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SUMMARY

Polish groups are studied in the general context of large-scale geometry. In this context

many well-known Polish groups can be equipped with a canonically defined quasi-isometry

type which allows for the application of techniques from geometric group theory.

Deformation retracts of Polish groups receive special attention. The main result concerning

deformation retracts is that the existence of a sufficiently tame deformation of a Polish group

implies that the group has a well-defined quasi-isometry type.

Polish groups which are knit products also receive their own study. In a number of examples

it was noticed that a Polish group’s quasi-isometry type was given by its knit product structure.

The main result on knit products provides a way to understand the geometry of all these

examples at once.

As an application of these ideas we study the large-scale geometry of Polish groups whose

elements are absolutely continuous homeomorphisms.

vi



CHAPTER 1

INTRODUCTION

1.1 Context

For a group G generated by a subset S there is the associated left-invariant word metric ρS

defined by

ρS(x, y) = min

{
k > 0 | x−1y ∈

(
S ∪ S−1

)k}

for all x, y ∈ G. A foundational observation in the subject of geometric group theory is that on

any finitely generated group the word metrics obtained from finite generating sets are mutually

quasi-isometric, and so any such group has a well-defined quasi-isometry type; namely, the

quasi-isometry equivalence class of these word metrics. This allows for the study of large-scale

geometry of finitely generated groups, which links algebraic properties of finitely generated

groups with metric properties of their quasi-isometry types. Celebrated instances of this include

Gromov’s theorem on polynomial growth (1), Stallings’ theorem on ends (2), and Sela’s work

on word-hyperbolic groups (3). By now the study of large-scale geometry of finitely generated

groups has been covered in far greater detail than is possible here. See, for example, (4).

There are several classes of topological groups where a similar observation allows for the

application of large-scale geometry. For example, on any compactly generated locally compact

group the word metrics obtained from compact generating sets are mutually quasi-isometric,
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and so there is a large-scale geometry inherent to these topological groups. We refer to (5) for

a recent survey of the geometry of locally compact groups.

In this project we work within the general context of large-scale geometry of Polish groups,

so recall that a Polish space is a topological space which is separable and completely metrizable

and a Polish group is a topological group whose topology is Polish. The general theory of large-

scale geometry of Polish groups is due to C. Rosendal and is the subject of the manuscript (6).

The following concepts are key: A subset of a Polish group G is coarsely bounded in G if it is

bounded in every compatible, left-invariant metric on G, and a Polish group is coarsely bounded

if it is a coarsely bounded subset of itself. For now, we only mention that any Polish group which

is generated by a coarsely bounded subset can be equipped with a quasi-isometry type in a way

that is analogous to the previous cases discussed. This allows us to speak of quasi-isometric

properties of certain Polish groups. For example, whenever we say that a function G→ H is a

quasi-isometry of Polish groups we mean that both G and H are generated by coarsely bounded

subsets and that the function is a quasi-isometry of metric spaces when appropriate metrics are

chosen on the groups. A more general and detailed background on coarse geometry of Polish

groups is provided in the next chapter, but this will suffice to state our results.

1.2 Summary

Throughout we use I to denote the compact interval [0, 1]. This document collects some

results related to the large-scale geometry of a Polish group G when we are in either one of the

two situations:
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1. There is a deformation retract of G, i.e. a continuous function I × G → G, which gives

information about its geometry.

2. The group G is a knit product, i.e. contains subgroups H and K so that G = HK and

H ∩ K = {1}, and the geometry of G is reflected in this product structure.

All the relevant background material is collected in separate sections in Chapter 2, and then

each of the above points receives its own chapter.

Chapter 3 contains a study of deformation retracts as in point 1. We define a number of

properties on a deformation retract of a Polish group and study their effects on the geometry of

the group. Two such properties we have named being left-restrained and locally left-restrained.

See Definition 3.1. We offer Proposition 1.1 here as a representative of the kinds of statements

we are looking to deduce.

Proposition 1.1. Suppose H : I × G → G is a deformation retract of a Polish group G onto

the trivial subgroup. Then the following implications hold.

1. If H is left-restrained then G is coarsely bounded.

2. If H is locally left-restrained then G is generated by a coarsely bounded subset.

We give examples of deformations of the Polish groups Homeo+(I) and Diff1+(I) which fit into

the above framework and, by Proposition 1.1, whose existence implies Homeo+(I) is coarsely

bounded and Diff1+(I) is generated by a coarsely bounded subset. We also define and discuss

a property which is expressed by saying that a deformation of a Polish group has conjugate

moments.
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Chapter 4 contains the geometric results on knit products. The main result is the following

theorem.

Theorem 1.2. Suppose G is a Polish group which is a knit product of closed subgroups H

and K. Also suppose H is generated by a subset S ⊂ H which is coarsely bounded in H, K is

a coarsely bounded group when equipped with the subspace topology, and SK = KS. Then the

inclusion H→ G is a quasi-isometry of Polish groups.

In the abstract the two situations studied here, deformations and products, are unrelated;

however, there are a number of nontrivial examples where a suitably chosen deformation retract

of one factor subgroup within a knit product implies that the factor is geometrically trivial,

and from this a quasi-isometric equivalence between the product group and the other factor

subgroup can be deduced. As we will see, a concrete example of this is the Polish group

HomeoZ(R) of homeomorphisms of R that commute with integer translations. An interest in

this and related examples is the underlying motivation for this work.

For a compact connected 1–manifold M1 (so the interval I or circle S1) we let AC+

(
M1
)

denote the Polish group of orientation-preserving homeomorphisms of M1 which are abso-

lutely continuous and whose inverses are absolutely continuous. We introduce the Polish group

ACloc
Z (R) which is algebraically the subgroup of HomeoZ(R) of homeomorphisms which are lo-

cally absolutely continuous and whose inverses are locally absolutely continuous. We apply our

investigation of deformations and products to these groups and obtain the following result.
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Theorem 1.3. The Polish groups AC+(I) and AC+

(
S1
)

are coarsely bounded and the Polish

group ACloc
Z (R) is generated by a coarsely bounded subset. Further, the quasi-isometry type of

ACloc
Z (R) is that of the infinite cyclic group.

Section 2.3 contains background material on groups of homeomorphisms of 1–manifolds and

includes more detailed definitions of the Polish groups mentioned in Theorem 1.3. The proof

of Theorem 1.3 is postponed until Chapter 5.



CHAPTER 2

DEFORMATIONS AND BOUNDEDNESS

2.1 Uniform structures

We review the notion of a uniform space which is due to A. Weil (7). For a set X we write

∆(X), or just ∆, to denote the diagonal subset {(x, x)|x ∈ X} of the Cartesian square X×X. For

subsets E, F ⊂ X× X we let

E ◦ F = {(x, z) | ∃y ∈ X (x, y) ∈ E, (y, z) ∈ F}

and E−1 = {(y, x)|(x, y) ∈ E}. For a subset E ⊂ X×X and a positive integer n > 0 we define En

inductively by En = E if n = 1 and En = E ◦ En−1 for n > 1.

A uniform space is a set X along with a family U of subsets of X × X which satisfy the

following conditions.

1. For all E ∈ U , ∆ ⊂ E.

2. If E ∈ U and E ⊂ F ⊂ X× X, then F ∈ U .

3. If E, F ∈ U , then E ∩ F ∈ U .

4. If E ∈ U , then there is F ∈ U such that F ◦ F ⊂ E.

5. If E ∈ U , then E−1 ∈ U .

Elements of U are called entourages and U is called a uniform structure or uniformity on X.

6
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A fundamental system for a uniform space (X,U) is a subcollection B of U such that for

all E ∈ U there exists F ∈ B such that F ⊂ E. By the second condition above, a fundamental

system for a uniform space is enough to determine that uniform space.

For a uniform space (X,U), an entourage E ∈ U , and a point x ∈ X we write E[x] = {y|(x, y) ∈

E}. For a subset D ⊂ X we write E[D] = {y| ∃x ∈ D (x, y) ∈ E}.

We get a topology on the uniform space X by declaring a subset O ⊂ X to be open if for

every point x ∈ O there is an entourage E ∈ E such that E[x] ⊂ O. This is the topology induced

by the uniformity.

Whenever (X, d) is a metric space we can always induce a uniform structure Ud on X by

setting

Eα = {(x, y) | d(x, y) < α}

for each real number α > 0 and taking

Ud = {E ⊂ X× X | ∃α > 0 Eα ⊂ E}.

When (X,U) is a uniform space and d is a metric on X with Ud = U then we say that d is a

compatible metric on (X,U). The topology induced by the uniformity Ud is, of course, the same

topology induced directly by d.

Similarly to how the notion of continuity extends from metric spaces to topological spaces,

the notion of uniform continuity extends from metric spaces to uniform spaces. A function

f : (X,U) → (Y,V) between uniform spaces is uniformly continuous if for every F ∈ V there is
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E ∈ U such that for every (x1, x2) ∈ E we have (f(x1), f(x2)) ∈ F. We also mention here that a

family of functions

(fα : (X,U)→ (Y,V))α

is equi-uniformly continuous if for every F ∈ V there is a E ∈ U such that for all indices α and

all (x1, x2) ∈ E we have (fα(x1), fα(x2)) ∈ F.

Every uniform space comes with a notion of boundedness as given by the following definition.

Definition 2.1. A subset S of a uniform space (X, E) is bounded if for each entourage E there

is a finite set D ⊂ X and an integer n > 1 such that S ⊂ En[D].

2.1.1 Uniformities on a topological group

There are a number of ways to define a uniform structure on an abstract topological group

G. The left, right, two-sided, and Roelcke uniformities have fundamental systems given by,

respectively,

1. {(x, y) ∈ G×G | x−1y ∈W)}

2. {(x, y) ∈ G×G | xy−1 ∈W)}

3. {(x, y) ∈ G×G | x−1y ∈W and xy−1 ∈W}

4. {(x, y) ∈ G×G | y ∈WxW}

where W varies over symmetric neighborhoods of the identity in G. In general each of these

uniformities is distinct. In any case, they all induce the original topology on the underlying

topological group.
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As stated in the introduction, a subset of a Polish group is coarsely bounded if it is bounded

in any metric which is compatible with the topology and left-invariant, so it is important to

mention that on any Polish group there are always metrics with these properties. This is due

to the Birkhoff—Kakutani Theorem (8; 9), which states the equivalence of the following three

items for an arbitrary topological group G.

