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Abstract 

 
 
 
Though the negative thermal expansion materials are important and appealing in science and engineering 

application, the natural materials are very less effective and manifest poor performance than the 

metamaterials. Here, using chiral design and normal material, metamaterial structure has been achieved. 

From the derivation, it has been proven that the structure contracted or expanded with an acceleration. 

It has also been observed that, the contraction or expansion rate depends upon the geometry of the 

structure (node to length ratio, i.e., size ratio). For the design scenario, node is the metallic structure helps 

to attach different number of strips. It has also been observed that, the state parameters and the control 

parameters (i.e. Temperature) share simple relationship between them. The rotation angle is a function 

of (property of the bimetallic strip), L (length of the strip) and T (temperature). Also, the maximum working 

temperature depends on the design parameters. So, it would be a metamaterial system. To 

dimensionalize, all the system equations have been scaled with L. So, length alone will not be a parameter 

of design, node to length ratio size ratio will be. 
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1 Introduction 

 

“Metamaterials” is a term that classify modern engineered materials which can possess extreme 

properties and functionality which are not available in the mother material. Veselago in 1967 [1] proved 

theoretically that the materials, which showed both negative permeability and negative permittivity, 

could express a remote property known as refractive index. Later Pendry and Smith [2-4] proved this 

concept in their experimental studies and used this concept on advanced resolution imaging and wave 

guiding technology [5-9].  But the term “Metamaterials” was first used by R.M. Walser in 2001 [10]. The 

prefix “meta” is coming from Greek language which can be translated as “beyond, after”. It reflects the 

fact that the metamaterials can react to external forces in completely different way than the conventional 

materials do. 

 

Just after the World War 2, the history of metamaterials had started with artificial dielectrics in microwave 

engineering [11]. The concept of negative refractive index had been seen in wave mechanics as well, when 

it tuned to have both negative bulk modulus and negative mass density. Those studies stated that the 

sound waves can be operated to serve interesting applications like, shielding and reflection of waves 

through these metamaterials [11-14]. 

 

But the field of mechanical metamaterials is very novel and emerging. The main focus of this field is to 

produce materials with unexpected properties. The success in the field of optics and acoustics, where the 

negative refractive index has been achieved by arranging unit cells, has guided the theory and application 

of mechanical metamaterials. So, when an unfamiliar new type of geometry of a unit cell or any 

components of the material provides an opportunity to manipulate the mechanical properties like, stress, 

strain, stiffness, deformation etc., it can easily be state that the material is mechanical metamaterial. From 

different authors it is available that these unusual properties of metamaterials are the result of unfamiliar 

elastic properties, i.e., Poisson’s ratio, Young’s modulus, bulk modulus and shear modulus, of the material 

achieved by the unit cell engineering [15-16]. It can be stated that with right engineering design extreme 

properties can be achieved which are not available in the mother materials. 

 

In 1985, Kolpakov described an example of framework with negative Poisson’s ratio [17], which means 

that the framework will expand laterally when longitudinal tensile forces are applied. Later in 1987, Lakes 

described polyform foam structure, which has this behavior [18-19]. Now this behavior is called 
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“auxetics”. It can be stated that this behavior is only the property of nonconvex microstructure [20]. For 

this reason, this property is being used in aerospace and marine application for their absorption and light 

weight properties [21]. Materials which can absorb more or have high damping efficiency, i.e., own 

negative stiffness, defined as metamaterials as well [22-23].  

 

Bistability [24] may in some cases be expressed as a characteristic of negative stiffness. It can bring some 

new rare properties in the materials, such as, negative compressibility [25-28], where the properly 

designed structure will contract upon the application of tensile lode and in the load direction.  

 

Having these advanced properties in a designed material, the application of these could lead to all exciting 

revolution in materials field, which later can be applied to professional fields, such as, architecture, 

manufacturing industry, transportation etc. Likewise, the known studies for negative compressibility [25-

28], where the material contracts for a tensile load with the load direction, have discovered that these 

structures have multiple degrees of freedom. Whereas, in recent studies by Karpov [29], some engineered 

materials will pull back and contracts if the tensile load reaches a certain level.  

 

The subject of this thesis is to provide some theoretical input for thermal metamaterials, which can 

thermal conduction [30]. Throughout the derivation and theory, it has been proved that with proper 

engineering design, i.e., change of length and dimension of the nodes, the curvature and the surface area 

can be controlled.  
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2.1 Chiral Meta-materials with Square Nodes 

 

The metamaterial behavior of the structure drawn in fig.1 has been described in this section. Through the 

derivation done in this section, it can be proved that the design can behave as thermal metamaterial [30]. 

