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SUMMARY 

Additive manufacturing has been rapidly evolving since its emergence in the 1980s, and it has 

obtained considerable public attention due to its unique manufacturing capabilities ensured by the 

layer-by-layer production method. Comparing to traditional manufacturing processes, additive 

manufacturing has great potentials for shorter product development cycle, easier process control, 

and enhanced manufacturing complexity with higher material efficiency and less material wastes. 

As a result, different additive manufacturing technologies have been developed and adopted in 

various industries such as aerospace, automotive, electronics, healthcare, etc. Currently, the 

growing public interest in developing additive manufacturing into a mainstream manufacturing 

technology has led to the proliferation of academic achievements. In the meantime, increasing 

concerns have been presented regarding the potential environmental and economic sustainability 

of different additive manufacturing processes. 

 To date, the majority of current literature on environmental sustainability of additive 

manufacturing follows empirical approaches and lacks theoretical estimation and prediction 

capabilities. Hence, there is an urgent need for analytical modeling on the environmental 

performance of additive manufacturing process in terms of energy consumption and process 

emission. However, reducing the adverse environmental impacts from additive manufacturing 

processes usually implies increasing the production cost as well as life cycle cost. Additionally, in 

current literature, the cost performance of additive manufacturing especially for more complex 

production layouts has not yet been well studied. A joint study considering both environmental 

sustainability and cost evaluation for additive manufacturing will benefit the area and help further 

develop sustainable additive manufacturing by estimating and predicting the environmental and 

economic performance of additive manufacturing.  



xiv 

 

To advance the state-of-the-art in the environmental sustainability and cost analysis of additive 

manufacturing, this dissertation is conducted to promote sustainable additive manufacturing and 

enhance the life cycle performance of stereolithography additive manufacturing. This dissertation 

is mainly focused on the stereolithography production process and will be extended to a 

comprehensive life cycle assessment to evaluate the potential environmental and economic 

impacts from a life cycle perspective. The results of this dissertation can enable the theoretical 

estimation and prediction on the sustainability performance of stereolithography additive 

manufacturing in terms of energy consumption, process emission and production cost. More 

specifically, the analytical models established in this research is capable of quantifying, predicting, 

and reducing the electricity usages, volatile organic compound emissions as well as production 

cost. The results of this research indicate the potentials for reducing more than 50% of energy 

consumption without sacrificing the print quality, reducing the average total volatile organic 

compound concentration levels by more than 70%, and reducing the cost by around 25% while 

maintaining the production throughput and printed surface roughness. The outcomes of this 

research can be incorporated in the design and redesign stages of additive manufacturing, and 

provide useful insights aiming to facilitate sustainable designing and planning in additive 

manufacturing and promote long-term development of sustainable additive manufacturing. 
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1. INTRODUCTION 

1.1 General Introduction 

1.1.1 Additive Manufacturing 

Additive manufacturing (AM), also referred to as three-dimensional (3D) printing, is defined 

as “the process of joining materials to make objects from 3D model data usually layer upon layer, 

as opposed to subtractive manufacturing technologies” (ASTM, 2012). According to different 

types of raw materials and production technologies, AM processes can be classified into seven 

different categories (Newman, 2012) as shown in Table 1 , i.e., Material Extrusion, Binder Jetting, 

Directed Energy Deposition, Vat Photopolymerization, Powder Bed Fusion, Material Jetting and 

Sheet Lamination. 

Table 1. The different categories for additive manufacturing technologies 

Category AM Process Description 

Vat Photopolymerization 
It uses a vat of photosensitive liquid polymer to fabricate parts 

layer by layer, e.g., Stereolithography. 

Material Jetting 
It builds the part by jetting the liquid material onto a build 

platform, e.g., PolyJet. 

Binder Jetting It uses two materials: a powder-based material and a liquid binder. 

Material Extrusion 
It extrudes the material through a nozzle and deposits the heated 

material layer by layer, e.g., Fused Deposition Modeling. 

Powder Bed Fusion 

It uses “either a laser or electron beam to melt and fuse material 

powder together” (Galante et al., 2019), e.g., Direct Metal Laser 

Sintering. 

Sheet Lamination 
It uses sheets or ribbons of metal, which are bound together using 

ultrasonic welding, e.g., Laminated Object Manufacturing. 

Direct Energy Deposition 

It is consisted of “a nozzle mounted on a multi-axis arm, which 

deposits melted material onto the specified surface” (Srinivas and 

Babu, 2017). 
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Figure 1. The additive manufacturing implementation by purposes, adapted from 

(Wohlers Associates, 2015) 

As shown in Table 1, these AM processes adopt different types of raw materials, e.g., nylon, 

Acrylonitrile Butadiene Styrene (ABS), Polylactic Acid (PLA), polymers, stainless steel, titanium, 

ceramics, gypsums, graded material, etc. In addition, these AM technologies can process different 

forms of raw materials including solid, liquid, and powder. Because of the increasing diversities 

in AM technologies and raw materials, AM has obtained unprecedented popularity and has been 

developed rapidly since its first emergence in the 1980s. 

To date, AM has evolved from its initial use, i.e., rapid prototyping, to rapid tooling, rapid 

manufacturing, and even larger scale manufacturing. The current AM technologies have been 

implemented for different purposes as illustrated in Figure 1. AM fabricated products are often 

adopted in industries such as aerospace (Lyons, 2012), automobile (Marchesi et al., 2015), 

healthcare (Giannatsis and Dedoussis, 2009), food (Lipton et al., 2015), etc. The main reasons for 

such wide range of different applications and implementations are the unique characteristics of 

AM technologies ensured by the layer-wise production method. The distinguished advantages of 

using AM technologies versus traditional manufacturing processes are summarized as follows. 
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First, AM is capable of fabricating parts with more complex geometries, which can be costly, time 

consuming or even not feasible using traditional manufacturing processes such as subtractive 

manufacturing techniques. Second, because of the reduction or elimination of tooling, lubricants 

and cutting fluids, AM has potentials for shorter product development cycle and easier process 

control. Finally, compared to traditional manufacturing technologies, AM is capable of 

significantly improving the material usage efficiency and reducing the life cycle environmental 

impacts and carbon footprints (Huang et al., 2015).  

Owing to the great advantages of AM and the enhanced manufacturing capabilities offered by 

AM, numerous efforts have been dedicated to developing AM as one of the mainstream 

manufacturing technologies. In other words, AM is expected to take over a certain portion of the 

manufacturing quota in the near future, especially for industries with small to medium sized 

production volumes. Due to the growing applications and extinguished characteristics of AM 

processes, the global AM market has been rapidly growing. It has been estimated that the economic 

impact of AM will be up to $550 billion per year in 2025 (Manyika et al., 2013).  

Within the global AM market, the U.S. is currently a major user and primary producer of 

different AM systems. As shown in Figure 2, the U.S. accounted for around 38% of the global AM 

market in 2012 (Wohlers Associates, 2012). The U.S. AM market is promising and has great 

potentials for increasing applications. For example, according to a report published by the U.S. 

Postal Service (USPS), an incremental $646 million dollars in commercial package revenue can 

be generated by turning the current postal processing stations into AM hubs (Columbus, 2015; U.S. 

Postal Service, 2014). In addition, more countries (including the U.S.) have realized the 

importance of AM for military applications. For example, a U.S. military Fab Lab was established 

in Afghanistan which has 3D printers as well as other industrial machines (Peels, 2017). In addition, 



4 

 

a great number of companies have developed and/or expanded their service to AM such as 

Autodesk, Amazon, Stratasys, 3D Systems, Intel, GE, Home Depot, Makerbot, Formlabs, Carbon, 

3D Hubs, Prusa3D, BigRep, Local Motors, etc.  

 

Figure 2. The global additive manufacturing market share, adapted from (Wohlers 

Associates, 2012) 

While the AM market is growing rapidly and continuously, some limitations still exist and are 

hindering the further implementations of AM in different industries. For example, the accuracy of 

current AM technologies is generally lower than traditional manufacturing processes such as 

computer numerical control process (Campbell et al., 2012). As a result, adopting AM usually 

implies producing parts with unsatisfactory quality (Dai and Gu, 2015) and longer production time 

(Ponche et al., 2014). Other disadvantages of AM include limited types of raw materials, restricted 

print size, additional need for post-processing or surface finishing activities, etc. In addition, 

increasing concerns regarding the environmental and economic sustainability of AM have 

appeared in both industrial and academic fields. According to a report published in 2014 (Lyndsey, 
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2014), negative consequences of different AM processes and materials include intense electricity 

use, unhealthy air emissions, reliance on plastics, cyber security risks, etc.   

1.1.2 Environmental Concerns on Additive Manufacturing 

As the global AM market is continuously growing, some serious concerns are arising focusing 

on the environmental consequences that can be caused by different AM processes and materials, 

including energy consumption, electricity related Greenhouse Gas (GHG) emissions, AM process 

emissions, and material waste. More specifically, some types of AM processes utilize high energy 

intensive techniques like laser or heating system, which can lead to high demand for power level 

as well as electricity consumption. As a result, GHG emissions are caused by the electricity 

generation process and can seriously harm the environment by causing global warming and climate 

change. In addition, due to the use of certain types of raw materials, the AM production activities 

can cause process emissions such as Particulate Matter (PM) emissions or Volatile Organic 

Compound (VOC) emissions. 

 

Figure 3. The global desktop AM Market, adapted from (Wohlers Associates, 2015) 



6 

 

The AM process emissions need to be carefully evaluated and controlled, as most of these AM 

processes and/or machines are currently used in indoor environments, especially desktop 3D 

printers. According to the Wohler’s Report, a steadily increasing trend was observed in the desktop 

3D printing market, and more than 140,000 desktop 3D printers were sold worldwide in 2014 

(Wohlers Associates, 2015) as shown in Figure 3. Most desktop 3D printers are used in indoor 

environments such as schools (for education purposes) and hospitals; where children and patients 

are likely to be exposed to adverse health effects of 3D printers. Also, most current AM processes 

do not have an end-of-life management system for further recycling, reusing, or remanufacturing. 

Most material wastes are improperly disposed or locally processed, leading to undesired 

environmental consequences. Therefore, to provide insights on reducing hazardous health and 

environmental effects from AM processes and materials, the environmental impacts need to be 

thoroughly evaluated and controlled considering energy consumption, GHG emissions, process 

emissions, etc.  

1.1.3 Energy Consumption and Greenhouse Gas Emissions 

The energy consumption and associated GHG emissions are of great importance for the 

development of sustainable manufacturing as well as sustainable society. It has been estimated the 

total U.S. GHG emissions in 2015 were almost 7,000 million metric tons of carbon dioxide 

(National Energy Technology Laboratory, 2019; U.S. Environmental Protection Agency, 2016a). 

As shown in Figure 4, the electricity sector had the biggest share (29%) out of the total GHG 

emissions in 2015 in the U.S. Therefore, to reduce the GHG emissions and to relieve the 

accompanying environmental consequences, it is significantly critical to investigate and reduce 

the electricity use. More specifically in the manufacturing sector, reducing the machine related 

electricity consumption can be substantial because it accounted for 49% of the total electricity 
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consumption in the U.S. manufacturing sector in 2013, as also illustrated in Figure 5. The AM 

process/machine related electricity consumption and electricity related GHG emissions have not 

yet been well studied. 

 

Figure 4. Total U.S. GHG emissions by economic sector in 2015, adapted from (U.S. 

Environmental Protection Agency, 2016a) 

 

Figure 5. U.S. manufacturing electricity consumption, adapted from (U.S. Energy 

Information Administration, 2010) 
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1.1.4 Volatile Organic Compound Emissions in Additive Manufacturing 

In addition to the electricity consumption and associated GHG emissions, the different types 

of hazardous process emissions from the various AM technologies and materials also need to be 

studied and reduced. As one of the most common AM technologies for indoor desktop 3D printers, 

the Stereolithography (SLA) process has two possible sources of gaseous emissions: one is the raw 

material volatilization process, where the photosensitive liquid resin volatilizes organic 

compounds to air even when the SLA machine is not in operation; and the other source is AM-

caused emissions, such as the hazard compounds released from the solidification of liquid resin in 

the curing process. It has been reported by some researchers that a wide variety of VOCs are 

emitted during the AM processes involved with ABS and/or PLA (Kuo et al., 2016), which are 

two of the main SLA raw materials.  

As the most common toxic component of emitted gases from AM processes, VOCs usually 

include benzene, ethylbenzene, toluene, etc. The long-term exposure to VOCs can cause eye and 

throat irritation and damage to liver and central nervous system. In addition, the VOC exposure 

can also lead to carcinogenic effects (de Gennaro et al., 2013) and increase relative rates of 

leukemia and lymphoma (Goodman et al., 2012). It was reported that in the city of New York and 

Los Angeles, around 957 and 486 cancer cases per million populations were involved with 

carcinogenic VOCs in 2006, respectively (Sax et al., 2006). In addition to the adverse impacts on 

human health, VOCs can also be emitted to the atmosphere and contaminate the air due to their 

low boiling points. Also, it has been identified that VOCs are the key reasons for the ozone 

formation (Cardelino and Chameides, 1995), photochemical smog formation (Guo, 2012) and can 

lead to serious air pollution and environmental burdens. In summary, due to the potential 
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hazardous human health risks and adverse environmental effects, it is critical to evaluate the VOC 

emissions from SLA AM process and assess the potential effects on human health and environment. 

1.1.5 Additive Manufacturing Cost 

In current literature, the cost performance of AM cost has not been well studied. As a critical 

part of the sustainability, production cost refers to all the cost components required during the 

process of fabricating a part. As discussed by Son (1991), the production costs are mainly 

categorized into two groups, i.e., well-structured costs and ill-structure costs. More specifically in 

AM, well-structured costs include material, machine, energy consumption, and labor costs; 

whereas ill-structured costs of AM include inventory, transportation, build failure, and machine 

setup costs. The cost components can also be categorized into AM process costs and life cycle 

level costs, based on their different scopes and considerations. Both AM process and life cycle 

level costs are necessary to evaluate the cost performance of AM.  

The cost analysis especially for newly developed manufacturing technologies like AM is 

critical for the evaluation of implementation feasibility. Compared to conventional manufacturing 

processes, AM has less need for inventory, hence leading to the decreased inventory costs. 

Inventory cost savings alone can contribute to significant cost reductions. According to the latest 

report from U.S. Department of Commerce, it was estimated the manufacturers’ and trade 

inventories for the month of July 2017 was $1,873.0 billion dollars (U.S. Department of Commerce, 

2017).  

1.1.6 Additive Manufacturing Batch Production 

To reduce the AM production cost per part, small to medium sized batch production is often 

adopted in AM processes (Weller et al., 2015), where multiple parts are fabricated simultaneously 

at one batch. For example, the direct fabrication of functional end use parts has been the main trend 
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for AM processes (Guo and Leu, 2013). For such small to mid-scale productions, AM has shown 

to have the capability of reducing the manufacturing cost (Buswell et al., 2007). The reason that 

AM is currently not suitable for large scale mass production is that current AM systems do not 

have sufficient throughput and capabilities, and therefore need to be further improved (Baumers 

et al., 2016a). The inadequate production throughput is caused by low productivity, as AM is still 

in its early developmental stage (Huang et al., 2013).  

To enhance the AM production throughput, medium sized batch production has obtained 

considerable research interest, where multiple parts are fabricated in groups or batches. As one of 

the most popular AM processes, the projection-based SLA process is suitable for adopting the 

batch production method, because the production time for projection-based SLA process does not 

necessarily change due to the increasing production scale. In addition to improving AM system 

throughput, batch production is also be suitable for fabricating low-demand customized parts. In 

current literature, the feasibility of batch production has not yet been thoroughly evaluated 

considering its cost analysis and environmental performance. Subsequently, to further facilitate the 

adoption of batch production in AM, a comprehensive evaluation is necessary and critical. 

1.1.7 Life Cycle Assessment 

As a popular tool for assessing the environmental sustainability and cost, life cycle assessment 

(LCA) has been the most widely used methodology over the past four decades. Instead of process 

assessment, LCA is based on the standpoint of the entire life cycle. The principles and framework 

for performing LCA (De Benedetto and Klemeš, 2009) include: “definition of the goal and scope 

of the LCA, life cycle inventory (LCI) analysis, life cycle impact assessment, and life cycle 

interpretation” (International Organization for Standardization, 2006), which are also illustrated in 

Figure 6. The LCI consists of material and energy consumption as well as emissions of all unit 
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processes involved in product life cycle, and it provides the data foundation for the LCA study, 

and usually is the most resource demanding step. As a result, commercial database with unit 

process LCI as the datasets have been established to facilitate LCI analysis, e.g., National 

Renewable Energy Laboratory (NREL), U.S. General Services Administration (GSA), Athena 

Sustainable Materials Institute, etc. However, current commercial LCI databases only cover a 

limited number of manufacturing processes while largely neglecting different types of AM 

processes. 

 

Figure 6. The life cycle assessment procedure, adapted from (International 

Organization for Standardization, 2006) 

Currently, several attempts have been made to analyze the true environmental impacts of AM 

processes using LCA methodology, i.e., quality material and energy consumption as well as air 

emissions of several AM processes, but these studies are limited by the quality and availability of 

the inventory data of feedstock materials and AM processes. In addition, these studies tend to focus 

on specific case studies and therefore are highly unlikely to draw any general conclusions. As a 

result, most of these studies follow the traditional LCA/LCI approach. That is, the AM process 

considered is treated as a black box with the mechanisms and fundamentals connecting process 

parameters (including the selection of feedstock materials) and the output inventory largely 

missing. This makes it extremely challenging to apply the LCA/LCI results to support the AM 
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process and machine improvement. Moreover, the chemical composition of AM feedstock 

materials and process emissions as well as the connections between the two remain unknown. This 

greatly hinders any rigorous assessment of environmental impact and occupational health risks.  