1. G is Hausdorff and first countable.

2. There is a metric on G which is compatible with the topology.

3. There is a metric on G which is compatible with the topology and which is left-invariant.

If G is a topological group and d is a metric on G as in part 3 of the Birkhoff-Kakutani

Theorem, then d is compatible with the left uniformity on G. Additionally, compatible metrics

for the other uniformities on G may be written in terms of d. Let

dr(x, y) = d(x
−1, y−1)

for all x, y ∈ G, then dr is a compatible metric for the right uniformity, and it follows that

d+ dr is a compatible metric for the two-sided uniformity. Let

dR(x, y) = inf
z∈G

d(x, z) + dr(z, y)

for all x, y ∈ G, then dR is a compatible metric for the Roelcke uniformity. In the special case

that G is Polish then the metric d+ dr is complete.
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2.1.2 Boundedness in a uniformity on a topological group

For each of the left, right, two-sided, and Roelcke uniformities on a topological group we

state a reformulation of when a subset of the uniformity is bounded.

Definition 2.2. Let G be a topological group and let S be a subset.

1. S is bounded in the left uniformity if for any open V 3 1 there is a finite set F and an

integer k > 1 such that S ⊂ FVk.

2. S is bounded in the right uniformity if for any open V 3 1 there is a finite set F and an

integer k > 1 such that S ⊂ VkF.

3. S is bounded in the two-sided uniformity if for any open V 3 1 there is a finite set F ⊂ G

and integer k > 1 so that for any s ∈ S there are x0 ∈ F, x1, . . . , xk−1 ∈ G and xk = s so

that xi+1 ∈ xiV and x−1i+1 ∈ x
−1
i V for all i.

4. S is bounded in the Roelcke uniformity if for any open V 3 1 there is a finite set F ⊂ G

and an integer k > 1 such that S ⊂ VkFVk.

See (10, Section 1.5) for a systematic study of the above concepts when the subset S is

the whole group G. It is straightforward to check that each of the above restatements of

boundedness coincides with the notion which comes from Definition 2.1.

2.2 Coarse structures

Coarse spaces are the large-scale analog to uniform spaces. The notion is due to J. Roe

(11). For a set X and subsets E, F ⊂ X× X, the subsets ∆, E ◦ F, and E−1 of X× X are as in the

previous section on uniform spaces.
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A coarse space is a set X along with a family E of subsets of X × X which satisfies the

following conditions.

1. ∆ ∈ E .

2. If E ∈ E and F ⊂ E, then F ∈ E .

3. If E, F ∈ E , then E ∪ F ∈ E .

4. If E, F ∈ E , then E ◦ F ∈ E .

5. If E ∈ E , then E−1 ∈ E .

Elements of E are, as with uniform spaces, called entourages and E is called a coarse structure

on X.

Also paralleling the situation from uniform spaces, whenever (X, d) is a metric space there

is an induced coarse structure Ed on X defined as follows. Again, for all α > 0, Eα is the subset

of X× X of all pairs (x, y) with d(x, y) < α and now take

Ed = {E ⊂ X× X | ∃α > 0 E ⊂ Eα}.

The coarse structure Ed is called the bounded coarse structure.

Suppose α,β : Z → X are functions from a set Z to a coarse space (X, E). We say α

and β are close if there is some E ∈ E so that (α(z), β(z)) ∈ E for all z ∈ Z. Now suppose

f : (X, E)→ (Y,F) is a function of coarse spaces. We say that f is bornologous if (f× f)[E ] ⊂ F ,

meaning (x1, x2) 7→ (f(x1), f(x2)) takes entourages in X to entourages in Y. A map f : X → Y
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of coarse spaces is a coarse equivalence if it is bornologous and there is a bornologous map

g : Y → X such that f ◦ g is close to idX and g ◦ f is close to idY .

Recall that a map f : (X, dX)→ (Y, dY) of metric spaces is a quasi-isometry when there are

constants A > 1, B > 0, and C > 0 so that the following two conditions hold:

1. For every x1, x2 ∈ X,

1

A
dX(x1, x2) − B 6 dY(f(x1), f(x2)) 6 A dX(x1, x2) + B.

2. For every y ∈ Y there is x ∈ X so that dY(y, f(x)) 6 C.

Every quasi-isometry is a coarse equivalence when the metric spaces involved are equipped with

their respective bounded coarse structures. Standard arguments show that coarse equivalence

of coarse spaces and quasi-isometric equivalence of metric spaces are equivalence relations.

2.2.1 Coarse structures on topological groups

If G is a group we say that a subset E ⊂ G × G is left-invariant if for all x, y, z ∈ G,

whenever (x, y) ∈ E we have (zx, zy) ∈ E. A coarse structure on a group is left-invariant if

every entourage is contained in a left-invariant entourage.

For a group G, a left-invariant subset E ⊂ G×G may be recovered from the set

AE = {x ∈ G | (1, x) ∈ E}
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by observing that E = {(x, y) ∈ G × G | x−1y ∈ AE}, and a subset A ⊂ G may be recovered

from the left-invariant set

EA = {(x, y) ∈ G×G | x−1y ∈ A}

by noting that A = {x ∈ G | (1, x) ∈ EA}.

Given a set X, an ideal on X is a nonempty subset of the powerset of X which is closed under

taking subsets and unions. The following proposition is (6, Proposition 2.12).

Proposition 2.3. Let G be a group. Then

E 7→ AE = {A | A ⊂ AE for some E ∈ E}

with inverse

A 7→ EA = {E | E ⊂ EA for some A ∈ A}

defines a bijection between the collection of left-invariant coarse structures E on G and the

collection of ideals A on G which contain {1}, are closed under inversion A 7→ A−1, and closed

under products (A,B) 7→ AB.

For a topological group G the group-compact coarse structure is the left-invariant coarse

structure on G which is identified with the ideal of precompact subsets. There are other coarse

structures which may be defined on an arbitrary topological group and are very much worth

considering.
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For an arbitrary topological group G the following ideals define left-invariant coarse struc-

tures.

V = {A ⊂ G | ∀V 3 1 open ∃k > 1 A ⊂ Vk}

F = {A ⊂ G | ∀V 3 1 open ∃k > 1 ∃F ⊂ G finite A ⊂ (FV)k}

Elements of V are sometimes called topologically bounded. In a connected topological group

G any nonempty open subset V must algebraically generate G, and so for any finite subset

F ⊂ G there is an integer k > 1 such that F ⊂ Vk. It follows that in every connected topological

group we have V = F .

A central observation in the general theory of coarse geometry of Polish groups is that in a

Polish group G the elements of F are exactly those subsets of G which are coarsely bounded,

i.e. they are bounded in any metric on G which is compatible and left-invariant.

A Polish group is locally bounded if it has a coarsely bounded identity neighborhood. When-

ever we say a function G → H of Polish groups is a coarse equivalence we mean it is a coarse

equivalence when G and H are equipped with the coarse structure coming from the coarsely

bounded subsets.

By a theorem of R. Struble (12), every locally compact, second countable group has a

compatible, left-invariant metric which is also proper, i.e. the bounded subsets are precompact.

A corresponding result holds in the setting of Polish groups. To be precise, every Polish group

which is algebraically generated by a coarsely bounded subset has a compatible, left-invariant
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metric which is also coarsely proper, i.e. the bounded subsets are coarsely bounded. Now,

suppose G is such a Polish group. By taking the closure of any coarsely bounded set we obtain

a closed, coarsely bounded set, and so G has a closed, coarsely bounded generating set. By

an application of the Baire Category theorem, any of the word metrics obtained from coarsely

bounded, closed generating sets are mutually quasi-isometric. Thus, we say the quasi-isometry

type of G is the quasi-isometry equivalence class of these metric spaces. The coarse structure

obtained from the quasi-isometry type is the same coarse structure obtained directly from

considering the coarse structure associated to the coarsely bounded subsets.

The choice to define coarse boundedness in terms of left-invariant metrics as opposed to

right-invariant metrics is nearly arbitrary. For a left-invariant metric d on a group, the formula

dr(x, y) = d(x−1, y−1) defines a right-invariant metric with the same bounded subsets. When

working within the general theory we are in the habit of working with left-invariant metrics. In

many examples, including the groups of homeomorphisms we intend to study here, the natural

metrics to work with are right-invariant.

Let us mention a few notable examples of Polish groups which fit into this theory. In a

discrete countable group a subset is coarsely bounded if and only if it is finite, and so the

quasi-isometry type of a finitely generated group coincides with its quasi-isometry type as a

Polish group. In a locally compact Polish group a subset is coarsely bounded if and only if it is

precompact, so the coarse structures inherent to the group when viewed as a locally compact

group and as a Polish group are one and the same. Examples which are not locally compact

include the underlying abelian group of any separable Banach space, wherein a subset is coarsely
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bounded if and only if it is norm bounded. We also mention the Polish groups Homeo0(M) of

isotopically trivial homeomorphisms of a compact manifold M. The fragmentation metric on

Homeo0(M) introduced by R. D. Edwards and R.C. Kirby (13) gives the same quasi-isometry

type of Homeo0(M) when it is viewed in Rosendal’s theory.

We will also consider the notion of a topological group being ultralocally bounded. Let U

be a subset of a group G. The set of U–admissible products is the smallest set of products such

that

1. if x ∈ U then the single factor product x is U–admissible,

2. if x1 · · · xn and y1 · · ·ym are U–admissible and x1 · · · xn ·y1 · · ·ym ∈ U, then also x1 · · · xn ·

y1 · · ·ym ∈ U is U-admissible.