 

 

Fig. 1: Part of whole structure with square node 
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Fig. 2: Bimetallic strip with different width and Young’s modulus 

 

The curvature of the bimetallic beam κ can be represented as [31]: 

κ =
6𝐸1𝐸2(𝐻1+𝐻2)𝐻1𝐻2𝜀

𝐸1
2𝐻1

4+4𝐸1𝐸2𝐻1
3𝐻2+6𝐸1𝐸2𝐻1

2𝐻2
2+4𝐸1𝐸2𝐻2

3𝐻1+𝐸2
2𝐻2

4               (1) 

or,         𝜅 = 𝑎𝜀 

where,          𝑎 =
6𝐸1𝐸2(𝐻1+𝐻2)𝐻1𝐻2

𝐸1
2𝐻1

4+4𝐸1𝐸2𝐻1
3𝐻2+6𝐸1𝐸2𝐻1

2𝐻2
2+4𝐸1𝐸2𝐻2

3𝐻1+𝐸2
2𝐻2

4 

𝐸1, 𝐸2 = Young’s modulus of two different sections, 

𝐻1, 𝐻2 = Width of two different sections. 

 

If the dimension of the expression has been considered, it will be the dimension of inverse length and 

temperature. Expressed as: 

[κ] =
1

[𝐿][𝑇]
                   (2) 

Where, [𝐿]= dimension of length, [𝑇]= dimension of temperature. 

Again, the basic thermal strain expression of 𝜀 is [32]: 

𝜀 =
𝑙−𝑙0

𝑙0
                    (3) 

Where, 𝑙= thermally expanded length, 𝑙0= original length. 
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Considering the geometry of the nodes as square and size of it as 𝐻 and the length of the bimetallic strip 

as 𝐿, the equation has been formulated. Also, the thermal expansion coefficient of the strip denoted as 

𝛼𝑠 and the thermal coefficient of the node denoted as 𝛼𝑛. 

 

 

Fig. 3: one strip with two square nodes 
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Fig. 4: Square node expanded 

 

The deformed length of the strip depends on the curvature and the rate of thermal expansion. Using 

geometrical theories, the expression can be written as: 

𝑙 =
𝐿𝑡

𝜃
sin 𝜃 + √2𝐻𝑡 sin[

𝜋

4
− 𝜃]                 (4) 

Where, 𝑙 = deformed length between nodes, 𝐿𝑡= changed length of the strip after temperature has been 

applied, 𝐻𝑡= changed cross-sectional dimension after temperature has been applied, 𝜃= radius of 

curvature. 

 

In order to check the validity of the equation, the following condition can be made. 

If 𝑇=0, there will not be any thermal expansion of the strips and nodes and any kind of curvature of the 

structure as well. So, 𝜃 will be zero as well. Now, from equation (4),  

𝑙 = 𝐿 + 𝐻                  (5) 

As temperature is not applied, the dimensions of the strips and the nodes will not be changed. That’s why 

the notations 𝐿 and 𝐻 has been used instead of 𝐿𝑡 and 𝐻𝑡 in equation (5). 

 

The basic expression for thermally expanded bar is [31]: 

𝑙𝑓 = 𝑙0 + 𝑙0𝛼 ∆𝑇                 (6) 

Where, 𝑙𝑓= expanded final length, 𝑙0= initial length, 𝛼= thermal expansion coefficient and 

∆𝑇=temperature difference. 
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So, 𝐿𝑡 and 𝐻𝑡 can be written as using equation (6): 

𝐿𝑡 = 𝐿(1 + 𝛼𝑠𝑇)                 (7) 

𝐻𝑡 = 𝐻(1 + 𝛼𝑛𝑇)                 (8) 

 

Now, replacing these two terms in equation (4) and rewriting the simplified form of it: 

𝑙 = 𝐻(1 + 𝛼𝑛𝑇) cos 𝜃 +
𝐿(1+𝛼𝑠𝑇)−𝐻(1+𝛼𝑛𝑇)𝜃

𝜃
sin 𝜃             (9) 

 

Now this equation has dimension. For further analysis and plotting, it should be dimensionless. To non-

dimensionalize the system, divide equation (9) by 𝐿. So, the dimensionless deformed length between two 

nodes will be: 

𝑙(𝜃) = ℎ(1 + 𝛼𝑛𝑇) cos 𝜃 +
1+𝛼𝑠𝑇−𝜃ℎ(1+𝛼𝑛𝑇)

𝜃
sin 𝜃           (10) 

Where, size ratio, ℎ =
𝐻

𝐿
. 

