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SUMMARY

This thesis consists of two parts. Chapter 1 ∼ 4 are on the topic of support points of optimal

designs for multinomial logistic regression models. Chapter 5 provides details on an algorithm

based framework for crossover designs and its companion R package.

We start with logistic regression models. The binary logistic regression models the log-

odds between two response categories with a linear function of regression variables. Similarly,

multinomial logistic regression models log-odds among more than two response categories with

at least four link functions: baseline, cumulative, adjacent, and continuation ratio.

It is very common to use multinomial logistic regression models in data analysis, but research

for its optimal designs are still at its infancy stage. This is because MLRM has many variants,

each with its own structure of information matrix. Those are demonstrated in Chapter 1.

We start with an introduction to multinomial logistic regression model (MLRM), including its

mathematical representations, an unified form, as well as the information matrix for unknown

parameters. Complication of information matrices are discussed. A literature review on designs

for MLRM is then provided.

The study of optimal designs is in fact answering two questions: how many support points

and what are their weights/repetitions. Our focus is on the first question, and we systematically

characterize it through a complete class framework. Our results are presented in Chapter 2.

x



SUMMARY (Continued)

Our findings comprise three main theorems. In summary, (i), for proportional odds model

with 3 response categories and 1 regression variable, optimal design needs at most 2 points for

baseline link and at most 4 points for cumulative, adjacent, and continuation ratio link; (ii), for

baseline proportional odds model with J response categories, optimal design consists at most

2 support points; (iii) for baseline proportional odds model with J response categories and p

regression variables, optimal designs are from two equivalent class with 2p−1 support points

with all of their first (p− 1) dimensions take extreme values. It is noticeable that those results

hold for any optimal designs, regardless of optimality criterion chosen, parameters of interest,

one-stage or multi-stage designs.

In Chapter 3, some numerical results are carried out to testify our theory and it turns

out they are inline with our findings. A discussion is also included at the end to address our

contribution and some future work. All proofs for main theorems are in Chapter 4.

In Chapter 5, we formulated an algorithm based framework for optimal/efficient designs

for crossover designs with subject dropout mechanism, crossover designs with proportional

carryover effects and interference model. We derived information matrices of those three models,

and then numerical results are provided in comparison with designs in literature.

Finally, we provided an brief introduction of complete class framework in Appendix A,

details of algorithm can be found in Appendix B, and a demonstration of R package for crossover

designs is in Appendix C.
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CHAPTER 1

INTRODUCTION TO MULTINOMIAL LOGISTIC REGRESSION

MODEL AND OPTIMAL DESIGNS

1.1 Background on Multinomial Logistic Regression Model

Logistic regression model is a common tool for analyzing binary responses. Under many cir-

cumstances, however, binary responses may not be enough for detecting desire result (Perevozskaya

et al., 2003). In a dose-response study, while binary response is used to estimate does-response

curve, such response usually does not contain information about the severity of toxicity. For

example, subject can suffer from five types of adverse effects ranging from self-limiting nausea

to death in phase I cancer trial (Schacter et al., 1997). In general, if responses from exper-

iment take values from a fixed set containing J(> 2) categories, they are called polytomous

responses, which usually follow multinomial distribution. Polytomous data is often modelled by

multinomial logistic regression model (MLRM) (Agresti, 2013, chap 6), a special case of gener-

alized linear models (GLM) (McCullagh and Nelder, 1989). In particular, given a polytomous

response, say Y , it is modeled by the following,

G(E(Y )) = η. (1.1)

Here G(·) is called link function that transforms observed responses to log-odds, E is the

expectation operator, and η is the linear component.

1
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MLRM is a broad class of models. Despite of its simple looking like (1.1), it could be

arbitrarily complex in the following perspectives.

First, unlike binary logistic regression where a single log-odds is modeled, one need to model

J − 1 log-odds simultaneously if response is polytomous and has J response categories.

Second, judged from the relation among response categories, polytomous response can be

categorized into three kinds: nominal, ordinal, and hierarchical. For nominal response, cate-

gories are considered as equally important. For example, blood types, car makes, and etc.. On

the contrary, there is nature order among categories of ordinal response, such as beef quality

grade, peoples preference rating to a restaurant, and etc. Hierarchical response is different be-

cause some of response categories are nested in others. For example, in (McCullagh and Nelder,

1989), a study of mortality due to radiation consists of three stages. At first stage, outcomes

are ’alive’ and ’dead’; then at second stage, those who died are divided into ’due to cancer’ and

’other cause’; at last, those who died from caner are labeled either ’other cancer’ or ’leukemia’.

Third, each kind of polytomous response requires properly chosen link function. For nom-

inal response, baseline link (1.4) is appropriate since the conclusion drawn from fitted model

with baseline link is still valid if the label of categories are permuted (McCullagh and Nelder,

1989). As to ordinal response, cumulative link (1.5) (McCullagh and Nelder, 1989), or adja-

cent link (1.6) (Liu and Agresti, 2005; Agresti, 2013), are preferred for this case because if the

order of categories are reversed, the conclusions made from fitted model with either of those

link functions remain unchanged. If response is hierarchical, continuation ratio link (1.7) is

recommended by (Zocchi and Atkinson, 1999).
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Fourth, the complexity also lies on the linear component in (1.1). The linear components

are usually summarized into three types of model assumptions: proportional odds model (po),

non-proportional odds model (npo) and partial proportional odds model (ppo) ((Bu et al.,

2019)). Here the ’odds’ refers to ’log-odds’, which is discussed in detail in next section. For

proportional model, linear components across categories share the same set of parameters,

whereas non-proportional model assumes each category has its own set of parameters that

distinguish themselves across categories. The members in partial proportional model share

parameters across categories while each of them possesses its own set of parameters. It is

obvious that the partial proportional model is an amalgamation of po and npo models and

therefore is the most general.

1.2 The Present Knowledge of Optimal Designs for Multinomial Logistic Regression

Models

While MLRMs are widely applied in practice and the methodology of analyzing such models

is well established, the optimal design research for MLRMs is arguably in its infancy stage

with little optimality result available. The available results are scattered around and lack of

systematical work.

As mentioned before there are as many as twelve types of MLRM due to the variety of link

functions and model assumptions. The information matrix, which is the key to the study of

optimal design, has its own structure under each model. Therefore one has to develop tools for

optimal design case by case.
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One major obstacle of studying optimal designs for MLRMs is that the information matrix

depends on the unknown parameter θ due to the nonlinearity. As pointed by (Ford et al., 1992),

”A common approach to solve this dilemma is to use locally optimal designs, which are based

on one’s best guess of the unknown parameters. While a good guess is not always guaranteed,

this approach remains of value to obtain benchmarks for all designs.” There are other ways to

address this issue, for example, by using a Bayesian approach (Chaloner and Verdinelli, 1995).

The complicated structure of the information matrix makes it is notoriously difficult to de-

rive the corresponding optimal designs under MLRMs. There are, however, some nice attempts

to attack this complex problem. (Zocchi and Atkinson, 1999) considered Bayesian D-optimal

design for a multinomial logistic model based on hierarchical responses collected from an ex-

periment on emergence of houseflies. They used Markov Chain Monte Carlo to generate a

sample of parameters in order to access to the objective function. (Perevozskaya et al., 2003)

explored some properties of information matrix of proportional odds model with cumulative

link and locally optimal designs under multiple optimal criteria were investigated through nu-

merical construction. (Yang et al., 2017) worked on a model with cumulative link for ordinal

data and had shown the size of minimally supported design only depends on number of pre-

dictors. Locally D- and EW-D optimal designs were derived through algorithm approaches.

(Bu et al., 2019) conducted an comprehensive study on all 12 variants of multinomial logistic

regression models and provide general conclusions on the cardinality of minimally supported

designs. Algorithm for D-optimal designs was also provided.
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While these results explore some optimal designs, there lack of systematic understanding of

their characterizations - arguably speaking, little is known about them. In this paper, we study

the characterization of optimal designs for MLRMs through a complete class framework pro-

posed by a series of papers (Yang and Stufken, 2009; Yang, 2010; Dette and Melas, 2011; Yang

and Stufken, 2012; Dette and Schorning, 2013). The strategy is to find a subclass with simple

format such that, for any design outside the complete class, say, ξ1, there always exists a de-

sign in this subclass, say, ξ2, and the information matrix of ξ2 dominates that of ξ1 in Lowner

ordering. Utilizing this strategy, we obtain complete class results for a broad class of MLRMs.

The results are significant for three reasons. First, it is the first time the characterizations of

optimal designs under a varieties of MLRMs are derived. The results can help us understand

the structure of optimal designs systematically. Second, the characterizations can significantly

simplify the search of any specific optimal designs, both analytically and numerically, regard-

less of parameters of interest, optimality criteria, one-stage or multiple stage design. Third, a

pressing research direction in big data analysis is the trade-off between computation complexity

and statistical efficiency in big data analysis. The derived characterizations can guide us to de-

velop efficient algorithms of selecting an informative subdata which can addresses the trade-off

adequately (Wang et al., 2018).

The rest of this chapter is organized as follows. Section 1.3 sets up the mathematical

representation of multinomial logistic regression model, its unified form, and information matrix

for parameters. A brief introduction of framework of optimal designs can be found in section 1.4.
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The main results are given in Chapter 2. Some applications are provided in Chapter 3

followed by a brief discussion. All proofs are included in Chapter 4.

1.3 Notations and settings

Suppose in an experiment, we observe n polytomous responses with J possible response

categories from m distinct experiment settings. Particularly, at ith experiment settings, ni

responses, say yij for j = 1, ..., ni, are collected, where
∑m

i=1 ni = n.

Typically, yij ’s from the same experiment setting are summarized into a count vector Yi =

(Yi1, ..., YiJ)
′
, where Yik means the counts of responses obtained at ith experiment setting

that belong to the kth category, or equivalently, if we code response categories as integers

from 1 to J , then Yik =
∑ni

j=1 1(yij = k) where 1(·) is an indicator function. Let the πik =

Prob(yij = k) for k = 1, 2, ..., J ,
∑J

j=1 πij = 1, the distribution of Yi is multinomial, Yi ∼

Multinomial(ni, πi1, ..., πiJ) with Probability Mass Function being

Prob[Yi = (Yi1, ...YiJ)] =
ni!

Yi1!, · · · , YiJ !

J∏
j=1

π
Yij
ij (1.2)

In probability theory, multinomial distribution is generalized from binomial distribution and

it belongs to the exponential family. Therefore, multinomial logistic model, a generalized version

of logistic model, is appropriate to model the probabilities. For the ith experiment setting, say
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si = (xi1, ..., xip), one needs to model all probabilities simultaneously in the following general

form,

G(πi) = ηi = Xiθ (1.3)

where link function G(·) is a map RJ 7→ RJ−1, ηi = (η1(πi), ..., ηJ−1(πi))
′

is a (J − 1) × 1

vector, πi = (πi1, ..., πiJ)
′

is a J × 1 vector, Xi = (f1(si), ..., fJ−1(si))
′

is a design matrix of

order (J − 1)× ν. Here f
′
s(Xi) stands for its sth row, f is a function on Rp 7→ Rν . θ is a vector

of unknown parameters of length ν. The linear component is η = Xiθ.

Link function G(·) transforms responses to log-odds. All four links functions in previous

section can be summarized as follows.

baseline log
πij
πiJ

for j = 1, ..., J − 1 (1.4)

cumulative log
πi1 + · · ·+ πij

πi,j+1 + · · ·+ πiJ
for j = 1, ..., J − 1 (1.5)

adjacent log
πij
πi,j+1

for j = 1, ..., J − 1 (1.6)

continuation− ratio log
πij

πi,j+1 + · · ·+ πiJ
for j = 1, ..., J − 1 (1.7)

For baseline link, the probability on denominator is the one from reference category, and it

can be arbitrarily chosen, not necessarily being πiJ . Meanwhile, there are many possible pairs

to be used in getting log-odds, but most of them are redundant. For example, with J response

categories and baseline link, there are J(J − 1)/2 possible pairs, however one only needs to
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model J − 1 selected pairs and the rest of them can be obtained using the existing ones. In

general, for all the link functions above, J − 1 log-odds are sufficient.

Notice that there is no standard criterion of choosing the right type of link functions. For

some cases, as illustrated in (McCullagh and Nelder, 1989, chap 6), both baseline link and

cumulative link yields similar parameter estimates and conclusions.

The linear component of (1.3) depends on model assumptions. There are at least three model

assumptions emerge in literature (Bu et al., 2019): proportional odds (po), non-proportional

odds (npo), and partial proportional odds (ppo). For j = 1, ..., J − 1, let Xrt
i be the rtth entry

of design matrix Xi,

po ηj(πi) = Xj1
i θ1 + · · ·+Xjν

i θν , (1.8)

npo ηj(πi) = Xj1
i θj1 + · · ·+Xjν

i θjν , (1.9)

ppo ηj(πi) = Xj1
i θ1 + · · ·+Xjν̃

i θν̃ +Xj,ν̃+1
i θj,ν̃+1 + · · ·+Xjν

i θjν , (1.10)

where ν̃ is the number of parameters shared across categories in (1.10).
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1.3.1 Unified model

In an effort to unify them, (Glonek and McCullagh, 1995) proposed a transformation that

covers a wide scope of link functions between multinomial logistic model and log-linear model.

It is written as

C log (Lπi) =

ηi
0

 = Xiθ for i = 1, ...,m. (1.11)

where ηi is defined in (1.3), C is J × (2J − 1) constant matrix, with IJ−1 being identity matrix

of order J − 1 and 0J−1 is a vector of (J − 1) 0’s.

C =

IJ−1 −IJ−1 0J−1

0
′
J−1 0

′
J−1 1

 (1.12)

L is a (2J − 1) × J matrix varies through link functions. For baseline, cumulative, adjacent,

and continuation-ratio link functions, the concrete structure of L matrices can be found in

Chapter 4.

There is a major difference between (1.3) and (1.11). Because matrix C has J rows, which

means (1.11) models simultaneously model J log-odds. A close look at C reveals that the last

row is merely for imposing the constrain
∑J

j=1 πij = 1, and this is the reason that the last row

of L is all 1’s regardless of type link functions.
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1.3.2 Information matrix

An important step for deriving the Fisher information matrix is to invert ηi for πi. Provided

all the link functions we introduced, we can find the closed form of πi in terms of Xiθ. As an

example, for baseline link, the πij ’s could be calculated via

πij =
exp{Xiθ}

1 + exp{Xiθ}
for j = 1, . . . , J − 1. (1.13)

Following (Bu et al., 2019), the information matrix for θ in (1.11) is

Ii(θ) = (
∂πi

∂θ
′ )
′
diag{πi}−1(

∂πi

∂θ
′ ) (1.14)

where ∂πi/∂θ
′

= (CD−1
i L)−1Xi and Di = diag{Lπi}. Matrices C and L are defined in (1.11).

