Reproduced from [9] J. Arbunich and C. Sparber Rigorous derivation of nonlinear Dirac equations for wave propa-
gation in honeycomb structures. J. Math. Phys. 59 (2018), 011509., with the permission of AIP Publishing.
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The corresponding dual lattice Λ∗ = Zk1 ⊕ Zk2 is spanned by the dual basis vectors

k1 = q


1
2

√
3

2

 , k2 = q


1
2

−
√

3
2

 , q ≡ 4π
a
√

3
,

such that vj · kj = 2π. The Brillouin zone, Y ∗, is a choice of fundamental cell in the dual lattice

which we choose to be a regular hexagon centered at the origin. Due to symmetry, the vertices of

Y ∗ fall into two equivalence classes of points, K ≡ 1
3 (k1 + k2) and K′ ≡ −K = 1

3 (k2 − k1). The

other vertices of Y ∗ are generated by the action of 2π/3 rotation matrix R, given by

R =


− 1

2

√
3

2

−
√

3
2 − 1

2

 ,

so that

RK = K + k2, R2K = K− k1.

RK′ = K′ − k2, R2K′ = K′ + k1.

Lastly, we make clear the following functions of interest that live on our our lattice Λ, and the

following rotationally invariant subspaces that will be of particular importance in the analysis to

follow. Denote L2
per ≡ L2(R2/Λ), and say an element f ∈ L2

per is called Λ-periodic if it satisfies

f(y + v) = f(y), for all y ∈ R2 and v ∈ Λ.

We shall call a function k−pseudo periodic and denote f ∈ L2
k if it satisfies

f(y + v) = f(y)eik·v for all y ∈ R2 and v ∈ Λ.

Now, let K∗ be a vertex of K or K′ type. For any function f ∈ L2
K∗ , we introduce the unitary

operator

(111) R : f 7→ R[f ] = f(R∗y) = f(R−1y).

One checks that R has eigenvalues 1, τ, τ , where τ = e2πi/3.
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This consequently yields the following pairwise orthogonal subspaces to be used later on:

L2
K∗,1 ≡ {f ∈ L

2
K∗ : R[f ] = f}

L2
K∗,τ ≡ {f ∈ L

2
K∗ : R[f ] = τf}

L2
K∗,τ ≡ {f ∈ L

2
K∗ : R[f ] = τf}.

Moreover to follow, for functions living on the fundamental cell Y , we define the associated L2(Y )-

inner product by

〈f, g〉L2(Y ) = 1
|Y |

∫
Y

f(y)g(y) dy.

1.2. Periodic Schrödinger operators. We consider the Hamiltonian given by the following

periodic Schrödinger operator

(112) H = −∆ + Vper(y), y ∈ R2.

Physically, we can think of the−∆ as representing the kinetic energy, which classically is proportional

to the square of the momentum operator i∇. The Vper term represents the potential energy that

governs the electron’s interaction with the atoms that constitute the lattice. As in [43], we classify

this particular interaction between the particle and the honeycomb lattice by the following class of

smooth periodic potentials.

DEFINITION 4.1. Let Vper ∈ C∞(R2;R). Then Vper is called a honeycomb lattice potential if

there exists an y0 ∈ R2 such that Ṽ = Vper(y− y0) has the following properties :

(1) Ṽ is Λ-periodic.

(2) Ṽ is inversion symmetric, i.e., Ṽ (−y) = Ṽ (y).

(3) Ṽ is R−invariant, i.e., Ṽ (R∗y) = Ṽ (y).

REMARK 4.2. In physics experiments, honeycomb lattices are typically generated by the interfer-

ence of three laser beams. For a concrete example of such a potential, see, e.g., [1, 11].

Bloch-Floquet theory consequently asserts that the spectrum of H is given by (see [105]):

σ(H) =
⋃
m∈N

Em,

where the graph Em = {µm(k) : k ∈ Y ∗} is called the m-th energy band, or Bloch band.
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These bands are surfaces that describe the effective dispersion relation within the periodic struc-

ture. The eigenvalues µm(k) are thereby obtained through (17), the k−pseudo periodic eigenvalue

problem.

More directly, for fixed k ∈ Y ∗, we make the change of variables χ(y; k) = e−ik·yΦ(y,k). Then (17)

reduces to the periodic eigenvalue problem

(113)


(

(i∇− k)2 + Vper(y)
)
χ(y; k) = µ(k)χ(y; k), y ∈ Y,

χ(y + v; k) = χ(y; k), v ∈ Λ.

Hence in order to determine the spectrum of H, one must analyze the spectrum of the operator

given by

Hk = (i∇− k)2 + Vper(y) with domain D(Hk) = H2
per.

For generic smooth potentials Vper, one can show rather rigorously see [46], that Hk is self-adjoint

on H2
per with spectrum σ(Hk) ⊆

[
− supy∈R2 Vper(y),∞

)
. Furthermore, by the resolvent identity

one can show that

(
Hk − λI

)−1 =
(
I−

(
Hk − λI

)−1(
Vper − (1 + λ)I

))(
(i∇− k)2 + I

)−1

is a compact operator (in fact Hilbert-Schmidt in R2) when λ /∈ σ(Hk). This follows from [46]

since the operator acting on the outside is a bounded operator and the operator
(
(i∇− k)2 + I

)−1

is compact (and Hilbert-Schmidt in R2). Then by the spectral theorem for compact operators it

follows that the spectrum of the resolvent
(
Hk−λI

)−1 consists of a sequence of countable eigenvalues

converging to zero. Moreover, this ultimately gives that the eigenvalues of Hk (and hence H) satisfy

µm(k) → ∞ as m → ∞. It should also be noted that the eigenvalues are continuous and periodic

with respect to k ∈ Y ∗.

The associated eigenfunctions of (17), given by Φm(·; k) ∈ H2
per are k−pseudo periodic, and are

usually referred to as Bloch waves. For every fixed k ∈ Y ∗, the eigenfunctions form a complete or-

thonormal basis on L2(Y ). This consequently allows one to write the linear time evolution associated

to (19) as

Ψ(t,x) = e−iHt/εΨ0(x) =
∑
m>1

∫
Y ∗
e−iµm(k)t/ε〈Φm(· ; k),Ψ0〉L2(R2)Φm(x; k) dk,

for any initial data Ψ0 ∈ L2(R2).
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Figure 25. Characteristic band structure for Periodic Schrödinger operators in the
case of Honeycomb lattice potentials. The Dirac point labeled µ∗ at the edge of the
Brillouin zone K∗ ∈ Y ∗, note that the intersection should appear conical.

1.3. Dirac Points. Recall that electrons in an isolated (carbon) atom occupy particular atomic

orbitals. Each orbital has associated to it a discrete energy level. However, when many carbon

atoms coalesce into a crystalline structure like graphene, the number of orbitals increases and the

associated energy levels become very closely spaced, creating essentially a continuous energy band

Em, see Figure 25 above. Mathematically, we note that for any m ∈ N (on any band) there exists

a closed subset I ⊂ Y ∗ such that the functions µm(k) are real analytic functions for all k ∈ Y ∗/I,

and we have the following condition

µm−1(k) < µm(k) < µm+1(k), k ∈ Y ∗/I.

We call Em an isolated Bloch band if the condition above holds for all k ∈ Y ∗. Physically, such

an isolated band ensures the existence of a band gap, whose width corresponds to how the given

orbitals overlap. Lastly, it is known, that intersections of two adjacent bands only occur on a set of

measure zero, namely

|I| = |{k ∈ Y ∗ : µm(k) = µm+1(k)}| = 0.

It should be noted, that at such band crossings the eigenvalues and eigenfunctions are not differen-

tiable in k.

An important mathematical feature of honeycomb lattice potentials is the presence of such crossings

called Dirac points. These particular band crossings intersect conically and occur only at the vertices

of the Bruilloin zone. The following definition is taken from [43]:
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DEFINITION 4.3. Let Vper be a smooth honeycomb lattice potential. Then a vertex K = K∗ ∈ Y ∗

is called a Dirac point if the following holds: There exists m1 ∈ N, a real number µ∗, and strictly

positive numbers, λ and δ, such that:

(1) µ∗ is a degenerate eigenvalue of H with associated K∗-pseudo-periodic eigenfunctions.

(2) dim Nullspace(H − µ∗) = 2.

(3) Nullspace(H − µ∗) = span{Φ1,Φ2}, where Φ1 ∈ L2
K,τ and Φ2 ∈ L2

K,τ .

(4) There exists Lipschitz functions µ±(k),

µm1(k) = µ−(k), µm1+1(k) = µ+(k), µm1(K∗) = µ∗,

and E±(k), defined for |k−K∗| < δ, such that

µ+(k)− µ∗ = +λ|k−K∗|(1 + E+(k))

µ−(k)− µ∗ = −λ|k−K∗|(1 + E−(k)),

where |E±(k)| < C|k−K∗| for some C > 0.

For later purposes we also recall the following result from [43] which is computed using the Fourier

series expansion of Φ1,2, spanning the two-dimensional eigenspace associated to the Dirac point µ∗.

PROPOSITION 4.4. Let ζ = (ζ1, ζ2) ∈ C2 some vector. Then it holds

〈Φn, ζ · ∇Φn〉L2(Y ) = 0 , n = 1, 2,

2i〈Φ1, ζ · ∇Φ2〉L2(Y ) = 2i〈Φ2, ζ · ∇Φ1〉L2(Y ) = −λ#(ζ1 + iζ2),

2i〈Φ2, ζ · ∇Φ1〉L2(Y ) = −λ#(ζ1 − iζ2),

where λ# ∈ C is defined by λ# = 3|Y |
∑

m∈S c(m)2(1, i)T ·K∗m.

Here {c(m)}m∈S⊂Z2 denotes the sequence of L2
K∗,τ Fourier coefficients of the normalized eigenstate

Φ1(x) and K∗m = K∗ +m1k1 +m2k2.

If λ# 6= 0, then (4) in Definition 4.3 above holds with λ = |λ#|. For the present work, we shall thus

make the following assumption that is proved in [43] to be generically satisfied.

ASSUMPTION 2. Vper ∈ C∞(R2;R) is a smooth honeycomb lattice potential, which admits Dirac

points such that λ# 6= 0.
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2. Multi-scale asymptotic expansions

2.1. Formal derivation of the Dirac system. In this section, we shall follow the ideas in

[20, 53], and perform a formal multi-scale expansion of the solution to (19) under the Assumption

2. To this end, we seek a solution of the form

Ψε(t,x) ∼
ε→0

Ψε
N (t,x) := e−iλt/ε

N∑
n=0

εnun

(
t,x, x

ε

)
, λ ∈ R,

where each un(t,x,y) is supposed to be k−pseudo periodic with respect to the fast variable y = x
ε .

