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SUMMARY 

Main memory is a storage component in a computer system, where data of currently running 

applications and programs are stored. In modern computing systems, the number of concurrently 

running applications and each application’s working set size are increasing as a result of continued 

advancements in technology. These have resulted in a growing aggregate amount of data that the 

main memory must support. For several decades, Dynamic Random-Access Memory (DRAM) has 

been the dominant technology for building main memories. However, DRAM can no longer satisfy 

the memory capacity demands of the modern-day applications due to its scalability limit; it is very 

expensive and difficult to scale DRAM cells down to feature sizes smaller than 20nm [27, 50]. On 

the other hand, due to the dynamic, leaky nature of its capacitive cells, DRAM requires periodic 

refresh operations to maintain its data integrity. In addition to wasting energy, refresh operations 

degrade system performance by interfering with regular accesses to the main memory. Ever 

worse, the adverse effects of DRAM refresh are expected to aggravate with each generation of 

technology. It is predicted that refresh would account for 50% of throughput loss and 50% of the 

total energy consumption in a future 64GB DRAM system [5, 46]. In current server systems, 

DRAM memory consumes 20% to 40% of the total system energy [45, 78]. 

Due to the limited scalability and high refresh power of DRAM, other new technologies such 

as Phase Change Memory (PCM), Resistive Random-Access Memory (ReRAM) and Spin-Transfer 

Torque RAM (STT-RAM) have recently emerged as potential alternatives to DRAM. These Non-

Volatile Memory (NVM) technologies are much more scalable than DRAM and within the same 

area budget used by a DRAM, can provide a much higher capacity for the main memory due to 
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their higher densities [38, 39, 70]. Moreover, NVM cells are resistive and can preserve their data 

without being refreshed. However, NVMs also have a number of shortcomings. First, they have 

longer access latencies compared to DRAM. Second, NVMs consume much higher dynamic 

energy compared to DRAM (especially for write operations). Finally, NVM cells have limited write 

endurance. Hence, simply replacing DRAM with an NVM, without any modifications, could 

adversely impact memory system performance, energy efficiency, and lifetime. 

In this thesis, we present novel architectural techniques that enable incorporating emerging 

non-volatile technologies into the memory system design while fulfilling system requirements on 

performance and energy efficiency. We start by studying “hybrid main memories”. Hybrid main 

memories, which incorporate both DRAM and NVM, enable systems to benefit from the large 

capacity of an NVM and lower access latency and energy of a DRAM. We first present Refree, a 

scheme that eliminates DRAM refresh operations in a hybrid DRAM/PCM main memory [66]. 

Then, we present NEMO, a scheme that improves the energy efficiency of a mobile device with 

hybrid DRAM/PCM main memory by placing cold memory pages in PCM [65]. Our third work 

called WALL, focuses on PCM-based main memories. More specifically, the energy efficiency and 

lifetime of a PCM-based main memory is improved by reducing the number of writebacks from 

the Last Level Cache (LLC) to PCM. Finally, our last work called DynaSwap is a page swap 

management scheme that improves performance and energy efficiency of a flat address space 

hybrid DRAM/NVM main memory. 

Refree eliminates DRAM refresh operations in a hybrid DRAM/NVM main memory, where 

DRAM serves as a hardware-managed cache for the PCM. The basic idea behind Refree is to evict 

a row from DRAM if at any point the row has to be refreshed. In fact, such rows mostly hold 

nonvaluable (i.e., useless in near future) data. Thus, there is no need to refresh and keep those 
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rows in the DRAM. In addition, a recently accessed row has already been “refreshed” by the access 

and does not need to be refreshed either. To keep the data integrity, the dirty columns of the row 

that is being evicted from the DRAM cache must be written back to PCM. Since the PCM has long 

write latency, we propose a scheme that distributes writebacks of a dirty DRAM row over an epoch 

time (i.e., 128ms) instead of performing them all at once, to prevent long-time blockage of other 

requests, which are actually DRAM read misses, to the PCM storage. Refree can effectively reduce 

the memory power consumption with only a small performance impact. The effectiveness of 

Refree would further improve for future systems with larger DRAM sizes. 

NEMO improves the energy efficiency of a hybrid DRAM/PCM main memory in a mobile 

device. To do so, NEMO powers off as many power-hungry DRAM components as possible, as 

long as it does not impact the performance. Specifically, when the mobile device is in idle state, 

which is the case most of time, only a selective set of data that is critical to performance is kept in 

a single DRAM rank, while the rest of data is stored in PCM, so that the remaining DRAM ranks 

can be powered off. To do so, NEMO classifies memory pages based on their usage frequency and 

recency into hot and cold. Then, it places the hot pages that are more likely to be reused in future 

in the DRAM, which has lower access latency compared to PCM, and stores the cold memory 

pages in PCM, which has near-zero idle power. In addition, NEMO predicts the number of DRAM 

ranks that need to be powered on when the mobile device becomes active for further energy 

saving. NEMO can effectively reduce the memory power consumption without negative 

performance impact. 