Xi is design matrix related to design point si = (s1, ...sp).

1.4 Optimal designs for multinomial logistic regression models

Let si be a design point(or experiment setting), which is a vector of regression variables. A

collection of all possible design points is named design space and denoted by χ. Let d be an

exact design with n runs and support S, where S ⊆ χ is a set of m distinct design points. It

can be written as

d = {(si, ni), si ∈ S,
m∑
i=1

ni = n, ni ∈ Z+} (1.15)
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where ni’s are repetitions associated with si’s and are restricted to be positive integers. The

set of all positive integers is Z+. An optimal exact design is therefore a collection of (si, ni)

that collectively optimizes an objective function involves with information matrix. Provided a

design d, information matrix for unknown parameter can be represented by

Id =

m∑
i=1

niIi, (1.16)

where Ii is information matrix for design point si. However, it is often an intractable issue to

find optimal exact designs due to its restrictions on repetitions. In particular, the optimal exact

design in closed form is frequently sought via combinatorial tools, but the solution only exist

for certain combinations of experiment configurations, such as number of total runs, levels of

regression variables and etc. Moreover, because this discrete nature on repetitions, numerical

algorithms that work with derivatives are not applicable either. Consequently, optimal designs

are often studied in the context of approximate designs by relaxing the discrete repetitions to

continuous weights(or proportions in some literature). Formally, ni are replaced by wi = ni/n

and the wi’s (weights) are assumed to be real numbers in the interval [0, 1]. An approximate

design ξ as well as its information matrix, are written as follows,

ξ = {(si, wi), si ∈ S,
m∑
i=1

wi = 1, wi ∈ [0, 1]} (1.17)

Iξ =
m∑
i=1

wiIi =
m∑
i=1

ni
n
Ii =

1

n
Id (1.18)
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An optimal approximate design is hence sought for. The consequence of relaxation on repeti-

tions is profound since there are a variety of optimization tools and numerical algorithms that

are available in literature. As a trade-off, one has to take extra effort to carefully round approx-

imate design to exact design which is either optimal or efficient prior to the implementation.

Throughout this paper, the term ’optimal design’ refers to optimal approximate design unless

otherwise specified.



CHAPTER 2

MAIN RESULT

The strategy for developing those findings is inspired by complete class framework developed

by (Yang and Stufken, 2012). A brief introduction is also provided in Appendix.

2.1 Model under Consideration

Our results are mainly on baseline proportional odds model and some special cases for mod-

els with other links. In general, a multinomial logistic model with J(≥ 3) response categories

and p continuous regression variables is

C
′
log(Lπi) = Xiθ (2.1)

where

C
′

=

IJ−1 −IJ−1 0
′
J−1

0J−1 0J−1 1

 Xi =



1 xi1 · · · xip

. . . xi1 · · · xip

1 xi1 · · · xip

0 · · · 0 0 · · · 0


(2.2)

L is an (2J − 1)× J constant matrix and depends on choice of link functions. Xi is the design

matrix associated to design point si = (xi1, ..., xip), θ = (α1, ..., αJ−1, β1, ..., βp) is the parameter

13
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vector of which αj ’s are intercepts and βi’s are coefficients of regression variables. Here we only

assume xij ∈ [Uj , Vj ] for j = 1, ..., p− 1, where Uj , Vj are real numbers, and xip is unbounded.

2.2 Information Matrix and Its Blocks

Since the analytical approach requires identification of maximal set of linear independent

non-constant functions, we first introduce the general structure of information matrix.

Following (Bu et al., 2019), given design point si, information matrix for θ is

Ii(θ) = (
∂πi

∂θ
′ )
′
diag{πi}−1(

∂πi

∂θ
′ ) (2.3)

= X
′
i[(C

′
D−1
i L)−1]

′
diag{πi}[(C

′
D−1
i L)−1]Xi (2.4)

where ∂πi/∂θ
′

= (C
′
D
−1
i L)−1Xi and Di = diag{Lπi}.

We let U be the matrix in the middle except for design matrix, then (2.3) can be written as

Ii = X
′
iUXi. Although the concrete expression of U varies case by case, according to Corollary

3.1 in (Bu et al., 2019), it has a general structure

U =

 M 0
′
J−1

0J−1 1

 (2.5)
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where M is a (J−1)×(J−1) symmetric matrix. In addition, if design matrix Xi is partitioned

as follows for blockwise matrix multiplication.

Xi =

IJ−1 S

0J−1 01

 (2.6)

where the submatrix S is a (J − 1) × p matrix that holds values of regression variables, and

0J−1 and 01 are vectors of 0’s with appropriate orders. As a result, we reach to the following

lemma for structure of information matrix.

Lemma 1. Given matrix partitions in (2.5) and (2.6), information matrix at si = (xi1, ..., xip)

can be presented by blocks.

Ii(θ) =

IJ−1 S

0J−1 01


′ M 0

′
J−1

0J−1 1


IJ−1 S

0J−1 01



=

 M MS

S
′
M S

′
MS

 =

B1 B2
′

B2 B3

 (2.7)

We name those blocks by ’B’ + numbers, where letter ’B’ is short for ’Block’, and B2
′

is B2

block transposed.
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Furthermore, let M = {Mij}, and define M·j =
∑J

i=1Mij and M·· =
∑J−1

i=1

∑J−1
j=1 Mij,

B2 =



x1M·1 x1M·2 · · · x1M·p

x2M·1 x2M·2 · · · x2M·p

...
...

. . .
...

xpM·1 xpM·2 · · · xpM·p


B3 =



x2
1M·1 x1x2M·2 · · · x1xpM·p

x2x1M·1 x2
2M·2 · · · x2xpM·p

...
...

. . .
...

xpx1M·1 xpx2M·2 · · · x2
pM·p


(2.8)

The proof is merely matrix multiplications, and is therefore omitted here. Lemma 1 plays

an important role in following sections where those structures will be extensively exploited.

2.3 Proportional Model with 3 Response Categories and 1 Regression variable

For J = 3 and p = 1, design points si = xi reduces to a scalar and design matrix as well as

θ become

Xi =


1 0 xi

0 1 xi

0 0 0

 θ =


α1

α2

β

 . (2.9)

In the information matrix, B2 block reduces to a row vector and B3 is now a scalar. We

investigated such a matrix and reach to the following theorem on complete class.

Theorem 2. For proportional odds model (2.1) with 1 continuous regression variable xi ∈ [U, V ]

where U, V are real numbers, and 3 response categories, the following results on complete class

hold.

1. For baseline link, designs with at most 2 support points form a complete class.
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2. For cumulative, continuation ratio or adjacent link, designs with at most 4 support points

form a complete class.

The detailed proof is given in Chapter 4. Theorem 2 provides upper bounds of number of

support points for MLRM with 1 continuous covariate and 3 response categories. In particular,

optimal designs for such model with baseline link will have at most 2 support point. Meanwhile,

the model with cumulative, continuation ratio and adjacent link will have at most 4 design

points. According to (Bu et al., 2019), the minimal number of support points for this case is 2

for baseline link and 3 for the rest type of links. Combined with Theorem 2, optimal designs

for baseline multinomial logistic regression model with 3 response categories are minimally

supported.

2.4 Baseline Proportional Odds Model with J Categories and 1 Regression Variable

In this section, we generalized complete class result for baseline proportional odds model to

the one with J ≥ 3 response categories. The model is

log(
πj
πJ

) = αj + βx, j = 1, ..., J − 1 (2.10)
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If written in matrices like (2.1), design matrix Xi and θ now become

Xi =



1 xi

. . .
...

1 xi

0 . . . 0 0


θ =



α1

...

αJ−1

β


(2.11)

In its information matrix, the B2 block is still a row vector and B3 is a scalar. But B1 block

now is of order J − 1 by J − 1. We have the following complete class result for this case.

Theorem 3. For baseline proportional odds model (2.1) with J ≥ 3 response categories and 1

continuous regression variable xi ∈ [U, V ] where U, V are real numbers, designs with at most 2

support points form a complete class.

Theorem 3 generalizes complete class result for baseline proportional model to arbitrary

number of response categories. That is, the optimal design for baseline proportional odds model

consists at most 2 support points regardless of number of response categories. It broadens the

scope of its applications.

2.5 Baseline Proportional Odds Model with J Categories and p Regression Variables

We now consider arbitrary J and p. The baseline proportional odds model with J ≥ 3

response categories and p ≥ 2 continuous regression variables can be written as

log(
πj
πJ

) = αj + β1x1 + · · ·βpxp, j = 1, . . . , J − 1. (2.12)
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where Jth response category is conventionally set to be reference category, and xi are the value

of ith regression variable. Here we only assume xj ∈ [Uj , Vj ] for j = 1, ..., p − 1, where Uj , Vj

are finite real numbers.

As introduced at the beginning of this section, the design matrices and parameter vector

are exactly the same as (2.2). For example, when J = 4, p = 2, design matrix is

X =



1 0 0 x1 x2

0 1 0 x1 x2

0 0 1 x1 x2

0 0 0 0 0


θ =



α1

α2

α3

β1

β2


. (2.13)

In general, by Lemma 1, key components in information matrix are:

The B1 block is M matrix of order (J − 1)× (J − 1) with

Mij =


− eαi+αj+2

∑p
t=1 βtxt

[1+(
∑J−1
s=1 e

αs )e
∑p
t=1 βtxt ]2

, i 6= j

eαi+
∑p
t=1 βtxt [1+(

∑J−1
s=1,s6=j e

αs )e
∑p
t=1 βtxt ]

[1+(
∑J−1
s=1 e

αs )e
∑p
t=1 βtxt ]2

, i = j.

(2.14)

B2 block is a p× (J − 1) matrix with the ijth entry being

xiM·j = xi
eαj+

∑p
t=1 βtxt

[1 + (
∑J−1

j=1 e
αj )e

∑p
t=1 βtxt ]2

, for j = 1, ..., J − 1 (2.15)
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and B3 block is a p× p matrix with ijth entry being

xixjM·· =
e
∑p
t=1 βtxt

∑J−1
s=1 e

αs

[1 + (
∑J−1

j=1 e
αj )e

∑p
t=1 βtxt ]2

(2.16)

Instead of directly study the designs, we focus on the transformed design points, with

support points si = (xi1, ..., xi,p−1, ci), where ci =
∑p

t=1 βtxt and βt 6= 0 for all possible t. Note

that such transformation does not change the complete class result, because of the following

factorization of information matrix. For a design point x and transformed design point s,

I(s,θ) = X
′
UX = Q

′
F
′
UFQ (2.17)

where X is design matrix for x = (x1, ..., xp) and F is design matrix for s = (x1, ..., c), and

FQ = X.

A(θ) =



1

. . .

1

0 · · · β1 · · · βp



−1

F =


1 x1 · · · c

. . .
...

...
...

1 x1 · · · c

 (2.18)

(2.19)
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Let I(s,θ) stands for information matrix at s = (x1, ..., c), one can easily obtain I(s,θ)

from I(x,θ) by (2.17). The structures of them are identical. Under this setting, we have the

following theorem.

Theorem 4. In the transformed design space, for an arbitrary design ξ = {(si, wi), i =

1, ...,m;
∑m

i=1wi = 1}, there exists a design ξ̃ such that the following inequality of informa-

tion matrices hold:

Iξ(θ) ≤ Iξ̃(θ) (2.20)

where

ξ̃ = {(F̃`1, w`1) and (F̃`2, w`2), ` = 1, ..., 2p−1} (2.21)

and F̃`1 = (a`1, ..., a`,p−1, c̃1), F̃`2 = (a`1, ..., a`,p−1, c̃2). Here a`,j = Uj or Vj, and (a`1, ..., a`,p−1)

are all combinations of them for ` = 1, ..., 2p−1, and c̃1 and c̃2 are two numbers need to be solved.

The proof is deferred to Chapter 4 as well. Theorem 4 shows that the optimal designs

for baseline proportional model with p covariates are made of two equivalent classes of design

points of which the value of its first p − 1 covariates are easily found. The significance is not

only the optimal designs for such a general model are in simple structure, also algorithms would

benefit from it since it reduce the dimension of an optimization problem from p to 1.
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Note that when J = 2, Theorem 4 reduces to theorem in (Yang et al., 2011a), where similar

result for binary logistic regression is derived. Therefore, it generalizes Yang’s result to baseline

log-odds model.



CHAPTER 3

APPLICATIONS

All designs in this section are locally optimal. Therefore one needs to provide initial values

of parameters in order to derive a design aiming at estimating them. Initial values are not

randomly chosen, on the contrary, it should be determined prudently by either consulting

experts opinions or look up historical experiment results. We have mentioned that locally

optimal design can serve as a benchmark for other designs. However a set of badly chosen

initial values which are far away from the ’truth’ would result in a benchmark that has not too

much practical meaning even though it is locally optimal.

We use optimal weights exchange algorithm (OWEA) in Appendix for approximate designs,

detailed procedures are available in section 5.3. Although the scope of this paper is on models

with continuous regression variables, we still need to discrete the design space in order to use

the algorithm. A common practise is to use equally spaced grid on the design space, as we did

in following examples.

23
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3.1 Examples

Example 1: Consider the following baseline proportional odds model, with J = 4

log(
π1

π4
) = α1 + βx (3.1)

log(
π2

π4
) = α2 + βx (3.2)

log(
π3

π4
) = α3 + βx (3.3)

We select two sets of initial parameters (0.5,−0.6, 0.9, 2) and (1, 2, 4,−0.3), for the given

design spaces, we use R program to find optimal approximate designs for both A- and D-

optimal criteria. These approximate designs are summarized in Table I. Here the N stands for

number of grid points in design space, and entries on the column ’design’ are written in the

format of (point, weight). Finally, we count the number of support points and add them to the

last column.