From now on, we denote the linear Hamiltonian by

(114) Hε = −ε2∆ + Vper

(x
ε

)
and formally plug the ansatz Ψε

N into (19). This yields

iε∂tΨε
N −HεΨε

N − εκ|Ψε
N |2Ψε

N = e−iλ(t/ε)
N∑
n=0

εnXn + ρ(Ψε
N ),

where the remainder is

(115) ρ (Ψε
N ) = e−iλ(t/ε)

3N+1∑
n=N+1

εnXn.

Introducing the operators

L0 = λ−H, L1 = i∂t + 2∇x · ∇y, L2 = ∆x,

with H given by (112), we find (after some lengthy calculations) that

Xn = L0un + L1un−1 + L2un−2 − κ
∑

j+k+l+1=n
06j,k,l<n

ujukul.

We can then proceed by solving Xn = 0 for all n 6 N , to obtain an approximate solution Ψε
N , which

formally solves (19) up to an error of order O(εN+1). To this end, the leading order equation is

L0u0 = 0, which means

Hu0 ≡ (−∆y + Vper(y))u0 = λu0.

In view of the assumption that u0 is k−pseudo periodic, this implies that λ = µ(k) is a Bloch

eigenvalue. We shall from now on fix k = K∗ to be a Dirac point satisfying Assumption 2, and
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denote the associated eigenvalue by λ = µ∗. The leading order amplitude u0 can thus be written as

(116) u0(t,x,y) =
2∑
j=1

αj(t,x)Φj(y; K∗),

where Φ1,2 span the two-dimensional eigenspace of µ∗, as in Definition 4.3.

To determine the leading order amplitudes α1, α2 we set X1 = 0 to obtain

(117) L0u1 = κ|u0|2u0 − L1u0.

Explicitly, the right hand side reads

(118) κ|u0|2u0 − L1u0 = −i
2∑

j,k,l=1

(
Φj∂tαj − 2i∇xαj · ∇yΦj + iκαjαkαlΦjΦkΦl

)
.

By Fredholm’s alternative, a necessary condition for the solvability of (117) is that the right hand

side 6∈ ker(L0). Denoting by P∗ = P2
∗ the L2(Y )−projection on the spectral subspace corresponding

to µ∗, we consequently require P∗(κ|u0|2u0 − L1u0) = 0, or, more explicitly:

2∑
j,k,l=1

〈
Φm,Φj∂tαj − 2i∇xαj · ∇yΦj + iκαjαkαlΦjΦkΦl

〉
L2(Y ) = 0, for m = 1, 2.

Applying Proposition 4.4 with ζ = ∇xαj ∈ C2 for j = 1, 2, respectively, we obtain the following

system of equations

∂tα1 + λ#
(
∂x1 + i∂x2

)
α2 + i

2∑
j,k,l=1

κ(j,k,l,1)αjαkαl = 0

∂tα2 + λ#
(
∂x1 − i∂x2

)
α1 + i

2∑
j,k,l=1

κ(j,k,l,2)αjαkαl = 0,

where λ# 6= 0 is as above, and

κ(j,k,l,m) = κ
〈
Φm,ΦjΦkΦl

〉
L2(Y ).

The latter can now be evaluated, using symmetry considerations of the action of the operator R,

defined in (111), when acting onto Bloch eigenfunctions. We recall that Φ1 ∈ L2
K,τ ,Φ2 ∈ L2

K,τ are

eigenfunctions for R such that

R[Φ1(y)] = Φ1(R∗y) = τΦ1(y), R[Φ2(y)] = Φ1(−R∗y) = τΦ2(y),

where τ = e2πi/3.
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To compute the integrals
〈
Φm,ΦjΦkΦl

〉
L2(Y ) we use the change of coordinates y = R∗w and apply

the relations above, to obtain:

κ(j,k,l,m) = κ

∫
R(Y )

Φm(R∗w)Φj(R∗w)Φk(R∗w)Φl(R∗w) dw

= κ

∫
Y

τmΦm(w)τjΦj(w)τkΦk(w)τlΦl(w) dw = τjτkτlτmκ(j,k,l,m),

so that

κ(j,k,l,m)

(
1− C(j,k,l,m)

)
= 0, C(j,k,l,m) = τjτkτlτm.

We consequently find that κ(j,k,l,m) vanishes, whenever C(j,k,l,m) 6= 1. A computation shows

C(j,j,j,m) = τjτ jτjτm = τjτm 6= 1 for m 6= j,

C(j,k,j,m) = C(k,j,m,j) = τ2
j τkτm = τkτkτm = τm 6= 1 for m = 1, 2,

C(j,j,k,m) = τjτ jτkτm = τkτm 6= 1 for k 6= m = j,

and we consequently deduce that the only non-vanishing coefficients are

b1 := κ(1,1,1,1) = κ(2,2,2,2) =
∫
Y

|Φ1(y)|4 dy =
∫
Y

|Φ2(y)|4 dy,

b2 := κ(1,1,2,2) = κ(1,2,2,1) = κ(2,2,1,1) = κ(2,1,1,2) =
∫
Y

|Φ1(y)|2|Φ2(y)|2 dy.

In summary, we find the nonlinear Dirac system as announced in the Introduction:
∂tα1 + λ#

(
∂x1 + i∂x2

)
α2 + iκ

(
b1|α1|2 + 2b2|α2|2

)
α1 = 0,

∂tα2 + λ#
(
∂x1 − i∂x2

)
α1 + iκ

(
b1|α2|2 + 2b2|α1|2

)
α2 = 0.

Obviously, this system needs to be supplemented with initial data α1,0, α2,0, which for simplicity

we assume to live in the Schwartz space S(R2).

2.2. Higher order corrections. Assuming that the leading order amplitudes α1, α2 satisfy

the nonlinear Dirac system allows us to proceed with our expansion and solve (117) for u1. We

obtain a unique solution in the form

(119) u1(t,x,y) = ũ1(t,x,y) + u⊥1 (t,x,y),

where ũ1 ∈ (kerL0) so that

(120) ũ1(t,x,y) =
2∑
j=1

βj(t,x)Φj(y,K∗)
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for some yet to be determined amplitudes β1,2, and

(121) u⊥1 (t,x,y) = −L−1
0
(
L1u0 − κ|u0|2u0

)
∈ (kerL0)⊥.

Here we denote by L−1
0 the partial inverse (or partial resolvent) of L0, i.e.

L−1
0 = (1− P∗)(µ∗ −H)−1(1− P∗).

Note that at t = 0, the function u⊥1 (0,x,y) cannot be chosen, but rather has to be determined from

the initial data α0,1, α0,2 according to the formula above.

Proceeding further, we determine the amplitudes β1, β2 by setting X2 = 0 so that

L0u2 = −L1u1 − L2u0 + κ
(
u2

0u1 + 2|u0|2u1
)
.

By the same arguments as before, we obtain the following system of linear, inhomogeneous Dirac

equations for β1,2 as the corresponding solvability condition:

(122)


∂tβ1 + λ#

(
∂x1 + i∂x2

)
β2 + i

2∑
j,k,l=1

κ(j,k,l,1)

(
αjβkαl + 2βjαkαl

)
= iΘ1

∂tβ2 + λ#
(
∂x1 − i∂x2

)
β1 + i

2∑
j,k,l=1

κ(j,k,l,2)

(
αjβkαl + 2βjαkαl

)
= iΘ2,

where the right hand side source terms can be written as

(123) Θn = ∆αn + 〈Φn, L1u
⊥
1 〉L2(Y ) − κ〈Φn, (u0u

⊥
1 + 2u0u

⊥
1 )u0〉L2(Y ).

It should be noted here that we have the freedom to choose vanishing initial data β1,2(0,x) = 0 for

the system (122), which nevertheless will have a non-vanishing solution due to the source terms.

In summary, this allows us to write u2(t,x,y) = ũ2(t,x,y) + u⊥2 (t,x,y), where ũ2 ∈ (kerL0) and

u⊥2 ∈ (kerL0)⊥. The latter is obtained by elliptic inversion on (kerL0)⊥, such that

(124) u⊥2 (t,x,y) = −L−1
0

(
L1u1 + L2u0 − κ

(
u2

0u1 + 2|u0|2u1
))
.

All higher order terms un can then be determined analogously. However, since we are mainly

interested in deriving the nonlinear Dirac system for the leading order amplitudes α1,2, we shall see

that it is sufficient to stop our expansion at N = 2. Note that in order to satisfy X2 = 0, one does

not need to determine the amplitudes within ũ2 ∈ (kerL0), which will simplify our treatment below.
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3. Mathematical framework for the approximate solution

3.1. Local well-posedness of the Dirac equations. Our aim in this subsection is to make

the formal multi-scale expansion of the foregoing section mathematically rigorous. In a first step, we

shall construct a unique local-in-time solution to the nonlinear Dirac model (21). We shall choose

data in the Sobolev space Hs(R2) with s > 1, with the understanding that for complex vector-valued

functions u = (u1, u2)(x) ∈ C2 we can define the Hs-norm via the Fourier transform and the bracket

〈·〉 = (1 + | · |2)1/2 such that

‖u‖2Hs =
∫
R2
〈ξ〉s

(
û(ξ) · û(ξ)

)
dξ = ‖u1‖2Hs + ‖u2‖2Hs ,

where the “ ·” represents the usual Euclidean inner product. To this end, we will work in the Banach

space X = C([0, T );Hs(R2)) for s > 1, endowed with the norm

‖u‖X ≡ sup
06t6T

(
‖u1(t)‖2Hs + ‖u2(t)‖2Hs

)1/2
.

Let us first rewrite the system (21) as a vectorial equation. Namely, let α(t,x) = (α1, α2)(t,x) and

define the matrix operator by

D(∇) =

 0 λ#
(
∂x1 + i∂x2

)
λ#
(
∂x1 − i∂x2

)
0

 .

Then we can write (21) in the following form

(125) ∂tα +D(∇)α = −iκF(α), α|t=0 = α0(x),

where F(α) is the nonlinearity discussed in the following lemma.

LEMMA 4.5. Consider the function

G(α1, α1, α2, α2) = b1
2
(
|α1|4 + |α2|4

)
+ 2b2|α1|2|α2|2,

with α = (α1, α2) ∈ Hs(R2)2. Then, the nonlinear vector field F(α) =

∂α1G

∂α2G

 is a map from

Hs(R2)2 → Hs(R2)2 for any s > 1.

Proof. We note that for s > 1, Hs(R2) is a Banach algebra so that we have

‖fg‖Hs 6 Cs‖f‖Hs‖g‖Hs , ∀f, g ∈ Hs(R2),
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which implies the trilinear estimate

‖fgh‖Hs 6 C2
s‖f‖Hs‖g‖Hs‖h‖Hs , ∀f, g, h ∈ Hs(R2).