1.2 Literature Review 

In this section, an overview of current literature on the environmental sustainability and cost 

evaluation from both the AM process and life cycle level is illustrated. More specifically, a 

comprehensive literature review on AM process energy consumption is presented in Section 1.2.1, 

current studies on AM emissions are reviewed and discussed in Section 1.2.2, the batch production 

method and its performance considering the environmental sustainability and cost are discussed 

and reviewed in Section 1.2.3, the existing research on cost analysis and evaluation for AM process 

is examined in Section 1.2.4, and the academic achievements and limitations on LCA for AM are 

reviewed in Section 1.2.5. 

To date, numerous academic achievements and research efforts have been conducted for 

different aspects of AM. The majority of current literature on AM is focused on the enhancement 

and improvement of  the process technologies, including laser technique (Aboutaleb et al., 2017; 

Chang and Tu, 2012; Jeng and Lin, 2001; Sreenivasan et al., 2010), curing method (Brady et al., 

1996; Eschl et al., 1999; Lopes et al., 2014; Xie and Li, 2012; Zhou et al., 2011), material properties 

(Nikzad et al., 2011; Tymrak et al., 2014; Wang, 2012; Weng et al., 2016; Yang et al., 2019; 

Ziemian et al., 2012),  process planning (Ding et al., 2017; Lynn‐Charney and Rosen, 2000; 

Newman et al., 2015; Ruan et al., 2005), computational algorithms (Lavery et al., 2014; 

Martukanitz et al., 2014), etc. Recently, due to the growing public concerns in climate change, the 

environmental sustainability-related performance of AM processes has obtained great attention 

such as energy, ecological and economic sustainability (Burkhart and Aurich, 2015). Among the 
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different fields, energy consumption is considered as one of the main unsolved issues in AM 

processes (Drizo and Pegna 2006; Short et al. 2015).  

1.2.1 Literature Review on Additive Manufacturing Process Energy Consumption 

Several academic studies have been committed to the measurement of energy consumption of 

different AM processes. For example, the electricity consumed by the SLA process was 

investigated by Sreenivasan and Bourell (2009); the energy consumption for Binder Jetting (BJ) 

AM process was investigated by Xu et al. (2015); and the energy flow of BJ AM process was 

monitored by Meteyer et al. (2014). In addition, some studies have been conducted to compare the 

energy consumption of AM processes and traditional manufacturing processes. For instance, a 

comparative assessment of the electricity consumption of two Laser Sintering (LS) AM machines 

is presented in (Baumers et al., 2011). In this work, the authors argue that LS process energy 

consumption is mainly dominated by time-dependent terms. In addition, case studies for SLA, 

Selective Laser Sintering (SLS), and Fused Deposition Modeling (FDM) AM processes were 

conducted by Luo et al. (1999). For each type of AM processes, the energy consumption differed 

with varying combinations of material types, equipment and disposal scenarios. Furthermore, the 

energy consumption for building nylon parts using SLS and Injection Molding (IM) processes are 

compared by Telenko and Conner Seepersad (2012). It is concluded that the SLS process consumes 

significantly more energy than the IM process; however, this can be offset by the energy 

contributed by the production of the injection mold from a life cycle viewpoint. Additionally, the 

energy consumption and environmental impacts of FDM, PolyJet, and traditional computer 

numerical control processes were compared by Faludi et al. (2015). The authors conclude that 

electricity consumption has a significant impact on the sustainability related performance of both 

AM process and traditional computer numerical control process. 
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In addition to comparative or experimental energy consumption studies, a few energy 

consumption modeling studies aiming to uncover the relationships between different process 

parameters and energy consumption have been performed. For example, Mognol et al. (2006) 

investigated the influence of several parameters (i.e., layer thickness, support design, part 

orientation and production time) on the energy consumption of three AM systems: Thermojet, 

FDM, and Direct Metal Laser Sintering (DMLS). Kellens et al. (2014) presented parametric 

process models to estimate the environmental footprint of the SLS AM process. More recently, 

Baumers et al. (2016b) studied the relationships between geometry shape complexity and process 

energy consumption in the Electron Beam Melting (EBM) process. It has been concluded that the 

EBM process does not show a strong association between geometry shape complexity and energy 

consumption on a per-layer basis. Nonetheless, the current literature on energy modeling for AM 

processes is limited. Several popular AM processes (e.g., SLA) have not been well studied for 

their energy consumption as a part of the environmental sustainability performance. More 

specifically for the SLA AM process, various process parameters are capable of affecting the 

energy consumption, but they have not yet been investigated. Additionally, mathematical models 

for quantifying the energy consumption of AM processes are still lacked in the current literature.  

This dissertation is focused on the projection-based SLA AM process, which is one of the most 

popular AM processes that can build parts by curing the liquid photopolymer resin layer by layer 

using an ultraviolet (UV) light source. The energy consumption model is established by 

quantifying the energy contributions of each subsystem of the SLA AM machine. Design of 

Experiments (DOE) methodology is used to guide the physical measurements to quantify the 

effects of various parameters on the overall energy consumption, explore the interactions 

between/among different parameters, optimize the combination of parameters to reduce the overall 
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energy consumption, and validate the proposed energy consumption model. The potential GHG 

emission reduction due to the reduction of electricity consumption is also estimated.  

1.2.2 Literature Review on Volatile Organic Compound Emissions 

Emission evaluation is also very critical for AM processes because most 3D printers sold are 

used in indoor environments that lack necessary ventilation or filtration. As one of the most 

common AM technologies for indoor desktop 3D printers, SLA has two possible sources of 

gaseous emissions. One is the raw material volatilization process, where the photosensitive liquid 

resin volatilizes organic compounds to air; and the other is AM-caused emissions, such as the 

hazard compounds released from the solidification of liquid resin in the curing process. It has been 

pointed out by some researchers that a wide variety of VOCs are emitted during processes 

involving ABS and/or PLA (Kuo et al., 2016), which are two of the main SLA raw materials.  

When evaluating the indoor environment air quality, the total volatile organic compound 

(TVOC) measure is often used (Zhang and Zhang, 2007) and treat all types of VOCs as one target 

gas in the measurement. To help regulate TVOC emission standards, several agencies and 

companies provide recommended indoor TVOC concentration levels. For example, 

GREENGUARD Environmental Institute published an emission criterion for indoor environment 

in 2009 including TVOCs and other common indoor air pollutants (GREENGUARD Certification, 

2013). The latest LEED-NC guidance specifies that the maximum allowed TVOC concentration 

inside a building is 500𝜇g/m3 (Environmental, 2009). 

Due to the lack of TVOC emission standards, some studies have been conducted to characterize 

and analyze the emissions from AM processes. Afshar-Mohajer et al. (2015) investigated the PM 

and TVOC emissions from the BJ AM process, and observed that raw materials emitted VOCs 

even when the AM machine was not in operation. They used Isobutylene as the target gas in the 
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TVOC measurement. Another emission study concerning ultrafine particles and VOCs was 

conducted for five commercial filament extrusion 3D printers with nine different filaments (Azimi 

et al., 2016). They identified different types of VOCs emitted from various filaments with diverse 

emission ranges. Nevertheless, an emission control approach was not proposed in literature. Kim 

et al. (2015) analyzed nanoparticles and gaseous emissions from FDM 3D printers. They found 

that both nanoparticles and VOC concentrations increased during AM production stages, where 

the concentrations differed based on the cartridge type and the 3D printer manufacturer. However, 

the mathematical relationship between the emissions and AM process characteristics was not 

explored. In all, current literature on VOC or TVOC emissions from AM activities only covers 

limited types of AM processes and lacks well-documented emission data. Furthermore, an analytic 

model that can describe the emission process has not been established. Without such an analytical 

approach, the emission level from AM processes cannot be estimated or accurately predicted. 

In this dissertation, an emission evaluation methodology is proposed to theoretically estimate 

the TVOC emission for indoor environment equipped with SLA machines. To achieve this goal, 

an analytic model that describes the TVOC emission from both the raw material volatilization 

process and AM production activities is established and validated through experiments. Using this 

model, the TVOC concentration for an indoor space can be estimated with/without a 3D printer in 

operation. Furthermore, current commercial emission control technology is tested and compared 

to two new approaches proposed in this research. Proper emission control strategies provide 

promising opportunities to improve the environmental sustainability for AM and lower the 

associated health risks by significantly reducing the TVOC emission towards cleaner production. 

The results of this research will help provide understanding on the emissions of AM processes, 

evaluate the emission level, and establish emission guidelines for AM processes. 



17 

 

1.2.3 Literature Review on the Environmental Sustainability Evaluation for Batch Production 

Several studies focusing on the economic impact and feasibility of AM batch production are 

found in literature. One study was conducted by Hopkinson and Dickens (2003), in which 

traditional manufacturing methods (IM) are compared to AM processes (SLA, FDM, and LS) to 

demonstrate that AM can be cost effective for small volume batch production. Additionally, 

Lindemann et al., (2012) conducted studies on how machine utilization affects AM batch 

production cost. They concluded that some types of AM processes are cost effective when 

considering AM batch production if a high degree of machine utilization can be reached. Another 

comparison between a traditional fabrication method (high-pressure die-casting) and a AM (direct 

laser sintering) was studied by Atzeni and Salmi (2012) for metal parts, and provided evidence that 

AM can be more economically competitive for small to medium volume batch production. In 

summary, most of the current literature regarding AM batch production focuses on cost estimation 

and comparison between AM and traditional manufacturing processes. To comprehensively 

evaluate the AM batch production method, other important aspects also need to be assessed. 

Environmental sustainability plays a critical role in AM technology development and faces 

substantial challenges (Ford and Despeisse, 2015). However, in the current literature, only few 

papers have studied the environmental sustainability for AM batch production. Although it has 

been proven by Baumers et al. (2011) in that higher batch size leads to lower specific energy 

consumption (energy consumption per mass unit of part built) for some types of AM platforms, 

more experimental and theoretical results are needed to identify the quantitative relationship 

between batch size and specific energy consumption (SEC). Furthermore, almost no papers have 

studied the emission and material waste for AM batch production. Without thorough investigation 
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of these three aspects (SEC, emission, and material waste) that drive environmental sustainability, 

the feasibility of AM batch production cannot be fully assessed.  

To fill in the research gap, an evaluation on the environmental sustainability of AM batch 

production is conducted in this research by experimentally identifying the relationships between 

different batch production sizes and three key environmental performance metrics (i.e., energy 

consumption, emission, and material waste). Experiments are designed to characterize the three 

chosen environmental aspects with different batch sizes, followed by experimental results and 

discussions. The outcomes of this evaluation can be used to aid the evaluation of AM batch 

production method from an environmental sustainability perspective, enhance the understanding 

of AM batch production performance from different environmental aspects, and facilitate the 

development and improvement of feasible AM batch production methods. 

1.2.4 Literature Review on Additive Manufacturing Cost Analysis  

In addition to the environmental sustainability, cost analysis is also critical for the development 

of sustainable additive manufacturing. To date, a large number of research efforts have been 

dedicated to the cost analysis for AM (Thomas and Gilbert, 2014). According to the different scope, 

two types of cost studies are summarized from literature, i.e., AM process cost analysis and life 

cycle cost analysis. In this section, only AM process cost analysis literature is reviewed. The life 

cycle cost analysis will be discussed in Section 1.2.5.  

Most existing studies on AM process cost analysis focus on linking the process parameters 

with different cost components. As early as 1998, Alexander et al. established models for build 

orientation and production cost for FDM and SLA processes, and provided some initial 

understanding on optimal build orientation and production cost minimization (Alexander et al., 

1998). The activity-based cost modeling shown in this study works well for individual part 
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production, however, it is not valid for fabricating multiple parts simultaneously. The proposed 

cost model was later extended by Rickenbacher et al. (2013), where the authors developed a 

process-based cost model for Selective Laser Melting (SLM) process. The proposed cost model 

can obtain the cost for each single part in a mixed build job with multiple parts of different 

geometries, complexities, and quantities.  

In literature, several studies comparing the cost between AM and traditional manufacturing 

processes have been conducted. For example, Hopkinson and Dickens (2003) compared the unit 

cost per part from conventional IM and several AM processes (i.e., SLA, FDM, and LS) in. The 

cost components considered included machine, labor, and material costs. The comparison shows 

that for some geometries, rapid manufacturing can be more competitive for high production 

volumes. The cost estimation results obtained by the cost model developed by Hopkinson and 

Dickens (2003) were then compared with the cost model established in (Ruffo et al., 2006) for LS 

process. The comparison shows that the newly developed model by Ruffo et al. (2006) has a more 

accurate cost estimation especially for low production volumes. In addition, the proposed cost 

model incorporated the indirect cost components, where such consideration emphasized the 

significance of machine investment and maintenance for modern manufacturing technologies. 

Ruffo and Hague (2007) later further modified their previous cost model in and proposed several 

different mathematical methods for the calculation of unit cost for simultaneous productions of 

mixed parts. The authors assigned the unit cost using different methodologies: (1) parts volume, 

(2) the cost of building a single part, or (3) the cost of building a part in high-volume production. 

According to the case study results, the third method proved to be an equitable method for cost 

assignment.  
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In another example of cost comparison studies, Atzeni et al. (2010) compared two different 

technologies (i.e., IM and rapid manufacturing (RM)) to fabricate plastic parts from geometrical 

capabilities and economic aspects. According to the analysis, RM shows great potential to be 

economically competitive for medium volume production of plastic parts in Europe. The authors 

then performed an economic comparison (Atzeni and Salmi, 2012) between two different 

manufacturing technologies (i.e., die casting and DMLS) for fabricating end-usable metal parts. 

The results show that AM is promising for small to medium production volumes. In addition, the 

analysis also indicates that AM design and redesign can significantly reduce the AM costs.  

More recently, researchers have started to consider the cost analysis for metal AM. Piili et al. 

(2015) performed an economic analysis for laser additive manufacturing (LAM) process, and the 

authors concluded that LAM was depended heavily on the machine investment. It was also pointed 

out that simultaneously building as many parts as possible could reduce the cost by 81% to 92% 

compared to building parts separately. In addition, Baumers et al. (2016a) established a production 

cost model for EBM and DMLS processes and identified machine productivity as the main cost 

driver. The authors suggested that further AM technology improvement would enable significant 

productivity enhancement as well as production cost savings. The authors then performed an inter-

process cost comparison in (Baumers et al., 2017) between conventional manufacturing and AM 

using DMLS process, and considered several new aspects into the cost model (i.e., optimized 

capacity utilization, ancillary process, build failure, and design adaptation). The results show that 

the unit part cost in mixed productions with full capacity is lower than productions with single 

type geometry. In addition, Huang et al. (2017) established a process-based cost model for EBM 

process, and minimized cost through topology design. The results show that it is more cost 

effective when adopting larger layer thickness, faster laser speed, and smaller laser velocity. Fera 
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et al. (2017) developed a more general cost model for AM technologies, where these AM processes 

are integrated in an existing shop floor. Such consideration will help further optimizing and 

scheduling AM activities. Also, cost evaluation guidelines are proposed in literature (Zanardini et 

al., 2015) for assessing AM applications considering benefits and costs. 

1.2.5 Literature Review on Life Cycle Assessment for Additive Manufacturing 

Life cycle assessment (LCA), as a more systematic cradle-to-grave approach to evaluate 

additive manufactured parts along the different stages of their life cycle, is a prevalent tool to 

quantify and evaluate the environmental sustainability of AM process. AM, due to its unique 

characteristics, provides new production scheme possibilities. Conventional manufacturing 

industries usually adopt centralized manufacturing systems; whereas AM, due to its unique 

characteristics and its aim towards small to medium sized customized production, provides more 

possibility for distributed manufacturing system.  

To date, most studies on life cycle environmental sustainability analysis are comparative 

(Kafara et al., 2017; Faludi et al., 2015; Yang et al., 2017), where environmental performance 

when fabricating the same part for AM and conventional manufacturing processes are compared. 

For example, Cerdas et al. (2017) performed a comparative LCA in for additive manufactured 

parts in two different scenarios, the conventional centralized manufacturing system and the new 

distributed manufacturing system provided by AM. According to the analysis, the authors 

concluded that throughout the whole life cycle, the optimization potential is concentrated in the 

AM process energy consumption, which is highly linked to the printing material employed. 

Kreiger and Pearce (2013a) conducted an LCA for plastic parts fabricated by open-source 3D 

printers under a distributed manufacturing system. Compared with the environmental impact 

caused by conventional manufacturing, distributed manufacturing consumes less energy, and 
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causes less emissions when using PLA and ABS with solar photovoltaic power. The authors further 

extended their analysis and studied how process parameters like fill density affect the life cycle 

environmental impact (Kreiger and Pearce, 2013b). The analysis results show that cumulative 

energy demand of fabricating polymer parts can be reduced by 41%-64% and emissions can be 

reduced using a distributed manufacturing system when the fill density is less than 25%. 

