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SUMMARY

The scientific community faces an increasing amount of data due to advances in acquisition tech-

nologies. Because of the ubiquity of large data repositories in today’s society, scientists have begun

to analyze and explore the abundance of data now at their fingertips to both generate and test new hy-

potheses. However, spatial features often are an essential trait of these large-scale scientific datasets.

While established visualization guidelines can provide recommendations that are generalizable enough

to be applied to a variety of problems, they are often designed for abstract data (no spatial attributes) of

moderate scale. Selecting an effective approach in these situations can be challenging for both novice

and veteran researchers, especially when it may not be apparent wherein the data to begin the analysis

or how to go about doing so. Visualization design strategies can help lessen this burden by guiding

questions such as what data to show, how to display it, and if necessary, in what order to arrange it.

This dissertation examines design strategies for visualization collaborations involving spatial data; in

particular, how the data and task abstractions, workflow processes, and user expertise affect the decisions

behind the design strategies of visualization collaborations involving spatial data. These strategies are

actualized through the design and implementation of four integrated systems that demonstrate their

effectiveness across the four spatial data problems in science and engineering domains. The merits and

limitations of this work are supported through an analysis of each domain problem by demonstrating the

complexities involved with interdisciplinary research and the necessity of working directly with domain

scientists and their data. These strategies can serve as a reference for researchers who are working on

endeavors that similarly characterize to those described in this dissertation.

xix



CHAPTER 1

INTRODUCTION

1.1 Motivation

As our society becomes increasingly sophisticated, so will the methods of space exploration, drug

development, and treatment of patients in hospitals. Whether the goal is to discover how events in far off

galaxies relate to those in our own, develop more effective drugs, or further personalize cancer treatment

on a per-patient level, visualization serves as an invaluable interface between humans and data through

which discovery and insight might be gained.

As a corollary to these progressions, the scientific community faces an increasing amount of data

due to advances in acquisition technologies. The emergence of this fourth science paradigm as a new

standard of scientific exploration and discovery to the existing three paradigms of science (empirical

evidence, scientific theory, and computational science) has created a shift in how scientists are choosing

to conduct their day-to-day research [4]. Because of the ubiquity of large data repositories in today’s

society, scientists have begun to analyze and explore the abundance of data now at their fingertips to

both generate and test new hypotheses.

However, analyzing this wealth of information can be difficult for scientists, especially in situations

when it may not be clear wherein the data to begin their analysis. In addition to the increase in scale,

many of these datasets contain multiple aspects of the same data. These aspects provide unique, yet

often complementary, views into the various attributes that define the dataset. For instance, a biological

1
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dataset for identifying functional mutations throughout a family of proteins may consist of the captured

sequence and 3D structural data for each of the proteins, as well as derived information on how these

proteins relate to one another within a family and the summary statistics between the family members.

Because of the heterogeneity of this dataset (i.e., spatial structures and non-spatial sequences, family

statistics, etc.), an application with a single graphical view would not be sufficient to provide biologists

with information for each of the different data aspects at once; in other words, the design of such an

application would require more than one view of the data, simultaneously. This visualization design

challenge is not unique only to biological domains; spatial features are also an essential trait of datasets

in many other science and engineering (S&E) domains.

Additionally, the design of these applications must also facilitate the breadth of skill and expertise

supplied by the members within a scientific collaboration. In endeavors that feature such an assortment

of complementary user expertise, it is often beneficial that the collaborating members work together on

the same data in the same interface. In these situations, this interface must facilitate the needs of each

of the members, some of whom may wish to view different aspects of a dataset that contains a mixture

of data elements with and without spatial data attributes (i.e., data with intrinsic cartesian coordinates).

For example, in addition to providing views for the multiple aspects of data, the design of a visualization

application for identifying functional protein mutations must also consider the various data abstractions,

visual encodings, and interaction affordances that users with expertise in both molecular biology and

bioinformatics would be most familiar [2].

However, selecting an effective design for any visualization collaboration can be challenging for

novice and seasoned visualization researchers, alike. In S&E collaborations, determining how to begin
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these endeavors is often complicated by the multiple aspects of the data and the varying expertise of

target users. In this data-intensive world, visualization design strategies can help lessen the difficulty of

new collaborations by guiding questions such as what data to show, how to show it, and if necessary, in

what order to show it.

And yet, the concept of a design strategy does not carry a precise definition. Separately, the general

dictionary defines design as the specification of elements to be created that details their aesthetics,

function, and arrangement, and strategy as a plan of action devised to achieve a specific goal. In the

visualization literature, the term strategy tends to follow its general definition while design has been

defined multiple times. Munzner [5] defines design as a “creative process [...] to select one of many

possible good choices from the backdrop of the far larger set of bad choices” and that it encapsulates

the “generation and validation of data abstractions, visual encodings, and interaction mechanisms.” We

note this definition does not include decisions related to the arrangement of visual elements, which is

nevertheless discussed in later chapters of the textbook as an additional design decision that must be

considered. We adopt a similar definition for design as Munzner and define a design strategy to be an

actionable plan focused on generating appropriate and effective data abstractions and visual encodings

that satisfy the requirements of the expert. By doing so, we extend the textbook definition to explicitly

emphasize the function and placement of the visual abstractions within a target visual interface, the

interactions between them, and how these decisions align with the execution of interrelated processes

within the experts’ workflows.

With this definition in mind, this dissertation examines how the data and task abstractions, workflow

processes, and user expertise affect design strategy decisions for S&E visualization collaborations that
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involve spatial data. As we have already seen, these collaborations may not always provide designers

a clear path in which to begin their analysis. In these situations, visualization guidelines can provide

useful, general recommendations for how to approach these endeavors. Therefore, let us begin our in-

vestigation by first considering relevant guidelines that are often prescribed in the visualization literature

as useful starting points in visualization design and the terminology behind them.

1.2 Relevant Visualization Paradigms

Over the years, research in the field of visualization has produced various design models and guide-

lines that aim to provide a useful starting point for designing visualization applications. A common goal

of these approaches is the design of techniques that provide the user with an awareness of either the

entire (overview) or reduced (context) information space to facilitate further investigation of regions of

interest (details). In this section, we examine two well-established visualization paradigms as well as a

third introduced later in this work (Chapter 5). Parts of this section originally appeared in our Details-

first manuscript [3] presented in Chapter 5. For the sake of clarity, some of the paragraphs have been

reworked for use here.

1.2.1 Overview-first paradigm

Among the well-established guidelines for how to design visual interfaces, few are as widely cited

as Shneiderman’s 1996 Visual Information Seeking mantra: “Overview-first, zoom and filter, then de-

tails on demand” [6]. The mantra provides an intuitive guideline to the interplay between the need to

first give the user a broad awareness of the dataset (known as an overview), the need to show informa-

tion about each of the individual data points, and the appropriate stage of the analysis in which to do

so [5]. Guidelines such as those offered by Shneiderman’s mantra (henceforth, Overview-first) provide
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recommendations that are generalizable enough to be used by novice users and be applied to a variety

of visualization problems with abstract data (no spatial attributes) of moderate scale.

1.2.2 Search-first paradigm

However, it is often the case in S&E endeavors that the target users are experts within the domain and

are working with large-scale, multidimensional datasets. In these situations, creating an overview for

top-down analysis may not be feasible. As further argued by van Ham and Perer [7] in their alternative

“Search, Show context, Expand on demand” mantra for large graphs, there is also a significant class of

scientific users who are not interested in global patterns in the data but have specific questions about one

or several specific data points. This alternate approach to visual analysis is similar to the online map

process (henceforth, Search-first), where search results provide the starting point for exploring local

neighborhoods (known as the context). As a practical example, an astronomer who studies a class of

quasars is typically not interested in an overview of the entire observable universe, but rather a subset of

the data containing observations based on some search criteria [1].

1.2.3 Details-first paradigm

Last but not least, there are situations where providing an initial overview is not relevant or practical

for users, while providing direct access to specific features (details) is paramount. However, details in

S&E endeavors are often spatial features that do not have a precise definition. Instead, their identification

relies on internalized knowledge in the domain expert’s head, without which these details cannot be

searched against or aggregated to provide the user with a context or an overview. For example, in

computational fluid dynamics (CFD), domain scientists often work on the same problem for months
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and have a good mental overview of the underlying data [8]. Nevertheless, visualization textbooks only

report on the Overview-first and the Search-first mantras [5].

For these situations, this work presents a novel, alternative approach in Chapter 5 – “Details-first,

Show context, Overview last” – that supports situations where the main user workflow is centered around

spatial or spatiotemporal feature analysis. Unlike the Overview-first and Search-first paradigms, the

problem overview can only be observed as non-spatial summarization statistics of or across simulation

runs. From an information theory perspective, Chen et al. [8] argue briefly that in such cases, having

the direct ability to reach a detailed view (henceforth, Details-first) would reduce the cost of step-by-

step zoom operations. Other arguments against first presenting global overviews to users are more

practical. First, details describing spatial features may not carry a precise definition, and thus may

not be readily available to generate an initial overview. Furthermore, creating an overview may also

not be feasible, especially in the case of large-scale multidimensional datasets that are maintained at a

centralized location and transferring it to multiple client machines is not an option [7; 9; 10]. Finally, in

some scientific problems such as simulation ensemble visualization [11], the problem overview is not

one spatial dataset, but a collection of datasets, whose summarization in an overview is not necessarily

clear to the domain expert.

1.3 Key Terminology

Because the terms overview, context, and detail are overloaded in the visualization literature, we

must first clarify the meaning and usage of each term in the scope of this work. Again, parts of this

section originally appeared in our Details-first manuscript [3] presented in Chapter 5 and have been

reworked for use here.
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1.3.1 Overview

The meaning of overview is diverse in the visualization literature. As Hornbæk [12] notes, many

authors [6; 13; 14] write about users gaining an overview of the information space, a process which

Hornbæk identifies as “overviewing”. This process is akin to the design concept of “knowledge in the

head” or “internalized knowledge” [15]. In this respect, Spence [13] defines overview exclusively in

relation to the perceptual and cognitive processes through which an overview is acquired, rapidly and

without any cognitive effort. Similarly, Tufte [14] discusses overview as an awareness of the content

and structure of an information space, acquired by pre-attentive cues, information reception, and active

creation.

Yet Greene et al. [16] and Shneiderman [6] also note that “an overview is constructed from, and

represents, a collection of objects of interest”. Munzner’s [5] discussion of overviews touches on both

aspects: “broad awareness of the entire information space [...] and all items”, but also “when the dataset

is sufficiently large, some form of reduce action must be used in order to show everything at once.” Last,

while Shneiderman [6] discusses overviewing in his mantra paper as “seeing the entire collection,” the

mantra and subsequent examples refer to overview in the sense of a technical, user interface component

(“knowledge in the world” [15]).

In this work, we adopt the Munzner dual definition. To distinguish between the two common uses,

“spatial overview” denotes the spatial overview of one simulation (often internalized by domain ex-

perts), and “summarization overview” denotes a collection of objects of interest, constructed through

reduction of the entire information space.
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1.3.2 Context

In general, context can denote either 1) a global setting, or 2) a local circumstance. In the visual-

ization literature, the concept is similarly used. When describing the concept of focus+context, Card et

al. [17] equate context with overview (a global view at reduced detail). Doleisch et al. [18] also describe

context as “the rest of the [spatial] data”, at a lower resolution, or in reduced style, (i.e., using translu-

cency). More generally, Furnas [19] explains that context, conceptually, is “any presentation of an

information structure” that helps the user “to extract meaning, to understand something about [another

focused/original] structure.”

The van Ham and Perer [7] construction and usage of context is consistent with the locality aspect

of the general vocabulary definition. In our work, context is defined similarly, along its locality aspect.

1.3.3 Detail

In general, detail denotes an individual feature, fact, or item. In the Overview-first paradigm [6], a

detail is “implicitly defined in contrast to overview” [12]. Contrary to Shneiderman and Spence [13],

Tufte does not contrast between overview and detail, and instead suggests that “to clarify, add detail.”

Munzner describes “a more detailed view that shows a smaller number of data items with more infor-

mation about each one” [5]. As described above, details are often spatial features in S&E visualization

collaborations such as those found in this work.

1.4 Scientific Workflow Theory

So far we have examined three visualization paradigms – Overview-first, Search-first, and Details-

first – that can offer guidance for new visualization collaborations. However, while some S&E problems

involving spatial data pair well with a particular paradigm (e.g., the query-based workflows found in
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observational astronomy lend themselves nicely to a Search-first design strategy), others do not have an

obvious pairing when determining which approach to apply. In these situations, considering the problem

from a scientific workflow theory [20] can help determine which paradigm, or multiple paradigms, best

fit the spatial data problem at hand.

Casually speaking, a workflow is an abstract description of the tasks required for executing a partic-

ular real-world process, and the flow of information each of the tasks [21]. More specifically, scientific

workflow theory borrows heavily from business workflow modeling and decomposes each workflow into

three components [20]: data, control, and (human) resource components. For each workflow, the data

component captures the information that is required during the execution of a workflow; the control-

flow component describes the set of steps that make up the process and the way in which the thread of

execution is routed between them; and the resource component identifies the people and facilities that

actually carry out the process. By capturing these elements for a particular problem, the design compo-

nents corresponding to overview, context, and details can often be easily identified. This decomposition

can further assist with which approach to apply and when to apply it.

1.5 Challenges

However, even with all of the information presented in this chapter so far, developing visualization

design strategies for S&E collaborations still presents several significant challenges. First, it is often

difficult to determine the underlying requirements of domain scientists when developing design strate-

gies for S&E problems involving spatial data. From vortices in flow simulations to the bonding sites on

protein structures, spatial data is at the very core of most S&E collaborations. However, these datasets

commonly describe information about physical, spatial structures that can be unique to the domain in
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Figure 1. Spatial data problems must be evaluated following the three nested levels of problem-driven
work [22].

which they originate. Many of the problems that confront scientists working with these datasets can

also be unique in that the data and tasks are tightly coupled with the target domain. Furthermore, we

have previously seen that these datasets – many of which are large-scale and heterogeneous – may also

consist of multiple data attributes that, depending on the expertise of the target scientists, must be taken

into account in the design. One approach to mitigate this challenge is to work together with domain

scientists and their data to help determine which visualization design strategies best align with data and

tasks of the target domain.

A second challenge when developing visualization design strategies lies in how we evaluate their

success. Visualization theories and models span a wide range, from mathematical abstractions and

frameworks to guidelines and novel interpretations of different aspects of the development of visualiza-

tions in particular contexts [23; 24]. As a result, validations of the resulting theories and models also
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cover a range of approaches. For example, the Search-first mantra was introduced along with a construc-

tive example in the domain of large graphs of citations [7], with reported usage cases and no domain

expert feedback. Additionally, the visualization design literature has shown that a model or theory can

also be acceptably supported by as little as one to a few concrete examples coming from the experi-

ence of one to a few authors [25; 26; 27; 22]. One notable exception can be found in Shneiderman’s

instantiation of the Overview-first mantra, where its “notable theoretical development” [28] of was not

accompanied by supporting evidence [6].

Another common approach to validating a visualization design is to test it using the components

of Munzner’s nested model of visual design and evaluation (Figure 1) [22]. In problem-driven design,

the success of the solution can only be evaluated once the nested levels of Munzner’s model have been

completed, from characterizing the domain to proposing the appropriate visual encodings. In short, this

means that we must complete the nested model before we can observe success. At the same time, any

of these components may influence the success of the outcome, and it may be difficult to tease out the

influence of the layout strategy as opposed to the influence of the visual encodings. However, it may be

possible to experiment only with the layout and observe the outcome.

Finally, extrapolating generalizable strategies from examples of successful collaborations can prove

to be the most difficult challenge in the development of design strategies for S&E problems. Again, the

close collaboration between visualization researchers and domain scientists can yield strategies that have

been specifically designed to solve the target problem of the expert. These collaborations often produce

solutions highly tailored to the domain and can create challenges for designers looking to emulate the

same success. Unfortunately, such insight would require ethnographic studies to determine how the data
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and task abstractions, user expertise, and workflow processes affect the decisions behind their presented

design strategies. While we cannot entirely address this challenge in this dissertation on empirical

evidence alone – four examples of successful design strategies cannot constitute proof – we can identify

the commonalities between the results of our solutions using scientific workflow theory [20], which has

been tested in other domains.

1.6 Contributions Overview

We ground our work by focusing on the design space of four specific spatial data problems – spec-

troscopic analysis of galaxies in observational astronomy (Chapter 2), functional mutation analysis in

protein families in computational biology (Chapter 3), lymph node metastasis in radiation oncology

(Chapter 4), and viscous finger evolution in mechanical engineering (Chapter 5). From an applica-

tions standpoint, our goal is to develop tools that solve real-world problems. In doing so, this disserta-

tion describes the design decisions from domain characterization to evaluation regarding the data and

tasks identified by their target user workflows and examines the use of the three discussed paradigms

(Overview-first, Search-first, and Details-first) for developing the design strategies behind the each pre-

sented solution.

Specifically, this dissertation presents the following contributions: 1) descriptions of the tasks and

data associated with specific problems related to spectroscopic analysis of galaxies in observational as-

tronomy, functional mutation analysis in protein families in molecular biology, lymph node metastasis

in radiation oncology, and viscous finger evolution in mechanical engineering; 2) several novel visual

representations and techniques that demonstrate how the Overview-first and Search-first mantras can

be used for spatial data analysis; 3) a “Details-first, Show context, Overview last” approach for the ex-
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ploration of large-scale spatial data centered around feature analysis; 4) the design and implementation

of four integrated systems that demonstrate the effectiveness of our design strategies across the four

described domains situations; 5) the deployment and expert evaluation of these four integrated systems;

6) and a discussion of the merits, applicability and limitations of our presented design strategies. The

design strategies presented throughout this dissertation can be referenced as guidance for similar spatial

data problems.

The first contribution of this work – descriptions of the tasks and data associated with specific prob-

lems in the domains of observational astronomy, molecular biology, radiation oncology, and mechanical

engineering – details the basis on which our presented solutions were built. These analyses may also

serve as a starting point for researchers who are interested in or are currently working with similar spatial

data problems as those described in this dissertation.

The second contribution of this work – several novel visual representations and techniques – demon-

strates how the Overview-first and Search-first mantras can facilitate spatial data analysis. While the

concepts of filtering and aggregating data to provide global and contextual visual representations are

by no means new, they are not sufficiently researched in relation to spatial data attributes. Specifically,

this work demonstrates techniques for filtering and aggregating these datasets according to their spatial

properties to create effective visual representations.

The third contribution of this work – a Details-first approach – presents an alternative approach to

the Overview-first and Search-first mantras that supports situations where the main user workflow is

oriented along spatial or spatiotemporal feature analysis, while the problem overview can only be ob-

served as non-spatial summarization statistics of or across simulation runs. We construct this approach
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using theoretical evidence from scientific workflow theory and practical evidence from the domain of

computational fluid dynamics to support our “Details-first, Show context, Overview” last exploration

paradigm. Furthermore, we demonstrate the effectiveness of this approach on a large-scale, spatial

dataset and examine its relationship to other design strategies.

The fourth and fifth contributions of this work – the design, implementation, deployment, and eval-

uation of four integrated applications – demonstrates how the three strategies (Overview-first, Search-

first, and Details-first) can be applied to solve the real-world problems of real-world users in various

spatial data, S&E domains. The integrated applications are developed in close collaboration with do-

main experts to solve complex domain-specific problems.

The last contribution – a discussion on the merits, applicability, and limitations – reflects on each

design strategy in the context of the spatial data problem the collaboration aimed to solve and discusses

potential future applications that our strategies might benefit as well as areas in our design that may

require further research.



CHAPTER 2

LARGE-SCALE OVERLAYS AND TRENDS:

VISUALLY MINING, PANNING AND ZOOMING THE OBSERVABLE UNIVERSE

This chapter was originally published in the IEEE Transactions on Visualization and Computer

Graphics (TVCG) Journal c© in 2014 [1]. This version has been edited to be consistent with the rest of

the dissertation. Coauthors on the original work include Brian Cherinka (BC), Daniel Oliphant (DO),

Sean Myers (SM), W. Michael Wood-Vasey (MWV), Alexandros Labrinidis (AL), and G. Elisabeta

Marai (GEM). The contributions from each author included: BC and MWV served as our observa-

tional astronomy domain experts, providing the theoretical underpinnings for the trend image design

and provided support with the software testing and the design of the case studies; DO designed the first

versions of the client-server architecture, the Data-Driven Spots, and the original image stitching algo-

rithm behind Astroshelf; SM contributed to the implementation and refactoring of the front-end client

and SkyView; AL served as a co-principal investigator on the project for the data management of the

project and recommended the use of the S2-tree for indexing the images; GEM served a co-principal

investigator on the project for the visualization aspects of the project and directed the top-level design,

implementation and testing of the tool. My (TL) contributions to this work included the design and

implementation of the pixel-based trend images, postage-stamp images, and interactive SkyView. Ad-

ditionally, I worked with BC to project the various survey images (SDSS, FIRST, and LSST) for their

stitching and cross-registration in the SkyView and helped design and develop the current version of the

client-server architecture and AL and his data management team. I am the first author on this work.

15
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This chapter begins our investigation of spatial data design strategies with the problem domain of ob-

servational astronomy, where advances in telescope technology have resulted in astronomical workflows

needing to handle data of both increasing scale and variety. While the data in this domain characterizes

as both big volume (e.g., large numbers of observation and varying scales) and big variety (e.g., cata-

logs, spectra, and images), many observational astronomy workflows are designed around the goal of

discovering correlations within moderate collections of observations; not the entire observable universe.

In our collaboration with observational astronomer (coauthors BC and MWV), we found that their work-

flows typically began with query-based tasks to select, group, and browse collections of observations

according to spatial data properties. Based on the execution order of these workflows, we decided that

the Search-first visualization design paradigm most closely aligned with the tasks of our collaborating

astronomers. Specifically, since the target workflows centered around the search and filter operations,

we chose to design our solution with a layout that prioritized the tasks related to first reducing the

information space before enabling any further exploration of the data. Following this approach, this

chapter introduces a novel computational framework and web-based application, Astroshelf, that facil-

itates these workflow processes and assists in the visual integration, mining, and interactive navigation

of large-scale collections of observations. To address challenges associated with scalability, we present

a novel visual representation designed to assist astronomers in identifying trends in large collections of

spatial observations.

2.1 Introduction

Advances in data acquisition technology enable astronomers to amass large collections of comple-

mentary data, ranging from large scale, gigabit images to spectroscopic measurements. With the insight
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Figure 2. Cross-correlated large-scale overlays of optical observations, radio-emission observations,
and simulation results from the SDSS sky survey (color-on-black, full-coverage overlay), the FIRST

sky survey (red overlay to the left), and the LSST dataset (gray overlay, diagonal). Transparency can be
interactively controlled for each overlay, enabling cross-spectrum analysis. Hardware-accelerated

overlays coupled with a web-based client-server architecture allow panning and zooming of gigabit sky
panoramas at interactive frame rates.

gained by these observations, researchers can better understand the happenings in our galaxy by study-

ing similar events in distant ones.

However, astronomical workflows are becoming cumbersome due to the increasing scale and variety

of data sources. Astronomers gather the data needed for a particular study by querying multiple surveys

for images, cross-correlating complementary images of the same object or set of objects, and searching

multiple catalogs for potential supporting details. Once collected, astronomers must then flip back and

forth between these spatial and non-spatial details and images to gain context. This process is both
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tedious and challenging, often requiring hours to complete. As a result, more time is spent gathering

data rather than analyzing it.

Additionally, the data’s properties further complicate the design of informative representations and

techniques. First, the Information Seeking Mantra [6] fails in this domain due to the volume and density

of the data. Coincidentally, the tedium described in the previous workflow closely resembles the Van

Ham-Perer mantra [7]; astronomers often perform manual, query-based data filtering operations before

analysis. Secondly, the data’s innate spatial features uniquely define the domain’s tasks; for instance,

galactic position and age – defined by a spatial attribute, redshift – help to determine morphological

similarity. In conjunction, these properties pose challenges to the design and validation of visual repre-

sentations and underlying spatial similarity.

Inspired by an analysis of observational astronomy workflows, we propose a web-based visual in-

frastructure for the interactive navigation and mining of large-scale, distributed, multi-layer geospatial

data. We introduce an automated pipeline for cross-correlating image data from complementary sur-

veys, and we enable the visual mining of catalog information in conjunction with the large scale image

data (Figure 2). A spatially indexed, hardware-accelerated, client-server backbone allows fetching, dis-

playing, panning and zooming of gigabit panoramas in real time.

The contributions of this work (extended from our Best Paper Runner-Up Award [29] at the IEEE

Large Data Analysis and Visualization Symposium 2012) are as follows: 1) a formal analysis of the data

and tasks specific to the observational astronomy domain; 2) the design of a client-server architecture

for the interactive navigation of large scale, complementary astronomy observations; 3) two compact,

scalable visual abstractions—hardware-accelerated pixel-based overlays and trend images—to enable



19

the interactive mining, panning and zooming of these data; 4) a web-based, cross-platform implemen-

tation of this approach; and 5) the application of this approach to observational astronomy data through

three case studies.

2.2 Domain Analysis

Our first contribution is a formal analysis of the domain data and tasks. This analysis provides a

problem-driven basis on which further visualizations and interactions can be built.

