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SUMMARY

Gene regulatory networks are collections of molecules which regulate gene expression, namely,

the levels of messenger RNAs (mRNAs) and their protein products. Gene regulatory networks

control essential cellular processes, including cellular differentiation, cell fate, signal transduc-

tion, and metabolic regulations. Modeling of gene regulatory networks is very important.

Many computational models have been developed for modeling gene regulatory networks.

Deterministic models study the processes in gene regulatory networks under assumptions of the

higher species concentrations. However, when the copy numbers of molecules involved are small

and the differences in reaction rates are large, stochasticity plays an important role in cellular

processes governed by these networks.

The discrete Chemical Master Equation (dCME) provides a fundamental framework for

studying the underlying stochastic processes of biological networks. However, directly solving

the dCME is challenging due to the enormous size of the state space. Therefore it is necessary

to truncate the state space, thus, the accuracy of such truncation needs to be assessed.

Here a new technique for effective state space enumeration, based on the introduction of

multiple buffer queues for molecular species is proposed. It allows a priori evaluation of the

truncation error for each of these buffer queues and computing the error bound of the solution.

The method for accurate solution of dCME allows to model behavior of gene regulatory

networks in highly stochastic regime. Particularly, stochastic modeling suggests the appearance

of phenotypic switch from slow promoter binding, which can lead to distinct expression levels
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with considerable lifetime. Due to the challenges with solving of dCME, these issues are still not

well understood. In this work the multistability in the feed-forward loop (FFL), where feedback

and cooperativities are absent, is studied in detail. The extensive exploration of the the full

parameter space of reaction rates, including regulations intensities, and the number of genes

involved, provides global phase diagrams of the multistable properties of FFL. Furthermore,

the studies of the sensitivities of the regulation intensities in FFL suggest that the parameter

sensitivities depend on the number of peaks in this network.

While the time-evolving probability landscape or equivalently reaction trajectories define

the overall stochastic behavior of the systems, vector fields of probability flux and probability

velocity can further characterize time-varying and steady-state stochastic properties of the

systems, including the degree of departure from the detailed balance at the steady-state for non-

equilibrium systems, high probability paths, barriers, and checkpoints between different stable

regions in multistable systems, as well as mechanisms of dynamic switching among different

cellular states.

Conventional probability fluxes on continuous space are ill-defined and are problematic

when at boundaries of the state space or when copy numbers are small. By re-defining the

derivative and divergence operators based on the discrete nature of reactions, new formulations

of discrete flux are introduced in this work. Such flux model fully accounts for the discreetness

of both the state space and the jump processes of reactions and satisfies discrete version of

continuity equation. The steady state and time-evolving probability fluxes and velocity fields

were computed for several examples, including multistable feedbacks. The obtained results
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suggest the existence of oscillations in the toggle switch with slow promoter binding. Such

behavior was not shown before, and cannot be determined with the conventional Fokker-Planck

flux model or newly developed Liouville flux model based on ordinary differential equations.

xx



CHAPTER 1

INTRODUCTION

The genome encodes genes whose protein products are required for structure, function and

regulation of the cells. The abundance of proteins and other molecular products of genes are

controlled by the gene regulatory networks.

Modeling of gene regulatory networks allows quantification of interactions between molecular

species in the cell. When copy numbers of participating species are small and differences in

reaction rates are large, behavior of gene regulatory networks is intrinsically stochastic [1,2]. It

means that starting from the same initial state the system can evolve along different trajectories

and can reach to different states.

While the discrete Chemical Master Equation [3–5] (dCME) provides a general framework to

study stochasticity in mesoscopic gene regulatory networks, there are a number of different ap-

proaches based on dCME to analyze the probability landscape of stochastic gene regulatory net-

works [6–8,8–16]. The stochastic simulation algorithm [6–10] (SSA) of Gillespie provides means

to sample reaction trajectories rigorously from the underlying network dCME. Fokker-Planck

and Langevin models are stochastic differential equation (SDE) models based on continuous

approximations of the dCME, under the assumption of Gaussian noises [8, 12–14]. Ordinary

differential equations models, under further simplifying assumptions of large concentrations,

can describe changes in mean concentrations of the molecular species, although stochasticity is

not taken into account [15,16].

1
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While directly solving dCME can help to investigate biological networks under highly

stochastic regime, its solution remains difficult, as an analytical solution is possible only for

a few simple cases, and computational solutions require the enumeration of the state space of

an enormous size. Finite buffer method allows enumeration of state space for the exact solution

of dCME based on the buffer concept [17,18]. However, the truncation of the state space implies

the truncation error. In this work a new method based on multiple buffers for more effective

enumeration is introduced, and mathematical guarantees for the a priori and computational

bounds of the error for each buffer are shown.

Gene regulatory networks may be of very large scale and therefore studying them under

highly stochastic conditions is challenging. Whereas gene regulatory networks motifs are small

building blocks of gene regulatory networks consisting of several genes and proteins [19], which

usually have well defined functionality and architecture. Feed-forward loop network motif is

a gene regulatory network motif with top to down regulation, abundant in mammalian cell,

particularly in stem cell pluripotency networks [20–22], microRNA regulation networks [23–25],

and cancer networks [25]. Its abundance can suggest importance of feed-forward loop in cell

differentiation, where the multistability in protein copy numbers plays an important role.

Current understanding of the origin of multiple stable points for protein concentration

resides largely on feedback loops and cooperativity in the gene coregulations [26]. Recent studies

suggest origin of phenotypic switch from slow promoter binding creating distinct expression

levels with considerable lifetime [27–30]. Accurate solution of dCME enables studying how

the complex behavior of multistability can be achieved from the simple feed-forward loop and
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investigate the sensitivities of regulation intensities of the FFL by examining the effect of the

change of the strength of the regulation between the genes. The obtained results suggest that

the sensitivities of parameters depend on number of peaks.

In addition to probability landscape, it is also important to characterize the probability

flux and velocity fields of a stochastic network [31–38], as they can help to further infer the

mechanisms of network functions, including switching between cellular states [31,32], and iden-

tification of barriers and checkpoints between them [39]. Furthermore, flux and velocity fields

of probability can characterize the departure of the non-equilibrium steady state of a network

from equilibrium, which helps to understand the non-linear behavior of the network [35,40,41].

Computing probability fluxes and velocity fields has also found applications in studies of stem

cell differentiation [42], cell cycle [39], and cancer development [43,44].

Main challenge in finding such flux and velocity functions is developing the concept of

transport of probability (as any other quantity following the continuity equation) [45, 46] on

the discrete state space. In order to overcome this challenge, the reactional flux, satisfying

continuity equation, and the specie flux, indicating the amount of probability mass moving in

each direction were proposed in this work.

The important concepts for this work are introduced below.

1.1 Discrete Chemical Master Equation.

The discrete Chemical Master Equation describes the time-evolution of a well-mixed bio-

logical system with constant volume and temperature, that can be modelled as being in proba-
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bilistic combination of states at any given time and switching between the states is determined

by transition rate matrix.

We consider biochemical system with n molecular species Xi, i = {1, . . . , n}, which par-

ticipate in m reactions Rk, k = {1, . . . ,m}. The microstate x(t) of the system at time t

is a non-negative integer column vector of copy numbers of the molecular species: x(t) ≡

(x1(t), x2(t), . . . , xn(t))T ∈ Zn+. All the microstates that the system can reach form the state

space Ω = {x(t)|t ∈ (0,∞)}. The size of the state space is denoted as |Ω|.

The probability of the system to be at a microstate x at time t is denoted as p(x, t) ∈

Rm[0,1]. The probability surface or landscape p(t) over the state space Ω is denoted as p(x) =

{p(x(t)|x(t) ∈ Ω)}.

A reaction Rk takes the general form

Rk : c1kX1 + · · ·+ cnk
Xn

rk→ c′1kX1 + · · ·+ c′nk
Xn,

so that Rk brings the system from a microstate x to x + sk, where the stoichiometry vector

sk ≡ (s1
k, . . . , s

n
k) ≡ (c′1k − c1k , . . . , c

′
nk
− cnk

) gives the unit vector of the discrete increment

for reaction Rk. The reaction rate Ak(x, x + sk) is determined by the product of the intrinsic

reaction rate rk and the combinations of relevant reactants in the current microstate x:

Ak(x, x + sk) = Ak(x) = rk

n∏
l=1

 xl

clk

.
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Discrete Chemical Master Equation (dCME) is a set of linear ordinary differential equations

describing the probability changes of each microstate of the system over time [7, 17, 18]. The

dCME for an arbitrary microstate x = x(t) can be written in the general form as:

dp(x, t)

dt
=

m∑
k=1

Ak(x− sk)p(x− sk, t)−Ak(x)p(x, t), x− sk, x ∈ Ω. (1.1)

Direct solving of dCME directly requires an efficient and adequate account of the discrete

state space. It is a challenging problem, therefore many studies involve continuous approxima-

tions of dCME.

1.2 Continuous Approximations of dCME

1.2.1 Deterministic Equation from the Law of Mass Action

Deterministic model of reactions describe the time-evolving mean value or concentration

〈Xi〉 of each molecular species Xi. The deterministic equations can be written generically at

〈X〉 = (〈X1〉, . . . , 〈Xn〉) as

∂〈X1〉
∂t

= F1(〈X1〉, . . . , 〈Xn〉);

. . .

∂〈Xn〉
∂t

= Fn(〈X1〉, . . . , 〈Xn〉).

(1.2)

Here the functions

F(〈X〉) ≡(F1(〈X1〉, . . . , 〈Xn〉), . . . , Fn(〈X1〉, . . . , 〈Xn〉)) (1.3)
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characterize how the the vector of molecular concentrations 〈X〉 changes with time. Based on

(Equation 1.2)–(Equation 1.3), the Law of Mass Action can be written in the matrix form, as:

∂〈X〉
∂t

= F(〈X〉) (1.4)

A standard deterministic model is based on the underlying chemical rate equations, namely,

the law of mass action [47]. Here the rate of a chemical reaction is directly proportional to the

product of the activities or concentrations of the reactants. Therefore, functions F (〈Xi〉) in

(Equation 1.2) can be written:

Fi(〈X1〉, ..., 〈Xn〉) =

m∑
k=1

(sik)rk〈X1〉|s
1
k| · · · · · 〈Xn〉|s

n
k |. (1.5)

The law of Mass Action can be derived from dCME ( Equation 1.1) using the theory of

moment-closure approximations at high copy numbers [48–53].

1.2.2 Approximation Model of Fokker-Planck Equation

The Fokker-Planck model can be derived under the assumptions of i) small jumps between

states due to firing of reactions, namely, |sk/V | < ε, where ε −→ 0, ii) slow change of the

probability, namely, |p(x)−p(x+sk/V )| < δ where δ −→ 0 for reaction Rk with stoichiometry sk

and system volume V . With these assumptions, the transition kernel Ak(x−sk/V )p(x−sk/V, t)

becomes differentiable to a high degree.
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The model of the Fokker-Planck equation can be derived from the multivariate Taylor

expansion or the Kramers-Moyal expansion of the discrete Chemical Master Equation [37]:

∂p(x, t)

∂t
=

m∑
k=1

[
Ak(x−

1

V
sk)p(x−

1

V
sk, t)−Ak(x)p(x, t)

]

≈
m∑
k=1

[
Ak(x)p(x, t)− sk

1

V
∇xAk(x)p(x, t)

+
1

2V 2
sTk∇x∇xAk(x)p(x, t)sk −Ak(x)p(x, t)

=

m∑
k=1

[
− 1

V
sk∇xAk(x)p(x, t) +

1

2V 2
sTk∇x∇xAk(x)p(x, t)sk

]
.

(1.6)

In Fokker-Planck models terms higher than two are neglected [37].

1.3 Flux and Velocity of Probability. Continuity Equation.

The evolution of the probability landscape can be regarded as a process of movement of

probability mass in the state space. The total probability mass is conserved at any time and

sums up to one. A continuity equation for probability was introduced in [45, 46]. It is defined

on a set of average molecular mass concentrations 〈X〉 = (〈X1〉, ..., 〈Xn〉) ∈ Rn+:

dp(〈X〉, t)
dt

+∇〈X〉J(〈X〉, t) = 0, (1.7)

where J = J(〈X〉, t) is the vector of probability flux vector, namely, the flow of probability in

the direction of each specie.
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As the velocity of the probability is related to the flux by the relationship J(〈X〉, t) =

v(〈X〉, t)p(〈X〉, t), the continuity equation can also be written in terms of velocity as:

dp(〈X〉, t)
dt

+∇〈X〉v(〈X〉, t)p(〈X〉, t) = 0. (1.8)

1.4 Network Motifs.

Network motifs are simple building blocks of gene regulatory networks, occurring much

more frequently in real biological networks compared to randomly generated networks [54].

Network motifs usually have very simple architecture and well-defined functionality. They

consist of several nodes pairwise connected with the edges. The edges of genetic motifs map

the interactions between protein and their target genes, whereas the nodes map the biological

molecules involved in these interactions. There are two types of interactions between the nodes

of the gene regulatory network, namely, activation and inhibition. Under the condition of

inhibition, after the gene gets bound by its transcription factor, its expression level decreases.

Under the condition of activation, after the gene gets bound by its transcription factor, its

expression level increases. Two most abundant network motifs in nature are feed-forward and

feedback loops (Figure 1) [19].

1.4.1 Feed-Forward Loop

The regulation in feed-forward loop is carried out from the top nodes towards the bottom

ones by two regulation paths, such as the direct regulation from the top input node A to the

output node C, and the indirect regulation from the input to the output through intermediate
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buffer node B. Based on equality or inequality of the signs of regulation on the direct and

indirect paths, there are two conventionally defined classes of feed forward loops, coherent

Figure 1(A) and incoherent feed-forward loops Figure 1(B) correspondingly. Each regulatory

link is either up or down regulation, and therefore there are eight types of feed-forward loop in

total.

1.4.2 Feedback Loop

The feedback loop is simple two node gene regulatory network motif, consisting of two nodes

A and B Figure 1(C), which mutually regulate each other. There are three types of feedback

loops, namely, A and B mutually inhibit each other, A and B mutually activate each other, A

activates B whereas B inhibits A (note, that the symmetrical case is equivalent). The feedback

with mutual inhibition is also called toggle-switch.

1.5 Thesis Outline and Project Overview

My research focuses on accurate modeling of the behavior of stochastic gene regulatory

networks. Specifically, I design the models and methods for accurate studying of gene regulatory

networks, under the stochastic regime, when the copy numbers of molecules involved are small

or differences in the reaction scales are large. The research described in this dissertation is

organized as follows: In chapter 2, new method for accurate solution of discrete Chemical

Master Equation, called Accurate Chemical Equation (ACME) method, was developed. It is

based on introducing multiple buffer queues. For each buffer queue the error is predefined a

priori. Therefore it allows to pre-estimate buffer size before the state space is enumerated.

This chapter has been done in collaboration with Youfang Cao, former postdoc from the Liang
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(A)

(B)

(C)

Figure 1. Simple gene regulatory network motifs: (A) Schematic representation of four types

of coherent feed-forward loops: (B) Schematic representation of four types of incoherent

feed-forward loops. (C) Schematic representation of three types of feedback motifs.

lab, who developed the multi-finite buffer method and implemented the software, and who

introduced the concept of state space aggregation. I proved the theorem about the inequality

between the probability of the aggregated state on the truncated states space and the aggregated

state on the state space without truncation. I worked with Dr. Cao and Dr. Liang on proofs

of the rest of the theorems and lemmas in the paper. Dr. Cao and I both worked on finding

theoretical error bounds and numerical computations of the examples. Dr. Cao and Dr. Liang

played large roles in discussion of the problems and writing the manuscripts. This chapter is

based on the publications:
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• Terebus, Anna, Youfang Cao, and Jie Liang. “Exact computation of probability land-

scape of stochastic networks of single input and coupled toggle switch modules.” 2014

36th Annual International Conference of the IEEE Engineering in Medicine and Biology

Society. IEEE, 2014.

• Cao, Youfang, Anna Terebus, and Jie Liang. “Accurate chemical master equation solution

using multi-finite buffers.” Multiscale Modeling Simulation 14.2 (2016): 923-963.

• Cao, Youfang, Anna Terebus, and Jie Liang. “State space truncation with quantified er-

rors for accurate solutions to discrete chemical master equation.” Bulletin of mathematical

biology 78.4 (2016): 617-661.

Chapter 3 of this thesis is devoted to modeling of the feed-forward loop with introduced

ACME method. I showed that a complex behavior of multistability can be generated from

the simple feed-forward loop network without cooperativity and feedback. I showed that the

regulation intensities between different nodes of FFL play the important role in defining the

number of peaks, under the conditions of slow promoter binding. I also studied the sensitivities

of regulation intensities of the FFL. The results of this chapter are organized in the manuscripts:

• Terebus, Anna, Youfang Cao, and Jie Liang. “Sensitivities of Regulation Intensities in

Feed-Forward Loops with Multistability.” 2019 41st Annual International Conference of

the IEEE Engineering in Medicine and Biology Society. IEEE, 2019.

• Terebus, Anna, Youfang Cao, and Jie Liang. “Network Motif of Feed-Forward Loop with

multistability is a mediator of a Phenotypic Switch in Cells”, manuscript.
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Chapter 4 is devoted to the development of the new concept of probability velocity and

flux. I introduced new definitions of derivative and differential on the discrete space for chemical

reactions models, and the continuity equation for the probability on the discrete space. I defined

two types of flux, reactional flux and species flux. Whereas the reactional flux satisfies continuity

equation for probability, the species flux quantify the probability flux in every microstate in

direction of every species. I showed how such definition of flux quantifies the flux for the

birth and death process, bi-stable Schlogl process, and oscillatory Schnakenberg process. This

chapter is based on publication:

• Terebus, Anna, Chun Liu, and Jie Liang. “Discrete flux and velocity fields of probability

and their global maps in reaction systems.” The Journal of chemical physics 149.18 (2018):

185101.

In Chapter 5, I showed the differences between the universal flux and well known model of

the Fokker-Planck probability flux, as well as the Liouville flux model developed in this work,

which was suggested by Dr. Chun Liu. Using the toggle-switch model, as an example, I showed

that the differences between three types of flux. The results of this chapter are organized in a

manuscript:

• Terebus, Anna, Chun Liu, and Jie Liang. “Discrete and Continuous Models of Probability

Flux of Switching Dynamics: A Case Study of Toggle-Switch System.” manuscript

I further show examples of the universal probability flux and velocity fields for different

biological examples. Firstly I discuss the phenomena of oscillations in toggle switch loop.
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Further, I study the problems of gene duplication in the toggle switch genetic network motif

using the probability velocity and flux fields.

Chapter 6 summarizes the results of the thesis and provides with the directions for future

research.



CHAPTER 2

ERROR AND ERROR BOUND FOR ACCURATE SOLUTION OF

DISCRETE CHEMICAL MASTER EQUATION.

2.1 Introduction

Adapted by permission from Springer: Bulletin of mathematical biology, Cao, Y., Terebus,

A. and Liang, J. State space truncation with quantified errors for accurate solutions to discrete

chemical master equation, 78(4), pp.617-661, Copyright 2016. DOI:10.1007/s11538-016-0149-

1.

Gene regulatory networks depict how interactions among molecules regulate expression of

gene in a cell. These interactions dictate the levels of messenger RNAs (mRNAs) as well as

production of proteins. They play important roles in biological processes such as cell fate

determination [18, 55], signal transduction [56, 57], and metabolic regulations [58, 59]. When

genes, transcription factors, signaling molecules, and regulatory proteins are in small quanti-

ties, stochasticity plays important roles [7, 16, 60–65]. The discrete Chemical Master Equation

(dCME) provides a fundamental framework for fully characterizing mesoscopic stochastic pro-

cesses in a well mixed system [8, 17, 66–69]. The steady state and time-evolving probability

landscapes over discrete states governed by the dCME provide detailed information of these

dynamic stochastic processes. However solution of the dCME remains difficult, as analytical

solution is possible only for a few very simple cases [65,70–72].

14
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The dCME can be approximated using the FokkerPlanck equation and the chemical Langevin

equation [36, 37, 39, 41]. However these approximations are not valid when copy numbers of

molecular species are small [30,73–75], as they may not provide a full account of the stochastic-

ity of the system [8,30,73–76]. For example, Fokker-Planck model fails to capture multistability

in gene regulation networks with slow switching between the ON and the OFF states [30]. A

widely used approach to study stochasticity is that of stochastic simulation algorithm (SSA) [8].

It generates reaction trajectories following the underlying dCME. It is therefore inefficient for

sampling biologically critical rare events that often occur in stiff multiscale reaction networks,

in addition, assessment of convergence of simulation trajectories is also difficult [10,77,78].

Directly solving the dCME offers another attractive approach. By computing the probability

landscape of a stochastic network numerically, its properties, such as those involving rare events,

can be studied accurately in details. The finite state projection (FSP) method is among several

methods that have been developed to solve dCME directly [17, 18, 66, 67, 79–81]. The FSP is

based on a truncated projection of the state space and uses numerical techniques to compute the

time-evolving probability landscapes, which are solutions to the dCME [66, 82, 83]. Although

the error due to state space truncation can be calculated for the time-evolving probability

landscape [66], the use of an absorbing boundary, to which all truncated states are projected,

will lead to the accumulation of errors as time proceeds, and eventually trap all probability

mass. The FSP method was designed to study transient behavior of stochastic networks, and

is not well suited to study the long-term behavior and the steady state probability landscape

of a network.
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State-space of the open systems is enormous, therefore all computational methods require

its truncation. However, it is unclear how accurate is the probability landscape computed on

a truncated state space. For example, a synthesis reaction cannot happen on the boundary

of truncated state space, if its product is not enumerated. Furthermore, it is unclear how to

minimize truncation errors, thus limiting the scope of applications of direct methods such as

the fb-dCME method [17,18].

2.2 Molecular Equivalence Group

We can partition reactions into different Molecular Equivalence (MEG), each of which con-

tains reactions sharing the common species, whose stoichiometries are non-zero. When the

particular MEG is an open system, i.e., containing synthesis and degradation reactions, finite

buffer of virtual molecules is assigned to the subnetwork to limit the total copy number of

species that can be synthesized [69, 84, 85]. Assume that the system of the reactions has q

MEGs, therefore, we have to assign q buffers: B = (B1, · · · , Bq) to this system.

2.3 State Space Aggregation

Consider one MEG of stochastic network. The state space of this system is generally of infi-

nite size Ω(∞), which can be partitioned into disjoint groups of subsets Ω̃(∞) ≡ {G0,G1, · · · ,GN , · · · },

where states in each aggregated subset Gs have exactly the same s total copies of equivalent ele-

mentary molecular species of the MEG. The total steady state probability π̃
(∞)
s on microstates

in each group Gs can then be written as:

p̃(∞)
s ≡

∑
x∈Gs

p(∞)(x) =
∑
x∈Gs

π(∞)(x, t =∞). (2.1)
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In continuous time Markov model of mesoscopic systems, reactions occur instantaneously,

and the synthesis and degradation reactions always generate or destroy one molecule at a

time. This also applies to oligomers, which are assumed to form only upon association of

monomers already synthesized, and dissociate into monomers first before full degradation. The

re-constructed matrix Ã is thus a tri-diagonal block matrix, i.e., Ai, j is all 0s if |i− j| > 1 [69].

Moreover, synthesis reactions always appear as lower blocks Ai+1, i, and degradation reactions

always as upper blocks Ai, i+1. Diagonal blocks Ai, i contains all coupling reactions that do not

alter the net number of synthesized molecules. Note that every Ai+1, i block and Ai, i+1 block

only includes synthesis and degradation reactions associated with the current MEG. We assume

the other MEGs do not alter the total net copy number of molecular species in the group.

For such aggregated state space, the aggregated discrete Chemical Master Equation, can be

written as follows:

dp(∞)(G0, t)

dt
=
d
∑
∈G0 p(, t)

dt
=
(
1TA0,0

)
p̃(∞)(G0, t) +

(
1TA0,1

)
p̃(∞)(G1, t),

dp(∞)(Gi, t)
dt

=
d
∑
∈Gi p(, t)

dt
=
(
1TAi,i−1

)
p̃(∞)(Gi−1, t) +

(
1TAi,i

)
p̃(∞)(Gi, t)

+
(
1TAi,i+1

)
p̃(∞)(Gi+1, t), for i = 1, · · · ,∞.

(2.2)

We obtained it by summing up the master equations over all microstates in each group Gi and

obtain a separate aggregated equation for each group, as the re-ordered matrix Ã is a block

tri-diagonal matrix.
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2.4 Steady State Probability Distribution on the Aggregated State Space

We consider the problem of calculating the steady state process controlled by a pair of

“synthesis” and “degradation” transitions between aggregated states associated with different

net copy number of the MEG [69,84,85]. This turns out to be a simple birth-death process. It

takes the form:

∅
α
(∞)
i


β
(∞)
i+1

E, (2.3)

where E represents the elementary molecular species in the MEG, with its copy number the

total net copy number of the MEG.

Following the well-known results on analytical solution of the steady state distribution of

the birth-death processes [65, 86], the steady state solution for π̃
(∞)
i and π̃

(∞)
0 can be written

as:

π̃
(∞)
i =

i−1∏
k=0

α
(∞)
k

β
(∞)
k+1

π̃
(∞)
0 , (2.4)

and

π̃
(∞)
0 =

1

1 +
∞∑
j=1

j−1∏
k=0

α
(∞)
k

β
(∞)
k+1

. (2.5)

2.5 Error of the Truncation

We truncate the state space by fixing the maximum amount of total mass in the MEG. When

the maximum total net copy number of the MEG is limited to N , states with a total net copy

number larger than N will not be included, resulting in a truncated state space Ω(N). Those

microstates with exactly N total net copies of molecules in the network are the boundary states,
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because neighboring states with one additional molecule are truncated. The true error for the

steady state Err(N) due to truncating states beyond those with N net copies of molecules is

the summation of true probabilities over microstates that have been truncated from the original

infinite state space:

Err(N) =
∑

x∈Ω(∞),x/∈Ω(N)

p(∞)(x) = 1−
∑

x∈Ω(N)

p(∞)(x). (2.6)

2.6 Boundary Probability

Such state space truncation only increases boundary probability:

Theorem The total steady state probability π
(N)
i of an aggregated state group Gi, for all

i = 0, 1, · · · , N , on the truncated state space Ω(N) with a maximum net molecular copy number

N , is greater than or equal to the non-truncated probability π
(∞)
i over the same group Gi

obtained using the original state space Ω(∞) of infinite size, i.e., π
(∞)
i ≤ π(N)

i .

We first consider two truncated state spaces Ω̃(N) and Ω̃(N+1). Following (Equation 2.2),

two finite sets of the block chemical master equation can be constructed for these two state

spaces. The first set containing N equations is built on the state space Ω̃(N).

dp(N)(G0, t)

dt
=
(
1TA0,0

)
p̃(N)(G0, t) +

(
1TA0,1

)
p̃(N)(G1, t),

dp(N)(Gi, t)
dt

=
(
1TAi,i−1

)
p̃(N)(Gi−1, t) +

(
1TAi,i

)
p̃(N)(Gi, t)

+
(
1TAi,i+1

)
p̃(N)(Gi+1, t), for i = 1, · · · , N − 1,

dp(N)(GN , t)
dt

=
(
1TAN,N−1

)
p̃(N)(GN−1, t) +

(
1TAN,N

)
p̃(N)(GN , t).