One notices that for i 6= j that

∂αiG = b1|αi|2αi + 2b2|αj |2αi = b1αiαiαi + 2b2αjαjαi.

After use of the trilinear estimate gives for α ∈ Hs(R2) that

‖F(α)‖Hs 6
(
b1 + 2b2

)
C2
s‖α‖3Hs <∞.

�

Now that we can control the nonlinear term in Hs(R2), we shall determine the linear time evolution

governed by the continuous matrix semi-group acting on f ∈ S(R2), namely

(126) U(t)f(x) = e−tD(∇)f(x) ≡ F−1
(
e−tD(ξ)f̂(ξ)

)
(x),

where ξ = (ξ1, ξ2) represent the Fourier variables associated to x = (x1, x2) ∈ R2. By Fourier

transforming the linear part of (125), we obtain the following system of ODE

(127) ∂tα̂ = −D(ξ)α̂,

with the Fourier transformed matrix given by

D(ξ) =

 0 −λ#
(
iξ1 + ξ2

)
λ#
(
iξ1 + ξ2

)
0

 .

For each fixed ξ ∈ R2, one notices that D(ξ) is a skew-Hermitian matrix such that the conjugate

transpose D(ξ)† := D(ξ)
T

= −D(ξ). Any skew-Hermitian matrix is diagonalizable with purely

imaginary eigenvalues, in this case, given by ±i|λ#|
√
ξ2
1 + ξ2

2 . Further, it is clear from standard

ODE theory that the solution of (152) is given by the matrix exponential

α̂(ξ, t) = e−tD(ξ)α̂0(ξ).

We shall explicitly determine the exponential matrix below, but the fact that −D(ξ) is skew-

Hermitian implies that the exponential map e−tD(ξ) is a unitary matrix for t ∈ R. Furthermore

U(t) = e−tD(∇) is a strongly continuous unitary group on Hs(R2) for s > 1.
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To see this we compute explicitly

‖U(t)u‖2Hs = ‖〈ξ〉s/2e−tD(ξ)û‖2L2 =
∫
R2
〈ξ〉s

(
e−tD(ξ)û · e−tD(ξ)û

)
dξ

=
∫
R2
〈ξ〉s

(
e−t
(
D(ξ)†+D(ξ)

)
û · û

)
dξ = ‖u‖2Hs .

Lastly, in order to determine the propagator explicitly, we must diagonalize D(ξ). With the eigen-

values above, one can construct the matrix of eigenvectors so that

E(ξ) =

i|λ#|
√
ξ2
1 + ξ2

2 i|λ#|
√
ξ2
1 + ξ2

2

λ#
(
iξ1 + ξ2

)
−λ#

(
iξ1 + ξ2

)
 ,

and the respective inverse for ξ 6= 0 given by

E−1(ξ) =

 1
2i|λ#|

√
ξ2
1+ξ2

2

−λ#(iξ1−ξ2)
2|λ#|2(ξ2

1+ξ2
2)

1
2i|λ#|

√
ξ2
1+ξ2

2

λ#(iξ1−ξ2)
2|λ#|2(ξ2

1+ξ2
2)

 .

In this regard we note that we can formally compute the exponential matrix as follows

e−tD(ξ) = E(ξ)

eit|λ#|
√
ξ2
1+ξ2

2 0

0 e−it|λ#|
√
ξ2
1+ξ2

2

E−1(ξ)

=

 cos (|λ#ξ|t) λ#(iξ1+ξ2) sin(|λ#ξ|t)
|λ#ξ|

λ#(iξ1+ξ2) sin(|λ#ξ|t)
|λ#ξ|

λ2
#

|λ#|2 cos (|λ#ξ|t)

 .

In this way we can define the linear propagator exactly via (126) and the above expression. Together

with the foregoing lemma, we can use the above to prove the following local well-posedness result.

PROPOSITION 4.6. For any α0 ∈ S(R2)2 there exists a time T > 0 and a unique maximal

solution α ∈ C
(
[0, T );Hs(R2)

)
∩ C1((0, T );Hs−1(R2)

)
for all s > 1 to (125). Moreover, it holds

‖α1(t, ·)‖L2 + ‖α2(t, ·)‖L2 = const. ∀t ∈ [0, T ).

Proof. This follows by a fixed point argument applied to Duhamel’s integral formulation of

(125), i.e.

(128) α(t) = U(t)α0 − iκ
∫ t

0
U(t− τ)F(u(τ))dτ =: Φ(α)(t).

Indeed, using Lemma 4.5 and the unitarity of U(t) on Hs for s > 1, one easily sees that for any

α0 ∈ Hs(R2) such that ‖α0‖Hs 6 R, the functional Φ : X → X is a contraction mapping on
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K = {α ∈ X : ‖α‖X 6 2R}, provided T = 1
8(b1 + 2b2)R2C2

s

> 0. The asserted regularity in time

then follows by differentiating the equation. Finally, the identity for mass conservation is obtained

by multiplying the equations by αj , integrating and taking the imaginary part. �

With this result in hand, we can also obtain local well-posedness for the inhomogeneous linear Dirac

equation (122) on the same time interval, namely we have

(129) β ∈ C
(
[0, T );Hs−2(R2)

)
.

This follows in view of the fact that the coefficients α ∈ C([0, T );L∞(R2)) and the source terms

satisfy θ ∈ C
(
[0, T );Hs−2(R2)

)
. The latter can be seen from (123) which involves the Laplacian of

u0 and thus we lose two derivatives.

REMARK 4.7. The main obstacle in obtaining global well-posedness of the nonlinear Dirac equation

(125) is the fact that the corresponding energy does not have a definite sign, i.e.,

E(t) = Im
(
λ#

∫
R2
α2(∂x1 + i∂x2)α1 dx

)
− κ

4

∫
R2
b1|α|2 + 4b2|α1|2|α2|2 dx.

So far, the existence of global in time solutions is thus restricted to small initial data cases, see,

e.g., [14, 40, 41, 83] and the references therein. Also due to the fact that (125) is also a massless

equation proves to be an additional complication. Since the spectral subspaces for the corresponding

free Dirac operator are no longer separated, this requires considerable more care than the case with

nonzero mass.

3.2. Estimates on the approximate solution and the remainder. Formally, the approx-

imate solution Ψε
N derived in Section 2 solves (19) up to errors of order O(εN+1). To make this

error estimate rigorous on time-scales of order O(1), we shall prove a nonlinear stability result in

Section 2 below. The latter will require us to work with an approximate solution of order N > 1.

We consequently need to work (at least) with Ψε
2. Although as was already remarked above, in order

to solve (19) up to reminders of O(ε2), one does not need to determine the highest order amplitudes

within ũ2 ∈ (kerL0). We shall thus set them identically equal to zero and work with an approximate

solution of the following form

(130)

Ψε
app(t,x) = e−iµ∗t/ε

(
u0 + εu1 + ε2u2

)(
t,x, x

ε

)
= e−iµ∗t/ε

2∑
j=1

(
αj + εβj

)
(t,x)Φj

(x
ε

; K∗
)

+ εju⊥j

(
t,x, x

ε

)
,
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where α1,2 ∈ C
(
[0, T );Hs(R2)

)
and β1,2 ∈ C

(
[0, T );Hs−2(R2)

)
for s > 1, are the leading and first

order amplitudes guaranteed to exist by the results of the previous subsection. The term of order

O(ε2) within this approximation is solely determined by elliptic inversion and thereby depends on

the two lower order terms.

REMARK 4.8. The nonlinear Dirac system (125) has been formally derived in [44] and plays the

same role as the coupled mode equations derived in [53], as well as the semi-classical transport

equations derived in [16, 20]. This becomes even more apparent when we recall that the Bloch waves

Φ1,2 can be written as

Φ1,2

(x
ε

)
= χ1,2

(x
ε

)
eiK∗·x/ε,

where χ1,2(·) is purely Λ-periodic. This shows that (20) is of the form of a two-scale Wentzel-

Kramers-Brillouin (WKB) ansatz, first introduced in [16] involving a highly oscillatory phase func-

tion

S(t, x) = K∗ · x− µ∗t.

The latter is seen to be the unique, global-in-time, smooth solution (i.e., no caustics) of the semi-

classical Hamilton-Jacobi equation

∂tS + µ(∇S) = 0, S(0,x) = K∗ · x.

The fact that the phase function S does not suffer from caustics, allows us to prove that our approx-

imation (130) holds for (finite) time-intervals of order O(1), bounded by the existence time of (21).

In contrast to that, it is known from earlier results, cf. [16, 20], that caustics within S lead to the

breakdown of a single-phase WKB approximation. Also note that the group velocity ∇S = K∗ being

constant allows us to localize around Dirac points.

Now, since our approximate solution Ψε
app involves highly oscillatory Bloch eigenfuntions, we cannot

expect to obtain uniform-in-epsilon estimates in the usual Sobolev spaces Hs(R2). We shall therefore

work in the following ε-scaled spaces, as used in [20, 53].

DEFINITION 4.9. Let s ∈ Z, 0 < ε 6 1, and f ∈ Hs
ε (R2) and define the Hs

ε (R2)−norm by

‖f‖2Hsε :=
∑
|γ|6s

‖(ε∂x)γf‖2L2 .

A family fε is bounded in Hs
ε (R2) whenever

sup
0<ε61

‖fε‖Hsε <∞.
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We note that in Hs
ε (R2) the following Gagliardo-Nirenberg inequality holds

(131) ∀s > 1 ∃C∞ > 0 : ‖f‖L∞ 6 C∞ε−1‖f‖Hsε ,

where the “bad” factor ε−1 is obtained by scaling.

The following proposition then collects the necessary regularity estimates for our approximate solu-

tion and its corresponding remainder.

PROPOSITION 4.10. Let Vper satisfy Assumption 2 and choose S ∈ (5,∞) such that S > s + 4

for any s > 1. Let

α ∈ C
(

[0, T ), HS(R2)
)
, β ∈ C

(
[0, T ), HS−2(R2)

)
be the solutions to (non-)linear Dirac systems (125) and (122), respectively.

Then, the approximate solution Ψε
app(t, ·), given in (130), satisfies the following estimates for all

t ∈ [0, T ) and for any |γ| 6 s:

‖(ε∂)γΨε
app(t, ·)‖L∞ 6 Ca, ‖Ψε

app(t, ·)‖Hsε 6 Cb, ‖ρ(Ψε
app)(t, ·)‖Hsε 6 Crε

3.

with Ca, Cb, Cr > 0 independent of ε.