 Peng et al. (2017) studied three different manufacturing methods for impellers (i.e., plunge 

manufacturing, laser cladding forming, and additive remanufacturing), and compared the life cycle 

environmental impacts between them. The results show that additive remanufacturing is the most 

environmental favorable option, followed by AM and conventional manufacturing, when 

considering multiple environmental aspects such as global warming potential (GWP), resource 

depletion potential (RDP), water eutrophication potential (EP), and acidification potential. On the 

other hand, using only AM can lead to twice of the environmental burdens than conventional 

manufacturing. Walachowicz et al. (2017) compared the environmental impacts of conventional 

manufacturing methods with laser beam melting (LBM) AM process. More specially, the LCA 

study was conducted for the process of repairing a burner, which is often used in industrial gas 

turbines. The results show that AM can reduce material footprint, primary energy consumption, 

and carbon footprint.  

In addition, some researchers proposed frameworks for assessing and evaluating the 

environmental sustainability for AM (Burkhart and Aurich, 2015). For example, Bours et al. (2017) 

developed a framework that considers environmental impacts as well human hazards, and 

identified suitable methodologies to evaluate these concerns. The authors then adopt the 

methodologies for material selection. Two types of materials are compared: Autodesk standard 

clear prototyping resin and bio-polylactic acid.  
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So far, only a few research efforts are dedicated to quantifying and evaluating the life cycle 

level or supply chain level costs for AM. (Lindemann et al. (2012) performed a life cycle cost 

analysis for additive manufactured metal parts, in order to identify and study the cost drivers which 

have the most significant impact on unit costs. The authors further extended their research and 

studied the effect from AM building rate on the life cycle cost (Lindemann et al., 2013). A life 

cycle economic analysis was conducted by Wittbrodt et al. (2013) for open-source 3D printers, 

which shows promising results considering the case where the self-replicating 3D printers are used 

in households. A stochastic cost model to quantify the supply-chain level costs of biomedical 

implants using AM technologies was proposed in (Emelogu et al., 2016), and solved using a 

customized Sample Average Algorithm (SAA). In addition, some real-life case studies are 

performed, and the results show that the key factors for the economic feasibility of AM adoption 

include the unit production costs and product lead time and demands (Emelogu et al., 2016). 

Although several attempts have been made to analyze the environmental sustainability and cost 

using LCA methodology, these studies (1) do not simultaneously consider both environmental 

sustainability and cost; (2) are limited by the quality and availability of the life cycle inventory 

data; and (3) tend to focus on specific cases so it is unlikely to draw any general conclusions. 

Therefore, current literature on LCA for evaluating the environmental sustainability and cost 

analysis for AM process is far from complete, and there is a critical knowledge gap in 

comprehensively considering both environmental and economic performance of AM process. 

1.3 Motivations 

As a newly developed manufacturing technique, the vitality of implementing AM needs to be 

properly and comprehensively evaluated. Given the current concerns and challenges related to 

GHG emissions and limited energy resources, sustainable manufacturing should be incorporated 
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to the long-term development of AM. Sustainable manufacturing is defined as “the creation of 

manufactured products through economically-sound processes that minimize negative 

environmental impacts while conserving energy and natural resources” (U.S. Environmental 

Protection Agency, 2016b), and it will benefit manufacturers, users, as well as society. According 

to the definition, the development of sustainable manufacturing is twofold: one is to ensure the 

manufacturing process is economically sound; and the other one is to minimize the harmful 

environmental impact. Developing sustainable AM will help further increase the AM operational 

efficiency by minimizing the cost and waste while reducing the negative environmental 

consequences.  

In terms of the environmental sustainability, increasing concerns have been presented in 

multiple aspects including energy consumption, process emissions, material waste, etc. In general, 

minimizing the environmental impact has been touted as one of the main advantages of AM when 

compared to traditional manufacturing processes, because AM seems to have higher material 

efficiency and lower scrap rate. Also, AM makes regional and local production possible, where 

the shortened supply chain suggests lower energy consumption and less emissions from the 

transportation process. However, some types of AM technologies (especially the ones involving 

laser technologies) require high energy intensity; and some types are found to release hazardous 

emissions. Therefore, the environmental sustainability still needs to be comprehensively evaluated 

for AM processes from both the process and life cycle standpoints. 

In addition to the environmental sustainability, cost evaluation is also critical for developing 

sustainable AM. In reality, reducing the adverse environmental impacts from AM usually leads to 

higher production costs. For example, to filter or absorb the harmful gaseous emissions from AM 

production activities, additional equipment or accessories need to be installed leading to higher 



25 

 

machine and labor costs. Therefore, it is critical to jointly consider both environmental 

sustainability and cost for AM process. However, in current literature, most existing studies follow 

empirical approaches and lack theoretical estimation and prediction capability. Hence, there is an 

urgent need to analytical model the environmental sustainability and cost of AM. 

Therefore, motived by (1) the increasing concerns (i.e., energy consumption, GHG emissions, 

VOC emissions, material waste, etc.) on the environmental sustainability of current AM processes; 

(2) the lack of combined cost analysis and environmental sustainability evaluation; and (3) the 

incomprehensive life cycle inventory databased for SLA AM, this research work is carried out 

aiming to study and evaluate the environmental sustainability and cost performance of projection-

based SLA AM process.  

More specifically, to advance the state-of-the-art of the research on energy consumption 

modeling of the SLA AM process, this dissertation is focused on theoretically modelling the 

energy consumption from each subsystem of SLA AM process, and using Design of Experiment 

(DOE) methodology to validate the model and further explore the effects of multiple process 

parameters and their interactions on the total energy consumption. Response Surface Methodology 

(RSM) is also used to obtain the optimal combination of process parameters in order to minimize 

the overall energy consumption. In addition, the associated GHG emission reduction is also 

estimated. Furthermore, to characterize and study the TVOC emissions from SLA AM processes, 

an analytical model is established and validated experimentally. To reduce the TVOC emissions 

as well as any possible health risks caused by the TVOC emissions, two effective emission control 

strategies are proposed and implemented in SLA AM process. Using the methodologies from 

energy consumption and TVOC emission modeling, AM batch production method is assessed. 

Finally, the cost analysis and life cycle assessment will be conducted. Furthermore, to estimate the 
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cost of projection-based SLA AM process, a theoretical cost model is established that can tackle 

different production layouts including simple one-off production, non-mixed batch production, 

and mixed batch production. An optimization problem is formulated based on the cost model 

aiming to reduce the cost while maintaining production throughput and achieved surface quality 

by selecting appropriate values of process parameters (layer thickness and stratification angle). In 

addition, sensitivity analysis is performed to identify the key cost drivers in the current AM market. 

1.4 Research Framework 

Based on the above literature review and motivations, the research goal of this dissertation is 

to advance the state-of-the-art in the environmental and economic sustainability evaluation for 

SLA process by theoretically modeling multiple sustainability measures (i.e., energy consumption, 

VOC emission, and cost performance) and exploring opportunities for enhancing the 

environmental and economic sustainability through production layout selection as well as 

production process planning. The research framework is proposed as shown in Figure 7. 

 

Figure 7. The proposed research framework 
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The rest of this dissertation is organized as follows. The energy consumption of SLA process 

is studied in Section 2, including the theoretical modeling, experimental validation and the 

investigation on the relationships between energy consumption and process parameters. Next, the 

VOC emission model is established and experimentally validated in Section 3. The cost modeling 

and optimization are performed in Section 4. Finally, the summary and future work of this 

dissertation are discussed in Section 5. 
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2. ENERGY CONSUMPTION MODELING AND ANALYSIS IN 

STEREOLITHOGRAPHY ADDITIVE MANUFACTURING  

(Previously published as “Yang, Y., Li, L., Pan, Y., and Sun, Z., 2017. Energy Consumption 

Modeling of Stereolithography-based Additive Manufacturing Toward Environmental 

Sustainability. Journal of Industrial Ecology 21(S1) S168-S178.”) 

The energy consumption of SLA AM process is studied in this section. First, the SLA AM 

process mechanism is introduced in Section 2.1. Then, the theoretical model for energy 

consumption is established in Section 2.2. Next, experiment design is illustrated in Section 2.3. 

The model validation and factorial analysis are shown in Section 2.4. Finally, the conclusion of 

this part of the research is discussed in Section 2.5. Note that the majority of the content presented 

in this Chapter has been previously published in (Y. Yang et al., 2017). 

2.1 Stereolithography Additive Manufacturing Process Introduction 

As the most popular desktop 3D printer, the SLA AM process has been mostly used in indoor 

environments. It has a faster production speed comparing to other AM processes, contributed by 

its innovative image projection method by exposing 2D cross section images instead of scanning 

them with laser beam (Pan et al., 2012b). Besides, it has ability to produce a wide variety of shapes 

(Reeves, 2009) while ensuring good quality and reasonable costs. Generally, the SLA AM process 

provides more freedom for designers as some process parameters in the process can be configured 

and changed. Such process parameters include layer thickness, curing time, and other parameters 

in the building files. In addition, geometry related parameters can also be adjusted in the control 

software. 
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As presented in Figure 8, the SLA process is comprised of a computer, a material tank with 

transparent bottom, a building platform, a Z stage, a Digital Micro-Mirror Device (DMD), a UV 

light source, and a lens. All components are stationary during production process except the 

building platform which moves along the Z stage (in vertical direction), allowing the part to be 

built on the platform layer-by-layer. The material tank contains liquid resin, which is solidified by 

the UV light source based on the layer image projected by DMD.  

 

Figure 8. The Stereolithography process diagram and image 

The production processes are summarized as follows. First, the 3D geometry built in CAD 

software is imported into the SLA machine control software and sliced into layers of 2D images 

with uniform layer thickness. Then, the control software generates the building files including all 

the process parameters that the machine requires to build the designed part, such as material type, 

layer thickness, layer image, curing time, etc. After the building files are sent to the SLA machine, 

the building platform moves down to the liquid resin and touches the bottom of material tank as 

the starting position before the actual building process, which is also called “home” position. To 

start the production, DMD projects the first layer image on the bottom of the building platform 

through the transparent material tank so that UV light can cure the certain exposure area. During 

UV curing process, the liquid resin transforms to a non-tacky solid (Bajpai et al., 2002). After the 
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first layer is solidified, the building platform moves up along the Z stage by the distance of layer 

thickness, preparing the new building surface for the next layer. Afterwards, according to the 

building files, the DMD automatically projects the next layer image. These procedures are repeated 

until the part is finished. Then, the building platform moves up to its original position. The 

procedure is also illustrated in Figure 9. 

 

Figure 9. The Stereolithography process flowchart 
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2.2 Additive Manufacturing Process Energy Consumption Modeling 

As illustrated in Figure 10, the SLA AM process contains multiple subsystems with their 

corresponding functionalities, i.e., layer image projection, UV curing, building platform 

movement, lighting, and fan cooling. Each subsystem contributes different portions of energy 

consumption. Thus, it is critical to mathematically model the energy consumption for the overall 

production process as well as for each subsystem.  

 

Figure 10. The Stereolithography subsystem illustrations 

It should be noted that some subsystems with minor contribution regarding energy 

consumption are not included in the mathematical model, such as layer image projection and 

lighting. The energy consumption for each subsystem is modeled as follows. 

(1) Energy Consumption of UV Curing Process 

For a specific part geometry with a total height of h and layer thickness of d, the total number 

of layers K can be calculated through dividing h by d. For the ith layer, the UV curing energy 

consumption curinge  can be calculated as follows. 

UV i
curing

P t
e

a


=  (1) 



32 

 

In Equation (1), UVP  is UV light source power output; and a is a constant determined by the UV 

source characteristics, which can be obtained by Equation (2). 

1 2 3a   =    (2) 

In this equation, 1 , 2 , and 3  are the UV lighting efficiency, the ratio of effective wavelength 

over the total wavelength, and the material absorptivity for a specific UV source, respectively. 

They can be obtained from machine documentation. In addition, it  in Equation (1) is curing time 

for the ith layer, and it can be calculated by Equation (3). 
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(3) 

Equation (3) describes the relationships between curing time and the layer that is being 

processed. From the first layer to layer ib, the curing time is t1. In order to ensure that several layers 

at the beginning can be fully cured, t1 is usually longer than solidification needs. Starting from the 

layer (ib+1), curing time decreases from t1 to t2 with a linear rate s (seconds per layer) until layer it. 

Thus, the layers from (ib+1) to it are defined as “transition layers” due to the transition of curing 

time from t1 to t2. After that, the curing time maintains at the value of t2 for the layers from (it+1) 

to (h/d-3). These layers are defined as “stable layers” because they have uniform curing time. The 

curing time for the last three layers changes back to t1 to ensure that the part is fully cured with 

good quality. 

Therefore, the total energy consumption due to UV curing for all K layers is calculated as 

follows. 
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=  (4) 

(2) Energy Consumption of Building Platform Movement 

During the production process, the material tank maintains the same position all the time, while 

the building platform moves along vertical direction (Z stage). An electric stepper motor provides 

power for the vertical movement of the building platform, and its power output is represented by 

mP . The energy consumption of this movement can be calculated by the following equation. 

1

( )
K

platform m i

i

E P t
=

=   (5) 

(3) Energy Consumption of Cooling System 

The energy consumption of cooling fan can be formulated as follows. 

cooling cooling coolingE P t=   (6) 

In this equation, coolingP  is the power output of cooling fan, and tcooling is the cooling time which is 

slightly longer than the production time.  

Thus, the total energy consumption can be obtained by: 

total curing platform coolingE E E E= + +  (7) 

2.3 Experimentation 

2.3.1 Experiment Design 

The energy consumption mathematical model is established by modeling the energy 

consumption contributed from each subsystems of the SLA machine. Different parameters such as 

the number of the layers and curing time are integrated into the energy consumption of these 
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subsystems. However, we do not know if the interactions between different parameters are 

significant or not. The interaction between different parameters means that the response of the 

energy consumption may be different when changing one parameter while keeping the other 

parameter at different levels. To study such interactions, multiple runs of experiments with 

different combinations of input parameters need to be implemented. The DOE methodology can 

provide the smallest number of runs in which the influences of a given number of input parameters 

on the response can be studied. It is more efficient than one‐factor-at‐a‐time strategy (Montgomery, 

2012). Therefore, in addition to the mathematical model of energy consumption, DOE is also used 

to design the experiment with different combinations of the input parameters so that the 

interactions between different parameters can be examined; the optimal parameter setting to 

minimize the energy consumption can be identified; and the mathematical model can be validated.  

Table 2. Description of experimental control factors 

Symbol Control Parameter High Level (+1) Low Level (-1) Center Point 

A Layer thickness d (mm) 0.05 0.025 0.0375 

B 
Curing time for stable 

layers t2 (s) 
6.5 4 5.25 

C 
Curing time transition 

rate s (s/layer) 
2.7 1.125 1.9125 

D Orientation 90º 0º 45º 

* The detailed definitions of Factors B and C can be found in Equation (3).  

The detailed configurations of the experiment designed by DOE are illustrated as follows. A 

two-level factorial design is adopted to establish the experiments including four controllable 

factors (or input parameters), i.e., layer thickness (d), curing time for stable layers (t2), curing time 

transition rate (s), and orientation as shown in Table 2. Factors layer thickness, curing time for 

stable layers and curing time transition rate are process-related factors, while the orientation is a 
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geometry-related factor. Two levels, i.e., low and high, for each factor are considered. Two 

replications are used. Moreover, four center points are added to the experiment design to “provide 

a measure of process stability and inherent variability and to check for curvature” (Serrano et al., 

2016). A 24-factorial design combined with four center points results in total 36 experiment runs. 

In the SLA AM machine control software, the default value for the layer thickness is 0.025mm, 

which is used as the low-level value in the experiment, where the higher level of this parameter is 

set as 0.05mm. The curing time for stable layers is originally 6.5s and it is used as the high-level 

value, where a low-level value of 4s is investigated in the experiments. The transition rate from 

longer curing time to shorter curing time is set as 1.123s per layer for low-level value and 2.7s for 

high-level value. The orientation is considered for low-level value of 0º and high-level value of 

90º. These four input factors are coded as +1, -1 and 0 in Minitab, where +1 denotes the high level; 

-1 denotes the lower level; and 0 denotes the center point. Coded variables are used to ensure that 

factors with different numerical value scales can be compared to determine the significance of the 

factors’ impact on the response, in this case, the overall energy consumption. 

2.3.2 Experiment Apparatus 

The SLA AM machine used for experimentation is Perfactory Micro EDU 3D printer. It is the 

smallest desktop 3D printer in size with the highest resolution of 150µm for XY axis and 50 to 

100µm for Z axis (EnvisionTEC, 2015). Equipped with state-of-the-art direct light projection 

technology from Texas Instruments, it can achieve a precise layer image projection by DMD. The 

LED UV light source is used for curing process, solidifying the liquid resin to solid form. With all 

mentioned advanced machine specifications, this 3D printer can achieve a fast building speed up 

to 20mm/hour for full building capacity (100*75*100mm). In addition, seven types of materials 

can be built through this AM machine, including “LS600 M (used in the experiments), HTM140 
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M, ABS Tough M, E-Denstone M Ivory, E-Denstone M Tough, ABS Flex M, and Superflex M” 

(EnvisionTEC, 2015). The measurement equipment is the single clamp-on power meter CW10 by 

Yokogawa, with a maximum AC/DC current of 600A and a maximum AC/DC voltage of 1000V. 

It can also measure power factor, frequency, resistance, etc. The measured data was recorded every 

five seconds. 