(2.7)
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The second set is built on the state space Ω̃(N+1) containing N + 1 equations.

dp(N+1)(G0, t)

dt
=
(
1TA0,0

)
p̃(N+1)(G0, t) +

(
1TA0,1

)
p̃(N+1)(G1, t),

dp(N+1)(Gi, t)
dt

=
(
1TAi,i−1

)
p̃(N+1)(Gi−1, t) +

(
1TAi,i

)
p̃(N+1)(Gi, t)

+
(
1TAi,i+1

)
p̃(N+1)(Gi+1, t), for i = 1, · · · , N − 1,

dp(N+1)(GN , t)
dt

=
(
1TAN,N−1

)
p̃(N+1)(GN−1, t) +

(
1TAN,N

)
p̃(N+1)(GN , t)

+
(
1TAN,N+1

)
p̃(N+1)(GN+1, t),

dp(N+1)(GN+1, t)

dt
=
(
1TAN+1,N

)
p̃(N+1)(GN , t) +

(
1TAN+1,N+1

)
p̃(N+1)(GN+1, t).

(2.8)

At steady state, the left-hand side of the equations are zeros. For the first N equations, the

corresponding block matrices are the same for both state spaces Ω̃(N) and Ω̃(N+1). We can then

subtract the right-hand side of (Equation 2.8) from (Equation 2.7) and obtain the following

steady state equations:

1TA0,0∆π0 + 1TA0,1∆π1 = 0,

1TAi,i−1∆πi−1 + 1TAi,i∆πi + 1Ai,i+1∆πi+1 = 0,

for i = 1, · · · , N − 1,

(2.9)

where ∆πi = π
(N)
i − π(N+1)

i is the steady state probability difference between the state group

Gi in the dCME on Ω̃(N) and Ω̃(N+1). However, the block sub-matrix AN,N of the boundary

group GN is different between the two state spaces. From the construction of the aggregated
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dCME and buffer concept matrix Ã, columns of the full matrices Ã(N+1) over Ω̃(N+1) and

ÃN over Ω̃N all sum to 0 [84]. We use A
(N)
i, j to denote the block sub-matrix of the group GN

for the state space Ω̃(N), and use A
(N+1)
i, j to denote the corresponding block sub-matrix for

the state space Ω̃(N+1). From the N -th line of the truncated version of Eqn (??), we have

1TA
(N+1)
N−1, N + 1TA

(N+1)
N,N + 1TA

(N+1)
N+1, N = 0 for Ω̃(N+1) and 1TA

(N)
N−1, N + 1TA

(N)
N,N = 0 for Ω̃(N).

Since A
(N)
N−1,N = A

(N+1)
N−1,N , we have the following property

1TA
(N+1)
N,N = 1TA

(N)
N,N − 1TA

(N+1)
N+1,N , (2.10)

We also have

1TA
(N+1)
N+1,N+1 = −1TA

(N+1)
N,N+1. (2.11)

From (Equation 2.7), we have for the steady state the probability of the state group GN

over the state space Ω̃(N) as:

1TA
(N)
N,N−1π

(N)
N−1 + 1TA

(N)
N,Nπ

(N)
N = 0, (2.12)

From (Equation 2.8), we have for the steady state the probability of the state group GN and

GN+1 over the state space Ω̃(N+1) as:

1TA
(N+1)
N,N−1π

(N+1)
N−1 + 1TA

(N+1)
N,N π

(N+1)
N + 1TA

(N+1)
N,N+1π

(N+1)
N+1 = 0, (2.13)



22

and

1TA
(N+1)
N+1,Nπ

(N+1)
N + 1TA

(N+1)
N+1,N+1π

(N+1)
N+1 = 0, (2.14)

respectively.

As A
(N+1)
N,N−1 = A

(N)
N,N−1, we subtract (Equation 2.13) from (Equation 2.12), and obtain:

1TAN,N−1∆πN−1 + 1TA
(N)
N,Nπ

(N)
N − 1TA

(N+1)
N,N π

(N+1)
N − 1TA

(N+1)
N,N+1π

(N+1)
N+1 = 0.

It can be re-written by applying the matrix property of (Equation 2.10) as:

1TAN,N−1∆πN−1 + 1TA
(N)
N,N∆πN + 1TA

(N+1)
N+1,Nπ

(N+1)
N − 1TA

(N+1)
N,N+1π

(N+1)
N+1 = 0.

By using the matrix property in (Equation 2.11), we can further re-write it as:

1TAN,N−1∆πN−1 + 1TA
(N)
N,N∆πN + 1TA

(N+1)
N+1,Nπ

(N+1)
N + 1TA

(N+1)
N+1,N+1π

(N+1)
N+1 = 0.

From (Equation 2.14), the last two terms sum to 0. Therefore, we obtain the (N + 1)-st

equation of the steady state probability difference as:

1TAN,N−1∆πN−1 + 1TA
(N)
N,N∆πN = 0.
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As probability vector solution to (Equation 1.1) has non-negative elements, this equivalence

implies that all elements in each ∆πi have the same sign. As the total steady state probability

mass in both state spaces sum up to 1,

N∑
i=1

π̃
(N)
i =

N+1∑
i=1

π̃
(N+1)
i = 1,

we therefore know that the total probability differences is non-negative:

N∑
i=1

∆π̃i =

N∑
i=1

π̃
(N)
i −

N∑
i=1

π̃
(N+1)
i = 1− (1− π̃(N+1)

N+1 ) = π̃
(N+1)
N+1 ≥ 0.

Therefore, the probability difference of each individual Gi between two state spaces must be

non-negative:

∆π̃i = π̃
(N)
i − π̃(N+1)

i ≥ 0, i = 0, 1, · · · , N.

This can be generalized. As N increases to infinity, we have:

π̃
(N)
i ≥ π̃(N+1)

i ≥ · · · ≥ π̃(∞)
i , i = 0, 1, · · · , N.

This proves the theorem.

2.7 Error Bound

It can also be shown that if N is sufficiently large, the true error Err(∞) is bounded by the

true boundary probability π
(∞)
N times a constant.
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Assymptotic Convergence of the Error For a truncated state space with a maximum

net molecular copy number N in the network, the true error Err(N) follows the inequality below

when N increases to infinity:

Err(N) ≤

α
(∞)
M

β
(∞)
M+1

1− α
(∞)
M

β
(∞)
M+1

π̃
(∞)
N , (2.15)

where M is an integer selected from N, · · · ,∞ to satisfy
α
(∞)
M

β
(∞)
M+1

= sup
k≥N

{
α
(∞)
k

β
(∞)
k+1

}
.

Proof. From (Equation 2.6), we can first derive an explicit expression of the true error

Err(N) using the aggregated synthesis and degradation rates α
(∞)
k and β

(∞)
k+1:

Err(N) = 1−
∑

x∈Ω(N)

π(∞)(x) = 1−
N∑
i=0

1T π̃(∞)(Gi) = 1− π̃(∞)
0 (1 +

N∑
j=1

j−1∏
k=0

α
(∞)
k

β
(∞)
k+1

)

= 1−
1 +

∑N
j=1

∏j−1
k=0

α
(∞)
k

β
(∞)
k+1

1 +
∑∞

j=1

∏j−1
k=0

α
(∞)
k

β
(∞)
k+1

=

∑∞
j=N+1

∏j−1
k=0

α
(∞)
k

β
(∞)
k+1

1 +
∑∞

j=1

∏j−1
k=0

α
(∞)
k

β
(∞)
k+1

(2.16)

From (Equation 2.16), (Equation 2.6), we have:

Err(N)

π̃
(∞)
N

=

∑∞
j=N+1

∏j−1
k=0

α
(∞)
k

β
(∞)
k+1∏N−1

k=0
α
(∞)
k

β
(∞)
k+1

=

(
∏N−1
k=0

α
(∞)
k

β
(∞)
k+1

)(
∑∞

j=N+1

∏j−1
k=N

α
(∞)
k

β
(∞)
k+1

)∏N−1
k=0

α
(∞)
k

β
(∞)
k+1

=

∞∑
j=N+1

j−1∏
k=N

α
(∞)
k

β
(∞)
k+1

≤
∞∑

j=N+1

[
sup
k≥N

{
α

(∞)
k

β
(∞)
k+1

}]j−N
=
∞∑
j=1

[
sup
k≥N

{
α

(∞)
k

β
(∞)
k+1

}]j
,

(2.17)
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When N is sufficiently large and there is no peak of the probability landscape for the state of

the size larger than N , sup
k≥N

{
α
(∞)
k

β
(∞)
k+1

}
< 1. The terms in the infinite series

∑∞
j=1

[
sup
k≥N

{
α
(∞)
k

β
(∞)
k+1

}]j
then forms a converging geometric series. Therefore, we have

∞∑
j=1

[
sup
k≥N

{
α

(∞)
k

β
(∞)
k+1

}]j
=

sup
k≥N

{
α
(∞)
k

β
(∞)
k+1

}
1− sup

k≥N

{
α
(∞)
k

β
(∞)
k+1

} ,

and the following inequality holds:

lim
N→∞

Err(N)

π̄
(∞)
N

≤ lim
N→∞

sup
k≥N

{
α
(∞)
k

β
(∞)
k+1

}
1− sup

k≥N

{
α
(∞)
k

β
(∞)
k+1

} .

Let M ∈ {N, · · · ,∞} be the integer such that
α
(∞)
M

β
(∞)
M+1

= sup
k≥N

{
α
(∞)
k

β
(∞)
k+1

}
, we have the following

inequality equivalent to Inequality (Equation 2.15):

lim
N→∞

Err(N)

π̄
(∞)
N

≤ lim
N→∞

α
(∞)
M

β
(∞)
M+1

1− α
(∞)
M

β
(∞)
M+1

.

This proves asymptotic convergence of the boundary probability to the true error.

Therefore the boundary probability converges to the true error, and the boundary proba-

bility for the truncated state space Ω(N), which is even larger, that boundary probability on

the full state space, converges to the true error.
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We assign the separate buffer for each MEG, and the minimal buffer size can be determined

by comparing the error estimate of the buffer to the desired error tolerance. If the estimated

error is larger that the error tolerance, the buffer size needs to be increased. Otherwise, the

buffer size can be reduced to save memory space.

2.8 Theoretical Error Bound

In principle, one does not know buffer capacity is needed to find probability within particular

error bound. For that we derived the theoretical error bound for every buffer. We first found

the upper bound for the synthesis reactions (αi) and the lower bound of degradation rate (βi)

in i-th MEG.

The theoretical error bound of the system when the size of the state space is limited to

N + 1 states (0, 1, ...N) is then determined by the probability πNN of the (N + 1)-th state when

the buffer is exhausted, which can be calculated exactly as:

π
(N)
N =

N∏
j=0

αj−1

β
j

1 +
N∑
i=1

i∏
j=1

αj−1

β
j

.

Computation for the error requires multiplication of large numbers in numerator. For the

large N such product may exceed the size of the numerical type of the variable used. We can

avoid this problem by computing the error of each buffer size recursively from the equation:

π
(1)
0 = 1, π

(i+1)
i = 1

/
1 + αi−1

βiπ
(i)
i−1

. (2.18)
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We use the example of Phage Lambda Bistable Epigenetic Switch to illustrate how the

system can be separated into MEGs and how the errors can be computed.

2.9 Phage Lambda Bistable Epigenetic Switch

The bistable epigenetic switch for lysogenic maintenance and lytic induction in phage

lambda is one of the well-parameterized realistic gene regulatory system. The efficiency and

stability of the switch have been extensively studied [87–89]. Here we characterize the trunca-

tion error to the dCME solutions of the reaction network adapted from Cao et al. [90]. The

network consists of 11 different species and 50 different reactions. The detailed reaction schemes

and rate constants are shown in Table I,Table II,Table III.

The network can be partitioned into two MEGs. The MEG1 consists of the dimer of CI

protein CI2 and all complexes of operator sites bounded with CI2. The MEG2 consists of the

dimer of Cro protein Cro2 and all complexes of operator sites bounded with Cro2.

To numerically demonstrate assymptotic convergence of errors, we compute the true error of

the steady state solution to the dCME using sufficiently large sizes of MEG1 = 80 and MEG2 =

38, which gives negligible truncation error, with infinitesimally small boundary probabilities

6.96 × 10−31 for MEG1 and 3.95 × 10−32 for MEG2. Solution obtained using these MEGs is

therefore considered to be exact. With this exact steady state probability landscape, the true

truncation error Err(N) at smaller sizes of MEG1 and MEG2 can both be computed using

(Equation 2.6) ( Figure 2A and B, blue dashed lines and crosses). The corresponding boundary

probabilities π
(∞)
N or computed error are computed from the exact steady state probability
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landscape for both MEG1 (Figure 2A, green dashed line and circles) and MEG2 (Figure 2B,

green dashed line and circles).

Our results show that the true error Err(N) ( Figure 2A and B, blue dashed lines and

crosses) is bounded by the computed boundary probability π
(∞)
N ( Figure 2A and B, green

dashed lines and circles)

when the size of the MEG is sufficiently large. The insets in Figure 2A and B show the ratios

of the true errors to the computed errors at different sizes of the MEG, and the grey straight

lines mark the ratio one. The computed errors are larger than the true errors when the black

line is below the grey straight line (Figure 2A and B, insets). In this example, the computed

boundary probability is greater than the true error when MEG1 ≥ 24 and MEG2 ≥ 3.

To examine a priori estimated upper bounds for the truncation errors in MEG1 and MEG2,

we assign the values of αi = ks1CI2 and β
(i+1)

= [(i+ 1)− 3] · kdCI2 for the MEG1, where the

subscript (i + 1) is the total copy number of species CI2 in the system. The subtraction of 3

is necessary because up to 3 copies of CI2 can be protected from degradation by binding to

operator sites OR1, OR2, and OR3. Similarly, we have αi = ksCro2 and β
i+1

= [(i + 1) − 3] ·

kdCro2 . We compute the a priori estimated upper bounds of errors for different truncations of

MEG1 and MEG2 using (Equation 2.18) ( Figure 2A and B, red solid lines). The true truncation

errors and the a priori estimated error bounds of MEG1 and MEG2 all decrease monotonically

with increasing MEG sizes (Figure 2A and B). The computed errors also monotonically decrease

when the MEG sizes are larger than 13 for MEG1 and 4 for MEG2. For both MEGs, the a
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priori estimated error bounds are larger than computed errors at all MEG sizes. They are also

larger than the true errors when the MEG sizes are sufficiently large.

The probability landscape projected on the MEGs increase after state space truncation. We

first compute the steady state probability landscapes of CI2 obtained by truncating MEG1 at

different sizes ranging from 0 to 80 while MEG2 is fixed at 38 (Figure 2C). The results are

compared with the exact steady state landscape computed using MEG1 = 80 and MEG2 =

38 (Figure 2C, red line). We then also similarly examine the steady state probability landscapes

of Cro2 obtained by truncating at different sizes of MEG2 from 0 to 38 while MEG1 is fixed

at 80 (Figure 2D).

Our results show clearly that all probabilities in the landscapes increase when more states

are truncated at smaller MEG sizes (Figure 2C and D). The probability landscapes computed

using larger sizes of MEGs (e.g., MEG1 = 30, Figure 2C, yellow line and MEG2 = 8,

Figure 2D, yellow line) are approaching the exact landscape (Figure 2C and D, red line).

The probability landscapes obtained using smaller MEGs deviate significantly from the exact

probability landscape. The smaller the MEG size, the more significant the deviation is.

We further examine how the probability landscape projected on one MEG increase with

state space truncation at another MEG. We first compare the projected steady state probabil-

ity landscapes on CI2 obtained by truncating MEG2 at different sizes ranging from 0 to 38

while MEG1 is fixed at 80 (Figure 2E). We compare the results with the exact steady state

landscape (Figure 2E, red line). We also similarly examine the projected steady state proba-
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bility landscapes of Cro2 obtained by truncating at different sizes of MEG1 ranging from 0 to

80 while MEG2 is fixed at 38 ( Figure 2F).

Our results show that all probabilities on the landscapes of MEG1 (MEG2) increase when

the state space is truncated at MEG2 (MEG1) (Figure 2E and F). The probability landscapes

computed using larger sizes of MEGs (e.g., MEG2 = 8 in Figure 2E, yellow line and MEG1 =

30 in Figure 2F, yellow line) are approaching the exact landscape using MEG1 = 80 and

MEG2 = 38 ( Figure 2E and F, red line). However, the probability landscapes using smaller

MEGs significantly deviate from the exact probability landscape. The smaller the MEG size,

the more significant the deviation is.

2.10 Conclusions

Solving the discrete chemical master equation (dCME) is of fundamental importance for

studying stochasticity in reaction networks. The main challenges are the discrete nature of

the states and the difficulty in enumerating these states, as the size of the state space expands

rapidly when the network becomes more complex. This study addresses a key issue in obtaining

direct solution to the dCME, including pre-estimation of the size of the system for a certain

error threshold and computing the errors of the solution. As state space truncation is inevitable,

such quantification of the errors of such truncations is very important. The proven facts of state

space truncation could be used for other truncations methods with reflective boundary, with

buffer concept, and allow control the error for the truncation. Developed method also allows

direct computation of the distribution of first passage time, an important problem in studying

rare events in biological networks currently relies heavily on sampling techniques.
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Figure 2. Error quantification and comparisons for the phage lambda bistable epigenetic

switch model. (A) and (B): The a priori estimated error (red solid lines), the computed error

(green lines and circles), and the true error (blue lines and crosses) of the steady state

probability landscapes of CI and Cro dimers at different sizes of truncations. The insets in

(A) and (B) show the ratio of the true errors to the computed errors at different sizes of the

MEG, and the grey straight line marks the ratio one. The computed errors are larger than the

true errors when the black line is below the grey straight line. (C) and (D): The steady state

probability landscapes of CI and Cro dimers solved using different truncations of net

molecular number in the MEG1 and MEG2, respectively. Note that probability distributions

end at where truncation occurs. The probabilities in the landscapes are significantly inflated

when truncating the state space at smaller net molecular numbers of the corresponding MEG.

(E) and (F): The steady state probability landscapes of CI and Cro dimers solved using

different truncations of net molecular number in the MEG2 and MEG1, respectively. The

probabilities in the landscapes are also significantly inflated when truncating the state space

at smaller net molecular numbers of the opposite MEG.
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TABLE I

Reaction scheme and rate constants in phage lambda epigenetic switch mode. We use CORn

denotes Cro2 bound operator site ORn, RORn denotes CI2 bound ORn, where n can be 1, 2,

and 3. Note that molecular species enclosed in parenthesis are those whose presence is

required for the specific reactions to occur, but their copy numbers do not influence the

transition rates between microstates.

Reactions Rate constants

Synthesis reactions [87,91–93]

∅+ (OR3 +OR2)→ CI2 + (OR3 +OR2) ksCI2 = 0.0069/s

∅+ (OR3 + COR2)→ CI2 + (OR3 + COR2) ksCI2 = 0.0069/s

∅+ (OR3 +ROR2)→ CI2 + (OR3 +ROR2) ks1CI2 = 0.069/s

∅+ (OR1 +OR2)→ Cro2 + (OR1 +OR2) ksCro2 = 0.0929/s

Degradation reactions [87,94]

CI2 → ∅ kdCI2 = 0.0026/s

Cro2 → ∅ kdCro2 = 0.0025/s

Association rate of binding reactions [95]

CI2 +OR1→ ROR1 kbOR1CI2 = 0.021/s

CI2 +OR2→ ROR2 kbOR2CI2 = 0.021/s

CI2 +OR3→ ROR3 kbOR3CI2 = 0.021/s

Cro2 +OR1→ COR1 kbOR1Cro2 = 0.021/s

Cro2 +OR2→ COR2 kbOR2Cro2 = 0.021/s

Cro2 +OR3→ COR3 kbOR3Cro2 = 0.021/s

Dissociation reactions - CI2 dissociation from OR1

ROR1 + (OR2)→ CI2 +OR1 + (OR2) 0.00898/s

ROR1 + (ROR2 +OR3)→ CI2 +OR1 + (ROR2 +OR3) 0.00011/s
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TABLE II

Reaction scheme and rate constants in phage lambda epigenetic switch mode. Continued.

Reactions Rate constants

Dissociation reactions - CI2 dissociation from OR1 (continued)

ROR1 + (ROR2 +ROR3)→ CI2 +OR1 + (ROR2 +ROR3) 0.01242/s

ROR1 + (ROR2 + COR3)→ CI2 +OR1 + (ROR2 + COR3) 0.00011/s

ROR1 + (COR2)→ CI2 +OR1 + (COR2) 0.00898/s

Dissociation reactions - CI2 dissociation from OR2

ROR2 + (OR1 +OR3)→ CI2 +OR2 + (OR1 +OR3) 0.2297/s

ROR2 + (ROR1 +OR3)→ CI2 +OR2 + (ROR1 +OR3) 0.0029/s

ROR2 + (OR1 +ROR3)→ CI2 +OR2 + (OR1 +ROR3) 0.0021/s

ROR2 + (ROR1 +ROR3)→ CI2 +OR2 + (ROR1 +ROR3) 0.0029/s

ROR2 + (COR1 +OR3)→ CI2 +OR2 + (COR1 +OR3) 0.2297/s

ROR2 + (OR1 + COR3)→ CI2 +OR2 + (OR1 + COR3) 0.2297/s

ROR2 + (COR1 + COR3)→ CI2 +OR2 + (COR1 + COR3) 0.2297/s

ROR2 + (ROR1 + COR3)→ CI2 +OR2 + (ROR1 + COR3) 0.0029/s

ROR2 + (COR1 +ROR3)→ CI2 +OR2 + (COR1 +ROR3) 0.0021/s

Dissociation reactions - CI dissociation from OR3

ROR3 + (OR2)→ CI2 +OR3 + (OR2) 1.13/s

ROR3 + (ROR2 +OR1)→ CI2 +OR3 + (ROR2 +OR1) 0.0106/s

ROR3 + (ROR2 +ROR1)→ CI2 +OR3 + (ROR2 +ROR1) 0.0106/s

ROR3 + (ROR2 + COR1)→ CI2 +OR3 + (ROR2 + COR1) 0.0106/s

ROR3 + (COR2)→ CI2 +OR3 + (COR2) 1.13/s
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TABLE III

Reaction scheme and rate constants in phage lambda epigenetic switch mode. Continued.

Reactions Rate constants

Dissociation reactions - Cro dissociation from OR1

COR1 + (OR2)→ Cro2 +OR1 + (OR2) 0.0202/s

COR1 + (ROR2)→ Cro2 +OR1 + (ROR2) 0.0202/s

COR1 + (COR2 +OR3)→ Cro2 +OR1 + (COR2 +OR3) 0.0040/s

COR1 + (COR2 +ROR3)→ Cro2 +OR1 + (COR2 +ROR3) 0.0040/s

COR1 + (COR2 + COR3)→ Cro2 +OR1 + (COR2 + COR3) 0.0040/s

Dissociation reactions - Cro dissociation from OR2

COR2 + (OR1 +OR3)→ Cro2 +OR2 + (OR1 +OR3) 0.1413/s

COR2 + (ROR1 +OR3)→ Cro2 +OR2 + (ROR1 +OR3) 0.1413/s

COR2 + (OR1 +ROR3)→ Cro2 +OR2 + (OR1 +ROR3) 0.1413/s

COR2 + (ROR1 +ROR3)→ Cro2 +OR2 + (ROR1 +ROR3) 0.1413/s

COR2 + (COR1 +OR3)→ Cro2 +OR2 + (COR1 +OR3) 0.0279/s

COR2 + (OR1 + COR3)→ Cro2 +OR2 + (OR1 + COR3) 0.053/s

COR2 + (COR1 + COR3)→ Cro2 +OR2 + (COR1 + COR3) 0.0328/s

COR2 + (ROR1 + COR3)→ Cro2 +OR2 + (ROR1 + COR3) 0.053/s

COR2 + (COR1 +ROR3)→ Cro2 +OR2 + (COR1 +ROR3) 0.0279/s

Dissociation reactions - Cro dissociation from OR3

COR3 + (OR2)→ Cro2 +OR3 + (OR2) 0.0022/s

COR3 + (ROR2)→ Cro2 +OR3 + (ROR2) 0.0022/s

COR3 + (COR2 +OR1)→ Cro2 +OR3 + (COR2 +OR1) 0.0008/s

COR3 + (COR2 +ROR1)→ Cro2 +OR3 + (COR2 +ROR1) 0.0008/s

COR3 + (COR2 + COR1)→ Cro2 +OR3 + (COR2 + COR1) 0.003/s



CHAPTER 3

SENSITIVITY OF PARAMETERS AND MULTISTABILITY IN THE

FEED-FORWARD LOOP WITH SLOW PROMOTER DYNAMICS

3.1 Introduction

Studying the nature and the mechanisms of phenotypic variabilities of the cells is important

for understanding essential biological processes, including bacterial cell fate [18, 96], stem sell

differentiation [21,28], tumor formation [97,98]. The abundances of different proteins in this cell

are key players indicating particular phenotype of the cell. Understanding the nature of change

in gene expression levels can provide a valuable insight into understanding of the switching

mechanism between different phenotypes [99].

Gene expression levels of mRNA and proteins are governed by gene regulatory networks,

the collections of molecular regulators that interact with each other and with other substances

in the cell. Quantitative modeling of gene regulatory networks allows to estimate the stable

points in proteins abundances at different time moments, as well as equilibrium state of the cell.

Current understanding of the origin of multiple stable points for protein concentration resides

largely on feedback loops and cooperativity in the gene coregulations [26]. Recent studies sug-

gest origin of phenotypic switch from slow promoter binding creating distinct expression levels

with considerable lifetime [27–30]. However the nature and extend of this kind of bistability

is not well understood. Derministic methods fail in capturing bistability in gene expression

35
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due to slow promoter binding, and stochastic differential equations approaches are ineficient in

this case. Furthermore it was shown that for the single gene self-regulation model with certain

reaction rate values multistability cannot be captured with Fokker-Planck equation [30]. This

phenomena, referred as stochastic multimodality, is usually associated with eucaryotic cells,

likely due to remodeling of chromatin structures, and it can be precisely captured with highly

accurate stochastic models. Gillespie stochastic simulations methods [7] are challenging captur-

ing rare events and have limitations of assessing the error. Discrete Chemical Master Equation

(dCME) provides a fundamental framework for studying stochastic gene regulatory networks.

However direct solving of dCME is not always possible due to the enormous state space. In

order to address this limitation we use the ACME (Accurate Chemical Master Equation) al-

gorithm [69, 100], which has the advantages of more effective memory usage, rapid estimation

of errors, and pre-estimation of buffer size in order to maintain a predefined error-tolerance

threshold.