Proof. To prove the estimates of the lemma, we need to first establish the regularity of

un(t) = un
(
t,x,y

)
for n = 0, 1, 2. We note first that Assumption 2 implies that the eigenfunc-

tions Φj(· ; K∗) ∈ C∞(Y ) for j = 1, 2, cf. [105]. We shall then prove the following, preliminary

estimate for t ∈ [0, T )

(132) un(t) ∈ HS−3(R2)× C∞K∗(Y ), n = 0, 1, 2,

where C∞K∗(Y ) is the space of smooth K∗−pseudo-periodic functions on Y . To this end, we have for

t ∈ [0, T ) that

u0(t) ∈ HS(R2)× C∞K∗(Y ),

due to (116) and Proposition 4.6. Next, recall that u1 is of the form (119) with ũ1 and u⊥1 given by

(120) and (121), respectively. In view of (120) and (129), we directly infer

ũ1(t) ∈ HS−2(R2)× C∞K∗(Y ).

Moreover, since L−1
0 : L2(Y )→ H2

per(Y ) and L1 = i∂t + 2∇x · ∇y it follows from (117) that

u⊥1 (t) ∈ HS−1(R2)× C∞K∗(Y ),
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and thus

u1(t) ∈ HS−2(R2)× C∞K∗(Y ),

since Hs(R2) ⊂ Hs−1(R2) for all s > 0. Lastly, we recall that u2 has the same type of structure

with u⊥2 given by (124). Similarly, as before it then follows that

u2(t) ∈ HS−3(R2)× C∞K∗(Y ).

In summary, this yields (132) which implies un
(
t, ·, ·ε

)
∈ HS−3

ε

(
R2) for n = 0, 1, 2. Hence it follows

that for any s > 1

un

(
t, ·, ·

ε

)
∈ Hs

ε

(
R2), n = 0, 1, 2,

whenever S − 3 > s. Moreover it follows that

‖Ψapp(t, ·)‖Hsε 6
2∑

n=0
εn‖un‖Hsε 6

2∑
n=0
‖un‖HS−3

ε
= Cb.

Having established this, our next step is to prove the first inequality of the lemma. It suffices to

show that there exists a constant C0 > 0 such that

(133)
∥∥∥(ε∂)γu0

(
t, ·, ·

ε

)∥∥∥
L∞
6 C0

holds for all ε ∈ (0, 1), |γ| 6 s, and t ∈ [0, T ). Since u0 is of the form (116), we need only to show

that ∥∥∥(ε∂)γ
(
α1,2(t, ·)Φ1,2

( ·
ε

; K∗
))∥∥∥

L∞
6 C,

where C is a constant independent of epsilon. By the Leibniz rule one has

(ε∂)γ
(
α1,2(t,x)Φ1,2

(x
ε

; K∗
))

=
∑
|σ|6|γ|

|γ|
σ

 (ε∂)σα1,2(t,x) · (ε∂)σ−γΦ1,2

(x
ε

; K∗
)
,

and we can thus estimate

∥∥∥(ε∂)γ
(
α1,2(t, ·)Φ1,2

( ·
ε

; K∗
))∥∥∥

L∞
6 C1

∑
|σ|6|γ|

∥∥∥(ε∂)σα1,2(t, ·)
∥∥∥
L∞

∥∥∥(ε∂)σ−γΦ1,2

( ·
ε

; K∗
)∥∥∥

L∞

6 C2

∥∥∥Φ1,2

(
·; K∗

)∥∥∥
C
|γ|
K∗

∑
|σ|6|γ|

∥∥∥∂σα1,2(t, ·)
∥∥∥
L∞
6 C3

∥∥∥α1,2(t, ·)
∥∥∥
H2+|γ|

6 C,

where the second to last inequality follows by Sobolev embedding. Hence (133) follows by the

triangle inequality. For n = 1, 2, one invokes (131) directly to obtain for |γ| 6 s that

‖(ε∂)γun
(
t, ·, ·

ε

)
‖L∞ 6 C∞ε−1‖un‖Hm+|γ|

ε
6 ε−1‖un‖Hm+s 6 ε−1‖un‖HS−3 6 ε−1Cn,
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provided that m > 1 and 1 + s < S − 3, which implies S > s + 4 which gives the condition stated

above. The desired inequality then follows, since

‖(ε∂)γΨε
app(t, ·)‖L∞ 6 C0 +

2∑
n=1

εn−1
∥∥∥(ε∂)γun

(
t, ·, ·

ε

)∥∥∥
L∞
6 Ca,

where Ca is a constant independent of epsilon. One notices that the last inequality follows from the

fact that for n = 3, . . . , 7: Xn ∈ Hs
ε (R2) and so

‖ρ(Ψapp)(t, ·)‖Hsε 6
7∑

n=3
εn‖Xn‖Hsε 6 Crε

3.

�

With these estimates at hand, we can now prove the stability of our approximation.

4. Nonlinear stability of the approximation

Before we prove the nonlinear stability of our approximation, we recall that it was proved in [53],

that the linear Schrödinger group

(134) Sε(t) := e−iH
εt/ε

generated by the periodic Hamiltonian Hε defined in (114) satisfies

(135) ‖Sε(t)f‖Hsε 6 Cs‖f‖Hsε for all t ∈ R and all ε ∈ (0, 1),

where Cs > 0 is independent of ε. To this end, one uses the fact that Vper is assumed to be

smooth and periodic (as guaranteed by Assumption 2). Using this, it is straightforward to obtain

the following basic well-posedness result for nonlinear Schrödinger equations.

LEMMA 4.11. Let Vper satisfy Assumption 2 and Ψε
0 ∈ Hs

ε (R2), for s > 1. Then there exists a

T ε > 0 and a unique solution Ψε ∈ C([0, T ε);Hs
ε (R2)) to the initial value problem (19).

Proof. In view of (135), the proof is a straightforward extension of the one given in, e.g., [102,

Proposition 3.8] for the case without periodic potential. �

REMARK 4.12. Note that this result does not preclude the possibility that T ε → 0+, as ε → 0+.

However, it will be a by-product of our main theorem below that this is not the case (at least not for

the class of initial data considered in this work).
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As a final preparatory step, we recall the following Moser-type lemma proved in [93, Lemma 8.1.1].

LEMMA 4.13. Let R > 0, s ∈ [0,∞), and N (z) = κ|z|2z with κ ∈ R. Then there exists a

Cs = Cs(R, s, d, κ) such that if f satisfies

‖(ε∂)γf‖L∞ 6 R ∀|γ| 6 s,

and g satisfies

‖g‖L∞ 6 R,

then

‖N (f + g)−N (f)‖Hsε 6 Cs‖g‖Hsε

In contrast to other estimates (e.g., Schauder etc.), the above result has the advantage that we

obtain a linear bound on the nonlinearity, a fact we shall use in the proof below. Indeed, we are

now in the position to prove our main result.

THEOREM 4.1. Let Vper satisfy Assumption 2, let α ∈ C([0, T ), HS(R2)) be a solution to (21)

and β ∈ C([0, T ), HS−2(R2)) be a solution to (122) for some S > s+ 4 with s > 1. Finally, assume

that there is a c > 0 such that the initial data Ψε
0 of (19) satisfies

∥∥∥Ψε
0 −

(
u0 + εu1

) (
0, ·, ·

ε

)∥∥∥
Hsε

6 cε2.

Then, for any T∗ ∈ [0, T ) there exists an ε0 = ε0(T∗) ∈ (0, 1) and a constant C > 0, such that for

all ε ∈ (0, ε0), the solution Ψε ∈ C([0, T∗);Hs
ε (R2)) of (19) exists and moreover

sup
06t6T∗

∥∥∥Ψε(t, ·)− e−iµ∗t/ε
(
u0 + εu1

) (
t, ·, ·

ε

)∥∥∥
Hsε

6 Cε2.

Proof. Consider the difference in the exact and approximate solution ϕε = Ψε − Ψε
app, then

the difference ϕε(t,x) satisfies

i∂tϕ
ε = 1

ε
Hεϕε +

(
g(Ψε

app + ϕε)− g(Ψε
app)

)
− 1
ε
ρ(Ψε

app), ϕε|t=0 = ϕε0,

where Hε is defined in (114), the nonlinearity is g(z) = κ|z|2z, and ρ(Ψε
app) is the remainder obtained

in (115) for N = 2. We denote wε(t) := ‖ϕε(t)‖Hsε and first note by assumption that

wε(0) ≡ ‖ϕε0‖Hsε 6
∥∥∥Ψε(0, ·)−

(
u0 + εu1

) (
0, ·, ·

ε

)∥∥∥
Hsε

+ ε2‖u⊥2 (0, ·)‖Hsε 6 c̃ε
2,
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for some constant c̃ ∈ R. We shall prove that there exists C̃ > 0, ε0 ∈ (0, 1), such that for all

ε ∈ (0, ε0] that wε(t) 6 C̃ε2 for t ∈ [0, T∗].

To this end, we rewrite the equation above using Duhamel’s principle, i.e.

ϕε(t) =Sε(t)ϕε0 − i
t∫

0

Sε(t− τ)
(
g
(
Ψε

app(τ) + ϕε(τ))− g(Ψε
app(τ)

))
dτ

+ i

ε

t∫
0

Sε(t− τ)ρ(Ψε
app(τ)) dτ,

where Sε(t) is the Schrödinger group (134). Now, using the propagation estimate (135) together

with the estimate on the remainder stated in Proposition 4.10, we obtain

wε(t) 6 Cl(c̃+ CrT∗)ε2 + Cl

t∫
0

∥∥g(Ψε
app(τ) + ϕε(τ)

)
− g
(
Ψε

app(τ)
)∥∥
Hsε

dτ.

for all t 6 T∗.

Set C̃ := Cl(c̃ + CrT∗)eClCsT∗ and choose M > max{c̃, C̃} such that Mε2 > c̃ε2 > wε(0). Since

wε(t) is continuous in time, there exists, for every ε ∈ (0, 1), a positive time tεM > 0, such that

wε(t) 6 ε2M for t 6 tεM . The Gagliardo-Nirenberg inequality (131) then yields for s > 1

‖ϕε(t)‖L∞ 6 ε−1C∞‖ϕε(t)‖Hsε = ε−1C∞w
ε(t) 6 εC∞M

for t 6 tεM . Hence there exists an ε0 ∈ (0, 1), such that

‖ϕε(t)‖L∞ 6 Ca,

for ε ∈ (0, ε0] and t 6 tεM . By Proposition 4.10 we also have

‖(ε∂)γΨapp(t, ·)‖L∞ 6 Ca

for |γ| 6 s, ε ∈ (0, 1), and t < T . Thus we are in a position to apply the Moser-type Lemma 4.13

with R = Ca to obtain

wε(t) 6 Cl(c+ CrT∗)ε2 + ClCs

t∫
0

wε(τ) dτ, for ε ∈ (0, ε0] and t 6 tεM .