 

The thermal strain of the system will be: 

𝜖𝑇 =
𝑙(𝜃,𝑇)

1+ℎ
− 1                (11) 

The simplified equation will be: 

𝜖𝑇 = −1 +
ℎ(1+𝛼𝑛𝑇) cos 𝜃+

(1+𝛼𝑠𝑇−ℎ(1+𝛼𝑛𝑇)𝜃) sin 𝜃

𝜃

1+ℎ
            (12) 
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The plot of 𝜖𝑇 vs 𝑇 would be in fig. 5, 

 

Fig. 5: Using equation (12), thermal strain (𝜖𝑇) vs temperature (𝑇) has been plotted for three different 

size ratios (ℎ =
𝐻

𝐿
) 

 

The slope of thermal expansion curve, i.e., the thermal expansion co-efficient is: 

𝛼𝑇 =
𝜃(1+𝑇𝛼𝑠−ℎ(𝑡𝛼𝑛(−1+𝜃)+𝜃)) cos 𝜃−(1+ℎ𝜃(𝜃+𝑇𝛼𝑛(1+𝜃))) sin 𝜃

(1+ℎ)𝑇𝜃
          (13) 

 

If 𝛼𝑠 = 0 and 𝛼𝑛 = 0, 𝛼𝑇 will be: 

𝛼𝑇 =
𝜃(1−ℎ𝜃) cos 𝜃−(1+ℎ𝜃2) sin 𝜃

(1+ℎ)𝑇𝜃
               (14) 

 

𝜃 =
𝐿

𝜌
                   (15) 

1

𝜌
= 𝑎𝑇                  (16) 



 9 

“𝑎” is a parameter of the strip, which depends on the properties of the strip. The value of “𝑎” has to be 

calculated depending on the bending it shows with the temperature. For this validation, we have used 

equation (15) & (16) and calculated the value of “𝑎” for the bimetallic strip used. To validate the equation 

experimentally, 60° bending of the 6" strip at ∆𝑇 = 70℃ is assumed. For this assumption, the angle of 

rotation looks reasonable. 

 

Fig. 6: Thermal expansion coefficient (𝛼𝑇) vs temperature (𝑇) plot using equation (13) for three different 

size ratios (ℎ =
𝐻

𝐿
) 

 

Now to know the acceleration of thermal expansion, the thermal strain 𝜖 should be derivated twice. So, 

it is as follows: 

𝛼′
𝑇 =

𝑑𝛼

𝑑𝑇
=

𝑑2𝜖

𝑑𝑇2                (17) 
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Which can be expressed as: 

𝛼′
𝑇 =

1

(1+ℎ)𝑇2𝜃
(−𝜃 (2 + ℎ𝜃(𝜃 + 𝑇𝛼𝑛(2 + 𝜃))) cos 𝜃 + (2 − (1 + 𝑇(2ℎ𝛼𝑛 + 𝛼𝑠))𝜃2 + (ℎ +

ℎ𝑇𝛼𝑛)𝜃3) sin 𝜃)                (18) 

 

Fig. 7: Acceleration of thermal expansion coefficient (𝛼′
𝑇) vs temperature (𝑇) plot using equation (18) 

for three different size ratios (ℎ =
𝐻

𝐿
) 
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Comparing the three parameters in a single plot in fig. 7 for the size factor of the design shown in the 

beginning of the chapter,  

 

Fig. 8: For size ratio, ℎ = 0.115, the three parameters are plotted together. To match the scale, with 𝜖𝑇, 

𝛼𝑇 and 𝛼′
𝑇 has been multiplied by 103 and 105 respectively 

 

𝛼0
′ = lim

𝑇→0
𝛼′

𝑇 = −
𝑎𝐿(𝑎𝐿+3𝑎𝐿ℎ+12ℎ𝛼𝑛)

12(1+ℎ)
             (19) 

Where, 𝜃 has been replaced by 𝜃 =
𝑎𝐿𝑇

2
 

 

Again,     lim
ℎ→0

𝛼0
′ = −

𝑎𝐿2

12
 

And     lim
ℎ→∞

𝛼0
′ = −

1

4
𝑎𝐿(𝑎𝐿 + 𝛼𝑛) 

This curve proves that 
𝑑𝛼

𝑑𝑇
 at 𝑇 = 0 is a monotonous function in spite of 3 parameters. So that it does not 

have any maximum in the range. 
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Considered 𝛼𝑠 = 𝛼𝑛, 

𝛼0 = −
𝑎𝐿ℎ

2(1+ℎ)
+ 𝛼𝑠               (20) 

If the points plotted in a contour plot, it would be: 

 

Fig. 9: The contour map has vertical axis as “log10 𝑎𝐿”, where “𝑎𝐿” have dimensionality of [𝑇]−1. As the 

dimension of “𝑎” is [𝐿]−1[𝑇]−1 and “𝐿” has dimension of [𝐿] (from equation (20)). So, it can be called as 

the rate of thermal expansion. 