In the chapter we study feed-forward loop (FFL), which is one of the most prevalent in

the nature types of network motifs [19]. It occurs much more frequently in biological networks

found in nature, compared to randomly generated networks. In addition, it has a well defined

functionality. The regulation in feed-forward loop is carried out from the top nodes towards

the bottom ones by two regulation paths: the direct regulation from the top input node to the

output node, and the indirect regulation from the input to the output through intermediate

buffer node. Based on equality of the signs of regulation on the direct and indirect paths,

there are two conventionally defined classes of feed forward loops, coherent and incoherent
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feed-forward loops correspondingly. As each regulatory link is either up or down regulation,

and therefore there are eight types of feed-forward loop in total. FFL is found to be significant

in yeast [101], in bacteria [102,103], and also widely observed in mammals [20,22,23].

High abundance of feed-forward loop network motifs in the nature is related to its essential

functionality. Indeed, deterministic studies reveal important functional characteristics of feed-

forward loop. Feed-forward loops are known to have signal processing functions, such as sign-

sensitive acceleration (incoherent), namely speeding up the response time of the target gene

expression following stimulus steps in one direction, sign-sensitive delays (coherent loops), pulse

generation functions, and cooperativity increase [104]. It is also one of the network motifs

capable to maintain robust adaptation [105,106], and ”fold-change” detection [107]. Although

deterministic models of feed-forward loops are very well studied, stochastic modeling remains

a captivating research field, which can possibly reveal new functions of significant biological

importance [108].

High frequency of appearance of feed-forward loop in mammal cell, particularly in stem

cell pluripotency networks [20–22], microRNA regulation networks [23–25], and cancer net-

works [25], suggests importance of feed-forward loop in differentiation. We have explored the

role of feed-forward loop network in phenotypic switching in the cell, namely, studied the range

of the values of the parameters, which allow this switch to occur, as well as find the number of

possible phenotypic states. We have also examined the network parameters, such as regulations

intensities, the strength of the input, the speed of binding and unbinding of transcription factors
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to genes, and the number of genes involved in order to see how every each of them affects the

multistable properties of feed-forward loop.

We further examine the parameters sensitivity of FFLs, a measure of system behavior

in response to perturbations of its parameters. It characterizes how changes in the network

parameters can affect the network output, for example, at the steady state. Sensitivity analysis

helps to understand how network output is sensitive to input, and models parameters, and

has been widely used as a measure of robustness. Sensitivity of FFLs to parameters was

examined in detail previously [105, 106, 109], including how FFL can carry the function of

adaptation [105, 106]. However, the behavior of sensitivity of FFLs in the stochastic regime,

where slow parameters binding results in highly stochastic behavior of the system is unknown.

We study the sensitivity of the regulation intensities of feed-forward loop to model param-

eters. Regulation intensities play important role as they define the strength of regulation in

FFLs. We introduce a new definition of sensitivity, which characterizes the response of the

steady state probability distribution to perturbation to system parameters, within a given in-

terval. Further we show how the steady state responds to change of values of the parameters.

We show how change in gene expression under FFL regulations are sensitive to system parame-

ters, including the state of multistability in FFLs. Summarized results we obtained can be used

for analyzing phenotypic switching in real biological network, which consist of feed-forward loop

as substantial element of their architectures or for construction of synthetic networks aimed to

produce certain phenotypic behavior.
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3.2 Multistability in FFL

3.2.1 Architecture

We construct the network motif of FFL as a three node motif consisting of three genes a,

b, and c and their protein products A, B, and C respectively (Figure 3 (A)). Gene a expresses

protein A at constant expression rate sA. Gene b has one promoter site, and turns into a

gene-protein complex bA, after protein A binds to it. Gene b is expressed with a constant basal

expression rate sB, but once it is bound with a protein A the rate is changed k1-fold. Gene

c has one promoter site, which can be occupied by either one of its transcription factors A or

B. This type of regulation is known as ”OR ” gate. Competitive binding of proteins A and B

to gene c promoter site turns it to two gene-protein complexes cA or cB correspondingly. The

basal expression rate of gene c is sC , but it is changed k2-fold for a complex cB, and by k3-fold

for a complex cA. Below we present the general system of biochemical reactions corresponding

to constructed feed-forward loop model:

b+A
rAb→ bA; bA

fAb→ b+A;

c+A
rAc→ cA; cA

fAc→ c+A;

c+B
rBc→ cB; cB

fBc→ c+B;

∅ sA→ A; A
dA→ ∅;

b
sB→ B; bA

sB∗k1→ B; B
dB=1→ ∅;
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c
sC→ C; cB

sC∗k2→ C; cA
sC∗k3→ C; C

dC→ ∅.

Here rAb = rAc = rBc = 0.005 are binding rated of proteins A to gene b, A to gene c, and B to

gene c correspondingly, fAb = fAc = fBc = 0.1 are unbinding rates of proteins A to gene b, A to

gene c, and B to gene c correspondingly; the rates of degradation of proteins A, B, and C are

dA = dB = dC = 1, and basal synthesis rates are sA = sB = sC = 10.

Correspondingly to the sign of the regulations eight types of feed-forward loops are depicted

on Figure 3 (B) [19]. Coherent FFLs are C1, C2, C3, C4 and incoherent are I1, I2, I3,

I4 (Figure 3 (B)).

3.2.2 Simulations

In order to explore all possible types of phenotypic behavior of FFL we examine behavior of

waste range of intensities k1, k2, and k3 possible combinations. We performed the computations

for a total of 5200 examples, corresponding to the different parameter k1, k2, and k3 combina-

tions. Thus k1 ∈ [0.025, 3.0], k2 ∈ [0.025, 5.1] and k3 ∈ [0.025, 5.1]. With such parameter ranges

we were able to cover all eight possible cases of feed forward loops (Figure 3 (B), Table 3.2.2).

There were six cases of multistabilities discovered for feed-forward loop (Figure 4), which

are systems with one peak shown in red color, systems with two peaks, either for B, or for C,

shown in yellow color, systems with three peaks for C shown in green color, systems with four

peaks (two peaks for B and two peaks for C) shown in lightblue color, as well as systems with

six peaks, shown in purple color. These cases fall in the categories of system with mono- or

bimodality of B and up to three stable points for C.
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TABLE IV. Parameter ranges for eight types of FFL modeled

Type of FFL k1 range k2 range k3 range

C1 (1.0..3.0] (1.0..5.1] (1.0..5.1]

C2 [0.025..1.0) (1.0..5.1] (0.025..1.0]

C3 (1.0..3.0] [0.025..1.0) [0.025..1.0)

C4 [0.025..1.0) [0.025..1.0) (1.0..5.1]

I1 (1.0..3.0] [0.025..1.0) (1.0..5.1]

I2 [0.025..1.0) [0.025..1.0) [0.025..1.0)

I3 (1.0..3.0] (1.0..5.1] [0.025..1.0)

I4 [0.025..1.0) (1.0..5.1] (1.0..5.1]

Exhaustive parameter search allows us to construct full phase space diagrams of phenotypic

behavior corresponding to different parameter combinations (Figure 5). The heat map for

k1 ≤ 0.4 or k1 > 2.4 represents bimodality for B concentration, and for 2.1 > k1 > 0.8 the

unimodality of its concentration.

The joint distributions of B and C have one peak (red colored on the (Figure 4- Figure 5)),

when the values of intensities k1, k2, and k3 are close to 1. It means that only one phenotypic

state is observed, when the regulations intensities in FFL are weak.
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There are two types of distributions with two peaks (yellow areas on the Figure 5), and

yellow landscapes on the Figure 3 corresponding to two different phenotypic states. In the

first case k1 ≤ 0.4 or k1 > 2.4 the phenotypic state is characterized by bistability of B, given

monostability of C. It means that if the regulation of the intensity of about two fold produces

bistability for this example. For 2.1 > k1 > 0.8, distribution of B is bistable, and yellow areas

on the diagram Figure 5 show two phenotypic states of C given monostability of B.

Green color on the heatmap Figure 5, and corresponding schematic green colored represen-

tation on the Figure 4 indicates the regions with three modes and three possible phenotypes

for protein C, given monostability of B. We can observe that these regions appear, when the

difference in the scale of the rates k2 and k3 is at least about two folds, so the stable states for

every regulation intensity are separated from each other.

Blue color indicates phenotypic cases with bimodality for both B and C, and purple color

corresponds to bimodality for B and three modes for C.

We can see that in the systems with the weak regulations separate phenotypic states do not

appear, although when the regulations are strong systems have very well defined peaks. The

heat map Figure 5 suggests two classes of FFL, based on multistability characteristics: the

group of C2, C4, I1, and I3, where the tristability of output protein C always exists, given that

regulation intensities are strong enough, and the group of C1, C3, I2, and I4, where the signs

of the regulations of the output node C are the same, and tristability occurs only, when the

regulations k2 and k3 have very distinct values.
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(B)

(A)

C1         C2       C3      C4        I1        I2       I3        I4

Figure 3. Topology, graphical representation, and the types of FFL: (A) General topology

and corresponding 3-node schematic representation of implemented FFL containing three

genes a, b, c expressing three proteins A, B, C, such that protein A regulates b and c

expression by binding to them, and protein B regulates c expression. (B) The eight types of

feed-forward loop.
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Figure 4. Different cases of multistability for Feed Forward Loop (FFL): Examples of

probability landscapes for 6 cases of multistable behavior: 1 peak shown in red color; 2 peaks,

either for B, or for C, shown in yellow color; 3 peaks for C shown in green color; 4 peaks (2

peaks for B and 2 peaks for C) shown in lightblue color; and 6 peaks (2 peaks for B, and 3

peaks for C) shown in purple color.
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Figure 5. Full phase diagrams: different multistabilities under different reaction rates for all

8 cases of FFL.



46

3.2.3 Deterministic Approach

Straight mass-action kinetic law ordinary differential equation (ODE) formulation allows

only to find approximate mean concentration for the species A, B, and C, and does not give

any answer about the number of phenotypic states of the system. Steady state solutions with

respect to discrete genes concentration for mass action kinetics tell that there are at most six

phenotypic states.

The equations governing the kinetics in the constructed feed-forward loop were developed

as follows:

d[b]

dt
= fAb [bA]− rAb [A][b];

d[bA]

dt
= rAb [A][b]− fAb [bA];

d[c]

dt
= fAc [cA] + rBc [cB]− rAc [A][c]− rBc [B][c];

d[cA]

dt
= rAc [A][c]− fAc [cA];

d[cA]

dt
= fAc [B][c]− rAc [cB];

d[A]

dt
= sA − dA[A];

d[B]

dt
= sB[b] + k1 ∗ sB[bA]− dB[B];

d[C]

dt
= sC [c] + k2 ∗ sC [cA] + k3 ∗ sC [cB]− dC [C].
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Here [A], [B], [C] are the concentrations of proteins A, B, and C respectfully. [b], [c] are the

concentrations of genes b, and c, and [bA], [cA], [cB] are the concentrations of genes b, and c in

corresponding bound states bA, cA, cB.

Let the total amount of molecules of gene b in the system be nb, and total amount of

molecules of gene c in the system be correspondingly nc. Hypothetically assume that the copy

numbers of genes b and a are high, then the unique deterministic solution of the system above

looks as follows:

[b] =
fAb nb

fAb + rAb [A]
;

[bA] =
nbr

A
b [A]

fAb + rAb [A]
;

[c] =
fAc f

B
c nC

fAc f
B
c + fBc r

A
c [A] + fAc r

B
c [B]

;

[cB] =
fAc r

B
c nC [B]

fAc f
B
c + fBc r

A
c [A] + fAc r

B
c [B]

;

[cA] =
fBc r

A
c nC [A]

fAc u
B
c + fBc r

A
c [A] + fAc r

B
c [B]

[A] = sA/dA;

[B] =
sbnb
db
·
fAb + k1r

A
b [A]

fAb + rAb [A]

[C] =
sCnC
dC

· f
A
c f

B
c + k2f

B
c r

A
c [A] + k3f

A
c r

B
c [B]

fAc f
B
c + fBc r

A
c [A] + fAc r

B
c [B]
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However the copy number of genes in the real systems is low, and usually does not exceed

two copies. Thus the formulation of mass-action kinetics equation for [b] and [c] in a canonical

way is not reasonable. Indeed in the case of nb = nc = 1, quantities [b], [bA], [c], [cA], and [cB]

are fractions from the interval [0,1], whereas they can only be equal to 0 and 1. In this case

we can compute six integer steady state solutions with respect to [b], [bA], [c], [cA], and [cB]

concentrations. Every each of these solutions corresponds to particular combination of gene

copy numbers. They are 8-tuples ([A], [B], [C], [b], [bA], [c], [cA]), such as

(sA/dA, sB/dB, sC/dC , 1, 0, 1, 0, 0),

(sA/dA, k1sB/dB, sC/dC , 0, 1, 1, 0, 0),

(sA/dA, sB/dB, k2sC/dC , 1, 0, 0, 1, 0),

(sA/dA, k1sB/dB, k2sC/dC , 0, 1, 0, 1, 0),

(sA/dA, sB/dB, k3sC/dC , 1, 0, 0, 0, 1),

(sA/dA, k1sB/dB, k3sC/dC , 0, 1, 0, 0, 1).

From this deterministic assumption given discrete set of genes we obtain six stable peaks for the

system. However as we show in the work when the rates of regulation are not very well separated

in space some of these peaks can be merged together. Note that this approach is different from
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boolean modeling, where the analysis is conducted in a qualitative way (as ON/OFF output)

at time dynamics [110].

In the real biological systems these states could be not well separated in space and some

of the peaks could merge together. For example on the Figure 6 we can see two examples

of discrepancy in between analytical predictions from deterministic model and accurate values

from direct solution of dCME for averages and modes of steady state protein C probability

distribution. On the Figure 6 (A) the mean value from ODE (vertical blue line) and the

first moment of exactly computed probability landscape (vertical yellow line) diverge from each

other. Three green lines represent possible distinct phenotypic states, and diverge from real

solutions. On the Figure 6 (B) we observe three predicted from ODE phenotypes, however in the

reality system has only one peak. The mean obtained from ODE and real mean computed from

the distribution overlap, but in this case mean value does not carry any significant information

about system behavior and phenotypical variability. We can see that deterministic modeling

are not effective in studies of system phenotype.

3.2.4 The Dependence of the Multistability and Values of k2 and k3

The number of modalities of protein B in FFL architecture completely depends on regulation

intensity of k1 with respect to its basal expression rate, as the intensities k2 and k3 due to

network architecture do not affect the phenotype of B. The question we want to raise in this

section, is how the regulation intensities k1, k2, and k3 affect the number of peaks of protein C.

We start from k1 = 0.025 (Figure 7 (A)) and change it gradually, until we reach k1 = 3.0

fixing the number of changes of phenotypic states. The red color on the map (Figure 7 (D))
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Figure 6. Examples of discrepancy in between deterministic and stochastic modeling of Feed

Forward Loop (FFL) for two examples: (A) There are three modalities predicted from

deterministic approach with discrete set of genes, however the solution of corresponding

dCME gives only two peaks; the yellow line, which stands for exact mean diverges from the

red line, which stands for the predicted mean from ODE; (B) There are three peaks predicted

from deterministic approach with discrete set of genes, however there is only one possible

phenotype in reality.
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indicates ”zero change” areas meaning that in the systems with such values k2 and k3, the

change of k1 will not affect the number of phenotypes. As opposed to the red areas orange color

indicating 1-2 changes of the number of phenotypic states while changing k1 gradually is less

abundant. However the places of the localization of this color are approximately on the joints of

heatmap Figure 7 (A). It means that when phenotypic state for some parameter combination is

not stable, the mutation of the regulation rate k1 can affect the change of phenotype of output,

while for the systems with well distinguished phenotypes the change of k1 do not disturb the

phenotype of the output C.

The affect of k2 and k3 on phenotypic behavior of output is more explicit and direct. The

Figure 7 (B) shows the colormap for the number of possible phenotypic states for possible

combinations of k1 and k3 given k2 = 0.025, and correspondingly (E) shows the number of

times this phenotypic behavior changes with the gradual change of k2 on the interval (0.025,

5.1). We can see the abundance of yellow color indicating high sensitivity of phenotypes to k2

change. As in the previous case the yellow area (4 changes of the phenotypic states), is close to

the joints in between areas with different number of modes. There are particular cases, when

small increase of rate k3 gives big phenotypic changes to the output behavior. For example,

for k1 fixed at 1.5 for k3 = 3.6 we have four changes of phenotype, when for k3 = 3.9 only one

change. Indeed on the Figure 7 (D) for k3 = 3.9, we can see that the system changes only once

from three possible peaks to one possible peak. These are the regions of high robustness of the

phenotype.
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Analogously we plot the color diagram of the number of peaks given different parameter

combinations of k1 and k2 given k3 fixed at 0.025 (Figure 7 (C)), and corresponding color map

of the number of change of the modes of C for k3 changing on the interval (0.025, 5.0). Note

that the behavior is very similar to the previous case, meaning that phenotypic multistability

strongly depends on both of the values of k2 and k3.

3.2.5 Gene Duplication and Multistability

Understanding how gene duplication affects phenotypic variability is important, when for

instance studying appearance of disease [111], or origin of evolution [112].

In order to show how insertion of a gene can the affect the number of possible phenotypes,

we modeled a case, when there are two copies of gene c. There are six possible states of the

system depending on whether the promoter sites of gene c is free or occupied. Thus for a

triplet (c, cA, cB) possible states are (2, 0, 0), (0, 2, 0), (0, 0, 2), (1, 1, 0), (1, 0, 1), (0, 1, 1). These

generic states can result in separate phenotypic states given slow promoter dynamics of the

system. In the case when rates of expression and basal rates are not very well separated in

space, the phenotypic states are being merged. On the Figure 8, we plot the distributions of

the number of possible phenotypes for protein C given one copy of c (C), and two copies of c

(B) for k1 = 0.025. We can observe that the red area corresponding to monostable region is

larger in case of two copies of gene c. This result shows that introducing multiple copies of gene

can not only enrich phenotypic behavior, but also cause merging of different phenotypic states

together, basically leading to a single phenotype with the increase of the number of gene c.
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Note that bacterial cell can have multiple copies of the same gene, taking into account fast

binding and unbinding dynamics, we do not belive that stochastic multimodality phenomena

is typical for this organism. However in mammalian cells there are only two copies of the same

gene, and given slow promoter dynamics, stochastic phenotypic switching seems to appear as a

natural mechanism for them. Although we were not able to catch all six phenotypic states for

C at our parameter space (Figure 7 (B)), we were able to observe the cases with four and five

modes of the output (blue and purple areas correspondingly).

Assuming that in the beginning of the cell life both of the two copies of the gene are

functioning, and later due to mutations one of the copies gets knocked out, we can expect

two opposite types of scenarios to happen: one of the phenotypic states is lost, if regulation

intensities are large, as well as a new possible diseased phenotype is getting developed, when

regulation intensities are low. Further increase of the copies of c in the system will lead to

increase of the region of monostability, giving larger number of possible modes. Basically

insertion of the gene can lead to larger number of the states, but at the same time only feed-

forward loops with strong regulations intensities develop these new phenotypic states. System

with low intensities are loosing the states and become more stable.

We can see that insertion and deletion are symmetrical processes in principle with regards

to transcription factor regulations activities, and we believe that it explains the relation of

insertion to adaptation [113], as areas where the system are monostable are larger, so basically

slight change of regulation intensities will not bring a system to a system with more phenotypic

states.
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3.2.6 Input Intensity and Multistability

In one of the experiments we conducted we changed synthesis intensity of protein A to see

how it affects the number of modes of the proteins B and C. On the Figure 9 (A) we plot the

heatmap for the number of modes of C1 given sA = 3.0 and on the Figure 9 (B) correspondingly

for sA = 10.0. We can see that for higher values of k1 the second peak for protein B appears

faster. Thus at k1 = 2.4 we have two peaks for protein B for sA = 10, and only one peak for

sA = 3.0. We also can observe that the areas of monostability for weaker input are wider, and

the areas with the higher number of peaks are less. From that we can conclude that high input

induces multiphenotypic behavior.

3.2.7 Speed of Promoter Binding and Multistability

All the previous results were obtained for slow binding and unbinding reactions rates sys-

tems. Indeed when the system switches in between phenotypic states slowly, the synthesis-

degradation process for C can converge to its equilibrium at every phenotypic state of gene c.

The questions we want to answer with this section is how slow should be promoter dynamics in

order to be able to obtain multiple phenotype due to stochastic fluctuations with no feed-back

and cooperativity. Thus we were gradually changed binding and unbinding affinities of gene c

for I1 with regulation intensities fixed at k1 = 3.0, k2 = 0.025, k3 = 5.1 in order to see how

the number of phenotypic states was affected by GeneC binding dynamics. For slow binding

kinetics the output C of FFL discussed above has three peaks which, are C = 0 correspond-

ing to protein C expression when GeneC is inhibited by B, C = 9 corresponding to basal C

expression, and C = 49 corresponding to C expression activated by A.
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Figure 7. The heatmaps for the number peaks of the output protein C for (A) k1 fixed at

0.025, (B) k2 fixed at 0.025, (C) k3 fixed at 0.025, and corresponding color diagrams for

number of changes of peaks of C when (D) k1 changes on the interval (0.025,3.0), (E) k2

changes on the interval (0.025,5.0), (f) k3 changes on the interval (0.025,5.0).
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Figure 8. Number of phenotypes corresponding to protein C concentration for FFL with

k1 = 0.025 for the cases of (A) one gene in the system and (B) two genes in the system.

On the Figure 10 (A) the output of protein C is plotted, when both binding affinity in

between c and A and c and B have the same values, and we are gradually changing them to

n-fold, n = 0.5, 2, 4, 8, 16 from our generic case. We can see that for slower than our generic

case dynamics (red line, n = 0.5) the modes of the distribution are even better distinguished.

However with increase of both binding and unbinding rates both peaks for synthesis and degra-

dation dissapear at n = 8 fold (green line), and at n = 16 we see the monostable distribution

with one peak. On the Figure 10 (B) the output of protein C is plotted, when only binding

affinity in between c and B was changed to n-fold, n = 0.5, 2, 4, 8, 16, and the biding rate in be-

tween c and A remains the same as for generic example. The peak corresponding to expression
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Figure 9. Number of peaks of the system for C1 with (A) sA = 3.0 (B) sA = 10.0.
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of c, when activated by A remains robust, however the peak for c at inhibited state is getting

smaller with binding rate increase until it merges with peak for basal expression at n = 16

(darkgreen line). Figure 10 (C) depicts the probability distributions of C, when only binding

affinity of protein A to gene c is changed to n-fold, n = 0.5, 2, 4, 8, 16. The peak corresponding

to expression of c, when it is inhibited by B does not change, however the peak for gene c at

the activated state dissapears with binding rate increases as in the previous case. The basal

expression rate and unbinding rate are the number of the same magnitude for n = 16, meaning

that multiple phenotypes in feed-forward regulations are possible when unbinding rate is at

least about a magnitude smaller than the expression rate of the protein.

The speed of the binding dynamics of b correlates in a similar way with phenotypic behavior

of protein B, however generally does not affect the output C.

These results were confirmed by experimental study [114], where the fast switchers were

usually showing environmental conditions with mixed phenotype, but slow switchers were show-

ing distinct environmental conditions for every phenotype of positive feedback loop.

3.3 Sensitivities of Regulation Intensities in FFL

3.3.1 Definition of Sensitivity

In deterministic models, sensitivity of parameters simply measures changes in the output

at steady state, when values of model parameters are altered. In stochastic models where the

output is a probability distribution, sensitivities is often measured by changes in the expected

value of the output [115].
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Figure 10. The distributions for I1 with k1 = 3.0, k2 = 0.025, k3 = 5.1, when (A) c binding

affinity to both protein B and A was changed n− fold, (B) c binding affinity to both protein

B was changed n− fold, (B) c binding affinity to both protein A was changed n− fold.

Here we introduce a new definition of stochastic sensitivity and show it is more effective in

measuring the differences and similarities in behavior of different types of FFLs.

We define the sensitivity s′ki(k0, k) to changes in ki, i = 1, 2, 3, whose value is altered from

k0 to k as follows:

s′ki(k0, k) = E[
|Pk(x)− P0(x)|

P0(x)
/
|k − k0|
k0

],

where P0(x) is the system probability landscape at parameter value of ki = k0 and Pk(x) is the

landscape at ki = k 6= k0. The value of parameter ki belongs to a finite interval (a, b), which
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is (0, 1) for inhibition and (1, A) for activation, where A is some finite number. The sensitivity

of ski on the interval (a, b) is defined as:

ski = max
k0, k∈(a, b)

s′ki(k0, k). (3.1)

Our stochastic sensitivity is specific to the intervals of regulation intensities, which is FFL

specific.

3.3.2 Sensitivity of Regulation Intensity k1

We examined the stochastic sensitivity of regulation intensity k1 using (Equation 3.1). We

consider the cases when gene b is inhibited by protein A, with k1 < 1, and gene b is activated

by protein A, with k1 > 1 (Figure 11).

The sensitivity of k1 is smaller in the green and yellow regions of Figure 11, and larger in

the white and pink regions (Figure 11). There are two situations when the sensitivity of k1 is

smallest, and the system is most robust to change in k1. The first situation is when k2 = 1,

where the regulation of the gene c by B is weak, such that the expression of c does not depend

on B copy number. The other region is where k2 = k3, both the rates of activation/inhibition

of c by B and c by A are of similar values. It means that the system is robust to k1 change

when the proteins A and B regulate the output node C with the same intensity. The sensitivity

of k1 is also small for the smallest values of k1 (i.e., k1 < 1), and larger for larger values of k1

(i.e., k1 > 1).
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Figure 11. The sensitivity of regulation intensity s(k1) on the inhibition of gene b by protein

A (k1 < 1), and on the activation of gene b by protein A (k1 > 1).

3.3.3 Sensitivity of Regulation Intensity k2

We examined the stochastic sensitivity of regulation intensity k2 using (Equation 3.1). We

consider the cases when gene c is inhibited by protein B, with k2 < 1, and gene c is activated

by protein B, with k2 > 1 (Figure 12).

The sensitivity of k2 is smaller in the green and yellow regions of Figure 12, and larger

in the white and pink regions (Figure 12). The sensitivity is smaller, when the values of k1

are small, specifically, A inhibits the expression of b and the overall copy number of B in the

system is reduced. Hence, the regulation of output C by B is less prominent, and k2 has smaller

sensitivity. The sensitivity of k2 is also smaller for the small values of k2 (i.e., k2 < 1), and
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Figure 12. The sensitivity of regulation intensity s(k2) on the inhibition of gene c by protein

B (k2 < 1), and on the activation of gene c by protein B (k2 > 1).

larger for larger values of k2 (k2 > 1). The dependence of the sensitivity of k2 to the value of

k3 is negligible.

3.3.4 Sensitivity of Regulation Intensity k3

We examined the stochastic sensitivity of regulation intensity k3 using (Equation 3.1). We

consider the cases when gene c is inhibited by protein A, with k3 < 1, and gene c is activated

by protein A, with k3 > 1 (Figure 13).