Due to the exist power factor, the current and voltage data obtained from the power meter 

aforementioned cannot be directly used to calculate the electricity consumption. Since the 

Perfactory Micro EDU 3D printer adopts single-phase power supply, its power factor can be 

measured by the wattmeter-ammeter-voltmeter method (Prasanna Kumar et al., 1995), and thus 

the real power consumption 
real powerP  can be calculated by the following equation.  

( )

real power apparent power

measured measured

P power factor S

power factor U I

= 

=  
 (8) 

In this equation, 
apparent powerS  stands for the apparent power calculated using the measured voltage 

measuredU and the measured current measuredI . Test runs are conducted to obtain the power factor of 

the system, which turns out to be 0.85.  

2.4 Model Validation and Factorial Analysis 

In this section, the experimental results when the SLA machine is working under default 

conditions are first presented, then the factorial analysis results are illustrated, and finally the part 

surface quality (surface roughness) when changing different process parameters is compared. 

2.4.1 Base Case Results Using Default Condition 

Under the default working conditions (i.e., A is 0.025mm, B is 6s, C is 1.125s/layer, and D is 

0º), the measured energy consumption is 278,707.35J for building a threaded bolt with height of 
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1cm. The absolute percentage error compared to the calculated result using the proposed 

mathematical model (264,531.672J) is around 5.36%. The difference may come from using of 

rated power of each subsystem provided by the machine nameplate documentation rather than the 

actual power in the mathematical model. The actual power output from each subsystem cannot be 

obtained, due to the limitations of measuring equipment and the complexity of subsystems. 

Therefore, the power rating acquired from machine documentation is used as an approximate 

calculation, hence leading to the error.  

Table 3. The energy consumption results comparison with literature 

Case 

No. 

AM 

Process 
Material 

Capacity 

Utilization (%) 

Layer 

Thickness (mm) 

SEC 

(kWh/kg) 
Reference 

1 

SLS 

PA2200 3.41% 0.12 39.20 

(Kellens et 

al., 2014) 
2 PA2200 3.02% 0.15 40.30 

3 PA3200 2.50% 0.15 36.00 

4 SLS Polymer / 0.15 40.1 

(Luo et al., 

1999) 
5 SLA 

Epoxy 

resin 
/ 0.15 32.47 

6 FDM ABS / 0.4 115.20 

7 SLA LS600M 0.05% 0.025 175.95 
Measured 

results 

 

The measurement results based on the default condition are compared with results from 

existing literature as listed in Table 3. Kellens et al. (2014) investigated the SLS process through 

experiments using three types of materials with different layer thicknesses. Luo et al. (1999) 

compared three AM processes: SLS, SLA, and FDM, and they found that FDM has the largest 

energy consumption. The energy consumption from our results using the default configuration 

(Case No. 7) is relatively higher than the results reported in literature.  



38 

 

The main reasons for causing the different energy consumption results (as shown in Table 3) 

are considered as follows. First, different types of AM processes adopt diverse manufacturing 

technologies and produce dissimilar types of material, thus they might possess different energy 

consumption characteristics. Second, the capacity utilization (the ratio of printed part volume and 

the maximum building volume provided by the AM machine) also influences the specific energy 

consumption. According to Baumers et al. (2011b), a lower capacity utilization possibly leads to 

larger SEC for some types of AM processes. Compared to a 2.50%-3.41% capacity utilization ratio 

from Kellens et al. (2014), the lower capacity utilization ratio in this research is another probable 

reason why the SEC is high. Third, the layer thickness in this research is much smaller than the 

others, leading to better product quality as well as higher energy consumption.  

2.4.2 Factorial Analysis Results 

The factorial analysis results are shown in Table 4 with a significance level of 0.05. According 

to the factorial analysis results shown in Table 4, Factors A, B, D, and interactions A*B, A*D, B*D, 

C*D, A*B*C, A*B*D, B*C*D are of great, and Factor C as well as interactions A*C, B*C, A*C*D, 

A*B*C*D lack significance. As illustrated in the table, Factors A, B and D have a substantial effect 

on the response due to their direct influence on production time, which is also the reason for the 

high significance of interactions between these three factors. Although Factor C also affects the 

production time, it only lasts for a very short period (usually 25 layers). Therefore, the effects from 

Factor C are negligible. From the observations from the SLA production process, the duration of 

Factor C changes with Factor D, where C lasts longer when the part is built horizontally and shorter 

when the part is built vertically. Therefore, the interaction between Factors C and D is important.  

 

 



39 

 

Table 4. The factorial analysis results 

Factor Sum of Squares P-Value 

A 2.12e11 0.000 

B 5.83e9 0.000 

C 2.20e6 0.556 

D 6.27e9 0.000 

A*B 1.41e8 0.000 

A*C 9.89e5 0.692 

A*D 3.29e8 0.000 

B*C 1.37e7 0.150 

B*D 7.95e7 0.002 

C*D 6.78e7 0.004 

A*B*C 4.38e7 0.015 

A*B*D 2.27e8 0.000 

A*C*D 3.82e5 0.805 

B*C*D 5.80e7 0.006 

A*B*C*D 1.38e7 0.640 

 

Given the statistical analysis result, the Pareto chart of the standardized effects is shown in 

Figure 11, and the normal plots of the standardized effects are shown in Figure 12. It can be 

observed from the figure that Factor A has a negative impact on the output E (total energy 

consumption), while Factors B and D have a positive impact on the output E. The interaction terms 

of A*D, A*B*D, B*D, C*D, B*C*D, A*B*C, and B*C have relatively minor influence on the 

output E, where Factor C and interaction A*C have basically ignorable effects. In addition, the 

normality assumption of the statistical model is validated by the normality plot, where the 

significance of factors and interactions are also presented.  
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Figure 11. Pareto chart of the standard effects 

 

Figure 12. Normality plot of the standard effects 

The model adequacy is checked as shown in Figure 13. The normality and histogram plots are 

shown to confirm the assumption of normality. The residual versus observation order plot is used 

to illustrate that the residuals are independently distributed. In addition, the residual versus fitted 
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value plot is adopted to check the constant variance assumption. After the model adequacy 

checking, to improve the accuracy of obtained statistical analysis results, the statistical model is 

refined by removing all insignificant terms from the initial statistical model. It should be noted that 

although Factor C is not significant, some interactions that include Factor C are significant, which 

are therefore kept in the refined statistical model.  

 

Figure 13. Model adequacy checking for statistical model 

The corresponding refined statistical model can be written as follows. The regression model 

adequacy check is shown in Figure 14. In this equation, CtPt is the center point.  

259,101 81,321 13,492 13,993 2096

3207 1576 1456 1170

2662 1346 34,970

E A B D A B

A D B D C D A B C

A B D B C D CtPt

= − + + − 

−  +  −  −  

−   −   +

 (9) 

Based on the factorial analysis, the optimal levels of the input factors that can lead to 

minimized energy consumption are identified using RSM as shown in Figure 15. A higher level 

of Factor A, and lower level of Factors B and D would lead to the minimum energy consumption 



42 

 

for this SLA AM process. In addition, Figure 16 illustrates the surface plots regarding the Factors 

A, B, and D and the total energy consumption of the process. The measured energy consumption 

using the optimal combination of control parameters is 127,707.35J. About 54.16% reduction in 

energy consumption can be achieved compared to default working condition where the measured 

energy consumption is 278,707.35J.  

 

Figure 14. Model adequacy checking for refined statistical model 

                                                                                                                                                                                 

Figure 15. Response surface optimization results 
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Figure 16. Surface plots of Factor A, B, and D 

The optimal parameters obtained can also reduce GHG emissions due to the reduction of 

electricity consumption of the process. According to U.S. Energy Information Administration, one 

kWh electricity generation may incur 1.52 pound Carbon Dioxide (CO2) emission (EPA, 2010). 

For a regular factory equipped with the SLA machines, in order to produce 3000 parts per month, 

the CO2 emission can be reduced from 414.96 pounds per month (under default condition) to 

191.52 pounds per month (with optimal factors). 

2.4.3 Part Surface Quality Comparison 

The reduction of energy consumption through adopting the optimal combination of process 

parameters leads to possible reduction of part quality. Therefore, the part quality is investigated 

and compared under different process parameter combinations. A Micro-Vu vision system is 

utilized to obtain the surface images, and a 3D optical profiler is used for surface roughness 

measurement. 
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Figure 17. Part surface quality (default condition) 

 Figure 17 shows the surface quality of the part that is fabricated under default conditions, 

which indicates good quality for the screw thread. For the part shown in Figure 18, the layer 

thickness is changed to 0.05mm with all the other parameters set to the default conditions. In Figure 

19, the curing time for stable layers is set to a lower level. The optimized condition is presented in 

Figure 20, where the layer thickness is 0.05mm; curing time for stable layers is 4s; curing time 

transition rate is 1.125s/layer; and the orientation is 0º. Ra, the arithmetic mean surface roughness, 

is measured to indicate different levels of surface roughness of the thread on the parts. All the 

results of Ra are within the order of 10 µm magnitude (from 2.599 µm to 4.946 µm). Therefore, 

we can conclude that the reduction of energy consumption can be achieved without significantly 

sacrificing the part surface quality.  

 

Figure 18. Part surface quality (different layer thickness) 
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Figure 19. Part surface quality (different curing time) 

 

Figure 20. Part surface quality (optimized condition) 

2.5 Section Conclusion 

In this section, the mathematical model for the energy consumption of the SLA AM process is 

established. Experiments are conducted, and the results are analyzed to validate the proposed 

mathematical model. In addition, using the RSM, we obtained the optimal parameters that can lead 

to minimized energy consumption, compared to the default parameter configuration. Significant 

energy saving and CO2/GHG emission reduction can be achieved while maintaining the product 

quality.  
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3. VOLATILE ORGANIC COMPOUND EMISSION MODELING, EVALUATION AND 

CONTROL IN STEREOLITHOGRAPHY ADDITIVE MANUFACTURING 

(Previously published in (Yang and Li, 2018a) as “Yang, Y., and Li., L., 2018. Total Volatile 

Organic Compound Emission Evaluation and Control for Stereolithography Additive 

Manufacturing. Journal of Cleaner Production 170(1): 1268-1278”, and published in (Yang and 

Li, 2017) as “Yang, Y., and Li, L., 2017. Evaluation of Environmental Sustainability for Additive 

Manufacturing Batch Production. ASME 2017 12th International Manufacturing Science and 

Engineering Conference. P. V002T01A038. DOI: 10.1115/MSEC2017-2957.” The copyright 

statement can be found in Appendix.) 

In this section, the process emission evaluation methodologies are presented to theoretically 

estimate the TVOC emission for indoor environments equipped with SLA machines. To achieve 

this goal, an analytical model is established to describe the TVOC emission from two sources: the 

raw material volatilization and AM production activities. The developed model is then validated 

through experiments. Using this model, the TVOC emission concentration for an indoor space can 

be estimated with or without a 3D printer in operation. Furthermore, current commercial emission 

control technology is tested and compared to two new methods proposed in this section.  

Proper emission control strategies can provide promising opportunities to improve the 

environmental sustainability for AM and lower the associated health risks by significantly 

reducing the TVOC emission towards cleaner production. The results of the proposed emission 

evaluation methodology will help provide understandings on the emissions of AM processes, 

evaluate the emission level, and establish emission guidelines for AM processes. Accordingly, the 

rest of this section is organized as follows. The TVOC emission modeling is presented in Section 
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3.1. The experimental design is introduced in Section 3.2 and includes the experimental procedure 

and apparatus. The experimental results and discussion are provided in Section 3.3. Finally, this 

section is concluded in Section 3.4. 

3.1 Total Volatile Organic Compound Emission Modeling 

Generally, the TVOC emissions in indoor environments equipped with SLA machines come 

from the raw material liquid resin volatilization and AM production activities. The volatilization 

process is modeled based on the physical properties of the liquid resin and chemical reactions from 

the volatilization process. However, the AM-caused TVOC emissions cannot be easily modeled 

because they may be affected by different parameters such as printing time and printing surface 

temperature. In addition, the total mass of AM-caused TVOC might be at different levels with 

different production parameters including batch size (or printing surface area) and material type 

(or material viscosity). Therefore, the AM-caused TVOC emissions are modeled by combining 

theoretical estimation and experimental approaches.  

The total TVOC emissions can be expressed as follows. 

( ) ( ) ( )total AM volatilizationER t ER t ER t= +  (10) 

In this equation, ER(t)total refers to the total TVOC emission rate in an indoor space at time t; 

ER(t)AM denotes the AM-caused emission rate; and ER(t)volatilization represents the emission due to 

the volatilization process. In Equation (10), the AM-caused emission rate is calculated using 

Equation (11) which is adapted from (Afshar-Mohajer et al., 2015). 

( ) ( ( ) )AM AM referenceER t C t C V AER= −    (11) 
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In this equation, C(t)AM is the TVOC concentration at time t; Creference is the reference TVOC 

concentration measured when the AM machine is not in operation; V is the volume of the indoor 

environment, and AER is indoor air exchange rate.  

Based on preliminary understanding on AM-caused emissions, the following two relationships 

shown in Equation (12)-(13) are proposed and are validated through experimentally.  

( ) ( , )AMC t f T t=  
(12) 

 

( ) ( , )
e

s

t T

AM AM p m

t T

E ER t f S V

=

=

= =  (13) 

T is printing surface temperature; EAM stands for the total TVOC mass emitted from the AM 

process, which is the integration of ER(t)AM from Ts (subscript s stands for the AM production 

starting time) to Te (subscript e represents the AM production ending time). Furthermore, EAM is 

a function of Sp and Vm, where Sp represents the printing surface area and Vm is the viscosity of 

the liquid resin. More comprehensive relationships between AM-caused emissions and multiple 

parameters are explored and proposed based on experimental results. 

Additionally, the emission rate due to the volatilization process ER(t)volatilization can be 

calculated by using Equation (14). 

( )volatilizationER t Q M S=    (14) 

In this equation, Q denotes the mass transfer rate (g-moles/cm2-sec); M represents the molecular 

weight (g/g-mole); and S denotes the surface area (cm2). The mass transfer rate across an interface 

Q can be written as follows. 

vQ K
RT


=  (15) 
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In Equation (15), K denotes the mass transfer coefficient (cm/sec); ρv represents the vapor 

pressure of the liquid (kPa); R denotes the universal gas constant (8.314×103cm3-kPa/g-mole-K); 

and T stands for the absolute temperature (K). As proposed in (Mackay and Matsugu, 1973), the 

mass transfer coefficient K can be expressed as a function of wind speed and liquid pool size, 

which in our model is the liquid resin tank size. 

0.78 0.11 0.670.0220 zK z Sc − − =   (16) 

νz represents the wind speed (cm/sec); ∆Z stands for the length of the air-liquid interface in the 

direction of flow (cm); and Sc denotes the Schmidt number. The air viscosity µ, air density ρ, and 

diffusivity D can be approximated using the following equations as stated in (Arnold and Engel, 

2001). 

5 59.426 10 1.610 10 T − −= −  +    (17) 

0.352
P

T
 =  (18) 

5 1.9

0.33

1 1
4.09 10

28.97
T

M
D

P M

−   +

=


 
(19) 

P denotes the ambient air pressure.  

In summary, the AM-caused emission rate ER(t)AM is calculated by combining the theoretical 

relationships shown in Equations (11)-(13) and experimental approach, and the volatilization-

caused emission rate ER(t)volatilization is calculated by Equations (14)-(19). 
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3.2 Experimentation 

3.2.1 Experiment Procedure 

To validate the proposed TVOC emission model and further explore the relationships 

described in Equation (12) and Equation (13), a set of experiments are designed and conducted in 

a 41m2 indoor laboratory with a ceiling height of 3 meters, average room temperature of 25.2ºC 

and relative humidity of 44.6%. The laboratory is equipped with one SLA machine, and it has not 

held any AM production for more than two days to ensure accurate measurements. To measure the 

TVOC emissions, methyl methacrylate is selected as the target gas by treating all types of VOCs 

as one. According to the data sheet for the liquid resin e-shell 600 (DeltaMed, 2014), methyl 

methacrylate is the most volatile compound. In addition, the 3D printing material LS 600 M is a 

methyl methacrylate-based resin (Lucite, 2010). Therefore, methyl methacrylate is used as the 

target as for any TVOC emission measurement. The experiment procedure is designed as follows: 

(1) Real-Time Total Volatile Organic Compound Measurement 

To investigate the relationship described in Equation (12), three real-time measurement stages 

are performed. In the first stage, the reference TVOC concentration is measured when the AM 

machine is not in operation (10min). By doing so, the reference TVOC concentration can indicate 

whether the liquid resin emits VOCs when the machine is not in operation. Furthermore, the 

reference TVOC concentration can be used to calculate the actual AM-caused emissions by 

subtracting the reference concentration from the measured results obtained in the second stage. 

Creference in Equation (11) is calculated using the TVOC concentration measured in this stage. 

Within the reference measurement period, preparations for the production process are conducted, 

including importing the CAD file into the control software, setting up the software, etc.  
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Figure 21. The standard test artifact, adapted from (Moylan et al., 2014) 

The second stage deals with the AM production measurement (93min). In this stage the SLA 

machine is in continuous operation to fabricate an object, in this study a 3D test artifact adapted 

from the National Institute of Standards and Technology (NIST) (Moylan et al., 2014) is used and 

shown in Figure 21. By measuring the TVOC concentration in this stage, a clear profile of how 

the TVOC concentration varies over time throughout the printing stage can be obtained. Possible 

parameters such as printing surface temperature, which are suspected to be related to the TVOC 

emissions, can also be investigated. The third stage includes the post-processing measurement 

(10min). Within this stage, additional VOCs might be released from the over curing and ethanol 

cleaning procedure. Based on the emission trend and the time where the emission peaks occur, 

targeted emission control strategies can be proposed. 