Astronomy surveys cover a wide area of sky by acquiring many smaller images — some of which

may overlap — over their targeted region. A given survey usually only covers a small fraction of the

whole sky. However, the advent of large telescopes like the Large Synoptic Survey Telescope will

change dramatically, over the next decade, the scale of these surveys. Different surveys may or may

not cover the same area of sky, resulting in possibly completely disparate or overlapping datasets. The

Extended Groth Strip [30] for example, is one of the most observed regions of the sky, with upwards of

eight different telescopes/surveys collecting data; this region is rich with multi-wavelength observations.

In our experiments we use data from three surveys, the Sloan Digital Sky Survey (SDSS), the Faint

Images of the Radio Sky at Twenty Centimeters (FIRST), and simulated results from the Large Synoptic

Survey Telescope (LSST). SDSS is an optical, wide-field, survey covering a quarter of the sky. Over the

past ten years, it has imaged a half a billion galaxies and taken spectra for a half a million, providing a

massive leap in the amount of astronomical data (roughly 15 TB raw image data, stored as 2048x1489

pixel field images). FIRST is a radio survey of the sky, following the same path as SDSS. FIRST also

covers about a quarter of the sky and contains roughly a million discrete radio sources [31]. LSST is

a future optical full-sky survey, along the same lines as SDSS but of unsurpassed scale. It will cover
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TABLE I. Observational Astronomy Data Analysis
Field / Attribute Data Type (per point) Visual Mapping

2D Fields
Optical RGB Value Color Overlay
Radio RGB Value Color Overlay
Simulated Intensity Color Overlay

2D Field Attributes
Projection Scheme Formula Location on Unit Sphere
Stripe Information Numeric Tuple Individual Tile Image

Catalogs
Table of Search Results Alphanumeric Tuple Data Driven Spots (DDS)

Object Attributes
Identifiers Alphanumeric Value Detail-on-Demand
Coordinates Numeric Tuple Pixel Coordinate
Redshift Numeric Value Pixel Intensity
Wavelength & Flux Numeric Array Pixel Intensity
Spectra Numeric Array Trend Line & 2D Plot
Image RGB Value Small Multiple

∼20,000 sq. degrees of the sky, scanning the entire sky (visible from the southern hemisphere) every

3 nights, in six photometric bands. LSST will image approximately 3 billion galaxies and will archive

about 6.8 PB of images a year. As LSST has yet to acquire sky images, the LSST project has generated

simulations of images of the sky to mimic and observe the observational prowess of the survey. Seven

fields (189 unique image files), each covering ∼10 sq. degrees, have been simulated.
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2.2.1 Data Analysis

Astronomers use a variety of data formats to collect, organize, analyze, and share information about

the observable Universe. The most common formats used are images and catalogs.

Images are rectangular snapshots (tiles) of regions of the sky, typically labeled with the spatial

location of the region. Images in astronomy are usually stored as a Flexible Image Transport System

(FITS) file. FITS files store image metadata in a human-readable ASCII header, and often include

technical telescope details from when the image was taken. FITS files are extremely versatile, capable

of storing non-image data such as spectra, 3D data cubes, multi-table databases, and catalog data.

Since the observable Universe is projected onto a sphere, the angle is the most natural unit to use

in measuring positions of objects on the sky. Astronomers describe the coordinates of objects in Right

Ascension (RA) and Declination (Dec). Similar to how longitude and latitude describe positions of

objects on the Earth from a given reference point, right ascension and declination mark the position, in

degrees, of an object with respect to the celestial equator.

Catalogs index all of the objects in a set of images. The catalogs contain spatial location infor-

mation for every object imaged, along with any non-spatial properties collected or calculated from the

observations (e.g. brightness, mass.) Each object in the catalog receives a unique identifier. Catalogs

generated from the same survey will use the same unique object identifiers, making cross-matching

within a survey straightforward. However, as is often the case, when the same object is observed in

different surveys, it is assigned different identifiers for each catalog; this labeling makes cross-survey

matching a non-trivial task. While the observed objects in each survey may not overlay exactly due
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to variation in each telescope’s construction and parameters, they may still be physically and visually

associated with each other (e.g. radio jets emanating from the center of a galaxy.)

Among the spatial and non-spatial object properties typically stored in catalogs, spectra play a

particularly important role. Whereas imaging only captures broad features across the entire object,

such as color or shape, spectra capture detailed information on the physical processes in and around

the object, such as kinematics, temperature, distance from observer (redshift), and elemental content of

gas associated with the object. Spectra specify the wavelength distribution of electromagnetic radiation

emitted by a celestial object, as well as the flux (or intensity) of the object at those wavelengths. Large

surveys typically acquire one spectrum per object, resulting in an extremely large number of spectra per

survey; for example, SDSS has acquired spectra for ∼1.6 million objects. Selecting particular classes

of objects based on spectra and looking for trends can often lead to valuable insight about that object

class.

Table I summarizes the data types typical of observational astronomy, as well as the visual map-

pings proposed in this work. In summary, the observational astronomy domain features large-scale,

distributed, overlapping, multivariate datasets consisting of both spatial and non-spatial data: in a nut-

shell, data characterized by big volume and big variety. Big volume characteristics encompass: large

image sizes (gigabit), impacting both rendering and interaction rates; fragmented images resulting in

numerous image tiles; multiple scales; and large numbers of both observations and objects, often in-

dexed in collections. Big variety characteristics include: data heterogeneity (e.g., catalogs, spectra and

images); multiple data sources (surveys); and complementary domain expertise (e.g., expertise in super-
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TABLE II. Observational Astronomy Task Analysis
Task Visual/Interaction Mapping Technical Challenge

T1 Pan and zoom in real-time Panning & Zooming Real-time infrastructure & interaction
T2 Analyze spatial distribution of objects Object Overlays Scalable visual abstraction
T3 Cross-correlate 2D image fields Filtering on Overlays Image cross-registration pipeline
T4 Identify trends & outliers in an object-collection Interactive Trend Images Visual abstraction
T5 Group objects according to properties Linked Views Interaction design
T6 Inspect object properties Linked Views & Details-on-Demand Visual design

novae as complementary to expertise in transient events). While the data is indexed by object location,

uncertainties in the measured position make visual correlation particularly useful.

2.2.2 Task Analysis

The Universe is a complex structure with many physical processes governing its formation and evo-

lution. While space-based telescopes can observe the full electromagnetic spectrum, cost and technical

challenges preclude the design of a single all-purpose telescope. Instead, astronomers rely on many tele-

scopes that observe specific regions of the electromagnetic spectrum and then cross-match the datasets

to identify the same objects in each one. Astronomers must also manually seek out data related to a

particular object.

Astronomical processes occur on many length scales, from small-scale features such as dust par-

ticles to large-scale features such as clusters and superclusters of galaxies. With observations usually

pertaining to a specific scale at a time, it can be easy to lose the big picture of how all these processes

are connected. Therefore it is advantageous to stitch multiple observations together to create a seamless

zoomable image. This would allow astronomers to visually explore how stellar and galactic physical

processes relate to the larger picture of galaxy groups and clusters.
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Browsing massive astronomy collections of objects provides additional challenges. For example,

selecting particular classes of objects based on spectra and looking for trends can often lead to valuable

insight gained about that object class. However, when studying trends within astronomy objects of a spe-

cific class, typical efforts rely upon inspecting individual objects on an image in the sky or in a database

table. The approach takes enormous amounts of time. Furthermore, outliers in the dataset can often

skew scientific results and must be located and removed before any analysis can be performed. Typical

hypotheses relate to identifying trends, common properties, outliers, and discrepancies in collections of

objects. Typical operations relate to grouping, selecting and analyzing objects from a collection.

Table II summarizes the tasks and challenges typical to observational astronomy. In summary,

the observational astronomer workflow involves both queries of the type what – where – correlated-

with-what and tasks of the type browse – group – analyze over multiple surveys at multiple scales. In

conjunction with the big volume and big-variety of the data, astronomers seek the ability to interact with

and compare multi-field data for a large number of objects and images.

Last but not least, additional requirements gleaned from interviews referred to desired interaction

rates, ease of use, learning curve, and cross-platform desirability.

2.3 Related Work

Multiple attempts have been made to facilitate the observational astronomy workflows. However,

none integrate large scale distributed astronomy research data while attaining interactive visual mining,

panning and zooming framerates.

Google Sky [32] is a primarily educational, interactive, scalable view of the Sloan Digital Sky Sur-

vey (SDSS). While it provides a friendly and clean interface, it also relies on local copies of the data to
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the exclusion of multiple surveys; which is a limiting factor for astronomy researchers. An additional

drawback is its inability to integrate and share catalog data from multiple datasets. The National Virtual

Observatory [33] (NVO) is a service designed primarily for aggregating and cross-matching informa-

tion from multiple surveys. While it provides some form of catalog cross-registration, the NVO has

a cumbersome interface which lacks a much-needed interactive visual component. The World Wide

Telescope [34] is a Microsoft Research, primarily educational project designed to allow users to view

the Universe with a large, high resolution image of the sky. The ability to overlay multiple maps and

visually cross-match objects is nonexistent. There is also a lack of connectivity with catalogs and other

scientific data. Last, a variety of institutions have created web interfaces for accessing astronomical data,

either for querying specific astronomy databases [35; 36], or for aggregating data on many objects from

multiple catalogs [36; 37]. These interfaces either lack a visual interface entirely or they provide only a

static sky image to view a few objects at a time. Visual overlays of cross-matched data are non-existent

and the user interfaces require a steep learning curve.

Attempts to work with gigascale image data have been made in other domains, though none have

been applied directly to observational astronomy. Saliency Assisted Navigation identifies areas of in-

terest in gigapixel images [38]. Through preprocessing and filtering regions of interest, discernible

locations in a scene can be presented interactively. Kopf et al. [39] and Machiraju et al. [40] have

also developed systems for dealing with gigascale and terascale image data. While these systems have

complementary strengths in terms of the storage and the scale of the data being manipulated, each was

generally designed for local geospatial data, and not for distributed geospatial sources.
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Architectures for multi-zoom large-scale visualizations have also been explored. Space-Scale Dia-

grams [41] have been used in many geospatial applications [42; 43; 44]; they serve as a basis for our

navigational approach. However, earlier applications were not designed to handle the magnitude of data

described in this work. The challenges of indexing astronomy data are discussed in Page’s indexing dis-

cussion [45]; we use a new indexing approach, based on a Geohash [46]. A step further, ZAME [47] has

used GPU-accelerated rendering to deliver interactive framerates to multi-scale visualizations. While

the ZAME approach is beneficial to client-based applications that are able to provide full graphics sup-

port, web-based applications like ours pose more stringent constraints (e.g., limits on how many textures

can be passed to a shader at once). However, advances in web-based technologies have been gradually

mitigating these constraints, and the advantages of web-based approaches (e.g., built-in cross-platform

support and inherent access to online data collections) far outweigh these shortcomings. Furthermore,

panning and zooming is a common problem among geospatial applications [48; 49; 50]. While many

of these works focus on interactive techniques relevant to this project, the focus of this chapter is an

efficient architecture for viewing and cross-correlating gigabit image data.

Presenting multivariate data visually is also common among geospatial applications. Oriented Sliv-

ers provides a method to visualize multivariate information simultaneously on a single 2D plane, but

becomes easily cluttered as the dimensionality of the data rises [51]. Heat maps [52] alleviate this

problem by assigning each value a temperature and producing a color map based on the resulting heat

combinations. While particularly beneficial in giving a general overview of data over large areas, heat

maps are less useful in identifying individual data points. The approach we adopt for overlaying in-
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formation in the sky, Data Driven Spots (DDS), addresses both of these concerns via a pixel-based

visualization [53].

The spectra data associated with sky objects are instantiations of ordered single-index tables; in

which, however, the index itself is a property. Plain index tables have in general many possible visual

mappings, from time-series line charts [54] and bar charts to graph-views, scatterplots [55], colored

matrix cells [56] and 3D representations [57]. However, such mappings typically suffer from scalability

issues. To address scalability concerns, we follow a pixel-based approach inspired by the compact

representations of Keim [58]. Unlike existing pixel-based work which enables comparison through a

small-multiple paradigm, however, our approach leverages alignment and resampling of the table data

based on the index property. We further employ sorting properties of the object collection in order to

generate a single, composite interactive image.

2.4 Design and Implementation

Based on the domain data and task analysis, we design a pipeline for the interactive exploration of

observable astronomy data. Given the multiple, distributed sources of data, and the scale of the data, we

follow a client-server model (Figure 3). The online processes of this architecture are user-demand driven

and occur in real-time. While, in a certain sense, our work aims to create a “Scientific Google Sky”, we

note that due to different requirements Google Sky uses a different—albeit unpublished—infrastructure,

organization and implementation than our system.

Our server handles requests for image data and catalogs; it includes an offline module for prepro-

cessing astronomical images. Where applicable, to enhance real-time panning and zooming (and thus

help support task types T1 and T3), we assign prefixes to images, then organize and store them in a
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Figure 3. Client-server architecture for the interactive exploration of observable astronomy data. On
the server side, our offline module (light orange) preprocesses raw astronomical datasets through

Montage Mosaic; where applicable, we assign prefixes to offline images, organize and store them in a
spatially indexed, prefix-matching structure (Geohash). Online server-modules abstract catalog results

into visual DDS overlays (DDS Generator) and handle the construction of trend images
(Trend Generator). The client handles the tile stitching and cross-registration process into Gigabit,

zoomable panoramas, manages the rendering and interaction for the overlay view, the trend and small
multiple views; and composites the images using hardware-accelerated shaders. The only third party

tools are Montage Mosaic and the MongoDB powering the Geohash.
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spatially-indexed, prefix-matching structure (Geohash). We store catalogs locally. Our online Data

Driven Spots (DDS) module abstracts catalog results into an image overlay (task type T2). Our addi-

tional Trend Image interactive module allows the users to visually construct and browse collections of

objects (tasks T4 and T5). Finally, our master Communication Module handles communication with the

client, and interfaces with the data and the other server modules.

The client handles the requests from the user and the view management process. We support through

a separate module the tile-stitching and cross-registration pipeline (T1 and T3). A second module con-

trols the rendering and interaction processes through a web-based interface; ultimately, the module

presents the stitched images and catalog results to the users in the form of gigabit panoramic overlays,

interactive trend images, and small multiples (tasks T1 through T6). As the user navigates the sky, the

client queries the server with the current field-of-view or desired catalog information.

Below we describe in detail the server and client modules which, independently and in conjunction,

meet the technical challenges identified in Table II: real-time panning and zooming capabilities, an

image cross-registration pipeline, and scalable visual abstractions and interactions. The online modules

are implemented using web-based technologies, including WebGL, HTML5 and JavaScript.

2.4.1 Data Retrieval and Preprocessing

We perform image data retrieval and preprocessing on a per-survey basis. To ensure survey and

dataset compatibility, we extract the RA/Dec coordinates for each image tile so that images from multi-

ple surveys will be properly aligned.

For surveys which benefit from an online programmatic interface, like SDSS, our system implements

simple scripts to access the data remotely. Image data for the SDSS survey are stored remotely through
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various data releases; each release consists of FITS files and frame images. To access the survey data,

our server sends SQL queries and fetches online images from the SDSS Data Access Server (DAS) and

the SDSS Science Archive Server (SAS).

When a programmatic interface does not exist (e.g., FIRST or LSST) we fetch the sky images a-

priori and store them locally. There are 30,500 FIRST image files, requiring 300GB storage. To ensure

compatibility between surveys, the raw data is processed using the third-party tool Montage Mosaic [59],

to extract the image data from the raw FITS format; the resulting images are named according to the

RA/Dec center of the image.

In the case of the FIRST survey, we perform further optimization to reduce the rendering load when

a large area of the sky is being viewed. To this end, we use custom Matlab code to generate a pyramid

of image tiles, with four levels (number of levels empirically determined for demonstration purposes) of

decreasing resolution. We obtain tiles through repeated Gaussian filtering followed by subsampling. We

perform this entire preprocess once for the dataset, averaging a 30 second generation time per tile. Once

the local images are preprocessed, we spatially index them for quick access into the geospatial index

powered by MongoDB [46], an open source document-oriented NoSQL database system. We hash the

coordinates of the image tiles as string-based prefixes through MongoDB’s Geohash table.

We do not map locally, however, LSST images to multiple levels of detail, since the domain experts

anticipate a future programmatic online interface. Because this small LSST test dataset is privately

owned and accessed, we perform the entire procedure a-priori and store locally all images. Montage

Mosaic and MongoDB are the only third-party tools in our system.
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Figure 4. Depending on the survey, astronomical data can appear in different map projections (shown
in different colors above). While about 25 different projections are common to astronomy, there is no

limit to the number of possible projections available.

2.4.1.1 Catalog Data

Aside from sky survey panoramas, we create more specific overlays from user-performed searches

over catalogs. We retrieve catalog data from the SDSS server and store the data locally into a MySQL

database.

2.4.2 Cross-Registration and Online Overlays

To support task types T1 (pan and zoom), T2 (analyze spatial distributions) and T3 (cross-correlate

images), we follow a cross-registration and online overlaying approach.

2.4.2.1 Sky Panoramas

We create sky panoramas (T1) and cross-correlate images (T3) by stitching together multiple astron-

omy images into a seamless, zoomable, pixel-based abstraction (Figure 5, center). Depending on the

survey, astronomy images can appear in different map projections. While about 25 different projections

are common, the number of possible projections is not limited (Figure 4). In our approach we use the

World Coordinate System (WCS) specification [60]. Our custom code converts to WCS a variety of
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image coordinates given in different projection schemes. SDSS’s projection scheme is Gnomic (TAN),

an azimuthal projection, given by equations 54 and 55 in [61]. The FIRST radio survey uses a Slant Or-

thographic projection (SIN), also an azimuthal projection, and is given by equations 59 and 60 in [61].

The LSST simulated dataset uses the TAN projection scheme, similar to SDSS.

For the actual cross-registration and stitching we project the images on a viewing sphere. Our sphere

is an abstraction of the sky as viewed from Earth, with the camera located at the center of the sphere.

To overlay sky images for viewing, our next step is to convert the WCS coordinates into the native

WebGL graphics coordinates. The standard WCS Cartesian coordinate system is a right-handed coor-

dinate system with the positive x, y, and z axes pointing outward, to the right, and up, respectively. In

the WCS spherical coordinate system, the angle θ increases clockwise starting from the positive z-axis,

and the angle φ increases counter-clockwise starting from the positive x-axis. In contrast, in the right-

handed WebGL graphics coordinate system the positive x, y, z, axes point to the right, up, and outwards,

respectively. Furthermore, the angle θ increases clockwise starting from the negative x-axis, and the

angle φ increases counter clockwise starting from the negative y-axis. Due to these differences between

the standard and WebGL coordinate systems, a transformation has to be applied to convert from the

world RA/Dec coordinates to the WebGL spherical and Cartesian graphics coordinates.
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We derive this transformation as:

φ = (90◦−Dec) (2.1)

θ = (270◦−RA)+360◦ ; when RA > 270◦ (2.2)

θ = (270◦−RA) ; when RA≤ 270◦ (2.3)

x = sin(φ)∗ cos(θ) (2.4)

y = cos(φ) (2.5)

z = sin(φ)∗ sin(θ) (2.6)

where Equation 2.1 spells out, for clarity, the Declination rotation into the WebGL angle φ , and Equa-

tions 2.2 and 2.3 spell out the Right Ascension rotation into the WebGL angle θ .

Following the above transformation, our approach maps sky images to the unit viewing sphere.

Aside from projecting each image tile onto the sky, our cross-registration and overlay module also

facilitates zooming in and out to account for telescope parameters, and changing transparency.

2.4.2.2 DDS Overlays

To support task type T2 (analyze spatial distribution of object), we generate custom Data-Driven-

Spots overlays from catalog data. In response to the client requirements—desired resolution of the

output image, the minimum and maximum RA/Dec values, attribute thresholds, desired color-mapping,

and any other optional filters on the other parameters present in the catalog database — our server

creates one or more new PNG images from the catalog database. The RA/Dec columns in each tuple
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Figure 5. The Astroshelf interface, showcasing the sky panorama (left), interactive trend image (right,
top), spectral plot (right, middle), and catalog results (right, bottom).

are used to position the drawing within the image (Figure 5, bottom left). The closer the value of the

key attribute is to the maximum threshold, the brighter the pixel will be at that location. All data tuples

are added to the images, which we then compress and return over the network to the client application.

2.4.2.3 Online Compositing

To create a visual abstraction of multiple data sources (task T3), pixels are further composited on-

line into transparent overlays using the WebGL GLSL fragment shader. WebGL has the advantage of

performing computations exclusively on the client machine GPU, leaving the CPU available for user

interaction. To optimize JavaScript memory use and texture loading we implement local garbage col-
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lection; this optimization helps prevent HTML5 from bottlenecking interaction while rendering texture

objects.

The client we implement receives the images, cross-registers them through the approach described

above, computes the pixel-based overlay and displays it. The client finally renders the scene, where the

visualization scene graph consists of the viewing sphere with the camera at the center looking out.

2.4.3 Interactive Trend Images

As outlined in Table II, grouping and regrouping spatial objects according to their properties is a

common astronomy task (task types T4 and T5). The custom overlays we enable—based on catalog

queries (2.4.2)—facilitate tasks which analyze scalar properties of the objects. Opacity-control further

enables establishing correlations amongst multiple object properties.

However, some object properties are non-scalar, but ordered tuples or indexed-arrays for which the

index itself is an object property. For example, object spectra are ordered tables of (key, value) pairs in

which each key is a specific wavelength and the value is the flux at that wavelength. Analyzing such

table properties across collections of objects, in order to establish trends or identify outliers, can be

enormously time-consuming. We note that disparate features such as data artifacts that exist in a small

set of spectra (amongst the larger pool) tend to be difficult to identify algorithmically or analytically,

due to their ill-defined nature and randomness. To facilitate this process, we propose a second compact,

pixel-based visual abstraction called an interactive trend image.

Trend images are a novel visual abstraction which relies on aligning and resampling property-

indexed table data into a pixel-based representation. The abstraction further requires and leverages
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sorting properties of the data across an object collection. The trend abstraction builds on the astronomy

concept of a 2D composite image [62].

The input to the trend image abstraction is a collection of objects. Because of their nature, the

objects are guaranteed to have at least one scalar property suitable for sorting, psort—the distance from

Earth to each object. Each object also has an indexed-table property in which the keys (a.k.a. index)

are themselves a property of the object. We map the values in each object’s table to a row of pixels, and

then combine all the rows corresponding to the object collection into a trend image as described below.

Let N be the total number of objects in the collection. Let M be the total number of samples in

each object’s table-property—for example, flux, ρ i
1:M, indexed by ordered wavelength, λ i

1:M; where i is

the object index (1 : N). To generate the trend image, we resample and align the data across the object

collection. We generate first a uniformly-spaced basis for the collection of objects returned by the client

query. The uniform basis b ranges from the minimum and maximum keys over all the N queried objects,

and it is incremented by the desired horizontal resolution r of the image (specified by the client):

b = [ min
i=1:N
j=1:M

λ
(i)
j : r : max

i=1:N
j=1:M

λ
(i)
j ] (2.7)

We next generate for each object a normalized table of values, ρnorm, through resampling and inter-

polation over the uniform basis:

ρ
(i)
norm(k) = ρ

(i)
k−1 +(ρ

(i)
k+1−ρ

(i)
k−1)∗

(bk−λ
(i)
k−1)

(λ
(i)
k+1−λ

(i)
k−1)

(2.8)

where i = 1 : N, k = 1 : |b|.
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Next, a pixel row is generated for each object. Pixels are organized from left to right in the table

order and are individually mapped to a color in the HSV space based on the property values in the

normalized table.

For color encoding, we calculate the hue of each pixel, H, its saturation S and value V as follows:

H i
k = (γhigh− γlow)∗ (1− (b(i)k −bmin)/bmax) (2.9)

Si
k = 1 (2.10)

V i
k = (ρ

(i)
norm(k)−ρlow)/(ρhigh−ρlow) (2.11)

where i = 1 : N, k = 1 : |b|, and (γlow,γhigh) and (ρlow,ρhigh) are the user-desired color range, respec-

tively the desired property-mapping range.

In the example above, H encodes the wavelength and V encodes the flux value. Other mappings are

also possible: for example, encoding flux alone in a grayscale image (Figure 6); encoding rest-frame

wavelength (bi
k/(1+ zi), where zi is the object redshift) as hue; or encoding magnitudes for objects

which do not have spectra, but do have broadband photometric colors which span specific wavelength

regions.

To collect data for an interactive trend image, our client sends to the server queries for sets of

spatial objects, and their desired properties. The server Trend Generator module (Figure 3) fetches and

processes the data for each object matching the query, and caches the object properties of interest into a
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Figure 6. Trend image for a test data set containing 100 quasi-stellar (quasar) objects. Each pixel-row
corresponds to the spectrum of a quasar object; quasars are sorted vertically according to their redshift
(a distance-related measurement). Note how outliers—quasars with unusual spectra (marked in red)—

immediately stand out.

local mySQL database. The user may also specify a color mapping range (γhigh and γlow ), the desired

property-mapping range, and the desired horizontal resolution r of the trend image.

The server returns to the client the collection of pixel-based rows, as highly compressed PNG im-

ages. In turn, the client assembles the composite image from the individual rows using the sorting

property psort—for example, the object distance from the observation point. The client also facilitates

alternative sortings, where available, and further interaction with the data. Sorting the objects reveals

trends in the data, and helps identify outliers. Further interaction through a fish-eye lens and details-on-

demand enables the individual analysis of object properties.
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Figure 6 shows an example grayscale trend image generated for a test dataset containing 100 quasi-

stellar (quasar) objects—extremely remote and massive celestial objects. Since quasars are visually

similar in appearance to dim stars, they are difficult to identify from examination of image overlays

alone. Instead, astronomers differentiate quasars from other stars by analyzing their spectrum (Figure 7).