It is noticeable that all those designs consist of two support points, which is consistent with

our findings in Theorem 3. In fact, according to (Bu et al., 2019), designs with 2 support points

for this model is also minimally supported which is the minimum requirement for information

matrix being non-singular and hence parameter estimation being unbiased. Therefore, optimal

designs could be both optimal and minimally supported. An interesting observation is, contrary

to common case where D-optimal design has equal weights, the minimally supported D-optimal

design is not equally weighted. For example, for the first set of initial parameter values, D-
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(α1, α2, α3, β) criterion design space N design # of points

(0.5,−0.6, 0.9, 2) D [-3,3] 121
(-1.25,0.3106)
(0.35,0.6894)

2

(0.5,−0.6, 0.9, 2) A [-3,3] 121
(-1.4,0.2198)
(0.2,0.7802)

2

(0.5,−0.6, 0.9, 2) D [0,3] 61
(0.0,0.4580)
(1.1,0.5420)

2

(0.5,−0.6, 0.9, 2) A [0,3] 61
(0.0,0.4509)
(1.2,0.5491)

2

(1, 2, 4,−0.3) D [-10,30] 81
(6.5,0.6877)
(17.0,0.3123)

2

(1, 2, 4,−0.3) A [-10,30] 81
(5.0,0.8536)
(21.5,0.1464)

2

(1, 2, 4,−0.3) D [0,30] 61
(6.5,0.6877)
(17.0,0.3123)

2

(1, 2, 4,−0.3) A [0,30] 61
(6.0,0.7751)
(24.5,0.2249)

2

TABLE I

LOCALLY OPTIMAL DESIGNS BASELINE PROPORTIONAL ODDS MODELS

optimal design has two points −1.25, 0.35 with weights 0.3106 and 0.6894. Meanwhile, A-

optimal design has two weights being 0.2198 and 0.7802.

Example 2: In (Perevozskaya et al., 2003), an early pioneer paper that studies designs for

MLRM, they provided locally optimal designs for the following model, which is a cumulative

link model with 4 response categories.

log
γj(x)

1− γj(x)
= x− αj for j = 1, 2, 3 (3.4)



26

where γj(x) = Prob(Y ≤ j|x) =
∑j

s=1 πis. Here those intercept terms are unknown parameters

and they set the slope to be a constant. Such a model is used for does-response study. Inspired

by this paper, we reparameterize model in the fashion of proportional odds model and assume

slope is also unknown. For simplicity, we only consider 3 response categories. The model is

formulated as

log
γ1(x)

1− γ1(x)
= α1 + βx (3.5)

log
γ2(x)

1− γ2(x)
= α2 + βx (3.6)

Notice that there is a natural order that α1 ≥ α2.

Similarly, two sets of initial parameter values are chosen upon which A- and D- optimal

designs are derived for given design spaces. Table II summarizes key information of those

designs.

Most of those designs in Table II have 3 support points, except those on the first two

rows. In particular, D-optimal design on the first row have two points, 3.85, 3.90, that can

be combined as one since they are actually two adjacent grid points and 3.85 has very small

weight. Such a design can be considered as the one with three support points, 0.55, 7.20 and a

where a ∈ (3.85, 3.90). As theorem 2 shows optimal designs have at most 4 support points, the

abundance of 3-point designs and absence of 4-point designs might give a hint that our current

result could be improved. Finally, it is worth mentioning that, according to (Bu et al., 2019),

those D-optimal designs are also minimally supported.
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(α1, α2, β) criterion design space N design # of points

(1, 2.88,−0.5) D [-10,15] 501

(0.55,0.3970)
(3.85,0.0214)
(3.90,0.1853)
(7.20,0.3963)

4∗

(1, 2.88,−0.5) A [-10,15] 501
(-1.00,0.6539)
(3.45,0.3461)

2

(1, 2.88,−0.5) D [0,15] 1501
(0.53,0.3949)
(3.86,0.2066)
(7.18,0.3985)

3

(1, 2.88,−0.5) A [0,15] 1501
(0.00,0.7456)
(3.95,0.2209)
(9.27,0.0335)

3

(−2, 1, 0.8) D [-10,10] 2001
(-2.20,0.3180)
(0.62,0.3630)
(3.44,0.3190)

3

(−2, 1, 0.8) A [-10,10] 2001
(-2.10,0.2800)
(0.85,0.6918)
(3.68,0.0282)

3

(−2, 1, 0.8) D [0,9] 901
(0.00,0.6361)
(3.94,0.0454)
(4.00,0.3185)

3

(−2, 1, 0.8) A [0,9] 901
(0.00,0.8630)
(4.07,0.0117)
(4.50,0.1253)

3

TABLE II

LOCALLY OPTIMAL DESIGNS FOR CUMULATIVE PROPORTIONAL ODDS MODEL

In practise, when there is no information on unknown parameters, an intuitive yet commonly

used strategy is to implement uniform designs. Such a design puts equal weights on design

points, and sometimes those points are equally spread in design space as well. However they

are known as lacking efficiency. For example, (Yang et al., 2017; Bu et al., 2019) proved uniform

designs are less efficient for D-optimality under some variants of multinomial logistic regression.

We have the same observation here. Consider the following two uniform designs in Table III,

of which puts equal weights to its support.
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design space design points # of points A-eff D-eff

[-10,15] -10,-5,0,5,10,15 6 0.5339 0.2589

[0,15] 0,2,4,8,15 5 0.6740 0.5862

[-10,10] -10,-6,-2,0,2,6,10 7 0.4822 0.1892

[0,9] 0,1,2,3,4,5,6,7,8,9 10 0.3563 0.2278

TABLE III

UNIFORM DESIGNS AND EFFICIENCY TO OWEA DESIGNS

For simplicity, we compare optimal designs with uniform designs. Here in Table III, ’A-eff’

and ’D-eff’ are shorts for relative efficiency under A- and D- optimality respectively, and they

are calculated by

eff =
Φ(Σoptimal)

Φ(Σuniform)
(3.7)

When eff > 1, it indicates uniform design is more efficient, and vice versa. As shown,

uniform designs are not as efficient as those optimal designs. On the contrary, the difference is

quit huge. For example, given design space [−10, 15], there are 2 points and 4 points for A- and

D- optimal designs, and they are almost 1 and 3 times more efficient than the uniform design

with 5 points.

Example 3: In (Agresti, 2013, chap 6), a developmental toxicity study with pregnant mice

was introduced. In this experiment, a certain chemical substance in distilled water of different

concentrations (from 0 to 500 mg/kg per day) was given to pregnant mice in successive 10

days and their uterine contents were analyzed in order to examine the defects of fetuses. There
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are three outcomes for each fetus: nonlive, malformation, or normal. The outcome is ordinal

with ’nonlive’ being the most preferable. The original design has 5 levels of concentration,

0, 62.5, 125, 250, 500, where 0 is the level of control group. Those design points spread out

in the design space, [0, 500]. Design points and number of observations are summarized in

Table IV.

dose 0 62.5 125 250 500

observations 297 242 312 299 285

TABLE IV

ORIGINAL DESIGN IN TOXICITY STUDY

A continuation-ratio proportional model is considered because the response are hierarchical.

With 3 response categories, if we target at the following model,

log
π1

πi2 + πi,3
= α1 + βx (3.8)

log
π2

πi,3
= α2 + βx (3.9)

where the x means concentration. For this example, we set (α1, α2, β) = (0.1,−0.5, 0.016),

which is the initial estimate provided by (Agresti, 2013, chap 6). We use OWEA algorithm to

find A- and D- optimal designs in the space [0, 500]. Both designs are summarized in Table V.
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The numbers of support points, regardless of optimal criteria, are all equal to 2, which is less

than the upper bound of 4 provided in Theorem 2. Also, the design points are not uniformly

allocated.

In fact, for this toxicity study, (Agresti, 2013, chap 6) fitted a continuation-ratio non-

proportional model, and give estimations for β1 = 0.0064, β2 = 0.0174.

log
π1

πi2 + πi,3
= α1 + β1x (3.10)

log
π2

πi,3
= α2 + β2x (3.11)

Although we have not derive any complete class result for such model, optimal designs can

still be derived numerically. In this case, we search locally optimal designs at (α1, α2, β1, β2) =

(0.4, 1, 0.0064, 0.0174), which serves as initial ’guess’ of unknown parameters.

As shown in Table V, designs have 3 levels of concentrations for D-optimal and only 2 for

A-optimal. Under both criteria, the control level 0 is always included. The significance is that

experimenter can reduce the levels of concentrations which saves man power and reduces the

experimental cost in some sense. Lastly, we still observed that those designs have number of

design points that are less than the theoretical maximum as we derived in Theorem 2.

The last column in Table V is the relative efficiency that comparing original design in

(Agresti, 2013, chap 6) to optimal design in Table V. The formula is similar to (3.7). It

is obvious that the original design is lacking efficiency for both A- and D- optimality. For

example, D-optimal design based on 3 points for npo model is almost 2 times as efficient as
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(α1, α2, β1, β2) criterion design space N design # of points efficiency

Locally Designs for Proportional Odds Model

(0.1,−0.5, 0.016) D [0,500] 501
(0,0.6323)

(121,0.3677)
2 0.2296

(0.1,−0.5, 0.016) A [0,500] 501
(0,0.9926)

(122,0.0074)
2 0.2984

Locally Designs for Non-proportional Odds Model

(0.4, 1, 0.0064, 0.0174) D [0,500] 501
(0,0.4653)

(117,0.3741)
(365,0.1606)

3 0.5108

(0.4, 1, 0.0064, 0.0174) A [0,500] 501
(0,0.9797)

(105,0.0203)
2 0.2533

TABLE V

LOCALLY OPTIMAL DESIGNS FOR CONTINUATION MODELS

original design. The take away message, is optimal or efficient designs for models like (3.8) and

(3.10), can be based on only limited number of design points. Those observations are inline

with the spirit of theorems derived in this paper.

3.2 Discussion

Multinomial logistic regression model plays an important role in statistical analysis. How-

ever, the research on optimal designs is still at its infancy stage. Deriving optimal designs for

MLRM in general is difficult. As stated in introduction, there are two major obstacles. First,

the MLRM consists of at least 12 types of variants and each has its own concrete expression of

both model and information matrix. So far relevant optimal designs are generated case by case.

Second, the information matrix is parameter dependence, and mostly, locally optimal designs

are studied.
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Although there are increasing number of researches on related fields, optimal design for

MLRM is still under development and almost all of existing designs emerged in literature so

far are constructed in a numerical manner. While these results are helpful in some sense, they

are in fact merely computational and cannot provide further insights. In recent decades, some

preliminary theoretical results have been established regarding the unified model representation,

information matrix and etc. There are, nevertheless, still no such studies for optimal designs

from theoretical perspective.

In this paper, we accessed the optimal designs for MLRMs via an analytical approach.

The main result is on the complete class of optimal designs for some prevalent models. In

particular, we derived the upper bound for number of support points of optimal designs. Such

results provide evidence for the claim that optimal designs for MLRM usually do not have many

support points. This is important because one can expect a simple design return by numerical

algorithms and if the design have more design points that exceeds the upper bound, one can

instantly know there is a design which has a less support points.

Numerical examples are also explored. It is shown that number of support points of those

designs are in line with our theory. In particular, some examples have number of supports that

is exactly what indicated by our theorem. More interestingly, designs from some other examples

have less support points than what we derived in theory. Since our theory hold regardless of

initial values of parameters and optimal criteria, there might be some other cases that have

exactly maximum number of support points. Moreover, and even more exciting, it might be

possible to improve our result in the future.
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In addition, selecting initial values for parameters is tricky. For example, (Agresti, 2013,

chap 6) argues that cumulative link indicates that the cumulative probability must be stochas-

tically ordered, otherwise, the model will be poorly fitted. The is the general guidelines for

choosing initial parameters. Some bad chosen sets not only result in inadequately fitted mod-

els, but also ill-organized designs. As to our experience, some of the choice of initial parameter

would result in singular information matrix, and one has to be prudent to exclude design points

like this in the algorithm, since the framework of OWEA relies on non-singular information

matrix.

The study of designs for multinomial logistic regression model is still under development.

There are many interesting yet untouched topics in this field. For example, designs for MLRM

with mixed type of regression variables, or when there are higher power terms or interactions

in linear components, and etc. We hope our work can trigger more research in these topics.



CHAPTER 4

PROOFS

4.1 L Matrix

Lbaseline =



1 0

1 0

. . .
...

1 0

0 0 . . . 0 1

0 0 . . . 0 1

...
...

. . .
...

...

0 0 . . . 0 1

1 1 . . . 1 1



Lcumulative =



1 0 . . . 0 0

1 1 0 . . . 0

...
...

. . .
...

1 1 . . . 1 0

0 1 . . . 1 1

0 0 1 . . . 1

...
...

. . .
. . .

...

0 0 . . . 0 1

1 1 . . . 1 1



(4.1)
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Lcontinuation =



1 0

1 0

. . .
...

1 0

0 1 . . . . . . 1

0 0 1 . . . 1

...
...

. . .
...

...

0 0 . . . 0 1

1 1 . . . 1 1



Ladjacent =



1 0

1 0

. . .
...

1 0

0 1

0 1

...
. . .

0 1

1 1 . . . 1 1


4.2 Proof of Theorems 2

Proof. We only provide proofs for baseline link and cumulative link. For continuation ratio and

adjacent link, the arguments are similar to that of cumulative link. Since information matrix

at J = 3, p = 1 is simple, we work on them directly.

The main task to identify the complete class. For a complete class Ξ, define two designs

ξ /∈ Ξ and ξ̃ ∈ Ξ on design space χ,

ξ = {(ci, wi), ci ∈ χ,
m∑
i=1

wi = 1}

ξ̃ = {(c̃i, w̃i), c̃i ∈ χ,
k∑
i=1

w̃i = 1} (4.2)
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Part I. For baseline link, information matrix at design point x is

I =


eα1+βx(1+eα2+βx)

(1+eα1+βx+eα2+βx)2
− eα1+α2+2βx

(1+eα1+βx+eα2+βx)2
eα1+βxx

(1+eα1+βx+eα2+βx)2

− eα1+α2+2βx

(1+eα1+βx+eα2+βx)2
eα2+βx(1+eα1+βx)

(1+eα1+βx+eα2+βx)2
eα2+βxx

(1+eα1+βx+eα2+βx)2

eα1+βxx
(1+eα1+βx+eα2+βx)2

eα2+βxx
(1+eα1+βx+eα2+βx)2

eβx(eα1+eα2 )x2

(1+eα1+βx+eα2+βx)2

 (4.3)

To prove the complete class result,

Step 1: (Selection) Let c = βx (where β 6= 0), then there is a bijection between x

and c, and x = c/β. Among the first two columns, select the following set as maximal linear

independent nonconstant functions.