WALL improves performance, energy efficiency, and lifetime of a PCM-based main memory 

system by reducing the number of writebacks from LLC to PCM. In general, WALL consists of a 

writeback-aware set balancing mechanism and a writeback-aware replacement policy. Writebacks 
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of the last level cache are not uniformly distributed among its sets; some sets have far more 

writebacks than others while some sets rarely see a writeback. The proposed set balancing 

mechanism reduces the number of writebacks by employing the underutilized sets with 

infrequent writebacks as storage units (inside LLC) for storing the evicted dirty lines of sets with 

many writebacks. Moreover, the proposed writeback-aware replacement policy tries to keep the 

dirty blocks that are frequently accessed after eviction in the LLC. To do so, it allows the dirty 

eviction victims (i.e., dirty LRU block) to stay in the cache and be re-accessed; if the block becomes 

LRU block again without being accessed, it will be evicted from LLC then. The WALL design is 

very simple with small overheads. 

In a hardware-managed flat address space hybrid DRAM/NVM main memory, a swap group 

is defined as a group of pages in DRAM and NVM that can be swapped with each other. DynaSwap 

dynamically associate swap groups with each other in such a way that a swap group with many 

high frequently accessed pages can benefit from the DRAM space of a swap group with low 

frequently accessed pages. In other words, unlike previous studies that create swap groups solely 

based on the physical address of memory pages, we try to create swap groups based on their access 

patterns. Assigning enough DRAM segments to a swap group based on its demand (i.e., its access 

patterns in the current interval) can improve performance and energy efficiency of the memory 

system by reducing the number of unnecessary swaps. 

SUMMARY (Continued) 
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INTRODUCTION 

In modern computer systems, “memory wall” problems including main memory’s high access 

latency, high energy consumption and lack of scalability are among the major bottlenecks of 

system performance and energy efficiency. In today’s computer systems with multi-core and 

many-core processors, the increase in the number of concurrently running applications and each 

application’s working set size have resulted in a growing aggregate amount of data that the main 

memory must support. For several decades, DRAM has been the dominant technology for 

building main memories. However, DRAM can no longer satisfy the memory capacity demands 

of the modern-day applications due to its scalability limit; it is very expensive and difficult to scale 

DRAM cells down to feature sizes smaller than 20nm [27, 50]. On the other hand, due to the 

dynamic, leaky nature of its capacitive cells, DRAM requires periodic refresh operations to 

maintain its data integrity. In addition to wasting energy, refresh operations degrade system 

performance by interfering with regular accesses to the main memory. Ever worse, the adverse 

effects of DRAM refresh are expected to aggravate with each generation of technology. It is 

predicted that refresh would account for 50% of throughput loss and 50% of the total energy 

consumption in a future 64GB DRAM system [5, 46]. In current server systems, DRAM memory 

consumes 20% to 40% of the total system energy [45, 78]. 

Due to the aforementioned problems of DRAM, NVM technologies such as PCM [40, 70, 90]  

and ReRAM [11] have emerged as DRAM alternatives. These NVM technologies are much more 

Parts of this chapter has been presented in [63, 64, 65, 66]. Copyright © 2016, 2018, IEEE. 
Copyright © 2017, 2019, ACM. 
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scalable and denser than DRAM [38, 39]. Moreover, NVM cells are resistive and can preserve 

their data without being refreshed. Therefore, the static energy overhead of NVMs is much lower 

than that of DRAM. However, NVMs generally suffer from longer access latencies and higher 

dynamic energy consumptions (especially for the write operations) compared to DRAM. 

Moreover, NVM cells have limited write endurance. Hence, simply replacing DRAM with an NVM 

as main memory, without any modifications, can adversely impact memory system performance, 

energy efficiency and lifetime. 

To benefit from the large capacity of an NVM while keeping access latency and energy close to 

that of a DRAM, hybrid main memories, which incorporate both DRAM and NVM, have been 

proposed. In a hybrid DRAM/NVM main memory, DRAM can serve as a hardware-managed 

cache for the NVM [41, 51, 70, 84]. Existing studies have shown benefits from a relatively small 

DRAM cache. However, in future, satisfying system demands on performance and energy-

efficiency with such fair-sized DRAM caches becomes impossible. Generally, a larger DRAM cache 

can alleviate overheads of hybrid main memory on system performance and energy consumption 

by accommodating more data and reducing the number of accesses serviced in NVM. However, 

the larger the DRAM cache, the higher the refresh costs. We address this problem in Chapter 3 by 

presenting Refree, a scheme that eliminates DRAM refresh operations in a hybrid DRAM/PCM 

main memory [66]. Specifically, when it is time to refresh a row, Refree evicts the row from the 