The trend image shows the quasar spectra as horizontal rows, while the vertical sorting property is the

quasar redshift. In this representation, key identifying features become apparent, such as trends in

emission lines present in quasars (log-style curves in the figure). Outliers such as quasars with incorrect

redshifts or with unusual spectra immediately stand out, as well.

The trend image abstractions allow the user to quickly, and intuitively, identify which spectra

amongst the large dataset are unlike the others, or those that belong together in groups. Furthermore,

as we show in Section 5, the identification of outliers from the trends is key in identifying both (1) new

objects of interest that will bring insight; (2) problems with the previous steps in the data analysis and

processing.

2.4.4 Rendering and Interaction

2.4.4.1 Panning and Zooming Large-Scale Overlays

To enable interactive panning and zooming, an Overlay Manager maintains the current viewing

location and parameters, as well as a list of the image tiles currently in the view. The manager sends

to the server requests for new images, when needed. Panning the view maps mouse motion to updates

in the view range. Zooming also computes and maps the new scale to updates in the viewing range. If

the updated range covers images that have not been fetched yet, the manager requests for those image
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Figure 7. On-demand spectrum for a Figure 6 quasar object. The spectrum plot contains dotted lines to
indicate the wavelengths at which atoms are absorbed or emitted.

tiles to be sent out to all overlays that are listening to the current view. Each of those requests is handled

asynchronously.

Interactive trend image rendering and the on-demand spectra are handled as a separate process

(Figure 5, right), in a side panel from the sky-view. Similar to the custom-overlay creation process,

users can specify the parameters to be used in the construction of the trend image and then interact with

the resulting set of spectra.

2.4.4.2 Trend Image Interaction

On the client side, we provide interaction techniques to further help support workflows related to

object-group analysis. Hovering over the trend image highlights individual rows for inspection; a GLSL

shader fish-eye lens can further be activated to magnify a selected row.
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Details-on-demand (task T6) are also provided: such as the spectrum for that object, the object ID,

and its coordinates. Selecting the plot opens a new tab in the browser that links to the object’s SDSS

reference page. This allows the user to drill-down for additional properties.

2.4.4.3 Small Multiples

The objects in the current collection may not be located in the same area of the sky, and thus may not

be visible or distinguishable in a single gigabit overlay view. To facilitate the analysis of such collections

(task T6), we provide an additional small multiples view of the collection of objects represented by the

trend image. In order to retrieve a postage-stamp image of each object, the client sends the list of object

coordinates to the server. The server then connects to the the SDSS Science Archive Server and requests

cutout field images centered around the coordinates it received. Finally, the images are returned to the

client and rendered in the small multiple view.

2.4.4.4 Linked Views

Dynamic queries and view linking further allow the users to refine the collection of objects repre-

sented by the trend image (task T5). Through query interaction in a linked panel the client can both filter

out incorrect results as well as add new entries to the visual abstraction. Right-clicking on an object line

in the trend view enables the user to jump to the object’s image in the gigabit overlay panel, and thus

make further inferences based on the object’s celestial neighborhood.

Overall, the use of the trend pixel-based abstraction allows viewing and analyzing data for large

collections of objects, while efficiently using the available screen real estate. Along with the zooming,

filtering, details-on-demand, dynamic queries and linked-views interaction techniques described above,

the small multiples representation aides in both identification and filtering of the results. Furthermore,
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condensing the data from multiple FITS files into PNG images enables us to avoid the transfer of large

FITS files to the client. The approach reduces thus the bandwidth usage between the client and server.

2.5 Results

In this section we report on the performance of our approach. We first measure the precomputation

of the FIRST images stored on the backend of the pipeline; conversion to raw images, mosaicking, and

reprojection. Next we report rendering speeds with varying amounts of image data presented to the

user. We then present a case study where domain experts perform an overlay-based analysis with our

tool and report their findings. A second case-study examines the benefits of interactive trend images to

browsing and grouping tasks. The third and most complex case study follows an integrated workflow

through our system. Finally, we report feedback from repeated evaluation with a group of five astronomy

researchers, as well as from three astronomy workshops where the tool was demonstrated and made

available to astronomers for testing. The workshops correspond to separate interest-based groups of

astronomers associated with particular sky surveys; each workshop featured more than 30 participants.

The implementation of our approach is in its beta release.

2.5.1 Preprocessing

Offline precomputation of the FIRST images is the most time consuming part of the pipeline; how-

ever, this stage only has to be performed once when the data is first acquired for a survey. Each image

takes between 30 and 40 seconds to generate, with 20 seconds of the process dedicated to reprojecting

the image into the WCS map projection. Depending on the sky coverage of the survey, this preprocess-

ing can take anywhere from a week to a month. In the case of FIRST, it took fifteen days to compute all
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of the images needed for tiles using a server running CentOS 6, Dual 6 Core processor at 24GHz, and

32 GB RAM.

2.5.2 Performance

The initial data retrieval and loading stage varies depending on the source the images arrive from.

To retrieve FIRST images from our server, a loading time of 50-200ms is incurred for sizes varying

between 400-700 KB. Retrieving LSST images from our server incurs a loading time between 200-

400ms with sizes varying between 4-5 MB. Finally, SDSS loading times are slightly higher, typically

incurring 750-1250ms with sizes varying between 60-70 KB. These speeds can vary greatly depending

on the bandwidth and load of the SDSS servers at the time of use.

Trend image generation takes between 25 seconds (for a 50 object collection) to 130 seconds (for

a 200 object collection), on a Macbook Pro, 2.3GHz Quad Core i7 with 8G of RAM. Returning the

spectrum associated with an object takes between 180ms and 220ms, dependent on the speed of the

network.

Once the images are fetched, the rendering speed hovers at 45 frames per second on a Windows

7 Machine, Quad Core i5, 16 GB RAM. This allows interactive panning and zooming to regions of

interest. Our web-based implementation has been tested on multiple browsers such as Safari, Chrome

and Firefox.

2.5.3 Case Study: UGC 08782 - A Dusty Elliptical

Figure 8 shows how the cross-correlation and interactive visual navigation of SDSS and FIRST can

lead to immediate gains in astronomy when used in tandem. Thus, we based the following case study
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Figure 8. Images of UGC 08782 from two surveys. The left image shows an optical image of the
galaxy from the SDSS while the center image shows a radio image of the same galaxy from FIRST.

When overlaid in the right image, the connection between the two as radio emission emanating as jets
from the central black hole of the galaxy becomes immediately clear.

on a previous discovery that was the direct result of the integration of these two imaging surveys. Two

of our senior astronomy research collaborators provided us with this example.

Figure 8 (left) shows an optical image from UGC 08782, a bright elliptical galaxy at a redshift of

0.045. The morphology of this galaxy was originally ambiguous between a spiral and a dusty elliptical,

exhibiting dust lanes and disturbed morphological features. Dusty ellipticals are often seen to show

signatures of an active galactic nucleus (AGN) [63; 64]. Some of these AGN exhibit jets, which tend

to be perpendicular to the dust lanes. One way to test if UGC 08782 fits these trends is by checking its

SDSS spectrum, viewing the optical image, and searching for radio counterparts [65]. Figure 8 (center)

shows radio observations from the FIRST survey of the same region, which detected several interest-

ing features. The image in the radio looks quite different. There is a single bright point where the

optical galaxy ought to be and two bright patches extending to the upper right. Due to the differing

resolutions and sensitivities of the surveys, it is unclear looking at the individual images whether the



45

FIRST emission is from a unique object or associated with UGC 08782. Without our system, associat-

ing the FIRST emission with an optical counterpart would require manually searching optical catalogs

for nearby objects and match on position, ranking by closest proximity; and then carefully overlaying

the two locations using photo-editing software. The astronomers estimate the process would require 30

minutes to one hour, end to end.

In contrast, when the images are viewed together (Figure 8, right), in under one minute, using our

online overlays, the association between these two sources from different surveys is immediate. The

bright radio point source lines up on the center of the optical galaxy, as it would if it were the nucleus

of the galaxy. The two patches of radio emission in the upper right appear to emanate from the central

point source, as a radio jet might. Not only does the overlay allow for a more efficient cross-matching,

it also provides a nice framework for understanding the physical processes observed in each survey and

how those processes are connected to one another.

2.5.4 Case Study: Trends in Type Ia Supernovae

The second case-study, completed by two different senior astronomy researchers, showcases the

benefits of trend images in the analysis of large collections of Type Ia (“one-A”) Supernovae. Super-

novae are stars that are undergoing catastrophic explosions, which can be classified according to their

spectra. In particular, the spectrum of a Type Ia Supernova is characterized by a lack of hydrogen lines,

a strong absorption line at 6550 angstroms near maximum, and late-time spectrum iron-group emission

lines. Identifying these spectrum-based features via direct catalog querying is, however, a laborious

and intensive process. The process is further prone to errors such as inclusion of problematic data, or
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Figure 9. Two trend images generated for the Type Ia Supernovae case study. This interactive
visualization allows users to see the spectrum of interest in order to identify unusual outliers. In the

first image, 200 Type Ia Supernovae objects are ordered in increasing redshift top (z=0.15) to bottom
(z=1.0) and increasing wavelength left to right. The general broad features of the Type Ia can be seen
in the dark and light bands that represent characteristic features of explosions. These bands smoothly

trace-back over redshift, indicating that these objects form a consistent class. The first trend image
(left) shows clear evidence of potential outliers: objects with unusual spectra that do not match the
group. Upon further inspection of these objects, the astronomer removed the confirmed outliers and

generated the reduced dataset shown in right.

exclusion of a good object. To alleviate these shortcomings, the researchers were looking for ways to

group, analyze trends, and regroup potential collections of Type 1a Supernovae.

The trend image mechanism enabled the researchers to quickly query the SDSS DR7 survey, then

analyze and group 200 potential Type Ia Supernova objects (Figure 9). In these trend images, the

spectrum of objects is plotted as intensity along the X axis while the objects themselves are sorted along

Y according to their redshift. Redshift is the factor by which the wavelengths of light have been stretched

as it travels by the expansion of the Universe and provides a sorting in terms of how far back in time we

are looking for each object, or equivalently a sorting in distance. Sorting along the redshift property let

the researchers immediately see how spectral features (such as emission lines from particular elements)

move in observed wavelength with redshift, and immediately observe whether the strength of those
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features is changing over time. Objects with incorrect redshifts or with unusual spectra immediately

stand out because of the great mismatch with their neighbors.

Producing this first trend image from the raw observations (Figure 9, left) brought immediate atten-

tion to two distinct outlier classes: 1) the periodic bright spots in the otherwise grey lines (one line a

few rows down from the top and another 1/3 down from the top), as well as three half-length continuous

lines near the bottom (one white, two black); and 2) the individual bright pixels in spectra scattered

among the data. These classes are visibly noticeable as outliers to the rest of the spectra in the image

that – according to the researchers – would have taken many man-hours to discover by combing through

each spectrum in the dataset individually. Upon further examination of the individual spectra, the first

class turned out to be a data reduction issue: unreasonable values in the released telescope data. The

second class turned out to be an astrophysically interesting issue: emission lines from the region of the

host galaxy underlying the supernovae.

After investigation and correction of the first issue, the researchers arrived at the new visualization in

Figure 9 (right). This second trend image has the powerful property that features which are vertical lines

(constant observed wavelength) represent information about detector problems or atmospheric lines,

whereas the properties of the supernovae themselves follow the curves of constant rest wavelength seen

in the dark and light bands. The smooth trends seen in this visual representation of supernova spectra

confirm that they exhibit similar features with one another and can be grouped together as one class of

objects. The researchers took about 10 minutes with our system to complete this case study, with most

of the time spent examining the outlier spectra. They estimate that, without our system, the study would

require on the order of weeks of work.
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Figure 10. Trend image for 200 galaxies, stars, and quasars in the direction towards the Galactic North
Pole, from the Sloan Digital Sky Survey. In the left image, each row is an object’s spectrum, plotted

along x in observed wavelength, and sorted along y in redshift, with smaller values at the bottom.
Galaxies occupy the majority of the parameter space, in the central part of the image; stars are grouped
in the noisier, bottom part; while quasars (top band) appear entirely blue. In the right image, the same
object rows have been sorted by g-r color, with smaller (bluer) values at the bottom and larger (redder)

values at the top. In this image, star-forming galaxies with strong emission lines features are blue in
color, reflecting their young age. In contrast, elliptical galaxies tend to be redder, reflecting their older

ages. At the very top, the researcher noticed a fair number of extremely red stars in the Milky Way
North Pole.

2.5.5 Case Study: Spectroscopic Analysis of Galaxies

The third case study follows an integrated workflow through our system. In this study, a senior

astronomer is interested in the spectroscopic analysis of galaxies, and in particular, in understanding

how object colors, and absorption and emission features in spectra from different classes relate to each

other. The astronomer began his analysis by examining first the properties of galaxy spectra in contrast

to those of stars and quasars. To this end, he used our system to do a broad query over the Sloan Digital

Sky Survey for 200 astronomical objects within 1 degree of RA, Dec: 191.0, 26.0, a region pointing

towards the Galactic North Pole. Specific search parameters included the RA, Dec, redshift, and g-r

color (a star with a high g-r color is redder than a star with a low g-r color.)
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Continuing to use the system, the researcher then generated the trend image corresponding to the

spectra in this resulting dataset (Figure 10, left). To explore the trends in the dataset, he sorted the

trend image first by redshift. Sorting by redshift shows the stars, galaxies, and quasars existing in three

distinct locations in this parameter space. Galaxies occupy the majority of the parameter space, in the

central part of the image, with many clear absorption and emission features visible as dark, and bright

lines, respectively, trending through the visual representation. For example, at the right of the image, the

researcher could clearly see the strong H-alpha and SII emission lines in star-forming galaxies trending

upwards and to the right. These features were also apparent in the one-dimensional spectra detail on

demand. The sudden disappearance of the feature at higher redshift revealed a fair number of elliptical

galaxies lacking these features. He noticed similar trends in the dark-banded absorption lines.

Stars and quasars occupy less of the parameter space in this particular region of the sky but were

still instantly visible to the researcher in the trend image. The stars occupy the “noisier”, lower part of

the image and make their presence known by “breaking up” the nice trends seen in the galaxy spectra.

Zooming in on the stellar spectra revealed to the researcher the presence of vertical absorption lines

bands, that exhibit no trend with redshift. The researcher recalled that the stars had a redshift close to 0,

due to the stars location within the Milky Way Galaxy. The quasars are visible in the upper part of the

image. As quasars are galaxies that predominantly exist at high redshifts, they looked entirely blue.

Sorting on g-r color (Figure 10, right) further revealed that the star-forming galaxies exhibiting

strong emission lines features are also blue in color, reflecting their young age. In contrast, elliptical

galaxies tended to be redder, reflecting their older ages. At the very top, the researcher noticed a fair

number of extremely red stars in the Milky Way North Pole. He concluded these stars are thus likely
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a part of the Milky Way halo, a spheroid surrounding the disk containing clusters of old, red stars that

have existed since the earliest formations of the Milky Way.

Having explored the trends in the various objects found towards the Galactic North Pole, the as-

tronomer decided to inspect the objects themselves along with their local environment by bringing up

the thumbnail images of the dataset. He found the galaxies in this direction to be an average mix of

galaxies exhibiting a wide variety of properties.

Curious about the positional relationship between the North Pole stars, the galaxies, and quasars, the

astronomer then decided to display an overlay of all the objects in the dataset, color-coded by redshift,

with marker differentiating between the three classes of objects. He found that all three classes appeared

evenly distributed within the region specified in his query.

Finally, examining the full sky image of this region (see supplemental video in Appendix A), the

astronomer visually noticed a large numbers of red stars in the halo of our Galaxy, supporting his

deductions from the trend image. Wondering if any of the galaxies or quasars in the dataset are producing

radio emissions, he overlaid the FIRST radio survey and explored the overlapping regions. Following

these observations, with no noticeable overlapping features between the radio and optical images, the

astronomer decided to explore, in a future study, the question of whether or not stars and galaxies in the

directions toward the Galactic center and anti-center exhibit similar colors as seen in the direction of the

Galactic North Pole.

The astronomer estimates that completing the present study in the absence of our system would

have required weeks of collecting, examining, and grouping the data. Typically, researchers would have

approached the problem by first identifying the type of data they are interested in through papers, cat-
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alogs, or a perhaps a specialized interface. These data are specific to the question they are attempting

to answer, and are seldom restricted to one particular survey. Our researcher and his group would then

manually download locally all the data and/or catalogs satisfying their initial criteria. He would then

display the imaging or spectroscopic data in a local software package, manually inspecting individual

objects in this dataset one at a time, all the while marking outliers, objects of interest, or interesting

patterns. Classification of spectroscopic objects is often done by the identification of specific emission-

or absorption- line features visible in the spectrum. This approach is rather time-consuming, involving

the initial data location and acquisition, combined with manual inspection of spectra for spectral-line

identification. Manual inspection, on an individual basis, of an object’s spectral class could take any-

where from 1-30 seconds, depending on the astronomer’s goals. Cross-survey correlations, and marking

interesting or outlying objects, for further analysis may often take much longer. Performing this set of

tasks for hundreds of objects at a time was an unreasonable time commitment for the astronomer.

In contrast, collecting, viewing and visually analyzing the results in our system highlighted prac-

tically instantly many aspects of the spectroscopic dataset that would have been difficult to glean by

examining the spectra one at a time. Completing this case study (highlighted in the supplimental video

in Appendix A) with our system has only required 5 to 10 minutes. The astronomer has adopted our

system as a research tool.

2.5.6 Domain-Expert Feedback

Feedback from repeat evaluation meetings showed enthusiasm for the tool. The domain experts

considered the approach “an exciting and effective tool for visualizing all-sky surveys. Many of the

tools required have been implemented effectively.” The ability to compare images of the sky taken at
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different wavelengths simultaneously and to visually query catalogs was particularly appreciated, while

the interactive navigation was considered on par with the much appreciated Google Sky interface. The

interactive trend images attracted enthusiastic feedback. Astronomers stated that the interactive trend

images allow them to more easily and quickly identify patterns and outliers in the data. The researchers

are eager to use the tool in their research and in classrooms.

The workshop expert-users particularly appreciated the ability to combine separate sources of infor-

mation without having to resort to cumbersome, external tools for image processing. As shown in the

example in Figure 11, overlaying catalog search results visually further enables queries of the what –

where – correlated-with-what type. In this example, more than 800 points resulting from searches over

the Sloan Digital Sky Survey catalog are visualized efficiently using pixel-based overlays: two query

results based on two different attributes are overlaid (red for redshift, blue for the focal ratio of the

telescope; brighter intensities correspond to greater values), revealing vertical spatial patterns in con-

junction to attribute overlaps. Figure 2 further shows three cross-correlated overlays (partial coverage

shown in the figure solely for static illustration purposes) of optical observations, radio-emission obser-

vations, and simulation results from the SDSS sky survey, the FIRST sky survey, and the LSST dataset.

Transparency can be interactively controlled for each overlay, enabling cross-spectrum analysis. The

workshop researchers are interested in applying this prototype to specific problems such as browsing

large sets of objects and galaxy identification. In toy demonstrations, the interactive trend images have

already been used to browse–group–analyze several collections of objects, from galaxies to quasars;

to great feedback and requests for immediate release to the astronomy community. Several astronomy

research groups have expressed keen interest in integrating their data with our tool.
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Figure 11. 831 points resulting from searches over the Sloan Digital Sky Survey catalog database are
visualized efficiently using pixel-based overlays. Two query results based on two different attributes

are overlaid (red for redshift, blue for the focal ratio of the telescope; brighter intensities correspond to
greater values), revealing spatial patterns in conjunction to attribute overlaps.

2.6 Discussion and Conclusion

Our approach enables the visual cross-correlation of sky surveys taken at different wavelengths, as

well as the visual querying of catalogs. Furthermore, the combination of prefix-matching indexing, a

client-server backbone, and of pixel-based overlays makes possible the interactive exploration of large

scale, complementary astronomy observations.

New surveys can be flexibly added to the system, provided they specify the raw image data and

the projection information of the telescope in standard FITS files. For surveys which benefit from a

programmatic interface, our system would implement a simple script to access the data from the online

interface. If a programmatic interface does not exist, the images would first need to be downloaded,

organized in indices, and stored on local servers.

Our results show that pixel-based overlays and geohashing have the potential to generate scalable,

interactive, graphical representations of astronomy data. This approach may allow us to overcome

bandwidth and screen-space current limitations in astronomy visualization. The advantages of this
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approach are its versatility, flexible control on the client side, and visual scalability (to the pixel level),

enabling the visual analysis of large datasets. Accessing graphics hardware through WebGL further

provides the users with a rich, graphics-accelerated web experience.

The trend image visual abstractions naturally highlight the trends within objects of a given class.

They also support the rapid identification of outlier objects in an object collection — be they outlier

objects characterized by poor data/identifications, or outlier objects which have unusual physical prop-

erties. Interactive trend images similar to those depicted in Figure 9 may be constructed with almost

any property of the object of interest — such as distance, color, or time since a transient event began —

for the Y sorting. These interactive representations provide a rapid way to look for correlations between

properties of objects, but also take advantage of the human eye’s ability to recognize patterns and detect

outliers.

Finally, evaluation on three case studies, as well as overwhelmingly positive feedback from as-

tronomers emphasize the benefits of this visual approach to the observational astronomy field. In terms

of limitations, relying on streaming the data from remote sources is a concern as certain surveys do not

provide programmatic access to their images.

In conclusion, we have introduced a novel approach to assist the interactive exploration and anal-

ysis of large-scale observational astronomy datasets. Our approach successfully integrates large-scale,

distributed, multi-layer geospatial data while attaining interactive visual mining, panning and zooming

framerates. From a technical perspective, we contribute a novel computing infrastructure to cross-

register, cache, index, and present large-scale geospatial data at interactive rates. Large local image

datasets are partitioned into a spatial index structure that allows prefix-matching of spatial objects and
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regions. In conjunction with pixel-based overlays and trend images, this web-based approach allows

fetching, displaying, panning and zooming of gigabit panoramas of the sky in real time. In our im-

plementation, images from three surveys (SDSS, FIRST, and LSST), and catalog search results were

visually cross-registered and integrated as overlays, allowing cross-spectrum analysis of astronomy ob-

servations.

From the application end, we contribute an analysis and model of the observational astronomy do-

main, as well as three case studies and an evaluation from domain experts. Astronomer feedback and

testing indicates that our approach matches the interactivity of state-of-the-art, corporate educational

tools, while having the power and flexibility needed to serve the observational astronomy research com-

munity. Being able to quickly aggregate and overlay data from multiple surveys brings immediate clarity

to inherently complex phenomena, reducing time spent managing the data while allocating more time

for science.



CHAPTER 3

INTERACTIVE EXPLORATION OF SEQUENCE AND STRUCTURAL DATA TO

IDENTIFY FUNCTIONAL MUTATIONS IN PROTEIN FAMILIES

This chapter was originally published in the BMC Proceedings in 2014 [2]. This version has been

edited to be consistent with the rest of the dissertation. Coauthors on this work include John Wen-

skovitch (JW), Koonwah Chen (KC), David Koes (DK), Timothy Travers (TT), and G. Elisabeta Marai

(GEM). The contributions from each author included: JW implemented the sorting algorithms for the

trend image and several of the data parsers; KC contributed the design and implementation of the se-

quence and residue views; DK and TT served as our structural biology domain experts and provided

support with the software testing and the design of the case studies; GEM conceived this project, and

directed the top-level design, implementation and testing of the tool. My (TL) contributions to this work

included the design and implementation of the client-server architecture, the database back-end, as well

as the 3D view and trend image of the visual interface. I am the first author on this work.

This chapter continues our investigation into spatial data design strategies with the problem domain

of computational biology. In particular, this chapter examines the challenges associated with discover-

ing correlations between protein structure and functionality (i.e., why specific mutations to the protein

structure cause dysfunction). In our collaboration with biologists (collaborators DK, TT), we found

that many of these challenges coincided with those in observational astronomy domain (Chapter 2);

the workflows that we uncovered sought to identify correlations within protein families that consisted of

heterogeneous data (i.e., spatial protein structures with non-spatial sequence information). However, we

56
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observed that unlike the spatial data in the presented observational astronomy problem, these workflows

sought to preserve the structural information of the protein for determining if a mutation was likely

to an effect its function. Additionally, we found that while biologists performed similar workflows to

identify protein mutations, the execution of these tasks within their workflows most closely aligned

with their expertise in either molecular biology and bioinformatics. Therefore, our solution required a

hybrid-design approach, incorporating both a 3D structure representation of a target protein and a novel

visual abstraction of its closest family members. In this chapter, we present these visual representa-

tions as components of a novel visualization tool, FixingTIM, that we designed to help identify protein

mutations and discover their effect on protein function. To do so, we designed the layout of Fixing-

TIM to de-emphasize any single visual representation, enabling various starting points and facilitate the

different workflow processes of the biologists.

3.1 Background

By determining the 3D structure and functionality of proteins, biologists can gain insight into the

associated cellular processes, speed up the creation of pharmaceutical products, and develop drugs that

are more effective in combating disease. A variety of protein-sequencing techniques are currently avail-

able; these techniques enable biologists to examine amino acid sequences. As amino acid sequence

ultimately determines protein 3D structure, mining of sequence information may facilitate the discov-

ery of correlations between protein structure and functionality. However, the vast number of proteins

sequenced by scientists make interactive mining tools necessary in solving this problem.