Definition 2.4. A topological group G is ultralocally bounded if every identity neighborhood

U contains a further identity neighborhood V so that, for every identity neighborhood W there

is a finite set F and k > 1 for which every element v ∈ V can be written as a U-admissible

product v = x1 · · · xk with terms xi ∈ F ∪W.

2.3 Groups of homeomorphisms

The purpose of this section is to collect notation and background material on the transfor-

mation groups of I, S1 and R that will be needed.

2.3.1 Homeomorphisms of compact 1-manifolds

We identify I with the unit interval [0, 1] and S1 with the group of complex numbers with

unit norm. Let π : R → S1 be the covering map x 7→ e2πix. We use dS1 to denote the metric
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on S1 which is defined by taking the minimum distance between π−1(x) and π−1(y) in R for all

x, y ∈ S1. We use d∞ to denote both the metric defined by

d∞(f, g) = sup
x∈I

|f(x) − g(x)|

on Homeo+(I) and the metric defined by

d∞(f, g) = sup
x∈S1

dS1(f(x), g(x))

on Homeo+(S1). This allows us to treat the Polish groups Homeo+(I) and Homeo+(S1) with

some ambiguity because on either group d∞ denotes a right-invariant metric which induces the

standard Polish group topology.

For a compact connected 1–manifold M1 and for each integer k > 1 we use Diffk+(M
1) to

denote the Polish group of orientation preserving Ck-diffeomorphisms of M1. For each k we use

dCk to denote a compatible metric on Diffk+(M
1), namely the one defined by

dCk(f, g) = d∞(f, g) +

k∑
i=1

sup
x∈M1

∣∣∣f(i)(x) − g(i)(x)∣∣∣
for all f, g ∈ Diffk+(M

1).

A function f : J→ R whose domain is an interval is absolutely continuous if for every ε > 0

there is a δ > 0 such that for every finite sequence (a1, b1), . . . , (an, bn) of disjoint subintervals

of J, if
∑n
i=1(bi−ai) < δ then

∑n
i=1 |f(bi)−f(ai)| < ε. A function f : J→ R whose domain is an
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interval is locally absolutely continuous if the restriction of f to every compact subinterval of J is

absolutely continuous. For every homeomorphism f : S1 → S1 there is a unique homeomorphism

f̃ : R → R with f̃(0) ∈ [0, 1) and π ◦ f̃ = f ◦ π. A homeomorphism f : S1 → S1 is absolutely

continuous if f̃ is locally absolutely continuous. For M = I and M = S1 we let AC+(M) denote

the group of orientation-preserving homeomorphisms f :M→M such that both f and f−1 are

absolutely continuous.

Suppose J is a compact interval and f : J → R is continuous and nondecreasing. The

fundamental theorem of Lebesgue integration states that f is absolutely continuous if and only

if f has a derivative f ′ almost everywhere on J with respect to Lebesgue measure, f ′ ∈ L1(J),

and for all x ∈ J

f(x) = f(a) +

∫x
a

f ′(t) dt.

See, for instance, (14, Theorem 7.18).

We set

dAC(f, g) =

∫ 1
0

∣∣f ′(t) − g ′(t)∣∣ dt
for all f, g ∈ AC+(I). In the proof of (15, Lemma 2.4) S. Solecki shows dAC defines a right-

invariant metric on AC+(I) which induces a Polish group topology.

Lemma 2.5. On AC+(I) the metrics d∞ and dAC satisfy d∞ 6 dAC. Consequently, the

inclusion AC+(I)→ Homeo+(I) is continuous.
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Proof. Let f, g ∈ AC+(I) and let x ∈ I. Then

f(x) − g(x) =

∫x
0

f ′(t) − g ′(t) dt 6
∫x
0

|f ′(t) − g ′(t)| dt 6 dAC(f, g)

and likewise g(x) − f(x) 6 dAC(f, g). So d∞ 6 dAC on AC+(I). This says the inclusion

(AC+(I), dAC)→ (Homeo+(I), d∞) is a contraction mapping and so it is continuous.

Lemma 2.5 implies the metrics dAC and d∞ + dAC induce the same topology on AC+(I).

2.3.2 Commuting with integer translations

For each r ∈ R we let τr : R → R be translation x 7→ x + r. A homeomorphism f : R → R

commutes with integer translations if

f ◦ τn = τn ◦ f

for all n ∈ Z. The group of all homeomorphisms of R that commute with integer translations

is denoted HomeoZ(R). We fix a compatible metric d∞ defined by

d∞(f, g) = sup
x∈I

|f(x) − g(x)|

for all f, g ∈ HomeoZ(R). Equivalently, because x 7→ f(x) − g(x) defines a period 1 function

R→ R, the supremum in the definition of d∞ may be taken over all x ∈ R.
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The group HomeoZ(R) is the group of lifts of elements of Homeo+(S1) to homeomorphisms

of R, so there is a short exact sequence

1→ Z→ HomeoZ(R)→ Homeo+(S1)→ 1

of Polish groups. There is also a short exact sequence

1→ R→ HomeoZ(R)→ Homeo+(I)→ 1

which one arrives at by considering the inclusion R → HomeoZ(R), r 7→ τr and noting that

the isotropy subgroup of 0 in HomeoZ(R) is isomorphic to Homeo+(I) via the restriction map

f 7→ f|I. Although, we must come clean and confess that this is not a short exact sequence of

groups, but of the underlying Polish spaces. To be explicit, the map HomeoZ(R)→ Homeo+(I)

is defined by

f 7→ f ◦ τf−1(0)|I,

which is not a group homomorphism. Both Homeo+(S1) and Homeo+(I) are coarsely bounded

groups and so are coarsely trivial, and in both short exact sequences the inclusion is a coarse

equivalence. Thus, it seems that either one of these sequences may be seen as being responsible

for the quasi-isometry type of HomeoZ(R).

The Polish group HomeoZ(R) is an example of one which is not locally compact and which

has the quasi-isometry type of Z. We introduce another. Let ACloc
Z (R) denote the group of
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homeomorphisms f : R→ R such that f commutes with integer translations and both f and f−1

are locally absolutely continuous. We set

dAC(f, g) =

∫ 1
0

∣∣f ′(t) − g ′(t)∣∣ dt
for all f, g ∈ ACloc

Z (I). In other words, on ACloc
Z (R) the quantity dAC is given by the same

formula which defines the metric dAC on AC+(I). It is straightforward to check that dAC

defines a pseudometric on ACloc
Z (R). For f, g ∈ ACloc

Z (R) we have dAC(f, g) = 0 if and only if

f− g is a constant function, so dAC does not define a metric on ACloc
Z (R).

Proposition 2.6. On ACloc
Z (R) the pseudometric dAC is right-invariant and satisfies

dAC(τr ◦ f, τs ◦ g) = dAC(f, g)

for all r, s ∈ R and all f, g ∈ ACloc
Z (R).

Proof. For each f ∈ ACloc
Z (R) we have

f ′ = (τ1 ◦ f) ′ = (f ◦ τ1) ′ = f ′ ◦ τ1

so f ′ is periodic with period 1. From this it follows that the integrand |f ′(t)−g ′(t)| that appears

in the definition of dAC(f, g) is periodic in t with period 1 and so

dAC(f, g) =

∫b
a

|f ′(t) − g ′(t)| dt



22

for all f, g ∈ ACloc
Z (R) and all a, b ∈ R with b− a = 1. Now for any f, g, u ∈ ACloc

Z (R)

dAC(f ◦ u, g ◦ u) =
∫ 1
0

∣∣(f ◦ u) ′(t) − (g ◦ u) ′(t)
∣∣ dt

=

∫u(1)
u(0)

∣∣f ′(t) − g ′(t)∣∣dt
= dAC(f, g)

by integration by substitution and because u(1) − u(0) = 1, and so dAC is right-invariant.

For all r ∈ R and f ∈ ACloc
Z (R) we have (τr ◦ f) ′ = f ′ which implies the equality in the

proposition.

The sum of a right-invariant metric and right-invariant pseudometric is always a right-

invariant metric, so d∞ + dAC defines a right-invariant metric on ACloc
Z (R). We also set

dAC(f, g) =

∫ 1
0

∣∣∣f̃ ′(t) − g̃ ′(t)∣∣∣ dt
for all f, g ∈ AC+

(
S1
)

where f̃ and g̃ are the unique homeomorphisms R→ R defined in Section

2.3.1. Following similar reasoning, dAC defines a right-invariant pseudometric and d∞ + dAC

defines a right-invariant metric on AC+

(
S1
)
.

Later we prove that for both G = AC+

(
S1
)

and G = ACloc
Z (R) the metric d∞ + dAC is

compatible with a Polish group topology on G. In both cases the proof uses the fact that G is

a knit product. See Propositions 5.3 and 5.4.
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2.4 Deformation retracts

The precise definition of a deformation retract of a topological space has slight variations

from source to source. We fix our definitions here.

For a topological space X and a subspace A, a deformation retract of X onto A is a continuous

map H : I× X→ X such that

1. H(0, x) = x,

2. H(1, x) ∈ A, and

3. H(1, a) = a

for every x ∈ X and every a ∈ A. If also H(t, a) = a for every t ∈ I and all a ∈ A then H is

a strong deformation retract of X onto A. A space X is contractible if there is a deformation

retract I× X→ X onto a point in X.

If H : I × X → X is a deformation retract of a space X onto a subspace A we write Ht(x)

for H(t, x) so that Ht defines a continuous map X→ X for each t ∈ I. For each x ∈ X we write

φx,H(t) for Ht(x) so that φx,H defines a path I → X from x to H1(x) for each x ∈ X. For a

subset J ⊂ I and a subset Y ⊂ X we use both H[J× Y] and HJ[Y] to denote the image of J× Y

under H.