 

For this reason, it cannot be assumed that 𝛼𝑛 doesn’t have any effect on the system. For this system it is 

assumed that 𝛼𝑛 has a little effect on it and this is also very much practically relatable as well. So, in 

mathematical terms, 𝛼𝑛 → 0. 

So, it can be written as in equation (19): 

𝛼0 = −
𝑎𝐿(𝑎𝐿+3𝑎𝐿ℎ)

12(1+ℎ)
               (21) 
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For the critical angle (i.e., when two opposite strips touch each other, the angle of rotation at that 

position) of the system, an assumption can be made, because before the strips will bend 90°, they will 

touch each other. Even this situation is theoretical. For the strips have been used in the model, it is quite 

impossible to achieve. So, the assumptions that has been made are: 

• Horizontal deformed length= 2* Maximum possible vertical length (𝐼𝑦) 

• Natural thermal expansion is ignored 

So, after simplification of the system equation using Mathematica, equation (20) has been achieved: 

tan
𝜃

2
= 1 − 2ℎ𝜃               (22) 

 

This equation actually has n-number of roots. So, the asymptotical solution of the system has been plotted 

with ℎ in one axis.  

 

Fig. 10: Solution for critical angle value (𝜃𝐶). Asymptotic solution used equations (23) 
180

𝜋

𝜋

2+4ℎ
 and  (24) 

180

𝜋

2

1+4ℎ
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Critical angle has been calculated with the formula used as: 

𝜃𝐶 =
𝑎𝐿𝑇𝐶

2
                 (25) 

 

Theoretically, 𝛼 has a global minimum value. It can only be achievable at very high temperature. But it is 

not achievable for this type of design. Because, for high temperature, 𝜃0 will always be greater than 𝜃𝐶, 

i.e., 𝜃0 > 𝜃𝐶  for any given ℎ. So, theoretically it is possible to achieve minimum value of 𝛼; but practically 

it is not possible. 

 

 

Fig. 11: Comparison between 𝜃0 and 𝜃𝐶. 

 

From the above theory and calculation, the system can achieve 𝜃𝐶 = 71.12° and 𝑇𝐶 = 448.947℃. 
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2.2 Chiral Meta-materials with Circular Nodes 

 

The metamaterial behavior of the structure drawn in fig.12 is described in this section. Through 

the derivation done in this section, it can be proved that the design can be worked as thermal 

metamaterial. 

 

 

Fig. 12: Part of whole structure with circular node 
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Fig. 13: Diagram of unit cell with circular node 
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Considering the geometry of the nodes as circular and diameter of the circle is 𝐷 and the length 

of the bimetallic strip as L, the equation has been formulated. Also, the thermal expansion 

coefficient of the strip denoted as 𝛼𝑠 and the thermal coefficient of the node denoted as 𝛼𝑛. 

 

Fig. 14: one strip with two nodes 
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Fig. 15: Circular node expanded 

 

The deformed length of the strip depends on the curvature and the rate of thermal expansion. 

Using geometrical theories, the expression can be written as: 

𝑙 =
𝐿𝑡

𝜃
Sin[𝜃] − D𝑛Sin[𝜃]              (26) 

Where, 𝑙 = deformed length between nodes, 𝐿𝑡= changed length of the strip after temperature 

has applied, D𝑛= changed cross-sectional dimension after temperature has been applied, 𝜃= 

radius of curvature. 

 

In order to check the validity of the equation, the following condition can be made. 

If 𝑇=0, there will not be any thermal expansion of the strips and nodes and any kind of curvature 

of the structure as well. Now, from equation (22), 

𝑙 = 𝐿                 (27) 

 

As temperature is not applied, the dimensions of the strips and the nodes will not be changed. 

That’s why the notations 𝐿 and 𝐷 has been used instead of 𝐿𝑡 and 𝐷𝑛. 

The basic expression for thermally expanded bar is [31]: 

𝑙𝑓 = 𝑙0 + 𝑙0𝛼 ∆𝑇                 (6) 

Where, 𝑙𝑓= expanded final length, 𝑙0= initial length, 𝛼= thermal expansion coefficient and 

∆𝑇=temperature difference. 
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So, 𝐿𝑡 and D𝑛 can be written as: 

𝐿𝑡 = 𝐿(1 + 𝛼𝑠𝑇)                 (7) 

D𝑛 = 𝐷0(1 + 𝛼𝑛𝑇)                 (8) 

 

Now, replacing these two terms in equation (22) and rewriting the simplified form of it: 

𝑙(𝜃) =
(𝐿(1+𝛼𝑠𝑇)−𝐷0(1+𝛼𝑛𝑇)𝜃)𝑆𝑖𝑛[𝜃]

𝜃
             (28) 

This equation has dimension. For further analysis and plotting, it should be dimensionless. To 

dimensionalize the system, divide by 𝐿. So, the dimensionless deformed length between two 

nodes will be: 

𝑙(𝜃) =
((1+𝛼𝑠𝑇)−𝑑(1+𝛼𝑛𝑇)𝜃)𝑆𝑖𝑛[𝜃]

𝜃
             (29) 

Where, 𝑑 =
𝐷0

𝐿
. 