Ψ1(c) =
eα1+c(1 + eα2+c)

(1 + eα1+c + eα2+c)2
(4.4)

Ψ2(c) = − eα1+α2+2c

(1 + eα1+c + eα2+c)2
(4.5)

Ψ3(c) =
eα1+cc

β(1 + eα1+c + eα2+c)2
(4.6)

and let

Ψ4(c) =
c2ec(eα1 + eα2)

β2(1 + eα1+c + eα2+c)2
(4.7)

Here let g(c) = (1 + eα1+c + eα2+c)2, and inequality g(c) > 0 holds on its domain. Such an

arrangement is due to the fact that B1 block in (4.3) only has two linear independent functions

in terms of c.
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Step 2: (Simplification) The task is to show the following system for any two designs ξ

and ξ̃ in (4.2),

m∑
i=1

wiΨ1(ci) =

k∑
i=1

w̃iΨ1(c̃i)

m∑
i=1

wiΨ2(ci) =

k∑
i=1

w̃iΨ2(c̃i)

m∑
i=1

wiΨ3(ci) =

k∑
i=1

w̃iΨ3(c̃i) (4.8)

m∑
i=1

wiΨ4(ci) ≤
k∑
i=1

w̃iΨ4(c̃i)

and it is sufficient to show

{1,Ψ1,Ψ2,Ψ3} and {1,Ψ1,Ψ2,Ψ3,Ψ4} are Chebyshev Systems

{1,Ψ1,Ψ2,Ψ3} and {1,Ψ1,Ψ2,Ψ3,−Ψ4} are Chebyshev Systems. (4.9)

Due to the existence of denominators in Ψ(c), the recursive construction of F (c) described

in Theorem 2 in (Yang and Stufken, 2012) are expected to be cumbersome and resultant F (c)

function can be rather complicated. Instead, we perform a series simplifications which preserve

either the equality in (4.8) or the Chebyshev System in (4.9) but with more simple functions.

First, we omit the ’−’ sign in Ψ2 and β in Ψ3 which does not change the equality in (4.8).

Then multiply all Ψ functions including the constant Ψ0 = 1 by the denominator and conduct

row or column operations that does not change the sign of matrix determinant. At last we get
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rid of positive constants like eα1 , eα2 and β2 which preserve the Chebyshev System. Eventually,

a set of Ψ functions is simplified to

{1, ec, e2c, cec, c2ec} (4.10)

To show (4.9) is equivalent to verifying either those following claims hold

{1, ec, e2c, cec} and {1, ec, e2c, cec, c2ec} are Chebyshev Systems (4.11)

{1, ec, e2c, cec} and {1, ec, e2c, cec,−c2ec} are Chebyshev Systems (4.12)

Step 3: (Calculation) The sequence of f`,` functions can be easily calculated according

to Theorem 3 of (Yang and Stufken, 2012). Here f11 = ec, f22 = 2ec, f33 = −ec/2, f44 = 2, and

F (c) =
∏4
i=1 fii(c) = −2ec < 0. Then designs with at most 2 support points form a complete

class is a direct consequence of case (b) of Theorem 2 in (Yang and Stufken, 2012).

Part II. For cumulative link, the information matrix at support point x is

I =


eα1+α2+βx

(eα2−eα1 )(1+eα1+βx)2
− eα1+α2+βx

(eα2−eα1 )(1+eα1+βx)(1+eα2+βx)
xeα1+α2+2βx

(1+eα1+βx)2(1+eα2+βx)

− eα1+α2+βx

(eα2−eα1 )(1+eα1+βx)(1+eα2+βx)
e2α2+βx

(eα2−eα1 )(1+eα2+βx)2
xeα2+βx

(1+eα1+βx)(1+eα2+βx)2

xeα1+α2+2βx

(1+eα1+βx)2(1+eα2+βx)
xeα2+βx

(1+eα1+βx)(1+eα2+βx)2
x2eα2+βx(1+2eα1+βx+eα1+α2+2βx)

(1+eα1+βx)2(1+eα2+βx)2


(4.13)

Following the same steps:
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Step 1: Let c = βx, we propose the assignments of functions:

Ψ1 =
eα1+α2+c

(eα2 − eα1)(1 + eα1+c)2
(4.14)

Ψ2 = − eα1+α2+c

(eα2 − eα1)(1 + eα1+c)(1 + eα2+c)
(4.15)

Ψ3 =
e2α2+c

(eα2 − eα1)(1 + eα2+c)2
(4.16)

Ψ4 =
ceα1+α2+2c

β(1 + eα1+c)2(1 + eα2+c)
(4.17)

Ψ5 =
ceα2+c

β(1 + eα1+c)(1 + eα2+c)2
(4.18)

Ψ6 =
c2eα2+c(1 + 2eα1+c + eα1+α2+2c)

β2(1 + eα1+c)2(1 + eα2+c)2
(4.19)

One can easily verify functions Ψ1 to Ψ5 form the set of maximal linear independent nonconstant

functions among the first two columns I(θ).
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Step 2. To show

m∑
i=1

wiΨ1(ci) =
k∑
i=1

w̃iΨ1(c̃i)

m∑
i=1

wiΨ2(ci) =
k∑
i=1

w̃iΨ2(c̃i)

m∑
i=1

wiΨ3(ci) =
k∑
i=1

w̃iΨ3(c̃i) (4.20)

m∑
i=1

wiΨ4(ci) =
k∑
i=1

w̃iΨ4(c̃i)

m∑
i=1

wiΨ5(ci) =
k∑
i=1

w̃iΨ5(c̃i)

m∑
i=1

wiΨ6(ci) ≤
k∑
i=1

w̃iΨ6(c̃i)

or its sufficient condition

{1,Ψ1,Ψ2,Ψ3,Ψ4,Ψ5} and {1,Ψ1,Ψ2,Ψ3,Ψ4,Ψ5,Ψ6} are Chebyshev Systems

{1,Ψ1,Ψ2,Ψ3,Ψ4,Ψ5} and {1,Ψ1,Ψ2,Ψ3,Ψ4,Ψ5,−Ψ6} are Chebyshev Systems (4.21)

We did similar simplifications as introduced in part I and it turns out one needs to work

with the following set of functions,

{(1 + eα1+c)2(1 + eα2+c)2, ec(1 + eα2+c)2, ec(1 + eα1+c)(1 + eα2+c), ec(1 + eα1+c)2, cec (1 + eα1+c),

(4.22)

ze2c(1 + eα2+c), c2ec(1 + 2eα1+c + eα1+α2+2c)}
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However, the major difficulty is the resultant F (c) function is still way too complicated from

which one can draw conclusions regarding complete class. Instead, the best we can do so far is

to investigate Chebyshev System on a augmented set of linear independent functions:

{1, ec, e2c, e3c, e4c, cec, ce2c, ce3c, c2ec(1 + 2eα1+c + eα1+α2+2c)} (4.23)

That is, we managed to reach to check the following,

{1, ec, e2c, e3c, e4c, cec, ce2c, ce3c} and

{1, ec, e2c, e3c, e4c, cec, ce2c, ce3c, c2ec(1 + 2eα1+c + eα1+α2+2c)} are Chebyshev Systems

(4.24)

or

{1, ec, e2c, e3c, e4c, cec, ce2c, ce3c} and

{1, ec, e2c, e3c, e4c, cec, ce2c, ce3c,−c2ec(1 + 2eα1+c + eα1+α2+2c)} are Chebyshev Systems

(4.25)

Step 3 Direct calculation shows F (c) =
∏8
`=1 f`` = −8ec(3 + 2eα1+c + 3eα1+α2+2c) < 0.

Then according to case (b) of Theorem 2 in (Yang and Stufken, 2012), designs with at most 4

points form a complete class.
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4.3 Proof of Theorem 3

Proof. For baseline link, by Lemma 1, Information matrix at support point x is summarized

blockwise.

The B1 block,

Mij =


− eαi+αj+2βx

[1+(
∑J−1
s=1 e

αs )eβx]2
, i 6= j

eαi+βx[1+(
∑J−1
s=1,s6=j e

αs )eβx]

[1+(
∑J−1
s=1 e

αs )eβx]2
, i = j.

(4.26)

B2 block is a row vector and its jth entry is

xM·j = x

eαj+βx[1 + (
∑J−1

s=1,s 6=j e
αs)eβx]

[1 + (
∑J−1

s=1 e
αs)eβx]2

−
J−1∑

i=1,i 6=j

eαi+αj+2βx

[1 + (
∑J−1

s=1 e
αs)eβx]2

 (4.27)

=
xeαj+βx

[1 + (
∑J−1

j=1 e
αj )eβx]2

, for j = 1, ..., J − 1 (4.28)

and B3 block is a scalar,

x2M·· =
x2eβx

∑J−1
s=1 e

αs

[1 + (
∑J−1

j=1 e
αj )eβx]2

(4.29)

In order to select a maximal set of linear independent nonconstant functions, we first intro-

duce the following lemma that summaries relevant property of information matrix.

Lemma 5. Of information matrix for baseline proportional model with J categories, its B1

block only has two linear independent functions and its B2 block only has one linear independent

function.
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The proof is evident in the calculations of B1 ∼ B3 blocks.

Following standard steps.

Step 1: Let c = βx (where β 6= 0), then there is a bijection between x and c, and x = c/β.

Ψ1 =
ec

[1 + (
∑J−1

s=1 e
αs)ec]2

(4.30)

Ψ2 =
e2c

[1 + (
∑J−1

s=1 e
αs)ec]2

(4.31)

Ψ3 =
cec

β[1 + (
∑J−1

j=1 e
αj )ec]2

(4.32)

and let

Ψ4 = x2M ·· =
c2ec

∑J−1
s=1 e

αs

β2[1 + (
∑J−1

j=1 e
αj )ec]2

(4.33)

Let g(c) = [1 + (
∑J−1

j=1 e
αj )ec]2, and inequality g(c) > 0 holds on all over its domain. Then one

needs to verify either of those two claims hold.

{1,Ψ1,Ψ2,Ψ3} and {1,Ψ1,Ψ2,Ψ3,Ψ4} are Chebyshev Systems (4.34)

{1,Ψ1,Ψ2,Ψ3} and {1,Ψ1,Ψ2,Ψ3,−Ψ4} are Chebyshev Systems (4.35)

After simplification, it is equivalent to work on the following set of functions,

{1, ec, e2c, cec, c2ec}. (4.36)
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That is one need to verify those following claims.

{1, ec, e2c, cec} and {1, ec, e2c, cec, c2ec} are Chebyshev Systems (4.37)

{1, ec, e2c, cec} and {1, ec, e2c, cec,−c2ec} are Chebyshev Systems (4.38)

The result in Theorem 2 applies, and designs with at most 2 support points forms a complete

class.

4.4 Proof of Theorem 4

Proof. The proof is inspired by (Yang et al., 2011a). For a given design ξ, information matrix

is

Iξ(θ) = n
m∑
i=1

wiF
′
iUiFi (4.39)

First of all, define following weights, rj =
Vj−xij
Vj−Uj such that

rjUj + (1− rj)Vj = xij (4.40)

rjU
2
j + (1− rj)V 2

j ≥ x2
ij (4.41)

for j = 1, ..., p− 1

The first equality is easy to verify and the second inequality is due to the fact that function

f(x) = x2 is convex. Note that this is exact the lemma appears in (Yang et al., 2011a).
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For arbitrary design point, say si = (xi1, ..., xi,p−1, ci), consider the following two design

points, s̃i1 = (U1, xi2, ..., xi,p−1, ci) and s̃i2 = (V1, xi2, ..., xi,p−1, ci), and their design matrices

are F̃i1 and F̃i2. Let w̃i1 = r1wi and w̃i2 = wi − w̃i1, then wiF
′
iUiFi and

∑2
`=1 w̃i`F̃

′
i`Ũi`F̃i`

are exactly the same except the first diagonal element in their B3 blocks. Here Ũ is matrix U

evaluated at s̃i`.

This is true due to two facts. First the (4.40). Second, entries in B1, B2 as well as off-

diagonal ones in B3 are linear in xi1, and only the first diagonal components in B3 block is

quadratic in xi1. As a result,

wiF
′
iUiFi ≤

2∑
`=1

w̃i`F̃
′
i`Ũi`F̃i` (4.42)

Repeat the procedures until xi,p−1, and we have the following

wiF
′
iUiFi ≤

2p−1∑
`=1

w̃i`F̃
′
i`Ũi`F̃i` (4.43)

Note that the right hand side of (4.43) only depends on ci, and they have the same set of

linear independent nonconstant functions. Then following Theorem 3, there exists two points

c̃i1 and c̃i2 such that so that

Iξ(θ) ≤
m∑
i=1

2p−1∑
`=1

w̃i`F̃
′
i`ŨiF̃i` ≤

2∑
i=1

w̃i

2p−1∑
`=1

w̃i`F̃
′
i`Ũi`F̃i` (4.44)

That is the complete class consists of two equivalent classes of 2p design points in total.



CHAPTER 5

A GENERAL AND EFFICIENT ALGORITHM BASED FRAMEWORK

OF OPTIMAL DESIGNS

Linear models are ubiquitous in scientific research. Among linear models, the family of

crossover models have a wide spectrum of applications in multiple disciplines, such as pharma-

ceutical study and clinical trials (see (Bennion et al., 2002; Wang et al., 2016)), nutrition and

dietetics (see (Baer et al., 2004; Harris and Raynor, 2017)), education (see (Jayaratne et al.,

2013; Prunuske et al., 2016)), psychology (see (Donovan et al., 2000; Lam and Kahler, 2017)),

and etc. We refer to (Stufken, 1996), (Bose and Dey, 2009) and (Jones and Kenward, 2014) for

authoritative and comprehensive review of both literature and applications.

Experimental design for linear model plays a crucial role in scientific research since an opti-

mal or highly efficient design organizes resources economically and wisely so that the subsequent

analysis is reliable as well as reproducible. In a crossover design, subject receives a sequence of

treatments at successive time periods, of which the sequence is determined by the design and

randomly assigned to each subject. The most important advantage is its cost-effectiveness. To

be specific, subject receives multiple treatments so that each single of them serves as their own

control, of which the influence from the confounding factors can be reduced or eliminated. In

addition, it usually requires much less subjects to achieve the same precision in parameter es-

timation comparing to non-crossover study because each subject generates multiple outcomes,

which makes crossover design statistically efficient. This is especially important in the case

46
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where experimental subjects are scarce or expensive. While these merits make crossover design

attractive, some potential issues draw extra cautions from experimenters. The most common

concern lies in the fact that the effects of treatments from previous periods may be carried

over time to time and have impact on the outcomes at successive periods. In the presence of

such carryover effects, alternative remedies have to be considered. One of them is to insert

a time gap between two consecutive time periods, which is believed sufficiently long for the

carryover effects to be washed out. However, answers to the question of ’how long is a wash out

period enough’ subject to experts opinion, and whether the carryover effects vanish completely

or still persist after wash out period remains unknown. It is therefore necessary to use a design

for efficient estimations of parameters under statistical model with carryover effects. There

are variants of crossover models, of which differs from the way of modeling carryover effects.