(2) Total Mass of AM-Caused Total Volatile Organic Compound 

As illustrated in Equation (13), different types of liquid resins with different viscosities are 

expected to cause diverse emission levels. Therefore, e-shell 600 (EnvisionTec, 2014) and LS 

600M (EnvisionTec, 2019) materials are both printed for comparison, with a viscosity of 

339.8mPa.s and 140mPa.s, respectively. In addition, different printing surface areas are explored 

by changing the production batch size (i.e., the number of the test artifacts in one batch). The three 

different printing surface areas that are investigated are 25cm2, 50cm2, and 75cm2.  
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3.2.2 Experiment Apparatus  

The SLA machine used in this study is a Perfactory Micro EDU 3D printer, which is the 

smallest high resolution desktop 3D printer (XY resolution of  150 µm and dynamic Z resolution 

of 50-100 µm) (EnvisionTec, 2015). Multiple material types can be printed using this AM machine. 

The SLA production procedure illustration and the 3D printer are shown in Figure 8. Before the 

actual production process, the 3D geometry is sliced into layers with uniform layer thickness using 

the 3D printer control software to generate a series of building profiles. Then based on the building 

profiles, the 3D printer control system creates a certain exposure area on the building platform, 

where the layer image is reflected. Next the layer is cured by the Digital Micromirror Device 

(DMD) and UV light source. After one layer is finalized, the building platform moves up a distance 

equivalent to the layer thickness, and the layer image is automatically replaced by the next layer 

image. This building process repeats until the product is finished. After the production process is 

finished, the printed product is removed from the building platform and post-processed. The 

finished product is overly cured by the UV light to ensure the strength of the surface layer. Next, 

it is cleaned by an ultrasonic cleaner to remove the liquid resin attached on the surface of the 

product. Finally, the support structure is removed if necessary. 

The TVOC measurement equipment is located approximately one meter away from the SLA 

printer. Due to the possible hazardous effects, the operator must wear mask and goggles. The 

hardware used for the TVOC concentration measurement is the MiniRAE 3000 by Honeywell, 

which is one of the most advanced handheld VOC monitors in the market. It is equipped with a 

10.6 eV photoionization detector (PID) and can measure ranges of 0-15,000 ppm. Calibration is 

performed before any measurement.  
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3.2.3 Response Surface Methodology 

To explore and estimate the relationships proposed in Equation (12) and Equation (13), RSM 

is used. Equation (12) defines the relationship between the response variable, C(t)AM (the TVOC 

concentration at time t), and two explanatory variables, T (the printing surface temperature) and t 

(time). Equation (13) describes the relationship between the response variable, EAM (the total 

TVOC mass emitted from the AM process), and two explanatory variables, Sp (the printing surface 

area) and Vm (the viscosity of the liquid resin). By adopting the RSM in Minitab, a clear illustration 

of the relationship between the response variable and explanatory variables can be obtained from 

measurements, so that the relationships proposed in Equation (12) and Equation (13) can be more 

clearly defined.  

3.2.4 Risk Assessment  

The risk assessment for emissions in indoor environments helps evaluate the emission health 

risks that are imposed on humans. It also provides a scientific foundation for regulatory guidelines. 

In this research, two types of risks are considered: cancer related risks and non-cancer related risks. 

The cancer risks, more specifically the inhalation cancer risk, is calculated through the following 

equation. 

CancerRisk EC URF=   (20) 

EC is exposure concentration (g/m3) and URF is unit risk factor (g/m3).  A cancer risk of less than 

one in a million is usually considered negligible. For the non-cancer hazard evaluation, the hazard 

quotient (HQ) is used. HQ is calculated by the following equation. 

MC
HQ

RfC
=  (21) 
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In this equation, MC is the mean concentration (µg/m3), and RfC is the inhalation reference 

concentration without adverse effects. Both Equation (11) and Equation (12) are adapted from 

(Sivak, 2006). 

The most popular method of calculating the cancer and/or non-cancer risks from literature is 

to calculate them for each type of VOCs in the gas mixture, and then add them as the overall risks 

(de Gennaro et al., 2013). Due to the limited access to the composition of VOCs mixture, methyl 

methacrylate, which is the target gas of TVOC, is used to obtain the URF and RfC, and the TVOC 

meausred concentration is used to find EC and MC.  

3.2.5 Emission Control Strategy 

For most commercial 3D printers in the market, the current technology for reducing emissions 

is by adding a machine cover. For strategy comparison and emission control purposes, two new 

strategies are proposed in this research. The first method is the usage of Titanium Dioxide (TiO2) 

photo catalytic oxidation, where TiO2 is used as a catalyst to oxidize the organic compounds in the 

gas phase (Jo and Kim, 2009). The second method uses activated Carbon absorption (Sidheswaran 

et al., 2012). These two proposed strategies are incorporated into the SLA process and tested 

through experiments. 

3.3 Results and Discussion 

In this section, model calculation results are compared with experimental results to validate 

the mathematical model. Also, current commercial emission control technology and new proposed 

strategies are compared.  
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3.3.1 Total Volatile Organic Compound Emission Model Calculation 

The TVOC emissions due to the liquid resin volatilization are calculated using Equations (14)-

(19). The AM-caused TVOC emissions are modeled and estimated based on proposed 

relationships in Equation (12) and Equation (13) as well as experimental approaches. The 

parameter setup and the calculation are illustrated in Figure 22. The TVOC concentration caused 

by the volatilization process based on the model calculation is 106.504µg/m3.  

 

Figure 22. The VOC emission model calculation 

3.3.2 Real-Time Total Volatile Organic Compound Measurement 

The real-time measurement results are shown in Figure 23. The total measurement time is 

6,780s (113min), where the first 600s are used for the reference concentration measurement, the 

AM production period is from 601s to 6,180s, and the post-processing stage is from 6,181s to 

6,780s. The primary vertical axis (left) is the TVOC concentration (µg/m3), and the secondary 

vertical axis (right) is the emission rate (µg/s), calculated using Equation (11). The peak TVOC 

concentration level is defined as the maximum concentration which is significantly larger than the 

neighbor results. According to the emission profile in Figure 23, three peaks can be clearly 

identified. 
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Figure 23. The real-time TVOC measurement (batch size=1, e-shell 600 resin) 

 

Figure 24. The real-time temperature profile (batch size=1, e-shell 600 resin) 

The first peak is 2,629µg/m3, which occurs after 877s (14.62min) from the measurement and 

4.62min after the printing starts. The occurrence of this peak is due to the start of AM production 

activities. The second peak is 5,235µg/m3, and it occurs at 6,323s (105.38min) and 2min after the 

printing ends. This is because after production is finished, the building platform rises and releases 
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a huge amount of TVOC. The third peak (6,177µg/m3) is around 6,668s (111.13min) and only 

1.87min before the measurement ends. This is possibly because of the post-processing activities 

such as ethanol cleaning and over curing.  

During the reference measurement stage (0s to 600s), the TVOC concentration fluctuates. 

During the AM production stage (601s to 6180s), the TVOC emissions rise to the first peak, then 

drop down and finally maintain an increasing trend while fluctuating. In the post-processing stage 

(6,181s to 6,780s), the TVOC concentration has two peaks and then drops down. The mean TVOC 

concentrations for the three stages are 122.70µg/m3, 1,052.71µg/m3, and 1,774.15µg/m3, 

respectively; and the overall average is 1,034.25µg/m3. Compared to the mean TVOC 

concentration from the first stage 122.70µg/m3, the proposed model predicts the value as 

106.504µg/m3, which has less than 14% prediction error.  

The temperature profile is also obtained using a temperature sensor installed under the liquid 

resin container, and it is used to better understand and analyze the increasing TVOC trend. From 

the temperature results shown in Figure 24, an increasing trend is identified. Therefore, the rise in 

TVOC emissions in the AM production period might be triggered by the increasing temperature, 

which might cause more liquid resin volatilization or other chemical reactions. To further 

understand the relationship between time, temperature, and TVOC concentration, the RSM is 

adopted. The regression model obtained is shown in Equation (22).  

( ) 5,133,831 0.0086 228426 2541 0.000195AMC t t T T T t T= − − + −  +   (22) 

In this equation, the unit for the TVOC concentration caused by AM production, C(t)AM, is in 

µg/m3; the time, t, is in second; and the temperature, T, is in ºC.  



58 

 

The response surface and the residual plots are shown in Figure 25 and Figure 26, respectively. 

The average TVOC levels from the reference stage is 122.70µg/m3, which falls into the liquid resin 

volatilization range (i.e., 68.997 to 1,728.238µg/m3) calculated by the proposed model. In addition, 

Equation (22) provides a specific relationship for Equation (12). 

 

Figure 25. The response surface plot for C(t)AM 

 

Figure 26. The residuals plots for C(t)AM 
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The real-time measurement results and model calculation results are compared to those found 

in literature as shown in Table 5. The results of this study have a larger average TVOC 

concentration level and peak value obtained by Afshar-Mohajer et al. (2015). The difference is 

possibly due to the different AM processes and target gases used for the measurement. In addition, 

the experimental results from this dissertation have similar TVOC concentration levels (both 

average level and peak level) compared to the studies conducted by Helmis et al. (2007) and Daisey 

et al. (1994). In addition, some recommended or advised TVOC emission levels from different 

studies and institutions are also shown in Table 5 for comparison purposes. For example, 500µg/m3 

is proposed and recommended by ALS Environmental Institute as the maximum TVOC 

concentration for indoor environments. It should be noted that currently there lacks a more 

comprehensive TVOC emission level standard. 

Table 5. The real-time TVOC measurement compared to current literature 

 Environment Target VOC 
Average 

(µg/m3) 

Peak 

(µg/m3) 

Real-Time 

Measurement 

Indoor lab with SLA 

process 

Methyl 

Methacrylate 
1,034.25 6,177 

(Afshar-Mohajer et al., 

2015) 

Indoor lab with BJ 

process 
Isobutylene 510 1,750 

(Helmis et al., 2007) Dentistry clinic Isobutylene 1,300 2,000-5,500 

(Daisey et al., 1994) Office building 39 VOCs 510 7,000 

(Environmental, 2009) Indoor building / / 500 

(Kim et al., 2011) 
Sensitive facilities 

(Korea) 
/ / 400 

(KEI, 2004) Indoor (Japan) / / 400 

(Kim et al., 2011) Indoor (Finland) / / 200-600 

(Kim et al., 2011) Indoor (Germany) / / 1000-3000 
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3.3.3 Total Mass of AM-Caused Total Volatile Organic Compound 

To better understand how the printing surface area and material viscosity affect the AM-caused 

TVOC emissions, further experiments are conducted with different combinations of parameters 

and their results as shown in Table 6. 

Table 6. The comparison results of AM-caused TVOC 

Case No. Printing Surface Area (cm2) Material Viscosity (mPa.s) EAM (µg) 

1 25 339.8 26,994.02 

2 50 339.8 31,124.00 

3 75 339.8 33,126.39 

4 25 140 15,104.24 

5 50 140 27,075.50 

6 75 140 49,341.45 

 

According to the results from Cases 1, 2, and 3 (material type e-shell 600), the total AM-caused 

emissions increase as the printing surface area increases. When the printing surface area changes 

from 25cm2 to 50cm2, the total AM-caused emissions increase by 15.30%; however, there is only 

a 6.43% increase when the printing surface area changes from 50cm2 to 75cm2. It can be concluded 

that the printing surface area affects the total AM-caused emissions less significantly given a larger 

printing surface area for e-shell 600. From the results for Cases 4, 5, and 6 (material type LS600 

M), the total AM-caused emissions increase by 79.26% when increasing the printing surface area 

from 25cm2 to 50cm2, and it increases by 82.23% when further increasing the printing surface area 

from 50cm2 to 75cm2. The difference in increasing percentages might be caused by the material 

type, such that different resins may release dissimilar amounts of emissions during AM production 

and respond to printing surface areas differently.  
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As shown from Figure 27 to Figure 32, although Cases 1 through 6 have different results 

regarding the total AM-caused emissions, their real-time TVOC concentration profiles are similar. 

The above comparison validates the relationship proposed in Equation (12). Both printing surface 

area and material viscosity affect the total AM-caused emissions. The relationship obtained based 

on the experimental results is shown in Equation (23) and has an R-squared of 97.94%. 

( ) 16553 752 140.2 3.27 2.813
e

s

t T

AM AM p m p p p m

t T

E ER t S V S S S V

=

=

= = − + + +  −   (23) 

In this equation, the unit for total AM-caused TVOC emissions, EAM, is in µg; printing surface area, 

Sp, is in cm2; and material viscosity, Vm, is in mPa.s.  

 

Figure 27. The real-time TVOC measurement for Case 1 
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Figure 28. The real-time TVOC measurement for Case 2 

 

Figure 29. The real-time TVOC measurement for Case 3 
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Figure 30. The real-time TVOC measurement for Case 4 

 

Figure 31. The real-time TVOC measurement for Case 5 
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Figure 32. The real-time TVOC measurement for Case 6 

The response surface and residual plots are shown in Figure 33 and Figure 34, respectively. 

 

Figure 33. The response surface plot for EAM 
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Figure 34. The residual plots for EAM 

3.3.4 Risk Assessment 

According to the risk assessment methodology, two types of risks are calculated and evaluated: 

cancer risks and non-cancer risks. Methyl methacrylate, the target gas used for TVOC 

measurement, is not likely to be carcinogenic to humans because it has been evaluated in a few 

well-conducted studies and animal tests (United States Environmental Protection Agency, 2000). 

Therefore, the cancer risk for Methyl methacrylate is not considered in this research. On the other 

hand, according to the GSI chemical database by GSI Environmental Inc., RfC of methyl 

methacrylate is 0.7 mg/m3, which is used for calculation.  

Using the measured mean concentration of 1,034.25µg/m3, HQ is calculated as 1.4775. Since 

HQ is greater than 1, it is possible that adverse health effects will occur. Based on the risk 

assessment, the SLA process emits hazardous gases and possibly causes health concerns and 

adverse effects on operators. Therefore, effective emission control approaches need to be proposed 

for the SLA process. 
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3.3.5 Emission Control Strategies 

 A comparison of the TVOC emissions for different strategies is shown in Table 7. The 

comparison between the original level and the commercial strategy shows a 91.64% decrease in 

average concentration from the reference stage, but no obvious reduction in overall average 

concentration and AM-caused emission. During AM production, TVOC still leaks through the 

machine cover. When the machine cover is lifted open for retrieving the finished product, a large 

amount of TVOC is subsequently released instantly leading to serious hazardous effects. By trying 

to entrap the TVOC inside the machine cover, TVOC is only temporarily reduced and when 

released suddenly at a much higher concentration can lead to even more serious health risks.  

Table 7. The TVOC emission control strategies comparison 

 

Reference 

Average 

(µg/m3) 

Production 

Average 

(µg/m3) 

Post-Processing 

Average 

(µg/m3) 

Overall 

Average 

(µg/m3) 

AM-Caused 

Emissions 

(µg) 

Original Level 122.70 1,052.71 1,774.15 1,034.25 26,994.02 

Commercial 

Machine 
10.26 1,100.92 2,148.61 1,096.86 31,659.06 

Strategy 1 140.30 486.87 1,858.46 577.58 10,058.92 

Strategy 2 0 292.52 661.65 299.29 8,491.09 

 

The two proposed strategies have shown to significantly reduce the TVOC concentration in 

each stage, overall mean concentration, and AM-caused emissions. By implementing Strategy 1, 

the average concentrations from the reference value and the post-processing stages are not 

considerably reduced. However, the results in the three indexes (i.e., production average 

concentration, the overall average concentration, and AM-caused emissions) achieved 53.75%, 

44.15%, and 62.74% reductions compared to the original level, respectively. The adoption of 
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Strategy 2 leads to reductions of the reference average concentration, the production average 

concentration, the post-processing average, the overall average, and AM-caused emissions by 

100%, 72.21%, 62.71%, 71.06%, and 68.54%, respectively. The results show that the two 

proposed approaches can significantly reduce the TVOC emissions from the SLA process. The 

real-time TVOC concentration measurements for these three strategies are shown from Figure 35 

to Figure 37. 

 

Figure 35. The real-time TVOC concentration when adopting commercial method 

  

Figure 36. The real-time TVOC concentration when adopting proposed strategy 1 
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Figure 37. The real-time TVOC concentration when adopting proposed strategy 2 

3.4 Section Conclusion 

In this section, an analytical model is proposed to theoretically estimate the TVOC emission 

for indoor environments equipped with SLA machines, by considering emissions from both the 

raw material liquid resin volatilization and AM production activities. The emission model for the 

volatilization process is validated through experimental measurements. The preliminary 

relationships described in the proposed model concerning AM-caused emissions are further 

identified using the regression model obtained using RSM. Based on the experimental results, the 

TVOC emission levels are significantly higher than the reported value in literature and the 

recommended value reported by environmental agencies. Subsequently, two TVOC emission 

control strategies that use Titanium Dioxide photo catalytic oxidation and activated Carbon 

absorption, are suggested to promote cleaner AM processes. The two proposed emission control 

methods have been implemented and lead to 44.14% and 71.06% reductions in the average TVOC 

concentration and 62.74% and 68.54% in the TVOC caused by AM activities.  
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The analytic approach proposed in this section improves the understanding of the VOC 

emissions for AM processes by theoretically evaluating the emission level. Moreover, the emission 

control strategies tested in the experiments significantly improve the environmental sustainability 

of AM and reduce the health risks for operators. In addition, the emission control methods can be 

incorporated into the design of new AM processes towards environmental sustainability. The 

outcomes of this dissertation provide AM enterprises with practical guidelines for establishing 

emission standards, and further assist the development of sustainable AM.  