 

The thermal strain of the system will be: 

𝜖𝑇 = 𝑙(𝜃, 𝑇) − 1               (30) 

 

The simplified equation will be: 

𝜖𝑇 = −1 +
(1+𝑇𝛼𝑠−𝑑(1+𝑇𝛼𝑛)𝜃)Sin[𝜃]

𝜃
             (31) 
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The plot of 𝜖𝑇 vs 𝑇 would be: 

 

Fig. 16: Using equation (31), thermal strain (𝜖𝑇) vs temperature (𝑇) has been plotted for three 

different size ratios (𝑑 =
𝐷0

𝐿
) 

 

The slope of thermal expansion curve, i.e., the thermal expansion co-efficient is: 

𝛼𝑇 = −
𝜃(−1−𝑇𝛼𝑠+𝜃𝑑+𝑇𝑑𝛼𝑛𝜃)Cos[𝜃]+(1+𝑇𝑑𝛼𝑛𝜃)Sin[𝜃]

𝑇𝜃
           (32) 
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If 𝛼𝑠 = 0 and 𝛼𝑛 = 0, 𝛼𝑇 will be: 

𝛼𝑇 = −
𝜃(−1+𝑑𝜃)Cos[𝜃]+Sin[𝜃]

𝑇𝜃
              (33) 

 

𝜃 =
𝐿

𝜌
                   (15) 

1

𝜌
= 𝑎𝑇                  (16) 

 

“𝑎” is a parameter of the strip, which depends on the properties of the strip. The value of “𝑎” has 

to be calculated depending on the bending it shows with the temperature. For this validation, we 

have used equation (15) & (16) and calculated the value of “𝑎” for the bimetallic strip used. To 

validate the equation experimentally, 60° bending of the 6" strip at ∆𝑇 = 70℃ is assumed. For 

this assumption, the angle of rotation looks reasonable.  

 

Fig. 17: Thermal expansion coefficient (𝛼𝑇) vs temperature (𝑇) plot using equation (32) for 

three different size ratios (𝑑 =
𝐷0

𝐿
) 
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Now to know the acceleration of thermal expansion, the thermal strain 𝜖 should be derivated 

twice. So, it is as follows: 

𝛼′
𝑇 =

𝑑𝛼

𝑑𝑇
=

𝑑2𝜖

𝑑𝑇2                (34)  

 

Which can be expressed as: 

𝛼′
𝑇 =

−2𝜃(1+𝑑𝑇𝛼𝑛𝜃)Cos[𝜃]+(2−(1+𝑇𝛼𝑠)𝜃2+(𝑑+𝑑𝑇𝛼𝑛)𝜃3)Sin[𝜃]

𝑇2𝜃
          (35) 

 

 

Fig. 18: Acceleration of thermal expansion coefficient (𝛼′
𝑇) vs temperature (𝑇) plot using 

equation (35) for three different size ratios (𝑑 =
𝐷0

𝐿
) 
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𝛼′
0 = lim

𝑇→0
𝛼′

𝑇 = −
1

12
𝑎𝐿(𝑎𝐿 + 12𝑑𝛼𝑛)            (36) 

Where, 𝜃 has been replaced by 𝜃 =
𝑎𝐿𝑇

2
 

Again,     lim
𝑑→0

𝛼0 = −
aL2

12
 

And     lim
𝑑→∞

𝛼0 = aL𝛼𝑛(−∞) 

 

This curve proves that 
𝑑𝛼

𝑑𝑇
 at 𝑇 = 0 is a monotonous function despite 3 parameters. So that it does 

not have any maximum in the range. 

Comparing the three parameters in a single plot for the size factor of the design shown in the 

beginning of the chapter, it would look like: 

 

Fig. 19: For size ratio, 𝑑 = 0.115, the three parameters are plotted together. To match the 

scale, with 𝜖𝑇, 𝛼𝑇 and 𝛼′
𝑇 has been multiplied by 103 and 105 respectively 
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To plot 𝛼𝑇 and 𝛼′𝑇 with 𝜖𝑇, 𝛼𝑇 and 𝛼′𝑇 should be rescaled. Because these two have very small 

scale comparatively with 𝜖𝑇. The previous individual graphs have been shown on the original 

scale. 