DRAM cache instead. This can be done since a recently accessed row has already been “refreshed” 

by the access; while a row that hasn’t been accessed for a long time is very likely to hold obsolete 

data and does not need to be refreshed and kept in the DRAM. If an evicted row is dirty, it will be 

written back to the PCM. To alleviate the potential performance loss due to the long PCM write 

latency, Refree distributes writebacks of a dirty DRAM row over an epoch time (i.e., 128ms) to 

prevent long-time blockage of other requests to the PCM devices. Our simulation results reveal 
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that Refree can achieve an average of 11.7% reduction in memory power consumption and 4.2% 

performance improvement on a quad-core system running NAS [60] and PARSEC [6] 

applications with 4GB DRAM and 32GB PCM, compared to the standard auto-refresh scheme. 

Compared with a previously proposed refresh-reduction scheme [5], Refree can save main 

memory power by 3.1% on average, with a negligible 0.2% performance loss. 

To reduce DRAM refresh and background power in a hybrid DRAM/PCM main memory (i.e., 

DRAM cache plus PCM) in a mobile device, we present a scheme called NEMO in Chapter 4. 

Mobile devices run on small batteries with limited capacities. Hence, energy consumption is an 

important factor that determines the usability duration of a mobile device. Main memory 

consumes a significant portion of the total system energy especially when the mobile device is 

idle, which is the case most of the times [13]. Moreover, in current and future systems, it is very 

likely that users tend to run various mobile applications simultaneously, which further increases 

the aggregate memory demands of mobile devices. Therefore, optimizations on memory energy 

consumption have become even more critical in those devices. Our proposed scheme, NEMO, 

powers off as many power-hungry DRAM components as possible, as long as it does not impact 

the performance. Specifically, when the mobile device is in idle state, only a selective set of data 

that is critical to performance is kept in a single DRAM rank, while the rest of data is stored in 

PCM, so that the remaining DRAM ranks can be powered off. To do so, NEMO classifies memory 

pages based on their usage frequency and recency into hot and cold. Then, it places the hot 

memory pages that are more likely to be re-used in future in the DRAM, which has lower access 

latency compared to PCM, and stores cold memory pages in PCM, which has near-zero idle power. 

In addition, NEMO predicts the number of DRAM ranks that need to be powered on when the 

mobile device becomes active for further energy saving. Our simulation results reveal that NEMO 

achieves on average, 10.2% reduction in memory power consumption and 1.7% performance 
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improvement on a system running various combinations of Moby benchmark applications [25] 

with 128MB DRAM and 1GB PCM, compared with the approach that simply puts DRAM into self-

refresh low-power mode during idle state. 

The main shortcomings of non-volatile memories are mostly related to the write operations; 

the latency and energy consumption of writing to an NVM is much higher than those of reads. To 

deal with the high overheads of write operations in NVM-based main memories, there are two 

common types of solutions. First category is to minimize the impact of writes on performance by 

optimizing the NVM architecture. Second category is reducing the total number of writes sent to 

the NVM main memory by modifying the Last Level Cache (LLC) management policies [80]. To 

alleviate the write-related overheads of a PCM-based main memory, in Chapter 5, we present a 

scheme called WALL [63, 64], which falls into the second category. WALL improves performance, 

energy efficiency, and lifetime of a PCM-based main memory system by reducing the number of 

LLC writebacks. In Chapter 5, we first investigate the writeback behaviour of LLC sets and show 

that writebacks are not uniformly distributed among sets; some sets observe much higher 

writeback rates than others. Then, we propose a writeback-aware set-balancing mechanism that 

employs the underutilized LLC sets with few writebacks as an auxiliary storage for the evicted 

dirty lines from sets with frequent writebacks. We also propose a simple and effective writeback-

aware replacement policy to avoid the eviction of the dirty blocks that are highly re-used after 

being evicted from the cache. Our experimental results show that WALL achieves an average of 

30.9% reduction in the total number of LLC writebacks, compared to the baseline scheme, which 

uses the LRU replacement policy. As a result, WALL can reduce the memory energy consumption 

by 23.1% and enhance PCM lifetime by 1.29×, on average, on an 8-core system with a 4GB PCM 

main memory, running memory-intensive applications. 
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To benefit from the total capacity of both DRAM and NVM and their aggregate bandwidth in 

a hybrid DRAM/NVM main memory, DRAM can also be used as part of the OS-visible main 

memory [14, 36, 37, 67, 74, 75]. Such organization is called a “flat address space hybrid main 

memory”. In a flat address space hybrid memory, DRAM has a limited capacity. Moreover, 

memory access behaviour of programs changes during execution. Hence, to take advantage of 

performance benefits of DRAM, data may need to be migrated (i.e., swapped) between DRAM and 

NVM. Since hardware requires meta-data storage to keep track of the migrated data, migrations 

are typically performed at a coarse granularity (e.g., memory pages). Existing schemes on flat 

hybrid memories typically partition the memory space into “swap groups” and allow only DRAM 