The author is unaware if the topological notions expressed by Definitions 2.7 and 2.8 exist

elsewhere. They are relevant to our study of large-scale geometry, so we make them here.
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Definition 2.7. A deformation retract H : I×X→ X of a space X is gradual at time t for t ∈ I

if for every open U ⊇ Ht[X] there is δ > 0 such that U ⊇ Hs[X] for all s ∈ I with |s− t| < δ. A

deformation retract is gradual if it is gradual for all times t ∈ I.

To explain the vocabulary in Definition 2.7, consider a nontrivial normed vector space X

over R and let R : I × X → X be the straight line deformation retract of X onto 0X defined by

R(t, x) = (1− t) ·x. For all t < 1 we have R(t, X) = X, so we imagine the deformation abruptly

collapsing X to a point at time 1, and indeed, R is gradual for all times t except t = 1.

Definition 2.8. A deformation retract H : I×X→ X of a space X onto a subspace A has local

restrictions if for every open U ⊇ A there is open V ⊇ A such that HI(V) ⊂ U.

In other words, a deformation of X onto A has local restrictions if for every open U ⊇ A

there is an open V ⊇ A so that paths starting in V stay inside U.

2.4.1 Deformations of Homeo+(I)

We fix notation for three deformations of the group Homeo+(I).
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For all t ∈ I and f ∈ Homeo+(I) let V, T , and A be the homeomorphisms of I defined by

V(t, f)(x) =(1− t) · f(x) + t · x

T (t, f)(x) =



x+ 1− t if x+ 1− t 6 f(x)

x− 1+ t if f(x) 6 x− 1+ t

f(x) if |f(x) − x| 6 1− t

A(t, f)(x) =


x if t = 1 or 1− t 6 x 6 1

(1− t) · f
(
x
1−t

)
if t 6= 1 and 0 6 x 6 1− t

for all x ∈ I.

We think of V as deforming the graph of a homeomorphism of I along vertical lines towards

the diagonal, the deformation T acts on graphs by truncating them along lines which are

parallel to the diagonal, and A is the Alexander homotopy, which scales the graph of a function

by progressively smaller values. Figure Figure 1 is an attempt to illustrate all this.

2.5 Knit products

A group G is a knit product (16), Zappa-Szép product (17; ?), or general product (18) of

subgroups H and K if H ∩ K = {1} and G = HK. This is equivalent to requiring that the group

operation G × G → G restricts to a bijection H × K → G. A semidirect product of groups is

then a knit product with the added requirement that one of the two factor subgroups is normal.
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t = 0

t = 0.75

t = 0.5

t = 0.25

t = 1

Figure 1: Three ways to deform a homeomorphism of the interval to the identity homeomor-
phism. From left to right, along a path corresponding to the deformation V, T , and A.
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2.5.1 External definition

As with the semidirect product there is both an internal and external definition for the knit

product.

One way to define an external knit product is as follows: Suppose H and K are any groups

and α : K×H→ H and β : K×H→ K are functions. On H× K define a binary operation by

(h1, k1)(h2, k2) = (h1α(k1, h2), β(k1, h2)k2)

for all h1, h2 ∈ H and all k1, k2 ∈ K. If (and only if) this operation makes H × K a group and

also makes the injections

H→ H× K, h 7→ (h, 1K)

and

K→ H× K, k 7→ (1H, k)

group homomorphisms, then the external knit product of H and K with respect to α and β is

H × K equipped with this operation. The identity element in the external product is (1H, 1K)

and the inverse of (h, k) is

(α(k−1, h−1), β(k−1, h−1))

for all h ∈ H and all k ∈ K. As is hopefully clear, the external product of H and K is an internal

product of the subgroups H× {1K} and {1H}×K, for otherwise this definition would not be very

meaningful.
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Given an internal knit product G of subgroups H and K there are functions α : K×H→ H

and β : K×H→ K which are uniquely determined by the equation

kh = α(k, h)β(k, h)

for all h ∈ H and k ∈ K. The binary operation defined above on H × K makes it the external

knit product with respect to α and β and makes the bijection H×K→ G, (h, k) 7→ hk a group

isomorphism. It follows that there is a natural correspondence between internal and external

knit products which is analogous to the correspondence which holds for semidirect products.

For a group G with subgroups H and K the subset HK of G is a subgroup if and only if

HK = KH, so in the definition of the knit product the two factor subgroups play a symmetric

role.

2.5.2 As transformation groups

For any set X we let Bij(X) denote the group of all bijections of X with composition as the

group operation. For any S, T ⊂ Bij(X) and Y ⊂ X we let

S ◦ T = {f ◦ g | f ∈ S, g ∈ T }

and

S[Y] = {f(x) | f ∈ S, x ∈ Y}.

So if X = H is a group then Bij(H) denotes the group of all bijections of the underlying set H.
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For a group H and an element h ∈ H we let λh : H→ H be left translation h 7→ hx, and we

let

ΛH = {λh | h ∈ H}

denote the subgroup of Bij(H) consisting of left translations.

Notation 2.9. Suppose H is a group and G 6 Bij(H) is a subgroup such that ΛH 6 G. We let

KG = {k ∈ G | k (1H) = 1H}

denote the isotropy subgroup of 1H in G. We let

Ω : H× KG → G

be the function (h, k) 7→ λh ◦ k.

The assumption ΛH 6 G in Notation 2.9 ensures that G is a knit product of ΛH and KG.

It is clear that ΛH ∩ KG is the trivial subgroup of G. To see G = ΛH ◦ KG note that any g ∈ G

may be decomposed

g = λg(1H) ◦
(
λ−1
g(1H) ◦ g

)

and the composition in parentheses is an element of KG. Similarly the assumption ΛH 6 G

ensures that Ω is a bijection.
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2.5.3 Topological groups which are knit products

Suppose G is a topological group which is a knit product of subgroups H and K, then the

group operation restricts to a continuous bijection H × K → G on the product space H × K.

The following is (6, Theorem A.3).

Theorem 2.10 (Rosendal). Suppose G is a Polish group which is a knit product of closed

subgroups H and K. Then the group operation is a homeomorphism H× K→ G.

Corollary 2.11. Suppose G is a Polish group which is a knit product of closed subgroups H

and K. Then S T = ST for any subsets S ⊂ H and T ⊂ K.

Proof. Let S ⊂ H and T ⊂ K. Continuity of the group operation H× K→ G implies S T ⊂ ST ,

and by Theorem 2.10 S T is a closed subset of G which contains ST , so ST ⊂ S T .

Corollary 2.12. Suppose H is a Polish group and G 6 Homeo(H) is a subgroup such that

ΛH 6 G. Let Ω : H× KG → G be the bijection from Notation 2.9. Suppose G is equipped with

a Polish group topology such that

1. H→ G,h 7→ λh is a topological embedding and

2. KG is closed.

Then Ω is a homeomorphism.

Proof. Let Φ : H×KG → ΛH×KG be (h, k) 7→ (λh, k) and let Ψ : ΛH×KG → G be composition

of functions.
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By assumption H → ΛH, h 7→ λh is a homeomorphism and so Φ is a homeomorphism as

well. By virtue of being Polish it follows that ΛH is a closed subgroup of G and so applying

Theorem 2.10 we get that Ψ is also a homeomorphism. As Ω = Ψ ◦ Φ this implies Ω is a

homeomorphism.

Without the topological assumptions in Corollary 2.12 it is possible to have a knit product

G 6 Homeo(H) and a Polish group topology on G for which Ω is not a homeomorphism. If H

is a group that supports multiple Polish group topologies then considering one topology on H

and another topology on G = ΛH provides a counterexample.

Proposition 2.13 is admittedly a bit wordy. What it does is describe a way to construct

a group topology on a knit product. Say we have a topological group H and a knit product

G 6 Homeo(H) for which the isotropy subgroup KG already has some known group topology.

This implies the existence of a product topology on G, and Proposition 2.13 reformulates when

this topology makes G a topological group. The proposition also happens to be a convenient

place to state a compatible metric on G when metrics are known on H and KG.

Proposition 2.13. Suppose H is a topological group and G 6 Homeo(H) is a subgroup such

that ΛH 6 G. Let Ω : H × KG → G be the bijection from Notation 2.9. Also suppose there

is a topology on KG which makes it a topological group. Then there is a unique topology on G

which makes Ω a homeomorphism. This topology makes G a topological group if and only if

evaluation

KG ×H→ H, (k, h) 7→ k(h)
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and the function

KG ×H→ KG, (k, h) 7→ λ−1
k(h) ◦ k ◦ λh

are continuous. If dH and dK are compatible metrics on H and KG, respectively, then d defined

by

d(f, g) = dH (f (1H) , g (1H)) + dK

(
λ−1
f(1H) ◦ f, λ

−1
g(1H) ◦ g

)

is a compatible metric on G.

Proof. The unique topology on G which makes Ω a homeomorphism is clearly the one obtained

by declaring U ⊂ G open if and only if Ω−1(U) ⊂ H× KG is open.

For all h ∈ H and all k ∈ KG let φ(k, h) = k(h) and let ψ(k, h) = λ−1
k(h) ◦ k ◦ λh. Let ⊗ be

the binary operation on H× KG defined by

(h1, k1)⊗ (h2, k2) = (h1φ(k1, h2), ψ(k1, h2) ◦ k2)

for all h1, h2 ∈ H and all k1, k2 ∈ KG. Then

Ω(h1, k1) ◦Ω(h2, k2) = λh1 ◦ k1 ◦ λh2 ◦ k2

= λh1k1(h2) ◦
(
λ−1
k1(h2)

◦ k1 ◦ λh2 ◦ k2
)

= Ω (h1φ(k1, h2), ψ(k1, h2) ◦ k2)

= Ω ((h1, k1)⊗ (h2, k2))
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for all h1, h2 ∈ H and all k1, k2 ∈ KG. This says Ω : (H × KG,⊗) → (G, ◦) is an operation-

preserving bijection and thus a group isomorphism. Indeed, (H × KG,⊗) is the external knit

product of H and KG with respect to φ and ψ.

The proposition states the equivalence between (1) and (3) among the following three equiv-

alent conditions.

1. G is a topological group with the topology from Ω.

2. (H× KG,⊗) is a topological group with the product topology.