The sensitivity of k3 is smaller in the green and yellow regions of the Figure 13, and larger

in the white and pink regions (Figure 13). Smaller k3 sensitivities correspond to larger values

of k1. In this situation A activates the expression of c, therefore the effect of the regulation of

c by direct path is more prominent. There is also a weak dependence of the sensitivity of k3 of
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Figure 13. The sensitivity of regulation intensity s(k3) on the inhibition of gene c by protein

A (k3 < 1), and activation of gene c by protein A (k3 > 1).

the value of k2. Smaller k3 sensitivities correspond to larger values of k2 in the case of k3 < 1,

where the inhibition is more prominent with larger k2. Smaller k3 sensitivities correspond to

smaller values of k2 in the case of k3 > 1, where the activation is more prominent with larger

k2. The sensitivity of k3 is also smaller for the small values of k3 (k3 < 1), and larger for larger

values of k3 (k3 > 1).

3.3.5 Dependence of Sensitivity on Multistability of FFLs

We now examine the dependence of the values of the sensitivity on the number of peaks in

the system Table. (3.3.5). Our results show that the number of peaks is correlated with the

sensitivities of k1, k2, and k3. FFLs with three peaks are the least robust to changes in the
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TABLE V. k1, k2, and k3 sensitivities of coherent and incoherent FFLs with different numbers

of peaks

Type of Number Mean Mean Mean

FFL of peaks k1 k2 k3

Coherent 3 0.16 0.80 0.94

2 0.15 0.77 0.69

1 0.12 0.44 0.47

Incoherent 3 0.20 1.02 0.89

2 0.15 0.72 0.75

1 0.11 0.57 0.46

parameters for both coherent and incoherent FFLs. In contrast, systems with one peak are the

most robust to the change of the parameters for both case of coherent and incoherent loops.

3.4 Conclusions

Gene regulatory networks play crucial role in defining cellular phenotype characteristics

and molecular content. Their modeling is a hot topic of system biology field, which remains to

be challenging due to high complexity and ubiquitously stochastic nature of them. Although

gene regulatory networks in the cell in general might consist of dozens of genes and their

proteins products, their functions are usually defined by smaller subnetwork subunits called

network motifs. One of the interesting questions of network motifs properties is their role
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in maintaining multiphenotypic behavior. Deterministic models restrict the class of networks

capable to generate multiple phenotypes only to feed-back network motifs. In oppose to that,

stochastic models show that multiple phenotypes of the system can be generated from stochastic

fluctuations in between states with distinct gene expression levels. This phenomena is associated

with mammalian cells, which have highly stochastic behavior and slow promoter dynamics due

to complexity of their chromatin structure.

In this work we studied feed-forward loop network motifs as one of the most ubiquitous

three node network motifs, which has high significance in mammalian cells. Its determinis-

tic dynamic behavior is well studied, and suggests signal processing and adaptation functions.

However modeling of feed-forward loop network model with taking into account stochasticity

remains to be a challenging and promising research topic. The results of our computational ex-

periments showed that feed-forward loop can generate multiple cell phenotypes due to stochastic

fluctuations in between distinct expression levels given slow promoter dynamics. The regula-

tion intensities are the key players, which could be tuned in order to obtain certain phenotypic

behavior. The direct regulation path from the input to output and indirect path through the

intermediate buffer node could result in two separate modalities, which together with basal

expression of the output gene, generate three distinct phenotypes of the system for the system

with one copy of output gene c. By combining this result and two possible phenotypes for gene

b we obtained six modalities for feed-forward loop. When the number of copies of gene c is

two the number of phenotypic states for the output protein C can be at most six, giving 12

phenotypes points in total. However in reality this case is hard to achieve due to necessity of
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high separation of rates. In contrast with this we showed that the increase of the number of

peaks in general leads to expansion of the area of monostability, as the regions of the expression

with different rates get merged together. Another interesting observation made is that high

intensity of input amplifies multistability in feed-forward loop, suggesting feed-forward loop

architecture to be favorable for maintaining multiple phenotypic states.

Hight significance of feed-forward loop in stem cell regulation network containing core

pluripotency transcription factors Oct4 and Nanog suggests its active role in maintaining

pluripotency versus differentiation [21]. In this type of networks Nanog participates as interme-

diate node, which get activated by Oct4, and then both of these factors control the expression

of genes associated with the onset of differentiation or pluripotency.

We also studied the sensitivities of regulation intensities of feed-forward loops (FFLs) under

the conditions of slow promoter binding. We first computed the precise steady state probability

distributions of eight types of FFLs under a wide range of conditions. Obtained results reveal the

overall of multistable behavior of FFLs in the copy number of C. We introduced a new definition

of the stochastic sensitivity, to quantify the sensitivity of different parameters of stochastic

FFL. I showed how the steady state distribution responds to changes in model parameters.

Specifically, we quantified how sensitivities of regulation intensities depend on the values of

other regulation intensities and the state of multistability of the system. We found that the

sensitivity of regulation intensity k1 depends on the values of k2 and k3, whereas the sensitivities

of k2 and k3 strongly depend on k1. The FFL with more peaks of protein C copy number is

less robust.
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The results of this work could be used in construction of synthetic feed-forward loop, and

choosing parameters of the system according to particular programmed phenotypic behavior.



CHAPTER 4

DISCRETE FLUX AND VELOCITY FIELDS OF PROBABILITY AND

THEIR GLOBAL MAPS IN REACTION SYSTEMS

4.1 Introduction

Reprinted from ”Terebus A, Liu C, Liang J. Discrete flux and velocity fields of probabil-

ity and their global maps in reaction systems. The Journal of chemical physics. 2018 Nov

14;149(18):185101” with the permission of AIP Publishing

Biochemical reactions in cells are intrinsically stochastic [16,60,61,64]. When the concentra-

tions of participating molecules are small or the differences in reaction rates are large, stochastic

effects become prominent [62–65]. Many stochastic models have been developed to gain under-

standing of these reaction systems [7,67,69,116,117]. These models either generate time-evolving

landscapes of probabilities over different microstates [67, 69, 116, 117], or generate trajectories

along which the systems travel [7,10]. Vector fields of probability flux and probability velocity

are also of significant interest, as they can further characterize time-varying properties of the

reaction systems, including that of the non-equilibrium steady states [33–37,118]. For example,

determining the probability flux can help to infer the mechanism of dynamic switching among

different attractors [31, 32]. Quantifying the probability flux can also help to characterize the

departure of non-equilibrium reaction systems from detailed balance [35,40,41], and can help to

identify barriers and checkpoints between different stable cellular states [39]. Computing proba-

68
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bility fluxes and velocity fields has found applications in studies of stem cell differentiation [42],

cell cycle [39], and cancer development [43,44].

Models of probability fluxes and velocities in well-mixed mesoscopic chemical reaction sys-

tems have been the focus of many studies [31, 36, 37, 39–41, 46, 74, 119–121]. They are often

based on the formulation of the Fokker-Planck and the Langevin equations, both involving the

assumption of Gaussian noise of two moments [36,37,39,41,118,122]. However, these models are

not valid when copy numbers of molecular species are small [30,73–75], as they do not provide

a full account of the stochasticity of the system [8, 30, 73–76]. For example, the Fokker-Planck

model fails to capture multistability in gene regulation networks with slow switching between

the ON and the OFF states [30]. These models are also of inadequate accuracy when systems

are far from equilibrium [75]. Moreover, solving the systems of partial differential equations

resulting from the Fokker-Planck and Langevin Equations requires explicit boundary condi-

tions for states where one or more molecular species have zero copies [37]. These boundary

conditions are ill-defined in the context of Gaussian noise [123] and are difficult to impose using

the Fokker-Planck/Langevin formulation, or any other continuous models, as reactions cannot

occur on boundary states when one or more reactants are exhausted.

Several discrete models of probability flux and velocity based on continuous-time Markov

jump processes associated with the firing of reactions have also been introduced [31, 119–121].

However, these models have limitations. The models developed in [31, 121] account only for

outflow fluxes. While the probability of transition to a subsequent microstate after a reaction

jump is accounted for, the inflow flux describing the probability of transition into the current
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microstate from a previous state is not explicitly considered. The work in [124] studies the

phosporylation and dephosophorylation process. It introduces a formulation of discrete flux

based on a forward finite difference operator. However, this is only applicable to this special

system of simple single-species reactions, where there is no mass exchange between the two

different molecular types. The models developed in [119, 120] are limited to analysis of single

reactional trajectories. In addition, the probability flux is often assumed to be associated with

reactions that are reversible [125]. While these models offer an in-the-moment view on how

probability mass moves in the system by following trajectories generated from reaction events,

they do not offer a global picture of the time-evolving probability flux at a specific time or at

fixed locations in the state space. To construct the global flow-map of discrete probability flux

and velocity, proper formulations of discrete flux and velocity, as well as methods to quantify

the discrete forward and backward flux between every two states connected by reactions are

required.

In this work, we introduce the appropriate formulations of discrete flux and discrete velocity

for arbitrary mesoscopic reaction systems. We redefine the derivative operator and discrete

divergence based on the discrete nature of chemical reactions. The discreetness of both the state

space and the jump processes of reactions is taken into consideration, with the discrete version

of the continuity equation satisfied. Our approach allows the quantification of probability flux

and velocity at every microstate, as well as the ability in tracing out the outflow probability

fluxes and the inflow fluxes as reactions proceeds. In addition, proper boundary conditions

are imposed so vector fields of flux and velocity can be exactly computed anywhere in the
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discrete state space, without the difficulty of enforcing artificial reflecting conditions at the

boundaries [126]. Our method can be used to exactly quantify transfer of probability mass and

to construct the global flow-map of the probability flux in all allowed directions of reactions over

the entire state space. Results computed using our model can provide useful characterization of

the dynamic behavior of the reaction system, including the high probability paths along which

the probability mass of the system evolves, as well as properties of their non-equilibrium steady

states.

The accurate construction of the discrete probability flux, velocity, and their global flow-

maps requires the accurate calculation of the time-evolving probability landscape of the reaction

networks. Here we employ the recently developed ACME method [69,84] to compute the exact

time-evolving probability landscapes of networks by solving the underlying discrete Chemical

Master Equation (dCME). This eliminates potential problems arising from inadequate sampling,

where rare events of low probability are difficult to quantify using techniques such as the

stochastic simulations algorithm (SSA) [7, 9, 10].

In this chapter we first introduce the concept of ordering of the microstates of the system,

the definitions of discrete derivatives and divergence, as well as flux and velocity on a discrete

state space. We further illustrate how time-evolving probability flux and velocity fields can

be computed for three classical systems, namely, the birth-death process [69,127], the bistable

Schlögl model [10,128], and the oscillating Schnakenberg system [37,90,129].
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4.2 Models and Methods

Recall, that for a well-mixed biochemical system with constant volume and temperature,

and n molecular species Xi, i = 1, . . . , n, which participate in m reactions Rk, k = 1, . . . ,m,

the microstate x(t) of the system at time t is a column vector of copy numbers of the molecular

species: x(t) ≡ (x1(t), x2(t), . . . , xn(t))T ∈ Zn+, where all values are non-negative integers. All

the microstates that the system can reach form the state space Ω = {x(t)|t ∈ (0,∞)}. The

size of the state space is denoted as |Ω|. The probability of the system to be at a particular

microstate x at time t is denoted as p(x, t) ∈ R[0,1]. The probability surface or landscape p(t)

over the state space Ω is denoted as p(t) = {p(x, t)|x ∈ Ω)}. A reaction Rk takes the general

form of

Rk : c1kX1 + · · ·+ cnk
Xn

rk→ c′1kX1 + · · ·+ c′nk
Xn,

so that Rk brings the system from a microstate x to x + sk, where the stoichiometry vector

sk ≡ (s1
k, . . . , s

n
k) ≡ (c′1k − c1k , . . . , c

′
nk
− cnk

)

gives the unit vector of the discrete increment of reaction Rk. sk also defines the direction of

the reaction Rk.

The discrete Chemical Master Equation (dCME) is a set of linear ordinary differential

equations (Equation 1.1) describing the changes of probability over time at each miscrostate
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of the system [7, 17, 18, 71]. The dCME for an arbitrary microstate x = x(t) can be written in

the general form as:

∂p(x, t)

∂t
=

m∑
k=1

[Ak(x− sk)p(x− sk, t)

−Ak(x)p(x, t)], x− sk, x ∈ Ω,

where the reaction propensity function Ak(x) is determined as follows x:

Ak(x) = rk

n∏
l=1

 xl

clk

.

It is possible that only a subset or none of the permissible reactions can occur at a particular

state x if it is at the boundary of the state space Ω, where the number of reactants is inadequate.

Specifically, we define the boundary states ∂Ωk for reaction k as the states where reaction Rk

cannot happen:

∂Ωk ≡ {x = (x1, . . . , xi, . . . , xn)| there exist i :xi < cik}.

We define the overall boundary states as ∂Ω ≡
m⋃
k=1

∂Ωk.
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Reactional probability vector and its time-derivative. We can consider each of the k-

th reactions separately and decompose the right hand side of (Equation 1.1) into m components,

one for each reaction, k = 1 . . .m:

∂pk(x, t)

∂t
= Ak(x− sk)p(x− sk, t)−Ak(x)p(x, t). (4.1)

∂p(x, t)/∂t in (Equation 1.1) therefore can also be written as:

∂p(x, t)

∂t
=

m∑
k=1

∂pk(x, t)

∂t
.

Any of the m reactions can alter the value of p(x, t) as specified by (Equation 4.1). While the

probability p(x, t) is a scalar, we define the reactional probability vector p(x, t) such that

p(x, t) = (p1(x, t), . . . , pm(x, t)) ∈ Rm, (4.2)

with p(x, t) = p(x, t) · 1 = (p1(x, t), . . . , pm(x, t)) · (1, . . . , 1)T =
m∑
k=1

pk(x, t). We also define the

time-derivative of the probability vector ∂p(x, t)/∂t as:

∂p(x, t)

∂t
≡
(
∂p1(x, t)

∂t
, . . . ,

∂pm(x, t)

∂t

)
,
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and we have:

∂p(x, t)

∂t
=

(
∂p1(x, t)

∂t
, . . . ,

∂pm(x, t)

∂t

)
· (1, . . . , 1)T

=
∂p(x, t)

∂t
· 1 =

m∑
k=1

∂pk(x, t)

∂t
.

4.2.1 Ordering Microstates, Directional Derivative, and Discrete Divergence

Ordering Microstates. As the microstates are discrete and the stochastic jumps are

dictated by the discrete increments {sk} of reactions, we introduce discrete partial derivative

and discrete divergence to describe effect of specific reactions.

First, we imposed an unambiguous order relationship ′′ ≺′′ over all microstates. We impose

an ascending order on the microstates x0 ≺ x1 ≺ . . . ≺ x|Ω| that is maintained at all time,

such that for each pair of states xi 6= xj , either xi ≺ xj or xj ≺ xi holds, but not both. There

are many ways to impose such an ordering. Without loss of generality, we can first use the

lexicographic order so the microstates are initially sorted by species alphabetically, and then

by increasing number of molecules of the species. Other ordering schemes are also possible.

Discrete Partial Derivative. We now consider reactional component pk(x, t) of the

probability of the state x (see (Equation 4.2)). For reaction Rk, the only possible change in x

is determined by its discrete increment of sk.

We first consider the case when the state x − sk preceding the reaction Rk and the state

x after the reaction have the order x − sk ≺ x. This also implies x ≺ x + sk. In this

case, the direction of the reaction coincides with the direction of the imposed ordering of the
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Figure 14. Ordering of microstates: a) when the order of the state preceeding the reaction

Rk and the state after the reaction coincides with the imposed ascending order of microstates,

we have x− sk ≺ x ≺ x + sk; b) when the order of the state preceding the reaction Rk and the

state after the reaction is in the opposite direction to the ascending order of the microstates,

we have x + sk ≺ x ≺ x− sk.
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microstates (Figure 14a). We define the discrete partial derivative ∆pk(x, t)/∆xk of pk(x, t)

over the discrete states in the direction sk of reaction Rk as:

∆pk(x, t)

∆xk
≡ pk(x, t)− pk(x− sk, t), (4.3)

if x− sk ≺ x ≺ x + sk.

We now consider the case when x ≺ x−sk, namely, when the state x−sk preceding reaction

Rk and the state x after Rk are ordered such that the after-reaction state x is placed prior to

the before-reaction state x − sk. This also implies x + sk ≺ x (Figure 14b). In this case, the

discrete partial derivative ∆pk(x, t)/∆xk is defined as:

∆pk(x, t)

∆xk
≡ −(pk(x, t)− pk(x + sk, t)), (4.4)

if x + sk ≺ x ≺ x− sk. The negative sign “–” indicates that the direction of the reaction Rk is

opposite to the direction of the imposed order of the states.

Discrete Divergence. We now introduce the discrete divergence ∇d · p(x, t) ∈ R for

the probability vector p(x, t) over the m discrete increments {sk} of the reactions. Applying

(Equation 4.3)–(Equation 4.4) to each reactional component pi(x, t) of p(x, t) defined in (Equa-

tion 4.2), the discrete divergence ∇d · p(x, t) at x is the sum of all discrete partial derivatives

along the directions of reactions:

∇d · p(x, t) ≡
m∑
k=1

∆pk(x, t)

∆xk
. (4.5)
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4.2.2 Discrete Flux and Velocity at a Fixed Microstate

Single-Reactional Flux. There are two types of reaction events affecting flux between two

states x and x+sk: reactions generating flux flowing from x to x+sk, and reactions generating

flux flowing from x + sk to x. The ordering of the microstates enables unique definition of the

type of events that the firing of a reaction Rk belongs to. For any two states x and x + sk, only

one of the two orderings is possible: we have either x ≺ x + sk, or x + sk ≺ x. We define the

single-reactional flux of probability Jk(x, t) ∈ R for reaction Rk at microstate x ∈ Ω as:

Jk(x, t) ≡


Ak(x)p(x, t) x ≺ x + sk,

Ak(x− sk)p(x− sk, t) x ≺ x− sk.

(4.6)

Jk(x, t) depicts the change in p(x, t) at the state x due to one firing of reaction Rk. If x ≺ x+sk,

Jk(x, t) depicts the outward flux (outflux) of probability due to one firing of reaction Rk at x

to bring the system from x to x + sk. If x ≺ x − sk, Jk(x, t) depicts the inward flux (influx)

of probabability due to one firing of reaction Rk at x− sk to bring the system from x− sk to

x. For any two states connected by a reaction Rk, only one of two orderings is possible as the

imposed ordering of the states is unique. Therefore, the single-reactional flux can be applied to

all microstates in a self-consistent manner. It also accounts for all reactions, as Jk(x, t) can be

defined for every reaction Rk. The single-reactional Rk velocity is defined correspondingly as:

vk(x, t) ≡ Jk(x, t)/p(x, t).
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Flux at Boundary States. No reactions are possible if any of the reactant molecules

is unavailable, or if its copy number is inadequate. If x ≺ x + sk (Figure 14a), but x ∈

∂Ωk ( (Equation 4.1)), reaction Rk cannot happen, and we have Jk(x, t) = 0. If x ≺ x −

sk (Figure 14b), but x − sk ∈ ∂Ωk ((Equation 4.1)), reaction Rk cannot happen, and we have

Jk(x, t) = 0. We therefore have the following boundary conditions for Jk(x, t):

Jk(x, t) ≡


0, x ≺ x + sk and x ∈ ∂Ωk

0, x ≺ x− sk and x− sk ∈ ∂Ωk

Discrete Derivative of Jk. Similar to (Equation 4.3-Equation 4.4), the directional

derivative of single-reactional flux ∆Jk(x, t)/∆xk of Jk(x, t) along the direction sk of reaction

Rk is defined as follows:

∆Jk(x, t)

∆xk
≡


Ak(x)p(x, t)−Ak(x− sk)p(x− sk, t), if x− sk ≺ x,

−(Ak(x− sk)p(x− sk, t)−Ak(x−sk + sk)p(x−sk + sk, t)), if x ≺ x− sk.

With simplifications from the trivial identity−sk + sk = 0, the two expressions of ∆Jk(x, t)/∆xk

can be combined into one:

∆Jk(x, t)

∆xk
≡ Ak(x)p(x, t)−Ak(x− sk)p(x− sk, t)

= −∂pk(x, t)
∂t

. (4.7)
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Total Reactional Flux, Divergence and Continuity Equation. We now define the

total reactional flux or r-flux Jr(x, t), which describes the probability flux at a microstate x at

time t:

Jr(x, t) ≡ ( J1(x, t), .., Jm(x, t)) ∈ Rm. (4.8)

Intuitively, the r-flux Jr(x, t) is the vector of rate change of the probability mass at x in

directions of all reactions. Similar to (Equation 4.5), we have the discrete divergence of Jr(x)

at microstate x :

∇d · Jr(x, t) ≡
m∑
k=1

∆Jk(x, t)

∆xk
(4.9)

From (Equation 4.7) we have:

∇d · Jr(x, t) =
m∑
k=1

[Ak(x)p(x, t)

−Ak(x− sk)p(x− sk, t)]. (4.10)

Similar to its continuous version [45,46] the discrete continuity equation for the probability

mass insists that:

∇d · Jr(x, t) = −∂p(x, t)
∂t

. (4.11)

From Eqs. (Equation 4.9), (Equation 4.11) and (Equation 1.1), it is clear that r-flux Jr(x, t) sat-

isfies the continuity equation. The probability mass flows simultaneously along all m directions,

with the continuity equation satisfied at all time.
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Single-Reactional Species Flux and Stoichiometric Projection. The reactional

probability flux Jk(x, t) along the direction of reaction Rk defined in (Equation 4.6) can be

further decomposed into components of individual species. With the predetermined stoichiom-

etry sk = (s1
k, .., s

n
k), we define the stoichiometric projection of Jk(x, t) into the component of

the j−th species Xj as:

J jk(x, t) ≡ sjkJk(x, t).

The set of scalar components of all species {J jk(x, t)} can be used to form a vector Jk(x, t) ∈

Rn, which we call the single-reaction species flux :

Jk(x, t) ≡ (J1
k (x, t), .., Jnk (x, t)) = skJk(x, t) ∈ Rn.

The single-reaction species velocity of probability is defined correspondingly as vk(x, t) ≡

Jk(x, t)/p(x, t).

Total Species Flux and Velocity. The total species flux or s-flux Js(x, t) ∈ Rn is the

sum of all k single-reaction species flux vectors at a microstate x ∈ Rn:

Js(x, t) ≡
m∑

k = 1

Jk(x, t) =
m∑

k = 1

skJk(x, t) ∈ Rn. (4.12)

The total species velocity for probability is defined accordingly as:

vs(x, t) =

m∑
k = 1

Js(x, t)/p(x, t). (4.13)
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The s-flux Js(x, t) is different from the r-flux Jr(x, t) defined in (Equation 4.10). Reaction-

centric Jr(x, t) ∈ Rm characterizes the total probability flux at current state in the directions

of all reactions, while species-centric Js(x, t) ∈ Rn sums up the contributions of every reaction

to the probability flux at state x in the directions of all species.

4.2.3 Flux of Reversible Reaction

Flux of reversible reactions system. We now discuss probability flux in reversible

reaction systems that has been previously studied [35, 130], and how they are related to fluxes

formulated here. For a pair of the reactions, its directionality needs to be specified upfront,

namely, which reaction is the forward reaction R+, and which is the reversed reaction R−:

R+ : c1X1 + · · ·+ cnXn
r+→ c′1X1 + · · ·+ c′nXn,

R− : c′1X1 + · · ·+ c′nXn
r−→ c1X1 + · · ·+ cnXn.

Let s = ( c′1 − c1, . . . , c
′
n − cn) be the stoichiometry of reaction R+, −s the stoichiometry of

reaction R−. The flux J described in [35,130] is the net flux between x and x+s. It is specified

as the difference between the forward flux at x J+(x, t) = r+
n∏
l=1

(
xl
cl

)
p(x, t) generated by the

forward reaction R+ and the reverse flux at x+s J -(x+s, t) = r−
n∏
l=1

(xl+sl
c′l

)
p(x+s, t) generated

by the reverse reaction R−, both connecting x and x + s [35, 130]:

J(x, t) = r+
n∏
l=1

(
xl
cl

)
p(x, t)

−r−
n∏
l=1

(
xl + sl
c′l

)
p(x + s, t). (4.14)
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Conversion between single-reactional species flux and flux in a pair of reversible

reaction system. The flux J(x, t) for a pair of reversible reactions above can be related to

the s-flux Js(x, t) of (Equation 4.12) by examining the projection of the J(x, t) in (Equa-

tion 4.14) to individual species. Specifically, with the stoichiometry s, the projection of the flux

of (Equation 4.14) to the component of the j−th species Xj is:

J(x, t) = sJ(x, t) = sr+
n∏
l=1

(
xl
cl

)
p(x, t)− sr−

×
n∏
l=1

(
xl + sl
c′l

)
p(x + s, t) ∈ Rn. (4.15)

When the direction of the forward reaction R+ coincides with the ascending order of the states,

one firing of R+ with the stoichiometry vector s at the state x brings the system to the state

x + s in the direction of the ascending order. From (Equation 4.12), the s-flux Js(x, t) for

(R+, R−) is Js(x, t) = sr +
n∏
l=1

(
xl
cl

)
p(x, t)−sr -

n∏
l=1

(xl+sl
c′l

)
p(x+s, t). In this case, the projection

of the reversible reaction flux by (Equation 4.15) is identical to the s-flux by (Equation 4.12)

at the state x.

When the direction of the forward reaction R+ is opposite to the ascending order of the

states, one firing of R−with the stoichiometry vector −s at the state x + s brings the system

to the state x in the direction of the ascending order. From (Equation 4.12), the s-flux

Js(x + s, t) for (R+, R−) is Js(x + s, t) = sr +
n∏
l=1

(
xl
cl

)
p(x, t)− sr -

n∏
l=1

(xl+sl
c′l

)
p(x + s, t) . In this

case, the projection of the reversible reaction flux by (Equation 4.15) is identical to s-flux by

(Equation 4.12) at the state x + s.
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4.3 Results

Below we illustrate how time-evolving and steady-state flux and velocity fields of the proba-

bility mass can be computed for three model systems, namely, the birth-death process, the

bistable Schlögl model, and the oscillating Schnakenberg system. The underlying discrete

Chemical Master Equation (dCME) (Equation 1.1) of these models are solved using the re-

cently developed ACME method [69, 84]. The resulting exact probability landscapes of these

models are used to compute the flux and the velocity fields.

4.3.1 The Birth and Death Process

The birth-death process is a simple, but ubiquitous process of the synthesis and degradation

of molecule of a single specie [69, 127]. The reaction schemes and rate constants examined in

this study are specified as follows:

R1 : ∅ r1→ X, r1 = 1,

R2 : X
r2→ ∅, r2 = 0.025.

Below we use k as the index of the two reactions.

Ordering Microstates. The microstate in this system is defined by the copy number x of

the molecular specie X. We order the microstates in the direction of increasing copy numbers

of x, namely, (x = 0) ≺ (x = 1) ≺ (x = 2) · · · .