(i.e., fast memory) and NVM (i.e., slow memory) pages that belong to the same swap group to be 

swapped with each other. However, within a given interval, a swap group may contain more “high 

frequently accessed” pages than the number of DRAM segments (i.e., each segment contains a 

memory page) assigned to it (i.e., “swap group associativity”). This can cause frequent back and 

forth migrations of those pages between DRAM and NVM. Meanwhile, pages in another swap 

group may all be “low frequently accessed”. Hence, most of the page migrations, which are very 

costly in terms of performance and energy, can be avoided by dynamically adjusting the structure 

of the swap groups based on programs behaviour. To address the limitation of statically structured 

swap groups, we propose DynaSwap in Chapter 6. Specifically, DynaSwap dynamically associate 

swap groups with each other in such a way that a swap group with many high frequently accessed 

pages can benefit from the DRAM space of a swap group with low frequently accessed pages. In 

other words, unlike previous studies that create swap groups solely based on the physical address 

of memory pages, we try to create swap groups based on their access patterns. Assigning enough 

DRAM segments to a swap group based on its demand (i.e., its access patterns in the current 

interval) can improve performance and energy efficiency of the memory system by reducing the 

number of unnecessary swaps. Our experimental results show that DynaSwap can efficiently 
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utilize DRAM capacity and improve the overall performance and main memory energy efficiency 

by 30.1% and 13.5% on average, respectively, compared to a state-of-art baseline design. 
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BACKGROUND AND RELATED WORK 

 Main Memory Organization 

Conventional memory systems are organized hierarchically (Figure 1). The highest level of the 

hierarchy is “channel”; each channel can operate independently from other channels. A channel 

contains one or more “ranks”. Ranks in a channel share the channel bandwidth but can operate 

in parallel (i.e., rank-level parallelism). Moreover, each rank contains one or more “banks”. Banks 

can also operate in parallel (i.e., bank-level parallelism). However, bank-level parallelism is 

restricted by both the channel bandwidth and the resources shared between banks in a memory 

device (e.g., device power). Finally, a bank is a two-dimensional array of memory cells; consisting 

of many “rows” and “columns”. 

 

 

Figure 1. The organization of memory system. 

channel

rank

bank

rank

bank

Memory Controller

cell cel l cel l…

… … …

row cel l cel l cel l…

row buffer

Parts of this chapter has been presented in [63, 64, 65, 66]. Copyright © 2016, 2018, IEEE. 
Copyright © 2017, 2019, ACM. 
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On an access to a bank, the row holding the requested data is first copied into a “row buffer” 

(row is “activated”). In this way, the subsequent requests to the row will be served promptly from 

the row buffer (i.e., row buffer hit). 

 DRAM Refresh Operations 

Dynamic Random-Access Memory (DRAM) has been the dominant technology for building 

main memories for several decades. The storage element of a DRAM cell is a capacitor that stores 

data in the form of a small electrical charge. The DRAM capacitive cells are naturally leaky and 

lose their data over time. To prevent data loss from happening, DRAM devices require periodic 

refresh operations. The process of refreshing restores the charge leaked from each individual cell 

of a row by “activating” or “opening” the row. Typically, the refresh operation for each DRAM row 

is performed once every 64ms (32ms at high temperatures) as specified by JEDEC standards [28, 

29]. This time duration is called “retention time” or	��
�. 

In commodity DRAMs, two modes of refreshing are supported: 1- “Burst Refresh”: In this 

mode, with every refresh command from the main memory, all DRAM rows undergo refresh in 

succession. This scheme was used in early generations of DRAM and has one major drawback: 

refreshing in a bursty fashion degrades system performance by delaying the regular accesses to 

the memory module for a long time. 2- “Distributed Refresh”: This is employed in current DDR 

devices to avoid the long latency of burst refreshing. In this mode, rows of a bank are divided into 

8K groups (called “refresh groups”) and each group is refreshed within a 7.8µs (3.9µs at high 

temperatures) time interval (called “refresh interval” or	��
��). Modern DRAM controllers send 

an auto-refresh (AR) command to the DRAM device once every	��
��, and then the device decides 

which rows to be refreshed using an internal refresh counter. The time that the device takes to 
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complete the refresh operation is called “refresh cycle time” or ���� and is proportional to the 

number of rows per refresh group. 

Refresh operations add significant power and performance overheads to the system. The 

power overhead comes from the energy consumed to activate the rows. The performance cost 

mainly results from the inaccessibility of a bank to regular requests while performing refreshes. 

Alas, these negative effects are expected to exacerbate as DRAM density increases. As the number 

of rows per bank increases, so does the number of rows that are refreshed with each auto-refresh 

command. In fact, while other timing parameters of DRAM remain almost constant from one 

generation to another, ����  is growing exponentially [5, 59]. 