3. The functions φ and ψ are continuous.

The equivalence between (1) and (2) is immediate because Ω is a group isomorphism and

a homeomorphism.

Suppose for a moment that H and K are some arbitrary topological groups and G = H× K

is an external knit product with respect to functions α : K×H → H and β : K×H → K. The

claim is that the product topology H × K makes G a topological group if and only if α and

β are continuous. For one direction, if α and β are continuous then the group operation and

inversion in G have continuous coordinate functions and so are continuous themselves. For the

reverse direction, if the group operation in G is continuous with respect to the product topology

H× K then

(k, h) 7→ (1H, k)(h, 1K) = (α(k, h), β(k, h))
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defines a continuous function K × H → H × K and so α and β are continuous. Now returning

to the setting of the current proposition, (H×KG,⊗) is the external knit product with respect

to φ and ψ so (2) and (3) are equivalent.

If dH and dK are compatible metrics on H and KG, respectively, then D defined

D((h1, k1), (h2, k2)) = dH(h1, h2) + dK(k1, k2)

for all h1, h2 ∈ H and all k1, k2 ∈ KG is a metric on H×K which is compatible with the product

topology. With d as in the proposition we have

D((h1, k1), (h2, k2)) = d(Ω(h1, k1),Ω(h2, k2))

so d is a metric on G and Ω : (H×KG, D)→ (G,d) is an isometry. Hence d is compatible with

the topology on G.

The product of two Polish spaces is a Polish space, and so in our applications of Proposition

2.13 once we know G is a topological group it is then obvious it is a Polish group.



CHAPTER 3

DEFORMATIONS AND BOUNDEDNESS

Throughout this chapter H : I×G→ G is an arbitrary deformation retract of a Polish group

G onto a subspace A, so A = H1[G]. The idea at play here is that if H is suitably well-behaved

then boundedness of A may be inherited upwards by supersets B ⊃ A.

3.1 Restrained deformations

We recall that a family of functions fα : X→ Y of uniform spaces is equi-uniformly continuous

if for every entourage F ⊂ Y× Y there is an entourage E ⊂ X×X such that for all indices α and

all (x1, x2) ∈ E we have (fα(x1), fα(x2)) ∈ F. The uniformity on I in the following definition is,

of course, the one induced by the standard Euclidean metric.

Definition 3.1. For a subset B ⊂ G, the deformation retract H : I× G → G is left-restrained

on B if the family

(φb,H)b∈B

of paths which start in B is equi-uniformly continuous with respect to the left uniformity on G.

A deformation retract of a topological group is left-restrained if it is left-restrained on the

whole group and locally left-restrained if there is an identity neighborhood on which it is left-

restrained.

35
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In more workable terms, H is left-restrained on B if for every identity neighborhood V ⊂ G

there is a δ > 0 so that

Ht(b) ∈ Hs(b) · V

for all b ∈ B and all s, t ∈ I with |s− t| < δ.

Proposition 3.2. Suppose the deformation retract H : I×G→ G of G onto A is left-restrained

on a subset B ⊂ G. Then for every identity neighborhood V ⊂ G there exists an integer k > 1

such that B ⊂ AVk. Consequently, if A is bounded in any one of the following ways, then so is

B.

1. bounded in the left uniformity

2. bounded in the Roelcke uniformity

3. coarsely bounded

Proof. Let V ⊂ G be an identity neighborhood, let δ > 0 be given by the assumption that H is

left-restrained on B, so

H(s, b)−1H(t, b) ∈ V

for all s, t ∈ I with |s− t| < δ and all b ∈ B. Let k be an integer with k > δ−1. For every b ∈ B,

H(1, b)−1b =

k∏
i=1

[
H
(
i

k
, b

)−1

H
(
i− 1

k
, b

)]
∈ Vk

and so

b ∈ H(1, b)Vk ⊂ AVk
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which implies B ⊂ AVk.

1. If A is bounded in the left uniformity then for every identity neighborhood V there is a

finite subset F ⊂ G and an integer j > 1 with A ⊂ FV j. By the above there is an integer

k > 1 with

B ⊂ FV jVk = FV j+k,

so B is also bounded in the left uniformity.

2. If A is bounded in the Roelcke uniformity then for every identity neighborhood V there

is a finite subset F ⊂ G and an integer j > 1 with A ⊂ V jFV j. By the above there is an

integer k > 1 with

B ⊂ V jFV jVk ⊂ V j+kFV j+k,

so B is bounded in the Roelcke uniformity.

3. If A is coarsely bounded then for every identity neighborhood V there is a finite subset

F ⊂ G which contains 1G and an integer j > 1 with A ⊂ (FV)j. By the above there is an

integer k > 1 with

B ⊂ (FV)jVk ⊂ (FV)j+k

so B is coarsely bounded.

This completes the proof.
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Proposition 1.1, which was stated in the introduction, is a straightforward application of

Proposition 3.2.(3) by taking A = {1} and then taking B to be either the whole group or taking

it to be an identity neighborhood.

We let

H∗ : I×G→ G

be the deformation retract of G defined by

H∗(t, g) = H(t, g−1)−1

for all t ∈ I and all g ∈ G.

Suppose B ⊂ G is a subset. We make the obvious right-handed version of Definition 3.1, H

is right-restrained on B if the family of paths which start in B is equi-uniformly continuous with

respect to the right uniformity on G. We only comment thatH is left-restrained on B if and only

if H∗ is right-restrained on B. So for anything we say about a deformation being left-restrained

there is a symmetric statement for some right-restrained deformation. The definitions for being

globally right-restrained and locally right-restrained are the same as in Definition 3.1, except

with “right” replacing “left.”

The ideas in this section are motivated from (10), where Rosendal uses a deformation of the

Polish group Homeo+(I) to show that the group is bounded in the two-sided uniformity. The

following definition isolates a property of the deformation that is used in that proof.
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Definition 3.3. The deformation retract H : I × G → G of G is two-sided-restrained if the

family of paths which start in G is equi-uniformly continuous with respect to the two-sided

uniformity on G.

This means that for every identity neighborhood V ⊂ G there is some δ > 0 so that

Ht(g) ∈ Hs(g) · V

and

Ht(g)−1 ∈ Hs(g)−1 · V

for all g ∈ G and all s, t ∈ I with |s− t| < δ.

Proposition 3.4. Suppose the deformation retract H : I × G → G of G onto A is two-sided-

restrained and A is finite. Then G is bounded in the two-sided uniformity.

Proof. Let V ⊂ G be an identity neighborhood, let δ > 0 be given by the assumption that H is

two-sided-restrained and let k be an integer with k > δ−1. Set

xi = H
(
i

k
, g

)

for all i = 0, . . . , k. For every g ∈ G we have xk ∈ A and

H
(
i

k
, g

)
∈ H

(
i+ 1

k
, g

)
· V
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and

H
(
i

k
, g

)−1

∈ H
(
i+ 1

k
, g

)−1

· V

so Definition 2.2.(3) is satisfied with G = S,A = F, and with the order of the indices of the xi

reversed, so i 7→ k− i.

Proposition 3.5. Suppose the deformation retract H : I × G → G of G onto A is locally

left-restrained, has local restrictions, and A is finite. Then G is ultralocally bounded.

Proof. Let U be an open set such that H is left-restrained on U and let V be an open set

with U ⊇ V ⊇ F and HI[V ] ⊂ U. Let U ′ 3 1G be an arbitrary identity neighborhood and set

V ′ = U ′ ∩ V. Then H is left-restrained on V ′ because it is a subset of U. Let W 3 1 be open,

let δ > 0 witness that H is left-restrained on V ′, and let k > δ−1 be an integer. For any v ∈ V ′,

v = H(1, v)
k∏
i=1

[
H
(
i

k
, v

)−1

H
(
i− 1

k
, v

)]

and so v can be written as a U ′–admissible product with k+ 1 terms in F ∪W.

3.1.1 Examples

See Section 2.4.1 for the definitions of the deformations V, T , and A of Homeo+(I).

Proposition 3.6. The deformation V is right-restrained on Homeo+(I) and restricts to a right-

restrained deformation of AC+(I).
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Proof. For any f ∈ Homeo+(I) and s, t ∈ I we have

d∞(Vt(f),Vs(f)) = |t− s| sup
x∈I

|f(x) − x| 6 |t− s|

and because the upper bound is independent of f this implies that the family of paths defined

by V is equi-uniformly continuous with respect to the metric d∞ on Homeo+(I). This metric

is right-invariant and so compatible with the right uniformity on Homeo+(I) and so V is right-

restrained.

For any f, g ∈ AC+(I) we have

dAC(f, g) 6
∫ 1
0

|f ′(t)| dt+

∫ 1
0

|g ′(t)| dt

=

∫ 1
0

f ′(t) dt+

∫ 1
0

g ′(t) dt

= 2

by the triangle inequality, the fact that f and g are increasing, and the fundamental theorem.

For any f ∈ AC+(I) and any s, t ∈ I

dAC(Vt(f),Vs(f)) = |t− s| ·
∫ 1
0

∣∣f ′(x) − 1∣∣
= |t− s| · dAC(f, id)

6 |t− s| · 2
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so the restriction of V to AC+(I) defines a deformation of AC+(I) which is right-restrained with

respect to the metric dAC. This metric is right-invariant on AC+(I) so the deformation we get

by restricting V to AC+(I) is right-restrained.

f1 f2 f3 f4

· · ·

Figure 2: The family of homeomorphisms that appear in the proof of Proposition 3.7.

Proposition 3.7. The deformation T is two-sided-restrained on Homeo+(I) but the restriction

to a deformation of AC+(I) is neither left-restrained nor right-restrained.

Proof. For any f ∈ Homeo+(I) and any s, t ∈ I we have

d∞(T s(f), T t(f)) 6 |t− s|.