Discrete Increment and Reaction Direction. Reaction R1 brings the system from the state x

to the state x+ 1, in the direction of increasing order of the microstates. Its discrete increment
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is s1 = 1. Reaction R2 brings the system from the state x to the state x − 1, in the direction

of decreasing order of the microstates. Its discrete increment is therefore s2 = −1.

Discrete Chemical Master Equation. Following (Equation 1.1), the discrete Chemical Master

Equation for this system can be written as:

∂p(x, t)/∂t = r1p(x, t)− r1p(x− 1, t)− r2(x+ 1)

×p(x+ 1, t) + r2xp(x, t). (4.16)

Single-Reactional Flux, Velocity and Boundary Conditions. The single-reactional flux

Jk(x, t) ∈ R can be written as:

J1(x, t) = r1p(x, t), J2(x, t) = r2(x+ 1)p(x+ 1, t). (4.17)

Here x = 0, 1, .... No special boundary conditions are required for this system, as J1(x, t) and

J2(x, t) at the boundary x = 0 take the values specified by (Equation 4.17). The single-

reactional velocity vk(x, t) ∈ R can be written as: v1(x, t) = J1(x, t)/p(x, t) and v2(x, t) =

J2(x, t)/p(x, t).
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Discrete Partial Derivative. The imposed ordering of the microstates implies x ≺ x+ s1, as

s1 = 1 and x ≺ x+ 1. By (Equation 4.3), the derivative ∆J1(x, t)/∆x1 of the single-reactional

flux function J1 is:

∆J1(x, t)

∆x1
= J1(x, t)− J1(x− s1, t)

= r1p(x, t)− r1p(x− 1, t).

The imposed ordering of the microstates also has x ≺ x − s2, as s2 = −1 and x ≺ x + 1. By

(Equation 4.4), the derivative ∆J2(x, t)/∆x2 of the single-reactional flux function J2 is:

∆J2(x, t)

∆x2
= −(J2(x, t)− J2(x+ s2, t))

= −(r2(x+ 1)p(x+ 1, t)− r2(x)p(x, t)).

Total Reactional Flux, Discrete Divergence, and Continuity Equation. Following (Equa-

tion 4.8), the total reactional flux Jr(x, t) ∈ R2 is:

Jr(x, t) = (J1(x, t), J2(x, t))

= (r1p(x, t), r2(x+ 1)p(x+ 1, t)).

The total reactional velocity vr(x, t) ∈ R2 is: vr(x, t) = Jr(x, t)/p(x, t).
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Following (Equation 4.5), the discrete divergence ∇d · Jr(x, t) of Jr(x, t) ∈ R2 over the

discrete increments s1 and s2 can be written as:

∇d · Jr(x, t) ≡
2∑

k=1

∆Jk(x, t)

∆xk
= r1p(x, t)− r1p(x− 1, t)

−r2(x+ 1)p(x+ 1, t) + r2(x)p(x, t). (4.18)

Here the r-flux Jr(x, t) indeed satisfies the continuity equation, as we have ∇d · Jr(x, t) =

−∂p(x, t)/∂t from Eqs. (Equation 4.11), (Equation 4.16), and (Equation 4.18).

Stoichiometry projection and single-reactional species flux. Since there is only one specie

in this system, the stoichiometry projection of Jk(x, t) to the specie X equals to the single-

reactional species flux Jk(x, t) ∈ R, which can be written as:

J1(x, t) = r1p(x, t) and J2(x, t) = −r2(x+ 1)p(x+ 1, t).

The single-reactional species velocity vk(x, t) ∈ R can be written as follows: v1(x, t) = J1(x, t)/p(x, t)

and v2(x, t) = J2(x, t)/p(x, t).

Total Species Flux and Velocity. Following Eqs. (Equation 4.12)–(Equation 4.13), the s-flux

Js(x, t) and the total velocity vs(x, t) are:

Js(x, t) = r1p(x, t)− r2(x+ 1)p(x+ 1, t),

vs(x, t) = Js(x, t)/p(x, t).
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When Js(x, t) > 0 and vs(x, t) > 0, the probability mass moves in the direction of increasing

copy number ofX. This is the direction of the ascending order of microstates we imposed. When

Js(x, t) < 0 and vs(x, t) < 0, the probability mass moves in the direction of the decreasing copy

number of X. We will further use just simple flux instead of s-flux.

Overall Behavior of the Birth and Death System. We examine the behavior of the birth and

death process under the initial conditions p(x = 0)|t=0 = 1 (Figure 15a, backside) and that of

the uniform distribution (Figure 15d, backside).

For the initial condition of p(x = 0)|t=0 = 1, the probability landscape changes from that

with a peak at x = 0 to that with a peak at x = 40 (Figure 15a). Figure 15b shows the

heatmap of the flux Js(x, t), and Figure 15c the heatmap of the velocity vs(x, t). Yellow and

red areas represent locations where the probability moves in the positive direction, while white

areas represents locations where the flux and velocity both are close to be zero. The flux and

velocity of probability mass (Figure 15b– Figure 15c) are positive at all time, indicating that

the probability mass is moving only in the direction of increasing copy number of x. Moreover,

when the probability is non-zero, the probability velocity remains constant at any fixed time t

across different microstates. The blue line in Figure 15b– Figure 15c corresponds to the peak

of the system, that changes its location from x = 0 to x = 40.

For the initial condition of the uniform distribution, the probability landscape changes from

the constant line to that with a peak at x = 40 (Figure 15d). Figure 15e shows the heatmap

of the flux Js(x, t), and Figure 15f the heatmap of the velocity vs(x, t). Blue areas represent

locations where the probability mass moves in the negative direction, yellow and red areas
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represent locations where the probability moves in the positive direction, while white areas

represents locations where the flux and velocity both are equal to zero. Specifically, when

x < 40, we have Js(x, t) > 0 and vs(x, t) > 0, namely, the probability mass moves in the

direction of increasing copy number of x. In contrast, when x > 40, we have Js(x, t) < 0 and

vs(x, t) < 0, indicating that the probability mass moves in the direction of decreasing copy

number of x. When x = 40, we have Js(x, t) = 0 and vs(x, t) = 0. Furthermore, the probability

velocity at a specific time t is different for different microstates, with the highest velocities

located at the boundary of x = 0. The blue line in Figure 15e– Figure 15f x = 40 corresponds

to the peak of the system, which appears starting at about t = 5.

To solve this problem using the ACME method, we introduced the buffer of capacity x = 92.

At the state x = 92 when the buffer is exhausted, no synthesis reaction can occur. Therefore,

the flux at the boundary x = 92 is set to zero.

Our birth and death system eventually reaches to a steady state. As expected, the same

steady state probability distribution is reached from both initial conditions (shown in different

scale in Figure 15a and Figure 15d). At the steady state, the probability landscape has a peak

at x = 40. Both the velocity vs(x, t) and the flux Js(x, t) converge to zero at steady state.

4.3.2 Bistable Schlögl model

The Schlögl model is a one-dimensional bistable system consisting of an auto-catalytic net-

work involving one molecular specie X and four reactions [128]. It is a canonical model for
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Figure 15. The time-evolving probability landscape, flux and velocity of the probability mass

of the birth and death system starting from the initial conditions of p(x = 0)|t=0 = 1 (a–c)

and from the initial conditions of the uniform distribution (d–f). a) and d): the probability

landscape in p(x, t); b) and e): the corresponding value of flux Js(x, t); c) and f): the value of

velocity vs(x, t).
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studying bistability and state-switching [10, 131]. The reaction schemes and kinetic constants

examined in this study are specified as follows:

R1 : A+ 2X
k1→ 3X, k1 = 6;

R2 : 3X
k2→ A+ 2X, k2 = 3.6;

R3 : B
k3→ X, k3 = 0.25;

R4 : X
k4→ B, k4 = 2.95.

(4.19)

Here A and B have constant concentrations a and b, which are set to a = 1 and b = 2,

respectively. We set the volume of the system to V = 25 [128]. The rate of reactions are

specified as r1 = k1/V , r2 = k2/V
2, r3 = k3V , r4 = k4.

Ordering Microstates. We define the microstates of this system using the copy number x of

the molecular specie X. We order the microstates in the direction of increasing copy numbers

of X, namely, (x = 0) ≺ (x = 1) ≺ (x = 2) · · · .

Discrete Increment and Reaction Direction. Reactions R1 and R3 bring the system from

the state x to the state x + 1, in the direction of increasing order of the microstates. Their

discrete increments s1 and s3 are s1 = 1 and s3 = 1. Reactions R2 and R4 bring the system

from the state x to the state x−1, in the direction of decreasing order of the microstates. Their

discrete increments s2 and s4 are therefore s2 = −1 and s4 = −1.
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Discrete Chemical Master Equation. Following (Equation 1.1), the discrete Chemical Master

Equation for this system can be written as:

∂p(x, t)

∂t
=r1a

(x− 1)(x− 2)

2
p(x− 1, t)

+ r2
(x+ 1)x(x− 1)

6
p(x+ 1, t)

+ r3bp(x− 1, t) + r4(x+ 1)

× p(x+ 1, t)− r1a
x(x− 1)

2
p(x, t)

− r2
x(x− 1)(x− 2)

6
p(x, t)

− r3bP (x, t)− r4xp(x, t).

(4.20)

We compute the probability landscape p(x, t) underlying (Equation 4.20) using the ACME

method [69,84].

Single-Reactional Flux, Velocity and Boundary Conditions. Following (Equation 4.6), the

single-reactional flux Jk(x, t) ∈ R can be written as:

J1(x, t) = r1a
x(x− 1)

2
p(x, t),

J2(x, t) = r2
(x+ 1)x(x− 1)

6
p(x+ 1, t),

J3(x, t) = r3bp(x, t),

J4(x, t) = r4(x+ 1)p(x+ 1, t).
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We have the single-reactional fluxes J1(x, t) = 0 and J2(x, t) = 0 on the boundarywith either

x = 0 or x = 1, where reactions R1 and R2 cannot happen. The single-reactional fluxes J3(x, t)

and J4(x, t) are as given above and do not vanish at the boundaries.

The single-reactional velocity vk ∈ R can be written as: vk(x, t) = Jk(x, t)/p(x, t), with

k = 1, . . . , 4.

Discrete Partial Derivative. The imposed ordering of the microstates has x ≺ x+ 1, there-

fore, x ≺ x + s1 , x ≺ x − s2, x ≺ x + s3, and x ≺ x − s4, as s1 = 1, s2 = −1, s3 = 1, and

s4 = −1. According to Eqs. (Equation 4.3) – (Equation 4.4), the derivatives ∆Jk(x, t)/∆xk of

the single-reactional fluxes {Jk} are:

∆J1(x, t)

∆x1
= J1(x, t)− J1(x− s1, t)

= r1a
x(x− 1)

2
p(x, t)

−r1a
(x− 1)(x− 2)

2
p(x− 1, t),

∆J2(x, t)

∆x2
= −(J2(x, t)− J2(x+ s2, t))

= −(r2
(x+ 1)x(x− 1)

6
p(x+ 1, t)

−r2
(x+ 2)(x+ 1)x

6
p(x, t)),

∆J3(x, t)

∆x3
= J3(x, t)− J3(x− s3, t) =

−(r3bp(x, t)− r3bp(x− 1, t)),

∆J4(x, t)

∆x4
= −(J4(x, t)− J4(x+ s4, t))

= −(r4(x+ 1)p(x+ 1, t)− r4xp(x, t)).
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Total Reactional Flux and Velocity, Discrete Divergence, and Continuity Equation. Following

(Equation 4.8), the total reactional flux Jr(x, t) ∈ R4 is:

Jr(x, t) = (J1(x, t), J2(x, t), J3(x, t), J4(x, t))

= (r1a
x(x− 1)

2
p(x, t), r2

(x+ 1)x(x− 1)

6

×p(x+ 1, t), r3bp(x, t), r4(x+ 1)p(x+ 1, t)).

The total reactional velocity vr(x, t) ∈ R4 is: vr(x, t) = Jr(x, t)/p(x, t).

The discrete divergence ∇d · Jr(x, t) of Jr(x, t) ∈ R4 over the discrete increments s1, s2, s3,

and s4 can be written as:

∇d · Jr(x, t) =
4∑

k=1

∆Jk(x, t)

∆xk

= −(x− 1)(x− 2)

2
r1ap(x− 1, t)

+ r1a
x(x− 1)

2
p(x, t)

− r2
(x+ 1)x(x− 1)

6
p(x+ 1, t)

+ r2
x(x− 1)(x− 2)

6
p(x, t)

− r3bp(x− 1, t) + r3bp(x, t)

− r4(x+ 1)p(x+ 1, t) + r4xp(x, t).

(4.21)

The flux J R(x, t) indeed satisfies the continuity equation, as we have: ∇d·Jr(x, t) = −∂p(x, t)/∂t

from Eqs. (Equation 4.11), (Equation 4.20), and (Equation 4.21).
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Stoichiometry projection and single-reactional species flux. Since there is only one specie x

in this system, the stoichiometry projection of single-reactional flux Jk(x, t) to x equals to the

single-reactional species flux Jk(x, t) ∈ R, which can be written as:

J1(x, t) = r1a
x(x− 1)

2
p(x, t),

J2(x, t) = −r2
(x+ 1)x(x− 1)

6
p(x+ 1, t),

J3(x, t) = r3bp(x, t),

J4(x, t) = −r4(x+ 1)p(x+ 1, t).

The single-reactional species velocities vk ∈ R is vk(x, t) = Jk(x, t)/p(x, t), with k = 1, . . . , 4.

Total Species Flux and Velocity. Following Eqs. (Equation 4.12)–(Equation 4.13), the total

species flux Js(x, t) and velocity vs(x, t) for the four reactions are :

Js(x, t) = r1a
x(x− 1)

2
p(x, t)− r2

(x+ 1)x(x− 1)

6

×p(x+ 1, t) + r3bp(x, t)− r4(x+ 1)p(x+ 1, t),

and vs(x, t) = Js(x, t)/p(x, t).

Overall Behavior of the Schlögl System. For the set of parameter values used in Eqs. (Equa-

tion 4.19), Schlögl model is bistable. It has two peaks at x = 4 and x = 92. In order to study how

switching between the two peaks occur, we examine the behavior of the model under the initial
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conditions of p(x = 4)|t=0 = 1 (Figure 16a) and the initial condition of p(x = 92)|t=0 = 1 (Fig-

ure 16d).

For the initial distribution of p(x = 4)|t=0 = 1, the probability landscape changes from

that with a single peak at x = 4 to that with two maximum peaks at x = 4 and x = 92

(Figure 16a). Figure 16b shows the heatmap of the flux Js(x, t), and Figure 16c the heatmap

of the velocity vs(x, t). Yellow and red areas represent locations where the probability moves

in the positive direction, while white areas represents locations where the flux and velocity

both are close to be zero. The lower blue lines in Figure 16b– Figure 16c correspond to the

peak at x = 4. They are straight lines as the location of the peak does not change over time.

Another blue line starts to appear at x = 92 at about t = 3 and corresponds to the second

peak. At the same time, at around t = 3, we observe the appearance of a minimum of the

probability landscape (red line), separating the two maximum peaks. We have Js(x, t) > 0 and

vs(x, t) > 0, indicating that the probability moves in the direction of increasing copy number of

molecules (Figure 16b– Figure 16c) in the majority of the states. In the white region, we have

Js(x, t) = 0 and vs(x, t) = 0.

For the first initial condition of p(x = 92)|t=0 = 1, the probability landscape changes from

that with a single peak at x = 92 to that of two peaks at x = 92 and x = 4 (Figure 16d).

Figure 16e shows the heatmap of the flux Js(x, t), and Figure 16f the heatmap of the velocity

vs(x, t). Blue areas represent locations where the probability mass moves in the negative direc-

tion, while white areas represents locations where the flux and velocity both are equal to zero.

The top blue lines in Figure 16e– Figure 16f correspond to the peak at x = 92. These are
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Figure 16. The time-evolving probability landscape, flux and velocity of the probability mass

in the Schlögl system starting from the initial conditions of p(x = 4)|t=0 = 1 (a–c) and from

the initial conditions of p(x = 92)|t=0 = 1 (d–f). a) and d): the probability landscape in p(x, t)

; b) and e): the corresponding value of flux in Js(x, t); c) and f): the value of velocity vs(x, t).
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straight lines as the location of this peak does not change over time. Another blue line starting

to appear at x = 4 at around t = 3 and corresponds to the second peak. At around t = 3, we

also observe the appearance of a minimum on the probability landscape (red line) separating

the two maximum peaks. In the blue region, we have Js(x, t) < 0 and vs(x, t) < 0, and the prob-

ability moves in the direction of increasing copy number of molecules ( Figure 16e– Figure 16f)

in the majority of states. In the white region, we have Js(x, t) = 0 and vs(x, t) = 0.

In both cases (Figure 16), the second peak appears after about t = 3. We also observe that

the absolute values of the flux driving the system from the system with one peak at x = 4 to

the emergence of the second peak at x = 92, and from the system with one peak at x = 92 to

the emergence of the second peak at x = 4 are of the same scale.

The Schlögl process eventually reaches to a steady state. As expected, the same steady

state probability distribution is reached from both initial conditions. At the steady state, the

probability landscape has two peaks at x = 4 and x = 92. Both the velocity vs(x, t) and the

flux Js(x, t) converge to zero at the steady state.

4.3.3 Schnakenberg Model

The Schnakenberg model is a simple chemical reaction system originally constructed to

study the behavior of limit cycle [3]. It provides an important model for analyzing oscillating
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behavior in reaction systems [37,90,129]. The reaction scheme and rate constants examined in

this study are specified as follows:

R1 : A
k1→ X1, k1 = 1;

R2 : X1
k2→ ∅, k2 = 1;

R3 : B
k3→ X2, k3 = 1;

R4 : X2
k4→ ∅, k4 = 10−2;

R5 : 2X1 +X2
k5→ 3X1, k5 = 1;

R6 : 3X1
k6→ 2X1 +X2, k6 = 10−2.

Here X1 and X2 are molecular species whose copy numbers x1 and x2 oscillate, A and B are

reactants of fixed copy numbers of a and b, respectively. The volume of the system V is set

to V = 10−2 [3]. The rate of reactions are specified as r1 = k1, r2 = k2, r3 = k3, r4 = k4,

r5 = k5/V
2, r6 = k6/V

2.

Ordering Microstates. The microstate x = (x1, x2) in this system is defined by the ordered

pair of copy numbers x1 and x2 of the molecular species X1 and X2. We impose the ascending

order of the microstates first in the direction of the increasing copies of X1. At fixed value of

X1, we then sort the states in the order of increasing copy number of X2. We therefore have

(x1 = 0, x2 = 0) ≺ (x1 = 0, x2 = 1) ≺ (x1 = 0, x2 = 2) ≺ · · · ≺ (x1 = 1, x2 = 0) ≺ (x1 = 1, x2 =

1) · · · .
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TABLE VI. Schnakenberg system reactions stoichiometry

Reactions R1 R3 R5 R2 R4 R6

Increments s1 = (1, 0) s3 = (0, 1) s5 = (1,−1) s2 = (−1, 0) s4 = (0,−1) s6 = (−1, 1)

Discrete Increment and Reaction Direction. The discrete increments s1, s3, and s5 of reac-

tions R1, R3, and R5 that bring the system in the direction of increasing order of the microstates

and the discrete increments s2, s4, and s6 of reactions R2, R4, and R6 that bring the system in

the direction of the decreasing order of the microstates are listed in Table Table VI.

Discrete Chemical Master Equation. Following (Equation 1.1), the discrete Chemical Master

Equation for the system can be written as:

∂p(x, t)

∂t
= −r1ap(x1, x2, t) + r1ap(x1 − 1, x2, t)

− r2x1p(x1, x2, t) + r2(x1 + 1)p(x1 + 1, x2, t)

− r3bp(x1, x2, t) + r3bp(x1, x2 − 1, t)

+ r4(x2 + 1)p(x1, x2 + 1, t)− r4x2p(x1, x2, t)

+ r5
(x1 − 1)(x1 − 2)x2

2
p(x1 − 1, x2 + 1, t)

− r5
x1(x1 − 1)x2

2
p(x1, x2, t)

+ r6
(x1 − 1)x1(x1 + 1)

6
p(x1 + 1, x2 − 1, t)

− r6
x1(x1 − 1)(x1 − 2)

6
p(x1, x2, t).

(4.22)
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We compute the probability landscape p(x, t) underlying (Equation 4.20) using the ACME

method [69,84].

Single-Reactional Flux, Velocity and Boundary Conditions. The single-reactional flux Jk(x, t) ∈

R can be written as:

J1(x, t) = r1ap(x1, x2, t),

J2(x, t) = r2(x1 + 1)p(x1 + 1, x2, t),

J3(x, t) = r3bp(x1, x2, t),

J4(x, t) = r4(x2 + 1)p(x1, x2 + 1, t),

J5(x, t) = r5
(x1 − 1)(x1 − 2)x2

2

× p(x1 − 1, x2 + 1, t),

J6(x, t) = r6
(x1 − 1)x1(x1 + 1)

6

× p(x1 + 1, x2 − 1, t).

(4.23)

We have the single-reactional fluxes J5(x, t) = 0 and J6(x, t) = 0 on the boundary with either

x = (0, 0) or x = (1, 0), where reactions R5 and R6 cannot happen. The other single-reactional

fluxes are as given above and do not vanish at the boundaries.

The single-reactional velocity vk(x, t) ∈ R can be written as: vk(x, t) = Jk(x, t)/p(x, t).

Discrete Partial Derivative. The imposed ordering of the microstates has x ≺ x + s1,

x ≺ x−s2, x ≺ x+s3, x ≺ x−s4 , x ≺ x+s5, and x ≺ x−s6. According to Eqs. (Equation 4.3)–
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(Equation 4.4), the derivatives ∆Jk(x, t)/∆xk of the single-reactional fluxes Jk can be written

as:

∆J1(x, t)

∆x1
= J1(x, t)− J1(x− s1, t)

= r1ap(x1, x2, t)− r1ap(x1 − 1, x2, t),

∆J2(x, t)

∆x2
= −(J2(x, t)− J2(x + s2, t)) = −(r2(x1 + 1)

×p(x1 + 1, x2, t)− r2x1p(x1, x2, t)),

∆J3(x, t)

∆x3
= J3(x, t)− J3(x− s3, t)

= r3bp(x1, x2, t)− r3bp(x1, x2 − 1, t)),

∆J4(x, t)

∆x4
= −(J4(x, t)− J4(x + s4, t)) = −(r4(x2 + 1)

×p(x1, x2 + 1, t)− r4x2p(x1, x2, t)),

∆J5(x, t)

∆x5
= J5(x, t)− J5(x− s5, t)

= r5
x1(x1 − 1)x2

2
p(x1, x2, t)

−r5
(x1 − 1)(x1 − 2)x2

2
px1 − 1, x2 + 1, t)/2,

∆J6(x, t)

∆x6
= −(J6(x, t)− J6(x + s6, t))

= −(r6
(x1 − 1)x1(x1 + 1)

6
p(x1 + 1, x2 − 1, t)

−r6
x1(x1 − 1)(x1 − 2)

6
p(x1, x2, t)).
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Total Reactional Flux and Velocity, Discrete Divergence, and Continuity Equation. Follow-

ing (Equation 4.8), the total reactional flux Jr(x, t) ∈ R6 is:

Jr(x, t) = ( J1(x, t), J2(x, t), J3(x, t),

J4(x, t), J5(x, t), J6(x, t)),

where {Jk(x, t)} are as specified in (Equation 4.23). The total reactional velocity vr(x, t) ∈ R6

is: vr(x, t) = Jr(x, t)/p(x, t).

The discrete divergence ∇d · Jr(x, t) of the r-flux Jr(x, t) ∈ R6 over the discrete increments

sk can be written as:

∇d · Jr(x, t) =

6∑
k=1

∆Jk(x, t)

∆xk
. (4.24)

The r-flux Jr(x, t) indeed satisfies the continuity equation, as we have ∇d · Jr(x, t) =

−∂p(x, t)/∂t from Eqs. (Equation 4.11), (Equation 4.22), and (Equation 4.24)

Stoichiometry projection and single-reactional species flux. The single-reactional flux Jk(x, t)

along the direction of reaction Rk can be decomposed into components of individual species

using the predetermined stoichiometry sk = (s1
k, s

2
k). The x1 and x2 components of stoichio-

metric projections of Jk(x, t) are listed in Table Table VII. The single-reactional species flux is

formed as follows:

Jk(x, t) ≡ (J1
k (x, t), J2

k (x, t)), k = 1, . . . , 6, (4.25)
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TABLE VII. Schnakenberg system reactional flux stoichiometry projections

Reaction J1
k (x1, x2, t) = s1

kJk(x1, x2, t) J2
k (x1, x2, t) = s2

kJk(x1, x2, t)

R1 r1ap(x1, x2, t) 0

R2 −r2(x1 + 1)p(x1 + 1, x2, t) 0

R3 0 r3bp(x1, x2, t)

R4 0 −r4(x2 + 1)p(x1, x2 + 1, t)

R5 r5
(x1−1)(x1−2)x2

2 p(x1 − 1, x2 + 1, t) −r5
(x1−1)(x1−2)x2

2 p(x1 − 1, x2 + 1, t)

R6 −r6
(x1−1)x1(x1+1)(x1−2)

6 p(x1 + 1, x2 − 1, t) r6
(x1−1)x1(x1+1)(x1−2)

6 p(x1 + 1, x2 − 1, t)

where J1
k (x, t) and J2

k (x, t) listed in Table Table VII. The single-reactional species velocity

vk(x, t) ∈ R2 is vk(x, t) ≡ Jk(x, t)/p(x, t).

Total Species Flux and Velocity. Following Eqs. (Equation 4.12)–(Equation 4.13), the total

flux Js(x, t) ∈ R2 is Js(x, t) =
m∑

k = 1

Jk(x, t), where {Jk} as specified in (Equation 4.25). The

total species velocity vs(x, t) ∈ R2 is: vs(x, t) = Js(x, t)/p(x, t).

Overall Behavior of Schnakenberg System. We examine the behavior of the Schnakenberg

system with (a, b) = (10, 50) under two initial conditions, namely, that of the uniform dis-

tribution and p(x = (0, 0))|t=0 = 1. We computed the time-evolving probability landscape

p = p(x, t) using the ACME method [69,84].

For the uniform distribution, the probability landscape in − log p(x, t) at time t = 0.5 is

shown in Figure 17a, where high probability regions are in blue. Its overall shape takes the
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Figure 17. The time-evolving probability landscape, flux, and velocity of probability mass in

the Schnakenberg system with (a, b) = (10, 50) at t = 0.5, starting from the uniform

distribution (a–c) and from the initial conditions of p(x = (0, 0))|t=0 = 1 (d–f). a) and d): the

probability landscape in − log(p(x, t)); b) and e): the corresponding value of flux in

log |Js(x, t)|; c) and f): the log absolute value of velocity log |vs(x, t)|.
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Figure 18. The steady-state probability landscape, flux, and velocity of probability mass in

the Schnakenberg system with (a, b) = (10, 50) (a–c) and (a, b) = (20, 40) (d–f). a) and d):

the probability landscape in − log(p(x, t)) ; b) and e): the corresponding values of flux in

log |Js(x, t)|; c) and f): the log absolute value of velocity log |vs(x, t)|.
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form of closed valley, which is similar to an earlier study based on a Fokker-Planck model [37].