To improve the performance and energy efficiency of DDR devices, some prior studies have 

attempted to reduce the number of refresh operations by considering either the access recency [1, 

20, 26] or the retention time [5, 46] of rows. The proposed techniques in [20, 46] perform 

refreshing at a row-level granularity. In old asynchronous DRAM devices, the memory controller 

was able to perform row-level refreshing by issuing RAS-only commands [57]. However, this 

method requires additional power for sending row addresses on the bus and thus is deprecated 

by JEDEC standards. In current devices, issuing an ACTIVATE command followed by a 

PRECHARGE command is the only way to implement row level refreshing. 

The access-aware refresh reduction schemes are based on the fact that a row needs to be 

opened and thereby is automatically refreshed on regular accesses. In other words, for up to 

��
�  after accessing a row, the integrity of its data is guaranteed [20]. Moreover, a refresh 

operation to a row that doesn’t hold valid data is utterly unnecessary and can be skipped [26]. In 

the meantime, the leakage current differs among the cells of a DRAM device. In general, a cell can 

be either “leaky” or “normal”. Of all the cells, very few are leaky and lose their data faster, whereas 
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the rest are normal and retain their stored charge for a longer period of time [23, 33]. The time 

period that a cell can safely preserve its stored data is referred to as its “retention time”. The 

standard retention time (��
�) is in fact the retention time of the leakiest cell on the device. 

However, a row that doesn’t have any leaky cell is “strong” and can be refreshed at a slower than 

nominal rate. Hence, previous retention-aware refresh reduction schemes schedule the refresh 

operations for every single row [46] or a refresh group [5] based on the cell’s retention time 

information. 

 Mobile DRAM Power Management 

In power management, a rank is the smallest unit that can be controlled to operate in several 

different power states. In general, the power consumption of a rank can be classified into two 

main categories, “active” and “background” [49]. The power required to serve memory reads and 

writes is the active power, while the background power is consumed all the time even without any 

memory accesses. Background power contributes significantly to the total DRAM power [49]. In 

fact, in addition to the periodic refresh operations, the other components of a rank, such as row 

and column decoders and sense amplifiers, are also power hungry [42]. Hence, different low-

power operating states are provided by SDRAM architectures to disable some of these sources of 

energy consumption and reduce the background power. 

The power consumption of a rank varies among different power states. To reduce the 

background power, a rank can be put into a low power state when it is idle. However, to power up 

the rank and restore it to the active state, its disabled hardware components need to be 

reactivated. Transition among different power states incurs latency and energy penalties. 

Basically, a power state is described by its power consumption and resynchronization time, the 

time that it takes to exit the power state and go back to the active mode. A power state that 
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consumes less energy typically has higher resynchronization time. The major power states 

provided by Low-Power DDR2 (LPDDR2) are summarized in TABLE I. The power consumption 

values are calculated with DRAM System Power Calculator [56]. The current and voltage 

parameters are obtained from a LPDDR2 datasheet [55]. 

 Phase Change Memory 

Phase Change Memory (PCM) is a type of non-volatile memory technology that has been 

explored as an alternative to DRAM due to its better scalability, lower leakage energy and non-

volatility [66, 72]. One of the key advantages of PCM over DRAM is its scalability. In fact, PCM 

can scale down to feature sizes as small as 8nm [27]. Another benefit of the PCM technology is its 

zero-leakage power. The resistive characteristic of PCM cells allows them to retain their data for 

a long time with no need for periodic refreshes. Also, PCM exhibits much better static energy 

parameters compared to DRAM [88]. Despite of its many advantages, PCM also has a number of 

drawbacks. Compared to DRAM, each read/write operation in PCM has longer latency and 

consumes more energy [84]. Further, a PCM cell has much lower write endurance. TABLE II 

summarizes PCM and DRAM attributes. 

TABLE I. Power states for a 1GB LPDDR2. 

Power States Power (mW) Comments 

ACT 20.5 DRAM power for ACT/PRECHARGE commands 

ACT_PDN 9.4 Background power used during active power-down 

PRE_PDN 3.4 Background power used during precharge power-down 

SREF 1.4 Self-Refresh (SR) standby power 

DPD 0.2 Deep Power-Down (DPD) standby power 
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 Impact of Write Operations on PCM 

Phase change memory has higher write access energy and latency than DRAM (2 to 8 times 

[39]) and limited write endurance. A previous study [2] has shown that the long-latency write 

operations can increase the effective latency of read requests by 1.2 to 1.8 times. In addition, the 

number of write operations in PCM affects its lifetime. The PCM-based memory system lifetime 

can be calculated as [70]: 

System	Lifetime � Y	�years ! 	
w#$%	.		S

B
	. 2)*+ 

In this formula, B is the write traffic (or write rate, GBps), Y is the maximum number of years 

that a PCM with size S and cell endurance of ,-./ can last. The effect of reducing the write traffic 

on the expected PCM lifetime is shown in Figure 2. It should be noted that the results of the figure 

are independent of S and ,012. It is also assumed that the writes are distributed uniformly across 

the entire PCM memory. 