To see this, recall that T acts on graphs by truncating them along the lines y = x + s and

y = x − s for s ∈ I, and so the graphs of T s(f) and T t(f) are equal except possibly between

the lines y = x + s and y = x + t or between the lines y = x − s and y = x − t, and thus
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the greatest vertical and horizontal distances between these graphs, i.e. d∞(T s(f), T t(f)) and

d∞(T s(f)−1, T t(f)−1), are bounded by |t− s|. These bounds, together with the fact that d∞ is

right-invariant, imply that T is two-sided restrained.

We find a family of homeomorphisms (fn : I → I)n∈N which are elements of AC+(I) and

so that d∞(fn, id) → 0 as n → ∞ and dAC(fn, id) > 1/2 for all n. We have T t(f) = f for

all t ∈ I and f ∈ Homeo+(I) with d∞(f, id) 6 t, so the existence of such a family means that

for any time t which is arbitrarily close to 1 there are always some fn which, by time t, have

not yet been moved by the deformation T , and so these fn are still at least dAC–distance 1/2

from the identity. As dAC is right-invariant, this says that the restriction of T to a deformation

of AC+(I) is not right-restrained. By symmetry over the diagonal, it is easy to modify the

argument to show the deformation is also not left-restrained.

We use the Alexander homotopy A of Homeo+(I) to define the family (fn), although the

reader may prefer to just look at Figure Figure 2. Let

f1(x) =


x
2 if x 6 2

3

2x− 1 if 23 6 x

and for all n > 2 let fn be the function defined by

fn(x) = A
(
1−

1

n
, f1

)(
x−

i− 1

n

)
+
i− 1

n
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for x in the interval
[
i−1
n ,

i
n

]
for all integers i with 0 < i 6 n. So fn is the function that repeats

a scaled copy of f1 along the diagonal n times. Then d∞(fn, id) 6 1/n and f ′n(x) > 1/2 for

almost every x ∈ I so dAC(fn, id) > 1/2 as required.

Taken together, Propositions 3.6 and 3.7 indicate a somewhat complicated situation. Offhand-

edly, they say that V is half as good on both Homeo+(I) and AC+(I) as T is on Homeo+(I),

but T is not good at all on AC+(I).

Question 3.8. Is AC+(I) bounded in the two-sided uniformity? If so, can this be witnessed

by some two-sided restrained deformation?

By a result of M. Cohen (19), for any compact connected 1–manifold M1 and any integer

k > 1, the Polish group Diffk+(M
1) has a nontrivial quasi-isometry type. This means that

the restriction of V to a deformation of Diffk+(I) cannot possibly be left-restrained or right-

restrained, as by Proposition 1.1 this would imply the group is quasi-isometrically trivial. We

prove that in the case k = 1 the deformation is locally right-restrained. Things are more

complicated here because the natural metric to use on Diff1+(I) is not right-invariant, as was

the case with the previous Polish groups Homeo+(I) and AC+(I).

Lemma 3.9. The inequalities

dC1(f ◦ h, g ◦ h) 6 dC1(f, g) ·
∥∥h ′∥∥∞
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and

dC1(f ◦ g−1, id) 6 dC1(f, g) ·
∥∥∥∥ 1g ′

∥∥∥∥∞
hold for all f, g, h ∈ Diff1+(I).

Proof. The first inequality is by the chain rule and right-invariance of d∞. The second inequality

is by making the substitution h 7→ g−1 in the first inequality, and then applying the formula

(
g−1
) ′

=
1

g ′
◦ g−1

and right-invariance once again.

Proposition 3.10. The deformation V restricts to a locally right-restrained deformation of

Diff1+(I).

Proof. Let B be any subset of Diff1+(I) such that

sup
f∈B

sup
x∈I

| log f ′(x)| <∞.
We claim that V restricts to a deformation of Diff1+(I) which is right-restrained on B.
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Note that

dC1 (Vs(f),Vt(f)) = ‖ Vs(f) ′ − Vt(f) ′‖∞
= sup

x∈I
|(1− s)f ′(x) + s− (1− t)f ′(x) − t|

= sup
x∈I

|(t− s)f ′(x) − t+ s|

6 |t− s| · sup
x∈I

∣∣f ′(x)∣∣+ |t− s|

= |t− s| ·
(
‖f ′‖∞ + 1

)

and ∥∥∥∥ 1

Vt(f) ′

∥∥∥∥∞ =

∥∥∥∥ 1

(1− t) · f ′ + t

∥∥∥∥∞
for all s, t ∈ I and f ∈ Diff1+(I).

Combining the above with the second inequality of Lemma 3.9 we have

dC1(Vs(f) ◦ Vt(f)−1, id) 6 dC1 (Vs(f),Vt(f)) ·
∥∥∥∥ 1

Vt(f) ′

∥∥∥∥∞
6 |t− s| ·

(
‖f ′‖∞ + 1

)
·
∥∥∥∥ 1

(1− t) · f ′ + t

∥∥∥∥∞
for all s, t ∈ I and all f ∈ Diff1+(I).

By assumption

sup
f∈B

sup
x∈I

| log f ′(x)| <∞
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for all f ∈ B. It follows there is a real number j > 0 so that

sup
x∈I

|f ′(x)| < j

and

sup
x∈I

|
(
f−1
) ′

(x)| < j

for all f ∈ B. So we have

dC1

(
Vs(f) ◦ Vt(f)−1, id

)
6 (|t− s| · j+ |t− s|) · j · (1+ j)

= |t− s| · (j+ 2j2 + j3)

for all f ∈ B. The upper bound does not depend on f, and so it follows that V is right-restrained

on B.

It suffices to find such a B that is an identity neighborhood. For instance,

B =

{
f
∣∣ sup

x
| log f ′(x)| < 1

}

works fine.

By Proposition 1.1 these examples show that Homeo+(I) and AC+(I) are coarsely bounded

groups and Diff1+(I) is generated by a coarsely bounded subset. The fact that AC+(I) is coarsely

bounded is new and is the first part of Theorem 1.3. We also point out that on each of these
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groups V defines a deformation which has local restrictions (see Definition 2.8), so by a right-

handed version of Proposition 3.5 each of these groups is ultralocally bounded.

3.2 Conjugate moments

By Dn we mean the compact ball of topological dimension n. In the proof that the Polish

group Homeo+ (Dn) is coarsely bounded that appears in (20), Rosendal and K. Mann make use

of the Alexander homotopy on the group. We extract from that proof the following definition.

Definition 3.11. The deformation retract H : I×G→ G has conjugate moments if there is a

function

ϕ : (0, 1)2 → G

with

lim
x→(0,0)

ϕ(x) = 1G

and

Hs(G)ϕ(s,t) ⊂ Ht(G)

for all s, t ∈ (0, 1).

Proposition 3.12. Suppose the deformation retract H : I × G → G contracts G onto 1G, is

gradual at 1, and has conjugate moments. Then for every symmetric open V 3 1G there exists

a finite subset F ⊂ G such that (FV)4 = G. In particular, G is coarsely bounded.

Proof. Fix a left-invariant metric d on G and let Bε denote the open d–ball of radius ε about

1G for all ε > 0.
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Let V be any symmetric neighborhood of 1G. Let ε0 ∈ (0, 1) satisfy Bε0 ⊂ V. As H is

gradual at 1 we choose ε1 ∈ (0, 1) with H[1−ε1,1](G) ⊂ V. Let ϕ : (0, 1)2 → G witness that H

has conjugate moments and let ε2 ∈ (0, 1) satisfy (0, ε2)
2 ⊂ ϕ−1(V). Set ε = min{ε0, ε1, ε2}

and set

F =
{
1G, ϕ(ε, 1− ε), ϕ(ε, 1− ε)

−1
}
.

We claim (FV)4 = G. Let g ∈ G be arbitary. By continuity of H we choose t ∈ (0, ε) with

g ∈ Ht(g) · Bε.

We have (
Ht(G)ϕ(t,ε)

)ϕ(ε,1−ε)
⊂ H1−ε(G) ⊂ V

so

ϕ(ε, 1− ε) ·ϕ(t, ε) · Ht(g) ·ϕ(t, ε)−1 ·ϕ(ε, 1− ε)−1 ∈ V

and then

Ht(g) ∈ V ·ϕ(ε, 1− ε)−1 · V ·ϕ(ε, 1− ε) · V.

Combining this gives

g ∈ Ht(g) · Bε ⊂ V ·ϕ(ε, 1− ε)−1 · V ·ϕ(ε, 1− ε) · V2
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and so g ∈ (FV)4 which proves the claim. The claim immediately implies G is coarsely bounded.

Take G = Homeo+(I). We record the details that Proposition 3.12 applies with H = A. It

is clear that

At(G) = {f ∈ G | f is supported on [0, 1− t]}

and so

d∞ (At(f),At(g)) 6 (1− t) · d∞(f, g)

for all t ∈ I and all f, g ∈ G. This implies A is gradual at 1. For all s, t ∈ (0, 1) let ϕs,t : I→ I

be the element of G which is defined

ϕs,t(x) =


1−t
1−s · x if x ∈ [0, 1− s]

t
s · x+

s−t
s if x ∈ [1− s, 1]

for all x ∈ I. We have

d∞(ϕs,t, id) = |s− t|

so

lim
x→(0,0)

ϕ(x) = id

and ϕs,t satisfies

As(g)ϕs,t = At(g)
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for all g ∈ G. This implies A has conjugate moments.

Also

dAC(At(f),At(g)) = (1− t) · dAC(f, g)

and

dAC(ϕs,t, id) = 2 · |s− t|

for all s, t ∈ (0, 1) so A restricts to a deformation of AC+(I) which is gradual at 1 and has

conjugate moments.



CHAPTER 4

GEOMETRY OF KNIT PRODUCTS

The theory in this chapter is organized around Lemma 4.1. The lemma says that certain

word metrics on the factor subgroups of a knit product imply the existence of a word metric

on the product itself, and further, the lemma gives a condition which implies that the factor

subgroups are isometrically embedded. Theorem 1.2 then brings this observation to the con-

text of an abstract Polish group which is a knit product of closed subgroups. Even with the

assumption that one of the two factor subgroups is coarsely trivial we are still able to use this

result to “compute” the quasi-isometry type of a number of interesting Polish groups. Many

of these examples arise as transformation groups as in Section 2.5.3, and so we also prove a

corollary to Theorem 1.2 which is suited to this setting.