Considered 𝛼𝑠 = 𝛼𝑛, 

𝛼0 = −
𝑎𝐿𝑑

2
+ 𝛼𝑠               (37) 

If the points plotted in a contour plot, it would be as shown below: 

 

Fig. 20: The contour map has vertical axis as “log10 𝑎𝐿”, where “𝑎𝐿” have dimensionality of 

[𝑇]−1. As the dimension of “𝑎” is [𝐿]−1[𝑇]−1 and “𝐿” has dimension of [𝐿] (from equation (37)). 

So, it can be called as the rate of thermal expansion. 
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For the circular nodes, the highest value of log10 𝑎𝐿 =  −9.8−4 in fig.19. Whereas in fig.8 for 

square node, this value comes down to log10 𝑎𝐿 =  −8.2−4. So, it easily can be stated that 

circular node is lot better than square node. 

 

 

From the above theory and calculation, the system can achieve 𝜃𝐶 = 78.03° and 𝑇𝐶 = 295℃. 

So, in simple words, it can reach higher critical angle with comparatively lower critical 

temperature. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 26 

2.3 Chiral Meta-materials with Triangular Nodes 

 

The metamaterial behavior of the structure drawn in fig.21 has been described in this section. 

Through the derivation done in this section, it can be proved that the design can be worked as 

thermal metamaterial. 

 

 

 

Fig. 21: Part of whole structure with triangular node 
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Fig. 22: Deformed diagram of unit cell with triangular node 
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Considering the geometry of the nodes as triangular and dimension of all sides are H and the 

length of the bimetallic strip as L, the equation has been formulated. Also, the thermal expansion 

coefficient of the strip denoted as 𝛼𝑠 and the thermal coefficient of the node denoted as 𝛼𝑛. 

 

Fig. 23: one strip with two nodes 

 

Fig. 24: Triangular node expanded 
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The deformed length of the strip depends on the curvature and the rate of thermal expansion. 

Using geometrical theories, the expression can be written as: 

𝑙 =
𝐿𝑡

𝜃
sin 𝜃 +

2

√3
𝐻𝑡 sin[

𝜋

3
− 𝜃]             (38) 

Where, 𝑙 = deformed length between nodes, 𝐿𝑡= changed length of the strip after temperature 

has been applied, 𝐻𝑡= changed cross-sectional dimension after temperature has been applied, 

𝜃= radius of curvature. 

 

In order to check the validity of the equation, the following condition can be made. 

If 𝑇=0, there will not be any thermal expansion of the strips and nodes and any kind of curvature 

of the structure as well. Now, from equation (35), 

𝑙 = 𝐿 + 𝐻                (39) 

As temperature is not applied, the dimensions of the strips and the nodes will not be changed. 

That’s why the notations 𝐿 and 𝐻 has been used instead of 𝐿𝑡 and 𝐻𝑡. 

 

The basic expression for thermally expanded bar is [31]: 

𝑙𝑓 = 𝑙0 + 𝑙0𝛼 ∆𝑇                 (6) 

Where, 𝑙𝑓= expanded final length, 𝑙0= initial length, 𝛼= thermal expansion coefficient and 

∆𝑇=temperature difference. 

So, 𝐿𝑡 and 𝐻𝑡 can be written as: 

𝐿𝑡 = 𝐿(1 + 𝛼𝑠𝑇)                 (7) 

𝐻𝑡 = 𝐻(1 + 𝛼𝑛𝑇)                 (8) 

 

Now, replacing these two terms in equation (2) and rewriting the simplified form of it: 

𝑙 = 𝐻(1 + 𝛼𝑛𝑇) cos 𝜃 + (−
𝐻(1+𝛼𝑛𝑇)

√3
+

𝐿(1+𝛼𝑠𝑇)

𝜃
) sin 𝜃          (40) 

 

This equation has dimension. For further analysis and plotting, it should be dimensionless. To 

dimensionalize the system, divide by 𝐿. So, the dimensionless deformed length between two 

nodes will be: 
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𝑙(𝜃) = ℎ(1 + 𝛼𝑛𝑇) cos 𝜃 + (−
ℎ(1+𝛼𝑛𝑇)

√3
+

(1+𝛼𝑠𝑇)

𝜃
) sin 𝜃          (41) 

Where, ℎ =
𝐻

𝐿
. 