3.5 Environmental Sustainability Evaluation for Additive Manufacturing Batch Production 

Using the methodology proposed in the previous sections, environmental sustainability 

evaluation is performed for AM batch production by experimentally identifying the relationships 

between different batch production sizes and three key environmental performance metrics (i.e., 

energy consumption, emission, and material waste). To achieve this goal, experiments are designed 

to characterize the three chosen environmental aspects with different batch sizes, followed by 

experimental results and discussions. The outcomes of this part of the research will be used to aid 

the evaluation of AM batch production method from an environmental sustainability perspective, 

enhance the understanding of AM batch production performance from different environmental 

aspects, and facilitate the development and improvement of feasible AM batch production method. 

3.5.1 Evaluation Methodology 

To evaluate the environmental sustainability performance of the SLA process, three main 

factors, i.e., energy consumption, emission, and material waste, are considered. From the energy 

consumption perspective, the total energy consumed by the SLA process during the manufacturing 

period are calculated based on measured current and voltage. TVOC is considered as the target 

emission type, since it has been proven that a wide variety of VOCs are emitted during the thermal 



70 

 

operation of such materials like ABS or PLA (Contos et al., 1995)(Rutkowski and Levin, 1986). 

Three different measurement stages are executed for TVOC emission: background measurement 

stage which refers to the period before the start of manufacturing, manufacturing measurement 

stage, and post-processing measurement stage when the finished part is retrieved for the removal 

of support material. The TVOC measurement equipment is placed 1 meter away from the SLA 

machine. After post-processing, the material waste is obtained by measuring the material usage 

(the weight difference of the material tank before and after manufacturing) and each final part’s 

weight (after removing support material).  

The experiment is designed with three different batch sizes (1, 2, and 3), where three aspects 

of environmental sustainability, i.e., energy consumption, TVOC emission, and material waste, are 

measured. The geometry of the part that is built in the experiment is derived from the standardized 

test artifact proposed by NIST (Moylan et al., 2014) with minor geometry size change and layer 

thickness of 0.025mm (manufacturing time 5580s). 

3.5.2 Results and Discussions 

Energy Consumption 

The energy consumption results are shown in Table 8, where the total energy consumption 

refers to the total power usage by the SLA machine during the manufacturing period, and the 

specific energy consumption (SEC) represents the power usage per Kg of the printed part. When 

the batch size increases from 1 to 3, the total energy consumption remains constant, while the 

results for SEC drop dramatically.  
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Figure 38. The power profile for batch size=1 

Table 8. The energy consumption results for batch production 

Batch Size Energy Consumption (kWh) Specific Energy Consumption (kWh/Kg) 

1 0.0581 30.7407 

2 0.0563 15.7703 

3 0.0556 10.5303 
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Figure 39. The power profile for batch size=2 

 

Figure 40. The power profile for batch size=3 

For each batch production process, the power profiles are shown in Figure 38, Figure 39, and 

Figure 40, a typical 300-second period power profile is extracted and enlarged. When the building 

platform moves up, the projector projects the layer image, or when the UV light cures the liquid 

resin, the power consumption increases significantly.  
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Energy consumption or electricity usage leads to a great amount of carbon dioxide (CO2) 

emission. According to U.S. Environmental Protection Agency (EPA), the electricity generation 

leads to the largest share (30%) of the total U.S. greenhouse gas emissions in 2014. As proposed 

by U.S. EPA  (U.S. Environmental Protection Agency, 2015), 7.03×10-4 metric tons (1000 Kg) 

CO2 is emitted from per kWh electricity generation. In this experiment, 0.0581 kWh electricity 

was consumed to fabricate a part using SLA process, correlated to 0.041 Kg CO2 emission.  

TVOC Emissions 

The results of total TVOC emission and TVOC emission per Kg of parts built are shown in 

Table 9. It can be observed that when the batch size increases from 1 to 2, the total TVOC emitted 

increases by 79.26%; when the batch size continues increasing from 2 to 3, the total TVOC emitted 

increases by 82.23%. However, for the TVOC emission per Kg of final part, the result reduces 

from batch size 1 to 2, but then it increases dramatically from batch size 2 to 3. The relationship 

between batch size and TVOC emission per Kg part is not obvious. This favors the adoption of 

batch production method with further research in AM.  

Table 9. The TVOC emission for batch production 

Batch Size Total TVOC Emission (µg) TVOC Emission (µg) per kg Part Built 

1 15,104.24 7991.66 

2 27,075.50 7584.17 

3 49,341.45 9362.70 

 

The TVOC emission profiles are shown in Figure 41, Figure 42, and Figure 43. During the 

first 600s period, the TVOC emissions are measured as a reference level, which provides 

information on the TVOC concentration in the room without the SLA machine working. Around 
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600s, the manufacturing activities start and last 5580s. In the three profiles, the TVOC 

concentration peak is identified around 6180s. After the manufacturing activities end, the TVOC 

concentration level decreases.  

 

Figure 41. The real-time TVOC emission for batch size=1 

 

Figure 42. The real-time TVOC emission for batch size=2 
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Figure 43. The real-time TVOC emission for batch size=3 

The average TVOC concentration levels for the multiple measurement stages are shown in 

Table 10. For batch sizes from 1 to 3. Although these three manufacturing processes have different 

batch sizes, they have the similar TVOC concentration evolution profiles. During the background 

period, there is no AM activity, leading to the relatively low average TVOC concentration, which 

is possibly caused by liquid resin volatilization process. After the AM process starts, the average 

TVOC concentration increases to high level and even higher which further increases when the 

process ends, and post-processing starts.  

Table 10. The average TVOC concentration for batch production 

Batch size Overall Background Manufacturing Post-Processing 

1 1068.451 476.085 859.796 3601.310 

2 1335.023 435.572 1378.415 1874.142 

3 1849.496 451.147 1968.835 2148.160 
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The average TVOC concentration levels from both the manufacturing period and post-

processing period significantly exceed the maximum allowed TVOC concentration inside a 

building-500 µg/m3 proposed by LEED-NC (Leadership in Energy and Environmental Design 

Green Building Rating System for New Construction) (Environmental, 2009). The excessive 

TVOC emission from AM processes could lead to serious environmental concerns and human 

health risks. Due to the potential negative consequences of TVOC emission from AM processes, 

effective emission control strategies need to be proposed and validated in future research efforts. 

Additionally, more comprehensive standards need to be established to regulate the AM process 

emissions.  

Material Waste 

The material waste for each of the three different batch productions is shown in Table 11. 

Although the material waste per part does not necessarily increase with batch size, the total 

material waste increases considerably with a larger batch size. It is also observed that the material 

waste per part is similar for different batch sizes. However, material waste per part for the SLA 

process is extremely high (about 70% for these three cases) and needs further process/equipment 

improvements. 

Overall, based on our experimental results, AM batch production has great potential for being 

an environmentally sustainable manufacturing method. First, AM batch production leads to 

significant reduction on specific energy consumption, and further results in decreasing in CO2 

emissions caused by electricity generation. Second, TVOC emissions per Kg part do not 

necessarily increase, which benefits the AM batch production method. Third, the material waste 

per part does not noticeably increase with larger batch size, which is also one of the advantages 

for AM batch production method. 
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Table 11. The material waste for batch production 

Batch Size 
Total Material 

Usage (g) 

Total Material 

Waste (g) 

Final Part without 

Support (g) 

Material Waste 

per Part 

1 3.23 1.34 1.89 70.90% 

2 5.89 2.32 
1.74 69.25% 

1.83 60.92% 

3 9.27 4.00 

1.69 82.84% 

1.81 70.72% 

1.77 74.58% 

 

3.5.3 Section Conclusion and Prototype Development 

In this section, the environmental sustainability performance for the AM batch production 

method is evaluated by measuring and comparing energy consumption, TVOC emissions, and 

material waste while considering different batch size. Based on the experimental results, batch 

production using SLA process has great potential for energy saving, but still needs improvement 

concerning TVOC emission and material waste. The environmental sustainability evaluation 

performed in this dissertation greatly enhances our understanding of the performances of AM batch 

production method. Moreover, the outcomes of this part of the research also facilitate the AM 

batch production development by unveiling the relationships between batch size and 

environmental performance.  

Using the research outcome from both energy consumption and emission study, a prototype 

based on SLA process (as shown in Figure 44)  is developed, which consumes minimal energy 

consumption while ensuring the satisfactory surface quality, and reduces the TVOC emissions 

through physical absorption and chemical oxidation processes. It has been tested that this prototype 
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is able to reduce both the average TVOC concentration and AM-caused emissions by more than 

70%. 

 

Figure 44. The environmentally sustainable SLA prototype 
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4. COST MODELING AND OPTIMIZATION IN STEREOLITHOGRAPHY ADDITIVE 

MANUFACTURING 

(Previously published in (Yang and Li, 2018b) as “Yang, Y., and Li, L., 2018. Cost Modeling 

and Analysis for Mask Image Projection Stereolithography Additive Manufacturing: Simultaneous 

Production with Mixed Geometries. International Journal of Production Economics 206: 146-

158”, and published in (Li et al., 2018a) as “Li, L., Haghighi, A., and Yang, Y., 2018. Theoretical 

Modeling and Prediction of Surface Roughness for Hybrid Additive-Subtractive Manufacturing 

Processes. IISE Transactions 1-40”.) 

In addition to the environmental sustainability considered in the Section 2 and Section 3, the 

production cost in SLA process is modeled and optimized as shown in Section 4. More specifically, 

the cost model is illustrated in Section 4.1, followed with the optimization problem formulated in 

Section 4.2. Numerical case studies are conducted in Section 4.3, including the cost model 

performance analysis in Section 4.3.1 and cost optimization results in Section 4.3.2. The sensitivity 

analysis is performed to identify the most sensitive cost drivers in current market, as shown in 

Section 4.4. Finally, the section conclusion is discussed in Section 4.5.  

4.1 The Mask Image Projection Stereolithography Process Cost Model 

To formulate the costs generated from the MIP SLA process, it is necessary to investigate the 

MIP SLA process to identify different cost components from various stages of the process. The 

MIP SLA process is illustrated in Figure 45. The MIP SLA process has great potentials for high-

precision (Sun et al., 2005) and fast 3D printing (Pan et al., 2012b) due to the use of high-resolution 

projection. The MIP SLA process has been used for diverse applications such as the fabrication of 

high electric capacitor (Yang et al., 2016), smooth surfaces (Pan et al., 2012a), etc. 
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The main manufacturing process can be summarized into three sub-processes. First, during the 

pre-processing stage, the machine operator performs process planning activities such as the control 

software set-up, the machine set-up, etc. Second, during the production stage, the first layer image 

is projected to the bottom of the building platform and solidified by the Ultraviolet (UV) light 

source. After the first layer is finished, the building platform vertically moves up for the distance 

of a layer thickness and continues with the next layer until the entire production is finished. Third, 

during the post-processing stage, the machine operator retrieves the parts, performs additional 

procedures to improve the surface quality if necessary, and cleans the AM machine for the next 

production batch.  

 

Figure 45. The Mask Image Projection Stereolithography process illustration 

To enable the estimation of the unit cost per part for mixed production schemes, the mixed 

geometries in the batch need to be sorted so that they can be determined with different unit costs. 

A sorting algorithm is proposed in this section considering the various levels of part height, volume, 

and complexity. 
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Let 𝑖 be the index of various levels of part height, and 𝑃𝑖 be parts with height ℎ𝑖. The set of 

parts with different heights, 𝐼𝑖, can be written as follows. 

𝐼𝑖 = {𝑃1, 𝑃2, 𝑃3, ⋯ 𝑃𝑁ℎ
}, 𝑖 ∈ [1, 𝑁ℎ] (24) 

𝑁ℎ denotes the total number of various levels of height in the mixed batch. Let 𝑗 be the index of 

different volumes of parts with a specific height ℎ𝑖. 𝑃𝑖,𝑗 refers to parts with height ℎ𝑖 and volume 

𝑉𝑖,𝑗. The set of parts with different volume and specific height 𝑖, 𝑃𝑖,𝑗, can be written as follows. 

𝐼𝑖,𝑗 = {𝑃𝑖,1, 𝑃𝑖,2, 𝑃𝑖,3, ⋯ 𝑃𝑖,𝑁𝑣,𝑖
}, 𝑗 ∈ [1, 𝑁𝑣,𝑖] (25) 

𝑁𝑣,𝑖 represents the total number of various levels of volume for height 𝑖.  

Let 𝑘 be the index of different complexity levels of parts with a specific height ℎ𝑖  and volume 

𝑉𝑖,𝑗. 𝑃𝑖,𝑗,𝑘 denotes a specific part in the mixed batch with height 𝑖, volume 𝑗, and complexity level 𝑘. 

𝛿𝑖,𝑗,𝑘 represents the complexity level of parts with index 𝑖, 𝑗, and 𝑘, where the complexity level is 

defined as 𝛿𝑖,𝑗,𝑘 =  𝑆𝑖,𝑗,𝑘/𝑉𝑖,𝑗. Note that the proposed ratio 𝛿𝑖,𝑗,𝑘 cannot be used solely for geometry 

evaluation, but in combination with other indices it can provide useful guidance for estimating the 

complexity level. The set of parts in the production batch with specific height ℎ𝑖  and specific 

volume 𝑉𝑖,𝑗 can be written as follows. 

𝐼𝑖,𝑗,𝑘 = {𝑃𝑖,𝑗,1, 𝑃𝑖,𝑗,2, 𝑃𝑖,𝑗,3, ⋯ 𝑃𝑖,𝑗,𝑁𝑐,𝑖,𝑗
} , 𝑘 ∈ [1, 𝑁𝑐,𝑖,𝑗] (26) 

𝑁𝑐,𝑖,𝑗 is the total number of different complexity levels for height 𝑖 and volume 𝑗. It should be 

noted that above sets 𝑃𝑖, 𝑃𝑖,𝑗, and 𝑃𝑖,𝑗,𝑘 are all sequenced in a monotonically increasing order. 

Thus, the total number of parts in the production batch are calculated by 𝑁𝑡𝑜𝑡 =

∑ ∑ 𝑁𝑐,𝑖,𝑗
𝑗=𝑁𝑣,𝑖

𝑗=1
𝑖=𝑁ℎ
𝑖=1 . Successively, the total cost for mixed batch can be formulated as follows. 
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𝐶𝑡𝑜𝑡
𝑏 = ∑ ∑ ∑ [𝐶𝑡𝑜𝑡(𝑃𝑖,𝑗,𝑘)]

𝑘=𝑁𝑐,𝑖,𝑗

𝑘=1

𝑗=𝑁𝑣,𝑖

𝑗=1

𝑖=𝑁ℎ

𝑖=1

 (27) 

𝐶𝑡𝑜𝑡(𝑃𝑖,𝑗,𝑘) denotes the total cost for part 𝑃𝑖,𝑗,𝑘, which contains several different cost components. 

The above sorting algorithm for the mixed parts can be summarized as follows. 

 

Step 1. GET ℎ𝑖, 𝑉𝑖,𝑗 and 𝛿𝑖,𝑗,𝑘 from the mixed production batch 

Step 2. FOR 𝑖 = 2: 𝑁ℎ 

            CHECK IF ℎ𝑖 > ℎ𝑖−1, CONTINUE LOOP 

            ELSE, exchange the order of 𝑃𝑖 and 𝑃𝑖−1, and CONTINUE LOOP 

            END LOOP 

Step 3. REPEAT Step 2 until no exchange is necessary 

Step 4. FOR 𝑖 = 1: 𝑁ℎ 

                FOR 𝑗 = 2: 𝑁𝑣,𝑖  

                CHECK IF 𝑉𝑖,𝑗 > 𝑉𝑖,𝑗−1, CONTINUE LOOP 

                ELSE, exchange the order of 𝑃𝑖,𝑗 and 𝑃𝑖,𝑗−1, and CONTINUE LOOP 

                END LOOP 

            END LOOP 

Step 5. REPEAT Step 4 until no exchange is necessary 

Step 6. FOR 𝑖 = 1: 𝑁ℎ 

                FOR 𝑗 = 1: 𝑁𝑣,𝑖  

                    FOR 𝑘 = 2: 𝑁𝑐,𝑖,𝑗 

                    CHECK IF 𝛿𝑖,𝑗,𝑘 > 𝛿𝑖,𝑗,𝑘−1, CONTINUE LOOP 

                    ELSE, exchange the order of 𝑃𝑖,𝑗,𝑘 and 𝑃𝑖,𝑗,𝑘−1, and CONTINUE LOOP 

                    END LOOP 

                END LOOP 

            END LOOP 

Step 7. REPEAT Step 6 until no exchange is necessary 

Step 8. END 

 

 

Based on the production activities in various stages, multiple cost components can be identified, 

i.e., energy consumption cost, labor cost, material cost (both part material cost and support material 
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cost), and other overheads. These cost components are highly related to AM production activities, 

as illustrated in Figure 46. 