To improve the exploration process, many efforts have been made, from folding the sequences

through classification [66; 67], to tools for 3D view exploration [68] and to web-based applications
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Figure 12. FixingTIM visual interface with four panels: a 3D view and reference information panel (1
and 2); a protein sequence viewer (3 and 4); a trend image panel for aggregating protein families (5 and

6) with two fragment paddles (5a) and a sequence paddle (5b); and a residue view for residue
distribution information (7).

which present large amounts of information to the users [69]. Nevertheless, challenges in solving this

mining problem remain, from addressing scalability to spatial and non-spatial data integration and to

tool integration.

In all but trivial cases, the task of predicting functionality remains an open challenge. In particu-

lar, the question “is this mutation likely to affect the function of this protein?” remains elusive [70].

Despite efforts to improve protein analysis and bridge the “protein structure gap,” many approaches
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continue to rely on multiple sequence alignments (MSA) to determine whether mutations affect func-

tion [71]. Overall, the reliance on this approach has largely stalled functionality prediction advancement

for decades [70].

Similar to observational astronomy, the increased volume of the sequenced proteins hinders attempts

to create a complete data overview without filtering operations and lends itself nicely to the Search-first

mantra [7]. However, the omission of spatial information from the comparative analysis is chiefly to

blame for this perceived failure of the MSA approach. Unlike astronomical data, the spatial structure

and non-spatial sequence data aspects that describe a protein are not inherently linked [72] despite the

spatial attributes being vital to the task of predicting functionality.

In this chapter, we introduce a novel visualization tool, FixingTIM (Figure 12), to help identify

protein mutations across families of structural models, and to help discover the effect of these mu-

tations on protein function. Following a rigorous data and task analysis, we pursue a client-server

approach in which distributed data sources for 3D structure and non-spatial sequence information are

integrated. To better address scalability concerns, we aggregate family-sequence data into a novel in-

teractive pixel-based abstraction called a trend image. Interactive exploration, multiple linked views,

and details on demand further allow the generation of hypotheses regarding structure and functional-

ity correlations in a diverse and fragmented space. The tool is open source and publicly available at

http://visualizlab.org/fixingTIM.
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3.2 Methods

3.2.1 Data and Task Analysis

The design of our tool is informed by our domain data and task analysis. The data we consider in this

application consists primarily of protein characteristics, where protein characteristics include structural

information and amino acid sequence information. This data can be used to build a 3D representation

of the protein that allows visualization of the atoms that comprise each residue in the protein as well as

the bonds between these atoms.

The protein structure — determined theoretically or experimentally — is typically stored using

a PDB file [73], alongside references to the studies that determined the structure of the proteins, the

residue sequence (the sequence of amino acids that make up the protein), and the positions of each

atom in 3D space. The structural data can be visually mapped to a 3D representation of the protein,

which includes atoms, bonds, amino acids and protein chains. The amino acid sequence of each protein

is typically stored in remote databases, for example, Uniprot [74]. Each sequence consists of a string

of capital letters, each letter representing an amino acid (also called a residue) in the protein. To find

regions of conservation within sequences belonging to the same protein family, these sequences can be

aligned using a host of computational alignment tools, with gaps introduced to better align common sub-

sequences present across the family. A particular sequence family may include special mutations, some

functionally-defective. Finally, external web services [74] may provide additional relevant metadata

and data, such as model-quality ratings provided by domain experts.

From the desirable features of a visual mining system (as indicated by the BioVis 2013 Data Con-

test), we focus on the tasks outlined in Table III.
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TABLE III. Function Protein Mutation Task Analysis
Task Visual/Interaction Mapping Technical Challenge

T1 Generate 3D protein structures from sequence data NA Computational time
T2 Inspect 3D protein structures Geometric Model & Attribute Overlays Interaction design
T3 Link to online resource Linked Views Interaction design
T4 Compare a single protein to the rest of its family Interactive Trend Images Visual abstraction
T5 Identify sequence mutation locations on a family of proteins Interactive Trend Images Visual abstraction
T6 Examine multiple sequence alignments Linked Views & Details-on-Demand Visual design
T7 Highlight specific residue locations on the 3D protein structures Linked Views & Details-on-Demand Visual design
T8 Examine residue distribution across a protein family Details-on-Demand Visual abstraction

3.2.2 Client-Server Framework

Given the variety and distributed nature of relevant domain data, we design and implement an overall

client-server architecture (Figure 13). Our server fetches and caches in a local MySQL database the

protein sequences, alignment, and 3D structures from ModBase, Uniprot, and the National Institute of

Health (NIH) BLAST server [75]. The server provides sequence and 3D structure data to the client. If

a 3D structure does not exist for the protein, the server computes an approximate model using the Sali

Lab Modeller toolkit [76].

Our client implements three core modules: a trend image module for exploring protein families; an

interaction manager for viewing; and an external reference module for access to online catalogs. The

three modules are linked, allowing for simultaneous interaction with the data in each abstraction.

The back-end of the tool is implemented in Python, C, and MySQL. The front-end of the tool uses

Python as the primary development language, with Qt for the GUI and the PyMOL Molecular Graphics

System [77] for rendering the protein structures.
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Figure 13. Client-server architecture diagram, with TIM-instantiation as an example application

3.2.3 Visual Design

Given the diversity and complementary nature of the data required, as well as the comparison nature

of the domain-specific interactions, we pursue a linked multi-view top design. The visual interface

consists of four linked panels (Figure 12): a tabbed 3D structure and reference viewing panel (two

side-by-side views); a side-by-side protein sequence viewer; a trend image panel for exploring protein

families; and a residue view for residue distribution information.
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Figure 14. Trend image coloring scheme based on residue properties and their occurrence frequency
throughout the family. Each set of categorical residue properties (rows) are mapped to one of five

colors (columns).

In this top design, the trend image view serves as the main anchor point of the interface. From this

view, users can explore an entire protein family, and view the differences between family members. By

right-clicking on a trend line, the user has the option of opening the structure file for this model in the

3D View, to compare it side-by-side with another model. Below, we describe each module in detail.

3.2.3.1 Trend Image Panel

The trend image view provides the ability to navigate and sort through large numbers of sequences.

The trend-image is a pixel-based visual abstraction, in which each line represents the residues of a

single protein sequence. The trend image summarizes an entire protein family, aligned by one of several

sorting algorithms, and colored by one of several different color schemes (e.g., Figure 14). The trend

image view contains paddles (fixed-width brushes) for the selection of subsequences from a full family

of protein sequences. These paddles also link to the residue distribution view at the bottom of the tool;
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this panel displays information about the distribution of amino acids, namely the fraction of proteins in

the family that share the same residue as the selected protein.

A vertical overview pane (component 6 in Figure 12) provides a high-level view of the full dataset;

while the two fragment-selection paddles allows narrowing the section of sequence considered for anal-

ysis and drilling for details. The sequence-selection paddle allows users to select a particular sequence.

A selection event prompts the application to search for the 3D structure from online repositories; the 3D

structure is presented if it already exists or it is generated on the fly if it does not.

We note that an earlier version of the software included a single fragment-selection paddle. How-

ever, upon repairing the defective protein (dTIM), the BioVis domain experts discovered two symmetric

sequence pairings with identical mutations; once repaired, the function of the entire protein was re-

stored. Identifying these unique mutations required the ability to examine two parts of the sequence

in detail, simultaneously. Based on this information, we implemented two vertical selection paddles in

the trend image. These paddles allows for the examination of two locations in the sequence for residue

conservation simultaneously, which alleviates the burden of individual inspection to identify symmetric

pairings of mutations.

To facilitate navigation of the trend image, we provide a set of sorting algorithms. The sorting algo-

rithms calculate a weight for each sequence relative to one input member of a protein family, and then

order the sequences by their respective weights. We provide sorting by using the following measures as

weights: fragment frequency; edit distance; weighted edit distance; number or percentage of common

residues; number or percentage of common residues without regard to sequence position; number of

residue subsequences of length N in common; and edit distance on selected residues.
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Figure 15. Visual Comparison of the defective protein (dTIM) and its closest functional family
member (scTIM). The two volume views show the protein backbone of dTIM (left) and the CPK
sphere representation of scTIM (right), respectively. The trend image is sorted by the number of

common residues. A side-chain polarity coloring is applied, and the two vertical selection paddles are
located around position 142. The two residues shown at the bottom (green underline, respectively blue

underline) correspond to the two vertical paddle selections.

In addition to the sorting algorithms, we also provide a ColorBrewer [78] set of coloring schemes to

highlight a subset of the residues of each sequence. In each color scheme, black is used for residues that

are not included in the scheme, whereas white is used to represent spacing in the sequence alignment.

The residues in each internal class are given the same color. The list of coloring schemes is as follows:

fragment frequency; general chemical characteristics; side-chain polarity; side-chain charge; and side-

chain contact with polar solvent.
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3.2.3.2 Residue Viewer

The residue distribution view displays the fragment ID, fragment name, and the percentage of each

residue type found in the same column (corresponding fragment in each sequence) for all sequences.

3.2.3.3 3D Viewer

The top left panel of the tool provides two 3D structural views—one for the target protein, and one

for the source protein, as well as a tabbed reference tool providing information about each protein. The

structures can be examined at both the amino acid sequence level and at the atomic level. Through

panning, zooming, rotation and details-on-demand operations (synchronized between the two views),

users can observe different aspects of the two 3D structures.

Alternatively, the tabbed reference viewer allows users to access information from three comple-

mentary online data repositories: Uniprot, ModBase [79], and the RCSB Protein Data Bank. ModBase,

for example, provides links to other databases, as well as ribbon diagrams for various models in the

current sequence, and quality-criteria quantifying the reliability of certain model aspects.

3.2.3.4 Protein Sequence Viewer

To link in sequence information, the sequence panel lists the residue sequences for the selected

structural models, with the differences between the two sequences highlighted in blue. The residues are

selectable, and the selections are reflected in the 3D structure view.

3.3 Results and Discussion

We demonstrate our tool on a TIM protein-family application. These proteins play an important

role in efficient energy production and can be found in nearly every organism, including animals, fungi,

plants, and bacteria. In this section we report on our experience using the tool for this application. We
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follow with a formal evaluation by two structural biologists, expanded from our IEEE BioVis Data Con-

test Visualization Award-winning submission. We last report the feedback from the contest organizers.

3.3.1 TIM protein-family exploration

The application examines the scTIM protein (saccharomyces cerevisiae triosephosphate isomerase),

a member of the TIM family that was mutated towards the family consensus: a number of amino acids

in the sequence were replaced by the most common residue found at that location in the TIM family.

The resulting amino acid sequence is dTIM. Unfortunately, dTIM is functionally defective - one or

more of the modifications made to scTIM caused the protein to lose its metabolic transport properties.

Identifying which modifications caused the loss of functionality is an interesting open research problem.

For this application, we obtained the scTIM PDB, the TIM family sequence data and alignment

information from the Battelle Center for Mathematical Medicine, through www.biovis.net. We used

the tool to fetch 28 additional PDB files from RCSB, and to further generate more than 620 PDB files

from the provided sequence data. We used the database backend to link PDB and FASTA IDs for

preprocessing, and added data from ModBase and Uniprot.

Using our tool, we start by identifying the differences between the dTIM and scTIM sequences.

There are 49 different subsequences of residues, encompassing 104 residues modified, created, or

deleted in the creation of dTIM. By selecting some or all of these residues in the protein sequence

viewer, we can highlight their locations on both 3D structures (Figure 15). We can pan, zoom, and ro-

tate the structures to more closely examine the distribution of these alterations on the protein structure.

We can also adjust the rendering properties of the structure.
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Figure 16. Two residue mutations that may restore function to the protein; residues (K)107(D) and
(E)138(E). For both residues, dTIM shares the family consensus but differs from its parent, scTIM.

To determine which models from the TIM family are most similar to the original scTIM, we use

the trend-image view in the lower panel. In Figure 15, we can quickly see, for example, that only a

few sequences have the same fragment in position 142 with scTIM. A step further, selecting any of the

sorting modes from the menu allows comparisons to be made to scTIM. For example, when sorting

by common residues, we find that TPIS HAEDU, the TIM protein homolog found in bacterial species

Haemophilus ducreyi, shares the greatest number of residues with scTIM. Selecting a particular coloring

method displays specific information for each residue.

Manipulating the vertical selection paddle allows us to explore subsequences of the full TIM se-

quence. Distribution information about residues in the highlighted subsequences are displayed below
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the trend image and show the most common amino acid in the TIM family at each sequence index. The

bars in the residue viewer that are nearly empty imply that very few members of the TIM family share

the same residue as scTIM, making it an ideal candidate for mutation towards the family consensus.

Manipulating the horizontal selection paddle allows us to further explore the individual TIMs in the

family, with a fish-eye lens expanding the selected row to more clearly show the residue sequence and

coloring. Right-clicking on a selected row allows us to load the structure of that specific TIM into the

structure view. If this TIM is unfamiliar to the user, a number of reference databases can be accessed.

In terms of limitations, while the trend image provides a scalable approach to viewing large amounts

of sequence data, finding a particular sequence in a protein family remains a challenge. Similarly, at-

tempting to code too much information into the color schemes results in an overload of colors, rendering

the trend image unreadable and ineffective. A reduction in the number of colors restores readability to

the view, at the cost of removing some information from the trend image.

3.3.2 Structural Biologist Feedback

Two senior structural biology researchers (collaborators DK and TT) have provided feedback and

testing throughout the software development process. They are also providing the following example

workflow through our system.

In this evaluation session, the researchers sought to explore the mutations in the BioVis Data Contest

dataset. Given their structural biology background, the researchers began their analysis by loading

and interacting with the 3D structures of the dTIM and scTIM proteins. Their interaction focused

on searching for the residues that make up the active site and the protein-protein interface. In their

estimation, these two sites were likely candidates for the location of functional mutations.
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The researchers selected next the key residues in the 3D Viewer. This action highlights those

residues in both the Trend Image Panel and the Protein Sequence Viewer. Using the Protein Sequence

Viewer, the researchers identified which of these residues had changed in the conversion from scTIM

to dTIM. For each different residue, the researchers returned to the 3D Viewer to inspect the structure

of each of the residues and examine their interactions. At this stage the researchers did not use the

remaining genomic data, as they were unsure of how to best use this information for the purpose of the

contest. Under these circumstances, they identified and proposed two relevant mutations as the most

likely candidates: Y101 (to E100) and D81 (to P80).

However, by using the trend image panel, the researchers were able to identify several further match-

ing sequences in the trend image. Although during the evaluation session the trend alignment and

residue numbering within a sequence were slightly off due to insertions and deletions in the sequence

(later accounted for and corrected in the software), the most senior researcher was able to identify the

same set of candidate mutations as captured in the case study below.

In the researchers assessment, it “would be possible to come up with some reasonable hypotheses

without using [this] tool, but it would definitely take more time. In the default workflow, the researchers

believe they would start by building a homology model for dTIM using Modeller and then align this

model with the known structure for scTIM within PyMOL, followed by proposing a list of mutations

that could be relevant, for example those localized to the active site. However, this approach would not

leverage the information of the protein sequence family. To access this type of information without our

tool, one could create a multiple sequence alignment using any of a number of online servers, then load

the result in an alignment viewer such as JalView [80], and then go back and forth between the structures
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in PyMOL and the alignment viewer, in order to refine the previous list of mutations. However, in the

researchers opinion, this alternative approach would be tedious. As such, they particularly appreciated

our tools integration of the capabilities of existing spatial and sequence viewers, along with other useful

functionality built within our software, and the speedup to such workflows provided by our approach.

3.3.3 BioVis Contest Organizer Feedback

Feedback from the BioVis 2013 conference organizers further confirmed the ability of our tool to

successfully identify the dysfunctional protein mutations. The experts hypothesized that the most harm-

ful mutations to the protein existed in the active site—the area of the protein which is responsible for

its function. Since dTIM was created by combining the mutations of its 640 family proteins, the Trend

Image Panel was first observed by the experts in order to gauge the difference of scTIM to the rest of

its family. When sorted by the weighted edit distance between scTIM and its protein family members,

the trend image exposed five distinct residue locations where dTIM varied from scTIM, but was consis-

tent with the rest of its family. These locations are in our assessment (A)58(G), (K)107(D), (E)138(L),

(L)146(V), and (A)22(R) and (L)218(V). From these mutations, the 107, 138 and 146 residues are al-

most fully conserved throughout the entire family, but differ in scTIM to dTIM. While residue 138 looks

promising, since it is very frequent across the entire family, closer inspection shows that a mutation did

not occur between dTIM and scTIM. In contrast, mutation 58 is also highly conserved throughout the

TIM family, but is also a mutation from scTIM to dTIM. Finally, the last two mutations are both sym-

metrical in position, at an offset of 22 from either end of the sequence; these residues are also highly

conserved in the TIM family, but not between scTIM and dTIM, which indicates they are not responsible

for the loss of functionality.
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Further examining the 3D structure of the four remaining residues (excluding the two symmetric

ones) from the candidate list above, we notice that they lie in or just outside of the active site. Again,

this is where most chemical reactions occur, since the active site is the binding site of molecules. This

observation brings us full circle to the earlier structural biologist feedback: the structural biology experts

initially suspected the most damaging mutations would lie in the active site, and that restoring these

mutations could restore functionality.

In terms of the tool features, the trend image and its sorting capabilities—based on our proposed

metrics of similarity—were greatly appreciated by the IEEE BioVis domain experts evaluating the tool.

A closer examination through the use of the 3D Model Viewer provided evidence that the residues

identified above were part of the active site of the protein. This finding matched the initial hypothesis

of where the most critical mutations existed, and demonstrates the benefits of combining spatial and

non-spatial information in a single tool.

Without the aid of our tool, each sequence would have to be collected and aligned to determine the

areas of residue variance. Once found, individual models of dTIM and scTIM have to be examined

to locate the area where the mutations were occurring on the 3D structure. By using our tool, the

experts were able to quickly identify the residue mutations and link them to the 3D model with a single

action. Each expert biologist that tested our tool noted the ease in interaction between the different data

representations—sequence alignment, model interaction, etc. These features, coupled the linked data

views, proved very efficient for the task of identifying protein mutations. With the insights gained, the

locations of where the sequence needs to be repaired were quickly identified.
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3.4 Conclusions

The FixingTIM application shows that our tool can assist in the navigation of family of proteins,

as well as in the exploration of individual protein structures. The side-by-side 3D views facilitate vi-

sual comparison, while the trend image abstraction provides an effective view and exploration of large

collections of sequence data. Our tool successfully integrates multiple sources of information and both

spatial and non-spatial data. Furthermore, a computational backbone facilitates sorting collections of

sequences, as well as generates 3D structures for modified sequences.

In conclusion, we introduced a novel visualization tool that integrates 3D structural information and

sequence information for a protein, with additional information from the multiple sequence alignment

of the family of proteins with the same function, and with meta information extracted from the family

data. In conjunction with domain expert knowledge, this interactive tool can help provide biophysical

insight into why specific mutations affect function, and potentially suggest additional modifications to

the protein that could be used to rescue functionality.



CHAPTER 4

A SPATIAL NEIGHBORHOOD METHOD FOR COMPUTING LYMPH NODE

CARCINOMA SIMILARITY IN PRECISION MEDICINE

This chapter investigates a situation in “precision medicine” where clinicians aim to use big data

patient repositories consisting of demographic and clinical characteristics, treatments, and outcomes to

tailor therapy decision to the individual patient, based on data from patients who are similar to the one

under consideration. Specifically, this chapter details our collaboration with radiation oncologists (CDF,

BH, HE) from the MD Anderson Cancer Center (MDACC) to develop a methodology for comparing

oropharyngeal carcinomas (OPC) cancer patients based on their spatial patterns of lymph nodal involve-

ment to determine potential treatment strategies regarding both efficacy and toxicity outcomes. Because

this spread of disease heavily influences the patients treatment and side-effects, patients with similar

nodal involvement often experience similar post-therapy dysphagia side-effects known to arise due to

radiation toxicity at various locations of the head and neck.

Unlike the tasks associated with the observed workflows in observational astronomy (Chapter 2) and

molecular biology (Chapter 3), clinicians are not strictly interested in exploring the spatial patient data

within these large repositories, but rather wish to extract specific spatial information and establish a rela-

tionship between corresponding attributes in different patients. Rather than adapting the two established

design paradigms to facilitate spatial data exploration, we instead describe a strategy that abstracts the

spatial data to work within these known paradigms. By constructing a 2D topological map of the lymph

node regions in the human head and neck, we found that we can encode the structural information of the

74
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nodal spread of involvement to build a spatial measure that captures patient similarity within a cohort. In

this chapter, we show how the resulting similarity measure can be used with the Search-First paradigm

to rank and query for similar patients based on their spatial correlates. We discuss how the strategies

behind our design strategy – from the design of our topology-based spatial similarity measurement to

the visual and statistical analysis used to validate it – captures groups of patients more susceptible to

dysphagia toxicity based on their spatial pattern of nodal involvement.

This chapter has been edited to be consistent with the rest of the dissertation. Coauthors on this

work include Baher Elgohari (BH), Hesham Elhalawani (HE), Guadalupe Canahuate (GC), David M.

Vock (DV), C. David Fuller (CDF), and G. Elisabeta Marai (GEM). The contributions from each author

included: BH, HE and CDF served as the radiation oncology domain experts for this work, providing

feedback on the relevance of our spatial neighborhood approach; BH and HE were responsible for the

data curation, and cleansing of the patient cohort; GC provided the data mining expertise on the project

and contributed the hierarchical clustering implementation and Chi-Squared analysis; DV provided the

statistical analysis expertise and suggested the use of the Fisher’s Exact Test of the Chi-Squared Test;

GEM provided the visualization expertise and directed the top-level design, implementation, and testing

of the approach. My (TL) contributions to this work included the design and implementation of the

similarity measure, the compact graph visual representations, and the spatial-measure dendrogram. I

am the first author on this work, which is pending review in the Journal of Biomedical Informatics.

4.1 Introduction

The United States National Cancer Institute estimated more than 51,000 people in the United States

were diagnosed in 2018 with head and neck squamous cell carcinoma (HNSCC) [81]. Of these HNSCC
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cases, more than 90% will result as oropharyngeal carcinomas (OPC), which include cancers of the

larynx (voice box), pharynx (throat), lips, tongue, and nose [82; 83]. At the same time, the number of

HNSCC cases makes possible the creation of big data repositories consisting of the demographic and

clinical characteristics, treatments, and outcomes of patients undergoing radiotherapy. These reposito-

ries present opportunities towards informing and further personalizing treatment on a per-patient level,

rather than relying on clinician experience or institutional memory alone [84; 85]. Under a healthcare

model termed “precision medicine”, clinicians aim to use these patient repositories to tailor therapy

decision to the individual patient, based on data from patients who are similar to the one under consider-

ation. Currently, these correlates typically include age, performance status, clinical staging information,

and sometimes genetics—attributes that can be statistically aggregated, matched and analyzed.

Yet, similar to most other cancer types, HNSCC treatment and side effects depend in large measure

on the spatial location and spread of the cancer. In particular, for more than 50% of OPC patients,

the treatment and side-effects are heavily influenced by the spread of disease to lymph nodes (LN) and

their corresponding areas (levels), at risk for metastases. OPC generally metastasizes to regional LNs

following the lymphatic drainage of the head and neck [86], often resulting in chains of affected LNs

along the drainage pathway. These chains correspond to the spread of involvement to specific locations

of the head and neck and are thus defined by their spatial attributes. Therefore, for those patients

receiving intensity-modulated radiation therapy (IMRT), these chains represent additional targets that

must receive radiation treatment. Further complicating matters, the soft tissue structures of the head and

neck (organs, muscles, etc.) are highly susceptible to both direct and indirect radiation exposure [81],

and the increased toxicity to specific regions has been shown to correlate with post-therapy quality of
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Figure 17. Pipeline detailing the steps and data flow of our presented methodology. After receiving the
contrast-enhanced computed tomography (CECT) images from the clinicians, we construct a

topological mapping of each patient’s involved nodes and the connections between them. The result
matrices are used to compute similarity using a Tanimoto coefficient; hierarchical clustering is

performed on the ranked patient scores to determine patient groups; statistical and visual analysis is
performed on the groups to determine groups with higher toxicity outcome rates and validate the

results.

life. For example, aspiration and dysphagia side-effects affect as many as 30%-50% of patients treated

with IMRT [87]. Therefore, we believe that grouping patients by their patterns of nodal involvement

spread can help improve treatment strategies regarding both efficacy and toxicity.

Because within a patient cohort there are many rare or unique combinations of spatial involvement

chains, as we show in this chapter, the use of direct-match comparison techniques based solely on the

oncological labeling of affected LN levels has limited applicability: categorical labeling of the nodes

does not lead to meaningful groups of similar spatial (2D or 3D) patterns. Instead, taking into account

both the metastasized nodes and the pathways that connect them has the potential to create meaningful,

spatially similar groupings.