 

The thermal strain of the system will be: 

𝜖𝑇 =
𝑙(𝜃,𝑇)

1+ℎ
− 1                (42) 

 

The simplified equation will be: 

𝜖𝑇 = −1 +
ℎ(1+𝛼𝑛𝑇) cos 𝜃+(−

ℎ(1+𝛼𝑛𝑇)

√3
+

1+𝛼𝑠𝑇

𝜃
) sin 𝜃

1+ℎ
           (43) 
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The plot of 𝜖𝑇 vs 𝑇 would be: 

 

Fig. 25: Using equation (43), thermal strain (𝜖𝑇) vs temperature (𝑇) has been plotted for three 

different size ratios (ℎ =
𝐻

𝐿
) 

 

The slope of thermal expansion curve, i.e., the thermal expansion co-efficient is: 

𝛼𝑇 =
𝜃(−3−3ℎ𝑇𝛼𝑛−3𝑇𝛼𝑠+√3ℎ𝜃+√3ℎ𝑇𝛼𝑛𝜃) cos 𝜃+(3+ℎ𝜃(3𝜃+𝑇𝛼𝑛(√3+3𝜃))) sin 𝜃

3(1+ℎ)𝑇𝜃
        (44) 
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If 𝛼𝑠 = 0 and 𝛼𝑛 = 0, 𝛼𝑇 will be: 

𝛼𝑇 =
𝜃(−3+√3ℎ𝜃) cos 𝜃+(3+3ℎ𝜃2) sin 𝜃

3(1+ℎ)𝑇𝜃
             (45) 

 

𝜃 =
𝐿

𝜌
                   (15) 

1

𝜌
= 𝑎𝑇                  (16) 

 

“𝑎” is a parameter of the strip, which depends on the properties of the strip. The value of “𝑎” has 

to be calculated depending on the bending it shows with the temperature. For this validation, we 

have used equation (15) & (16) and calculated the value of “𝑎” for the bimetallic strip used. To 

validate the equation experimentally, 60° bending of the 6" strip at ∆𝑇 = 70℃ is assumed. For 

this assumption, the angle of rotation looks reasonable.  

 

Fig. 26: Thermal expansion coefficient (𝛼𝑇) vs temperature (𝑇) plot using equation (44) for 

three different size ratios (ℎ =
𝐻

𝐿
) 



 33 

Now to know the acceleration of thermal expansion, the thermal strain 𝜖 should be derivated 

twice. So, it is as follows: 

𝛼′𝑇 =
𝑑𝛼

𝑑𝑇
=

𝑑2𝜖

𝑑𝑇2                (46) 

 

Which can be expressed as: 

𝛼′𝑇 = (
1

3(1+ℎ)𝑇2𝜃
(−𝜃 (6 + ℎ𝜃(2√3𝑇αn + 3𝜃 + 3𝑇αn𝜃)) Cos[𝜃]) + (6 − 3(1 +

𝑇(2ℎαn + αs))𝜃2 + √3ℎ(1 + 𝑇αn)𝜃3)Sin[𝜃])            (47) 

 

 

Fig. 27: Acceleration of thermal expansion coefficient (𝛼′
𝑇) vs temperature (𝑇) plot using 

equation (47) for three different size ratios (ℎ =
𝐻

𝐿
) 
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N.B.: The above contour map has vertical axis as “𝑎𝐿”, which have a dimensionality of [𝑇]−1. As 

the dimension of “𝑎” is [𝐿]−1[𝑇]−1 and thermal expansion 𝜀 has no dimensionality. So, it can be 

called as the rate of thermal expansion. 

𝛼′0 = lim
𝑇→0

𝛼′
𝑇 = −

𝑎𝐿(𝑎𝐿+3𝑎𝐿ℎ+12ℎ𝛼𝑛)

12(1+ℎ)
            (48) 

Where, 𝜃 has been replaced by 𝜃 =
𝑎𝐿𝑇

2
 

 

Again,     lim
ℎ→0

𝛼0 = −
𝑎𝐿2

12
 

And     lim
ℎ→∞

𝛼0 = −
1

4
𝑎𝐿(𝑎𝐿 + 𝛼𝑛) 

This curve proves that 
𝑑𝛼

𝑑𝑇
 at 𝑇 = 0 is a monotonous function in spite of 3 parameters. So that it 

does not have any maximum in the range. 
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Comparing the three parameters in a single plot for the size factor of the design shown in the 

beginning of the chapter, it would present like: 

 

 

Fig. 28: For size ratio, ℎ = 0.115, the three parameters are plotted together. To match the 

scale, with 𝜖𝑇, 𝛼𝑇 and 𝛼′
𝑇 has been multiplied by 103 and 105 respectively 

 

To plot 𝛼𝑇 and 𝛼′𝑇 with 𝜖𝑇, 𝛼𝑇 and 𝛼′𝑇 should be rescaled. Because these two have very small 

scale comparatively with 𝜖𝑇. The previous individual graphs have been shown on the original 

scale. 
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Considered 𝛼𝑠 = 𝛼𝑛, 

𝛼0 = −
√3𝑎𝐿ℎ

6(1+ℎ)
+ 𝛼𝑠               (49) 

If the points plotted in a contour plot, it would be: 

 

Fig. 29: The contour map has vertical axis as “log10 𝑎𝐿”, where “𝑎𝐿” have dimensionality of 

[𝑇]−1. As the dimension of “𝑎” is [𝐿]−1[𝑇]−1 and “𝐿” has dimension of [𝐿] (from equation (49)). 