Gronwall’s lemma then yields

wε(t) 6 Cl(c̃+ CrT∗)ε2eClCst 6 C̃ε2 < M for all ε ∈ (0, ε0] and t 6 T∗.
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Hence for any choice of T∗, by continuity, we may extend further in time in that tεM ≥ T∗, and so

we have proved that for any T∗ < T :

sup
06t6T∗

wε(t) ≡ sup
06t6T∗

‖Ψε(t, ·)−Ψε
app(t, ·)‖Hsε 6 C̃ε

2.

Another triangle inequality, then yields the desired result. �

This theorem implies the approximation result announced in (20), uniformly on finite-time intervals

bounded by the local existence time of (125), provided the initial data is sufficiently well prepared,

i.e. up to errors of order O(ε2).

REMARK 4.14. Unfortunately, our proof requires us to work with an approximate solution of order

O(ε2), in which we need to control also the first order corrector ∝ u1. In turn, this requires the initial

data to be somewhat better than one would like it to be. The reason for this is the scaling factor ε−1

appearing in the Gagliardo-Nirenberg inequality (131). It is conceivable that this is merely a technical

issue which can be overcome by the use of a different functional framework. For example, the authors

in [36, 37] work in a Wiener-type space for the Bloch-transformed solution and its approximation.

5. The case of Hartree nonlinearities

In this section, we shall briefly discuss the case of semiclassical NLS with Hartree nonlinearity, i.e.,

instead of (19), we consider

(136) iε∂tΨε = −ε2∆Ψε + Vper

(x
ε

)
Ψε + εκ

(
1
| · |
∗ |Ψε|2

)
Ψε, Ψε

|t=0 = Ψε
0(x).

This model describes the (semi-classical) dynamics of electrons inside a graphene layer, under the

influence of a self-consistent electric field. We again seek an asymptotic expansion of the form

Ψε(t,x) ∼
ε→0

e−itµ∗/ε
2∑

n=0
εnun

(
t,x, x

ε

)
,

where as before the un are assumed to be k−pseudo periodic with respect to the fast variable. By

the same procedure as in Section 2, we obtain that

u0(t,x,y) =
2∑
j=1

αj(t,x)Φj(y; K∗).

Plugging this into the Hartree nonlinearity, yields the following nonlinear potential

V ε(t,x) = 1
| · |
∗

2∑
j,k=1

(
αjαkΦjΦk

)(
t, ·, ·

ε

)
,
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which unfortunately does not directly exhibit the required two-scale structure. However, we shall

prove the following averaging result.

LEMMA 4.15. Let αj(t,x) ∈ Hs(R2), for s > 1, then

lim
ε→0

V ε(t,x) =
( 1
| · |
∗
(
|α1|2 + |α2

∣∣2))(t,x).

Proof. We recall that Bloch eigenfunctions concentrated at a Dirac point have a Fourier series

expansion of the following form, cf. [43]:

Φ1(y,K∗) =
∑

m∈Z2

c(m)eiK
∗
m·x and Φ2(x,K∗) = Φ1(−x,K∗) =

∑
m∈Z2

c(m)eiK
∗
m·x,

where K∗m = K∗ +m1k1 +m2k2 = K∗ + km.

By orthogonality and Parseval’s identity one finds the following relations to be used below

∑
m∈Z2

|c(m)|2 =
∫
Y

|Φ1(x)|2 dx = 1,

∑
m∈Z2

c(m)2 = 〈c(m), c(m)〉`2(Z2) =
∫
Y

Φ1(x)Φ2(x) dx = 0,

∑
m∈Z2

c(m)2 = 〈c(m), c(m)〉`2(Z2) =
∫
Y

Φ2(x)Φ1(x) dx = 0.

Next, we decompose the nonlinear potential term as follows

V ε = V ε1 + V ε2 ≡
1
| · |
∗

2∑
j=1
|αj |2|Φj |2 + 1

| · |
∗
∑
j 6=k

αjαkΦjΦk.

Explicitly, we find the former term

V ε1 (t,x) =
∫
R2

(∣∣α1(t,η)
∣∣2∣∣Φ1

(η

ε

)∣∣2 +
∣∣α2(t,η)

∣∣2∣∣Φ2

(η

ε

)∣∣2) dη∣∣x− η
∣∣

=
∑

m,m′∈Z2

c(m)c(m′)
∫
R2

(∣∣α1(t,η)
∣∣2 +

∣∣α2(t,η)
∣∣2)ei(km−m′ ·η)/ε dη∣∣x− η

∣∣ ,
and similarly for the latter term that

V ε2 (t,x) =
∫
R2

(
α1(t,η)α2(t,η)Φ1

(η

ε

)
Φ2

(η

ε

)
+ α1(t,η)α2(t,η)Φ1

(η

ε

)
Φ2

(η

ε

)) dη∣∣x− η
∣∣

=
∑

m,m′∈Z2

c(m)c(m′)
∫
R2
α1(t,η)α2(t,η)ei(km−m′ ·η)/ε dη∣∣x− η

∣∣
+

∑
m,m′∈Z2

c(m)c(m′)
∫
R2
α1(t,η)α2(t,η)e−i(km−m′ ·η)/ε dη∣∣x− η

∣∣ .
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Now, since the kernel 1
|·| in two spatial dimensions is integrable at the origin and since α1,2 ∈

L2(R2) ∩ L∞(R2), the Riemann-Lebesgue lemma implies that as ε → 0, all ε−oscillatory terms

vanish, i.e. all terms for which m 6= m′. In view of the above identities for the Fourier coefficients

we thus find

lim
ε→0

V ε1 (t,x) =
∑

m∈Z2

|c(m)|2
∫
R2

(∣∣α1(t,η)
∣∣2 +

∣∣α2(t,η)
∣∣2) dη∣∣x− η

∣∣ =
(

1
| · |
∗
(∣∣α1

∣∣2 +
∣∣α2
∣∣2))(t,x),

whereas

lim
ε→0

V ε2 (t,x) =
∑

m∈Z2

c(m)2
∫
R2
α1(t,η)α2(t,η) dη∣∣x− η

∣∣ +
∑

m∈Z2

c(m)2
∫
R2
α1(t,η)α2(t,η) dη∣∣x− η

∣∣ = 0,

since both sums vanish individually by the above considerations. �

We therefore expect that as ε→ 0, the dynamics of WKB waves spectrally localized around K∗ are

governed by the following Dirac-Hartree system:
∂tα1 + λ#

(
∂x1 + i∂x2

)
α2 = −iκ

(
1
| · |
∗
(∣∣α1

∣∣2 +
∣∣α2
∣∣2))α1,

∂tα2 + λ#
(
∂x1 − i∂x2

)
α1 = −iκ

(
1
| · |
∗
(∣∣α1

∣∣2 +
∣∣α2
∣∣2))α2,

The Cauchy problem for this system has been rigorously studied in [60] as an ad-hoc model for

electrons in graphene (see also [62, 88] for related results). Our analysis above indicates that this

is indeed the correct model and we believe that a fully rigorous proof can be achieved along the

same lines as in the case of a cubic nonlinearity. However, a rigorous averaging argument for the

required second order approximate solution would require considerably more work, a direction we

do not want to pursue here.

REMARK 4.16. Let us finally note that while the Hartree nonlinearity is equivalent to a coupling

with a Poisson equation −∆V = |Ψε|2 in three spatial dimensions, this is no longer the case in 2D.

If one were to pursue the coupled system instead of (136), the effective model obtained would be a

Dirac-Poisson system as studied in [28].



CHAPTER 5

Stability and Instability of rotating Bose-Einstein

condensates 1

From the dialogue in the Introduction, we recall briefly the Cauchy problem for the Gross–Pitaevskii

(GP) equation of interest which models rotating trapped BEC, with ψ = ψ(t,x) the wave function

of the condensate, given by

(137) i∂tψ = −1
2∆ψ + V (x)ψ + a|ψ|2σψ − (Ω · L)ψ , ψ|t=0 = ψ0(x),

where V (x) is the harmonic potential given in (23) and ω ≡ min
j=1,...,d

{ωj} is the smallest trapping

frequency. Here we also recall our underlying criticality assumption for well-posedness such that

a > 0 (defocusing) and 0 < σ < 2
(d−2)+

, or a < 0 (focusing) and 0 < σ < 2
d . This yields global

existence of solutions in the space

Σ = {u ∈ H1(Rd) : |x|u ∈ L2(Rd)},

which conserves the L2-norm

(138) N(ψ(t, ·)) =
∫
Rd
|ψ(t,x)|2 dx = N(ψ0) ∀ t ∈ R,

and the corresponding GP energy functional

(139) EΩ(ψ(t, ·)) =
∫
Rd

1
2 |∇ψ|

2 + V (x)|ψ|2 + a

σ + 1 |ψ|
2σ+2 − ψ(Ω · L)ψ dx = EΩ(ψ0) ∀ t ∈ R.

The outline of Chapter 5 is organized as follows. In Section 1 below we shall prove the existence

of nonlinear ground states. Their orbital stability (and several further consequences) is proved in

Section 2. Finally, we turn to the analysis of possible resonances in Section 3.

1This Chapter is excerpted from the following work:
[8] J. Arbunich, I. Nenciu and C. Sparber Stability and instability properties of rotating Bose-Einstein condensates.
Lett. Math. Phys (2019) 109: 1415.
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1. Existence of ground states

In this section we shall prove the existence of time-periodic solutions ψ(t,x) = e−iµtϕ(x) to (137),

whose profiles ϕ satisfy the following nonlinear elliptic equation

(140) µϕ =
(
− 1

2∆ + V (x)− (Ω · L)
)
ϕ+ a|ϕ|2σϕ.

Note that if ϕ solves this equation, then so does ϕeiθ with θ ∈ R, and so we have symmetry under

gauge transformations. For any given total mass N > 0, a particular class of solutions ϕ ∈ Σ

to (140), called ground states, are obtained by considering the following constrained minimization

problem:

(141) e(N,Ω) := inf{EΩ(ϕ) : ϕ ∈ Σ, N(ϕ) = N},

where the infimum can be replaced by a minimum whenever the energy functional (139) is bounded

from below. In this case e(N,Ω) > −∞ denotes the ground state energy. Note that EΩ(ϕ) is well-

defined for any ϕ ∈ Σ, since Assumption 1 and Sobolev’s embedding imply Σ ↪→ L2σ+2 provided

σ < 2
(d−2)+

. Moreover, for any γ > 0 we have

|〈ψ, (Ω · L)ψ| 6 ‖(Ω ∧ x)ψ‖L2‖∇ψ‖L2 6
1

2γ |Ω|
2‖xψ‖2L2 + γ

2 ‖∇ψ‖
2
L2 ,(142)

which in itself follows by rewriting Ω · L = (Ω ∧ x) · ∇ and employing Young’s inequality.