In this chapter, we present a novel modeling methodology for the comparison of OPC patients within

a cohort, based on the patient nodal spread of involvement. We define a topological map, we construct
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computational representations, and we introduce a novel graph-based measure to derive patient LN

involvement similarity. To validate our approach, we apply our measure to a clinical cohort of 582

post-therapy OPC patients. We perform hierarchical clustering on the output of the similarity ranking

to test for correlations with post-therapy toxicity. We contrast these spatial measure results against

the results obtained using a categorical labeling of the nodes. Specifically, we hypothesize that the

underlying spatial information contained within the chains of affected LN levels would significantly

correlate with post-therapy dysphagia side-effects known to arise due to radiation toxicity at various

locations of the head and neck. This approach would further allow for binning of patients in cohorts

deemed by clinicians as significantly more informative than categorical binning.

4.2 Methods

4.2.1 Overview

Our method is constructed as follows (Figure 17): the LN levels for eligible patients are manually

segmented from contrast-enhanced computed tomography imaging data. We then define and construct

a LN topological map, based on the level location and its surrounding local neighborhood, and using

the medical literature [88] and clinician input; because of left-right symmetry in the human head and

neck, this is a 2D map with cells for each node region. To facilitate patient comparison using the spatial

information, we next define and construct a dual-graph representation over the topological map; this

representation captures the neighbor relationships among the lymph nodes. We use the graph repre-

sentation to compute the pairwise similarity between each patient using a spatial measure. To compare

and contrast the merits of the spatial measure, we also compute the categorical similarity among the

patients; this categorical measure ignores spatial relationships in the data. Next, we perform hierarchi-
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cal agglomerative clustering on the similarity output and compare the resulting patient groupings. The

results are then presented to the clinicians for interpretation of the rankings and clusters of patients.

Finally, we perform a statistical analysis to determine if our spatial measure is significantly correlated

with post-treatment toxicity outcomes. We describe below in detail each component of this method.

4.2.2 Patient Cohort

Oropharyngeal cancer (OPC) patients who were treated at MD Anderson Cancer Center between

2005 and 2013 were retrospectively reviewed under an approved IRB protocol. Out of the 644 eligible

patients who had a pathologically proven OPC, either with a positive biopsy or a surgical excision and

received treatment (i.e., radiotherapy +/- chemotherapy) with a curative intent, 582 patients had affected

lymph nodes and were included in this study. Affected lymph node (LN) levels were collected from

contrast enhanced computed tomography (CECT) diagnostic scans which took place at patients’ initial

visit for staging and disease assessment. LN levels (retropharyngeal (RP), submental (Ia), submandibu-

lar (Ib), upper, medial and lower jugular (II, III, IV respectively) and level V a, b) were defined based

on anatomical landmarks and were coded in relation to tumor position. Patients’ relevant demographic,

clinical, and toxicity data (toxicity of interest were feeding tube and aspiration at six months) were

retrieved from electronic medical records.

Table IV shows the post-therapy side-effect counts and patient characteristics across the cohort. Of

the 582 patients who underwent intensity-modulated radiotherapy, 163 patients suffered from either

post-therapy dysphagia side-effects, with 95 (16.32%) patients reporting aspiration (breathing a foreign

material to the airways, such as saliva) and 99 (17.01%) requiring a feeding tube six months after the

end of radiotherapy treatment (Feeding Tube at 6 months).
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TABLE IV. Patient Characteristics and Post-therapy Side Effects
Characteristics N (%)
Post-therapy Side Effect

Feeding tube at 6 mo. 99 (17.01%)
Aspiration 95 (16.32%)

No side effect 388 (66.67%)
Gender

Male 512 (87.97%)
Female 70 (12.03%)

Median age at Diagnosis 57.8 years (range 20.95 - 88.47)
HPV Status

Positive 360 (61.86%)
Negative 45 (7.73%)

Unknown 177 (30.41%)
T-category (T)

Tx 1 (0.17%)
Tis 1 (0.17%)
T1 129 (22.16%)
T2 245 (42.10%)
T3 121 (20.79%)
T4 85 (14.61%)

N-category (N)
N1 72 (12.37%)
N2 492 (84.54%)
N3 18 (3.09%)

AJCC 7th Edition
III 68 (11.68%)
IV 514 (88.32%)

4.2.3 Topological Map

Spatial similarity has been facilitated in many domains such as mechanical engineering [89], bioin-

formatics [90], and oncology [91; 92] by encoding spatial relationships through either topology-based

or shape-based techniques. These techniques have the ability to “exhibit common classes of descriptive
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Figure 18. Topological map and graph representation. (Left) A topological map was defined over the
lymph node regions (shown in gray), overlaid with a dual graph representation (red) of the map

showing the connectivity between the lymph node levels. The Retropharyngeal (RP) lymph nodes are a
group of nodes near the base of the skull and are disconnected from the dual graph because their

involvement requires specialized treatment. (Right) A compact graph representation was derived from
the red graph representation to visually illustrate metastasis over both sides of the head and neck, using
symmetry and color to distinguish between left (green), right (purple), and bilateral (blue) involvement.

spatial (topological) features that are quantified by definition of computable measures” [93]. Both topol-

ogy and shape-based techniques aim to extract spatial attributes, then establish a relationship between

corresponding attributes in different patients. However, shape-similarity based methods tend to focus

on classifying models of very different shapes, and fall short of distinguishing anatomical objects within

the same class unless the objects have easily identifiable structures, such as the mandible and outer body

contour [91; 94; 95]. In our case, structures are in the same class and do not have easily identifiable

features. However, OPC patient analysis presents an opportunity for topology-based techniques.
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To this end, we first defined and constructed a 2D topological map over the LN levels, based on the

consensus guidelines for the delineation of the head and neck [88], and using the left-right symmetry of

the human head and neck and input from our clinician collaborators. Each cell in this topology (shown

in gray in Figure 18 (left)) corresponds to an LN level in the human head and neck, based on the spatial

location and local neighborhood of each level. Over this topology, we then defined a dual graph repre-

sentation (shown in red in Figure 18 (left)), where each cell was represented as a node in an undirected

graph, and edges were created between each pair of adjacent faces. Using this abstraction, a chain of

involvement would follow the links between the adjacent faces; for example, the path connecting LN

levels 2B-2A-3 corresponds to a lymph chain of involvement. We decided to place the Retropharyngeal

(RP) LN, a LN group near the base of the skull, as a disconnected node in the graph (upper left) because

metastasis to this group bears a poor prognosis to OPC patients and requires specialized treatment.

Finally, to account for both sides of the head and neck, the graph was encoded as an adjacency

matrix where the upper and lower triangles correspond to the left and right side, respectively; Figure 18

(right) illustrates metastasis over both sides of the head and neck. We initialized the matrix so that each

row and column corresponded to one of the LN levels in the graph and assigned the LN levels (involved,

not-involved) to each element along the diagonal, as follows:

Mi,i =



2, if Ml,i AND Mr,i are involved

1, if Ml,i OR Mr,i is involved

0, otherwise

(4.1)
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where Mii is the graph node corresponding to LN level i, and Mi j is an edge between graph nodes i

and j. Furthermore, edges between two involved LNs nodes were assigned a value of 1 in the matrix,

according to the dual graph in Figure 18 (left). Since the RP LN level appears as a disconnected node

on the graph, we handle it as a special case and encoded its status via two boolean flags related to the

left and right involvement. Therefore, the resulting matrix M has dimensions of 9x9, for the nine groups

of lymph nodes that are connected in the graph representation.

For later analysis, we furthermore encode the laterality of nodal involvement for each patient using

the position of their primary tumor: for patients with right-sided primary tumors, right-sided LNs are

encoded as ipsilateral’ structures with tumor on the right; for patients with left-sided primary tumors,

left-sided LNs are encoded as contralateral’ structures with tumor on the left.

4.2.4 Similarity Computation

We designed two similarity measures to investigate whether incorporating spatial information about

the lymph node chains (i.e., the spatial location and neighborhood of the nodes involved) partitioned

patients more meaningfully than only considering the level itself (i.e., non-spatial labels). Each measure

was designed around the non-binary Tanimoto coefficient [96] using either: a) each patient’s LN level

involvement status only (i.e., only the affected nodes in the graph representation) to measure the non-

spatial similarity or b) a combination of status and pathways (affected nodes and edges in the graph

representation) to measure the spatial similarity. We chose the Tanimoto coefficient based on its ability

to produce the most “meaningful” rankings for smaller, diverse graphs [97] when compared against

subgraph [98] and substructure [99] measures.
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4.2.4.1 Spatial and Non-Spatial Similarity Measures

After constructing the adjacency matrices M (Eq. 4.2.3), a vector was instantiated for each patient

using the involvement status of their LN levels, as follows:

vp,i =



2, if LNLi AND LNRi are involved

1, if LNLi OR LNRi is involved

0,otherwise

(4.2)

where vp,i is the vector element that corresponds to the involvement status of the left and right LN

levels i for patient p. These values were extracted from the main diagonal of each patients’ matrix M.

Then, to incorporate the spatial information into the measure, additional elements were appended to

the resulting vector to encode the edges to and from the involved LNs as defined by the topological

map. We enumerated every pair of involved LN levels connected by an edge as a bigram [100] label

and added them to the involvement vector vp,i (Eq. 4.2.4.1). We choose not to enumerate further than

the two-node combinations because of the small number of nodes in the graph – if all n-grams were

enumerated, the similarity distance between patients would increase, and the similarity score for partial

pattern matches would decrease. Furthermore, permutations of each bigram are considered once (e.g.,

bigram permutations between LN levels 2A and 2B, 2A-2B and 2B-2A, are considered as being the

same).
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Once enumerated, the bigrams on the left- and right-side were encoded into the vector:

vp,B =



2, if BLi, j AND BRi, j are involved

1, if BLi, j OR BRi, j is involved

0,otherwise

(4.3)

where vp,B is the vector element that corresponds to the combined left- (L) and right-side (R) bigrams

B of involved LNs i and j for patient p. Overall, 13 bigram weights were added to the vector to represent

the 26 bigrams on both sides of head and neck.

Next, the cohort was ranked in pairwise-fashion by computing the Tanimoto coefficient between

each of the newly constructed vectors:

T (vp,vq) =
vp · vq

‖vp‖2 +
∥∥vq
∥∥2− vp · vq

(4.4)

where the function T (vp,vq) returns the Tanimoto coefficient between the vectors v of patients p and q.

In order to examine the merits of the spatial measure, we likewise constructed a vector using only

the involvement status of the LN level labels (Eq. 4.2.4.1) for the non-spatial (categorical) measure and

again ranked the cohort in pairwise-fashion by computing a Tanimoto coefficient (Eq. 4.2.4.1).

To illustrate, in contrast, how these measures work, let us consider patients #14 and #245 from Fig-

ure 19 (top left). Patient #14 possesses a bilateral involvement between LN levels 2A, 2B, 3, 4, and 5B,
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Figure 19. Example similarity ranking. Patient #14 (shown top left) is unique within the cohort, in that
no other patient in the 582 patient cohort exhibits the same ten bilateral LN levels and RP involvement.

Following Patient #14 are the seven closest-ranked patients (shown in left-right and top-down order)
based on our spatial similarity measure. The two most similar patients share eight bilaterally involved
LN levels; the next two have similar bilateral chains but either share fewer involved LN levels (Patient
#10128) or possess two additional involved LN levels (Patient #84); while the last three similar patients

have similar involvements but with significantly fewer LNs levels.

and a unilateral involvement on one RP LN level, while Patient #245 possess a bilateral involvement be-

tween LN levels 2A, 2B, 3, and 4. Figure 20 illustrates the corresponding vectors that are constructed for

the spatial (Figure 20a) and non-spatial (Figure 20b) measures using Eq. 4.2.4.1 and Eq. 4.2.4.1. Com-

puting the Tanimoto coefficient (Eq. 4.2.4.1) between both sets of patient vectors results in a similarity

score of 0.87 for the spatial measure and 0.76 for the non-spatial measure.
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Figure 20. An illustration of the involvement vectors v constructed for Patient #14 and Patient #245.
(a) The vectors v constructed for the spatial similarity measure (Eq. 4.2.4.1 and 4.2.4.1). (b) The

vectors v constructed for the non-spatial measure (Eq. 4.2.4.1). Note that the spatial vectors (a) include
bigrams while the non-spatial vectors (b) do not.

After ranking each patient, we construct two similarity matrices for the spatial (MSp) and non-spatial

(MnSp) measures, using the similarity scores between each patient pair in the cohort. The result of this

step is a similarity matrix for each measure, with the number of rows/columns in each matrix equal

to the number of patients in the repository. These matrices are then used in the hierarchical clustering

analysis. The patient similarity computation was implemented in Python 2.7.

4.2.4.2 Hierarchical Clustering

Once a spatial measure is obtained, stepwise clustering techniques, such as hierarchical agglom-

erative clustering (HAC), are a quick yet practical approach to group similar subjects without a priori

knowledge of the underlying data distribution [101; 102]. For example, recent studies [103; 104] have

used hierarchical clustering to define anatomical subgroups of patients and test for clinical significance.
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Furthermore, Bruse et al. [104] investigated which distance/linkage combinations would provide the

most “clinical meaningfulness” when applied to a cohort of healthy and pathological aortic arches post-

surgical repair patients. Their results show that hierarchical clustering using a Matthews correlation

coefficient [105] combined with a weighted-linkage [106] function can yield significant patient sub-

groups based on spatial features. While we define our own similarity measure in this chapter, we adopt

the weighted-linkage function for determining the distance between the groups when performing our

hierarchical clustering.

Following a bottom-up approach where each patient was first represented as a singleton cluster,

we used a hierarchical agglomerative clustering (HAC) algorithm to iteratively combine clusters in a

pairwise fashion, based on the computed similarity scores and linkage distance function. Based on

the results from Bruse et al.’s study [104], we chose to use the weighted-linkage function [106] when

determining the distance between clusters. At each iteration, the weighted-linkage function calculates

the distance between every pair of clusters, i and j, by computing the arithmetic mean of distances (i.e.,

similarity scores) between all points in i and j. The algorithm then combines the “nearest” (smallest

distance) two clusters and continues iterating until only a single cluster remains.

The resulting clustering output for the spatial measure was further summarized in a dendrogram, a

tree-like abstraction which illustrates how similar clusters were grouped (x-axis) and at what level (y-

axis) they merged. Finally, partitions of highly similar patients were formed by cutting the dendrogram

at a specified level. This level was empirically determined based on the calculated expected values of

toxicological outcomes, as described in the next section. Clustering was performed using the MATLAB

r2018a machine learning toolbox [107].
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4.2.4.3 Statistical Analysis

Results from hierarchical clustering are commonly summarized using a dendrogram, a tree-like

structure that displays how the elements are partitioned into groups based on the computed similarity

and linkage functions [108; 109]. We construct such a dendrogram as described below.

The patient groupings were compared using the Rand Index [110] to determine the measure of

similarity between the two measures’ clustering output. This measure quantifies the number of pairing

agreements between two clusters into a frequency between 0.0 and 1.0, where a value of 0.0 indicates

that the clusterings disagree on every pairing of samples and a value of 1.0 indicates that both clusterings

are the same. Additionally, the Fisher’s exact test [111] was performed on both clusterings using two

toxicity binary variables (Y/N) provided with the cohort: the post-treatment aspiration symptoms and

feeding-tube necessity at six-months. We chose the more computationally-expensive Fisher’s exact test

over the Chi-squared test because the high variation of nodal involvement patterns within the cohort

yields small numbers of expected values within each group (e.g., for a clustering with k = 6 clusters).

While when using Chi-squared the number of expected values for each group should be at least 5, to

guarantee the significance of the p-value (otherwise a small p-value could be in fact not significant),

Fisher’s exact test works well on small numbers of samples. Using Fisher’s test, the most significant

grouping was for k = 6 as the number of clusters, and so both clusterings were cut at the k = 6 level.

Statistical tests were performed using the MATLAB 2018a statistical toolbox [107].

4.2.4.4 Visual Analysis

To facilitate the assessment of our approach by clinicians, we have constructed an application to help

interpret the abstracted nodal involvement of each patient in the cohort in the context of the computed



90

similarity between patients. The visual interface (Figure 19) consists of small multiple representations

of the abstract topological map (Section 4.2.3) and control menus which allow a specific patient to be

selected and viewed. To keep the representations compact, only one side of the head and neck was

abstracted; color was used to distinguish between left (green), right (purple), and bilateral (blue) in-

volvement. The visual interface was implemented using the web technologies JavaScript, HTML, CSS,

and the D3 [112] JavaScript library to quickly provide our collaborators (CDF, HE, BE) with access to

ongoing results (cross-platform, no installation required, etc.) and to facilitate future integration of this

application into the SMART-ACT [113] environment.

Additionally, we created an informational dendrogram (Figure 22 to convey the patient clustering

and statistical analysis results to the collaborating radiation oncologists (collaborators CDF, HE, BE).

Side-effect statistics are displayed atop each of the groups formed by the k = 6 horizontal cut. The most

frequently occurring involvement pattern for each cluster was determined based on the consensus nodal

spread of each cluster along the x-axis (at y=0) and is shown in miniature at the bottom of each cluster

along the bottom x-axis. The consensus was determined based on a two-thirds majority involvement

status (i.e., a LN level is included in the graph if 67% of the patients share that involvement). The

miniature consensus graphs are a variation of the previously described graph representations: solid

and outlined nodes are consensus nodes, affected in more than 67% of the patients in that cluster,

while square marks indicate nodes affected in less than 67% of the patients in that cluster. Unilateral

involvement is shown by a single consensus graph, while bilateral involvement is shown by two stacked

miniature graphs, one for each side of the head and neck. We note that the miniature consensus graphs

do not provide a complete descriptor of cluster membership.
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Figure 21. Two subjects with different groupings based on the similarity measure. Patient A (top left)
possesses a bilateral nodal spread with LN level 3 involvement while Patient B (top right) only

possesses a unilateral nodal spread with LN level 3 involvement. Because the spatial measure uses the
geometrically different nodal involvement, it separates Patient A and B into the two main clusters, G3
and G5 (bottom left). In contrast, the categorical measure combines the two patients under the same

main cluster, G4 (bottom right).

4.3 Results

4.3.1 Spatial vs Categorical Node Patient Categorization

Our approach was able to successfully discriminate patients based on spatial involvement in cases

where the categorical approach failed. For example, the spatial measure was able to discriminate be-

tween patients with bilateral spread and patients with unilateral node involvement by placing them into
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separate cohorts. The spatial measure also discriminated between RP node involvement versus no in-

volvement, regardless of pattern spread complexity. Consequently, this approach allowed for binning of

patients in cohorts that were deemed by clinicians and end-users (collaborators CDF, HE, BE) signifi-

cantly more informative than categorical binning.

Figure 21 shows a representative example of the value of spatial-measure. Shown are two patients

that have drastically geometrically different LN level involvements. Using k = 6 clusters, these patients

are erroneously binned together under the categorical measure (Figure 21, bottom right), while our spa-

tial approach successfully discriminates between them (Figure 21, bottom left). In particular, Patient A

possesses a bilateral lymphatic nodal spread as well as a LN level 3 involvement. Involvement of level

3 implies potential radiation dose to laryngeal structures and is thus a potentially meaningful corre-

late of radiation-associated sequelae [114]. Likewise, RP node positivity discriminates dose to superior

pharyngeal constrictor which is atypical and has the potential for specific toxicity discrimination [115].

In the clinicians’ assessment, these are important distinctions, given prior data that shows differential

swallowing toxicity as a function of superior pharyngeal constrictor (SPC) versus cricopharyngeus mus-

cles [116; 117].

In the spatial measure, Patient A was also clustered together with other patients that have node 3

involvement, while Patient B was clustered together with no other patients that have node 3 involvement.

Conversely, Patient B was primarily clustered together with patients with RP involvement (67% with

RP involvement), while Patient A was not (16% with RP involvement). However, the RP partitioning

may have been more related to the bilaterality of nodal involvement.
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TABLE V. Toxicity Outcome Distributions of the Spatial-Metric Groups
Feeding Tube Placement Aspiration

Group Patient count Patients with outcome (%) Patients with outcome (N%)
G2 174 31 (17.9%) 28 (16.1%)
G3 28 3 (10.7%) 4 (14.3%)
G4 77 21 (27.3%) 14 (18.1%)
G5 51 17 (33.3%) 21 (41.2%)

4.3.2 Domain Expert Feedback

Qualitative feedback from repeated evaluation with our collaborating clinicians emphasized the use-

fulness of this approach. When presented with the informational dendrogram (Figure 22, one clinician

stated that he felt confident he could take the visualization back to his clinic that day and use it when

describing the potential outcome risks alongside proposed treatment plans to his patients. In addition

to comparing patients of the cohort, the clinicians also identified several patients whose LN levels had

been previously mislabeled in the dataset due to segmentation or data processing pipeline errors.

During the evaluation process, the clinicians noted that it is common practice to delineate patient

groups based on bilateral involvements and the nodal spread between LN levels 2 and 3. Of the two

approaches to group patients based on their lymphatic nodal spread, the clinicians felt that the spatial

similarity measure, which inherently separated patients between uni- and bilateral involvements as well

as the LN level 2 and 3 nodal spread, most closely represented what is expected in a clinical setting.

4.3.3 Hierarchical Clustering Analysis

Figure 22 displays the informational dendrogram resulting from patient binning using the spatial

measure. In the dendrogram, clusters of highly similar patients are represented along the x-axis using
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Figure 22. A dendrogram showing the spatial similarity measure k=6 patient groupings and
corresponding statistics. The six groups are indicated by arrows. In this dendrogram, a clear distinction
between bilateral and unilateral nodal spread can be seen between groups G3 and G4, as well a divide
between patients with and without LN level 3 involvement (G4 and G4). The consensus involvement

(67%) of each group can be identified along the x-axis of the of the dendrogram.
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the visual representation defined in Section 4.2.4 D to capture the consensus nodal involvement of the

cluster.

In the dendrogram (Figure 22), we identified two distinct groups by focusing on the nodal involve-

ment across the x-axis of each group. First, the cut that separated groups G2-G4 from G5, near merge

level 7, also partitioned the cohort according to the involvement laterality: groups G1-G3 consisted

of patients with unilateral involvement, groups G4 and G5 of patients with bilateral involvement, and

group G6 of patients with unique (singular to the cohort) nodal involvement. Next, the cut that separated

groups G3 and G4, near merge level 5, also discriminated based on LN level 3 involvement, creating

another clear distinction between groups with (G2, G4, G5) and without (G1, G3) the involved lymph

node.

In contrast, the involvement status of LN level 3 occurred throughout each of the six groups gen-

erated through the non-spatial/categorical approach. Furthermore, four of the six groups generated

through the categorical approach contained patients with bilateral involvement. Therefore, the categor-

ical approach fails to capture a meaningful demarcation between LN level 2 and level 3 involvement, as

well as patterns of bilateral involvement.

4.3.3.1 Measure Agreement

In terms of agreement between the spatial and categorical approaches, we identified two identical

groups between the spatial- and categorical-approach clusterings (G1 and G6). While these two groups

represent 43% (252 patients) of the cohort, the consensus nodal involvements in each are also the sim-

plest patterns in the cohort. For example, all 227 patients in both G1 groups possess a unilateral LN level

2 involvement. G6 groups together all the 25 unique LN level involvement patients in the cohort. Out-
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side of these two groups, the categorical-approach did not have the discriminatory value of the spatial

approach advocated in this chapter.

After removing the two groups G1 and G6 from each of the clusterings, the computed Rand index

between the spatial and the categorical results was a similarity measure of 0.55. This value indicates that

outside of the two groups G1 and G6 of simple patterns, the two approaches are significantly dissimilar

in terms of how they group the patients within the cohort.

4.3.4 Statistical Analysis Results

Statistical significance is reported assuming a level of p < 0.05, based on the occurrence of the

toxicity symptoms within the groups. Table V shows the toxicity outcomes distributions of the four

spatial-measure groups with the highest incidence rates. In terms of the toxicological outcomes, there

was a significant difference in the rate of feeding tube (FT) placement among the k = 6 spatial-measure

groups (p < 0.01). The measure was able to identify two cohorts (G4, G5) that had almost double the

outcome incidence compared to the other four (G1-G3, G6). G4 and G5 had FT placement rates of

27.3% and 33.3%, respectively, while G3-G6 had rates less than or equal to 17.9%. Additionally, the

spatial measure identified one group (G5) with more than double the aspiration rate (41.2%) compared

to the other five groups.

4.3.5 Performance

We performed all computation on a 4.0 GHz Quad Core i7 machine with 32G of RAM. The average

run-time to compute the similarity on the cohort of 582 patients was approximately 90 seconds per

similarity measure. The hierarchical clustering and statistical analysis averaged 45 seconds to partition
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the patients into groups, compute the Chi-squared and Fisher’s exact test, and output the statistics and

dendrogram per measure.

4.4 Discussion

Our analysis of results and the domain expert feedback support our claim that spatial correlates can

provide insight into therapy strategies where treatment depends on the spatial patterns of disease, such as

intensity-modulated radiation therapy for HNSCC. The spatial method we introduce captures and ranks

patients correctly and more clinically accurately compared to the categorical approach. Furthermore, we

have shown that when combined with hierarchical clustering, our novel graph-based similarity measure

partitions an OPC patient cohort into clinically meaningful groups. In particular, we have shown that

our spatial approach can capture groups of patients more susceptible to dysphagia toxicity (aspiration

and feeding tube) based on the pattern of nodal involvement.