The trajectories of the flux field Js(x, t) at time t = 0.5 in the space of the copy-numbers

from different starting locations (marked by black arrows at top and bottom) are shown in

blue on Figure 17- Figure 18. These trajectories depict the directions of the movement of the

probability mass at different locations after traveling from the starting points. The heatmaps of

the flux in log |Js(x, t)| and the velocity in log |vs(x, t)| are shown in Figure 17b and Figure 17c,

respectively. The flux lines are closed curves and are overall smooth. These closed flux lines

reflect the oscillatory nature of the reaction system. The velocity has larger values at locations

where the flux trajectories are straight lines (green and yellow region in the upper right corner,

Figure 17c), but drops significantly when the trajectories make down-right turns (light and

dark blue in the lower right corner, marked with an yellow arrow).

For the initial conditions of p(x = (0, 0))|t=0 = 1, − log p(x, t) at time t = 0.5 is shown in

Figure 17d, where high probability regions (blue) is located at a small neighborhood around

x = (0, 250). The heatmaps of the flux in log |Js(x, t)| and the velocity in log |vs(x, t)| are

shown in Figure 17e and Figure 17f, respectively. The flux lines are closed curves and are

overall smooth. The oscillating flux lines appear again (Figs Figure 17d– Figure 17f), but not

all form closed curves. Specifically, all flux lines which start at the upper region (x2 = 500)

become broken-off in the mid-region, where the probability mass becomes negligible, resulting

in negligible flux as well, with its absolute value close to be zero. The maximum of the flux is

reached at the peak of the probability landscape (Figure 17e). The heatmap of the probability

velocity exhibits a similar pattern as that of uniform distribution (Figure 17f vs. Figure 17c).
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The color palettes encoding the values of the velocity log |vs(x, t)| are not-smooth ( Figure 17f).

This is likely due to small numerical values of probability in this region.

We then examined the steady state behavior of the system at two conditions of the copy

numbers of species A and B: (a, b) = (10, 50) and (a, b) = (20, 40). The probability landscape

in − log(p(x, t)) for (a, b) = (10, 50) shown in Figure 18a exhibits similar shape to that of

Fig Figure 17. The probability values are higher in locations near the left (x1 = 0) and lower

(x2 = 0) boundaries. The flux lines (Figure 18a- Figure 18c) move from the upper left corner

to the lower right corner, and then make sharp right turns until reaching the neighborhood

near the origin. Subsequently, they make right turns again and move upward, until the cycles

are closed. These closed flux curves move along the contours on the probability landscape.

The absolute values of the flux (Figure 18b) are largest near the boundaries of the probability

surfaces (x1 = 0 and x2 = 0, red/orange colored ridge) and nextly along the flux lines on

the diagonal. The flux has small values in the region above the diagonal (cyan and blue).

The heatmap of the velocity (Figure 18c) exhibit a different pattern, with its value dropping

significantly in the small blue arch (see region pointed by the yellow arrow), where flux lines

make turns in the lower region.

The probability landscape in − log(p(x, t)) for (a, b) = (20, 40) is shown in Figure 18d.

While exhibiting overall similar pattern to that of (a, b) = (10, 50), the high probability regions

is more concentrated in locations near the lower-left (Figure 18d). The flux lines (Figure 18d–

f) are similar to those of (a, b) = (10, 50) corner, but oscillate around much smaller contour,
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where x1 ≤ 200 and x2 ≤ 300. The close cycles of flux lines also move along the contours on

the probability landscape.

The results obtained here are generally consistent with that obtained using a Fokker-Planck

flux model computed from a landscape constructed using Gillespie simulations [7, 37]. For

example, the directions of the flux lines are the same. However, there are some differences.

While the flux lines from the Fokker-Planck model exhibit oscillating behavior even in the

boundary regions where x1 < 2 or x2 < 2, where reactions R5 and R6 cannot occur hence no

oscillating flux are physically possible. No such inconsistency exist in our model. Furthermore,

the system considered here is much larger, with hundreds of copies of X1 and X2 involed,

whereas < 10 copies of X1 and X2 were considered in [37].

4.4 Conclusions

In this study, we introduce new formulations of discrete flux and discrete velocity for an

arbitrary mesoscopic reaction system. Specifically, we redefine the derivative and divergence

operators based on the discrete nature of chemical reactions. We then introduce the discrete

form of continuity equation for the systems of reactions. We define two types of discrete flux,

with their relationship specified. The reactional discrete flux satisfies the continuity equation

and describes the behavior of the system evolving along directions of reactions. The species

flux directly describes the dynamic behavior of the reactions such as the transfer of probability

mass in the state space. Our discrete flux model enables the construction of the global time-

evolving and steady-state flow-maps of fluxes in all directions at every microstate. Furthermore,

it can be used to tag the fluxes of outflow and inflow of probability mass as reactions proceeds.
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In addition, we can now impose boundary conditions, allowing exact quantification of vector

fields of the discrete flux and discrete velocity anywhere in the discrete state space, without

the difficulty of enforcing artificial reflecting conditions at the boundaries [126]. We note that

the accurate construction of the discrete probability flux, velocity, and their global flow-maps

requires the accurate calculation of the time-evolving probability landscape of the reaction

network. This is made possible by using the recently developed ACME method [69,84].

As a demonstration, we computed the time-evolving probability flux and velocity fields

for three model systems, namely, the birth-death process, the bistable Schlögl model, and the

oscillating Schnakenberg system. We showed how flux and velocities converge to zero when

the system reaches the steady-state in the birth-death process and the Schlögl models. We

also showed that the flux and velocity trajectories in the Schnakenberg system converge to the

oscillating contours of the steady-state probability landscape, similar to an earlier study [37],

although there are important differences. Overall, the general framework of discrete flux and

velocity and the methods introduced here can be applied to other networks and dynamical

processes involving stochastic reactions. These applications can be useful in quantification of

dynamic changes of probability mass, identification as well as characterization of mechanism

where movement of probability mass drives the system towards the steady-state. They may

also aid in our understanding of the mechanisms that determined the non-equilibrium steady

state of many reaction systems.



CHAPTER 5

DISCRETE AND CONTINUOUS MODELS OF PROBABILITY FLUX

ON SWITCHING DYNAMICS: A CASE STUDY OF THE

TOGGLE-SWITCH SYSTEM

5.1 Introduction

The toggle switch network plays important roles in molecular decision-making and is widely

found in nature [13, 132–135]. Toggle switch has been studied extensively, with its stability,

dynamics, switching mechanisms, and most-probable paths analyzed through outlfow proba-

bility fluxes [31], quasi-potential landscapes reconstruction [136], as well as weighted-ensemble

trajectory simulations using the string-method [32]. Modeling of toggle switch network remains

of significant interest, and in this chapter we will apply discrete and continuous models of

probability flux to study switching dynamics in toggle switch.

While continuous and discrete models have been used to analyze gene regulatory networks,

it is important to understand their applicability and limitations. For analysis of probabil-

ity landscape, models based on ordinary differential equations generally are not applicable to

stochastic systems, for example, those with low copy numbers of molecules or with large dif-

ferences in reaction rates [16, 49, 137, 138]. Models based on continuous approximations of the

discrete Markov jump processes also have limitations. For example, Fokker-Planck models

may fail to capture certain important properties of a stochastic network, such as the presence
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of multistability in networks with slow switching between the ON and the OFF states [30].

When systems are far from equilibrium, the probability landscape constructed using models

based on continuous approximations is also of inadequate accuracy [75]. In general, the appli-

cability and validity of the type of the model for a specific network model to be investigated

individually [5, 11,16,30,75,126,137–139]. However, assessing the applicability and limitations

of different models in analysis of probability flux and velocity is more challenging. A major

difficulty is to examine fluxes and velocities in a consistent manner across different models.

In this study, we examine applicability and limits of three classes of flux models. The first

class of flux is the universal discrete flux models based on dCME developed in [38]. It enables the

construction of the global time-evolving and steady-state flow-maps of fluxes in all directions at

every microstate, while satisfying the discrete version of the continuity equation. Furthermore,

it can be used to tag the fluxes of outflow and inflow of probability mass as reactions proceeds.

Previous discrete models of probability flux and velocity introduced in [31, 119–121, 124] have

limitations: some are applicable only to analysis of single reactional trajectories [119, 120],

some can only specify partial flux functions [31,121], and some are restricted to special systems

of simple single-species reactions [124]. Flux and velocity fields can also be obtained in self-

consistent manner using Fokker-Planck models [36, 37, 39, 41, 118, 122], where the continuity

equation of probability is satisfied [45, 46]. Our second class of models are the Fokker-Planck

models, which are obtained from the Kramers-Moyal expansion of the discrete Chemical Master

Equation following [37]. Our third class of models is a new probability based on ordinary

differential equations novel deterministic approach called the Liouville flux model. Models
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based on ordinary differential equations (ODEs) are often used in analysis of metabolic networks

such as the difference between forward and backward reaction fluxes [140–142], although these

are concentration fluxes rather than probability fluxes. While deterministic models of flux are

generally not applicable to gene regulatory networks, Liouville flux approach, based on the

law of mass action, models the probability flux using precomputed probability distribution at

individual states. This model of the flux can be directly compared with flux model based on

SDE formulations such as Fokker-Planck models of probability flux.

For computing the probability landscape, we employ the recently developed ACME method [69,

84] to solve the dCME underlying the stochastic network and obtain its exact time-evolving

probability landscapes. This eliminates potential problems arising from inadequate sampling,

where rare events of low probability are difficult to quantify using techniques such as the

stochastic simulations algorithm (SSA) [7, 9, 10,77].

In this work we examine the details of the probability fluxes obtained with these three

models, using the network model of the toggle switch system as an example. We examine

the behavior of fluxes in this network, obtained under two conditions, namely, i) when the

binding rates of the genes by transcription factors are much larger than the unbinding rates,

with which the system exhibiting three stable states, and ii) when the unbinding rates are of

the same magnitude as binding rates, with which the system exhibiting four stable states at the

steady state. Our results show that the fluxes computed with these three differenting models

all exhibit similar behavior under the first condition, but exhibit markedly different behavior

under the second condition, where the stochastic fluctuations are significant. Furthermore, we
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show that the behavior of universal discrete stochastic flux can uncover oscillating behavior

at the non-equilibrium steady state of the system due to fluctuations between binding and

unbinding events, while Fokker-Planck and Liouville models fail to capture this phenomenon.

We further show oscillations in well known oscillating negative feedback motif. We also study

the phenomena of gene duplication in two level toggle switch network with transcription and

translation reactions explicitely modeled.

This chapter is organized as follows. We first introduce the three flux models: the Liouville

flux model for an arbitrary biochemical reaction system, the Fokker-Planck flux model, based

on the Kramers-Moyal expansion of dCME, and the universal discrete flux model. We study

analytically the origin of differences among these three models of fluxes. We then illustrate the

differences in probability fluxes for the examples of toggle switch and negative feedback.

5.2 Models of Probability Flux

5.2.1 Liouville Flux Model

Here we introduce a Liouville flux model based on the ordinary differential equations for

mean concentrations of molecules from mass action. It is a set of forward differential equation,

in which the increment in the mean concentration of molecular specie over time ∂〈X〉/∂t, given

∂t → 0, defines the Liouville velocity vL(〈X〉, t) of reactional mass of the average molecular

concentration 〈X〉:

vL(〈X〉, t) = F(〈X〉, t),

where the components of F(〈X〉, t) are defined by (Equation 1.5).
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To compare with other flux models, we now restrict the values of the function vL =

vL(〈X〉, t) to the discrete state space Ω, where the probability values are computed using the

ACME method [69,84]. We use the notation vL ≡ vL(x, t).

The Liouville flux is defined in the discrete subset Ω of the continuous space U as:

JL(v, t) ≡ vL(v, t)p(x, t). (5.1)

5.2.2 Fokker-Planck Flux Model

We rewrite the right hand side of (Equation 1.6) by taking the operator ∇x(·) outside the

parenthesis:

∂p(x, t)

∂t
=−∇x

m∑
k=1

sk
V

[Ak(x)p(x, t)

− sk
2V
∇xAk(x)p(x, t)].

From (Equation 4.10), the flux for the Fokker-Planck model JFP (x, t) can be written as follows:

JFP (x, t) ≡
m∑
k=1

sk
V

[Ak(x)p(x, t)− sk
2V
∇xAk(x)p(x, t)]. (5.2)

The Fokker-Plank flux (Equation 5.2) has two components: the drift term of
m∑
k=1

skAk(x)

×p(x, t)/V and the diffusion term of
m∑
k=1

sk∇xAk(x)p(x, t)/(2V 2). The drift term is driven

by chemical reactions occurring at x. The diffusion term approximates linearly the stochastic

fluctuations of the system.
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5.2.3 Universal Discrete Flux Model

A model of discrete flux was recently introduced in reference [38]. As it can account for

both reactional flux and species flux, we call it the universal discrete flux model. Briefly, we

define an unambiguous order of ascending relationship “ ≺′′ over all microstates, and have them

ordered as x0 ≺ x1 ≺ . . . ≺ x|Ω| [38]. The single-reactional flux of probability Jk(x, t) ∈ R for

reaction Rk is:

Jk(x, t) ≡


Ak(x)p(x, t), x ≺ x + sk,

Ak(x− sk)p(x− sk, t), x ≺ x− sk.

Jk(x, t) depicts the change in p(x, t) at the state x due to one firing of reaction Rk. If x ≺ x+sk,

Jk(x, t) describes the outflux at x due to one firing of reaction Rk. If x ≺ x − sk, Jk(x, t)

describes the influx to x due to one firing of reaction Rk.

The total reactional flux or r-flux Jr(x, t), which describes the probability flux at a mi-

crostate x at time t, is defined as [38]: Jr(x, t) ≡ ( J1(x, t), · · · , Jm(x, t)) ∈ Rm. Intuitively,

the r-flux Jr(x, t) is the vector of rate change of the probability mass at x in directions of all

reactions. Jr(x, t) satisfies the discrete continuity equation (??). Details can be found in [38].

The total species flux, or s-flux, Js(x, t) ∈ Rn is the sum of the stoichiometry projections of

m single-reaction species flux vectors at a microstate x ∈ Rn:

Js(x, t) =

m∑
k = 1

skJk(x, t) ∈ Rn. (5.3)
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5.2.4 Differences between flux models

We now compare the three flux models and define analytically their differences.

5.2.4.1 Difference between Discrete Flux and Fokker-Planck Flux

The difference between the universal discrete flux of (Equation 5.3) and the Fokker-Planck

flux of (Equation 5.2) at V = 1 is:

Js(x, t)− JFP (x, t) =
∑
k: x≺
x+sk

sk[Ak(x)p(x, t)−Ak(x)p(x, t) +
sk
2
∇xAk(x)p(x, t)]

+
∑
k: x≺
x−sk

[skAk(x− sk)p(x− sk, t)−Ak(x)p(x, t) +
sk
2
∇xAk(x)p(x, t)]

=
∑
k: x≺
x+sk

sk

[
1

2
sk∇xAk(x)p(x, t)

]

+
∑
k: x≺
x−sk

sk

[
Ak(x− sk)p(x− sk, t)−Ak(x)p(x, t) +

sk
2
∇xAk(x)p(x, t)].

(5.4)

For reactions generating discrete flux out-flowing from x to x+sk, the values of the discrete

flux and Fokker-Planck flux differ only in the diffusion term sk [sk∇xAk(x)p(x, t)] /2 of the

Fokker-Planck flux. For reactions generating flux flowing-in from x− sk to x, the discrete flux

and Fokker-Planck flux differs in both the diffusion term and the drift term.

We examine the difference further by taking the linear Taylor expansion: Ak(x− sk)p(x−

sk, t) ≈ Ak(x)p(x, t) − sk∇xAk(x)p(x, t). While the gradient of the flux defines the change of
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the probability with time from the continuity equation, we now skip the second-order term of

the Taylor expansion. (Equation 5.4) now becomes:

Js(x, t)− JFP (x, t) =
∑
k: x≺
x+sk

sk

[
1

2
sk∇xAk(x)p(x, t)

]

+
∑
k: x≺
x−sk

sk [Ak(x)p(x, t)− sk∇xAk(x)p(x, t)

−Ak(x)p(x, t) +
1

2
sk∇xAk(x)p(x, t)]

=
∑
k: x≺
x+sk

sk

[
1

2
sk∇xAk(x)p(x, t)

]
−

∑
k: x≺
x−sk

sk

[
1

2
sk∇xAk(x)p(x, t)

]
.

Hence, the drift terms for both fluxes are the same and equal to Ak(x)p(x, t). The difference

in these two flux models resides only in the noise encoded by the diffusion term.

5.2.4.2 Difference between Liouville Flux and Fokker-Planck Flux

The difference between the Fokker-Planck flux from (Equation 5.2) and the Liouville flux

from (Equation 5.1), given V = 1, is:

JFP (x, t)− JL(x, t) =
∑
k

[
sk(Ak(x)p(x, t)− 1

2
sk∇xAk(x)p(x, t))− F(x, t)p(x, t)]. (5.5)

In this case, difference exists in both the drift term and the diffusion terms.

However, for the special case when there is only one type of reactant and |sk| = 1, we have

F(x, t)p(x, t) = skAk(x)p(x, t). In this case, the drift terms of the two fluxes are the same.
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5.2.4.3 Difference between Discrete Flux and Liouville Flux

The difference between the discrete universal flux ( (Equation 5.3)) and the Liouville flux

( (Equation 5.1)) is:

Js(x, t)− JL(x, t) =
∑
k: x≺
x+sk

[skAk(x)p(x, t)− F(x, t)p(x, t)]

+
∑
k: x≺
x−sk

[skAk(x− sk)p(x− sk, t)− F(x, t)p(x, t)].

(5.6)

We consider the special case of reactions involving only a single molecules species of reactants

with |sk| = 1. We have F(x, t)p(x, t) = skAk(x)p(x, t). For reactions with probability flux

flowing from x to x + sk (x− sk ≺ x) both fluxes are the same. For reactions with probability

flux flowing from x− sk to x, we can examine this difference by taking the linear terms of the

Taylor expansion of Ak(x− sk)p(x− sk, t) ≈ Ak(x)p(x, t)− sk∇xAk(x)p(x, t). (Equation 5.6)

now becomes:

Js(x, t)− JL(x, t) =
∑
k: x≺
x−sk

[skAk(x− sk)p(x− sk, t)− F(x, t)p(x, t)]

=
∑
k: x≺
x−sk

[sk(Ak(x)p(x, t)− sk∇xAk(x)p(x, t)− F(x, t)p(x, t)].

In this case, under the assuption F(x, t)p(x, t) = skAk(x)p(x, t), the drift terms are the same.

The fluxes differ only in the diffusion term sk∇xAk(x)p(x, t).
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5.3 The Multistable Toggle Switch Model

5.3.1 Network and Reactions

In this study, we employ a detailed model of toggle switch [17,143], where the binding and

unbinding reactions are explicitly modeled. This is different from the simplified model used in

several other studies [13,144,145].

There are six molecular species in our model: genes Gx and Gy, which express proteins PX

and PY , as well as protein-DNA complexes Gx and Gy, with protein PY bound on gene Gx

and protein PX bound on gene Gy, respectively (Figure 19). The dimer of protein product PX

of gene Gx inhibits the activity of gene Gy and the dimer of protein product PY of gene Gy

inhibits the activity of gene Gx.

Figure 19. Schematic representation of the toggle switch genetic network.
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The molecular reactions of the network are listed below:

R1 : Gx
sX→ Gx + PX , R2 : Gy

sY→ Gy + PY ,

R3 : PX
dX→ ∅, R4 : PY

dY→ ∅,

R5 : 2PX +Gy
by→ Gy, R6 : 2PY +Gx

bx→ Gx,

R7 : Gy
uy→ 2PX +Gy, R8 : Gx

ux→ 2PY +Gx.

(5.7)

The microstate of the system is defined as an ordered quadruplet (X,Y, x, y) of copy numbers

of PX , PY , Gx, and Gy, respectively. The copy numbers of bound genes Gx and Gy are denoted

as x and y. Correspondingly, x = 1−x and y = 1−y, as there is only one copy of each of genes

x and y in this system. The binding states of the two operator sites are denoted as “On-On”

when x = 1 and y = 1, “On-Off” when x = 1 and y = 0, “Off-On” when x = 0 and y = 1, and

“Off-Off”, when x = 0 and y = 0.

There are a number of stochastic processes encoded in this network. The synthesis of

proteins PX and PY from gene Gx and gene Gy are represented by reactions R1 and R2,

respectively, with the rates of sx = sy. The degradation of proteins PX and PY are represented

by reactions R3 and R4, respectively, with the rates dx = dy. Reaction R5 represents the

binding of two copies of protein PX to the promoter site of Gy to form a protein-DNA complex

Gy, with rate by. Reaction R7 represents the unbinding of the complex Gy, at a rate of uy.

Similarly, reaction R6 represents the binding of two copies of protein PY to the promoter site

of Gx to form a protein-DNA complex Gx, with rate bx. Reaction R8 represents the unbinding

of the complex Gx at a rate of ux.
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Here we consider the scenario where gene regulation is much slower than protein synthesis

and degradation. In eukaryotic cells, epigenetics processes such as histone modification and

DNA methylation can reduce the binding rates of transcription factors to their targeting DNA

sites. Recent findings in the genetic switch of bacteriophage λ showed that slower binding and

unbinding also occur in bacterials cells [146]. In the regime of slow binding and unbinding

reactions, where by and bx (reactions R5 and R6) and uy and ux (reactions R7 and R8) are

smaller than synthesis rates sx and sy (reactions R1 and R2), there are up to four peaks of

probability over certain regions of protein copy numbers, in which one of the two genes is

expressed and the other gene repressed, as well as two genes being either expressed or repressed

simultaneously, as reported in [17].

A well-known phenomenon in genetic switches such as the toggle switch system is the

extreme stability of the “On-Off” or the “Off-On” states: it is exceedingly rare for the system to

switch from one of these two stable states to the other, even in the presence of perturbations [135,

147]. In this study, we show that the toggle switch can switch frequently between these two

stable states without external perturbations. Further, these switching events can turn the toggle

switch into an stochastically oscillating system.

5.3.2 Fluxes in the Toggle Switch Network

For the universal discrete flux, we first impose an ascending order on the microstates in

the direction of the increasing copies of X. At a fixed value of X, we then order the states in

increasing copy number of Y . Subsequently, we order the states in increasing copy number of x,

and lastly, in the order of increasing copy number of y. Following (Equation 5.3), components
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of the universal discrete stochastic fluxes at the microstate (X,Y, x, y) in the directions of X

and Y are:

Js(X,Y, x, y)X =sXxp(X,Y, x, y)− dX(X + 1)p(X + 1, Y, x, y) + 2uy(1− y)p(X,Y, x, y)

− by(1− y)(X + 1)(X + 2)p(X + 2, Y, x, 1− y),

Js(X,Y, x, y)Y =sY yp(X,Y, x, y)− dY (Y + 1)p(X,Y + 1, x, y) + 2uxxp(X,Y, x, y)

− bx(1− x)(Y + 1)(Y + 2)p(X,Y + 2, 1− x, y)).

Following (Equation 5.1), the Liouville flux at the microstate (X,Y, x, y) is:

JL(X,Y,x, y)X = p(X,Y, x, y)(sXx− dxX + uy(1− y)− byX2y),

JL(X,Y,x, y)Y = p(X,Y, x, y)(sY y − dyY + ux(1− x)− bxY 2x).

Following (Equation 5.2), the Fokker-Planck flux for V = 1 at the microstate (X,Y, x, y) is:

JFP (X,Y,x, y)X = sXx− dXX + 2uy(1− y)− byX(X − 1)y)p(X,Y, x, y)

+
1

2
∇X [sXx+ dXX + 2uy(1− y) + 2byX(X − 1)y)p(X,Y, x, y)],

JFP (X,Y,x, y)Y = sY y − dY Y + 2ux(1− x)− bxY (Y − 1)x)p(X,Y, x, y)

+
1

2
∇Y [sY y + dY Y + 2ux(1− x) + 2bxY (Y − 1)x)p(X,Y, x, y)].
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5.3.3 Probability flux and velocity in toggle switch with strong promoter binding

We first consider the system with strong promoter binding. The binding rates are bx =

by = 1 × 10−2, the synthesis rates sx = sy = 50, the degradation rates dx = dy = 1, and

unbinding rates ux = uy = 0.1. At the steady state, there are three probability peaks located

at (X,Y ) = (0, 0), (50, 0), (0, 50), corresponding to the states of the genes Gx and Gy of “Off-

Off” (x = 0, y = 0), “On-Off” (x = 1, y = 0), and “Off-On” (x = 0, y = 1) (Figure 20A,

Figure 20D and Figure 20G).

The steady state probability distribution of reactions R1, R3 given x = 1 ( (Equation 5.7)),

which are birth-and-death processes, is the Poisson distribution with the maximum at its ex-

pected value of X = sX/dX = 50 [148]. Similarly, the steady state probability distribu-

tion for the birth-and-death process of reactions R2, R4, given y = 1, ( (Equation 5.7)),

is the Poisson distribution with the maximum at its expected value of Y = sY /dY = 50.

When the binding reaction has a higher propensity than unbinding, the genetic state “On-

On” where (x = 1, y = 1) disappears. With the multiplication factor of the copy number of

molecules, this occurs even when by is an order of magnitude smaller than uy. From com-

puted p(X,Y, x, y), we show its projection to the plane of (X,Y ) in Figure 20, namely, we

show p(X,Y ) = p(X,Y, 0, 0) + p(X,Y, 1, 0) + p(X,Y, 0, 1) + p(X,Y, 1, 1). Similarly, Js(X,Y ),

JL(X,Y ), JFP (X,Y ), vs(X,Y ), v(X,Y ), and vFP (X,Y ) are shown as projected in Figure 20.

The steady-state probability landscapes in − log p(x, t) is shown in Figure 20A, Figure 20D

and Figure 20G, with high probability regions in red, and regions where probability is close
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to zero in white. The trajectories of the flux field at the steady state are shown in blue for

the universal discrete flux field Js(x, t) in Figure 20A– Figure 20C, for the Liouville flux

field JL(x, t) in Figure 20D– Figure 20F, and for the Fokker-Planck flux field JFP (x, t) in

Figure 20G– Figure 20I. In Figures Figure 20B, Figure 20E and Figure 20H, regions with

large absolute values of flux are shown in purple, and regions with small absolute values of flux

are shown in turquoise blue. In Figures Figure 20C, Figure 20F and Figure 20I, regions with

large absolute values of flux are shown in turquoise blue regions with small absolute values of

velocity are shown in purple.