 Hybrid Main Memory  

Non-volatile memory (NVM) technologies such as PCM, ReRAM and STT-RAM have been 

explored as potential replacements to DRAM due to their higher density, better scalability, and 

TABLE II. Comparison between DRAM and PCM [89]. 

Memory 
Technology 

NVM Idle Power 
Read 

Latency 
Write 

Latency 
Endurance 

DRAM No ∼0.1 W/GB 50 ns ∼20-50 ns ∞ 

PCM Yes ≪ 0.1 W 50-100 ns ∼1 us 108 
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lower leakage power [81, 83]. However, NVMs have two major limitations and cannot replace 

DRAM without any modifications. First, NVMs have higher access latency and energy compared 

to DRAM. Second, NVM cells have limited write endurance, which can adversely impact their 

lifetime [15, 77, 85]. 

Hybrid main memories, which incorporate both DRAM and NVMs, have been proposed as a 

potential solution that can benefit from both technologies. In a hybrid main memory, DRAM, 

which has lower read/write latency and energy, can serve as a cache for the NVM [41, 51, 70, 84].  

In this case, the entire working set of the application initially resides in NVM. Then, upon every 

DRAM cache miss, the requested data is copied from NVM into the DRAM cache. DRAM can also 

be used as part of a flat address space hybrid main memory [14, 36, 37, 67, 74, 75] to enhance the 

overall OS-visible capacity of memory. The flat address configuration is beneficial for data-

intensive applications (i.e., with large working sets) when DRAM space constitutes a large fraction 

of the overall memory capacity [14, 36, 37, 67, 74, 75]. 

 

Figure 2. Impact of reducing write traffic on PCM lifetime. 
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 DRAM as a Cache 

The benefits of using a small DRAM as a conventional cache in a DRAM/PCM hybrid main 

memory was first investigated by Qureshi et al. [70]. In that system, the DRAM component of the 

main memory is organized as a 16-way set associative cache with cache blocks as large as a 

memory page. In general, the major challenges of designing a DRAM cache structure are 

minimizing hit latency, tag storage overhead and complexity of page placement and migration. 

Prior studies have proposed various DRAM cache structures based on their design goals. 

To design a power-efficient and high-performance hybrid DRAM/NVM main memory, three 

questions must be answered:  First, what granularity of data movement between DRAM and NVM 

will satisfy system’s demands best? Prior studies, which consider DRAM as a cache for either a 

DRAM-based main memory or NVM component of a hybrid main memory, migrate data either at 

the granularity of a memory page [43, 70, 71, 84, 87] or a processor’s cache block [18, 22, 44, 48, 

51, 69]. In [70], the migration of data from PCM to DRAM is performed in pages, but, upon 

evicting a row from DRAM, only the dirty columns of the row are written back to PCM to reduce 

the number of PCM writes. The DRAM row buffer locality can be effectively exploited in such 

“row-based” DRAM caches. Nevertheless, migrating data at a finer-granularity reduces the 

migration latency and prevents the subsequent memory requests to be blocked for a long time but 

with a higher management cost [22, 48]. Moreover, cache structures with blocks of the same size 

as a processor cache block manage the cache space more efficiently by minimizing overfetching. 

Second, how to effectively manage caching overheads? In order to have fast accesses, previous 

study [70] uses a separate 1MB SRAM to store the caching information (i.e., tags, dirty/valid bits 

and LRU information) for a 16-way set-associative 1GB DRAM cache with 4KB blocks. This cache 

structure is simple and incurs low management costs. However, for the same size (1GB) finer-
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grained DRAM cache (e.g., with 64B blocks) or a larger DRAM cache, the area overhead of a 

separate SRAM storage makes it impractical. To overcome this challenge, some prior studies [48, 

51, 69] have proposed to store the caching information in the DRAM cache itself. For example, 

LH-cache [48] places an entire cache set in a DRAM row and reserves three out of 32 columns of 

the row for tags; and Alloy cache [69] integrates both tag and data into a single entity and transfers 

an entity in five bus cycles. However, the tag storage overhead of such tag-in DRAM caches is still 

large and occupies 12.5% (i.e., 128MB per 1GB) of the total DRAM cache space [69]. To address 

the aforementioned challenge, a recent study [44] has proposed a page-based, fully associative, 

tagless DRAM cache that completely removes the cache management data structures. To 

eliminate cache tags, the conventional TLB is replaced with cache-map TLB (cTLB) that stores 

virtual-to-cache, instead of virtual-to-physical address mappings. The cTLB uses the same 

hardware resources as the original page table. In addition, the cache replacement mechanism is 

implemented by exploiting a Global Inverted Page Table (GIPT), which stores the cache-to-

physical mappings for the cached pages, and a Free Queue that maintains a list of cache blocks to 

be evicted. This cache structure has zero tag storage overhead, low average access time (i.e., high 

hit rate due to being fully associative) and high energy efficiency [44]. 