In terms of limitations, our similarity measure captures but a few of the many features that can be

used in therapy response-driven decisions and predictive outcome models. While toxicity is heavily

predicated on the relationship between the spatial location of involvement and the administered radia-

tion dose, many therapy outcomes and side-effects result from other non-spatial features. A direction

of future research, while beyond the scope of this work, would be to combine our spatial similarity

scores with other relevant non-spatial features, such as T-Category and patient age [118], to create a

more semantically meaningful view of the patient regarding treatment response and survival. Likewise,

our approach notes but does not explicitly incorporate into the similarity measure, the tumor location

with respect to the lymph-structures (which is typically upstream in the head and neck). Other clinical
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applications may feature higher variability in the tumor location, and in those cases, the location of the

tumor may need to be explicitly incorporated into the similarity measure.

Next, we note that our evaluation was limited to one moderately sized cohort of patients. Many of

these patients were referrals whose data was collected outside of the treatment facility. As a result, a

significant amount of time spent working with this cohort was spent cleansing the data of malformed

classifications. Furthermore, our expert feedback was limited to radiation oncology clinicians who

were all members of the same clinical lab. Last but not least, our approach is constructed around a

2D graph representation that takes advantage of the symmetry about one of the principal axes of the

structural model. While this approach is ideal for domains where symmetry is inherently built into

the model (e.g., symmetry about the head and neck), it may also be easily extended to non-symmetric

situations. In contrast, extending this approach to situations where 3D location is important would

require modifications to the underlying graph representations and similarity measure.

4.5 Conclusion

In conclusion, we have introduced and evaluated a novel methodology to compare head and neck

cancer patients based on their spatial patterns of LN involvement. Our approach demonstrates how the

spatial location and neighborhood of the head and neck LN levels can be abstracted to a 2D topological

representation, which can then be used to quantify similarity within a cohort of patients based on their

extracted spatial attributes. This work also contributes two visual representations that provide clinicians

with response-based correlates within the ranked cohort. Statistical analysis and expert feedback indi-

cate that our spatial approach can be useful in clinical settings. Furthermore, we show that our spatial

approach provides superior patient similarity and groupings in terms of clinical relevance when com-
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pared to the categorical approach. The presented methodology may find application beyond the 2D head

and neck lymph node analysis in other domains that feature topological structures.

Few, if any, studies have attempted to use spatial-similarity techniques to compare post-diagnosis

patients and “close the gap between mere data and useful knowledge, as desired in current Precision

Medicine” [104]. Moving forward, we aim to integrate our proposed measure into a risk-prediction

model. We believe that when applied to spatially-driven diseases such as OPC, approaches such as

ours can play a vital role in fulfilling precision medicine’s goal of maximizing the effectiveness of each

patient’s treatment through customized care [119].



CHAPTER 5

“DETAILS-FIRST, SHOW CONTEXT, OVERVIEW LAST”:

SUPPORTING EXPLORATION OF VISCOUS FINGERS IN LARGE-SCALE

ENSEMBLE SIMULATIONS

This chapter was originally published in the IEEE Transactions on Visualization and Computer

Graphics (TVCG) Journal c© in 2018 [3]. This version has been edited to be consistent with the rest of

the dissertation. In particular, relevant sections that appeared in the original manuscript were relocated

to the Introduction and Discussion chapters of this dissertation to help motivate this work and explain its

contributions. Coauthors on this work include Andrew Burks (AB), Cassiano Sugiyama (CS), Jonathan

Komperda (JK), and G. Elisabeta Marai (GEM). The contributions from each author included: AB

and CS co-designed and developed the FingerFinder web-application, including the underlying visual

encodings and algorithms, as National Science Foundation REUs under the direction of GEM and me;

AB also designed the layout of the merge tree to reduce cluttering between finger tracks; JC served as

the mechanical engineering expert for this project, provided theoretical and qualitative feedback on the

Details-first model, and provided support with the software testing; GEM conceived this project and

its theoretical framework, and directed the design, implementation and testing of the FingerFinder tool.

My (TL) contributions to this work included the conception of the merge tree for the tracking of the

features over time as well as contributions to the design and implementation of the FingerFinder tool.

100
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Additionally, I worked with GEM and JC on developing the theoretical underpinnings of the Details-first

approach. I am the first author on this work.

This chapter rounds out our investigation by examining a situation in computational fluid dynamics

(CFD) where scientists often benefit more from design strategies that provide the ability to first access

details instead of an overview of the dataset. In these situations, experts often have an excellent mental

overview of their data [8]. As a result, these experts often directly explore spatial features of interest in

the early stages of their workflows; overviews, when employed at all, tend to exist to the latter stages

of the workflow and are often in the form of summary statistics. These workflows are different from

those we have encountered in the previously described domains. Up to this point, we have presented

design strategies generally based on providing the expert with some form of awareness of their data by

harnessing the Overview-first or Search-first strategies, or a hybrid combination of the two. However,

in domains such as CFD, these two models do not present the target users with the detailed information

that they wish to explore from the onset of their analyses.

To address these requirements, we present an alternative model to the Overview-first and Search-

first mantras. This alternate approach can be defined as “Details-first, show contest, overview last,” and

supports situations where the user workflow is oriented along the spatial or spatiotemporal feature anal-

ysis. Using a practical example in the CFD domain as a vehicle to drive our analysis, we demonstrate

how our Details-first approach can be used to inform design strategies in large-scale, spatial data collab-

orations. Specifically, we discuss how these design strategies – from the novel abstract representations

to their visual arrangement within the interface – led to the instantiation of our Details-first approach.



102

5.1 Introduction

As we have seen earlier in this dissertation, a common goal in visualization is the design of tech-

niques that provide both overview visualizations and support for feature exploration. Overviews can

help the user find regions where further investigation in more detail might be productive [5]. Spatial

features are, in turn, at the very core of most engineering and biomedical visualization endeavors, from

vortices in flow simulations to bonding sites in protein structures.

While many such visualization designs follow the information seeking mantra: “Overview first,

zoom and filter, then details on demand” [6], there are situations where providing an initial overview is

not relevant or practical for users, while providing details is paramount. For instance, in a wide class of

problems, including the problem illustrated in this chapter, details do not have a precise definition, and

their identification relies on internalized knowledge in the domain expert’s head. As further argued by

van Ham and Perer [7] in their alternative “Search, show context, expand on demand” mantra for large

graphs, there is also a significant class of scientific users who are not interested in global patterns in

the data, but have specific questions about one or several specific data points. As a practical example,

an astronomer who studies a class of quasars is typically not interested in an overview of the entire

observable universe [1]. A step further, in computational fluid dynamics (CFD), domain scientists often

work on the same problem for months, and have a good mental overview of the underlying data [8].

From an information theory perspective, Chen et al. [8] argue briefly that in such a case, having the

direct ability to reach a detailed view (details-first) would reduce the cost of step-by-step zoom opera-

tions. Nevertheless, visualization textbooks only report the Overview-first mantra and the Search-first

mantra [5].



103

Other arguments against first presenting global overviews to users are of a more practical nature.

As illustrated in this chapter, overviews may be derived from imprecisely-defined details and thus may

not be readily available. In the case of large-scale multidimensional datasets, creating an overview may

also not be feasible, in particular when a large dataset is being maintained at a centralized location,

and transferring it to multiple client machines is not an option [7; 9; 10]. Last but not least, in some

scientific problems, for instance in simulation ensemble visualization [11], the problem overview is not

one spatial dataset, but a collection of datasets, whose summarization in an overview is not necessarily

clear to the domain expert.

This chapter provides theoretical and practical evidence to support an alternative approach to the two

established design mantras, Overview-first and Search-first. This alternative can be defined as “Details-

first, show context, overview last,” and supports situations where the main user workflow is oriented

along spatial or spatiotemporal feature analysis, while the problem overview can only take the form of

a summary. In this model, the analysis starts with the spatial feature(s) of interest, with the help of a

computational back-end that can help identify and track those features over space and time. The detail

features are then used to automatically filter the feature-context in space and time, while controlling the

complexity of the visualization. Last, detail-derived calculations are used to summarize and compare

collections of features and potentially datasets, presenting a summarization overview to the user.

We construct this alternative model with the help of scientific workflow theory [20] and of a prac-

tical example in the CFD domain, the exploration of viscous fingers in large-scale ensemble simula-

tions [120]. Viscous fingers are areas of high concentration formed when a higher density fluid (e.g.,

oil) is poured into a lower density fluid (e.g., water); the fingering process is nondeterministic, and can
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lead to instability. To study this process, multiple stochastic simulations with non-deterministic prop-

erties must be executed, resulting in a simulation “ensemble.” In turn, these simulation ensembles are

nearly impossible to analyze computationally, due to the large number of parameters involved and the

ill-defined nature of both the analysis process and the finger structures themselves.

Using this problem as a vehicle, the Details-first model allows domain scientists to explore a total

volume of data approaching half a billion multi-dimensional data points through an interactive web-

based application. The contributions of this work are:

• A Details-first, show context, overview last model for the exploration of large-scale spatial data;

• A constructive instantiation of this model, using scientific workflow theory and the problem of

viscous finger exploration; the instantiation constructs methods for identifying and tracking finger

structures over time, for filtering the spatiotemporal context of the computed features, and for

supporting overview summarization;

• An evaluation of this model on a large-scale dataset, including feedback from CFD researchers

on both the instantiation and the underlying theoretical model;

• A discussion of the merits, applicability and limitations of this approach, and of its fit with existing

models.

5.2 Background and Related Work

We begin our discussion by highlighting representative work on detail identification for spatiotem-

poral CFD visualization; we follow with a summary of representative work that uses CFD details to
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visually filter data, and of work in ensemble visualization. For a review of supporting paradigms and

terminology in visualization design, refer back to Chapter 1.2.

5.2.1 Spatial Features as Details

In the context of information theory and CFD, Chen et al. [8] directly relate details to spatial features.

Obermaier and Peikert [121] further note that the concept of feature in scientific visualization is derived

from its definition in computer vision [122], where it describes a salient feature of an image, such as an

edge or a ridge. For example, features in flow visualization include vortices, shock waves, isosurfaces,

separation lines, and statistical features.

5.2.2 Features and Soft-knowledge

Obermeier and Peikert [121] note that in the ideal case, features have a precise mathematical defi-

nition which does not depend on any “tuning” parameters. In contrast, other feature definitions involve

a parameter and “require a visualization system where parameters can be controlled by the user.” [121].

Similarly, Weber and Hauser [121] define features as data subsets of interest to the user, sometimes “due

to prior knowledge.” Last, Chen and Golan [123] introduce “soft information, knowledge, and priors”

in the context of information theory in visualization, to capture known theories, intuition, belief, and

meta-knowledge about a system.

In our work, details denote spatial features. Following Chen and Golan, soft-knowledge features

denote those spatial features whose definition involves one or more parameters controlled by the user.

The “soft” qualifier refers to the fact that this type of knowledge is difficult to capture and represent

computationally.
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Figure 23. The Details-first, show context, overview last model supports the interactive, web-based
exploration of ensemble simulations. From left to right: detail and spatial-context panel comprising

two 2D slices and a 3D flow view; a temporal-context panel comprising a time chart and a finger forest;
overview panel showing a small multiple of Kiviat diagrams. Linked interaction and a computational

back-bone allow users to identify fingers and track their evolution over time, and to analyze the data at
multiple levels of detail.

5.2.3 CFD Visualization

5.2.3.1 Feature Extraction

A common practice in the visual analysis of CFD spatiotemporal relationships is the detection, ex-

traction, and exploration of features of interest over time [124; 125; 126]. Oftentimes, these approaches

require the presence of clearly defined features in isomorphic structures, and are not directly relevant

to our illustrative example: finger structures are soft-knowledge features. Favelier et al. [127] and

Lukasczyk et al. [128] use an adaptation of Shepard’s kernel method [129] to identify such features
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based on concentrations. Both these works rely on user-defined thresholds. In our recent work, neural

networks have been trained to identify shock features based on descriptors such as the strain tensor and

schlieren value at each timestep [10]. In a similar machine learning approach, Maries et al. [9] utilize

K-means clustering to group and label points in areas of interest based on the velocity stress and strain

tensor. Our finger identification method resembles Maries et al.’s [9] approach in that we define features

based on groups of points with similar salt concentrations. However, we threshold the feature groups

based on local-proximity and point concentration.

5.2.3.2 Feature Tracking

Most methods extract soft-knowledge features from each timestep separately and track how they

progress over time [130; 131; 132]. These methods rely on the temporal and/or spatial coherence of

attributes and location of the feature as it moves through time and space. Other methods [133; 134; 89;

135] use a contour-based, merge-tree ideology to enable tracking of regions of interest in combustion

simulations. Our finger tracking solution builds upon the combined success of these spatiotemporal

feature graphs.

5.2.3.3 Feature-based Filtering

CFD data is multivariate and dense, causing visual occlusion even at modest scales. In conse-

quence, the body of work that uses details for filtering flow data is enormous. Here we report only

on the works most relevant to our approach, where the features do not have a pre-defined formula for

extraction. Multiple coordinate views (MCV) have been deployed simultaneously to explore multivari-

ate data and identify potential regions of interest [18]. These approaches harness linking-and-brushing

techniques [136] to select and filter features between the multiple views. Furthermore, many of these



108

approaches follow a focus+context style, where a general view or physical view is brushed to uncover

specific features [137; 136; 11].

However, this approach is difficult in the case of temporal features—users have to mentally integrate

multiple samples across timesteps to understand the feature over time [138]. In our work, the data is

automatically filtered based on the finger structures we extract.

5.2.3.4 Ensemble Visualization

Multiple simulations are often used to quantify and mitigate uncertainty in models that contain

stochastic effects [139]. The resulting multiple simulation runs (collectively termed “a simulation

ensemble”) are often large, multivariate, multi-valued and time-varying, and have been described as

“awkward” [140] and difficult to visualize [141; 142]. Many ensemble visualizations aim to reduce

complexity by presenting basic derived statistics such as the mean and standard deviation of observed

properties [139; 11]. Alone, these techniques can capture ensemble variations between runs and pro-

vide strong indications of overall ensemble behavior. However, unlike our work, they may not capture

more nuanced changes across time-steps or among ensemble members, and do not attempt to display

user-defined spatial features.

Basic visual abstractions such as line charts, quartile charts, and histograms are commonly used

in ensemble visualization to encode statistical parameters [143], as well as reduced spatial aggregate

views [128; 144] to display specific attributes at a specific time and location. To facilitate further ex-

ploration of ensemble members across space and time, these aggregate views are linked to range-based

representations [145]. These representations may include colored overlays, multidimensional scaling
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Figure 24. Workflow decomposition of the finger calculation and exploration process along the main
axes of scientific workflows: data, control, and (human) resource components. An additional column
maps the data elements to the design components corresponding to overview, context and details. The

Resource column only shows the steps where humans are involved; the remaining steps are
computational. Note how the details F travel down the control flow, and up the data and the interface

elements.

projections [146], and various types of tracking graphs [128; 133; 134]. We use similar encodings for

several of the features we compute.

5.3 Model Instantiation

5.3.1 Constructive Example and Workflow Analysis

We illustrate the Details-first approach on a constructive example from the IEEE VIS 2016 Scientific

Visualization Contest [120]. The visualization design (Figure 23) was created in close collaboration with
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a CFD researcher (collaborator JK) with over seven years of experience in turbulent flow computational

research.

5.3.1.1 Data and Tasks

The contest problem is centered on the spatiotemporal exploration of viscous fingers in large-scale

ensemble simulations. One of the datasets provided is a simulation ensemble containing multiple

stochastic simulation runs. Each simulation run in the ensemble captures the diffusion of an infinite

salt source placed at the top of a cylinder filled with pure water. Over time, the higher-density salt

diffuses into the water, forming structures known as viscous fingers. Each simulation is run using a

Finite Pointset Method (FPM) approach with 250,000 points at the lowest resolution, and over 120

timesteps per simulation. In this ensemble, “the behavior of so-called viscous fingers is of primary in-

terest. The six-dimensional nature and size of the data is the main challenge for visualization. Effective

browsing, summarization, and data reduction strategies are needed to obtain meaningful insight into

the data” [120]. The simulation ensemble cannot be analyzed purely computationally, due to the large

number of parameters involved and the ill-defined nature of both the analysis process and the finger

structures themselves.

5.3.1.2 Model Perspective

From a model perspective, the finger structures are defined based on soft-knowledge on the user

side. Finger structures are typically visualized and identified via the use of concentration thresholds

and contours. In this approach, a threshold is specified, and the structures are identified at the interface

where concentrations are greater than or less than the threshold. This approach, which is not an exact

formula for finger structure, is based on the knowledge that a) the features have higher concentration
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than surrounding areas, and that b) the features form blobs that are similar in shape to fingers. In other

words, the finger structures are features that depend on the expert’s soft-knowledge.

The second aspect weighing into the model perspective is that the details are here the finger struc-

tures and their evolution over time. The context is likely the physical volume around the spatial features,

respectively the features’ behavior over time across simulations. The overview, in turn, can be consid-

ered at two levels: 1) the spatial overview of all simulations, respectively 2) a summarization of the

simulations. The spatial overview (a plain upright cylinder with 250K points) poses clutter and render-

ing time challenges, and its overall structure is also familiar to the domain experts. The summarization

overview, in contrast, will likely be encoded by a visual abstraction unfamiliar to a CFD expert.

5.3.1.3 Scientific Workflow Analysis

Given these observations, let us consider the problem from a workflow perspective. In particular,

the finger calculation and exploration process can be decomposed along the main axes of scientific

workflow theory [20]: data, control, and (human) resource components. In scientific workflow theory,

data captures the information that is required during the execution of a workflow; control-flow describes

the set of steps that make up the process and the way in which the thread of execution is routed between

them; resource identifies the people and facilities that actually carry out the process. Figure 24 captures

the data, control and resource elements for this problem, with an additional column mapping the data

elements to the design components corresponding to overview, context and details.

This decomposition captures a number of traits of this workflow. First, the spatial features (i.e.,

details, highlighted in green in Figure 24) are central to the entire process. Simulation summaries are a

function of the finger characteristics, and the ensemble is a function of the simulation summaries, and
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thus also a function of the finger characteristics. In other words, the context is a function of details

(S(F)), and the overview is a function of details (E∼ (S(F))).

Second, a human is involved in all the analysis steps. Because finger structures are identified em-

pirically, human input is necessary at that stage. Human input is necessary when selecting the set of

measures used to characterize the finger structures. A human is further necessary when analyzing a

simulation and extracting the measures that characterize the simulation in terms of its fingers, and when

analyzing the entire ensemble.

In the following sections, we describe briefly the computational and human-input steps in this ex-

ample, along with the visual encodings for each output, and then the resulting visualization design.

5.4 Finger Segmentation and Spatial Context Calculation

The description of the segmentation step captures the close interplay between human input and the

feature identification process. In order to identify features within the data using the definition of a

viscous finger (a contiguous area of “high” concentration), we run a custom clustering algorithm on the

data. Along with determining the finger structures, this process simultaneously allows us to calculate

the spatial context of the fingers.

Because the simulation data is mesh-free, and provided in the form of a seven-dimensional point

cloud (point position, velocity and concentration), the first step was to construct an adjacency network

that captures the local neighborhood of each point. Next, a simple clustering algorithm was run on this

adjacency network, grouping together those points within the network which had a high concentration of

above µ +σ/k, where µ and σ are the mean and standard deviation of concentration for that timestep,

respectively, and k = 7 was an empirical value determined through visual analysis. The clustering
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algorithm iteratively connects the nodes of the graph into clusters, based on the relative position of each

point to its neighbors. For each point, the heuristic polls the cluster to which the neighboring points

belong. If only one neighbor belongs to a cluster, the heuristic adds the point to that cluster. However, if

the neighbors of the current point all belong to a different cluster, the heuristic combines those clusters

and adds the current point to it.

Using the concentration heuristic alone can lead to all clusters near the saline top (which is a constant

source of high saline concentration) being grouped together. To circumvent this artifact, the algorithm

ignores points within 0.5 units of the top of the cylinder. In particular, the CFD expert (JK) noted

that ignoring points immediately near the boundary condition is logical and acceptable because, by any

definition of a finger, a constant source would satisfy the finger concentration condition. These empirical

thresholds for the clustering can be calibrated, however the data will need to be reprocessed to perform

the clustering again with the new thresholds.

The final clusters that result from this algorithm form the viscous fingers for that timestep. The

algorithm assigns each cluster a unique cluster identifier. By keeping track of both cluster identifiers

and point IDs, we can track the points whether or not they appear in one of the clusters as they move

through time.

5.4.1 Finger Visualization

Finger structures and their spatial context are visually represented using 3D & 2D views (Figure 25).

5.4.1.1 3D View and Context

Finger structures can be inspected in a 3D Flow View. Users can select the specific simulation and

timestep to view. The cylindrical 3D view provides the context of the simulation domain, with the saline
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Figure 25. Detail and spatial context. The 3D Flow View (right) provides the spatial context of finger
structures. A vertical slab can be used to analyze finger structures in detail using 2D Views (left). This

snapshot captures the formation of two large finger structures.

layer displayed at the top. Each point color is mapped to the concentration of that point. To provide

further context, we display points considered by the finger clustering algorithm in gray (i.e., points of

higher concentration).

5.4.1.2 Vertical Slab and 2D View

To alleviate cluttering, a 3D vertical slab (cutting plane with depth) is used to carve out a subset

of points for in-depth analysis. The slab points can be analyzed through linked views which show the

concentration heatmap and velocity vector field of the data contained in the slab. We chose the slab

representation, as opposed to a plane, because fingers are not restricted to 2D; the slab can be used to

capture the finger depth along the cylinder cross diameter as well. The linked 2D views aggregate over
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the slab width the average value of the concentration and velocity, and help analyze in detail the finger

concentration and velocity. Fingers may be viewed by moving the slab onto a specific viscous finger,

which in turn allows the user to view the concentration heatmap and velocity vector field of the slab

containing the finger. All viscous fingers are displayed by default. Specific viscous fingers can be also

interactively highlighted in the 3D Flow view through the Finger Forest view described further below.

Selecting a specific node of a tree highlights the finger in color (mapped to concentration).

5.4.2 Finger Properties and Analysis

To locate each cluster in the next timestep, several properties of each cluster are calculated and used,

with input from the domain expert. From the finger segmentation output, this approach produced for

each finger an attribute set which includes:

• the number of points

• the total concentration

• the concentration-weighted average position of points

• the concentration-weighted average velocity of points

• the average magnitude of velocity

• the concentration-weighted average magnitude of velocity

• an axis-aligned bounding box around the feature

The first property is an average position of the points within the cluster, weighted by the concentration

of the points. Second, the average velocity of the points in the cluster is calculated, also weighted

by the concentration of the points. To find the cluster nearest to another in a different time step, the
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centers of concentration of the clusters are used, which are both corrected for the difference in time by

adjusting the coordinates using the average velocity of the each cluster. The output of these algorithms

are multiple clusters of points for each timestep, as well as the information linking these clusters to each

other across multiple timesteps. The results of the data preprocessing are used for feature tracking, as

well as in the simulation summarization.

From a model perspective, notice how extracting the details relies on soft knowledge on the user

side; and how the domain expert input is essential to extracting the measures to characterize the features

and their context.

5.5 Finger Tracking and Temporal Context Calculation

To track the fingers’ evolution across a simulation, we run a two-stage algorithm on the finger

clusters that were identified in the previous step. This process allows us to determine the temporal

context of the finger evolution. This temporal context captures the appearance, dissipation, merging,

and splitting of fingers.

The two-stage algorithm is based on the tracking graph algorithm proposed by Bremer et al. [133].

The algorithm first uses the size, position, concentration, and average velocity of the viscous fingers

to label each cluster in each timestep with an ID, unique to each viscous finger over the course of the

simulation; in other words, fingers within a single timestep can not share an ID, but fingers between

timesteps can. In the second stage, these IDs are used to index the fingers into an adjacency list per

timestep. A grouping procedure is then run on each pair of consecutive timesteps, constructing relation-

ships between the fingers, over time. For each of the M-1 pairs of consecutive timesteps, the algorithm

iterates over the two lists, comparing both finger properties and IDs. If the procedure finds a match
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between both properties and IDs, then the corresponding finger persisted between the timesteps and the

two adjacency list entries for that ID are linked. Similarly, if the procedure finds a match between prop-

erties but not IDs, then the finger in the earlier timestep has merged into the finger in the later timestep,

and the two adjacency list entries are connected. Finally, the procedure treats all unmatched nodes as

either having split or dissipated, depending on whether the unmatched node is present in the later or

prior timestep, respectively.

The trees output by the algorithm capture the evolution of each viscous finger throughout a simula-

tion. We assign each tree the same ID as the viscous finger that is mapped by the tree root. By binding

the finger structures to the trees, we can track the spatial features as they evolve. The linked IDs also

allow us to select a node in the tree interactively and highlight that specific viscous finger in the 3D

Flow view and 2D feature views.

5.5.1 Simulation Analysis

To analyze the finger evolution over time, we turn again to input from the domain expert. We will

use two of the finger properties previously derived, as well as an additional parameter. These properties

are: the number of points in each finger, the average concentration of the points in each finger, and now

also the total number of fingers in the simulation.

5.5.1.1 Temporal Context Visualization and Filtering

The temporal context calculated in this step is shown in a temporal-encoding panel. The panel

contains one horizontal, time-aligned tree for each finger in the simulation, as well as a Time Chart

which can be used to control the temporal context shown.
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Figure 26. Temporal context visualization. A Finger Forest shows one horizontal, time-aligned tree for
each finger in the simulation. Each node in a tree represents one viscous finger as that timestep. Nodes

are colored by the average concentration of the points in the finger, and the radius of each node is
scaled by the number of points in the finger. The trees may merge or split according to the finger

evolution over time. A vertical bar indicates the current timestep.