5.3.3.1 Universal Discrete Stochastic Flux and Velocity fields

The heatmaps of the universal discrete probability flux in log |Js(x, t)| and velocity in

log |vs(x, t)| ( Figure 20B and Figure 20C, respectively) show that locations with larger flux

values also have higher probability. The states “Off-Off”, “On-Off”, and “Off-On” can be re-

garded as attractors of the probability flux. The flux lines converge to the states “On-Off”

and “Off-On”, after first reaching the state “Off-Off”. Figure 20C of log |vs(X,Y )| shows that

the velocity has larger values at locations where the flux trajectories are close to be straight

lines (purple regions, Figure 20C), but drops significantly when the trajectories make turns

(turquoise regions, Figure 20C).

5.3.3.2 Liouville Flux for the Toggle Switch Network

In the heat map of Liouville flux, larger values are associated with higher probabilities

( Figure 20D – Figure 20E). The states “On-Off” and “Off-On” are the sinks. The velocity

and flux lines converge to the states “On-Off” and “Off-On”, after first reaching towards the
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Figure 20. The probability landscapes, fluxes, and velocities of the toggle switch system with

strong promoter binding (b = 1× 10−2) at the steady state. Probability value is given by the

color scale, and the fluxes/velocities are shown in blue solid lines. The discrete stochastic flux

model with landscape in − log(p(x, y)) (A), flux in log |Js(x, y)| (B), and velocity in

log |vs(x, y)| (C); the Liouville flux model with landscape in − log(p(x, y)) (D), flux in

log |JL(x, y)| (E), and velocity in log |vL(x, y)| (F); and the Fokker-Planck flux model with

landscape in − log(p(x, y)) (G), flux in log |JFP (x, y)| (H), and velocity in log |vFP (x, y)| (I).
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state “Off-Off”. These patterns are the same as that of the universal discrete flux (Figure 20A).

Detailed examination shows that the flux sinks are located at the states (X = 50, Y = 0) and

(X = 0, Y = 50). These are local maxima of the probability landscape. The absolute value of

velocity function log |vL(X,Y )| shows that the probability velocity has larger values at locations

where the flux trajectories are close to be straight lines (purple regions, Figure 20F), but drops

significantly when the trajectories make turns (turquoise regions, Figure 20F).

The Liouville flux trajectories and the universal discrete flux trajectories depict similar

behavior of the system. The flux lines converge to the states “Off-On” and “On-Off” after

going through the state “Off-Off”, an intermediate attractor of the flux.

However, there are significant differences. The states “Off-On” and “On-Off” are single

states with (X = 50, Y = 0) and (X = 0, Y = 50) in Liouville flux (Figure 20F),but they

are set of states in discrete flux close to (X = 50, Y = 0) and (X = 0, Y = 50), where the

flux trajectories fluctuate (Figure 20C). The flux trajectories for the Liouville flux start at the

source located at (+∞,+∞). This is different from the discrete flux, where the trajectories

starting from the states with sufficiently large copy numbers and zero probability converge to

a sink at (+∞,+∞).

5.3.3.3 Fokker-Planck flux for the Toggle Switch Network

In the heat map of the Fokker-Planck probability flux, larger values are associated with

higher probabilities ( Figure 20G – Figure 20I). The states “Off-Off”, “On-Off”, and “Off-On”

are attractors of the flux. The velocity and flux lines converges to the states “On-Off” and

“Off-On”, after first reaching the state “Off-Off”. These are the same as the universal discrete
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flux and the Liouville flux (Figure 20A and Figure 20D). Flux sinks are located at the states

“On-Off” and “Off-On”, represented by a single states (X = 50, Y = 0) and (X = 0, Y = 50)

as in the case of Liouville flux. These two states correspond to the maxima of the Poisson

distribution of the birth-and-death process (Equation 5.7) of reactions R1 − R3 given x = 1,

and R2 − R4 given y = 1, respectively. The absolute value of velocity function log |vL(X,Y )|

shows that the velocity has larger values at locations where the flux trajectories are close to

be straight lines (purple regions on Figure 20F), but drops significantly when the trajectories

make turns (turquoise regions on Figure 20I).

There are also significant differences between the Fokker-Planck flux and the discrete stochas-

tic flux. The states “Off-On” and “On-Off” are single states with (X = 50, Y = 0) and

(X = 0, Y = 50) in Fokker-Planck flux (Figure 20F)), but they involve sets of the states close

to (X = 50, Y = 0) and (X = 0, Y = 50) in discrete flux (Figure 20C).The source of the flux

for the Fokker-Planck flux is located at (+∞,+∞) at the infinity. This is different from the

universal discrete stochastic flux, where a sink is at (+∞,+∞).

The Liouville flux trajectories and the Fokker-Planck trajectories depict similar behavior,

but with some differences. Starting from the same initial locations, for instance, (X = 70, Y =

40) or (X = 40, Y = 70), the Liouville trajectories first tend to reach the state “Off-Off” and

then converge to the states “On-Off” or “Off-On”. In contrast, the Fokker-Planck flux starting

from the same states tends to converge to the “Off-On” or the “On-Off” directly.
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5.3.3.4 Flux in Different Genetic States

While previous discussions are based on projections in the (X,Y ) plane with different ge-

netic states of (x, y) marginalized, we now examined fluxes in each of the specific genetic states

of genes x and y, namely, the “Off-Off” state at the gene copy number of (x = 0, y = 0) (Fig-

ure 21A, Figure 21D, Figure 21G), the “On-Off” state at (x = 1, y = 0) (Figure 21B, Figure 21E,

Figure 21H), and the “On-On” state at (x = 1, y = 1) (Figure 21C, Figure 21F, Figure 21I).

We neglect the case of (x = 0, y = 1) as it is symmetric to that of (x = 1, y = 0).

At the “Off-Off” state (x = 0, y = 0), we observe the existence of a sink at (X = 0, Y = 0)

for all three models of fluxes (Figure 21A, Figure 21D, and Figure 21G). This is expected, as

it is the state where both genes are bound, and the probability distribution has a peak. The

Fokker-Planck and the Liouville flux trajectories converge to the state (X = 0, Y = 0) (Fig-

ure 21D) following straight lines evenly spread out in the X − Y plane, whereas the discrete

flux trajectories bend toward the axes of X = 0 and Y = 0.

At the “On-Off” state (x = 1, y = 0), we observe the existence of the flux sink at (X =

50, Y = 0) for the Liouville and Fokker-Planck models (Figure 21E and Figure 21H). The

discrete stochastic flux trajectories converge to an area consisting states near (X = 50, Y = 0).

At the“On-On” state, where both X ∈ [40, 60] and Y ∈ [40, 60], both genes are unbound

and there is overall a small amount of probability mass associated with this genetic state.

The three flux models give markedly different results, with sinks located at different locations.

The discrete flux has the sink at (+∞,+∞) (Figure 21C). The Liouville flux has the sink at

(X = 39, Y = 39) (Figure 21F). There are three sinks for the Fokker-Planck flux (Figure 21I).
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It is informative to examine the behavior of the system with high copy number of PX

and PY in the regime where the law of mass action applies. We can obtain that critical

points for each of the four genetic states. For the “On-On” state, we have 〈X〉 = (−dX +√
d2
X + 4sXby)/(2bydX) ≈ 37, 〈Y 〉 = (−dY +

√
d2
Y + 4sY bx)/(2bxdY ) ≈ 37. For the “On-

Off” state, we have 〈X〉 = (sX + uy)/dX ≈ 50, 〈Y 〉 = 0. For the “Off-On” state, we have

〈X〉 = 0, 〈Y 〉 = (sY + ux)/dY ≈ 50. For the “Off-Off” state, we have 〈X〉 = (ux)/dX ≈ 0,

〈Y 〉 = uy/dY ≈ 0. The eigenvalues for all four critical points are negative, indicating that all

four are sinks.

These critical points are exactly where the sinks of Liouville flux located. The sink (X =

0, Y = 0) at the state “Off-Off” exists for all flux models. The sink at (X = 50, Y = 0)/(X =

0, Y = 50) for the “On-Off”/“Off-On” state exists for the Liouville and Fokker-Planck models.

In contrast the discrete flux lines converge to a broader set of states near the peak (X = 50, Y =

0) ((X = 0, Y = 50)). The Liouville flux converges to the sink at (X ≈ 37, Y ≈ 37) for the

“On-On” state, while there are mulitple sinks for Fokker-Planck flux. The discrete flux does

not converge to a single sink.

5.3.4 Flux and Velocity Fields in the Toggle Switch with Weak Promoter Binding

We now consider the system with weak promoter binding. The binding rates are bx =

by = 1 × 10−4, the synthesis rates sx = sy = 50, the degradation rates dx = dy = 1, and

unbinding rates ux = uy = 0.1. At the steady state, there are four probability peaks located

at (X,Y ) = (0, 0), (50, 0), (0, 50), (50, 50), corresponding to the states of genes Gx and Gy
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Discrete flux

Liouville flux

Fokker-Planck flux

Figure 21. Fluxes of the toggle switch system described at strong promoter binding of

b = 1× 10−2. The “Off-Off”gene state (x = 0, y = 0): (A) heat map of − log p(X,Y, 0, 0) and

flux lines of Js(X,Y, 0, 0), (D) heat map of − log p(X,Y, 0, 0) and flux lines of JL(X,Y, 0, 0),

and (G) heat map of − log p(X,Y, 0, 0) and flux lines of JFP (X,Y, 0, 0); The “On-Off”gene

state (x = 1, y = 0): (B) heat map of − log p(X,Y, 1, 0) and flux lines of Js(X,Y, 1, 0), (E)

heat map of − log p(X,Y, 1, 0) and flux lines of JL(X,Y, 1, 0), and (H) heat map of

− log p(X,Y, 1, 0) and flux lines of JFP (X,Y, 1, 0); The “On-On”gene state (x = 1, y = 1): (C)

heat map of − log p(X,Y, 1, 1) and flux lines for Js(X,Y, 1, 1), (F) heat map of

− log p(X,Y, 1, 1) and flux lines for JL(X,Y, 1, 1), (I) heat map of − log p(X,Y, 1, 1) and flux

lines for JFP (X,Y, 1, 1).
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of “Off-Off” (x = 0, y = 0), “On-Off” (x = 1, y = 0), “Off-On” (x = 0, y = 1), and “On-

On” (x = 1, y = 1) (Figure 22A, Figure 22D and Figure 22G). The steady state probability

distribution for the birth-and-death process of reactions R1, R3 of (Equation 5.7, given x = 1,

is the Poisson distribution with the maximum at its expected value of X = sX/dX = 50 [148].

Similarly, the steady state probability distribution for the birth-and-death process of reactions

R2, R4, given y = 1, is the Poisson distribution with the maximum at its expected value

of Y = sY /dY = 50. From computed p(X,Y, x, y), we show p(X,Y ), Js(X,Y ), JL(X,Y ),

JFP (X,Y ), vs(X,Y ), vL(X,Y ), and vFP (X,Y ) projected on the plane of (X,Y ) in Figure 22.

The steady-state probability landscapes in − log p(x, t) is shown in Figure 22A, Figure 22D

and Figure 22G, where high probability regions in red, and regions where probability is close

to zero in white. The trajectories of the flux field at the steady state are shown in blue for

the universal discrete flux field Js(x, t) in Figure 22A– Figure 22C, for the Liouville flux

field JL(x, t) in Figure 22D– Figure 22F, and for the Fokker-Planck flux field JFP (x, t) in

Figure 22G– Figure 22I. In Figure 22B, Figure 22E and Figure 22H, regions with large

absolute values of flux are shown in purple, and regions with low absolute values of flux are

shown in turquoise blue. In Figure 22C, Figure 22F and Figure 22I, regions with large absolute

values of velocity are shown in turquoise blue. In Figure 22B, Figure 22E and Figure 22I,

regions with small absolute values of velocity are shown in purple.

5.3.4.1 Universal Discrete Stochastic Flux and Velocity fields

The heatmaps of the universal discrete probability flux in log |Js(x, t)| and velocity in

log |vs(x, t)| are shown in Figure 22B and Figure 22C, respectively. We observe that loca-
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tions with larger flux values also have higher probability. Unlike in the previous case of strong

promoter binding, we observe the presence of stochastic oscillations around both “On-Off” and

“Off-On” states. In addition to the oscillations between the states “Off-On” (“On-Off”) and

“On-On”, the system also fluctuates from the state “On-On” to “Off-Off”, and then to “Off-

On”/“On-Off”. Figure 22C of log |vs(X,Y )| shows that the velocity drops significantly when

the trajectories make turns (turquoise regions, Figure 22C).

There are more states with large flux values compared to the condition of strong promoter

binding, i.e., there are more purple regions of higher probability mass in Figure 22B than in

Figure 20B. With more distributed probability mass and the observation of oscillations, the

steady state of the toggle switch system with weak promoter binding is overall markedly less

stable than that with strong promoter binding.

5.3.4.2 Liouville Flux

In the heat map of Liouville flux, larger values are associated with higher probabilities

( Figure 22D – Figure 22E). The states “Off-Off”, “On-Off”, “Off-On” and “On-On” are again

the attractors of the flux. While stochastic discrete flux exhibits strong oscillations, Liouville

flux trajectories converge to the probability peak at the “On-On” state after travelling through

peaks at “On-Off”, “Off-On”, and “Off-Off” states. The source of the flux is at both infinity

and at the state (X = 35, Y = 35). The sink is located at the states (X = 49, Y = 49).

The absolute value of velocity function log |vL(X,Y )| are larger at locations where the flux

trajectories are close to straight lines (purple regions, Figure 22F), but drop significantly when

the trajectories make turns (turquoise regions on Figure 22F).
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Discrete flux

Liouville flux

Fokker-Planck flux

Off-On

On-OffOff-Off

On-On

Off-On

Off-Off On-Off

On-On

Off-Off On-Off

On-OnOff-On

Figure 22. The probability landscapes, fluxes, and velocities of the toggle switch system with

weak promoter binding (b = 1× 10−4) at the steady state. Probability value is given by the

color scale, and the fluxes/velocities are shown in blue solid lines. The discrete stochastic flux

model with landscape in − log(p(x, y)) (A), flux in log |Js(x, y)| (B), and velocity in

log |vs(x, y)| (C); the Liouville flux model with landscape in − log(p(x, y)) (D), flux in

log |JL(x, y)| (E), and velocity in log |vL(x, y)| (F); and the Fokker-Planck flux model with

landscape in − log(p(x, y)) (G), flux in log |JFP (x, y)| (H), and velocity in log |vFP (x, y)| (I).
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The Liouville flux trajectories and the universal discrete flux trajectories exhibit signifi-

cantly different behavior. Due to fast unbinding relative to binding at this condition of promi-

nent stochasticity, the toggle switch system constantly alternate between the bounded and

unbounded states for genes x and y. However, this phenomena is not captured by the Liouville

flux.

5.3.4.3 Fokker-Planck Flux for the Toggle Switch Network

In the heat map of the Fokker-Planck probability flux, larger values are associated with

higher probabilities ( Figure 22G– Figure 22I). The states “Off-Off”, “On-Off”, “Off-On” and

“On-On” are the attractors of the flux. While stochastic discrete flux exhibits strong oscilla-

tions, Fokker-Planck flux trajectories, as Liouville flux, converge to the probability peak at the

“On-On” state after travelling through peaks at “On-Off”, “Off-On”, and “Off-Off” states. The

source of the flux is at both infinity and at the state (X = 30, Y = 30). The sink is located at

the states (X = 50, Y = 50). The absolute value of velocity function log |vL(X,Y )| are larger at

locations where the flux trajectories are close to straight lines (purple regions on Figure 22I),

but drop significantly when the trajectories make turns (turquoise regions on Figure 22I).

The Liouville flux trajectories and the Fokker-Planck trajectories depict almost identical

behavior of the system. There are some small differences. The sink for the gene state (x =

1, y = 1) for the Liouville flux is at (X = 49, Y = 49), which is different for the sink for

the Fokker-Planck flux, which is at (X = 50, Y = 50) (Figure 22G – Figure 22I). There are

significant differences between the Fokker-Planck flux and the discrete stochastic flux. Whereas
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stochastic discrete flux exhibits oscillations, Fokker-Planck flux trajectories converge to the

system probability peak at the state “On-On” (X = 50, Y = 50)

5.3.4.4 Flux in Different Genetic States

We now examined the fluxes in each of the specific genetic states. At the “Off-Off” state

(x = 0, y = 0) (Figure 23A, Figure 23D, Figure 23G), we observe the existence of the sink at

(X = 0, Y = 0) for all three models of fluxes (Figure 23A, Figure 23D, Figure 23G). This is

expected, as it is the state where both genes are bound, and the probability peak is located at

(X = 0, Y = 0). The Fokker-Planck and the Liouville flux trajectories converge to this state

(X = 0, Y = 0) following straight lines, which are evenly spread off in the X−Y plane, whereas

the discrete flux trajectories bend toward the axes of X = 0 and Y = 0.

At the “On-Off” state (x = 1, y = 0) (Figure 23B, Figure 23E, Figure 23H), we observe the

existence of a flux sink at (X = 50, Y = 0) for the Liouville and Fokker-Planck models (Fig-

ure 23D and Figure 23E). The discrete stochastic flux trajectories converge to an area of states

near (X = 50, Y = 0).

At the “On-On” state where both genes are unbound (Figure 23C, Figure 23F, Figure 23I),

the three flux models give markedly different results, with sinks at different locations. The dis-

crete flux has a sink at (+∞,+∞) (Figure 23C). The Liouville flux has the sink at (X = 50, Y =

50) (Figure 23F), and the Fokker-Planck flux has the sink at (X = 49, Y = 49) (Figure 23I).

It is interesting to examine the condition of high copy numbers of PX and PY , where the law

of mass action applies. We can obtain the critical points for each of the four genetic states. For

the state “Off-Off”, we have 〈X〉 = ux/dX ≈ 0, 〈Y 〉 = uy/dY ≈ 0. For the state “On-Off”, we
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have 〈X〉 = (sX+uy)/dX ≈ 50, 〈Y 〉 = 0. For the state “Off-On”, we have 〈X〉 = 0, 〈Y 〉 = (sY +

ux)/dY ≈ 50. For the state “On-On”, we have 〈X〉 = (−dX +
√
d2
X + 4sXby)/(2bydX) ≈ 50,

〈Y 〉 = (−dY +
√
d2
Y + 4sY bx)/(2bxdY ) ≈ 50. The eigenvalues at all four critical points are

negative, indicating that they are sinks.

These critical points are where the sinks of Liouville and Fokker-Planck fluxes located. The

sink (X = 0, Y = 0) at the state “Off-Off” exists for all flux models. For the “On-Off”/“Off-On”

state, the sink at (X = 50, Y = 0)/((X = 0, Y = 0)) exists for the Liouville and Fokker-Planck

fluxes, while the discrete flux lines converge to a set of the states near (X = 50, Y = 0)

((X = 0, Y = 50)). For the “On-On” state, the Liouville and Fokker-Planck fluxes converge to

(X = 50, Y = 50) and (X = 49, Y = 49), respectively. The discrete stochastic flux does not

converge to any sink.

5.3.5 Stochastic Fluctuations and Oscillations in Toggle Switch

5.3.5.1 Strong Promoter Binding

With strong promoter binding (b = 1 × 10−2), the three flux models are overall similar,

but with important differences in details. Discrete flux trajectories exhibit small fluctuations

around the “On-Off”peak at (X = 50, Y = 0) (and symmetrically at (X = 0, Y = 50),

Figure 24A). While changes in Y are just a handful copies of molecule, the amount of molecules

of X fluctuates more significantly (Figure 24A).

To gain better understanding of the observed fluctuations, we examine reaction trajectories

sampled using the SSA algorithm from the initial state of (X = 50, Y = 0, x = 1, y = 0), where

the “On-Off” peak is located. Figure 24B shows how trajectories of copy numbers of protein
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Fokker-Planck flux

Figure 23. Fluxes of the toggle switch system described at weak promoter binding of

b = 1× 10−4. The “Off-Off”gene state (x = 0, y = 0): (A) heat map of − log p(X,Y, 0, 0) and

flux lines of Js(X,Y, 0, 0), (D) heat map of − log p(X,Y, 0, 0) and flux lines of JL(X,Y, 0, 0),

and (G) heat map of − log p(X,Y, 0, 0) and flux lines of JFP (X,Y, 0, 0); The “On-Off”gene

state (x = 1, y = 0): (B) heat map of − log p(X,Y, 1, 0) and flux lines of Js(X,Y, 1, 0), (E)

heat map of − log p(X,Y, 1, 0) and flux lines of JL(X,Y, 1, 0), and (H) heat map of

− log p(X,Y, 1, 0) and flux lines of JFP (X,Y, 1, 0); The “On-On”gene state (x = 1, y = 1): (C)

heat map of − log p(X,Y, 1, 1) and flux lines for Js(X,Y, 1, 1), (F) heat map of

− log p(X,Y, 1, 1) and flux lines for JL(X,Y, 1, 1), (I) heat map of − log p(X,Y, 1, 1) and flux

lines for JFP (X,Y, 1, 1).
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(F)

(E)

(G)

(H)

(B)

Figure 24. The flow maps and trajectories of the probability fluxes of the toggle switch

system near the state “On-Off”, with strong promoter binding (b = 1× 10−2) shown in

log |Js(x, y)| (A), log |JL(x, y)| (C), log |JFP (x, y)| (D); and with weak promoter binding

(b = 1× 10−4) shown in log |Js(x, y)| (E), log |JL(x, y)| (G), log |JFP (x, y)| (H). Sampled

Gillespie trajectories starting from the state (X = 50, Y = 0, x = 1, y = 0) are shown for

strong binding (B) and for weak binding (F).
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PX (red lines) and protein PY (black lines) fluctuate. PX fluctuates around X = 50. This is

due to stochasticity in the synthesis and the degradation of PX at the genetic state of x = 1.

The trajectories of copy number of protein PY (black lines) also fluctuate around Y = 0, but

with overall much smaller magnitude. This is because gene Gy occasionally becomes unbound

(X > 0), upon which PY is synthesized. However, since promoter binding is strong and at this

condition PX is in much larger amount then PY , gene Gy rapidly becomes inhibited by PX

again.

The fluctuations observed in reaction trajectories are well explained by the flux lines shown

in Figure 24A, which form closed, x-axis-oriented horizontal ellipses around the state (X =

50, Y = 0) (Figure 24A). The major axis of the ellipse corresponds to the stochastic fluctuations

with larger magnitude in copies of PX , and the minor axis to fluctuation with smaller magnitude

in copies of PY .

While the behavior of stochastic fluctuation observed in reaction trajectories are well cap-

tured in the flowmap computed discrete stochastic flux, these fluctuations, however, are not

captured by either the Liouville flux (Figure 24C) or the Fokker-Planck flux (Figure 24D), where

both converge to a single state (X = 50, Y = 0) (and symmetrically to (X = 0, Y = 50)).

5.3.5.2 Weak Promoter Binding

With weak promoter binding (b = 1×10−4), there are significant differences between the dis-

crete flux and fluxes based on continuum approximations. The discrete flux lines (Figure 22A)

exhibit strong oscillations between (X = 50, Y = 50) and (X = 50, Y = 0), and symmetrically

between (X = 50, Y = 50) and (X = 0, Y = 50). Furthermore, probability flux also flows from
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(X = 50, Y = 50) to (X = 0, Y = 0), then to (X = 50, Y = 0), and back to (X = 50, Y = 50).

Symmetric oscillatory pattern is also seen, where flux lines flow back to (X = 50, Y = 50) via

(X = 0, Y = 0) and (X = 0, Y = 50). In addition, occasionally oscillation can be seen between

(X = 50, Y = 0) and (X = 0, Y = 50) via the state of (X = 50, Y = 50).

To gain better understanding of the stochastic oscillations uncovered from the discrete flux

model, we examine reaction trajectories sampled from the initial state of (X = 50, Y = 0, x =

1, y = 0), where the “On-Off” peak is located. Figure 24F shows trajectories of copy number

of protein PX (red lines) and protein PY (black line). PX fluctuates with small magnitude

around X = 50. This is due to stochasticity in PX synthesis and degradation at x = 1. This

is similar to the fluctuation in PX shown in Figure 24B where promoter binding is fast. PY

exhibit similar fluctuation around Y = 50.

However, there is significant oscillation in PY (black line) of larger magnitude between

Y = 50 and Y = 0. This is due to stochastic switching between the gene state of y = 1

and y = 0. Similarly, PX (red) also oscillates between X = 50 and X = 0 due to switching

between x = 1 and x = 0. Unlike that of strong promoter binding (Figure 24B), trajectory

of PY (blackline) exhibit no fluctuations around Y = 0 (Figure 24F). This is because when

gene Gy becomes unbound (y = 1), the system has sufficient time to transit from (Y = 0) to

(Y = 50) before gene Gy becomes bound again (y = 0), as promoter binding of PX to Gy is

slow. Furthermore, the durations of simultaneous high copies of PX and PY (X = 50, Y = 50)

are relatively short.
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The oscillations observed in reaction trajectories are well-explained by the flowmap of the

discrete flux (Figure 24E and Figure 22A). The closed vertical ellipses with foci at states

(X = 50, Y = 0) and (X = 50, Y = 50) correspond to the larger stochastic fluctuations

in Y (blackline) and smaller magnitute fluctuations in X (redline) (Figure 24F). Shown in

Figure 22A but not in Figure 24E for clarity, the closed horizontal ellipses with foci at states

(X = 0, Y = 50) and (X = 50, Y = 50) correspond to the larger stochastic fluctuations in

X (redline) and smaller magnitute fluctuations in Y (blackline). Furthermore, corresponding

to the shorter durations in trajectories when both PX and PY are high at 50 (Figure 24F),

the state (X = 50, Y = 50) indeed is a transient state in the flow maps of the discrete flux

(Figure 22A– Figure 22C).

Overall, the behavior of stochastic oscillations and fluctuations observed in reaction trajecto-

ries are well captured in the computed discrete stochastic flux. These oscillating behaviors, how-

ever, are not captured by either the Liouville flux (Figure 24C) or the Fokker-Planck flux (Fig-

ure 24D), where in either case the system converges to a single state of (X = 50, Y = 50).

5.4 Oscillations in Feedback Network Motifs

The results obtained in the previous section showed the oscillations in toggle-switch network

motif with weak promoter binding which were not reported before. Oscillations are known to

happen in repressiator [149–151], which has three nodes, delayed positive feedback [152, 153],

and negative feedback with positive and negative regulations [154,155].
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We further show the discrete flux for negative and positive feedback networks with the

binding and unbinding regimes described before, and compare the nature of flux in these two

systems with the flux in toggle switch network.

First, we consider a negative feedback network consisting of two genes, Gx and Gy, express-

ing proteins PX and PY , correspondingly. The dimer of protein X inhibits Gy, and the dimer

of protein Y activates Gx (Figure 25A). Gx is expressed with basal expression rate sX = 5,

but it is expression rate is increased to sX = 50 when activated. Gy is expressed with a basal

expression rate sY = 50, and it is not expressed when inhibited by PX dimer. Both proteins

PX and PY degrade with the rate of dY = 1.