Section 5.1 provides details of two of them, and we refer to (Yang and Stufken, 2008) for an

extended list of models.

Theoretical results on optimal crossover design have been developed in recent four decades.

Selected contributions to this field, but not limited to, are (Hedayat and Afsarinejad, 1975;

Hedayat and Afsarinejad, 1978; Cheng and Wu, 1980; Laska et al., 1983; Kunert, 1984; Hedayat

and Zhao, 1990; Kushner, 1997a; Kushner, 1997b; Kushner, 1998; Kunert and Stufken, 2002;

Bose and Mukherjee, 2003; Hedayat and Stufken, 2003; Hedayat and Yang, 2004; Yang and

Stufken, 2008) and etc. Note that The majority of researches in literature deal with the optimal

design problem while assuming subject effects are fixed. (Hedayat and Yang, 2005; Hedayat et

al., 2006; Hedayat and Zheng, 2010) consider the similar design problem under the assumption
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that subject effects are random. On other direction, for example, (Park et al., 2011; Bailey

and Druilhet, 2014) provide result on crossover model with interactions. Recently, (Kempton

et al., 2001; Bailey and Kunert, 2006; Bose and Stufken, 2007) develop tools for the model with

carryover effects that are proportional to their direct effects. (Zheng, 2013a) adopt Bayesian

design framework and establish Kiefer’s type general equivalence theorem which are used later

in an algorithm for approximate locally optimal design.

Despite the rich literature for crossover design, all these aforementioned work are ideal

for the case where there is no subject dropout. However, on the contrary, it is quit common

that subject enrolled in a crossover study would dropout at interim periods. As (Low et

al., 1999) pointed out ”Experience suggests that a dropout rate of between 5% and 10% is not

uncommon and, in some areas, can be as high as 25%”. The consequences are not trivial because

the realization of an optimal crossover design is not optimal, or even worse. For instance,

dropout could be so frequent that data collected would result in less efficient estimations or

even render parameter inestimable. Although remedies for missing values in crossover study

have been established at analysis stage, for example see (Matthews and Henderson, 2013), we

believe this issue is so common that it is no doubt to be prudently considered at design stage.

Along this direction, relevant work includes, (Matthews, 1988; Low et al., 1999; Godolphin,

2004; Majumdar et al., 2008; Bose and Bagchi, 2008; Zhao and Majumdar, 2012). Most of the

papers focus on preserving the symmetric structure of design when subject dropout presents.

In (Zheng, 2013b), Kushner’s type of linear equations (see (Kushner, 1997b)) are developed as

necessary and sufficient conditions for a design being universal φ1 optimal where φ1 is defined
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as a new surrogate objective function considering dropout. He extends previous work and reach

to a unified result that is applicable to any configurations of experiment. Optimal or efficient

designs are obtained by either solving linear equations or integer optimization problem modified

from equation systems.

Although elegant results are available for crossover designs, they are not ready for use in

general. For some of the combinations of periods, treatments, and total observations, optimal or

efficient designs are available in literature. Under most circumstances, there is no such designs

that are ready for use and practitioners have to construct them by utilizing existing theories. In

addition, relevant theory may not even exist for certain experiment configurations, and this is

the major obstacle to use optimal or efficient designs. Hence, a general and efficient algorithm,

with easy implementation via computer program, is necessary.

In this article, we develop a general and efficient algorithm framework for crossover designs

and later extend it to other models. It works for any configurations of designs as long as the

information matrix satisfies certain assumption, and the resultant designs are efficient compared

to designs in literature. Lower bound of efficiency is provided in the absence of optimal exact

designs from literature and it turns out they are satisfactory. In addition, the computing time

is fast.

The rest of this chapter is organized as follows. Section 5.1 briefly introduces necessary

notations, models and assumptions, and their information matrices. Some key concepts and

results in approximate design theory can be found in section 5.2. Section 5.3 gives details on
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OWEA algorithm. Numerical results are presented in section 5.4, and a short discussion is in

section 5.5.

5.1 Optimal Designs and Information Matrix

An exact design with n runs is typically denoted by

d = {(si, ni)|si ∈ χ,
m∑
i=1

ni = n, ni > 0} (5.1)

where si is design point, χ is a set of all possible si called design space, m is the number of

distinct design points, and ni is positive integer that stands for the repetition of the ith design

point. Given design (5.1), the corresponding information matrix for parameter vector, say θ, is

I(θ) =

m∑
i=1

niIi (5.2)

where Ii is the information matrix for single design point si. An optimal exact design is then to

allocate design points as well as their repetitions so that resultant design minimizes an objective

function in terms of information matrix (5.2), usually denoted by Φ(I). Objective functions

vary upon different optimal criteria while sharing some common mathematical properties, for

example, convexity. Detailed description is provided later in this section.

Searching for optimal exact design is on earth an optimization problem. Unfortunately, it

is intractable in general due to the fact that ni’s in (5.1) are required to be positive integers.

This discrete nature disables the usage of a wide scope of numerical algorithms that require

derivatives and common available combinatorial tools only work on certain configuration of
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experiments. Instead, optimal designs are often studied in the context of approximate design

which replaces repetition ni by weight wi = ni/n and assumes it is continuous in (0, 1]. Such

relaxation on ni makes the derivation of optimal design tractable and leads to the feasible

application of many numerical algorithms. A typical approximate design and its information

matrix are written as follows.

d = {(si, wi)|si ∈ χ,
m∑
i=1

wi = 1, wi ∈ (0, 1]}. (5.3)

I(θ) = n
m∑
i=1

wiIi (5.4)

Note that information matrix for both type of designs can be written in a form of summation.

In this article, the algorithm we implemented requires the information matrix being additive

with respect to design points. When this property is not satisfied, alternative way need to be

sought for.

The major difference between approximate design and exact design is that approximate

design does not depends on number of total runs, i.e. n, and so is its information matrix. In

(5.3), m stands for number of total distinct design points, and it is free of n. Although there is a

n in (5.4), it just acts as a constant and subsequent optimization only involves (si, wi,m). The

difference is critical because the dimension of (5.2) is fixed regardless of the value of n whereas

(5.4) may have varying dimensions in both derivations or numerical searching even though n



52

is preset. An example is discussed in next section, and extra work has to be done in order to

apply algorithms.

Notice that approximate designs may not ready to be implemented as long as it is rounded

into an exact design. If n× wi are all integers, the optimal exact design is instant. Otherwise

extra cautions are necessary in rounding for the sake of obtaining an optimal or efficient exact

design. In this article, we implemented a simple strategy of rounding: first multiply weights

by n and round them to nearest integers; then do an one-to-one exchange between current

design and design space by traversing all support points in current design until there is no more

significant improvement in objective function. It turns out in later sections that we are able to

obtain highly efficient exact designs. For more relevant concerns on rounding designs, we refer

to (Pukelsheim and Rieder, 1992).

To evaluate the quality of rounded exact design, efficiency is introduced as the metric. There

are at least three ways of evaluating efficiency. When the goal is to compare two exact designs,

relative efficiency are calculated. Given two arbitrary designs ξ1 and ξ2, E1 = Φ(ξ1)/Φ(ξ2)

is the relative efficiency of ξ1 to ξ2 and the value E1 could be any positive real number. In

addition, ξ1 can be an optimal exact design available in the literature. When optimal exact

designs are not available, efficiency is evaluated in other approach. Suppose ξ∗ is an optimal

approximate design which minimizes objective function and is then rounded to an exact design

ξ. Denote their corresponding information matrices as Iξ∗ and Iξ respectively. The efficiency
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of ξ is calculated as E2 = Φ(Iξ∗)/Φ(Iξ) where 0 < E2 ≤ 1. It can be interpreted as how much

the optimality is preserved in after rounding or the lower bound of relative efficiency when ξ is

compared with arbitrary designs. For some cases of proportional model and interference model

in section 5.4, we report E2 type of efficiency. Other than those aforementioned cases, it is

possible that some of the objective functions are difficult or even unable to be accessed to. In

an effort to remedy this issue, we choose a surrogate objective function for which a optimal

design is sought and lower bound of efficiency can be derived.

The derivation of lower bound for efficiency depends on particular cases. The following

example is how we derive lower bounds for crossover model under subject dropout which is

described in next section. Under its setting, information matrix is random due to the modeling

of dropout mechanism. The intuitively reasonable objective function, EΦ(I), is not easy to deal

with, and Φ(E(I)) is chosen as an feasible replacement. Here the operator ′E′ means ’expecta-

tion’. Suppose we obtain an optimal approximate design ξ∗ by minimizing Φ(E(I)), and then

rounded to exact design ξ1. Primarily, efficiency for ξ1 should be evaluated by EΦ(ξopt)/EΦ(ξ1),

where approximate optimal design ξopt = argmin
ξ

EΦ(Iξ). However, the efficiency is not acces-

sible because ξopt is unknown. Nevertheless, one is still able to obtain the lower bound by the

following lemma. This lemma is also available in (Zheng, 2013b).
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Lemma 6. For crossover design under subject dropout, define the following approximate designs

ξopt = argmin
ξ

EΦ(Iξ) (5.5)

ξ∗ = argmin
ξ

Φ(E(Iξ)) (5.6)

For any arbitrary exact design ξ1, the lower bound for its efficiency is Φ(E(Iξ∗))/EΦ(Iξ1).

Proof. Note that the efficiency and all three designs satisfy the following inequalities.

EΦ(Iξopt)

EΦ(Iξ1)
≥

Φ(E(Iξopt))

EΦ(Iξ1)
≥

Φ(E(Iξ∗))

EΦ(Iξ1)
(5.7)

where Φ(·) is a convex function. The first ′ ≥′ is due to Jensen’s inequality with equality holds

when ξopt only has one points or Φ is linear. The second ′ ≥′ is because of (5.5), and equality

holds when Iξopt and Iξ∗ are the identical.

5.1.1 Crossover Model with Subject Dropout

The ways of modeling responses from crossover study are not unique, and we stick to the

one with first order carryover effects. Typically, a individual response of crossover design d with

n subjects, p periods and t treatments is modeled as

yij = µ+ ζi + πj + τd(i,j) + γd(i,j−1) + εij ; (5.8)

i = 1, ..., n; j = 1, ..., p.
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where yij is the response of jth period for ith experimental subject, and εij ’s are independent

normally distributed random errors with mean 0 and variance σ2(> 0). µ is general mean, ζi is

the effect from ith experimental subject, πj stands for the effects from jth period, d(i, j) denote

the treatment assignment of jth period for ith subject from design d, τd(i, j) is the treatment

effect from d(i, j), and γd(i,j−1) is the carryover effect due to treatment d(i, j − 1) where γd(i,0)

is set to 0 by convention.

If the collection of responses from exact design d are gathered into a vector

Yd = (y11, y12, ..., y1p, y21, ..., ynp)
′

then model (5.8) can be written in terms of matrices as follows, which serves as the start of

deriving information matrix.

Yd = 1npµ+ Uζ + Zπ + Tτ +Rγ + ε (5.9)

where ε is a vector of independent errors with mean 0 and variance covariance matrix σ2Inp,

and σ2 > 0, π = (π1, ..., πp)
′
, ζ = (ζ1, ..., ζn)

′
, τ = (τ1, ..., τt)

′
, γ = (γ1, ..., γt)

′
, U = In ⊗ 1p =

(U
′
1, ..., U

′
n)
′
, Z = 1n ⊗ Ip = (Z

′
1, ..., Z

′
n)
′
, T = (T

′
1, ..., T

′
n)
′

and F = (F
′
1, ..., F

′
n)
′
. Here Ui is

p × n incidence matrices for subjects, Zi is p × p subject to period incidence matrix, Ti and

Fi are p × t period to treatment incidence matrices for ith subject depends on design d, In is

identity matrix of dimension n and 1p stands for a p× 1 vector of 1’s.



56

Then the information matrix for full parameter vector Θ = (ζ
′
, π
′
, τ
′
, γ
′
)
′

is

I(Θ) =

(
U Z T R

)′ (
U Z T R

)
(5.10)

=
n∑
i=1

(
Ui Zi Ti Ri

)′ (
Ui Zi Ti Ri

)
(5.11)

=
n∑
i=1

Ii =
m∑
i=1

niIi

where Ii is the information matrix for ith design point(treatment sequence).

An optimal exact design is then to choose a collection of sequences so that it optimizes an

objective function related to (5.10). In this article, we obtained optimal approximate design

from numerical algorithm and carefully round it to exact design which either efficient or optimal.

However two issues regarding information matrix has to be settled prior to the implementation

of algorithm. First, usually information matrix for direct treatment is the target, however

it is not additive with respect to design point which does not fit for the prerequisite for the

algorithm we introduced. Other than this, although information matrix for full parameter

is additive, its dimension is changing all the time because of the inclusion of subject effects

ζ iterative nature of numerical algorithm. Optimizing on an information matrix of varying

dimension is problematic. Therefore, to fit the crossover design problem to our framework, we

excluded subject effect from (5.10). In fact, in literature, subject effects are either treated as

nuisance or assumed to be random, neither of them indicates the subject effects are the goal of

subsequent analysis.
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Direct calculation yields the information matrix for marginal parameter vector without

subject effects, θ = (π
′
, τ
′
, γ
′
)
′
,

I(θ) =

(
Z T R

)′
pr⊥(U)

(
Z T R

)
(5.12)

=

(
Z T R

)′
[Inp −

1

p
In ⊗ 1p1

′
p]

(
Z T R

)
(5.13)

=
n∑
i=1

(
Zi Ti Ri

)′
[Ip −

1

p
1p1

′
p]

(
Zi Ti Ri

)
(5.14)

=

n∑
i=1

Ii =

m∑
i=1

niIi = n

m∑
i=1

wiIi (5.15)

where pr⊥(·) is an orthogonal projection operator, and for any matrix X and pr⊥(X) =

I −X(X
′
X)−1X

′
. Note that (5.12) is both fixed dimension and additive.

In the presence of dropout, following (Low et al., 1999; Zheng, 2013b), define the dropout

mechanism of a subject as ` = (`1, ..., `p), where `i is the probability that the longest time of

stay is i, and
∑p

i=1 `i = 1 and assume

1. Subject’s dropout is independent of the choice of design as well as the outcome of design.

2. Once a subject dropped, the chance of returning is zero.

3. Subject’s dropout mechanisms are i.i.d.
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With dropout mechanism, matrices Zi, Ti, Ri in (5.12) depend on ` and therefore are random.