Finally, the last question: what data is worthy of occupying DRAM cache space?  This question 

is answered by previous studies in two different ways. The first one is based on the access pattern 

of rows [43, 71, 87]. Those schemes predict that a row is more likely to be reused in near future if 

it has been frequently accessed in the past (i.e., hot page). Hence, they migrate hot pages from 

NVM to DRAM. The second one is based on the number of row buffer misses of NVM rows [84]. 

This scheme counts the number of row buffer misses for the recently accessed rows in PCM and 

migrates to DRAM the rows that have been highly reused but mostly missed in row buffers. 
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 DRAM as Part of Memory 

In a flat address hybrid memory, fast and slow memory modules (e.g., DRAM and NVM) are 

organized in parallel as two separate storage elements, each holding a portion of the working set 

[43, 71, 87]. A flat address space hybrid main memory can be managed by software to create a 

heterogeneous main memory. However, in such memory systems, the difficult task of page 

placement and migration must be handled by OS, which also needs hardware support to gather 

per-page access statistics [44]. Hence, previous studies have mostly focused on hardware-

managed techniques [14, 36, 37, 67, 74, 75]. To improve performance and energy efficiency of a 

hardware-managed flat hybrid memory, pages can be swapped between the slow (e.g., an NVM) 

and fast (e.g., DRAM) memory modules to ensure that frequently accessed pages are placed in the 

fast memory. 

Sim et al. [75] proposed a hardware-managed flat hybrid memory design, which we will refer 

to as PoM (i.e., Part of Memory). PoM performs migrations at the granularity of pages (i.e., 2KB) 

and uses a “remapping table” to keep track of the pages it swaps between the fast and slow 

memory. To keep the bookkeeping costs practical, migrations are only allowed within sets of 

pages, which we will refer to as “swap groups”. In other words, multiple pages of slow memory 

and a page of fast memory form a swap group, and only one page of the group can reside in the 

fast memory at a time. PoM monitors the memory accesses with a counter per swap group and 

initiates a page migration when the counter reaches a threshold. 

In [14], a cache-like flat memory management scheme called CAMEO is proposed to close the 

gap between cache and flat memory architectures. CAMEO works similarly to PoM but does so at 

the granularity of cache lines (i.e., 64B). It places the remapping meta-data next to data within 

the same row and initiates a migration upon every access to the slow memory. The major 
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limitation of both PoM and CAMEO is that multiple frequently accessed pages/lines may exist 

within the same swap group. In such case, the direct-mapped structure of both designs (i.e., 

multiple rows/blocks in the slow memory are mapped to a row/block in the fast memory) forces 

pages/lines in a swap group to compete for a single row/block of the fast memory. This can cause 

frequent back and forth movement of those pages/lines between the fast and slow memory 

modules. 

Using smaller swap granularities enables CAMEO to keep the swap bandwidth low. However, 

it requires higher meta-data storage and eliminates the opportunity to benefit from programs 

spatial locality. To optimize the swap granularity, SILC-FM [74] supports sub-block interleaving 

between two pages in the fast and slow memories (i.e., migration granularity ranges from 64B to 

2KB). It also improves the migration flexibility by making the direct-mapped structure of swap 

groups into set-associative. However, while PoM and CAMEO allow a page to reside anywhere 

within a swap group (i.e., fast swaps), SILC-FM requires the original mapping in a swap group to 

be restored before each swap (i.e., slow swaps). 

The MemPod scheme proposed in [67] further improves migration flexibility by making it 

fully-associative. More specifically, it partitions the memory space into large clusters and allows 

an any-to-any page swap between the fast and slow memories within a cluster. To predict the 

future hot pages for migration to the fast memory, MemPod employs the Majority Element 

Algorithm (MEA) [31] and performs migrations at the granularity of pages after pre-defined time 

epochs. The major limitation of MemPod is that its fully-associative structure comes at the cost of 

a significant increase in the meta-data area overhead. 

A recent study, PageSeer [37], adapts correlation prefetching (i.e., the pages that are accessed 

in some order at some point are likely to be accessed in the same/similar order in the future) to 

identify the  pages that are to be accessed soon and exploits page walks to migrate those pages 
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into the fast memory ahead of time. It associates an access counter with each page and triggers a 

swap for the page when the counter reaches a threshold. The swap restriction of PoM is also 

relaxed by making the swap groups set-associative. However, this design suffers from slow swaps. 

Moreover, PageSeer also assigns a limited number of statically-specified fast memory rows to all 

the swap groups while swap groups can have different access behaviours. 