The existence and orbital stability of ground state solutions will be proved by the same method as

in [26]. To this end, we shall first show that the energy functional (139) is coercive, provided the

angular velocity |Ω| is less than the smallest trapping frequency:

PROPOSITION 5.1. Let |Ω| < ω and Assumption 1 hold. Then for any ϕ ∈ Σ with ‖ϕ‖2L2 = N ,

there is a δ > 0 such that

(143) EΩ(ϕ) > δ‖ϕ‖2Σ − CN > 0,

Moreover, ϕ 7→ EΩ(ϕ) is weakly lower semicontinuous in Σ, i.e. for {ϕk}∞k=1 ⊂ Σ such that

ϕk ⇀ ϕ ∈ Σ, then we have EΩ(ϕ) 6 lim inf
k→∞

EΩ(ϕk).

Proof. The coercivity follows from (142) and the fact that V (x) > 1
2ω

2|x|2 where ω > 0 is

defined above. Thus one finds, for 0 < γ < 1:

(144) EΩ(ϕ) > 1− γ
2 ‖∇ϕ‖2L2 + 1

2

(
ω2 − |Ω|

2

γ

)
‖xϕ‖2L2 + a

σ + 1‖ϕ‖
2σ+2
L2σ+2 .
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In the case a > 0, we directly obtain

EΩ(ϕ) > 1− γ
2 ‖∇ϕ‖2L2 + 1

2

(
ω2 − |Ω|

2

γ

)
‖xϕ‖2L2 > δ‖ϕ‖2Σ −

N

2 ,

where we choose γ ∈ (0, 1) such that |Ω|
2

ω2 < γ < 1, and we set

δ = min
{

1− γ
2 ,

1
2

(
ω2 − |Ω|

2

γ

)}
> 0 .

In the case a < 0, we first note from the Gagliardo-Nirenberg inequality that

(145) ‖u‖2σ+2
L2σ+2 6 Cσ,d‖∇u‖dσL2‖u‖2−σ(d−2)

L2 ,

with the optimal constant Cσ,d = σ+1
‖Q‖2σ

L2
obtained in [104], where Q satisfies

dσ

2 ∆Q−
(

1 + σ(d− 2)
2

)
Q+Q2σ+1 = 0.

Then applying (145) to (144) and employing Young’s inequality with

(p, q) =
( 2
dσ
,

1
1− dσ/2

)
yields the following lower bound for any ε > 0:

EΩ(ϕ) > 1− γ
2 ‖∇ϕ‖2L2 −

|a|
‖Q‖2σL2

‖∇ϕ‖dσL2‖ϕ‖2+σ(d−2)
L2 + 1

2

(
ω2 − |Ω|

2

γ

)
‖xϕ‖2L2

>
(1− γ

2 − dσ|a|εp

2‖Q‖2σL2

)
‖∇ϕ‖2L2 + 1

2

(
ω2 − |Ω|

2

γ

)
‖xϕ‖2L2 −

|a|(1− dσ
2 )

‖Q‖2σL2εq
‖ϕ‖

2+σ(d−2)
1− dσ2

L2 .

Now recall p = 2
dσ > 1 and choose γ ∈ (0, 1), as above, such that |Ω|

2

ω2 < γ < 1, and then ε > 0 such

that
dσ|a|εp

2‖Q‖2σL2
= 1− γ

4 .

After recalling that ‖ϕ‖2L2 = N , we find

EΩ(ϕ) = 1− γ
4 ‖∇ϕ‖2L2 + 1

2

(
ω2 − |Ω|

2

γ

)
‖xϕ‖2L2 −

|a|(1− dσ
2 )

‖Q‖2σL2εq
N

2+σ(d−2)
2−dσ

> δ̃‖ϕ‖2Σ − C(a, d, σ,N, ‖Q‖2σL2)

where

δ̃ = min
{

1− γ
4 ,

1
2

(
ω2 − |Ω|

2

γ

)}
.
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Moreover, since the Σ-norm is weakly lower semicontinuous, then estimate (143) directly implies the

same holds for EΩ, since its quadratic part together with a multiple of the L2-norm forms a norm

on Σ equivalent to the usual one. �

To proceed further, we recall the following compactness result, see [58, 107].

LEMMA 5.2. For 2 6 q < 2d
(d−2)+

, the embedding Σ ↪→ Lq is compact.

Using this we can prove existence of a (constrained) minimizer.

PROPOSITION 5.3. Let |Ω| < ω and Assumption 1 hold. Then for a given N > 0, there exists a

ϕ∞ ∈ Σ such that ‖ϕ∞‖2L2 = N and

EΩ(ϕ∞) = min
ϕ∈Σ

EΩ(ϕ) = e(N,Ω).

In addition, ϕ∞ is a weak solution to (140) with µ ∈ R a Lagrange multiplier associated to the mass

constraint.

Proof. Choose a minimizing sequence {ϕk}∞k=1 ⊂ Σ such that ‖ϕk‖2L2 = N . First we show

{ϕk}∞k=1 is a bounded sequence in Σ. From Proposition 5.1 we know that 0 < EΩ(ϕk) < ∞ and

the coercivity implies that any minimizing sequence {ϕk}∞k=1 is a bounded sequence in Σ. By

Banach-Alaoglu, there exists a weakly convergent subsequence {ϕkj}∞j=1 ⊂ {ϕk}∞k=1 such that

ϕkj ⇀ ϕ∞ as j →∞,

for some ϕ∞ ∈ Σ. The compact embedding of Lemma 5.2 implies that ϕkj → ϕ∞ strongly (and

hence in norm) in L2 and in L2σ+2, provided σ < 2
(d−2)+

. In particular

‖ϕ∞‖2L2 = lim
j→∞

‖ϕkj‖2L2 = N.(146)

By the lower semicontinuity of the functional EΩ we have

EN := inf
ϕ∈Σ,‖ϕ‖22=N

EΩ(ϕ) 6 EΩ(ϕ∞) 6 lim
j→∞

inf EΩ(ϕkj ) = EN .

Furthermore, since e(N,Ω) ≡ EΩ(ϕ∞) = limj→∞EΩ(ϕkj ), we see that ‖ϕkj‖Σ → ‖ϕ∞‖Σ, as j →

∞. Together with the weak convergence of the minimizing sequence this implies strong convergence

to some ϕ∞ ∈ Σ.
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It is then straightforward to compute the first variation 〈 δEΩ
δϕ , χ〉 = 0 to see that a minimizer ϕ∞ ∈ Σ

indeed solves (140) in the weak sense, i.e.

µ

∫
Rd
ϕ∞χdx = 1

2

∫
Rd
∇ϕ∞ · ∇χ+ V (x)ϕ∞χ− ϕ∞(Ω · L)χ+ a|ϕ∞|2σϕ∞χdx,

for all χ ∈ Σ. �

REMARK 5.4. It is straightforward to generalize all of the results in this section to GP equations

with general confinement potentials V (x)→ +∞, as |x| → ∞, provided an appropriate energy space

Σ is chosen.

2. Orbital stability

The set of all ground states with a given mass N will be denoted by

(147) GΩ =
{
ϕ ∈ Σ : EΩ(ϕ) = e(N,Ω) and N(ϕ) = N

}
6= ∅.

Recall that by gauge symmetry ϕ ∈ GΩ if and only if eiθϕ ∈ GΩ, for some θ ∈ R. In the case without

rotation (Ω ≡ 0) and for radially symmetric potentials V with ω1 = ω2 = ω3, one can show that

the energy minimizer is indeed radially symmetric and positive on all of Rd, see [58, 63] and the

references therein. In other words, in this case

(148) G0 = {ueiθ, u ≡ u(|x|) > 0, θ ∈ R}.

Moreover, since the action of Ω · L vanishes on radially symmetric functions, then any radially

symmetric ϕ ∈ GΩ is also in G0, and hence of the form above. However, the symmetry breaking

results in [97, 98] imply that for |Ω| 6= 0, a minimizer ϕ∞ ∈ GΩ is in general not radially symmetric.

More precisely, it is proved that for |Ω| > Ωcrit > 0 no eigenfunction of the angular momentum

operator L can be a minimizer (and a radial function u is an eigenfunction with zero eigenvalue),

even if the GP functional is invariant under rotations around the Ω-axis. This implies that ϕ∞ in

the case with rotation cannot be unique (up to gauge transforms), since by rotating a minimizer

one obtains another minimizer. In this context, an estimate for the critical rotation speed Ωcrit in

d = 2 can be found in [64]. In summary, these results show that GΩ, in general, will be a more

complicated set than G0. Moreover, GΩ should also be distinguished from the set of rotationally

symmetric vortex solutions studied in [52].
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Our first main result is as follows:

THEOREM 5.1 (Orbital stability of ground states). Let |Ω| < ω and Assumption 1 hold. Then the

set of ground states GΩ 6= ∅ is orbitally stable in Σ. That is, for all ε > 0 there exists δ = δ(ε) > 0,

such that if ψ0 ∈ Σ satisfies

inf
ϕ∈GΩ

‖ψ0 − ϕ‖Σ < δ,

then the solution ψ ∈ C(Rt,Σ) to (137) with ψ(0, x) = ψ0 ∈ Σ satisfies

sup
t∈R

inf
ϕ∈GΩ

‖ψ(t, ·)− ϕ‖Σ < ε.

This theorem generalizes earlier results on the orbital stability of standing waves in nonlinear

Schrödinger equations with (unbounded) potential (see, e.g., [26, 49, 51, 58, 107, 108] and the

references therein) to the case with harmonic potential and additional rotation. Note that for Ω = 0,

the simple structure of G0, given in (148), allows one to rephrase the infimum over G0 as an infi-

mum over θ ∈ R. Also note Theorem 5.1 holds for defocusing and focusing nonlinearities satisfying

Assumption 1 (see also Remark 5.5 below). In this context, we also mention the papers [49, 50],

in which the authors study various instability properties of standing wave solutions to focusing

nonlinear Schrödinger equations with potentials.

Proof. By way of contradiction, assume that the set of ground states GΩ 6= ∅ is unstable. Then

there exist ε0 > 0, ϕ0 ∈ GΩ, a sequence of initial data {ψk0}k∈N ⊂ Σ satisfying

‖ψk0 − ϕ0‖Σ → 0 as k →∞,

and a sequence of times {tk}k∈N ⊂ R, such that

inf
ϕ∈GΩ

‖ψk(tk, ·)− ϕ‖Σ > ε0.

Here ψk(t,x) ∈ C(R,Σ) is the unique global solution to (137) with initial data ψk0 . For simplicity

set uk(x) := ψk(tk,x). From mass conservation (138) we have, as k →∞:

‖uk‖2L2 ≡ ‖ψk(tk, ·)‖2L2 = ‖ψk0‖2L2
k→∞−−−−→ ‖ϕ0‖2L2 = N.