Hence information matrix (5.12) becomes

I(θ, `) =

n∑
i=1

(
Zi Ti Ri

)′
[Mi −Mi1p(1

′
pMi1p)

−11
′
pMi](Zi, Ti, Ri) (5.16)

=

n∑
i=1

Ii(`) =

m∑
i=1

niIi(`) = n

m∑
i=1

wiIi(`) (5.17)

where Mi is an indicator matrix depends on dropout mechanism ` defined by the following

Mi(`) =

I(ai×ai) O1

O
′
1 O


p×p

(5.18)

and ai is the longest period of stay for subject i, O and O1 are zero matrices with proper order.

5.1.2 Crossover Model with Proportional Carryover Effects

One of the variants of crossover model is to proportional model. It is believed the large

direct effects lead to large carryover effects, that is, the carryover effects are proportional to its

direct effects. Under this assumption, for design d with p periods and t treatments, individual

outcomes are modeled as

yij = µ+ ζi + πj + τd(i,j) + λτd(i,j−1) + εij ; (5.19)

i = 1, ..., n; j = 1, ..., p.
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where the notation are exactly the same as in (5.8), except that the additional λ is the proportion

that carryover effects account for direct effects. Following similar arrangement, the proportional

model can be written in matrices,

Yd = 1npµ+ Uζ + Zπ + Tτ + λFτ + ε (5.20)

where ε is a vector of independent errors with mean 0 and variance covariance matrix

In ⊗Σ, Σ is an p× p positive definite matrix, π = (π1, ..., πp)
′
, ζ = (ζ1, ..., ζn)

′
, τ = (τ1, ..., τt)

′
,

U = In ⊗ 1p = (U
′
1, ..., U

′
n)
′
, Z = 1n ⊗ Ip = (Z

′
1, ..., Z

′
n)
′
, T = (T

′
1, ..., T

′
n)
′

and F = (F
′
1, ..., F

′
n)
′
.

Here Ui, Zi are incidence matrices for subjects and periods, Ti and Fi are p × t period to

treatment incidence matrices for ith subject depends on design d. Therefore, following similar

calculations, information matrix for partial parameters vector θ = (π
′
, τ
′
, λ)

′
is

I(θ, λ, τ) =

n∑
i=1

(Zi, Ti + λFi, Fiτ)
′
[Σ−1 − Σ−11p[1

′
pΣ
−11p]

−1
′
pΣ
−1](Zi, Ti + λFi, Fiτ) (5.21)

=

n∑
i=1

Ii =

m∑
i=1

niIi = n

m∑
i=1

wiIi (5.22)

Note that proportional model is nonlinear due to the term λτ , and its information matrix

depends on unknown parameter τ and λ.

5.1.3 Interference Model

Interference model is widely used in agricultural study to avoid the systematic bias cause by

neighbor effects of block designs. Papers on this field include (Kunert and Martin, 2000; Kunert
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and Mersmann, 2011; Zheng, 2015) and etc.

In a study with t treatments, n total blocks of size p, an single outcome of design d, is

modeled by

yij = µ+ γi + τd(i,j) + λd(i,j−1) + ρd(i,j+1) + εij (5.23)

i = 1, ..., n; j = 1, ..., p

where yij denotes the response from jth plot of ith block, µ is general mean, d(i, j) stands

for the treatment assignment of ith block and j the plot according to design d, and τd(i,j),

λd(i,j−1), and ρd(i,j+1) are treatment effects from treatment itself, its left plot and right plot.

By convention, we set λd(i,0) = ρd(i,p+1) = 0. Again, the responses can be gathered in a vector

and modeled in terms of matrices,

Yd = 1nkµ+ Uγ + Tdτ + Ldλ+Rdρ+ ε (5.24)

where Yd = (y11, .., y1k, y21, ..., ynp), γ = (γ1, ..., γn)
′
, τ = (τ1, ..., τt)

′
, λ = (λ1, ..., λt)

′
, ρ =

(ρ1, ..., ρt)
′
, U = In ⊗ 1p, Td = (T

′
1, ..., T

′
n)
′
, Ld = (L

′
1, ..., L

′
n)
′
, Rd = (R

′
1, ..., R

′
n)
′
. Here Ui’s are

incidence matrices for block, Ti and Li and Ri are p× t plot to treatment incidence matrices for

ith block depends on design d. The error vector ε is assumed to follow N(0, In ⊗ Σ), where Σ

is arbitrary positive definite matrix of order p. Let θ = (τ
′
, λ
′
, ρ
′
)
′

be the vector of parameters
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of interest. Note that block effects are excluded due to similar reason to that of subject effect

for crossover model, then information matrix for θ

I(θ) =

n∑
i=1

(Ti, Li, Ri)
′
[Σ−1 − Σ−11p(1

′
pΣ
−11p)

−11
′
pΣ
−1](Ti, Li, Ri) (5.25)

=

n∑
i=1

Ii =

m∑
i=1

niIi = n

m∑
i=1

wiIi (5.26)

Note that when the repetition ni is replaced by weight wi, we switch the context from exact

design to approximate design. Therefore, information matrix for all three models are free of n.

In addition, they fit for the prerequisite of the algorithm introduced next.

5.2 Optimal Criteria and General Equivalence Theorem

In after-data inference, usually a differentiable function of θ, say g(θ), is of interest. The

choice of g grants the flexibility on parameter vector. For example, when we target on all

parameters, g is an identity map; and when comparison is the goal, one of many options of g is

g(θ) = (θ1 − θν , θ2 − θν , ..., θν−1 − θν)), where ν is the length of θ. Denote θ̂ as the maximum

likelihood estimator (MLE) of θ, then it is well known that g(θ̂) is also the MLE of g(θ). Under

mild assumptions, delta’s theorem yields the asymptotic variance covariance matrix of g(θ̂),

Cξ(g) =
∂g

∂θ′
I−(θ)(

∂g

∂θ′
)
′

(5.27)
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An optimal approximate design is the one that minimizes the objective function (denoted

by Φ) in terms of (5.27). In this paper, the focus is on a unified optimality criterion introduced

by (Kiefer, 1974a), namely ’Φp’ optimality. The objective function is

Φp(Cξ(g)) =

[
1

v
Tr(Cξ(g))p

]1/p

, 0 ≤ p <∞ (5.28)

Note that Φp(Cξ(g)) is equivalent to many prevailing optimal criteria on various values of

p. When p = 0, Φp(Cξ(g)) is understood as limp↓0
[

1
vTr(Cξ)

p
]1/p

, which is D-optimality; when

p = 1, we have Φp(Cξ(g)) = Tr(Cξ(g)), and it is A-optimality; when p → ∞, Φp(Cξ(g)) is

equivalent to E-optimality.

For the purpose of verifying a design being optimal, the following theorem provides Kiefer’s

type general equivalence theorem (GET) which serves as sufficient and necessary condition.

Theorem 7. Suppose an arbitrary design ξ with information matrix Iξ. ξ is Φp optimal for

g(θ) if and only if the directional derivative of Φp, denoted by dp(s, ξ) satisfies

dp(s, ξ) ≤ 0 (5.29)
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for any s ∈ χ, with equality holds if s belongs to the support of ξ.

In addition, the dp(s, ξ) can be calculated by

dp(s, ξ) =


Tr[(Cξ(g))−1( ∂g

∂θ′
)I−ξ (Is − Iξ)I−ξ ( ∂g

∂θ′
)
′
], p = 0

( 1
v )1/pTr[(Cξ(g))]1−p × Tr[(Cξ(g))p−1( ∂g

∂θ′
)I−ξ (Is − Iξ)I−ξ ( ∂g

∂θ′
)
′
], p > 1

(5.30)

In this article, general equivalence theorem 7 is always checked prior to the claim of a design

being optimal.

5.3 Algorithm

Numerical algorithms are powerful yet convenient tools for optimal designs. Existing ones

are modifications of either Fedorov-Wynn algorithm (FWA, (Fedorov, 1972),(Wynn, 1970)), or

multiplicative algorithm (MA, (Silvey et al., 1978)), see (Torsney, 1981; Hettich, 1983; Böhning,

1986; Harman and Pronzato, 2007; Torsney and Mart́ın-Mart́ın, 2009; Mart́ın-Mart́ın et al.,

2012). (Yu, 2010) combined multiple existing designs with modifications, named ’cocktail al-

gorithm’, and achieved dramatic improvement in speed. However, all the aforementioned al-

gorithms only focus on D-optimal designs whereas different objective of experiments requires

properly chosen optimality criterion. Moreover, in the context of optimal designs for nonlinear

models, multi-stage designs are necessary in some cases in order to obtain a reasonable ’guess’

of unknown parameters and only (Covey-Crump and Silvey, 1970) derived two-stage designs

under D- and E- optimality for a polynomial model. (Yang et al., 2013) proposed an optimal

weights exchange algorithm (OWEA) for nonlinear models. It updates the support points in

the same way as FWA and optimizes weights via newton’s method. This is the algorithm
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we are going to use in this article. Besides, applications of optimization methods, which has

been shown successful in many other field, emerges in finding optimal designs. One of them

that worth mentioning is a meta-heuristic algorithm named particle swarm algorithm (PSO,

(Kennedy and Eberhart, 1995)). Although theory on its convergence is not fully developed, it

turns out work well for optimal designs, see (Chen et al., 2015; Wong et al., 2015).

The procedures of OWEA’s implementation is briefly introduced in Appendix, for details,

see (Yang et al., 2013). There are three tuning parameters, namely εd, εα and ε0, require extra

attentions. In verifying general equivalence theorem, εd needs to be non-positive for a design

being optimal. As suggested by (Yang et al., 2013), a small positive number is selected due to

floating errors in computer program. The other two cut-off points are simply positive numbers

slightly greater than 0. Note that tuning parameters may affects the time for convergence. In

all examples tested in this article, the combination of εd = 10−15, εα = 10−6 and ε0 = 10−10

work well and optimal or highly efficient designs can be found within a relatively short period

of time. Besides, it is known that newton’s methods is sensitive to choice of initial points and

sometimes have overshooting issue. However, based on our experience, efficient designs are

always found.

5.4 Examples

In this section, we implemented OWEA upon multiple models. Algorithms are programmed

in R and executed on an Apple Laptop with 1.4GHz CPU and 4GB RAM. Performance met-

rics such as computing time as well as efficiency are summarized in tables. For convenience,

hereafter, we call the design returned by OWEA algorithm owea design, and optimal design
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available from literature the literature design. For example, the A- optimal design obtained

from OWEA is ’A-optimal owea design’.

We packed all three models as well as algorithm into an R package named OWEA and it

is now available on CRAN. We include a demonstration of this package in Appendix. All those

following numerical results can also be obtained using this package.

5.4.1 Crossover Designs with Subject Dropout

Example 1. (t, p) = (4, 4), n = 16, ` = (0, 0, 1/2, 1/2). Design d2 derived in (Zheng, 2013b)

is shown to have relatively high efficiency under a variety of optimal criteria. Under the same

setting, OWEA returns the following designs under A- and D- optimality, and Table Table VI

summarizes the performance of both designs. The relative efficiency is from the comparison of

owea design to d2 and lower bound of efficiency is obtained according to Lemma 6.

As shown, The A-optimal owea design has high lower bound as well as higher actual relative

efficiency. Although the lower bound for D-optimal owea design is only 0.8537, its relative

efficiency is as high as 0.9882. In summary, the owea designs are close to d2 in terms of efficiency.

Computing time is also reported. For this case, owea design costs 1.974 and 1.804 for A- and

D- optimality respectively. Note that (Zheng, 2013b) shows the existence of universally optimal

designs, which means we can obtain an exact optimal design from looking for integer solution

to a linear equation system. So its computing cost is trivial.
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A− opt =

1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4

2 3 4 4 1 3 3 4 1 2 2 4 1 2 3 3

3 4 2 3 3 1 4 1 2 4 4 2 3 1 1 2

4 4 3 3 3 4 4 3 2 1 1 2 2 1 2 1

(5.31)

D − opt =

1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4

2 2 3 4 1 3 4 4 1 1 2 4 1 2 3 3

3 3 2 3 3 4 1 1 4 4 4 2 2 1 1 2

4 4 2 3 3 4 3 3 2 2 4 1 2 1 1 1

(5.32)

Optimality Relative Efficiency Efficiency(Lower Bound) Time (seconds)

A 0.9949 0.9489 1.974

D 0.9882 0.8573 1.804

TABLE VI

CROSSOVER DESIGNS WHEN T=P=4, N=16, AND DROPOUT A = (0,0,1/2,1/2)

Example 2 (t, p) = (4, 4), n = 19, ` = (0, 0, 1/2, 1/2). This is the case where Zheng’s linear

equation system does not have integer solution. Instead, as mentioned in (Zheng, 2013b), one

can find an efficient design by solving an integer optimization problem modified from equation

systems. There are many optimization solvers available online, for example, CPLEX (IBM Inc).
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Hence one has to re-run the integer programming when we change the number of subjects, say

from 16 to 19. In OWEA, we only need to re-do the exchange step of the algorithm. The owea

designs are summarized in Table Table VII. Because there is no optimal designs available in

literature, we only report lower bound of efficiency which is also obtained according to Lemma 6.

Calculation shows the lower bounds for A-optimal owea design is 0.9525, which is quit high.

Although the value of lower bound efficiency is only 0.8196, the actual efficiency could be higher

than this. Last, computing times are 2.682 and 2.467s respectively.

A− opt =

1 1 1 1 1 2 2 2 2 3 3 3 3 3 4 4 4 4 4

2 2 2 4 4 1 1 3 4 1 2 2 4 4 1 2 3 3 3

3 3 3 2 2 3 4 4 1 2 4 4 1 2 3 1 1 1 2

4 4 4 2 3 3 3 4 3 4 1 1 1 2 2 1 2 2 1

(5.33)

D − opt =

1 1 1 1 1 2 2 2 2 3 3 3 3 3 4 4 4 4 4

2 2 2 3 3 1 4 4 4 1 1 2 4 4 1 2 3 3 3

3 3 3 2 4 4 1 1 3 4 4 4 2 2 3 1 1 2 2

4 4 4 2 2 4 3 3 3 2 2 4 1 1 3 1 1 1 2

(5.34)

Both framework of OWEA and (Zheng, 2013b) adopted a surrogate objective function and

the output designs are satisfactory. In addition, both of them works for any arbitrary combi-

nation of (n, p, t) as well as dropout mechanism. For some combinations, theorems in (Zheng,

2013b) can be used to derive close form optimal design, however OWEA only generates exact

design with high efficiency for crossover model with subject dropout based on our experience.
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Optimality Efficiency(Self Lower Bound) Efficiency (Lower Bound) Time (seconds)

A 0.9598 0.9525 2.682

D 0.9556 0.8196 2.467

TABLE VII

CROSSOVER DESIGNS WHEN T=P=4, N=19, AND DROPOUT A = (0,0,1/2,1/2)

Other than this, for arbitrary number of n, one only needs to change the value of parameters

of owea instead of seeking for other tools like optimization solvers.