 

Figure 46. Illustrations of the cost components and the production activities 

Energy Consumption Cost 

The energy consumption cost of the MIP SLA process is highly time-dependent, and thus 

mainly determined by the maximum height of the geometries in the production batch with a 

specific layer thickness. Hence, the energy cost per part cannot be assumed to be uniform for 

various geometries. Generally, geometries with greater height should contribute more regarding 

the energy consumption cost.  

To formulate the energy cost per part for a specific geometry 𝑃𝑖,𝑗,𝑘, a time-related ratio 𝜏1 is 

proposed to determine the energy cost per part for different geometries in a mixed production 

scheme and is shown in Equation (28). 
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𝜏1(𝑃𝑖,𝑗,𝑘) = 𝑇𝑙𝑎𝑦𝑒𝑟

× [(
1

𝑁𝑡𝑜𝑡
) × (

ℎ1

𝑑
) + (

1

𝑁𝑡𝑜𝑡 − 𝑁𝑣,1
) × (

ℎ2 − ℎ1

𝑑
) + ⋯

+ (
1

𝑁𝑡𝑜𝑡 − 𝑁𝑣,1 − 𝑁𝑣,2 − ⋯ − 𝑁𝑣,𝑖−1
) × (

ℎ𝑖 − ℎ𝑖−1

𝑑
)]

+ 𝑇𝑠𝑢𝑝𝑝𝑜𝑟𝑡 × (
𝑁𝑠𝑢𝑝𝑝𝑜𝑟𝑡

𝑁𝑡𝑜𝑡
) 

(28) 

In this equation, 𝑁𝑡𝑜𝑡 represents the total number of geometries in the production batch, 𝑇𝑠𝑢𝑝𝑝𝑜𝑟𝑡 

denotes the production time for each support layer, and 𝑁𝑠𝑢𝑝𝑝𝑜𝑟𝑡 is the total number of required 

support layers. 

In addition, 𝑇𝑙𝑎𝑦𝑒𝑟 represents the production time for each part layer. In the MIP SLA process, 

𝑇𝑙𝑎𝑦𝑒𝑟 is assumed to be identical for all part layers, and it can be calculated by Equation (29). It 

should be noted that for some types of AM processes, e.g., the FDM process and the SLS process, 

𝑇𝑙𝑎𝑦𝑒𝑟 can be different for each layer as it can be significantly affected by different building paths.  

𝑇𝑙𝑎𝑦𝑒𝑟 = 𝑇𝑒𝑥𝑝𝑜 + 𝑇𝑙𝑖𝑓𝑡 (29) 

In Equation (29), 𝑇𝑒𝑥𝑝𝑜 is the layer image exposure time and 𝑇𝑙𝑖𝑓𝑡 is the building platform life 

and sequence time. Therefore, the unit energy consumption cost for part 𝑃𝑖,𝑗,𝑘  in the mixed 

production scheme can be formulated as follows. 

𝐶𝐸(𝑃𝑖,𝑗,𝑘) = 𝐶𝐸
∗ × 𝑃𝑚𝑎𝑐ℎ𝑖𝑛𝑒 × 𝜏1(𝑃𝑖,𝑗,𝑘) (30) 

where 𝐶𝐸
∗ denotes the unit electricity price ($/kWh), and 𝑃𝑚𝑎𝑐ℎ𝑖𝑛𝑒 denotes the rated power of the 

AM machine that can be obtained from the machine nameplate specifications.  

Labor Cost 

It is assumed that during the AM production period, there is no need for the machine operator’s 

involvement. In other words, the machine operator only participates in the activities before and 



85 

 

after the manufacturing process. More specifically, the operator sets up the AM machine and the 

control software during the preprocessing stage and performs post-processing activities when the 

production is finished (i.e., removing the support structure, cleaning the AM machine, over-curing 

the finished parts, and surface finishing).  

Hence, the unit labor cost for part 𝑃𝑖,𝑗,𝑘 in the mixed production scheme can be formulated as 

the sum of the labor costs from the preprocessing and post-processing stages, which can be 

calculated by Equation (31) and Equation (32), respectively. 

𝐶𝐿,𝑝𝑟𝑒(𝑃𝑖,𝑗,𝑘) = 𝐶𝐿
∗ × 𝑇𝑝𝑟𝑒(𝑃𝑖,𝑗,𝑘) = 𝐶𝐿

∗ × [(𝑇𝑠𝑒𝑡𝑢𝑝,𝑠
𝑏 + 𝑇𝑠𝑒𝑡𝑢𝑝,𝑚

𝑏 )/𝑁𝑡𝑜𝑡] (31) 

𝐶𝐿
∗ is the labor cost per unit time, which refers to the hourly rate ($/hour) of the AM machine 

operator. 𝑇𝑠𝑒𝑡𝑢𝑝,𝑠
𝑏  and 𝑇𝑠𝑒𝑡𝑢𝑝,𝑚

𝑏  represent the total software and the machine set-up costs of the 

production batch.  

𝐶𝐿,𝑝𝑜𝑠𝑡 = 𝐶𝐿
∗ × 𝑇𝑝𝑜𝑠𝑡(𝑃𝑖,𝑗,𝑘)

= 𝐶𝐿
∗ × [𝑇𝑜𝑣𝑒𝑟𝑐𝑢𝑟𝑒(𝑃𝑖,𝑗,𝑘) + 𝑇𝑠𝑢𝑟𝑓𝑎𝑐𝑒(𝑃𝑖,𝑗,𝑘) +

𝑇𝑟𝑒𝑚𝑜𝑣𝑒
𝑏

𝑁𝑡𝑜𝑡
+

𝑇𝑐𝑙𝑒𝑎𝑛
𝑏

𝑁𝑡𝑜𝑡
] 

(32) 

𝑇𝑟𝑒𝑚𝑜𝑣𝑒
𝑏  and 𝑇𝑐𝑙𝑒𝑎𝑛

𝑏  are the support removal time and the machine cleaning time of the production 

batch. To estimate the over-curing cost and surface finishing cost to different geometries, the 

following relationships are proposed. 

𝑇𝑜𝑣𝑒𝑟𝑐𝑢𝑟𝑒(𝑃𝑖,𝑗,𝑘) = {

𝑇𝑜𝑣𝑒𝑟𝑐𝑢𝑟𝑒
∗                               𝑖𝑓 𝑉𝑖,𝑗,𝑘 = 𝑉𝑚𝑖𝑛

𝑇𝑜𝑣𝑒𝑟𝑐𝑢𝑟𝑒
∗ × 𝑒𝑥𝑝 (

𝑉𝑖,𝑗,𝑘

𝑉𝑚𝑖𝑛 × 𝛾1
)   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (33) 

𝑇𝑠𝑢𝑟𝑓𝑎𝑐𝑒(𝑃𝑖,𝑗,𝑘) = {

𝑇𝑠𝑢𝑟𝑓𝑎𝑐𝑒
∗                                                                        𝑖𝑓 𝑆𝑖,𝑗,𝑘 = 𝑆𝑚𝑖𝑛

𝑇𝑠𝑢𝑟𝑓𝑎𝑐𝑒
∗ × [𝑒𝑥𝑝 (

𝑆𝑖,𝑗,𝑘

𝑆𝑚𝑖𝑛 × 𝛾2
) + 𝑒𝑥𝑝 (

𝛿𝑖,𝑗,𝑘

𝛿𝑚𝑖𝑛 × 𝛾3
)]   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (34) 
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where 𝑇𝑜𝑣𝑒𝑟𝑐𝑢𝑟𝑒
∗  is the over-curing time for the part with minimum volume, and 𝑇𝑠𝑢𝑟𝑓𝑎𝑐𝑒

∗  is the 

surface finishing time for the part with minimum surface area. In addition, 𝛾1, 𝛾2, and 𝛾3 are 

constant values determined by the skills and experiences of the AM machine operator. 

Material Costs  

The material costs of a specific part 𝑃𝑖,𝑗,𝑘 mainly contain two sources, i.e., part material cost 

and support structure material cost, and can be formulated as follows. 

𝐶𝑀(𝑃𝑖,𝑗,𝑘) = 𝐶𝑀,𝑝(𝑃𝑖,𝑗,𝑘) + 𝐶𝑀,𝑠(𝑃𝑖,𝑗,𝑘)  

= (1 + φ) × 𝐶𝑀
∗ × 𝜌𝑀 × [𝑉𝑖,𝑗 + 𝑉𝑠𝑢𝑝𝑝𝑜𝑟𝑡

𝑏 /𝑁𝑡𝑜𝑡] 
(35) 

φ denotes the material waste ratio, which represents the percentage of material wasted to unit 

material needed for production. When φ = 0, there is no material waste. In addition, 𝐶𝑀
∗  stands 

for the unit price of the material ($/kg), and 𝜌𝑀 is the density of the material. Note that, in the MIP 

SLA process, the material types for the part and the support structure are the same. Moreover, 

material recycling is not considered in the MIP SLA process. 

Overheads  

The overheads of part 𝑃𝑖,𝑗,𝑘 include the machine depreciation cost, the maintenance cost, and 

the administration cost. Using the straight-line depreciation method (Hulten and Wykoff, 1980), 

the depreciation cost for a specific part 𝑃𝑖,𝑗,𝑘 can be formulated as follows.  

𝐶𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑𝑠(𝑃𝑖,𝑗,𝑘) =
𝐶𝑖𝑛𝑣𝑒𝑠𝑡 𝑁𝑙𝑖𝑓𝑒⁄ + 𝐶𝑚𝑎𝑖𝑛

𝑏 + 𝐶𝑎𝑑𝑚
𝑏

𝑇𝑃
× 𝜏2(𝑃𝑖,𝑗,𝑘) (36) 

where 𝐶𝑖𝑛𝑣𝑒𝑠𝑡 is the initial cost the AM machine and software, 𝑁𝑙𝑖𝑓𝑒 denotes the estimated useful 

life of the AM machine and software, 𝐶𝑚𝑎𝑖𝑛
𝑏  is the maintenance cost per year of the production 

batch, and 𝐶𝑎𝑑𝑚
𝑏  is the miscellaneous administration cost per year for the whole mixed production. 
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In addition, 𝜏2(𝑃𝑖,𝑗,𝑘)  denotes a time-related ratio of the total time (i.e., preprocessing time, 

production time, and postprocessing time) of part 𝑃𝑖,𝑗,𝑘 and the total time of the production batch, 

as shown in the following equation. 

𝜏2(𝑃𝑖,𝑗,𝑘) =
𝑇𝑝𝑟𝑒(𝑃𝑖,𝑗,𝑘) + 𝜏1 + 𝑇𝑝𝑜𝑠𝑡(𝑃𝑖,𝑗,𝑘)

𝑇𝑝𝑟𝑒
𝑏 + 𝑇𝑝𝑟𝑜𝑑

𝑏 + 𝑇𝑝𝑜𝑠𝑡
𝑏  (37) 

𝑇𝑝𝑟𝑒
𝑏 , 𝑇𝑝𝑟𝑜𝑑

𝑏 , and 𝑇𝑝𝑜𝑠𝑡
𝑏  are the total preprocessing time, production time, and postprocessing time 

for the production batch.  

Therefore, the total cost for part 𝑃𝑖,𝑗,𝑘 can be formulated as follows. 

𝐶𝑡𝑜𝑡(𝑃𝑖,𝑗,𝑘) = 𝐶𝐸(𝑃𝑖,𝑗,𝑘) + 𝐶𝐿,𝑝𝑟𝑒(𝑃𝑖,𝑗,𝑘) + 𝐶𝐿,𝑝𝑜𝑠𝑡 + 𝐶𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑𝑠(𝑃𝑖,𝑗,𝑘) (38) 

4.2 Optimization Problem 

The objective of the optimization problem is to minimize the total cost by obtaining the optimal 

set of decision variables (i.e., layer thickness 𝑑 and stratification angle 𝜃), considering multiple 

constraints regarding the part surface quality and production throughput. Hence, the objective 

function of the optimization problem can be formulated as follows. 

min
𝑑,𝜃 

{𝑇𝑃 × 𝐶𝑡𝑜𝑡
𝑏 } (39) 

𝐶𝑡𝑜𝑡
𝑏  denotes the total cost per production batch, and 𝑇𝑃 is the production throughput, which is 

defined as the number of batches in this work. Note that, in this work, a certain production layout 

is adopted and remains the same for all production batches. The two decision variables are the 

layer thickness 𝑑, which is defined as the height of each successive layer, and the stratification 

angle 𝜃 of the surface of interest, which refers to the angle between the normal vector of the surface 

of interest and the build direction. Based on our preliminary analysis, the total cost 𝐶𝑡𝑜𝑡
𝑏  consists 

of two types of cost components, i.e., fixed and variable cost components, determined by if the 
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cost component is altered with different values of decision variables. Hence, the objective function 

(39) can be rewritten as follows. 

min
𝑑,𝜃 

{𝑇𝑃 × 𝐶𝑡𝑜𝑡
𝑏 (𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒)} (40) 

In the optimization problem, four constraints are considered, i.e., the desired surface roughness 

of the surface of interest, the required annual throughput, and the ranges of two decision variables. 

As one of the most critical measures for evaluating the printed part quality, surface roughness 𝑅𝑎 

of the surface of interest is usually limited within a specific range considering the design 

requirement and specifications.  

Generally, 𝑅𝑎 is defined as “the arithmetic average of the absolute values of the profile height 

deviations from the mean line, recorded within the evaluation length” (ASME, 2010). The desired 

range for 𝑅𝑎 can be formulated as follows. 

𝑅𝑎,𝑚𝑖𝑛 ≤ 𝑅𝑎 ≤ 𝑅𝑎,𝑚𝑎𝑥 (41) 

Both 𝑅𝑎,𝑚𝑖𝑛 and 𝑅𝑎,𝑚𝑎𝑥 are determined by the designer.  

 

Figure 47. The surface profile of 3D printed surfaces, adapted from (Li et al., 2018b) 
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To represent the surface profile of additive manufactured surfaces, a combination of a 

parabolic curve and a straight line is used as proposed by Li et al. (2018) as shown in Figure 47. 

Accordingly, the surface roughness value can be calculated by the following equation. 

𝑅𝑎 =
𝑠𝑖𝑛𝜃

(𝑑 − ɛ𝑥)
∫ |

(𝑑−ɛ𝑥)

0

− 2 [
𝑑 − 2ɛ𝑦

(𝑑 − ɛ𝑥)2
] 𝑥2 + 2 [

𝑑 − 2ɛ𝑦

(𝑑 − ɛ𝑥)
] 𝑥 + (𝑐𝑜𝑡𝜃)𝑥

−
1

3
(𝑑 − 2ɛ𝑦) −

1

2
(𝑑 − ɛ𝑥)𝑐𝑜𝑡𝜃|𝑑𝑥 

(42) 

In this equation, ɛ𝑥 and ɛ𝑦 are the error coefficients of the layer thickness deviation along the 𝑋 

and 𝑌 axis, respectively. It is assumed that both error coefficients follow normal distributions, 

where ɛ𝑥~𝑁(𝜇ɛ𝑥
, 𝜎ɛ𝑥 

2 ) and ɛ𝑦~𝑁 (𝜇ɛ𝑦
, 𝜎ɛ𝑦 

2 ).  

In addition to the surface quality, the production throughput is also a critical requirement and 

therefore considered in the optimization problem. To formulate the production throughput 𝑇𝑃, the 

AM machine utilization rate σ is used and it represents the percentage of time that the AM machine 

is in operation per year (%).  

(8760 × σ)

(𝑇𝑝𝑟𝑒
𝑏 + 𝑇𝑝𝑟𝑜𝑑

𝑏 + 𝑇𝑝𝑜𝑠𝑡
𝑏 )

≤ 𝑇𝑃 ≤
8760

(𝑇𝑝𝑟𝑒
𝑏 + 𝑇𝑝𝑟𝑜𝑑

𝑏 + 𝑇𝑝𝑜𝑠𝑡
𝑏 )

 (43) 

Note that it is assumed that each year has 8760 hours.  

Furthermore, the ranges regarding the decision variables are also considered and formulated 

as follows. 

𝑑𝑚𝑖𝑛 ≤ 𝑑 ≤ 𝑑𝑚𝑎𝑥 (44) 

0° ≤ θ ≤ 90° (45) 

where 𝑑𝑚𝑎𝑥 and 𝑑𝑚𝑖𝑛 are the maximum and minimum layer thickness values, which are usually 

limited by the AM machine capability. 
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4.3 Numerical Case Studies 

To investigate the cost performance of the MIP SLA process using the developed cost model, 

numerical case studies are conducted in this section. More specifically, comparative case studies 

are performed in Section 4.3.1 by considering non-mixed and mixed production layouts, as well 

as different methods to quantify the unit cost in mixed production schemes. In addition, the 

optimization problem is solved in Section 4.3.2. 

4.3.1 Cost Performance Analysis 

4.3.1.1 Comparison of Non-Mixed and Mixed Production Layouts 

To demonstrate the ability of established model in terms of estimating the AM cost for both 

non-mixed and mixed production layouts, comparative case studies are performed to investigate 

the cost-saving potential by adopting mixed production schemes. More specifically, three different 

manufacturing scenarios are considered. In Scenario I, a non-mixed production layout is adopted 

with 40% of the machine capacity, which, in this work, refers to the percentage area of the building 

platform used for printing. In Scenario II, 60% of the machine capacity is used for a non-mixed 

production layout. In Scenario III, a mixed production scheme is adopted with productivity of 

57.04% (𝜎), which implies that the AM machine is in operation for 100 hours/week and 50 

weeks/year. These three scenarios are designed to achieve the same yearly yield.  