5.4.1 Weak Promoter Binding

When the binding rates of both Gx and Gy rate of b = bx = by = 0.0001, and unbinding rate

is u = ux = uy = 0.1 for both genes, the system has slow promoter dynamics. These binding

and unbinding rates are identical to the rates of toggle-switch system with weak promoter

binding we examined earlier. Due to such large differences in the rates b and u, the behavior of

toggle switch system is highly stochastic. We obtained the steady state probability landscape of

this system by solving discrete Chemical Master Equation with ACME method (Figure 25B)

[69, 84]. This probability landscape has four peaks, corresponding to the specific Gx and Gy

states. We have (0, 0): Gx is activated and Gy is inhibited, (1, 0): Gx is unbound, Gy is

inhibited. We further study how the transitions between these important phenotypic states

occur in the steady state. Hence, we compute probability flux for this discrete highly stochastic

system.
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(A) (B) (C)

Figure 25. Feedback genetic network: schematic representation (A), the heatmap

− log p(X,Y ) and flux trajectories of probability (B) the system with weak promoter binding

of b = 1× 10−4, (C) the system with weak promoter binding of b = 1× 10−2.

We can see oscillating trajectories between the states (1, 1)-(0, 1)-(0, 0)-(1, 0) (Figure 25B).

When the system is at the state (1, 1) where both genes are unbound, the copy number of

PY is high, and its dimer activates Gx and the system transits to the state (0, 1), where both

proteins have high copy numbers. At the state (0, 1), once the dimer of X binds to Gy, its

inhibition occurs, the systems transits from the state (0, 1) to the state (0, 0). At (0, 0) the

copy number of Y is low, and Gx gets unbound and deactivated, therefore, transits to the state

(1, 0). At the state (1, 0) both protein X and Y copy numbers are low, and the inhibited Gx

becomes unbound, the system transits to the state (1, 1). Hence, the cycle happens again.
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5.4.2 Strong Promoter Binding

When the binding of both Gx and Gy rate of b = bx = by = 0.01 and unbinding rate is

u = ux = uy = 0.1 for both genes, the system has strong promoter dynamics. These binding

and unbinding rates are identical to the rates of toggle-switch system with strong promoter

binding studied before. We obtained the steady state probability landscape of this system by

solving discrete Chemical Master Equation with ACME method (Figure 25C) [69, 84]. This

probability landscape has only two peaks, corresponding to the specific Gx and Gy states, (1,1)

and (0,1) correspondigly. We have (1, 1) state: both Gx and Gy are unbound; (0, 1): Gx is

activated, Gy is unbound; (0, 0): Gx is activated and Gy is inhibited, (1, 0): Gx is unbound, Gy

is inhibited. We further study how the transitions between these important phenotypic states

occur in the steady state. Hence, we compute probability flux for this discrete highly stochastic

system.

We can observe oscillating trajectories between the states (1, 0) and (1, 0) Figure 25C. At

the state (1, 0) both protein X and Y copy numbers are low. However due to large binding rate,

Gx becomes bound and system transitions into the state (0, 0). Due to strong inhibition Gy is

inhibited, and at (0, 0) the copy number of PY is low, and Gx becomes unbound, and therefore

not activated. Thus the system transitions to the state (1, 0) occurs. The cycle happens again.

With the example of such a simple genetic feedback system, we showed how complex be-

havior of the oscillation in highly stochastic system can be easily understood with the discrete

probability flux model. These results are consistent with the known phenomena of oscilla-

tions in negative feedback loop [154]. Unlike in the toggle switch, oscillations happen in both



146

cases of strong and weak promoter binding. Moreover, the oscillation trajectories sequentially

connect all the important phenotypic states, whereas in the toggle-switch oscillations multiple

trajectories connect subsets of the important phenotypic states.

5.5 Probability Flux and Velocity to the Study of Problem of Gene Duplication

Probability velocity and flux fields can be used for studying of a wide range of important

biological problems. Here we apply them to the problem of gene duplication in toggle switch

networks, where the processes of transcription and translations are explicitly modeled.

The process of gene duplication is widely studied. In [156] it is suggested that after gene

duplication the amount of expression of each of daughter genes is reduced, relative to the

expression of progenitor gene. It prohibits the loss of either of daughters genes, and daughter

copies retain all the ancestral functions.

Here we study how different outcomes of gene duplication affect the behavior of the toggle

switch network. Particularly, we study gene duplication in the toggle switch network with

and without expression reduction. We consider three cases of gene expression reduction with

different levels of expression of daughter genes.

5.5.1 Two-level Toggle Switch Model

We employ a detailed model of two level toggle switch, where the binding and unbinding

reactions are explicitly modeled and the synthesis is modeled as two step process involving

translation and transcription.
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There are eight molecular species in our model: genes Gx and Gy, which express proteins

PX and PY , messenger RNAs, mRNAX , and mRNAY , as well as protein-DNA complexes Gx

and Gy with protein PY bound to gene Gx and protein PX bound to gene Gy, respectively (Fig-

ure 26). The dimer of the product PX inhibits the activity of gene Gy, as well as the dimer of

protein PY inhibits the activity of gene Gx.

Figure 26. Schematic representation of the two level toggle switch genetic network.
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The molecular reactions and corresponding reaction rates of the network are listed below:

R1 : Gx
smRNAx=0.0173→ Gx +mRNAX , R2 : Gy

smRNAy=0.0173
→ Gy +mRNAY ,

R3 : mRNAX
dmRNA=0.0039→ ∅, R4 : mRNAY

dmRNA=0.0039→ ∅,

R5 : mRNAX
sP =0.005→ PX +mRNAX , R6 : mRNAY

dP =0.005→ PY +mRNAY ,

R7 : PX
dP =0.0007→ ∅, R8 : PY

dP =0.0007→ ∅,

R9 : 2PX +Gy
b=10−6

→ Gy, R10 : 2PY +Gx
b=10−6

→ Gx,

R11 : Gy
u=10−6

→ 2PX +Gy, R12 : Gx
u=10−6

→ 2PY +Gx.

(5.8)

The microstate of the system is defined as an ordered sextuplet (X,Y,mX,mY, x, y) of copy

numbers of species PX , PY , mRNAX , mRNAY , Gx, and Gy, respectively. The copy numbers

of bound genes Gx and Gy are denoted as x and y. Correspondingly, x = nx−x and y = ny−y,

where nx and ny denote the total number of copies of genes Gx and Gy in this system. There

are a number of stochastic processes encoded in this network. The transcriptions of mRNAX

and mRNAY from gene Gx and gene Gy are represented by reactions R1 and R2, respectively.

The translations of proteins PX and PY from gene mRNAs mRNAX and gene mRNAy are

represented by reactions R5 and R6, respectively. The degradations of mRNAX , mRNAy, PX ,

and PY are represented by reactions R3, R4, R7, and R8, respectively. Reaction R9 represents

the binding of two copies of protein PX to the promoter site of Gy to form a protein-DNA

complex Gy. Reaction R10 represents the unbinding of the complex Gy. Similarly, reaction
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R11 represents the binding of two copies of protein PY to the promoter site of Gx to form a

protein-DNA complex Gx. Reaction R12 represents the unbinding of the complex Gx.

Probability landscape and corresponding flux trajectories for the case of nx = 1 and ny = 1.

The probability projected to the species PX , PY (Figure 27A) shows that the system has four

peaks: at (X = 30, Y = 30), corresponding to the state (x = 1, y = 1), when both of the genes

are expressed, at (X = 30, Y = 0), corresponding to the state (x = 1, y = 0), when the gene Gx

is expressed and Gy is inhibited, at (X = 0, Y = 30), corresponding to the state (x = 0, y = 1),

when the gene Gx is inhibited and Gy is expressed, and at (X = 0, Y = 0), corresponding to

the state, corresponding to the state (x = 0, y = 0), when both of the genes are inhibited. The

flux lines show the oscillations around the states with (X = 30, Y = 0) and (X = 0, Y = 30),

where the oscillation trajectories are going through the state (X = 0, Y = 0). There are also

small fluctuation around the state (X = 30, Y = 30), with the source of the probability flux at

(+∞,+∞).

5.5.2 Case of Gene Duplication with no Expression Reduction

We consider the case, when Gy is duplicated (ny = 2) and transcription rates of daughter

genes are the same as the transcription rate of the ancestral gene smRNAy. The system has

five peaks of protein copy numbers at (X = 0, Y = 0), (X = 0, Y = 30), (X = 0, Y = 60),

(X = 30, Y = 0), (X = 30, Y = 30) (Figure 27B). The peak at (X = 30, Y = 30) is of very

small size. Probability flux oscillatory trajectories connect the state (X = 30, Y = 30) with

two peaks (X = 0, Y = 30), (X = 0, Y = 0). There are also oscillations between the states

of (X = 0, Y = 30), (X = 0, Y = 60). In contrast to the case of nx = ny = 1 (Figure 27A),
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state (X = 30, Y = 30) is a transient state for probability mass trajectories, and there is no

probability flux from the peak (X = 30, Y = 30) in the direction of increase of copy numbers

of X and Y .

(A) (B) (C)

Figure 27. The steady-state probability landscape − log(p(X,Y )) and flux trajectories for

the system in (Equation 5.8): (A) one copy of both genes (nx = 1, ny = 1), (B) two copies of

gene Gy (nx = 1, ny = 2), (C) two copied of both genes (nx = 2, ny = 2).

We then consider the case, when both Gx and Gy are duplicated, so that (nx = 2, ny = 2).

The transcription rates of both daughter genes are the same as the transcription rate of the

ancestral gene smRNAx and smRNAy, correspondingly. The system has six peaks of protein

copy numbers at (X = 0, Y = 0), (X = 0, Y = 30), (X = 0, Y = 60), (X = 30, Y = 0),

(X = 60, Y = 0), (X = 30, Y = 30) (Figure 27C). The peak at (X = 30, Y = 30) is larger,
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comparing to the case of single copy of each gene (Figure 27B), but it is still a transient

state for the flux. The oscillations trajectories between the states of (X = 0, Y = 30) and

(X = 0, Y = 60) and between the states of (X = 30, Y = 0) and (X = 60, Y = 0) are going

through the peak at (X = 30, Y = 30).

The behavior of the system with (nx = 1, ny = 1) is very different comparing to the behavior

of the toggle switch system with (nx = 1, ny = 2) or (nx = 2, ny = 2). In both cases of gene

duplication, the peak at (X = 30, Y = 30) is a transient peak for a probability flux, and there

is no oscillations at this peak, unlike in the system with one copy of each gene (Figure 27B). It

possibly suggests that the behavior of the system with one copy of each gene is the most noisy.

5.5.3 Case of Expression Reduction of Daughters Genes

We further consider the case when the gene Gy was duplicated and two daughter genes G
(1)
y

and G
(2)
y were created in result of such duplication. We further model the system, where the

transcription rates of two daughter genes are different, and the their total rate is equal to the

initial rate of expression of gene Gy, which is smRNAy. In this case, the process can be described

by the system of the reactions (Equation 5.8) with R2 being substituted with two reactions

R
(1)
2 and R

(2)
2 :

R
(1)
2 : G(1)

y

s
(1)
mRNAy→ G(1)

y +mRNAY ,

R
(2)
2 : G(2)

y

s
(2)
mRNAy→ G(1)

y +mRNAY

We first find probability landscape and flux for the case, when s
(1)
mRNAy/s

(2)
mRNAy = 2.25,

meaning that transcription rates of one daughter genes is 2.25 times larger than the other

daughter gene. Probability landscape (Figure 28A) shows three peaks, at (X = 0, Y = 0),
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(B) (C)(A)

Figure 28. The steady-state probability landscape − log(p(X,Y )) and flux trajectories for

the toggle switch system with asymmetric transcription rates of two daughters genes after

duplication (A) s
(1)
mRNAy/s

(2)
mRNAy = 2.25, (B) s

(1)
mRNAy/s

(2)
mRNAy = 4.0, (C)

s
(1)
mRNAy/s

(2)
mRNAy = 9.0.

(X = 30, Y = 0), and (X = 0, Y = 30). The peak at (X = 30, Y = 30) (Figure 27A), merges

with the peak at (X = 30, Y = 0). The behavior of the system in this case is significantly

different to the behavior of the system with one copy of each gene (Figure 27A). Similarly

to the case of one copy of each gene (Figure 27A), there are oscillatory trajectories around

(X = 30, Y = 0) and (X = 0, Y = 0), as well as (X = 0, Y = 30) and (X = 0, Y = 0).

Unlike in the in the case of one copy of each gene (Figure 27A), the oscillating trajectories

on (Figure 28A) are asymmetric. Moreover there is a sink at the state (+∞,+∞), however the

trajectories approaching this state are asymmetric, and only indicate the increase of X.
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We find probability landscape and flux for the case, when s
(1)
mRNAy/s

(2)
mRNAy = 4.0, meaning

that transcription rates of one daughter genes is four times larger than the other daughter gene.

Probability landscape (Figure 28B) shows four peaks, at (X = 0, Y = 0), (X = 30, Y = 0),

(X = 0, Y = 30), and (X = 30, Y = 30). The peak at (X = 30, Y = 30) (Figure 28B) exists,

but it is very close to the peak at (X = 30, Y = 0). The behavior of the system in this case

is different to the behavior of the system with one copy of each gene (Figure 27A). Similarly

to the case of one copy of each gene (Figure 27A), there are oscillatory trajectories around

(X = 30, Y = 0) and (X = 0, Y = 0), as well as (X = 0, Y = 30) and (X = 0, Y = 0), moreover

these oscillating trajectories on (Figure 28B) are quite symmetric. In addition, there is a sink

at the state (+∞,+∞), however the trajectories approaching this state are asymmetric, and

only indicate the increase of X. Unlike on Figure 27A the he peak at (X = 30, Y = 30) is a

transient peak for the probability flux.

We next find probability landscape and flux for the case, when s
(1)
mRNAy/s

(2)
mRNAy = 9.0,

meaning that transcription rates of one daughter genes is nine times larger than of the other

daughter gene. Probability landscape (Figure 28C) shows four peaks, at (X = 0, Y = 0),

(X = 30, Y = 0), (X = 0, Y = 30), and (X = 30, Y = 30). The peak at (X = 30, Y =

30) (Figure 28C) is emerging in this case. The behavior of the system in this case is even

more similar to the behavior of the system with one copy of each gene (Figure 27A). Similarly

to the case of one copy of each gene (Figure 27A), there are oscillatory trajectories around

(X = 30, Y = 0) and (X = 0, Y = 0), as well as (X = 0, Y = 30) and (X = 0, Y = 0),

moreover, like in the case of one copy of each gene (Figure 27A), the oscillating trajectories
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on (Figure 28C) show more symmetry comparing to the cases on Figure 27A-B. Moreover there

is a sink at the state (+∞,+∞), and there are trajectories reaching to this state from both

directions of increase X and Y . The flux around the peak fluctuates.

The system with the closest behavior to the original system is the system with asymmetric

transcription rates with the largest difference between these rates. It is natural, because the

large difference of the reaction rates of both genes indicates that the effect of one gene is much

more significant, therefore the behavior of this system is close to the behavior of the system with

one copy of each gene. In contrast, the system with the smallest differences in transcription

rates of daughter genes is less similar to the system with one copy of each gene: the peak at

(X = 30, Y = 30) is merged with the peak at (X = 30, Y = 0), and there is no significant

oscillations around this peak, which may indicate that this system overall is less noisy.

5.6 Conclusions

In this study, we constructed global flow maps of probability flux over the state space in

all possible directions simultaneously for three types of flux models, namely, 1) the Discrete

Universal Stochactic flux; 2) the Liouville flux; 3) and the Fokker-Planck flux. While flux

in stochastic models has been commonly based on Fokker-Planck formulations, we introduced

here the models based on mass-action kinetics and studied with relation to Fokker-Planck and

universal discrete flux. While Fokker-Planck model and universal discrete flux model behaved

similarly in several well-studied examples, including Schnakenberg system [37, 38], this study

reveals the difference between these two models in highly stochastic system of toggle switch

with slow promoter binding. We first showed theoretical differences between these three types
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of fluxes. We showed that the differences between the models are due to the differences of the

second order terms or so called diffusion terms of the Kramers-Moyal expension. Moreover,

when the reactions are defined with directions, the flux for forward reactions may overlap, but

the reverse reactions fluxes are always different for the universal discrete flux.

We further studied details of the probability fluxes using the network model of the toggle

switch system. We examine the behavior of these fluxes, under two conditions, namely, i) when

the binding rates of the genes by transcription factors are much further than the unbinding

rates, with which the system exhibiting three stable states, and ii) when the unbinding rates

are of the same magnitude as binding rates, with which the system exhibiting strong stochastic

fluctuations and four stable states at the steady state. Our results show that fluxes computed

with these three differenting models exhibit significantly different results. We show that the uni-

versal discrete stochastic flux exhibits strong oscillating behavior at the non-equilibrium steady

state, which is due to strong fluctuations between binding and unbinding events. In contrast,

Fokker-Planck and Liouville models fail to capture this phenomenon. Simulated stochastic

trajectories fully confirmed findings obtained using the universal discrete models.

In addition, we applied the developed flux method to studies of the oscillations in negative

feedback and the problem of gene duplication. We confirmed the occurrence of oscillations in

negative feedback, and showed oscillatory trajectories for the system with two and four peaks.

We built two level toggle-switch model, where the reactions of transcription and translation are

modeled explicitly. We showed that the behavior of the system after duplication is closest to the
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behavior of the system with one copy of both genes, when the expression rates are asymmetric

and the difference in their values is largest.



CHAPTER 6

SUMMARY AND FUTURE WORK

In this work we developed methods that facilitate accurate computation of probability, as

well as finding the velocity and flux of probability in stochastic gene regulatory networks, that

were previously infeasible. We applied these methods to study different examples, motivated

by real world biological problems of significant importance.

Solving the discrete Chemical Master Equation (dCME) is of fundamental importance for

studying stochasticity in reaction networks. The main challenges are the discrete nature of

the states and the difficulty in enumerating these states, as the size of the state space expands

rapidly when the network becomes more complex. The method developed in this work allows

exact computation of probability landscape within the predefined error bound, and assessment

of the error a priori and after the computations. Such accurate modeling is important for

studying the rare events, such as the spontaneous switch from lysogeny of phage lambda into

lysis, or the cancerogenesis of a normal cell. The theorems proved here could be used for

developing new truncation methods, involving reflecting boundaries, when the probability mass

is conserved within the system, and there is no state absorbing the probability mass involved.

Here we developed the upper bound truncation for the elementary species participating in

the synthesis and degradation from the buffer. The further development of the theory for

the lower bound truncation of the elementary species copy number is in the progress. It will

allow us to eliminate the states with the small copy number of molecules, which have low

157
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probability. Further, we plan to introduce upper and lower bound for copy number of every

specie, participating in synthesis and degradation. Such truncation can possibly allow to have

more efficient truncation and larger savings of the state space.

We also studied feed-forward loop network motifs as one of the most ubiquitous three node

network motifs, which has high significance in mammalian cells. The results of our computa-

tional experiments suggest that feed-forward loop can exhibit multitude of cellular phenotypes

due to stochastic fluctuations in between distinct expression levels given slow promoter bind-

ing. The regulation intensities of feed-forward loop are the key determinants, which can be

fine-tuned in order to achieve specific phenotypic behavior. We further studied the sensitiv-

ity of these regulation intensities. Results obtained suggest that the steady state probability

landscape of feed-forward loop with less peaks is more robust to the changes of its parameters.

Overall, these findings can be useful in biological studies, in which synthetic feed-forward loops

are constructed, and can help to overcome the challenge of selecting experimental parameters

of the system according to particular programmed behavior.

We introduced new formulations of discrete flux and discrete velocity for a general meso-

scopic reaction system. Specifically, we redefined the derivative and divergence operators based

on the discrete nature of chemical reactions. We then introduced the discrete form of continuity

equation for the systems of reactions. We defined two types of discrete flux: i) the reactional

flux, and ii) the species flux, with their relationship specified. The reactional discrete flux satis-

fies the continuity equation and describes the behavior of the system evolving along directions

of reactions. The species flux directly describes the dynamic behavior of the reactions such
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as the transfer of probability mass in the state space. Our discrete flux model enables the

construction of the global time-evolving and steady-state flow-maps of fluxes in all directions at

every microstate. We showed how velocity and flux field can be computed for modeling of sim-

ple biochemical reaction systems, such as birth and death process, bistable Schlogl model, and

oscillatory Schnakenberg system. Results we obtained for Schnakenberg system are consistent

with the results obtained with other methods such as the widely used Fokker-Planck flux.

Developed in this work, discrete probability flux and velocity fields are of great importance.

Indeed, they address the problem of modeling systems with low copy numbers and large differ-

ences in reaction rates, where the probability flux methods based on continuous approximations

are problematic and stochasticity is prominent. For instance, we showed that widely used the

Fokker-Planck flux based on continuous approximation of dCME, and the Liouville flux based on

ODEs, generate the flux trajectories that are similar to each other for the toggle-switch model

with slow promoter dynamics and weak promoter binding. However, the discrete stochastic

flux trajectories are different for both. Particularly, the discrete stochastic flux exhibits strong

oscillating behavior at the non-equilibrium steady state, which is due to strong fluctuations

between binding and unbinding events. In contrast, Fokker-Planck and Liouville models fail to

capture this phenomenon. We further investigated the oscillations in feedback loop, which were

known before. We showed that in toggle switch model oscillatory trajectories connect subsets of

important phenotypic states. Whereas in negative feedback loop all the important phenotypic

states are connected with the oscillatory trajectories sequentially.
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We also applied the discrete probability velocity and flux to analyze the effect of the phe-

nomena of gene duplication in toggle switch system. We showed probability flux field for

different cases of the expression level in daughter genes after duplication. Our results suggest

that when daughter gene transcription level is reduced after duplication, the behavior of the

system is closest to that before the duplication, when the expression rates are asymmetric and

the difference in their values is largest.
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30. Duncan, A., Liao, S., Vejchodskỳ, T., Erban, R., and Grima, R.: Noise-induced multista-
bility in chemical systems: Discrete versus continuum modeling. Physical Review
E , 91(4):042111, 2015.

31. Strasser, M., Theis, F. J., and Marr, C.: Stability and multiattractor dynamics of a toggle
switch based on a two-stage model of stochastic gene expression. Biophysical
Journal , 102(1):19–29, 2012.

32. Margaret, J. T., Chu, B. K., Roy, M., and Read, E. L.: Dna-binding kinetics determines
the mechanism of noise-induced switching in gene networks. Biophysical Journal ,
109(8):1746–1757, 2015.



164

33. Zia, R. and Schmittmann, B.: Probability currents as principal characteristics in the
statistical mechanics of non-equilibrium steady states. Journal of Statistical Me-
chanics: Theory and Experiment , 2007(07):P07012, 2007.

34. Li, C., Wang, E., and Wang, J.: Landscape, flux, correlation, resonance, coherence,
stability, and key network wirings of stochastic circadian oscillation. Biophysical
Journal , 101(6):1335–1344, 2011.

35. Zhang, X.-J., Qian, H., and Qian, M.: Stochastic theory of nonequilibrium steady states
and its applications. part i. Physics Reports , 510(1):1–86, 2012.

36. Wang, J., Xu, L., and Wang, E.: Potential landscape and flux framework of nonequilib-
rium networks: robustness, dissipation, and coherence of biochemical oscillations.
Proceedings of the National Academy of Sciences , 105(34):12271–12276, 2008.

37. Xu, L., Shi, H., Feng, H., and Wang, J.: The energy pump and the origin of the non-
equilibrium flux of the dynamical systems and the networks. The Journal of Chem-
ical Physics , 136(16):165102, 2012.

38. Terebus, A., Liu, C., and Liang, J.: Discrete flux and velocity fields of probability
and their global maps in reaction systems. The Journal of Chemical Physics ,
149(18):185101, 2018.

39. Li, C. and Wang, J.: Landscape and flux reveal a new global view and physical quantifi-
cation of mammalian cell cycle. Proceedings of the National Academy of Sciences
, 111(39):14130–14135, 2014.

40. de Oliveira, L. R., Bazzani, A., Giampieri, E., and Castellani, G. C.: The role of non-
equilibrium fluxes in the relaxation processes of the linear chemical master equa-
tion. The Journal of Chemical Physics , 141(6):08B608 1, 2014.

41. Bianca, C. and Lemarchand, A.: Evaluation of reaction fluxes in stationary and oscillating
far-from-equilibrium biological systems. Physica A: Statistical Mechanics and its
Applications , 438:1–16, 2015.

42. Wang, J., Xu, L., Wang, E., and Huang, S.: The potential landscape of genetic cir-
cuits imposes the arrow of time in stem cell differentiation. Biophysical Journal ,
99(1):29–39, 2010.



165

43. Li, C. and Wang, J.: Quantifying the underlying landscape and paths of cancer. Journal
of The Royal Society Interface , 11(100):20140774, 2014.

44. Tang, Y., Yuan, R., Wang, G., Zhu, X., and Ao, P.: Potential landscape of high dimen-
sional nonlinear stochastic dynamics with large noise. Scientific Reports , 7:15762,
2017.

45. Shankar, R.: Principles of quantum mechanics . Springer Science & Business Media, 2012.

46. Xu, S., Sheng, P., and Liu, C.: An energetic variational approach for ion transport. arXiv
preprint arXiv:1408.4114 , 2014.

47. Keener, J. and Sneyd, J.: Biochemical Reactions . Springer, 1998.

48. Kurtz, T. G.: The relationship between stochastic and deterministic models for chemical
reactions. The Journal of Chemical Physics , 57(7):2976–2978, 1972.

49. Kurtz, T.: Limit theorems for sequences of jump markov processes. J Appl Probab ,
8(2):344–356, 1971.

50. Gillespie, C. S.: Moment-closure approximations for mass-action models. IET systems
biology , 3(1):52–58, 2009.

51. Smadbeck, P. and Kaznessis, Y. N.: A closure scheme for chemical master equations.
Proceedings of the National Academy of Sciences , 110(35):14261–14265, 2013.

52. Grima, R.: A study of the accuracy of moment-closure approximations for stochastic
chemical kinetics. The Journal of chemical physics , 136(15):04B616, 2012.

53. Ivanov, I. V., Qian, X., and Pal, R.: Emerging Research in the Analysis and Modeling of
Gene Regulatory Networks . IGI Global, 2016.

54. Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., and Alon, U.: Network
motifs: simple building blocks of complex networks. Science , 298(5594):824–827,
2002.

55. Maamar, H., Raj, A., and Dubnau, D.: Noise in gene expression determines cell fate in
bacillus subtilis. Science , 317(5837):526–529, 2007.



166

56. Inui, M., Martello, G., and Piccolo, S.: Microrna control of signal transduction. Nature
reviews Molecular cell biology , 11(4):252, 2010.

57. Ferrell Jr, J. E.: Self-perpetuating states in signal transduction: positive feedback, double-
negative feedback and bistability. Current opinion in cell biology , 14(2):140–148,
2002.
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