5.5.1.2 Time Chart View

The Time Chart can be used to select the range of timesteps to be graphed in the Finger Forest.

The number of fingers in each timestep is graphed for all simulations, with the graph for the current

simulation highlighted in color.
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5.5.1.3 Finger Forest View

The Finger Forest (Figure 26) displays a set of horizontal, time-aligned trees that encode the evo-

lution of fingers in a simulation, over the time interval selected in the Time Chart. Each node in a tree

represents one viscous finger as that timestep, similar to the graphs of Bremer et al. [133]. The nodes

are colored by the average concentration of the points in the finger, and the radius of each node is scaled

by the number of points in the finger. The trees may merge or split according to the finger evolution

over time. A vertical bar indicates the current timestep.

In order to minimize edge-crosses, we balance the trees using a heuristic similar to Widanaga-

maachchi et al.’s [134; 89]. The heuristic begins with the fingers in the last timestep and recursively

enumerates and sorts the children of each finger based on the latest timestep in which that finger ap-

pears. For each enumerated finger, the heuristic then splits the nodes into two groups and positions

them above and below the parent so that the oldest fingers are closest to the parent, and the most recent

ones are furthest from the parent.

We note that both rendering a spatial overview and rendering a complete temporal overview would

be impractical in this setting. A spatial overview of the entire information space would be affected by

cluttering and rendering constraints. Similarly, a complete temporal overview would be affected by

rendering constraints (computation time, minimal node size for visibility, minimizing edge crossings).

From a model perspective, filtering by spatial and temporal context helps control visual complexity;

these contexts are derived based on detail calculations.



120

5.5.2 Simulation Summarization and Ensemble Analysis

The last stage of the control-flow in our workflow decomposition (Figure 24) seeks to summarize

the properties of the simulations that form the ensemble. These properties are derived from the finger

properties, with input from the human expert. One of these properties characterizes the simulation as a

whole; five additional properties are computed for each timestep, and averaged over the duration of the

simulation:

• the total number of unique fingers over the entire simulation

• the number of fingers in each timestep

• the average concentration of fingers in each timestep

• the average concentration of points in viscous fingers in each timestep

• the average finger speed (points’ average magnitude of velocity) in each timestep

• the number of merges (not including fingers which disappear) in each timestep

5.5.2.1 Ensemble Analysis

The simulation properties are summarized in a small-multiple overview panel (Figure 27). The

panel comprises one Kiviat diagram [147] per simulation. Kiviats are a graphical method of displaying

multivariate data in the form of a two-dimensional chart, in which three or more quantitative variables

are represented on axes starting from the same point. Unlike most radial plots, which tend to capture

temporal sequences, the Kiviat relative position and angle of the axes is typically uninformative. Kiviat

are equivalent to a parallel coordinates plot (PCP) in polar coordinates, and are seldom effective when
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Figure 27. The Kiviat diagram panel captures similarity between members of the ensemble. The
Kiviats map their axes to six computed properties of each simulation. The color can be mapped to
different properties, for example the total number of fingers of each simulation. Note the similarity

(diagram shape and color) between simulations 1, 3, 6, and 14. Simulation 12 stands out as an outlier.
Simulations 13 and 15 are empty (no content at the 250K resolution).

more than two Kiviats are overlaid [148]. However, due to their closed polygon shape, which is a pre-

attentive feature, Kiviats are particularly effective in small multiple form [113]. The axis ordering is not

an issue, because each Kiviat uses the same axis ordering across the small multiple, resulting in similar

polygon shapes for similar simulations.

Each Kiviat axis is mapped to one of the simulation properties. Hovering over each Kiviat axis

shows how each property was computed. The Kiviats are further color-mapped to a simulation property
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selected by the domain expert, for example the total number of fingers in each simulation. In Figure 23

right, note the similarity (diagram shape and color) between simulations 1, 3, 6, and 14. Simulation 12

stands out as an outlier. Simulations 13 and 15 are empty (no content at the 250K resolution). Through

this small-multiple panel summarization, simulation properties can be compared between ensemble

members. From a model perspective, these properties were also derived from detail calculations.

5.5.3 Design and Implementation

The model instantiation was developed through a parallel prototyping approach, which included 1)

exploring encodings and potential properties, 2) evaluation with a CFC expert and revising properties,

and 3) discarding a variety of measures as well as encodings (including parallel coordinate plots and

scatterplots). The work benefited from repeated evaluation with and feedback from the CFD expert.

Figure 28 shows three iterations through the design process; the final design is shown in Figure 23.

Given that CFD experts were unlikely to be familiar with abstract representations of ensemble simula-

tions, the original top-level design for the application adopted a multiple coordinated views approach.

The approach has been shown to support visual scaffolding [149]—helping domain experts build from

familiar visual representations towards unfamiliar representations. Within this approach, the design then

tried to follow, left-to-right, an Overview-first, Filter, Details-on-Demand paradigm (Figure 28 top and

middle). Multiple cycles with the domain expert made it clear that, linked-views or not, their analysis

always started with the finger structures, i.e., the details. The Details view was also the interface area

where the domain expert spent most time. As in an Overview-first paradigm, subsequent analysis steps

switched repeatedly between details, context, and overview.
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Figure 28. Three snapshots through the design process. Top: Filter/Context-First, Details-Last.
Middle: Overview-First, Zoom and Filter/Context, Details-on-Demand. Bottom: Details-first, Show

Context, Emphasized Overview (through bold, eye-catching colors). The final design (de-emphasized
overview) is shown in Figure 23.
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Following a workflow decomposition along scientific workflow theory (5.3.1.3), a Details-first de-

sign emerged (Figure 28, bottom), which, unsurprisingly, turned out to be successful. A last attempt to

emphasize the overview through an eye-catching color-scheme (Figure 28, bottom, Kiviat panel) still

failed to produce a single expert workflow that would lead with the overview, when evaluated with a

small group of CFD researchers. In the final design (Figure 23), the color scheme for the overview is

de-emphasized, completing the “Details-first, show contest, overview last” model instantiation.

In this instantiation, the detail, context, and overview are tied together through brushing, linking and

filtering. Specific viscous fingers can be highlighted in the 3D Flow View by selecting a node in the

Forest Tree. If the selected viscous finger is from a different timestep than those currently displayed,

the corresponding timestep is loaded into the 3D Flow View, and the selected finger is highlighted.

Selecting a finger from the Finger Forest also updates the 2D views by automatically moving the slab

over the selected finger.

To implement this web-based instantiation, we used the D3 and Three.js JavaScript libraries. The

data provided by the contest website was downloaded as individual simulation packs, at its lower 250K

resolution due to the size limitation of the web-based platform. However, the web-based platform

allowed us to prototype between design iterations quickly and to provide our collaborators (JK) with

access to results (cross-platform, no installation required, etc.). We did not process and visualize every

resolution of the data due to limitations in the amount of data a web-browser can import and render while

still maintaining semi-realtime interaction rates. These limitations are a product of the environment we

chose for development and, potentially, would not be a issue in a higher-performance setting. The
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analyses reported below were performed at interactive rates (2 fps under Google Chrome, Windows 10,

8GB, Intel i7-3537u @ 2.9 GHz).

5.6 Evaluation

As noted in Chapter 1, a model or theory can be acceptably supported by as little as one to a few

concrete examples coming from the experience of one to a few authors [25; 26; 27; 22]. In this work, in

addition to the constructive example, we present as supporting evidence two scenarios performed by our

CFD expert collaborator, using the model instantiation. We further report instantiation feedback from

senior CFD researchers, and theoretical model feedback from the CFD community. The evaluation is

rounded by considering further evidence from reports in the visualization literature.

The scenarios below were completed online through web-based exploration of a total volume of

data approaching half a billion seven-dimensional data points. The two analyses were conducted by

the domain expert using a 18 panel tiled display wall at 21.9 feet by 6.6 feet and 6144 by 2304 pixels;

the application used the full height and 2/3 length of the tiled display. The visualization researchers

took detailed notes. The usage of interface components (detail, context, overview) was noted based on

both the expert’s discourse and the physical motion cues as the expert walked from one interface area to

another. The observed wall-display usage was consistent with the expert’s observed interface usage on

a regular display.

5.6.1 Domain Expert Scenarios

5.6.1.1 Exploring Finger Formation

In a first phase, we used the system repeatedly, over several weeks, to identify, define and refine

the finger structures, and to derive the relevant characteristics used to generate the context and sum-
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marization overview. In this second phase, we investigate viscous finger formation throughout the first

simulation run in the ensemble. After loading the run, the investigation begins with the Detail panel,

where we notice the appearance of several fingers around timestep 25. Moving the 2D slab from side-

to-side, we examine the salt concentration and velocity in detail. A large finger (Figure 25) catches our

interest: it appears larger and with higher concentration than others.

To get a better sense of the spatial and temporal context of this finger snapshot, we rotate the 3D

Flow cylinder to center the finger in the slab, and also examine the temporal context panel. We notice

a downward spike in the finger count between timesteps 20 and 40 in the Time Chart, so we center the

Finger Forest over that range and advance the 3D Flow View to timestep 25.

We suspect that the decrease in fingers resulted from a few of the fingers merging together to form

larger ones, so our analysis moves back from the 3D Viewer to the Finger Forest. As suspected, we

notice that many of the nodes between timestep 20 and 40 have merged to form larger nodes. For

example (Figure 26), fingers 7 and 21 merge into a single larger node at timestep 22, shown close to the

top of the view.

Another spike in the node count is around timestep 95, so we change the range of the Finger Forest

to center around that timestep. We again notice that many of the smaller fingers begin to merge into one

into one much larger finger by timestep 100. However, we also notice that many smaller fingers begin

to form close to timestep 105, which appears to have the most new fingers. Sure enough, we observe

in the 3D Flow View that while many of the fingers began to merge at the bottom of the cylinder, many

new fingers began to form near the salt source.
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5.6.1.2 Similar Simulation Analysis

In the second study we investigate two similar simulation runs. Again, we use the application URL to

load the first run and visit the detail finger structures. Noticing low finger formation between timesteps

40 and 60, we center the context Finger Forest using the Time Chart. We observe that timestep 44

appears to have the highest finger formation in the selected range, so we next load that timestep into the

3D Flow View. We hypothesize that the decrease in finger count was caused by large fingers breaking

apart to spawn smaller structures. Sure enough, the 3D Flow View displays larger fingers near the edges

of the cylinder, with smaller fingers above and below. The Finger Forest further validates this inference,

showing us that the majority of the structures in the range have both average high point counts and high

concentrations.

Intuitively, we suspect that simulations with similar global properties might exhibit similar merge

behavior, so we move to the diagrams in the overview panel. We begin to investigate the other simula-

tions by hovering over the individual axes of the first Kiviat diagram. Starting at 12 o’clock and rotating

clockwise, we observe the six computed summary statistics for average finger velocity, average finger

density, total finger, fingers per timestep, merge factor, dissipation factor, average finger concentration,

and average finger point concentration, respectively. The interface allows us to change the colormap of

the diagrams based on one of the derived statistics. Changing the map to “Merge Factor,” we observe

the color and shape of runs 1, 3, 6 and 14 are similar (Figure 27), indicating that their runs are similar

in regards to their derived values.

We decide to investigate simulation 14 in more detail, so we select its Kiviat diagram to load the

data into the other views. To our surprise, we notice that the merge tree of run 14 differs from the
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previous run, over a similar range. Moving back to the 3D Flow View, we notice significantly more

finger structures than in run 1, many of which are smaller in size and still forming at the top of the

cylinder. These differences indicate that despite having similar global properties, the fingers of run 14

and run 1 do not follow the same structural formation and evolution.

5.6.2 Domain Expert Feedback

5.6.2.1 Instantiation Expert Feedback

We have collected feedback on this instantiation from two CFD researchers who worked directly

with the online system, and two small groups of researchers (5 to 6 participants) who were given demon-

strations of the work. One of the groups specialized in advanced computing at a national research labo-

ratory, and included two CFD researchers; the second group consisted of three domain experts and two

visualization researchers, as part of the SciVis Contest 2016 [120]. The feedback, reported below, was

enthusiastic.

The first CFD researcher (collaborator JK) exclaimed repeatedly “I want this!” (for exploring super-

sonic and hypersonic flows and turbulent combustion), in particular with respect to the Details-first and

temporal context exploration capabilities of the system. He noted that “Oftentimes in CFD we are de-

tails first because we are already familiar with the simulation and wish to investigate specific features in

the data” and then: “When I say details first I mean that we look at specific regions or quantities. We are

often interested in specific things happening at specific locations or specific times. A [summarization]

overview without physical context lacks specificity and therefore is hard to extract meaning from, so we

often perform [such] overviews at a later stage.” “It is often very impractical to create an overview of

the data as well. Seeing many, or all variables at many (or even some) times is extremely costly in real
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world datasets – for example, 10.5TB.” The expert noted that “This type of visualization can be used to

investigate underlying physics of the temporal evolution of features of interest. It has applications to a

wide range of CFD problems, notably vortex pairing and turbulent mixing.”

The second CFD researcher is a senior investigator who studies computationally turbulence in

the aerodynamics of aircraft. His research involves running multiple dynamic simulations with soft-

knowledge spatial features. He noted that standard CFD visualization systems (Paraview [150] or

VisIt [151]) are frequently employed in a typical CFD workflow to identify simple areas of interest

(“Details-first”). Sometimes those features are then used offline to summarize multiple outcomes. How-

ever, that summarization is usually in the context of simulations that can be “easily summarized in terms

of mean and standard deviation values while discarding lower-level features.” In contrast, our instantia-

tion “enabled analysis at multiple scales,” allowed repeated refining of soft-knowledge features “within

their original spatial setting” and the fluid reuse of those “spatially-derived characteristics to summarize

multiple outcomes,” well beyond state-of-the-art capabilities. The researcher was keen to have a similar

system for his work.

Similar supportive feedback was collected from the larger groups. CFD experts were particularly

excited about the smooth coupling of spatial feature characteristics to the temporal context (“extremely

intuitive”) and to the summarized overview. The spatial-feature based summarization was “more pow-

erful than anything else [they] had seen.” As in the reports above, group members spent most time

operating in the finger detail space, where they were “immediately able to extract meaning to see the

formation of fingers,” and used the temporal context and overview mainly for navigation in the finger

space. They expressed repeatedly interest in similar analysis tools for their research projects, which also
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study features based on soft-knowledge (“[the feature is] hard to define, but if you see it, you recog-

nize it immediately”). Last, we quote feedback from the SciVis Contest contribution [152]: “extremely

impressive due to the very well thought-out visualization design;” “clearly superior in visualization de-

sign,” “very good and well-crafted,” “in particular, the presentation of the ensemble [...], as well as the

layout and linking of all views to facilitate interactive exploration, by far exceed all other submissions.”

This feedback attests to the value of our instantiation as a powerful tool for CFD analysis.

5.6.2.2 Theoretical Model Feedback

Our theoretical model sparked equal interest in the CFD community. After clarifying the visual-

ization terminology, our CFD collaborator (JK) engaged in numerous background readings and con-

versations with other domain experts. Particularly intrigued by the “overview” concept, he set out to

find examples of overview usage in standard CFD visual workflows, as employed by a group of nine

CFD researchers: two doctoral researchers who use routinely Paraview, an industry researcher and two

doctoral researchers who use routinely VisIt, one doctoral researcher who uses routinely ANSYS [153],

and a postdoctoral researcher and two senior researchers who are familiar with a variety of platforms.

Through short discussions and observations, he sought to establish what software they use, what kind

of plots they make, how do they use them, what is the first thing they do, and where, if at all, they use

spatial or summarization overviews. He found out that no expert used spatial overviews in their every-

day work. Summarization overviews were used, when necessary, last. He then compacted his findings

in a common workflow description, best described as: 1) Details first (narrow down what is present);

2) Create filters, expressions, statistics within context; 3) Create a summarization overview of features

(describe behavior of features as a whole over entire dataset); 4) Find something of interest then return
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to 1) Details and Repeat. In the group’s assessment, much of this workflow stems from the fact that,

very similar to the finger instantiation, a number of the physical phenomena they are investigating do

not have concrete definitions. These CFD phenomena (e.g., turbulence or reattachment length) typi-

cally require a skilled user in order to be visually identified, separated, and investigated. As a result, it

becomes difficult to draw conclusions from an overview first, when they “do not know exactly what is

present in the data.”

5.7 Discussion

5.7.1 Model Summary

This work is not a general critique of the “Overview first” mantra, but of its sometimes inappro-

priate application, without careful consideration of user and data workflows. At the same time, while

instantiations of our alternative model are particularly common in flow visualization, they are in no way

specific to the CFD domain: “details-first” approaches also exist, anecdotally, in biology [154] and in

journalism [155].

The alternative “Details-first, show context, overview last” model we advocate supports situations

where the main user activities are oriented along (spatial) feature analysis. The model specifically ap-

plies to situations where the features are defined through soft-knowledge on the user side, and those

features drive both the relevant context for the exploration process and the calculation of the summa-

rization overview.

From a wider analytical perspective, the model applies to domain expert workflows that start with

an in-depth exploration of one model or simulation, then seek to extrapolate or generalize the findings

to a collection of models. In such workflows, including in forensic analysis, users may wish to start with
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the features of interest, in particular when those features are ill-defined and need repeated refinement.

The relevance of user-driven refinement in our model is in agreement with Doleisch et al.’s observation:

“for interactive analysis, in many cases, the question of what actually is (or is not) considered to be a

feature refers back to the user: depending on what parts of the data the user (at an instance of time) is

most interested in, features are specified accordingly.” [18]. Our model enhances this observation and

frames it in a “details-first” paradigm.

Formally, our model further emphasizes the importance of providing the spatial and temporal context

of features when they have an inherent spatial structure (3D or Cartesian coordinates). This model aspect

is also in agreement with observations in the literature: “[Feature localization] is usually provided in

the context of simulation data, that has some spatial context.” [18], and with feedback from our CFD

collaborator (JK: “CFD/ensemble features are not meaningful outside of their context.”).

Our model instantiation shows how a computational back-end can help identify and track features

over space and time, and use those details to automatically filter the spatial and the temporal context. The

“show contest” step of the model has the triple benefit of 1) helping anchor the features in space and time;

2) reducing visual clutter by controlling complexity of the visualization; and 3) improving rendering

times for large scale datasets, in particular in online, platform-agnostic, web-based environments.

Last, this model extends the use of spatial details into the calculation of summarization overviews.

In our model instantiation, extracted spatial features and calculations over those features are used to

summarize and compare simulation ensembles.
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5.7.2 Relationship to Other Models and Theories

Similar to the van Ham and Perer approach [7], the Details-first model signals a set of limitations of

the Shneiderman mantra [6]. In contrast to the van Ham and Perer mantra, the present model emphasizes

the importance of Details (not Search for a particular item) for a class of problems, and the relevance

of user input in specifying and refining those details. In a further departure from the van Ham and

Perer approach, where overviews are circumvented as being both impractical and not relevant under

specific circumstances, our model handles situations where summarization overviews are necessary. In

particular, our model extends and provides a frame for the use of details into the calculation of such

overviews.

The Details-first model further relates to Chen et al.’s Information Theory framework [8]. Our

model encompasses their anecdotal observation that, in particular in flow visualization, the Shneiderman

mantra can be suboptimal when the user is already intimately familiar with the overview. Beyond

agreeing with their observation, this work highlights: 1) the tight connection that exists between the user

“knowledge in the head” [15] and the very definition of spatial features; and 2) how those details can

propagate into the construction of filtering operations, and then into the construction of summarization

overviews.

The model’s “overview last” aspect may also be related to the principle of visual scaffolding [149],

captured by the domain experts’ typical resistance to unfamiliar visual encodings.

5.8 Conclusion

In conclusion, this work introduces and documents an alternative “Details-first, show context,

overview last” approach to visualization design. The approach supports situations where the user ac-
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tivities are oriented along (spatial) feature analysis. This work further highlights the tight connection

that can exist between user input and the definition of spatial features, and then how those details can

propagate into the construction of filtering operations, and then into the construction of overviews. A

model instantiation demonstrates the effectiveness of this approach with an online web-based explo-

ration of a total volume of data approaching half a billion seven-dimensional data points. The approach

is supported by endorsements from CFD domain experts.



CHAPTER 6

DISCUSSION AND CONCLUSION

6.1 Discussion

This dissertation first investigates the use of two well-established paradigms (Overview-first and

Search-first) in the context of developing design strategies for S&E spatial data problems. Across three

S&E domains, this work demonstrates how the Overview-first and Search-first paradigms can facilitate

analysis by directly applying a paradigm to the problem at hand (Chapter 2), combining two or more of

the paradigms together to form a hybrid-design approach (Chapter 3), or abstracting the spatial data to

work within these known design space of a paradigm (Chapter 4).

However, overviews (that are not used merely as context) are conspicuously rare in the scientific

visualization literature. This observation is not surprising. In 2016, Chen et al. [8] were the first to

note that in “many scenarios, we often observe that an experienced viewer may find [overview first

and details on demand] frustrating, as the viewer knows exactly where the interesting part of a detailed

representation is. For example, in flow simulation, scientists work on the same problem for months.”

Their anecdotal observation is reflected in a vast number of additional works in scientific visualization

that support explicitly spatial feature exploration, and display the rest of the information primarily for

context (e.g., [18; 137; 136; 11; 156; 157; 158; 159]).

In these situations, the main expert activities are centered around the analysis of spatial features that

are defined through soft-knowledge on the user side. As of result of the imprecise nature of the features
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they wish to analyze, these details of interest can neither be searched against or aggregated prior the

expert’s specification; in short, neither the Overview-first nor Search-first paradigms can be used to

develop design strategies when user-specified details are the primary component driving the analysis.

Therefore, in a fourth S&E visualization collaboration involving spatial data (Chapter 5), we deviate

from the common notion that analysis should start with some form of an overview or a search operation

and present an alternative model – Details-first – that establishes user-specified details as the primary

component driving the analysis.

Overall, while we have demonstrated the success of these design strategies across four interdis-

ciplinary collaborations involving spatial data, these four corroborating examples of success do not

constitute proof that our presented strategies can be extended to work for all other spatial data problems.

However, this shortcoming was not unforeseen as it is related to the tight coupling between design strate-

gies and the domain characterizations of spatial data problems. Karl Popper, a 20th-century scientific

theorist, best summarized the problem of anecdotal evidence when he stated “it is impossible to prove a

methodology on cited experience alone” [160].

Instead, this dissertation suggests that S&E collaborations involving spatial data be approached by

first identifying commonalities that exist among successful design strategies. As we have seen through-

out this work, one potential approach would be to rely on scientific workflow theory to provide insight

into the ethnographic differences between the various problem spaces. This decomposition can lead to

design insights such as how multi-views can be utilized to facilitate multiple user workflows. In sum-

mary, the adoption of a particular design strategy in these collaborations should take into account the
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benefits, limitations, and possible co-existence of each approach, with careful consideration of the data,

knowledge base, and workflows of the collaborating experts.

6.2 Conclusion

This dissertation investigates three challenges behind developing design strategies for spatial data

problems in S&E collaborations. These challenges include teasing out the underlying requirements

of the domain scientist when developing design strategies, evaluating their success, and extrapolating

generalizable knowledge from the strategies of successful collaborations. Specifically, this dissertation

examines how the data and task abstractions, workflow processes, and user expertise affect the decisions

behind the design strategies of four S&E spatial data problems. In three of these collaborations, we in-

vestigate the use of the Overview-first and Search-first paradigms in the context of spatial data problems

and whether they can be appropriated to fit within the target user workflows. In a fourth collaboration

where an overview of the data is neither relevant nor practical, we introduce an alternative strategy

that establishes user-specified details as the primary component driving the analysis. This dissertation

demonstrates the merits of the deployed design strategies through the development and deployment of

four integrated visualization applications and evaluates their successes through case studies (Chapter

2,3 and 5), statistical analysis (Chapter 4), and expert feedback (Chapter 2-5).

Specifically, the contributions of this work include:

• descriptions of the tasks and data associated with specific problems related to spectroscopic anal-

ysis of galaxies in observational astronomy, functional mutations in protein families in molecular

biology, lymph node metastasis in radiation oncology, and viscous finger evolution in mechanical
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engineering. These four analyses characterized the spatial data problems of specific situations

and identified the workflows of the experts working to solve them. Through the analysis of each

domain problem, this dissertation demonstrated the complexities involved with interdisciplinary

research and the necessity of working directly with domain scientists and their data. The resulting

strategies demonstrate how the domain characterizations can be used as a basis on which spatial

data design strategies are built and serve as a reference for researchers who are working on en-

deavors which are similarly characterized to the four specific domain situations described in this

dissertation;

• several novel visual representations and techniques for spatial data. Throughout the collaborations

in observational astronomy (Chapter 2), molecular biology (Chapter 3), and radiation oncology

(Chapter 4), this dissertation presented novel visual abstractions for spatial data that were mo-

tivated by the established Overview-first and Search-first strategies. In each collaboration, this

work demonstrated how these two strategies could be used to facilitate spatial data analysis in the

experts’ workflows to tackle their specific research problems within each domain situation. In our

collaboration with observational astronomers working on spectroscopic analysis (Chapter 2), we

demonstrated how combining the query-based, Search-first approach with a novel, pixel-based

representation can assist observational astronomers in identifying trends in large collections of

spatial observations. Next, this dissertation demonstrated how the Overview-first and Search-first

paradigms could be combined to create a hybrid design strategy by incorporating both a 3D struc-

ture representation of a target protein and a novel visual abstraction of its closest family members

to accommodate both molecular biology and bioinformatics workflows (Chapter 3). Finally, this
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work described a strategy for abstracting the structural information of the head and neck lymph

node regions to build a spatial measure that captures similarity within a cohort of cancer patients,

and how the resulting similarity measure can be used with the Search-first paradigm to rank and

query for similar patients based on their spatial correlates;

• a novel alternative design approach, Details-first, to the Overview-first and Search-first design

paradigms. Based on a collaboration in mechanical engineering (Chapter 5), we instantiated this

new approach for situations where providing the user with an overview is either impractical or

infeasible and demonstrated that the workflows in these situations often rely on the experts’ soft

knowledge of their data. In these situations, we showed how the resulting design strategies can be

centered around features (details) in situations where providing an overview of the data is neither

relevant nor practical to the user; if necessary, this awareness could be presented at the end stages

of the analysis in the form of summary statistics;

• the design, implementation, deployment, and evaluations of four integrated systems. We devel-

oped complete, end-to-end solutions that include novel visual representations and techniques for

spatial data problems. Each of these collaborations was performed in close collaboration with do-

main experts and detailed how their expertise was invaluable when developing these the strategies

behind the presented successes. These collaborations spanned the design process from domain

characterization to evaluation using Munzner’s nested model of visual design and evaluation [22].