Table 12. The geometry information and production scenario layout 

 Geometry 1  Geometry 2  Geometry 3  

Description Screw (M5*30) Screw (M6*15) Screw (M8*25) 

Height (mm) 35 21 33 

Volume (mm3) 708.44 690.58 888.01 

Surface area (mm2) 1028.40 1919.10 1738.5 
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Three different geometries are considered in these scenarios as shown in Table 12. The 

quantities of Geometry 1, 2, and 3 considered in Scenario I are 38, 18, and 11; in Scenario II are 

50, 27, and 17; and in Scenario III are 10, 28, and 4, respectively.  

To perform the cost calculation using the proposed model, additional assumptions are applied 

as shown in Table 13. Note that the same assumptions are adopted in all three manufacturing 

scenarios. The target yield is calculated based on the productivity of Scenario III, and it includes 

10,808 of Geometry 1, 30,262 of Geometry 2, and 4323 of Geometry 3. In addition, the values for 

the two decision variables are set as: 𝑑=0.1mm and 𝜃=90°. 

Table 13. The assumptions used in cost model calculation 

Parameter Value Source 

𝐶𝐸
∗ $0.1038/kWh 

The average electricity price in the U.S. in November 2017 

(U.S. Energy Information Administration, 2017) 

𝑃𝑚𝑎𝑐ℎ𝑖𝑛𝑒 0.33kW Machine specification (EnvisionTEC, 2017) 

𝐶𝐿
∗ $7.25/hour 

The federal minimum wage in the U.S. in 2017 (U.S. 

Department of Labor, 2017) 

𝜌𝑃 1100 kg/m3 Material property (EnvisionTec, 2019) 

𝐶𝑀
∗  $600/kg Quote from the material supplier 

𝜑 0.05 Assumed by this work 

𝐶𝑖𝑛𝑣𝑒𝑠𝑡 $13,000  Quote from the 3D printer supplier 

𝐶𝑚𝑎𝑖𝑛
𝑏 , 𝐶𝑎𝑑𝑚

𝑏  10% of 𝐶𝑖𝑛𝑣𝑒𝑠𝑡 Assumed by this work 

𝑁𝑙𝑖𝑓𝑒 8 years Assumed by this work 

𝜎 57.08% Adapted from (Ruffo et al., 2006) 

 

The cost model calculation results are illustrated in Figure 48. Different manufacturing 

scenarios are shown to have significantly different cost performance. The mixed production 

scheme, used in Scenario III, lead to around $37,668 of the total yearly cost of all three geometries, 
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which is 15.68% and 6.18% less than the non-mixed production layouts in Scenario I and II, 

respectively. In addition, it can be observed from the results that production schemes affect the 

cost performance differently according to different geometries. The yearly costs for Geometry 2 

and 3 by using mixed production in Scenario III are less than those in Scenario I and II; while the 

yearly cost for Geometry 1 in Scenario III is slightly less than Scenario I but more than Scenario 

II. Furthermore, in the same manufacturing scenario, different geometries can have different cost 

performance as well. For example, in Scenario III, Geometry 1, 2, and 3 accounts for 22.56%, 

59.09%, and 18.35% of the total yearly cost, respectively.  

 

Figure 48. The cost comparison of different geometries in three scenarios 

In addition, the detailed cost breakdown regarding different cost components for three 

manufacturing scenarios is illustrated in Figure 49. It can be observed that the production layout 

affects not only the cost per part but also the cost behaviors of different cost components. For 

example, the material cost that plays the most significant role in the total cost varies from 

accounting for 66.53% of the total cost in Scenario I and 69.79% in Scenario II, to 71.53% in 

Scenario III.  
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Figure 49. The cost comparison of different cost components in three scenarios 

4.3.1.2 Comparison of Existing Methods of Estimating Unit Cost of Mixed Production Layout 

As illustrated in the previous section, the mixed production method shows great cost-saving 

potential. To implement mixed production schemes, how to quantify the unit cost per part can be 

critical and complex as the parts in the mixed production batch have different geometries. In this 

section, four cost allocation methods are studied, namely, Method I, II, and III proposed by Ruffo 

and Hague (2007), and Method IV proposed by this work.  

More precisely, by using Method I, the unit cost per part is calculated as a fraction of the total 

cost using the ratio of the part volume and the total volume of all the parts in the production batch. 

Method II relates the unit cost per part in mixed production with the total cost of printing the same 

parts using non-mixed production layout. By using Method III, the unit cost per part is estimated 

by considering the cost of high-volume non-mixed production. Note that the mixed production 

layout, Scenario III, in Section 4.3.1.1 is considered for adopting different cost allocation methods. 

In other words, each mixed production batch contains 35 of Geometry 1, 21 of Geometry 2, and 

33 of Geometry 3. 
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Figure 50. The unit cost comparison by using different methods 

The total cost for the whole production batch is calculated as $36.09. The unit cost per part 

calculations using different cost allocation methods are illustrated in Figure 50. The same 

geometry can have different contributions to the total cost by using different cost allocation 

methods. For example, the unit cost for Geometry 1 can vary from $0.75 by using Method I to 

$1.53 by using Method III. In addition, different methods have different criterion and 

considerations, leading to diverse allocation results. It can be observed from the results that 

Geometry 1 and 2 have similar values of volume, and therefore they have similar level of the unit 

cost by using Method I. It can be also observed that since Method II and III both are related to the 

cost calculation results by using non-mixed production schemes, so they have similar behaviors. 

Furthermore, the proposed Method IV, comparing to other existing methods in the literature 

(Method I, II, and III), has reasonable but slightly different estimations for the unit cost. The main 

reasons for such differences are the joint consideration of the part height, volume, and complexity 

level, whereas Method I, II, and III fail to consider all necessary geometric characteristics. 
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4.3.2 Cost Optimization 

According to the results in previous case studies, the proposed cost model can be used to 

estimate the total cost as well as the unit cost per part for both non-mixed and mixed production 

schemes. In this section, a more complex mixed production layout is considered for minimizing 

the total variable cost components (i.e., energy consumption cost, support material cost, and 

overheads) under the constraints of yearly throughput 𝑇𝑃 and surface roughness 𝑅𝑎. Two cases 

are considered, i.e., the Baseline Case in which the same set of decision variables are used as in 

Section 4, and the Optimized Case solved by using the exhaust search method where all possible 

feasible solutions are examined to ensure the global optimal solution.  

The detailed mixed production layout is shown in Figure 51, and the geometry information is 

shown in Table 14. Note that the surface of interest in this production layout is the bearing surface 

of the nut plate (as illustrated in Figure 51), and the printing direction is along the Z axis. Note that 

the same assumptions are adopted as illustrated in Table 13.  

 

Figure 51. The mixed production layout 
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Table 14. The mixed production scheme for the cost minimization problem 

 Description 
Number 

per batch 

Height 

(mm) 

Volume 

(mm3) 

Surface area 

(mm2) 

Geometry 1 Screw M5*30 4 35 708.44 1028.40 

Geometry 2 Screw M6*15 2 21 690.58 1028.40 

Geometry 3 Screw M8*25 1 33 1919.10 1738.5 

Geometry 4 Screw M5*25 2 30 629.10 896.07 

Geometry 5 Prism 1 21 839.95 812.85 

Geometry 6 Cube 2 21 911.99 640.42 

Geometry 7 Prism with hole 2 21 911.95 716.84 

Geometry 8 Cube with hole 1 21 911.99 688.42 

Geometry 9 Screw M8*30 2 38 2131.8 1945.10 

Geometry 10 Screw M5*10 4 15 395.24 499.22 

Geometry 11 Screw M5*15 3 20 472.49 633.68 

Geometry 12 Screw M6*10 3 16 575.25 734.94 

Geometry 13 Screw M6*20 1 26 803.54 1044.80 

Geometry 14 Screw M8*20 1 28 1709.30 1535.20 

Geometry 15 Nut plate 2 15 4637.50 2621.30 

 

Calculated from the proposed cost model, the detailed unit cost per part for fifteen geometries 

is obtained and shown in Figure 52, Figure 53, and Figure 54 with respect to different geometry 

information (i.e., height, volume, and complexity level). According to the figures, it can be 

observed that the relationships between cost and geometry characteristics are quite complex, and 

they can be varied considering different cost components. As an example, the overheads cost 

grows with increasing order of geometry height, but it does not necessarily change in the same 

pattern with increasing order of geometry volume and complexity level. Therefore, geometry 
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characteristics need to be considered when quantifying the unit cost per geometry especially for 

simultaneously production with mixed geometries.   

 

Figure 52. The unit cost per part by increasing height 

 

Figure 53. The unit cost per part by increasing volume 
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Figure 54. The unit cost per part by increasing complexity level 

Four constraints are considered in the optimization problem as follows. (1) The layer thickness 

𝑑 ∈ [0.025𝑚𝑚, 0.15𝑚𝑚], which is limited by the AM machine capability (EnvisionTEC, 2017); 

(2) The stratification angle of the surface of interest 𝜃 ∈ [0°, 90°], as the current production layout 

shown in Figure 51 is 90°; (3) The surface roughness of the surface of interest 𝑅𝑎 ∈ [0, 3.81𝜇𝑚], 

which is adapted from the specification for the nut plate used in Aerospace (Cherry Aerospace 

LLC, 2007); (4) The yearly throughput 
(8760×σ)

(𝑇𝑝𝑟𝑒
𝑏 +𝑇𝑝𝑟𝑜𝑑

𝑏 +𝑇𝑝𝑜𝑠𝑡
𝑏 )

≤ 𝑇𝑃 ≤
8760

(𝑇𝑝𝑟𝑒
𝑏 +𝑇𝑝𝑟𝑜𝑑

𝑏 +𝑇𝑝𝑜𝑠𝑡
𝑏 )

. 

The comparison of the Baseline Case and the Optimized Case is shown in Table 15. By 

adopting the optimal values of decision variables (𝑑 = 0.046𝑚𝑚, 𝜃 = 69° − 90°), the variable 

cost components in the Optimized Case is $6443.64 per year, which is reduced by 25.47% 

comparing to the Baseline Case. This great cost savings indicates that the two decision variables 

(layer thickness and stratification angle) can significantly affect the variable cost components. 
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Table 15. The cost optimization results comparison 

 Baseline Case Optimized Case  

Decision variables 

Layer thickness (mm) 0.1 0.046 

Stratification angle (deg) 90° 69°-90° 

Constraints 

Throughput (No. of batches/year) 1975 1975 

Surface roughness (µm) 3.64 3.29-3.81 

Yearly production time (hour/year) 5000 8671 

Variable cost ($/year) 8645.96 6443.64 

 

 

Figure 55. The variable cost breakdown of the Baseline Case and the Optimized Case 

 In addition, it can be observed that the characteristics of different cost components are altered 

in the Optimization Case. More specifically, by adjusting the decision variables, the energy 

consumption cost is increased from $109.61 per year to $235.42 per year by 114.78%, comparing 

to the Baseline Case. The support material cost has the opposite behaviors as in the Optimization 

Case it is reduced by around 54%, comparing to the Baseline Case. The overheads per year remain 
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the same value for both cases, while the percentages in the total variable cost are changed from 

48.87% in the Baseline Case to 65.57% in the Optimization Case. The cost breakdown for both 

cases is illustrated in Figure 55. 

4.4 Sensitivity Analysis 

In the AM cost model, several parameters and assumptions can lead to different cost 

performance. These parameters can be categorized into two groups: external parameters (e.g., 

material unit price, initial investment, and operator hourly rate) that have fluctuations due to 

market changes, and internal parameters (e.g., material waste ratio, and the total working time of 

the operator on each production batch) that depend on the characteristics of the AM production 

system and the skills of the AM operator. Both types of parameters are investigated to characterize 

their different influence on the optimized variable cost as well as the optimized total cost. 

Moreover, the results of the sensitivity analysis will help identify the key cost drivers for AM. 

The same mixed production layout from Section 4.2 is used in the sensitivity analysis. The 

values of parameters shown in Table 13 serve as benchmarks for comparison. The values of the 

parameters are varied by ±20%. The sensitivity analysis results are illustrated in Figure 56. It can 

be observed that, in terms of the optimized variable cost components (energy cost, support material 

cost, and overheads), the initial investment is the main cost driver. More specifically, 20% of the 

initial investment price drop can lead to 13.11% of the variable cost savings. This result indicates 

that in order to facilitate the enlargement of AM system applications, it is critical to reduce the 

prices of AM hardware and software.  

In addition, the second most significant factor is the material unit cost, where a 20% of 

reduction in the material unit cost can lead to 6.16% reduction in the variable cost. Currently, the 

raw material unit prices of AM often exceed those of traditional manufacturing processes (Thomas 
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and Gilbert, 2014). Hence, further reducing material unit costs of AM can be an effective and 

efficient means for reducing AM costs. Recently, numerous efforts have been dedicated to 

reducing the AM raw material cost by finding alternative materials (Pattinson and Hart, 2017) and 

reusing and recycling waste material (Baechler et al., 2013). 

 

Figure 56. The effects of parameters on optimized variable cost 

Furthermore, parameters like operator working time, operator hourly rate, and material waste 

ratio have minor impact on the optimized variable costs, but they can cause different influence on 

the total cost (both fixed and variable costs), as illustrated in Figure 57. For example, the operator 

hourly rate has no effect on the optimized variable costs, but it can affect the optimized total cost. 

In addition, the material unit cost can lead to the most significant fluctuations in terms of the total 

cost, which further emphasizes the importance of the raw material price in the future development 

of AM. In addition, operator working time and initial investment affect the total cost with different 

extents. Furthermore, ±20% of material waste ratio and initial investment can cause 0.70% of the 

total cost change, which indicates that the AM cost is not obviously affected by the material waste 

ratio. 
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Figure 57. The effects of parameters on total cost 

4.5 Section Conclusion 

In this section, a comprehensive cost model is established to investigate the cost performance 

of simultaneous production with mixed geometries. To quantify the unit cost, a mixed geometry 

sorting algorithm is proposed to jointly consider and classify the mixed geometries according to 

the part height, volume, and complexity level. In addition, the proposed cost model is used in the 

cost optimization problem considering the constraints of the part surface roughness and the 

production throughput. The case study results show that the optimal set of the decision variables 

can lead to around 26% reduction in variable cost without sacrificing the yearly throughput and 

part surface quality. Furthermore, according to the sensitivity analysis results, the material unit 

price and the initial investment are identified as the key cost drivers considering their influence on 

the optimized variable cost. The results of this research can facilitate the AM production design, 

planning and setup, enhance the evaluation of AM cost performance, and help evaluate the AM 

market. 
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Future work of this section includes the extended considerations of other types of AM 

processes, e.g., the PolyJet process, the FDM process, etc. To formulate the unit cost in mixed 

production using these AM processes, the modeling approach for the production time needs to be 

slightly altered. In addition, more constraints can be considered in the cost optimization problem, 

e.g., the dimensional accuracy and the environmental sustainability performance of the AM 

process such as production emissions and energy consumption. 
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5. SUMMARY AND FUTURE WORK  

Motivated by the increasing concerns on AM environmental sustainability and cost 

performance as well as the lack of thorough evaluation and comprehensive life cycle inventory 

database, this dissertation is conducted to advance the state-of-the-art of the environmental 

sustainability and cost analysis for SLA AM process. More specifically, the SLA process energy 

consumption model is established and used to study different process parameters and their 

influence on the overall energy consumption. In addition, the SLA process TVOC emission model 

is proposed and validated through experiments with less than 14% prediction error. Furthermore, 

two effective emission control strategies are proposed and implemented into the SLA process. The 

experimental results show that the average TVOC concentration is reduced by 44.15% and 71.06%, 

respectively. Based on the modeling and methodology obtained for energy consumption and 

TVOC emission, the AM batch production method is evaluated in terms of the environmental 

sustainability including energy consumption, TVOC emission, and material waste. Additionally, 

the production cost of SLA AM process is theoretically modelled and optimized while considering 

production throughput and achieved surfaced roughness. 

The academic contributions of this dissertation are threefold. Firstly, this research is among 

the first a few research efforts that comprehensively evaluate the environmental and cost 

sustainability of SLA AM process. This research will open up opportunities for the AM and 

sustainable manufacturing community to work together towards significant enhancement in 

environmental sustainability and cost effectiveness of AM technologies. Secondly, the 

mathematical models established in this dissertation will fill the knowledge gap by providing 

theoretical estimation and prediction methodologies for evaluating the environmental and cost 

performance of AM processes. By formulating the relationships between AM process parameters 
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and sustainability measures, the outcomes of this research will provide understandings and insights 

to facilitate the design and redesign stages. Last but not the least, the methodologies for reducing 

energy consumption, VOC emission and production cost that presented in this dissertation will 

significantly aid the long-term development of more efficient and sustainable AM operational 

practices. In all, this research will promote sustainable additive manufacturing and enhance the 

life cycle performance of AM.  

As an extension of this dissertation, a comprehensive life cycle assessment for SLA process is 

being conducted. Additional future research extensions are shown as follows. The linkages 

between the 3D model’s geometric characteristics and the environmental sustainability can be 

explored to provide more insights on reducing the environmental impact in the model design stage. 

Furthermore, comparative studies can be conducted between different AM technologies, raw 

material types, or model designs. In addition, more environmental measures can be included in the 

environmental sustainability evaluation, such as material flow, recycling of disposed AM materials 

or parts, etc.  
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