Moreover, by energy conservation (2.2) it also follows that

EΩ(uk) ≡ EΩ(ψk(tk, ·)) = EΩ(ψk0 ) k→∞−−−−→ EΩ(ϕ0) = e(N,Ω).
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Consequently, the continuity in time implies that uk is a minimizing sequence in Σ. By the proof of

Proposition 5.3, there exists a subsequence such that ukj → ϕ∞ ∈ Σ strongly, as j →∞. Thus

inf
ϕ∈GΩ

‖ψkj (tkj , ·)− ϕ‖Σ 6 ‖ukj − ϕ∞‖Σ
j→∞−−−→ 0,

which contradicts our assumption. �

REMARK 5.5. It is possible to generalize this result to the case of an attractive (a < 0) mass-critical

nonlinearity σ = 2
d , under the assumption that N < ‖Q‖2L2 , see, e.g., [108, 109] for analogous results

in the case without rotation. We shall not go into further details here, but note that the associated

question of a blow-up profile as N → ‖Q‖2L2 in the case with rotation has recently been studied in

[79].

Theorem 5.1 has the following interesting consequence: Recall that Ω ·L is the generator of rotations

around the Ω-axis, in the sense that

etΩ·Lu(x) = u
(
etΘx

)
, ∀u ∈ L2(Rd),

where Θ is the skew symmetric matrix given by

Θ =

 0 |Ω|

−|Ω| 0

 for d = 2, and Θ =


0 Ω3 −Ω2

−Ω3 0 Ω1

Ω2 −Ω1 0

 for d = 3.

Clearly, this is a unitary operator on both L2(Rd) and Σ. It was shown in [6] that if ψ(t,x) solves

(137), i.e., the GP equation with rotation, then

(149) Ψ(t,x) :=
(
etΩ·Lψ(t, ·)

)
(x),

solves the following nonlinear Schrödinger equation with time-dependent potential:

(150) i∂tΨ = −1
2∆Ψ +WΩ(t,x)Ψ + a|Ψ|2σΨ, Ψ|t=0 = ψ0(x) .

Here, the new potential WΩ is given by

WΩ(t,x) := etΩ·LV (x) ≡ V
(
etΘx

)
.

The global existence result for (137) then directly translates to the existence of a unique global

solution Ψ ∈ C(Rt; Σ) to (150) (see also [19] for related results). Moreover, we have that (150)
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conserves the total mass, i.e., N(Ψ(t, ·)) = N(ψ0) for all t ∈ R. The associated energy, however, is

no longer conserved unless V (x) is rotationally or at least axisymmetric with respect to Ω, cf. [6]

for more details.

COROLLARY 5.6. Under the same assumptions as in Theorem 5.1 it holds: For all ε > 0 there

exists δ = δ(ε) > 0 such that if ψ0 ∈ Σ satisfies inf
ϕ∈GΩ

‖ψ0−ϕ‖Σ < δ, then the solution Ψ ∈ C(Rt,Σ)

to (150) with ψ(0, x) = ψ0 ∈ Σ satisfies

sup
t∈R

inf
ϕ∈GΩ

‖Ψ(t, ·)− etΩ·Lϕ(·)‖Σ < ε.

In other words, we have orbital stability of the set etΩ·LGΩ under the dynamics of (150). To the

best of our knowledge, this is the only orbital stability result for nonlinear Schrödinger equations

with a time-dependent potential available to date.

In the particular situation where V is rotationally symmetric, i.e., V (x) = 1
2ω

2|x|2, one finds

WΩ(t,x) = V (x), for any Ω ∈ Rd,

yielding the usual Gross–Pitaevskii equation for (harmonically) trapped Bose gases

(151) i∂tΨ = −1
2∆Ψ + 1

2ω
2|x|2 + a|Ψ|2σΨ, Ψ|t=0 = ψ0(x) ,

In contrast to (150), this equation does conserve the associated Gross–Pitaevskii energy, E0(Ψ(t, ·)) =

E0(ψ0), for all t ∈ R. The orbital stability result proved above then has the following consequence:

COROLLARY 5.7. Let Assumption 1 hold and V be rotationally symmetric. Then

O = ∪(Ω∈Rd;|Ω|<ω)
(
etΩ·LGΩ

)
,

is an orbitally stable set of solutions to (151).

The usual orbital stability result for ground states associated to (151) applies to G0, see, e.g., [26].

Note that if, for some Ω, all minimizers ϕ ∈ GΩ are rotationally symmetric, then etΩ·LGΩ = GΩ = G0.

However, the results of [64, 97, 98] show that, in general, ϕ ∈ GΩ is not rotationally symmetric,

in which case etΩ·LGΩ, does not contain stationary solutions to (151) given by Ψ(t,x) = eiµtϕ(x).

Again, to the best of our knowledge, this is the only orbital stability result for (151) based on

non-stationary solutions.
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3. A resonance-type phenomenon in non-isotropic potentials

All the preceding results are obtained under the condition |Ω| < ω, which is necessary for the

existence of nonlinear ground states. However, one may wonder (in particular in view of Corollary

5.7) if there are any qualitative changes to the time-dependent solution of (137) for |Ω| > ω. At

least in the case of non-isotropic potentials V (x), we will see below that this is indeed the case.

To this end, we denote for ψ(t, ·) ∈ Σ, the quantum mechanical mean position and momentum by

X(t) :=
∫
Rd

x|ψ(t,x)|2 dx, P(t) := −i
∫
Rd
ψ(t,x)∇ψ(t,x) dx.

LEMMA 5.8. Let ψ ∈ C(Rt; Σ) be a solution to (137), then, for all t ∈ R:

(152)
X(t) = X(0) +

∫ t

0
P(s)−Ω ∧X(s) ds

P(t) = P(0)−
∫ t

0
∇V (X(s)) + Ω ∧P(s) ds.

This system can be regarded as a generalization of the results in [89, Section 6], obtained for Ω = 0.

It should be noted that the nonlinearity does not enter into (152).

Proof. We shall assume that ψ is sufficiently smooth (and decaying) such that all of our

computations below are rigorous. A classical density argument, combined with the continuous

dependence of ψ on its initial data, then allows us to extend the result to solutions ψ ∈ C(Rt; Σ).

We start by calculating the time derivative of X:

Ẋ = 2Re〈∂tψ,xψ〉 = 2Re〈i( 1
2∆ψ − V (x)ψ − a|ψ|2σψ + (Ω · L)ψ),xψ〉

= Re〈i∆ψ,xψ〉+ 2Re〈i(Ω · L)ψ,xψ〉+ 2Im 〈V (x)ψ + a|ψ|2σψ,xψ〉︸ ︷︷ ︸
∈R

≡ J1 + J2.

An integration by parts then implies

J1 = Re〈−i∇ψ,∇(xψ)〉 = Im 〈∇ψ,x∇ψ〉︸ ︷︷ ︸
∈R

+Re〈−i∇ψ,ψ∇x〉 = P.

The term J2 can be rewritten using (Ω · L) = −i(Ω ∧ x) · ∇ and integration by parts

J2 = 2Re〈(Ω ∧ x) · ∇ψ,xψ〉 = 2Re
d∑

`,j=1
〈∂xjψ, (Ω ∧ x)jx`ψ〉e`

= −2
d∑
j=1
〈ψ, (Ω ∧ x)jψ〉ej − 2Re〈xψ, (Ω ∧ x) · ∇ψ〉 = −2〈ψ, (Ω ∧ x)ψ〉 − J2,
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which implies that

J2 = −〈ψ, (Ω ∧ x)ψ〉 = −Ω ∧X.

In summary this yields the following equation of motion for X:

(153) Ẋ = P−Ω ∧X,

which is the time-differentiated version of the first equation in (152).

Next, we calculate the time-derivative of P as:

Ṗ = 2Re〈i∂tψ,∇ψ〉 = 2Re〈V (x)ψ + a|ψ|2σψ − 1
2∆ψ − (Ω · L)ψ,∇ψ〉 ≡ I1 + I2 + I3 + I4.

For the first term, a straightforward integration by parts yields

I1 = −2Re〈∇
(
V ψ
)
, ψ〉 = −2

∫
Rd
∇V (x)|ψ(t,x)|2 dx− I1,

which implies

I1 = −
∫
Rd
∇V (x)|ψ(t,x)|2 dx = −∇V (X),

since ∇V (x) =
∑d
j=1 ω

2
jxj . Furthermore, I2 vanishes, since

I2 = a

σ + 1

∫
Rd
∇
(
|ψ|2(σ+1)) dx = 0,

and one also finds I3 = −Re〈∆ψ,∇ψ〉 = 0. Finally, using standard vector identities we compute

I4 = −2Re〈(Ω · L)ψ,∇ψ〉 = −2Ω ∧P− I4,

which implies that

Ṗ = −∇V (X)−Ω ∧P,(154)

which is the differential version of the second line in (152). �

Given that (152) constitutes a closed system for X and P, one can study its solution independently

of (137). As a first step, we have the following global existence result.

LEMMA 5.9. For any (X0,P0) ∈ R2d, the system (152) admits a unique global-in-time solution

(X,P) ∈ C∞(Rt;R2d) with (X(0),P(0)) = (X0,P0).
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Proof. Denote Ξ = (X,P)>, then (153), (154) are equal to

(155) Ξ̇ = MdΞ, Ξ(0) = Ξ0,

where Ξ0 = (X0,P0)>, and

M2 =



0 |Ω| 1 0

−|Ω| 0 0 1

−ω2
1 0 0 |Ω|

0 −ω2
2 −|Ω| 0


for d = 2,

and

M3 =



0 Ω3 −Ω2 1 0 0

−Ω3 0 Ω1 0 1 0

Ω2 −Ω1 0 0 0 1

−ω2
1 0 0 0 Ω3 −Ω2

0 −ω2
2 0 −Ω3 0 Ω1

0 0 −ω2
3 Ω2 −Ω1 0


for d = 3.

Equation (155) is a linear matrix-valued ordinary differential equation with constant coefficients.

Thus, (155) and equivalently (152), admits a unique smooth solution given by:

Ξ(t) = etMdΞ0, for all t ∈ R.

�

To simplify the following discussion, we shall assume that Ω ∈ R3 is aligned with one of the coordi-

nate axes, say, Ω = (0, 0, |Ω|)>. In this way, (24) automatically holds and thus the two-dimensional

situation is included in what follows.

PROPOSITION 5.10. Let Ω = (0, 0, |Ω|)>. Assume that

(156) ω1 6= ω2 and min{ω1, ω2} 6 |Ω| 6 max{ω1, ω2}.

Then for all (X0,P0) ∈ R2d \ H, where H = H(ω1, . . . , ωd,Ω) is a linear subspace of R2d, it holds

lim
t→+∞

|X(t)| = lim
t→+∞

|P(t)| = +∞, or lim
t→−∞

|X(t)| = lim
t→−∞

|P(t)| = +∞.