4.1 General results

For a group G generated by a subset S we recall the left-invariant word metric ρS defined

by

ρS(x, y) = min

{
k > 0 | x−1y ∈

(
S ∪ S−1

)k}

for all x, y ∈ G.

52
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Lemma 4.1. Suppose G is a knit product of subgroups H and K. Also suppose H is generated

by a symmetric subset S ⊂ H and K is generated by a symmetric subset T ⊂ K with 1 ∈ S ∩ T

and ST = TS. Then the word metric ρST is defined on G and

ρST (hk, 1) = max {ρS(h, 1), ρT (k, 1)}

for all h ∈ H and k ∈ K. Consequently, the inclusions of the two factor subgroups (H, ρS) →
(G, ρST ) and (K, ρT )→ (G, ρST ) are isometric embeddings.

Proof. For any integer n > 0 we have SnTn = (ST)n by repeatedly applying the assumption

ST = TS.

Let h ∈ H and k ∈ K and set M = max{ρS(h, 1), ρT (k, 1)}. Because 1 ∈ S ∩ T we have

hk ∈ SMTM = (ST)M so ρST is defined on G and ρST (hk, 1) 6 M. If n > 0 is an integer with

ρST (hk, 1) 6 n then hk ∈ (ST)n = SnTn so there exists s1, . . . , sn ∈ S and t1, . . . , tn ∈ T with

hk = s1 · · · snt1 · · · tn

and because the group opertion H×K→ G is injective this implies h = s1 · · · sn and k = t1 · · · tn,

so ρS(h, 1) 6 n and ρT (k, 1) 6 n. This holds for any n > 0 so ρST (hk, 1) > ρS(h, 1) and

ρST (hk, 1) > ρT (k, 1), and hence ρST (hk, 1) >M. This proves the equality in the lemma.

Now

ρST (h
−1
1 h2, 1) = max

{
ρS(h

−1
1 h2, 1), ρT (1, 1)

}
= ρS(h

−1
1 h2, 1)
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for all h1, h2 ∈ H. By left invariance it follows that the inclusion (H, ρS) → (G, ρST ) is an

isometric embedding. Similarly (K, ρT )→ (G, ρST ) is an isometric embedding.

We restate and prove Theorem 1.2 from the introduction.

Theorem 4.2. Suppose G is a Polish group which is a knit product of closed subgroups H

and K. Also suppose H is generated by a subset S ⊂ H which is coarsely bounded in H, K is

a coarsely bounded group when equipped with the subspace topology, and SK = KS. Then the

inclusion H→ G is a quasi-isometry of Polish groups.

Proof. Set S = S ∪ {1} ∪ S−1. As K = K−1 and SK = KS we have

S−1K = (KS)−1 = (SK)−1 = KS−1

and

SK = SK ∪ K ∪ S−1K = KS ∪ K ∪ KS−1 = KS

so by Corollary 2.11

SK = SK = KS = KS

because S and K are closed. Now by Lemma 4.1 the inclusion (H, ρS)→ (G, ρSK) is an isometric

embedding.

For every g ∈ G there is h ∈ H and k ∈ K with g = hk, and by left invariance

ρSK(g, h) = ρSK(k, 1) 6 1
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so the inclusion (H, ρS)→ (G, ρSK) is a quasi-isometry of metric spaces.

As S is a symmetric generating set for H which is closed and coarsely bounded in H the

quasi-isometry type of H is that of (H, ρS). It remains to show that the quasi-isometry type

of G is that of (G, ρSK). We know SK = SK is a generating set for G which is closed, so we

must show SK is coarsely bounded in G. Let d be a compatible, left-invariant metric on G.

Then d restricts to a compatible, left-invariant metric on both H and K. The subsets S and

K are coarsely bounded in H and K, respectively, so these subsets are bounded in d. By left

invariance and the triangle inequality it follows that SK is bounded in d, and thus SK is coarsely

bounded in G. This means the quasi-isometry type of G is that of (G, ρSK) as required to make

the inclusion H→ G a quasi-isometry of Polish groups.

Corollary 4.3. Suppose H is a Polish group and G 6 Homeo(H) is a subgroup such that

ΛH 6 G. Let KG 6 G be the isotropy subgroup from Notation 2.9. Suppose G is equipped with

a Polish group topology which satisfies the assumptions of Corollary 2.12. Also suppose H is

generated by a subset S ⊂ H which is coarsely bounded in H, KG is a coarsely bounded group when

equipped with the subspace topology, KG[S] ⊂ S, and KG
[
S−1
]
⊂ S−1. Then H → G,h 7→ λh is

a quasi-isometry of Polish groups.

Proof. First note that for all h ∈ H and k ∈ KG

k ◦ λh = λk(h) ◦
(
λ−1
k(h) ◦ k ◦ λh

)
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and

λh ◦ k =
(
λh ◦ k ◦ λk−1(h−1)

)
◦ λ−1

k−1(h−1)

and in both equations the composition in parentheses is an element of KG.

Set ΛS = {λs|s ∈ S}. By assumption k(s) ∈ S and k−1(s−1) ∈ S−1 for every s ∈ S and

k ∈ KG, so the first equation above implies KG ◦ΛS ⊂ ΛS ◦KG and the second equation implies

ΛS ◦ KG ⊂ KG ◦ΛS, and thus ΛS ◦ KG = KG ◦ΛS.

By Theorem 4.2 with ΛS in place of S it follows that the inclusion ΛH → G is a quasi-

isometry of Polish groups. As H → ΛH, h 7→ λh is an isomorphism of Polish groups it is a

quasi-isometry of Polish groups, and so Corollary 4.3 follows by composing the quasi-isometry

H→ ΛH with the quasi-isometry ΛH → G.

We should mention what is known outside of the case that one of the two factor subgroups

is generated by a coarsely bounded subset. In the time since the above results were established,

Rosendal has shown the following as (6, Theorem A.12). Suppose G is a Polish group which is

a knit product of closed subgroups H and K. Let πH : G→ H and πK : G→ K be the functions

determined by the equation g = πH(g)πK(g) for all g ∈ G.

Theorem 4.4 (Rosendal). Suppose H is locally bounded. Then the bijection H × K → G is a

coarse equivalence if and only if πH[X
K] is coarsely bounded in H and πK[X

K] is coarsely bounded

in K for every coarsely bounded subset X ⊂ H.

Given a knit product G of H and K we have bijections H× K→ G and K×H→ G defined

by the group operation. The asymmetry between the two factor subgroups in Theorem 4.4 is
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a reflection of the observation that requiring H× K → G to be a coarse equivalence is not the

same as requiring that of K×H→ G.

4.2 Examples

By definition a semidirect product of groups is a knit product where at least one of the two

factor subgroups is normal. If G is a semidirect product of subgroups H and K with K normal

then SK = KS for every subset S ⊂ H and so the condition relating S and K in Theorem 1.2 is

satisfied with no extra verification. In this case the theorem simplifies to the following.

Example 4.5. Suppose G is a Polish group which is a semidirect product of closed subgroups

H and K with K normal. If K is coarsely bounded and H is generated by a coarsely bounded

subset then the inclusion H→ G is a quasi-isometry.

Isometry groups of left-invariant metrics provide another class of examples where Theorem

1.2 applies.

Example 4.6. Let H be a locally compact Polish group that admits a compatible, complete,

proper, left-invariant metric d whose closed unit ball B generates H and let G = Isom(H,d) be

the isometry group with the topology of pointwise convergence. Because H is locally compact

the isotropy subgroup KG is compact. Applying Corollary 4.3 with S = B we conclude that

H→ G,h 7→ λh is a quasi-isometry. The condition relating S and KG in the corollary is satisfied

by left-invariance: For every h ∈ H and k ∈ KG

d(k(h), 1H) = d(k(h), k (1H)) = d(h, 1H)
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which implies KG[S] ⊂ S, and since S = S−1 this also says KG[S
−1] ⊂ S−1.

So for instance we can take H to be a finitely generated group and G = Isom(H, ρS) for any

finite generating set S ⊂ H.

The idea for Theorem 1.2 was primarily motivated by studying the large-scale geometry of

HomeoZ(R), so we record this group as a special example.

Figure 3: The graph of an element of HomeoZ(R) which fixes 0.

Example 4.7. To apply Corollary 4.3 with G = HomeoZ(R) we need a compact generating

set S for H = R so that KG[S] ⊂ S. Note that any element of HomeoZ(R) which fixes 0 must

also fix every integer (as in Figure Figure 3), and so taking S = I is sufficient. We remind
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the reader that the isotropy subgroup KG is isomorphic to Homeo+(I) and so it is a coarsely

bounded group. It follows that R→ HomeoZ(R), r 7→ τr is a quasi-isometry.

So HomeoZ(R) is a knit product of the group R, which is locally compact but geometrically

nontrivial, and the group Homeo+(I) which is geometrically trivial but not locally compact.

Thus, we think of the geometry and topology of the two factor subgroups as in a balancing

act: One factor subgroup has an interesting geometry while the other factor subgroup has an

interesting topology.

By Cohen’s result, for k = 1 the Polish group Diffk+
(
S1
)

is quasi-isometric to the Banach

space C[I] of continuous functions I→ R. Although not the method used in (19), one way to see

this is by noting that G = Diffk+
(
S1
)

is a knit product of S1 and the isotropy subgroup KG. In

this case KG is isomorphic to the closed subgroup of Diffk+(I) of diffeomorphisms f : I→ I such

that f ′(0) = f ′(1). It is possible to first show KG is quasi-isometric to C[I] and then use Theorem

1.2 to conclude that the inclusion KG → G is a quasi-isometry. Contrasting with Example 4.7,

in this case G is a knit product of one group which is locally compact and geometrically trivial

and another group which is neither locally compact nor geometrically trivial.