So, it can be called as the rate of thermal expansion. 
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3 Summary and Conclusion  

 

The basic concepts of meta-materials are to design existing materials, such that it will exhibit new 

properties which is not available on mother materials. This generally is done by engineering and designing 

the materials. For this case, the materials have been engineered such that it shows thermal bistability and 

negative thermal expansion. If the dimensions of the nodes have been changed, the properties will change 

as well (consult the theory above). The node size and the length of the bar are the main parameter here. 

If these two will change, the behaviors of the model will change as well. Thus, definitely it can be stated 

that this model is a meta-material design and it will act on temperature.  

 

Throughout the theory, it has been observed that for all three cases, thermal expansion coefficient (𝛼𝑇) 

is monotonously linear. For the circular node, 𝛼𝑇 is not always decreasing. After certain temperature, i.e., 

295℃, which is also critical temperature of this design, 𝛼𝑇 starts to increase. It will still remain negative, 

but it will no longer be monotonously decreasing. If we design geometrically this design with circular node 

such a way that after the strips will touch each other, they will still move away, we can achieve positive 

𝛼𝑇.  

 

The contour plots are one of the most important plots for this study. All three have been plotted with 

log10 𝑎𝐿 vs size ratio (ℎ). Whereas size ratio (ℎ =
𝐻

𝐿
) and the Y-axis can be interpreted as (𝛼0 − 𝛼𝑠). 𝛼0 is 

the coefficient at 𝑇 = 0 and 𝛼𝑠 is the thermal expansion coefficient of the strip. 

 

The thermal expansion coefficient expressions for different node designs at 𝑇 = 0℃  are: 

• For square node: 

𝛼0 =
−aLℎ

2(1 + ℎ)
+ 𝛼𝑠 

• For circular node: 

𝛼0 = −
aL𝑑

2
+ 𝛼𝑠 

• For triangular node: 

𝛼0 =
−√3 aLℎ

6(1 + ℎ)
+ 𝛼𝑠 
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So, at ℎ = 0.115, 𝐿 = 0.064, 𝑎 = 0.15 and 𝑇 = 0, the values will be as follows: 

Table 1: Comparison of 𝛼𝑇 and 𝛼𝑇
′  between three node types 

 Square Node Circular Node Triangular Node 

𝛼𝑇 −4.951𝐸 − 4 −5.52𝐸 − 4 −2.86𝐸 − 4 

𝛼𝑇
′  −9.26𝐸 − 6 −5.12𝐸 − 5 −9.26𝐸 − 6 

 

Comparing the above table, the value of thermal expansion coefficient for triangular node is almost half 

of the value of the square node. But the value for circular node is higher among them. For the acceleration 

rate of thermal expansion coefficient, the values are same for both square and triangular node. But the 

value for circular node is much higher than others. 

 

So, for the practical use, circular node is definitely better than other two. 
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4 Future Work 

 

Throughout the text, we have discussed about thermal strain (𝜖𝑇), thermal expansion coefficient (𝛼𝑇) and 

acceleration rate of thermal expansion coefficient (𝛼𝑇
′ ). All the values have been used in the text is 

theoretical. No experimental work has been done to measure them. So, for further work, the values of 𝛼𝑇 

and 𝛼𝑇
′  can be measured experimentally. 

 

Solving the critical angle of the structure with triangular node is comparatively difficult than the square 

node and circular node structures. As it has six sides, when they bend due to temperature applied, it’s 

hard for them to touch each other. Theoretically, it has ended up with a very complex equation with both 

tan 𝜃 and sec 𝜃 in it. So, it is quite impossible to find the critical value of 𝜃, i.e., the angle of rotation. 

Hence, it’s not possible to find out the critical temperature of the structure with triangular node. So, this 

is the something which can be worked on further. This thesis is based on theoretical calculations and 

derivations. For future work, the practical models can be made and tested to observe same properties. 

For theoretical purpose, I would like to do the same numerical method in the equation derived from the 

curvature of the strips. 

 

Thermomechanical Metamaterials are comparatively new field of study. There have been a lot about 

these metamaterials to be discovered. We are trying to design and develop theory of snapping 

thermomechanical metamaterials. 

 

I have also designed few non-local lattice structures and printed it using polymer. Based on that we are 

also trying to develop non-reversible thermomechanical metamaterials. 

 

Metal 3D printing is also a field we are interested in. Printing bimetallic material is difficult till now. We 

planned to work on that field and try to come up with the solution for this problem. 

 

And at last, as an engineer, we are also trying to make everything very efficient specially for 3D printing. 

The models which we are going to design, we will try to make those very efficient and quick to respond. 
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