Moreover, if both inequalities in (156) are strict, this growth is exponentially fast and dimH =

2(d− 1). If, however |Ω| ∈ {ω1, ω2}, then the growth is only linear in time and dimH = 2d− 1.
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Proof. Observe that for Ω = (0, 0, |Ω|)>, the matrix M3 decomposes as a direct sum of M2

and the 2× 2 matrix

A =

 0 1

−ω2
3 0

 .

Thus the characteristic polynomial of M3 is

det(λ−M3) = det(λ−M2) · det(λ−A) = det(λ−M2) · (λ2 + ω2
3).

Note that λ2 + ω2
3 has purely imaginary roots, leading to bounded oscillations in the solution of

(152). Thus, for both d = 2 and d = 3 the characteristic polynomial of M2 is the only possible

source of growth in the solution. One finds that

det(λ−M2) = λ4 + bλ2 + c

with

b = 2|Ω|2 + ω2
1 + ω2

2 and c =
(
|Ω|2 − ω2

1
)(
|Ω|2 − ω2

2
)
.

As a quadratic polynomial in λ2, it has discriminant

D =
(
ω2

1 − ω2
2
)2 + 8|Ω|2

(
ω2

1 + ω2
2
)
> 0,

and thus λ2 ∈ R. This implies that a necessary condition for the fact that at least one of the two

limits

lim
t→±∞

|Ξ(t)| = +∞,

is that λ2 > 0. This growth occurs on R2d \ H, where H is the orthogonal complement of the

eigenspace corresponding to the real eigenvalue(s) λ.

Computing the roots, we find that since b > 0, the root

λ2 = −b−
√
b2 − 4c

2 < 0.

In addition, the other root satisfies

λ2 = −b+
√
b2 − 4c

2 > 0, if and only if c 6 0.

The latter is equivalent to min{ω1, ω2} 6 |Ω| 6 max{ω1, ω2}.

Now if c < 0 then λ2 > 0. Hence, the system has a positive and a negative simple eigenvalue, implying

exponential growth for t → ±∞ and co-dimension of H equal to 2. The fact that both X and P
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grow individually can be seen from computing the eigenvector V = (v1,v2,v3,v4)> associated to λ.

This can be done using the block structure of M2 to derive a new eigenvalue equation for (v1,v2)>,

given by |Ω|2 − ω2
1 −2λ|Ω|

2λ|Ω| |Ω|2 − ω2
2


v1

v2

 = λ2

v1

v2

 .

In addition, one finds that v3

v4

 =

 λ |Ω|

−|Ω| λ


v1

v2

 .

This yields the expression for V after which a straightforward but somewhat tedious analysis leads

to the desired conclusion.

When c = 0 then λ = 0 is a double eigenvalue, in which case one needs to study the dimension

d0 ∈ N of the associated eigenspace. A straightforward computation shows that if ω1 = ω2 (the

axisymmetric case), then d0 = 2 is maximal and hence the solution does not grow in t. By contrast

if ω1 6= ω2, then d0 = 1, and there exists a linearly independent solution ∝ t, stemming from the

eigenvector V = (1, 0, 0,−|Ω|)>. �

REMARK 5.11. In the case without rotation, i.e. |Ω| = 0, one finds

λ2 = −ω
2
1 + ω2

2
2 ±

∣∣ω2
1 − ω2

2
2

∣∣,
which implies λ = ±iω1,±iω2, and thus a purely oscillatory solution.

We are now in position to prove the second main result of this work.

THEOREM 5.2 (Resonance in non-isotropic potentials). Let Assumption 1 hold and Ω = (0, 0, |Ω|)>.

If condition (156) holds and if ψ0 ∈ Σ is such that the associated averages (X0,P0) 6∈ H, then the

solution ψ ∈ C(Rt; Σ) satisfies

lim
t→+∞

‖ψ(t, ·)‖Σ = +∞, or lim
t→−∞

‖ψ(t, ·)‖Σ = +∞.

Proof. Recall that both (137) and (152) have unique solutions. Thus, if ψ(t, ·) solves (137)

with initial data ψ0 ∈ Σ and if X0 = 〈ψ0,xψ0〉 and P0 = −i〈ψ0,∇ψ0〉 are the initial data to (152),

then

X(t) = 〈ψ(t, ·),xψ(t, ·)〉, P(t) = −i〈ψ(t, ·),∇ψ(t, ·)〉, ∀ t ∈ R.
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By the Cauchy-Schwarz inequality we have

|X| 6 ‖ψ‖L2‖xψ‖L2 , |P| 6 ‖ψ‖L2‖∇ψ‖L2 ,

which together with the results of Proposition 5.10 and the mass conservation property (138) implies

the assertion of the theorem. �

REMARK 5.12. The fact that there are nontrivial ψ0 ∈ Σ for which the associated (X0,P0) 6∈ H,

can be easily seen by considering initial data of the form:

ψ0(x) = eip0·xe−(x−x0)2/2, x0,p0 ∈ Rd.

In this case, X0 = πd/2x0 and P0 = πd/2p0 and thus one obtains a growing Σ-norm of the solution

ψ provided (x0,p0) 6∈ H.

Indeed, the proof of Proposition 5.10 shows that if condition (156) holds, there are solutions to (137)

for which

‖∇ψ(t, ·)‖L2 , ‖xψ(t, ·)‖L2 →∞,

if t → +∞, or t → −∞. In other words, these solutions develop frequencies which are larger than

those controlled by the Σ-norm, and in addition their mass is transferred to infinity resulting in a

weaker decay of ψ. This is in sharp contrast to the case ω1 = ω2 = ω3, where (137) is equivalent, up

to the time-dependent change of variables (149), to the classical NLS with harmonic trapping (151).

The latter conserves the energy E0(Ψ(t, ·)) = E0(ψ0), which in the defocusing case a > 0 directly

yields the uniform bound

‖Ψ(t, ·)‖Σ = ‖ψ(t, ·)‖Σ 6 E0(ψ0), ∀ t ∈ R.

REMARK 5.13. The growth of (higher order) Sobolev-norms of solutions to nonlinear Schrödinger

equations with time-dependent, quadratic potentials was also studied in [19]. One can check that

(150) (obtained from (137), via the change of variables) falls into the class of models for which

exponentially growing upper bounds were established in [19]. Theorem 5.2 shows that, in general,

such exponential growth indeed occurs, and that this is true even for linear Schrödinger equations.

There exponential growth naturally occurs in the case of (even only partially) repulsive harmonic

potentials. We finally mention that very recently a somewhat similar instability phenomenon for

linear Schrödinger equations with quadratic time-dependent Hamiltonian has been established in [12].
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It is very likely that additional (in-)stability phenomena appear for general Ω ∈ R3, not necessarily

aligned to one of the axis. However, the calculations of the roots of the associated degree 6 charac-

teristic polynomial become extremely involved, see also [17]. Since our main goal was to establish

an instability result for ψ we do not investigate the general case in full detail.



APPENDIX A

Permissions for the Inclusion of Published Works

All published material in this thesis has been included with permission.

The following paper is published by AIP Publishing, which allows for reprinting in doctoral theses:

[9] J. Arbunich and C. Sparber Rigorous derivation of nonlinear Dirac equations for wave propagation
in honeycomb structures J. Math. Phys. 59 (2018), 011509.

“Authors do not need permission from AIP Publishing to reuse your own AIP Publishing article in
your thesis or dissertation.”

This policy is available at https://publishing.aip.org/resources/researchers/rights-and-permissions/
permissions/.

The following paper is published by the Society for Industrial and Applied Mathematics (SIAM):

[5] P. Antonelli, J. Arbunich, and C. Sparber. Regularizing nonlinear Schrödinger equations through
partial off-axis variations SIAM J. Math. Anal. 51 (2019), no. 1, pp. 110–130.

Permission to reprint this paper has been obtain via email correspondence (4/17/2019).

The following paper is published by Springer, which allows for reprinting in doctoral theses:
[8] J. Arbunich, I. Nenciu, and C. Sparber Stability and instability properties of rotating Bose-
Einstein condensates. Lett. Math. Phys (2019)

The following is taken from Springer’s Copyright Transfer Agreement, received by the author on
12/20/2018:
Author’s Retained Rights Author(s) retain the following non-exclusive rights
for the published version provided that, when reproducing the Article or extracts
from it, the Author(s) acknowledge and reference first publication in the Journal:

• to reuse graphic elements created by the Author(s) and contained in
the Article, in presentations and other works created by them;

• they and any academic institution where they work at the time may
reproduce the Article for the purpose of course teaching (but not for
inclusion in course pack material for onward sale by libraries and in-
stitutions); and

• to reproduce, or to allow a third party Assignee to reproduce the Article
in whole or in part in any printed volume (book or thesis) written by
the Author(s).

121



Cited Literature

[1] M. J. Ablowitz and Y. Zhu. Nonlinear waves in shallow honeycomb lattices. SIAM J. Appl. Math. 72 (2012),
no. 1, 240–260.

[2] M. J. Ablowitz and Y. Zhu. Nonlinear wave packets in deformed honeycomb lattices. SIAM J. Appl. Math. 73
(2013), no. 6, 1959–1979.

[3] A. Aftalion, Vortices in Bose–Einstein condensates. Progress in Nonlinear Differential Equations and their Ap-
plications vol. 67, Springer, 2006.

[4] D. M. Ambrose and G. Simpson. Local existence theory for derivative nonlinear Schrödinger equations with
non-integer power nonlinearities. SIAM J. Math. Anal. 47 (2015), no. 3, 2241–2264.

[5] P. Antonelli, J. Arbunich and C. Sparber. Regularizing nonlinear Schrödinger equations through partial off-axis
variations. SIAM J. Math. Anal. 51 (2019), no. 1, pp. 110–130.

[6] P. Antonelli, D. Marahrens, and C. Sparber. On the Cauchy problem for nonlinear Schrödinger equations with
rotation. Discrete Contin. Dyn. Syst. 32 (2012), no. 3, 703–715.

[7] J. Arbunich, C. Klein and C. Sparber. On a class of derivative nonlinear Schrödinger equations in two spatial
dimensions. To appear in ESAIM Math. Model. Numer. Anal.

[8] J. Arbunich, I. Nenciu and C. Sparber Stability and instability properties of rotating Bose-Einstein condensates.
Lett. Math. Phys (2019) 109: 1415.

[9] J. Arbunich and C. Sparber Rigorous derivation of nonlinear Dirac equations for wave propagation in honeycomb
structures. J. Math. Phys. 59 (2018), 011509.

[10] H. Bahouri, J.-Y. Chemin, and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations.
Grundlehren der Mathematischen Wissenschaften Vol. 343, Springer Verlag, New York, 2011.

[11] O. Bahat-Treidel, O. Peleg, and M. Segev, Symmetry breaking in honeycomb photonic lattices. Optics Lett. 33
(2008), no. 19, 2251–2253.
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