Example 4.8. Let T be the countably infinite regular tree, so T is isomorphic to the Cayley

graph of the free group F∞ on a countably infinite set of generators. We can view the group

Aut(T) as a subgroup of the homeomorphism group of the countable discrete group F∞. It

follows that Aut(T) is a knit product of F∞ and the isotropy subgroup of Aut(T). The latter

group is coarsely bounded as a consequence of (21, Theorem 6.31(ii)) and so by the main result

of this chapter Aut(T) is quasi-isometric to T.



CHAPTER 5

EXAMPLE: ABSOLUTE CONTINUITY

This chapter contains the details needed to finish the proof of Theorem 1.3, so recall the

theorem states that AC+(I) and AC+(S1) are coarsely bounded groups and ACloc
Z (Z) is quasi-

isometric to the infinite cyclic group. We have already shown AC+(I) is coarsely bounded by

exhibiting a right-restrained deformation retract of AC+(I) onto its trivial subgroup. As for

AC+(S1) and ACloc
Z (Z), we have yet to even verify that the topologies defined on these groups

in Section 2.3.2 are group topologies.

In both the case G = AC+(S1) and G = ACloc
Z (Z) the group G is a knit product of two

groups which are already known to have group topologies. In both cases we apply Proposition

2.13 to show that the topology induced on G by the knit product structure is a Polish group

topology, and further, that the right-invariant metric d∞ + dAC defined in Section 2.3.2 on

either group induces the same topology.

We set

K∗ =
{
k ∈ ACloc

Z (R) | k(0) = 0
}

and note that k 7→ k|I defines an isomorphism of groups K∗ → AC+(I) which preserves dAC.

As dAC is a right-invariant metric on AC+(I) which induces a Polish group topology it follows

that dAC is also a right-invariant metric on K∗ which induces a Polish group topology, and the

Polish groups K∗ and AC+(I) are isomorphic.
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Lemma 5.1. The evaluation

K∗ × R→ R, (k, r) 7→ k(r)

is continuous.

Proof. Let

K∞ = {k ∈ HomeoZ(R) | k(0) = 0} ,

let

Φ : K∗ × R→ K∞ × R

be the inclusion, and let

Ψ : K∞ × R→ R

be evaluation. By Lemma 2.5 inclusion AC+(I) → Homeo+(I) is continuous so also Φ is

continuous, and by Proposition 2.13 (with H = R and G = HomeoZ(R)) Ψ is continuous.

Evaluation K∗ ×H→ H is the composition Ψ ◦Φ, and so it is continuous.

Lemma 5.2. The function

K∗ × R→ K∗, (k, r) 7→ τ−1
k(r) ◦ k ◦ τr

is continuous.
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Proof. For all r ∈ R and k ∈ K∗ let ψ(k, r) = τ−1
k(r) ◦ k ◦ τr. Now fix (k, r) ∈ K∗ × R and let

ε > 0 be given. For any compact interval J the collection of continuous functions C(J) is a dense

subset of L1(J), so there exists some continuous function γ : [−ε, 1+ ε]→ R with

∫ 1+ε
−ε

|k ′(t) − γ(t)| dt <
ε

4

and by uniform continuity of γ there exists some δ > 0 so that

|γ(x) − γ(y)| <
ε

4

for all x, y ∈ R with |x−y| < δ. Using the properties of dAC from Proposition 2.6, for all s ∈ R

and l ∈ K∗

dAC (ψ(k, r), ψ(l, s)) = dAC(k, l ◦ τs−r)
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and if dAC(k, l) + |r− s| < min{δ, ε/4} then

dAC(k, l ◦ τs−r) 6
∫ 1
0

|k ′(t) − γ(t)| dt

+

∫ 1
0

|γ(t) − γ(t+ s− r)| dt

+

∫ 1
0

|γ(t+ s− r) − k ′(t+ s− r)| dt

+

∫ 1
0

|k ′(t+ s− r) − l ′(t+ s− r)| dt

< ε

so ψ is continuous at (k, r). Because the argument given works for an arbitrary point (k, r) ∈

K∗ × R it follows that ψ is continuous on K∗ × R.

Proposition 5.3. Set H = R and G = ACloc
Z (R) and let Ω : H×KG → G be the bijection from

Notation 2.9. Then the unique topology on G which makes Ω a homeomorphism also makes G

a Polish group, and the metric d∞ + dAC is compatible with this topology.

Proof. In the present notation K∗ = KG. Evaluation KG ×H→ H and the function

KG ×H→ KG, (k, h) 7→ λ−1
k(h) ◦ k ◦ λh

are continuous by Lemmas 5.1 and 5.2. Now Proposition 2.13 applies and so the topology that

makes Ω a homeomorphism also makes G a Polish group. A compatible metric d on G is given

by

d(f, g) = |f(0) − g(0)|+ dAC

(
τ−1
f(0) ◦ f, τ

−1
g(0) ◦ g

)
= |f(0) − g(0)|+ d∗(f, g)
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for all f, g ∈ G.

For all f, g ∈ G

d(f, g) = |f(0) − g(0)|+ dAC(f, g) 6 d∞(f, g) + dAC(f, g)

and

d∞(f, g) 6|f(0) − g(0)|+ d∞ (τ−1f(0) ◦ f, τ−1g(0) ◦ g)
6|f(0) − g(0)|+ dAC

(
τ−1
f(0) ◦ f, τ

−1
g(0) ◦ g

)
=|f(0) − g(0)|+ dAC(f, g)

so d∞(f, g) + dAC(f, g) 6 2 d(f, g). This implies d and d∞ + dAC induce the same topology on

G.

For what remains, let

T = {τr | r ∈ R}

be the subgroup of ACloc
Z (R) consisting of real translations.

As an aside we note that the topology induced by the pseudometric dAC on ACloc
Z (R) is not

a group topology. To see this, for k ∈ K∗ consider the cosets T ◦ k and k ◦ T. By Proposition

2.6 the right coset T ◦ k has dAC–diameter 0. On the other hand, if k ◦ T has dAC–diameter

0 then the fundamental theorem of Lebesgue integration implies the homeomorphism k is also

a homomorphism of (R,+), and so k must be the identity R → R. This says k ◦ T has
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dAC–diameter 0 if and only if k is the identity. From this it follows that inversion in ACloc
Z (R)

exchanges subsets with d∗–diameter 0 and subsets with positive dAC–diameter, and so inversion

is not a homeomorphism with the topology induced by dAC.

We set

K◦ =
{
k ∈ AC+

(
S1
)

| k(1) = 1
}

and note that k 7→ k̃|I defines an isomorphism of groups K◦ → AC+(I) which preserves dAC. It

follows that dAC is a right-invariant metric on K◦ which induces a Polish group topology, and

the Polish groups K◦ and AC+(I) are isomorphic. In Proposition 5.4 we extend the topology

on K◦ to a Polish group topology on AC+

(
S1
)
. Alternatively, one may define the same Polish

group topology on AC+

(
S1
)

by identifying this group with the quotient of ACloc
Z (R) by the

closed normal subgroup consisting of integer translations.

Proposition 5.4. Set H = S1 and G = AC+

(
S1
)

and let Ω : H×KG → G be the bijection from

Notation 2.9. Then the unique topology on G which makes Ω a homeomorphism also makes G

a Polish group, and the metric d∞ + dAC is compatible with this topology.

Proof. In the present notation K◦ = KG. Let

K∞ =
{
k ∈ Homeo+

(
S1
)

| k(1) = 1
}

let

Φ : KG ×H→ K∞ ×H
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be the inclusion, and let

Ψ : K∞ ×H→ H

be evaluation. Lemma 2.5 implies that the inclusion KG → K∞ is continuous so also Φ is

continuous, and by Proposition 2.13 (with H = S and G = Homeo+
(
S1
)
) Ψ is continuous.

Evaluation KG × H → H is the composition Ψ ◦ Φ, and so it is continuous. The function in

Lemma 5.2 is continuous and descends to a continuous function K∗ × S1 → K∗, so

KG ×H→ KG, (k, r) 7→ λ−1
k(r) ◦ k ◦ λr

is continuous. By Proposition 2.13 the topology that makes Ω a homeomorphism also makes

G a Polish group. A compatible metric d on G is given by

d(f, g) = dS1(f(1), g(1)) + dAC (f, g)

for all f, g ∈ G.

The argument that d and d∞ + dAC induce the same topology on G works similarly as in

the proof of Proposition 5.3.

The application of Corollary 4.3 with G = ACloc
Z (I) is basically the same as with G =

HomeoZ(R) of Example 4.7. With G = ACloc
Z (R) the isotropy subgroup KG is isomorphic to

the coarsely bounded group AC+(I) so R→ ACloc
Z (R), r 7→ τr is a quasi-isometry. By applying

the corollary with G = AC+(S1) we get a quasi-isometry S1 → AC+(S1). As S1 is compact it
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is coarsely bounded and so AC+(S1) is coarsely bounded as well. Thus we have completed the

proof of Theorem 1.3.

In the general theory of (6), if G is a Polish group which is generated by a coarsely bounded

subset then there is always a metric on G which is simultaneously compatible with the topology,

right-invariant, and realizes the quasi-isometry type of G. In closing we complete the proof that

d∞ + dAC is such a metric on ACloc
Z (R).

Proposition 5.5. The metric d∞ +dAC on ACloc
Z (R) is a representative of the quasi-isometry

type of ACloc
Z (R).

Proof. For all r, s ∈ R

d∞(τr, τs) + dAC(τr, τs) = |r− s|

so r 7→ τr defines an isometric embedding of R with its standard metric into ACloc
Z (R) with

the metric d∞ + dAC. As ACloc
Z (R) = T ◦ K∗ and K∗ is bounded in d∞ + dAC it follows that

the isometric embedding of R into ACloc
Z (R) is coarsely onto, and so the metric d∞ + dAC on

ACloc
Z (R) represents the quasi-isometry of type of ACloc

Z (R).
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