5.4.2 Crossover Designs with Proportional Carryover Effects

Proportional model is nonlinear. In (Zheng, 2013a), he adopted an exchangeable prior

distribution of τ and optimize the prior expectation of objective function. The resultant design

is symmetric and only depends on λ. (Zheng, 2013a) also provides a steepest decent algorithm

for pseudo symmetric designs. The weights for symmetric blocks can be easily found and Zheng

suggests to assemble symmetric blocks into highly efficient design by mimicking orthogonal

arrays. Meanwhile, OWEA is able to find locally optimal designs for given values of parameters

λ and τ . The locally optimal design can be regarded as a special case of Zheng’s framework

where the prior distribution of τ is point mass. Obviously, tools developed in (Zheng, 2013a)

are applicable to more general cases. For proportional model, all the optimal designs reported

are locally optimal except otherwise specified.

(t,p) = (3,3),n = 36. Locally optimal exact design for this case has been prove to exist. In

particular, those reported owea designs (both A- and D- optimal) are equivalent to a symmetric
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block 〈123〉 defined in (Zheng, 2013a), and they are shown to have unity efficiency for A- D- T-

criteria and 0.9931 under E-optimality. The computing time for this case is 0.053s and 0.085s

for A- and D- optimality. We are able to recreate Zheng’s design and it only takes 0.26s for it

to identify the optimal symmetric blocks.

A− opt =

1 2 3

2 3 1

3 1 2

× 12 (5.35)

D − opt =

1 2 3

3 1 2

2 3 1

× 12 (5.36)

Optimality Relative Efficiency OWEA Time (sec) Zheng’s Time (sec)

A 1.000 0.053 0.26

D 1.000 0.085 0.26

TABLE VIII

CROSSOVER DESIGNS FOR PROPORTIONAL MODEL WHEN T=P=3, N=36

(t = 4,p = 3),n = 20. (Zheng, 2013a) shows an symmetric design with all its sequences

from symmetric block that consists of treatments without repetition, for example 〈123〉, is A-
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D- T- optimal for a mild range of λ. However it requires n being multiple of 12 to be an exact

design. When there are only 20 runs allowed, universal exact optimal design does not exist. For

the given configuration, owea designs are listed as follows, and the lower bound for efficiency

is calculated by comparing exact design to the optimal approximate design from which it is

rounded. As the result shown in Table Table IX, efficiency are all close to unity under both A-

and D- optimal criteria. Note that sequences of those designs belong to the block of all distinct

treatment, but they are not symmetric design. And this is why there is minor loss in efficiency.

A− opt =

1 1 1 2 2 2 2 2 3 3 3 3 3 3 4 4 4 4 4 4

2 3 3 3 3 4 4 4 2 2 2 2 4 4 1 1 1 2 3 3

3 2 2 4 4 3 3 3 4 4 4 4 1 2 2 2 2 3 1 1

(5.37)

D − opt =

2 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 4 4 4

1 3 3 4 4 4 1 1 1 2 2 2 4 1 1 1 1 2 3 3

4 4 4 1 1 3 2 2 2 1 4 4 1 3 3 3 3 1 2 2

(5.38)

In general, if locally optimal design is the goal, one can implement a multi-stage design of

which the initial stage is used for obtaining a reasonable guess of unknown parameter. Under

this context, suppose the variance covariance matrix of the initial stage is C0 with n0 observa-

tions, and n1 observations with covariance matrix C1 is going to be added in the next stage,

the optimal design is to minimize Φp(
n0

n0+n1
C0 + n1

n0+n1
C1). This no doubt fits into the owea
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Optimality Efficiency(Lower Bound) Time (seconds)

A 0.9973 0.299

D 0.9951 0.144

TABLE IX

CROSSOVER DESIGNS FOR PROPORTIONAL MODEL WHEN T=4,P=3, N=20

framework.

5.4.3 Designs for Interference Model

For interference model, (Zheng, 2015) developed linear equation systems as sufficient and

necessary conditions for universally optimal design and provide steepest decent algorithm for

identifying symmetric blocks as well as their weights. In addition, he suggest using integer

optimization tools on modified linear systems for find efficient designs when optimal design is

intractable. OWEA is also useful in this model. In fact, it turns out there will be less manually

operations in tuning algorithms for some of the combinations of (n, t, p).

(t,k) = (4,4),n = 10. As it is shown in (Kunert and Martin, 2000), the optimal weights

of universal optimal design are not integers. In (Zheng, 2015)’s framework, first use steepest

descend algorithm to find an approximate symmetric design, and then one needs to manually

round it exact design. Some examples are provided in his paper. We listed owea designs as

follows and table Table X summarizes the performance metrics. The relative efficiency of A-

and D- optimal designs are 0.9880 and 0.9793 compared to Zheng’s example. Computing times
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for owea on this case are 8.490 and 6.359 respectively. On the contrary, the steepest descend

algorithm only cost 0.58, which is considerably faster.

A− opt =

1 1 1 2 2 3 3 4 4 4

1 1 2 2 3 4 3 2 3 4

3 3 4 4 1 2 4 1 1 2

2 3 3 1 4 2 4 3 2 1

(5.39)

D − opt =

1 1 2 2 2 3 3 4 4 4

1 4 1 2 4 1 3 1 3 4

3 2 3 4 1 4 2 2 2 3

3 3 4 4 1 2 2 3 1 1

(5.40)

Optimality Relative Efficiency Time of OWEA (sec) Time of Zheng’s Algorithm (sec)

A 0.9880 8.490 0.58

D 0.9793 6.359 0.58

TABLE X

DESIGNS FOR INTERFERENCE MODEL WHEN T=K=4, N=10

(t,k) = (4,5),n = 24. Universal optimal design for this case, which has been established by

(Zheng, 2015) Theorem 6(ii), is a symmetric design comprises equal weights to sequences and
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their dual sequences, where dual sequence has the same elements as its original sequence but in

reversed order. A design consists of symmetric blocks 〈11234〉, 〈12344〉, and their equivalencies

are provided. Note that the owea designs are almost the same to those in (Zheng, 2015) under

A- and D- optimality. Table Table XI displays the result. In comparison of efficiency, the owea

designs are very close to universal optimal, with the being 0.9983 and 0.9892, where relative

efficiency is by comparing with literature designs. Note that the first 12 sequences are equivalent

to 〈11234〉 and the last 12 are equivalent to 〈12344〉 as well. The computing times in this case

are 6.033 and 6.952. On the contrary, Zheng’s steepest decent algorithm locates those two

symmetric blocks in 30.12s, which is still acceptable.

A− opt =

1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3 4 4 4 4 4 4

1 1 2 2 2 4 2 2 2 3 4 4 1 2 3 4 4 4 1 1 2 2 4 4

4 4 3 3 3 3 4 4 4 1 1 1 4 1 1 2 2 2 3 3 1 1 1 1

3 3 4 4 4 3 3 3 3 1 3 3 2 4 2 1 1 1 2 2 3 3 2 2

2 2 4 4 4 2 1 1 1 4 3 3 2 4 4 1 1 1 2 2 3 3 3 3

(5.41)

D − opt =

1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3 4 4 4 4 4 4

1 1 1 3 4 4 1 1 2 2 4 4 3 3 3 4 4 4 1 3 3 4 4 4

2 2 3 2 2 2 3 3 3 3 1 3 1 1 1 1 1 1 2 2 2 2 3 3

4 4 2 4 3 3 4 4 1 4 1 1 4 4 4 2 2 2 3 1 1 3 2 2

3 3 4 4 3 3 4 4 4 1 3 1 2 2 2 2 2 2 3 1 1 1 1 1

(5.42)
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Optimality Relative Efficiency Time of OWEA (sec) Time of Zheng’s Algorithm (sec)

A 0.9983 6.033 30.12

D 0.9892 6.952 30.12

TABLE XI

DESIGNS FOR INTERFERENCE MODELS WHEN T=4,K=5, N=24

Similar to crossover model with subject dropout, theoretical result in (Zheng, 2015) are

general and powerful for interference model since it provides closed form of universally optimal

design for some combinations of (t, p) and his steepest descent algorithm and the integer pro-

gramming built on the linear equation system is very general. Generosity is also preserved by

owea and it is faster in most cases.

5.5 Discussion

In this chapter, we provide an algorithm based framework for finding optimal/efficient

crossover designs, and later extend it to interference model. Information matrix has been

derived in order to apply optimal weight exchange algorithm. Result shows OWEA successfully

find efficient or agree with optimal exact designs in a short period of time. The most alarming

advantage of OWEA is general and convenience. It works on a myriad of models, as long as

the information matrix is additive with respect to design points. From model to model, OWEA

is applicable with only minor modification of information matrix. Under the same model, one

only needs to change the value of case configurations, like t, p, n in those example. Note that
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those configurations can be arbitrary including dropout mechanism.

Optimal exact design may not tractable in some configurations of experiment. In this

case, there is no unified approach of seeking for efficient exact designs. For crossover design,

(Zheng, 2013b) suggests using integer optimization based on linear equation systems, whereas

for proportional model or interference model, he recommend assembling symmetric blocks with

references to existing symmetric structure, for example, orthogonal arrays. We reach to approx-

imate design and then rounded it to exact design without losing too much efficiency. (Zheng,

2015) for interference model also provided the integer programming and hence it could also deal

with any configuration of t,p and n. By comparison, the owea method is faster by losing very

tiny efficiency sometimes. For the proportional model, the restriction to the symmetric design

in (Zheng, 2013a) was due to the Bayesian framework, whereas our framework considers locally

optimal designs and hence has its own flexibility.

The resultant exact designs of OWEA are shown to be either optimal or highly efficient.

Although theoretical result indicates optimal designs within a subclass of pseudo symmetric

designs are automatically global optimal, OWEA does not guarantee the symmetry in its out-

put. However, based on our experience, OWEA exact designs are close to symmetric optimal

designs and always have relative high efficiency or satisfactory lower bound. Moreover, OWEA

works on any linear functions of unknown parameter vector. Note that all the designs in this

papers focus on direct treatment effects. On other cases, for example, (Zheng, 2013a) derived

corresponding results for estimating λ in proportional model, while in OWEA, one only need
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to change the function g.
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Appendix A

THE ANALYTICAL APPROACH TO COMPLETE CLASS

Deriving an optimal design for multinomial logistic regression model is to ultimately deter-

mine the support points as well as their associated weights. This is quit a complex optimization

task. In general, the structure of information matrix is rather complicated and varies upon the

models. Moreover, perhaps more important, it would be quit troublesome if the number of

support points were large. Because there would be too many parameters to be optimized which

result in either tedious or unfeasible derivations for optimal design. Nevertheless, one usually

seek to take advantage of constructive information, if exists, regarding structure of optimal

designs, which significantly relieves the burden from derivation.

For example, it is well known that a (p− 1)th degree polynomial regression model needs at

least p and at most p(p+1)/2 design points. The lower bound is to guarantee all parameters are

estimable and the upper bound is the consequence of Carathéodory theorem. The significance

lies in the fact that an optimal design for such a model can be based on p design points in

ideal case. (Khuri et al., 2006) connected the lower bound to the findings in (de la Garza,

1954), and name it the ’de la Garza phenomenon’. In a formal representation, for a (p − 1)th

degree polynomial regression model with p parameters and n(> p) runs, there exists a subclass

of design, say Ξ, with p distinct design points. For any arbitrary design ξ /∈ Ξ, there exists a
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design ξ̃ ∈ Ξ such that their information matrices Iξ̃ dominates Iξ in Lowner ordering, which

is equivalent to Iξ̃ − Iξ is non-negative definite.

Likewise, such subclass of designs for nonlinear model is identified by an analytical approach

in (Yang and Stufken, 2009; Yang, 2010; Yang et al., 2011a; Dette and Melas, 2011; Yang and

Stufken, 2012). The primary goal is to identify a subclass of designs with simple structure,

called complete class in cited papers, say Ξ, for a nonlinear model with given design space.

Then for any arbitrary design ξ /∈ Ξ, there always exist a design ξ̃ ∈ Ξ such that Iξ̃ dominates

Iξ in Lowner ordering, that is

Iξ̃ ≥ Iξ. (A.1)

Usually for convenience, approximate design can be represented alternatively by

ξ = {(ci, wi),
m∑
i=1

wi = 1, wi ∈ (0, 1]} (A.2)

where ci’s are obtained through a bijective function of si’s which may also involves with unknown

parameter vector of length ν, say θ. Information matrix for θ under such design ξ is

Iξ(θ) = P (θ)

[
m∑
i=1

wiC(ci, θ)

]
P
′
(θ) (A.3)

where P (θ) is a ν × ν nonsingular matrix that only depends on θ and C(ci,θ) is a symmetric

ν × ν matrix that involves both ci and θ. Let ψij denote the entries of ith row and jth column
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in C, and obviously ψij is a function of both θ and ci. Throughout the rest of the paper, we

omit θ and only keep ψij(c) for purpose of simplifying notations. Matrix C(ci, θ) therefore can

be partitioned and written as

C(ci, θ) =

 C11(ci) C12(ci)

C21(ci) C22(ci)

 (A.4)

=



ψ11(ci)

...
. . .

ψν1,1(ci) . . . ψν1,ν1(ci)

ψν1+1,ν1+1(ci) ψν1+1,ν1+1(ci)

...
. . .

...
. . .

ψν1(ci) . . . ψν,ν1(ci) ψν,ν1+1(ci) . . . ψpp(ci)


for i = 1, ...,m (A.5)

where 1 ≤ ν1 < ν, C12 = C
′
21 and C22 is the lower principal submatrix of order ν1× ν1. If there

exists a design ξ̃ = {(c̃i, w̃i),
∑m̃

i=1 w̃i = 1} such that

m∑
i=1

wiC11(ci) =

m̃∑
i=1

w̃iC11(c̃i)

m∑
i=1

wiC12(ci) =
m̃∑
i=1

w̃iC12(c̃i) (A.6)

m∑
i=1

wiC22(ci) ≤
m̃∑
i=1

w̃iC22(c̃i)
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then (A.1) is just direct consequence of (A.6). The evidence that supports (A.6) involves a

special set of the functions called Chebyshev System.