Finally, we demonstrated how the three paradigms – Overview-first, Search-first, and Details-first

– can integrated into the experts’ workflows to solve real-world problems in four different spatial

data domains;
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• a discussion of the merits, applicability, and limitations of the design strategies as they were

applied to each of the domain problems. At the end of each chapter, we reflected on the success-

fulness of our designs in the context of the spatial data problem the collaboration aimed to solve.

In doing so, we detailed how our designs helped lessen the problems of the expert, potential future

applications that our strategies might benefit, and areas in our design that require further research.

In terms of limitations, the different paradigms used in the strategies presented in this work have

complementary strengths and limitations. However, because the limitations of overview-based ap-

proaches has been well documented outside of this work [7; 28; 12], we will focus primarily on the

Details-first model.

First and foremost, the presented Details-first model may not be necessary when the analysis can be

conveniently broken into two separate processes; for example, feature detection and simple statistical

summarization. This model also does not apply: to situations where overviews are irrelevant (use Search

instead, or default to Details-first, no overview); when user prior knowledge is not relevant, when global

changes are likely, or when each search starts from scratch (use Overview-first instead); or when the

features are well-defined and computable, or not at the very core of the user activity (a variety of other

approaches apply, including pure computation).

Next, although multi-views have the potential to relieve workflow-related design constraints, we

note that the model principle still applies, in the designer-assigned color scheme, size and location of

overviews and context views in the overall design. However, extensions of this paradigm to single-view,

reduced screen space settings, may be particularly limiting, considering the complementary benefits of
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summarization overviews. A step further, the process of overview summarization itself may miss an

unexpected global change.

Finally, this dissertation, by itself, does not fully capture the importance of the layout strategies in

designing visualization applications and the interplay shared with the different interrelated processes

within the experts’ workflows. While we experimented with different layout strategies when instan-

tiating the Details-first approach (Chapter 5) – and to a small extent, in the design of the FixingTIM

interface (Chapter 3) – visual layout strategies were not explicitly addressed in the design of the As-

troshelf framework (Chapter 2) and spatial neighborhood method (Chapter 4).

In terms of future work, our observational evaluation in much of this dissertation draws on a left-

to-right, multi-view instantiation, designed and evaluated with small groups of experts, several from the

same labs. Such multi-view instantiations take advantage of the complementarity of multiple represen-

tations, and also have the potential to facilitate multiple user workflows [149; 113]. In practice, we have

not observed domain expert analysis workflows that did not lead with the details view. A formal user

study to analyze the likelihood of different mantras would be interesting, although beyond the scope of

this chapter. Any such study should take particular care in the participant selection, given the central

soft-knowledge aspects of our model, and the limited availability of domain experts.

Additionally, this dissertation only briefly examined strategies for situations where the experts’

workflows contain a mixture of spatial and non-spatial data attributes. Therefore, one avenue of po-

tential future research would be to determine how these data integration efforts affect the design choices

of the collaboration; for example, adding additional non-spatial features (e.g., age, T-Category, etc.) to

the spatial measure presented in Chapter 4. Additionally, this work touched upon the influence of a
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workflow decomposition using scientific workflow theory in regards to the layout strategy used in the

Detail-first approach (Chapter 5). The anecdotal evidence presented in the instantiation of this approach

suggests that the layout design, not just the visual encodings, can play an important role in the success of

a design strategy. The role of layout in design strategies can be further expanded to examine its interplay

with experts’ workflows.

In conclusion, this dissertation examines design strategies for visualization in the context of four

problem-driven, spatial data collaborations in S&E domains. Using these collaborations as a vehicle

to ground our research, we demonstrated the benefit of visual design strategies for solving real-world,

spatial data problems through the development, implementation, deployment, and evaluation of four

end-to-end visualization applications. We hope that these analyses may also serve as a starting point for

researchers who are interested in or are currently working with similar spatial data problems as those

described in this dissertation.
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Appendix A

SUPPLEMENTAL MATERIAL LINKS

The following are the links to various videos detailing the applications found in this dissertation:

Two videos of the Astroshelf application in Chapter 2:

IEEE LDAV 2012 Paper Teaser: http://visualizlab.org/results/videos/Luciani-2012-PAZ.mp4

IEEE TVCG 2014 Supplement: https://vimeo.com/user97518538/review/331163268/335eed5e10

A video showcasing the FixingTIM application in Chapter 3:

BMC Proceedings 2014 Supplement: https://vimeo.com/84635382

A video describing the Details-first model instantiation in Chapter 5:

IEEE SciVis 2018 Supplement: https://www.youtube.com/watch?v=q- KM oRgxk&feature=youtu.be



145

Appendix B

PERMISSION FOR REUSE

The following presents written permission from the journal’s/publisher’s website outlining their

copyright policies.

BMC Proceedings

Luciani, T., Wenskovitch, J., Chen, K., Koes, D., Travers, T., and Marai, G.: FixingTIM: Interac-

tive Exploration of Sequence and Structural Data to Identify Functional Mutations in Protein Families.

BMC Proc., 2014.
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Appendix B (Continued)

IEEE

Luciani, T., Cherinka, B., Oliphant, D., Myers, S., Wood-Vasey, W.M. Labrinidis, A., and Marai, G.E.:

Large-Scale Overlays and Trends: Visually Mining, Panning and Zooming the Observable Universe.

IEEE Trans. Vis. Comp. Graph. (TVCG), pages 1-14, 2014. c© IEEE. Reprinted, with permission, from

authors.

Luciani, T., Burks, A., Sugiyama, C., Komperda, J., and Marai, G.E.: Details-first, Show Context,

Overview last: Supporting Exploration of Viscous Fingers in Large-Scale Ensemble Simulations. IEEE Trans. Vis. Comp. Graph. (TVCG),

pages 1225–1235, 2018. c© IEEE. Reprinted, with permission, from authors.
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testing and feedback. Further acknowledgments to Noel Gorelick and Jeremy Brewer, for generously

sharing their Google Sky development experience.
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Chapter 5: Details-First, Show Context, Overview Last: Supporting Exploration of Viscous Fingers

in Large-Scale Ensemble Simulations
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143. T. Höllt, A. Magdy, P. Zhan, G. Chen, G. Gopalakrishnan, v. Hoteit, C. D. Hansen, and M. Had-
wiger. Ovis: A Framework for Visual Analysis of Ocean Forecast Ensembles. IEEE
Trans. Vis. Comp. Graph. (TVCG), pp. 1114–1126, 2014.

144. I. Demir, C. Dick, and R. Westermann. Multi-Charts for Comparative 3D Ensemble Visualization.
IEEE Trans. Vis. Comp. Graph. (TVCG), pp. 2694–2703, 2014.

145. L. Hao, C. Healey, and S. A. Bass. Effective Visualization of Temporal Ensembles. IEEE Trans.
Vis. Comp. Graph. (TVCG), pp. 787–796, 2015.

146. S. Biswas, K. W. Bowyer, and P. J. Flynn. Multidimensional Scaling for Matching Low-Resolution
Face Images. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI), pp. 2019–2030, 2012.

147. K. W. Kolence and P. J. Kiviat. Software Unit Profiles & Kiviat Figures. SIGMETRICS Perform.
Eval. Rev., pp. 2–12, 1973.

148. A. Maries, N. Mays, M. O. Hunt, K. Wong, W. Layton, G. Marai, et al. Grace: A Visual Com-
parison framework for integrated spatial and non-spatial geriatric data. IEEE Trans. Vis.
Comp. Graph. (TVCG), pp. 2916–2925, 2013.

149. G. Marai. Visual Scaffolding in Integrated Spatial and Nonspatial Visual Analysis. In Proc. 6th
Int. EuroVis Workshop Vis. Anal., pp. 1–5. 2015.

150. J. Ahrens, B. Geveci, and C. Law. Paraview: An end-user tool for large data visualization. Visual-
ization Handbook, 2005.



161

151. H. Childs, E. Brugger, B. Whitlock, J. Meredith, S. Ahern, D. Pugmire, et al. VisIt: An End-User
Tool For Visualizing and Analyzing Very Large Data. In High Performance Visualization –
Enabling Extreme-Scale Scientific Insight, pp. 357–372. Chapman and Hall (CRC), 2012.

152. A. Burks, C. Sugiyama, T. Luciani, J. Komperda, and G. Marai. Interactive Exploration and
Tracking of Viscous Fingers in Large-Scale Ensemble Simulations. IEEE Scientific Visu-
alization Contest 2016, 2016.

153. J. A. Swanson and G. DeSalvo. ANSYS-Engineering analysis system user’s manual. Swanson
Analysis Systems, Inc., Elizabeth, Pa, 1989.

154. M. Chapman, M. Lawrence, J. Keats, K. Cibulskis, C. Sougnez, et al. Initial genome sequencing
and analysis of multiple myeloma. Nature, pp. 467–72, 2011.

155. N. H. Riche, C. Hurter, N. Diakopoulos, and S. Carpendale. Data-driven Storytelling. CRC Press,
2018.

156. A. Sherbondy, D. Akers, R. Mackenzie, R. Dougherty, and B. Wandell. Exploring connectivity of
the brain’s white matter with dynamic queries. IEEE Trans. Vis. Comp. Graph. (TVCG),
pp. 419–430, 2005.

157. R. Jianu, C. Demiralp, and D. Laidlaw. Exploring 3D DTI Fiber Tracts with Linked 2D Represen-
tations. IEEE Trans. Vis. Comp. Graph. (TVCG), pp. 1449–1456, 2009.

158. S. Zhang, c. Demiralp, and D. H. Laidlaw. Visualizing Diffusion Tensor MR Images Using Stream-
tubes and Streamsurfaces. IEEE Trans. Vis. Comp. Graph. (TVCG), pp. 454–462, 2003.

159. J. Caban, A. Joshi, and P. Rheingans. Texture-based feature tracking for effective time-varying
data visualization. IEEE Trans. Vis. Comp. Graph. (TVCG), pp. 1472–1479, 2007.

160. B. Gower. Scientific Method: A Historical and Philosophical Introduction. Taylor & Francis,
2012.



VITA

Timothy Basil Luciani
tlucia2@uic.edu

Education
University of Illinois at Chicago, Electronic Visualization Laboratory Chicago, IL
PH.D.IN COMPUTER SCIENCE, EMPH. DATA VISUALIZATION Expected May/June 2019
• Thesis topic: Problem-Driven Design Strategies for Scientific Data Visualization
• Cumulative GPA: 3.9

Dietrich School of Arts and Sciences, University of Pittsburgh Pittsburgh, PA
PH.D.IN COMPUTER SCIENCE January 2012 - April 2014
• Focus on real-time GPGPU rendering and large-scale data for

interdisciplinary visualizations and applications
• Transferred to University of Illinois at Chicago
• Cumulative GPA: 3.688

Dietrich School of Arts and Sciences, University of Pittsburgh Pittsburgh, PA
B.S. IN COMPUTER SCIENCE August 2008 - December 2011
• Emphasis: Mathematics, Physics
• Graduated Cum Laude
• Cumulative GPA: 3.5 (in major)

Experience
University of Illinois at Chicago, Electronic Visualization Lab Chicago, IL
GRADUATE RESEARCH ASSISTANT August 2017 - Current
• Investigated patient cohort similarity based on spatial descriptors.

National Science Foundation Chicago, IL
GRADUATE RESEARCH FELLOW August 2015 - August 2017
• Continued research in large-scale data visualization for interdisciplinary domains.

General Dynamics - Mission Systems | Viz Pittsburgh, PA
LEVEL 2 SOFTWARE ENGINEER July 2014 - May 2017
• Co-authored software for emergency response coordinators to

manage resources in real-time in both times of crisis and routine operation
• Architected the next-generation, in-house charting and visualization framework.

National Science Foundation Pittsburgh, PA
GRADUATE RESEARCH FELLOW January 2012 - July 2014
• Continued research in large-scale data visualization for interdisciplinary domains.

University of Pittsburgh Pittsburgh, PA
UNDERGRADUATE RESEARCH ASSISTANT May 2011 - December 2011
• Worked with researchers in Astronomy and Physics disciplines to develop tools

for visualizing Large-scale data
• Worked with new web-technologies such as WebGL and HTML5
• Built upon existing code bases using CUDA/OpenCL to create faster visualizations.
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Honors & Awards
2017 IEEE Visual Analytics Science and Technology (VAST) Challenge, MC2 , IEEE Vis Conference Phoenix, AZ
2017 IEEE Visual Analytics Science and Technology (VAST) Challenge, MC3 , IEEE Vis Conference Phoenix, AZ
2016 Student Volunteer of the Year Award, IEEE Vis Conference Baltimore, MD
2016 Honorable Mention, IEEE Vis Conference: VGTC VPG Data Visualization Contest Baltimore, MD
2016 Cover art of JIST January/February 2016 issue, Journal of Imaging Science and Technology
2013 Data Contest Visualization Award, IEEE BioVis Conference Data Contest Atlanta, GA
2012 Best-Paper Runner-Up, IEEE Large-Scale Data Analysis and Visualization Conference Seattle, WA
2012 National Science Foundation Graduate Research Fellowship Program Recipient, NSF
2012 Winner, University of Pittsburgh, CS Dept. Digital Media Contest Pittsburgh, PA

Publications

BOOK CHAPTERS

B3
M. Monfort, T. Luciani, J. Komperda, B. Ziebart, F. Mashayek, G.E. Marai, “Deep learning features of interest from
turbulent combustion tensor fields”, Modeling, Analysis, and Visualization of Anisotropy. 2017.

B2
G. E. Marai, T. Luciani, A. Maries, S.L. Yilmaz, M.B. Nik, “Visual Descriptors for Dense Tensor Fields in Computational
Turbulent Combustion: A Case Study”, Journal of Imaging Science and Technology, vol 60, no 1, Jan. 1, 2016

B1
A. Maries, T. Luciani, P.H. Pisciuneri, M.B. Nik, S.L. Yilmaz, P. Givi, G.E. Marai, “A Clustering Method for Identifying
Regions of Interest in Turbulent Combustion Tensor Fields”, Visualization and Processing of Higher Order Descriptors
for Multi-Valued Data. Editors: Ingrid Hotz and Thomas Schultz, Springer, pp. 1–18, 2015.

JOURNAL PUBLICATIONS

J5
T. Luciani, B. Elgohari, H. Elhalawani, G. Canahuate, D.M. Vock, C.D. Fuller, G.E. Marai, “A Spatial Neighborhood Method
for Computing Lymph Node Carcinoma Similarity In Precision Medicines”, IEEE Transactions on Biomedical
Engineering. Under Review.

J4
T. Luciani, A. Burks, C. Sugiyama, J. Komperda, G.E. Marai, “Details-First, Show Context, Overview Last: Supporting
Exploration of Viscous Fingers in Large-Scale Ensemble Simulations”, IEEE Transactions on Visualization and Computer
Graphics, vol. 25, no. 01, pp. 1–11, Jan. 2019.

J3
C. Ma, T. Luciani, A. Terebus, J. Liang, and G. E. Marai. “PRODIGEN: Visualizing the Probability Landscape of Stochastic
Gene Regulatory Networks in State and Time Space.” BMC Bioinformatics. Feb. 2017. (Presented at BioVis 2016)

J2
T. Luciani, J. Wenskovitch, K. Chen, D. Koes, T. Travers, G.E. Marai. “FixingTIM: FixingTIM: Interactive Exploration of
Sequence and Structural Data to Identify Functional Mutations in Protein Families” BMC Bioinformatics, Aug. 2014.

J1
T. Luciani, B. Cherinka, D. Oliphant, S. Myers, W.M. Wood-Vasey, A. Labrinidis, G.E. Marai. “Large-Scale Overlays and
Trends: Visually Mining, Panning and Zooming the Observable Universe”, IEEE Transactions on Visualization and
Computer Graphics, pp. 1-12, July 2014.

CONFERENCE PUBLICATIONS

C6
A. Wentzel, P. Hanula, T. Luciani, B. Elgohari, H. Elhalawani, G. Canahuate, D. Vock, C.D. Fuller, G.E. Marai.
“Cohort-based T-SSIM Visual Computing for Radiation Therapy Prediction and Exploration”. IEEE Scientific
Visualization Conference, Vancouver, BC, CA, Oct. 2019. Under Review

C5
T. Luciani, A. Burks, C. Sugiyama, J. Komperda, G.E. Marai, “Details-First, Show Context, Overview Last: Supporting
Exploration of Viscous Fingers in Large-Scale Ensemble Simulations”, IEEE Transactions on Visualization and Computer
Graphics, pp. 1–10, Oct. 2018. (cross-listed as J5 above)

C5
C. Ma, T. Luciani, A. Terebus, J. Liang, and G. E. Marai. “PRODIGEN: Visualizing the Probability Landscape of Stochastic
Gene Regulatory Networks in State and Time Space,” pp 1-13, IEEE BioVis 2016. (cross-listed as J3 above)

C4
D. McNamara, J. Tapia, C. Ma, T. Luciani, A. Burks, J. Trelles, and G. E. Marai. “Spatial Analysis of Employee Safety Using
Organizable Event Quiltmaps”. In Proceedings of the IEEE VIS 2016 Workshop on Temporal and Sequential Event
Analysis, Baltimore, MD, USA, Oct. 2016.
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C3
J. Wenskovitch, T. Luciani, K. Chen, G.E. Marai. “FixingTIM: Identifying Functional Mutations in Protein Families through
the Interactive Exploration of Sequence and Structural Data”, IEEE BioVis 2013 Data Competition, pp. 1–4, Oct. 2013.
Data Contest Visualization Award. (Invited to J2).

C2
T. Luciani, S. Myers, B. Sun, B. Cherinka, W.M. Wood-Vasey, A. Labrinidis, G.E. Marai. “Panning and Zooming the
Observable Universe with Prefix-Matching Indices and Pixel-Based Overlays”, IEEE Large-scale Data Analysis and
Visualization Symposium, pp. 1-8, Oct. 2012. Best-Paper Runner-Up Award. (expanded into J1).

C1
P. Neophytou, R. Gheorghiu, R. Hachey, T Luciani, B. Sun, A. Labrinidis, G.E. Marai, P.K. Chrysanthis. “AstroShelf:
Understanding the Universe through Scalable Navigation of a Galaxy of Annotations”, SIGMOD 2012 Demonstrations
Comp.

PEER-REVIEWED CONFERENCE SHORT PAPERS, ABSTRACTS AND SYSTEM DEMONSTRATIONS

P10
T. Luciani, B. Elgohari, H. Elhalawani, G. Canahuate, D. M. Vock, C.D. Fuller, G.E. Marai. “Correlating Toxicity Outcomes
with Spatial Patterns of Lymph Node Metastasis for Oropharyngeal Cancer Patients”. American Society for Radiation
Oncology, Chicago, IL, USA. Sept. 2019.

P9

Castor, J. Borowicz, A. Burks, M. Thomas, T. Luciani, G.E. Marai, “MC2 - Mining Factory Pollution Data through a
Spatial-Nonspatial Flow Approach”, IEEE Visual Analytics Science and Technology (VAST) Challenge 2017 Proceedings,
pp. 1-2, 2017. VAST Challenge Honorable Mention (MC2) in competition with 56 submissions from teams in
academia, industry, and government.

P8

V. Mahida, B. Kupiec, A. Burks, T. Luciani, G.E. Marai. “MC3 - A Web-Based Interactive Image Explorer for Temporal
Analysis of Satellite Images”, IEEE Visual Analytics Science and Technology (VAST) Challenge 2017 Proceedings, pp. 1-2,
2017. VAST Challenge Honorable Mention (MC3) in competition with 56 submissions from teams in academia,
industry, and government.

P7
A. Wentzel, P. Hanula, T. Luciani, B. Elgohari, H. Elhalawani, G. Canahuate, D. M. Vock, C.D. Fuller, G.E. Marai.
“Cohort-Based Spatial Similarity can Predict Radiotherapy Dose Distribution”. American Society for Radiation
Oncology, Chicago, IL, USA. Sept. 2019.

P6
T. Luciani, J. Trelles, C. Ma, A. Burks, M. Thomas, K. Bharadwaj, S. Singh, P. Hanula, L. Di, G.E. Marai. “Multi-scale
Voronoi-based ACT Assessment ”. IEEE VGTC VPG International Data-Visualization Contest, Baltimore, MD, USA.
Honorable Mention. Oct. 2016.

P5
T. Luciani, C. Ma, J. Trelles, and G. E. Marai. “Developing a Data-Driven Wiki of Spatial-Nonspatial Integration Tools”. In
Proceedings of the IEEE VIS 2016 Workshop on Creation, Curation, Critique and Conditioning of Principles and
Guidelines in Visualization (C4PGV), Baltimore, MD, USA, Oct. 2016.

P4
A. Burks, C. Sugiyama, T. Luciani, J. Komperda, G. E. Marai. “Interactive Exploration and Tracking of Viscous Fingers in
Large-Scale Ensemble Simulations.” IEEE Scientific Visualization Contest, 2016.

P3
T. Luciani, A. Maries, M. Nik, S.L. Yilmaz, “Visualization of Tensor Quantities Used in Computational Turbulent
Combustion”, 66 Annual Meeting of the APS Division of Fluid Dynamics, Nov., 2013.

P2
T. Luciani, A. Maries, H. Tran, M. Nik, S.L. Yilmaz, G.E. Marai, “A Novel Method for Tracking Tensor-based Regions of
Interest in Large-Scale, Spatially-Dense Turbulent Combustion Data”, IEEE Visualization 2012, Poster Abstracts with
System Demonstration, pp. 1-2, Oct. 2012.

P1
T. Luciani, R. Hachey, D.Q. Oliphant, B.A. Cherinka, G.E. Marai. “Pixel-based Overlays for Navigating a Galaxy of
Observations”. IEEE Visualization 2011 Large Scale Data Analysis and Visualization Symposium Poster Compendium,
Oct. 2011.
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Invited Presentations
A Deep Learning Approach to Identifying Shock Locations in Turbulent
Combustion Tensor Fields Dagstuhl, Germany

DAGSTUHL VISUALIZATION AND PROCESSING OF ANISOTROPY IN IMAGING, GEOMETRY, AND ASTRONOMY Oct. 2018
• Presented proof-of-concept work on deep learning approaches in computational fluid dynamics

Developing a Data-DrivenWiki of Spatial-Nonspatial Integration Tools Baltimore, MD
VISUALIZATION OF TENSOR QUANTITIES USED IN COMPUTATIONAL TURBULENT COMBUSTION Oct. 2016
• Presented current efforts at organizing our survey into a public electronic repository

6th Annual Meeting of the APS Division of Fluid Dynamics Pittsburgh, PA
VISUALIZATION OF TENSOR QUANTITIES USED IN COMPUTATIONAL TURBULENT COMBUSTION Nov. 2013
• Presented past research on flow visualization techniques

Allegheny Observatory Public Lecture Series Pittsburgh, PA
PANNING AND ZOOMING THE OBSERVABLE UNIVERSE WITH PREFIX-MATCHING INDICES AND PIXEL-BASED OVERLAY July 2013
• Presented current astronomy research on visual trends in spectral data

Technology Leadership Initiative Workshop Pittsburgh, PA
INTRODUCTION TO ANIMATION AND VIDEO GAMES TUTORIAL May 2013
• Taught Technology Leadership Initiative Workshop (TLIW) to 20 high school students

IEEE Large-scale Data Analysis and Visualization (LDAV) Conference Seattle, WA
PAPER TRACK Oct. 2012
• Presented paper entry (C3) at the annual conference

Pittsburgh Science and Technology Academy Pittsburgh, PA
SCITECH SCIENCE FORUM Jan. 2012
• Presented research in data visualization to high school students to promote interest in CS

All-Wavelength Extended Groth Strip International Survey (AEGIS) Pittsburgh, PA
PITTSBURGH CONFERENCE June 2011
• Presented astronomy research to AEGIS community for feedback during their annual conference

Committees
2019 Chair, IEEE VIS Student Volunteer Program Vancouver, BC, CA
2018 Chair, IEEE VIS Student Volunteer Program Berlin, Germany
2017 Day Captain, IEEE VIS Student Volunteer Program Phoenix, AZ
2016 Day Captain, IEEE VIS Student Volunteer Program Baltimore, MD
2013 Vice-President, University of Pittsburgh, Graduate Student Organization Pittsburgh, PA