According to (Karlin and Studden, 1966; Dette and Melas, 2011; Yang and Stufken, 2012),

suppose there are k + 1 real functions u0, u1, ..., uk which are continuous on an interval [A,B],

the collection of those functions are called Chebyshev System(or T-System) on [A,B] if for any

set of zi’s where A ≤ z0 < · · · < zk ≤ B the following inequality of matrix determinant holds.

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

u0(z0) u0(z1) . . . u0(zk)

u1(z0) u1(z1) . . . u1(zk)

...
...

. . .
...

uk(z0) uk(z1) . . . uk(zk)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
> 0. (A.7)

Among the functions of first ν − ν1 columns of C(ci, θ), suppose k − 1 of them form the

maximal set of linear dependent functions, they are then selected and renamed as Ψ1, ...,Ψk−1.

Given any non-zero vector Q of length ν1, define

Ψk = Q
′
C22(ci)Q (A.8)

Then (A.6) is equivalent to

m∑
i=1

wiΨs(ci) =

m̃∑
i=1

w̃iΨs(c̃i), for s = 1, ..., k − 1

m∑
i=1

wiΨk(ci) <
m̃∑
i=1

w̃iΨk(c̃i), for any nonzero Q (A.9)
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(Dette and Melas, 2011) first introduces Chebyshev System into this problem and (Yang and

Stufken, 2012) develops a more general tools based on such system. In particular, theorem 1 in

(Yang and Stufken, 2012) connects (A.9) to chebyshev system and theorem 2 therein provides

convenient tools for checking the sufficient conditions of chebyshev system. We present those

theorems here in our notations.

Theorem 8. [Theorem 1 in (Yang and Stufken, 2012)]. For Ψ1, ...,Ψk−1 and Ψk defined

in (A.9) with domain [A,B], if either

{1,Ψ1, ...,Ψk−1} and {1,Ψ1, ...,Ψk−1,Ψk} are Chebyshev Systems (A.10)

{1,Ψ1, ...,Ψk−1} and {1,Ψ1, ...,Ψk−1,−Ψk} are Chebyshev Systems (A.11)

Then the following results hold:

1. When k = 2n − 1 and (A.10) holds, the designs with at most n support points including

B, form a complete class.

2. When k = 2n − 1 and (A.11) holds, the designs with at most n support points including

A, form a complete class.

3. When k = 2n and (A.10) holds, the designs with at most n+ 1 support points, including

both A and B form, a complete class.

4. When k = 2n and (A.11) holds, the designs with at most n support points form a complete

class.
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It is cumbersome to verify (A.10) or (A.11) by definition, and (Yang and Stufken, 2012)

provides a computational approach which is feasible to be checked manually or with the aid of

computer program that supports symbolic algebra, such as Mathematica. We summarize it as

the following theorem.

Theorem 9. [Theorem 2 in (Yang and Stufken, 2012)]. Given functions Ψ0 = 1,Ψ1, ...,Ψk,

and partition in (A.4), construct f`,` in the following recursive manner:

f`,t(c) =



∂Ψ`
∂c , t = 1, ` = 1, ..., k − 1

∂C22
∂c , t = 1, ` = k

∂(f`,t−1/ft−1,t−1)
∂c , 2 ≤ t ≤ k, t ≤ ` ≤ k

(A.12)

where ∂C22
∂c are elementwise derivatives, and fk,s could be matrix functions for s = 1, ..., k.

Define F (c) =
∏k
`=1 f`,`, then the following results hold:

1. If F (c) > 0 then (A.10) holds.

2. If F (c) < 0 then (A.11) holds.

To state the analytical approach in a nutshell, one has to properly choose ν1 that stands for

a partition of (A.4), then select maximal set of nonconstant linear independent functions and

check theorem 9. There are two major concerns that require extra attention. First, there isn’t

’the gold standard’ for choice of ν1. (Yang and Stufken, 2012) suggests to set ν1 around ν/2 as

a starting point and shows such arrangement works well for the examples therein. Based on our

experience, for some ν1, the algebra of applying (A.12) would be rather tedious, or even unable



84

Appendix A (Continued)

to draw conclusion from. Meanwhile, the order of rows and columns of information matrix may

result in different set of maximal linear independent functions and so are the f`,`. Usually, the

entries with higher order are left in the C22. This maybe the best general strategy available for

now and evidence can be found in (Yang and Stufken, 2012) as well.



85

Appendix B

OPTIMAL WEIGHT EXCHANGE ALGORITHM

Start with initial support S(1) with ν+1 randomly picked sequences and equal weights p(1),

at iteration t,

1. Input support S(t), p(t), and update weights using newton’s method. Note that support

points with zero weights will be deleted in optimizing process.

Newton’s Method:

Input: Start with S
(t)
1 = S(t), and p

(t)
1 = p(t), at iteration j,

(a) update the weights by the equation p
(t)
j+1 = p

(t)
j − α( ∂2Φ

∂p∂p′
)−1 ∂Φ

∂p |p(t)j
.

(b) If p
(t)
j+1 has negative component, go to step (c), otherwise proceed to step (d).

(c) Set α to α/2 and go back to step (a). If α < εα, remove the point with smallest

weight and go back to step (a).

(d) Check if ∂Φ
∂p |p(t)j+1

< ε0,if true, p̃(t) = p
(t)
j+1 is the optimal weights otherwise go to next

iteration.

Output: Support S̃(t) and optimal weights p(t), where S̃(t) = S(t) if no points are

removed.

2. Derive s∗t = argmax
s∈χ

dp(s, ξ
(t)), where ξ(t) = {(si, pi)|si ∈ S̃(t), pi ∈ p̃(t),

∑
i

pi = 1}

3. Check dp(s
∗
t , ξ

(t)) < εd, where εd is a pre-selected small positive value. If true, ξ(t) is the

desired design. Otherwise, let S(t+1) = S̃(t)
⋃
{s∗t }, p(t+1) = p̃(t)

⋃
{0}, and go to step 1.
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R PACKAGE: OWEA

C.1 Introduction

The package OWEA is intended to serve as a simple yet convenient tool for constructing

efficient exact designs. So far it supports A- and D- optimal designs for three models, crossover

model with first order carryover effects and subject dropout, crossover model with proportional

carryover effects, and interference model. For given set of input, approximate design as well

as exact design are returned. Meanwhile, this package also provides function for calculating

efficiency both for rounding and comparisons. At last, a shiny app is provided so that one can

operate on this package via a graphical interface. The app returns key information including

approximate design, exact design, efficiency, and etc. Although it is convenient to use the app

directly but one is recommended to call the functions in OWEA if more controls of input and

output are needed.

The main functions of OWEA are summarized in the following table.

The design function is the internal work horse that returns approximate design as well as

exact design by implementing OWEA algorithm. In particular, the exact design is rounded

from approximate design. For supported models, there are parameters shared across models as

well as their unique set of inputs. The details of parameters are summarized as follows.

• model, character, must be one of ’dropout’, ’proportional’, or ’interference’.



87

Appendix C (Continued)

FUNCTIONS DESCRIPTION

design For calculation of approximate design as well as rounding it to exact design.

design app A Shiny app for OWEA.

eff For calculation of efficiency.

effLB For calculation of lower bound of efficiency, only works for dropout model.

summary To print out summarized result returned from design.

TABLE XII

FUNCTIONS IN R PACKAGE OWEA

• n, integer, total number of runs.

• opt, numeric, 0 = D-optimal, 1 = A-optimal.

• t, integer, total number of treatment levels.

• p, integer, total number of periods for ’dropout’ and ’proportional’ model; block size for

’interference’ model.

• max iter, integer, maximum times of iterations, default is 40.

• For model = ’dropout’:

– drop, a numeric vector, dropout mechanism, its length must equal to p.

• For model = ’proportional’:

– sigma, a matrix, assumed covariance matrix of individual error terms.

– tau, a vector, initial value of initial treatment effects.

– lambda, numeric, proportional coefficient in proportional model.



88

Appendix C (Continued)

• For model = ’interference’:

– sigma, a matrix. assumed covariance matrix of individual error terms.

Note that design function includes a feature that randomly select starting design for new-

ton’s method. In order to obtain reproducible result, we recommend to use set.seed() prior

to invoking design.

C.2 Example

To install OWEA package and load it as well as its dependency to R environment

R> install.packages("OWEA") # install package

R> library("OWEA") # load package

R> library("gtools") # load dependency

Example 1. Crossover model with subject dropout at (t, p) = (4, 4), n = 16, ` = (0, 0, 1/2, 1/2).

This example is from (Zheng, 2013b), where a design named d2, is shown to have relatively

high efficiency under a variety of optimal criteria. We construct D-optimal design under the

same setting using design, and compare with Zheng’s example by eff. In addition, the lower

bound efficiency of exact design can be obtained by effLB.

R> set.seed(232) # set random seed for newton’s method

R> # D-optimal Design, n = 16, t = 4, p = 4, drop mechanism (0, 0, 0.5, 0.5)

R> example1 <- design(’dropout’, n = 16, opt = 0, t = 4, p = 4,

+ drop = c(0, 0, 0.5, 0.5), max_iter = 40)

R> summary(example1) # printing output

The output is

D-optimal designs for dropout model with 4 treatments 4 periods

dropout mechanism 0, 0, 0.5, 0.5 :

$exact_design



89

Appendix C (Continued)

Repetitions

[1,] 1 2 3 4 1

[2,] 3 2 4 4 1

[3,] 2 4 1 3 2

[4,] 3 1 4 2 2

[5,] 4 3 2 1 1

[6,] 3 4 2 1 1

[7,] 2 1 3 3 1

[8,] 4 2 1 1 1

[9,] 4 1 2 2 1

[10,] 1 3 2 2 1

[11,] 1 2 3 4 1

[12,] 1 4 3 3 1

[13,] 2 3 4 4 1

[14,] 4 3 1 1 1

$approximate_design

Weights

[1,] 1 2 3 4 0.136574074

[2,] 2 3 4 4 0.040151065

[3,] 3 2 4 4 0.047214527

[4,] 2 4 1 3 0.117909521

[5,] 3 1 4 2 0.112831469

[6,] 4 3 2 1 0.067786510

[7,] 1 3 4 2 0.023742605

[8,] 3 4 2 1 0.068787564

[9,] 2 1 3 3 0.049790692

[10,] 4 2 1 1 0.043682796

[11,] 4 1 2 2 0.053654742

[12,] 1 4 3 3 0.026048086

[13,] 4 3 1 1 0.058548636

[14,] 1 3 2 2 0.059771184

[15,] 4 1 3 3 0.007662763

[16,] 4 2 1 3 0.018664553

[17,] 3 1 4 4 0.009971946

[18,] 2 4 3 3 0.026060335

[19,] 3 4 1 1 0.011194494

[20,] 2 1 4 4 0.016088388

[21,] 1 2 3 3 0.003864050

$computing_time
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user system elapsed

2.904 0.092 3.245

We access to the efficiency of exact design to approximate design by

R> eff(example1)

$Optimal_Criterion

[1] "D-optimal"

$efficiency

[1] 0.9926396

Here the efficiency is the evaluated by Φ(ECξ)/Φ(ECd). We can also calculate the lower

bound of efficiency using effLB which is according to Lemma 6.

R> effLB(example1)

$lower.bound

[1] 0.82123

$optimal.value

[1] 0.002452183

Not only the lower bound is reported, also the minimum of objective function is returned.

However calculating the lower bound may last for a while when n is large.

To compare exact design to the one in (Zheng, 2013b), first construct the design as matrix.

Note that to use eff function, the last column of the design must be the repetitions.

R> # Construct Zheng’s Design #

R> design_compare <- cbind(t(matrix(c(2,4,3,3,1,4,2,2,2,3,1,1,3,4,1,1,3,1,

+ 2,2,4,1,3,3,3,2,4,4,2,1,4,4,1,2,3,4,

+ 1,2,3,4,1,3,4,2,2,4,1,3,4,3,2,1,4,3,

+ 2,1,4,2,1,3,3,1,4,2), ncol = 16)),1)

R> # Compare Efficiency #

R> eff(example1, ex = design_compare) # relative efficiency
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$Optimal_Criterion

[1] "D-optimal"

$efficiency

[1] 0.9944724

As shown, although the lower bound for D-optimal owea design is only 0.8213, its relative

efficiency is as high as 0.9945. Therefore, the owea design is close to d2 in terms of efficiency.

Computing time is also reported. For this case, owea design costs 3.245s.

C.3 A Shiny App

If one would like to use a more straightforward approach of using OWEA package with

only loss of some flexibility in input parameters, a shiny app is also available for a graphical

user interface. To launch the shiny app, one has to install the R shiny package. After the

installation, simply enter

R> design_app()

A pop-up window like Figure 1 the following will appear.

The top navigation bar has three tabs: ’Crossover Dropout’, ’Crossover Proportional’, and

’Interference’. Each tab is designed for the model that the name indicates. For example,

on Figure 1, ’Crossover Dropout’ tab is selected and this page is for crossover model with

subject dropout. The left panel below navigation bar is where parameters are entered. Here,

for crossover dropout, one need to specify ’total runs’, ’periods’, ’treatments’ and ’dropout

mechanism’. The default maximum iteration time is 40 and usually it takes less than 40 times

for the algorithm to converge. The ’random seed’ is used for reproducible output. When hit
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the ’RUN’ button in blue, it will invoke two functions, design and eff. The output designs as

well as other information are summarized and printed on the right panel (see Figure 2).

For ’Crossover Dropout’, if the ’Lower Bound Efficiency’ is checked, it would call effLB

function and output the lower bound of efficiency on the right panel as well. But the calculation

usually takes a while especially when the total number of runs is large.

There is no such options for ’Lower Bound Efficiency’ when other tabs are activated. For

example, when the tab ’Crossover Proportional’ is clicked, the interface is now changed to

(Figure 3).

The value of checking general equivalence theorem is attached to approximate design as

an indicator of convergence. Usually, a small positive value that is close to 0 indicates the

convergence of algorithm.

Note that except for common necessary parameter inputs, there are extra input boxes for

initial value of parameters on the left panel. For proportional model, one has to provide the

initial values for treatment effects as well as proportional coefficient. When all the blanks are

filled, simply hit the ’RUN’ button, and the output will appear on the right after a short period

of time, like Figure 4. Note that the sigma is set as identity on the background for the purpose

of simplifying input.

The ’interference’ tab looks the same to ’proportional’ tab except for those missing initial

value inputs. In addition, sigma is also set to be identity on the background.

Finally, one is able to export the exact design and approximate design to a ’csv’ file by

clicking on ’Export’ button.
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Figure 1. UI of crossover models with subject dropout
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Figure 2. Result page of designs for crossover model with subject dropout
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Figure 3. UI of crossover model with proportional carryover effects
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Figure 4. UI of interference model
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