 Other Related Works 

 Reducing Overheads of DRAM Refresh 

Some recent studies have tried to alleviate the power and performance overheads of refreshing 

in DRAM-based main memories or eDRAM-based on-chip caches. Some existing schemes such 

as Flikker [47], RAIDR [46] and Flexible Auto-Refresh [5] reduce unnecessary refresh operations 

by taking DRAM rows retention time into account. More specifically, Flikker allows the 

programmer to divide the application data into critical and non-critical portions. It then refreshes 

the non-critical part of the memory at a lower than nominal rate and the critical part at the regular 

rate. The RAIDR scheme groups rows into bins based on their retention time and refreshes bins 

at different rates. Since most of the DRAM cells and thus their corresponding rows are strong and 

need to be refreshed at lower rates, RAIDR is able to remove a large percentage of refresh 

operations. Flexible Auto-Refresh skips the unneeded refreshes while it performs the remaining 

refresh operations using the default auto-refresh mechanism. To do so, the architecture of the 

memory controller is modified to enable reading, writing and incrementing the refresh counter in 

a DRAM device. 

Some studies reduce the number of refresh operations by considering the access pattern of 

DRAM rows. Among those are Smart Refresh [20] for off-chip DRAM main memories and Refrint 
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[1] for on-chip eDRAM caches. The smart refresh scheme eliminates refreshes to the accessed 

rows. This scheme employs a time out counter for each row that is reset to its maximum upon an 

access or refresh to the row. The Refrint scheme refreshes only the data that is likely to be used in 

near future and has not been accessed recently. Generally, DRAM can be used as either an off-

chip cache in a hybrid main memory [70] or an on-chip cache in 3D CMPs [69]. Moshnyaga et al. 

[58] proposed a software-based scheme to reduce the off-chip DRAM cache refresh energy in a 

DRAM/Flash memory system. This technique recognizes active and non-refreshed banks based 

on the access pattern of their data and disables refresh to the banks that contain only non-

modified data in a given time period. For on-chip eDRAM-based caches, memory access 

behaviour is exploited in [1, 10]. They postpone refresh to the rows that are accessed intensively 

and bypass refresh to the dead cache lines. 

 Data Placement and Migration in Hybrid Main Memories 

One of the challenging issues related to the hybrid main memories is to decide which data to 

place in which memory component. For hybrid memory systems that consist of multiple different 

technologies, managing data placement and movement between the two technologies is a major 

challenge. Some of the previous studies including [71, 87] take page accesses into consideration 

and migrate hot pages from PCM to DRAM. The memory controller uses a modified multi-queue 

algorithm for determining hot and cold pages. In addition, since row buffer misses are much more 

costly in terms of energy and latency in PCM, Yoon et al. [84] migrate data that frequently misses 

in the row buffer from PCM to DRAM. Based on their cost-benefit analysis, they determine a 

dynamic threshold to decide whether a row has low row buffer locality or not. 
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 Reducing Energy Consumption of Main Memory in Mobile Devices 

One of the prime consumers of energy in mobile systems is the main memory. To reduce main 

memory’s power consumption, a prior study [17] has investigated the effectiveness of some energy 

management mechanisms on smartphones. In that work, Power-Aware Virtual Memory (PAVM) 

[24] and Immediate Power Down (IPD), Immediate Self Refresh (ISR) [21] schemes are 

discussed. The PAVM scheme is an OS-level approach that maps all pages of an application into 

a few ranks and turns on only those ranks when the application is running. However, one major 

limitation of PAVM is that when multiple applications are simultaneously running on a device, 

the memory pages of each application may reside in a different rank. In fact, the worst-case 

scenario happens when the applications that are frequently launched together, each gets assigned 

to a distinct memory rank. In that case, all the memory ranks need to be turned on most of the 

times. The IPD/ISR mechanism immediately puts an active rank into a lower power state after 

serving a memory request. Though this scheme could work well for workloads with lower memory 

intensities, it can have negative impacts on system energy efficiency and performance for the 

memory-intensive applications. 

A recent study [13] pointed out that devices such as smartphones and tablets are idle most of 

the times. To save refresh power during the long idle periods, Chou et al. [13] proposed Morphable 

ECC (MECC). It reduces refresh rate in idle mode by using strong error correction, while in active 

mode, it prevents performance degradation by using weak error correction. There are two main 

downsides of MECC. First, current mobile devices are not supported with ECC. Thus, MECC that 

requires the same area overhead as traditional SECDED (i.e., 12.5%) is not the best solution for 

compact mobile devices. Second, MECC does not power off the DRAM main memory in idle mode. 

Thus, only up to half of the DRAM idle power would be saved. The limited memory size of portable 

devices is another challenging issue that has a direct impact on user experience. The LRU-based 
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task killing policy of Android platforms results in restarting a large number of applications when 

the available memory capacity is not sufficient to accommodate all the applications’ datasets. To 

deal with this problem, some prior studies have benefited from non-volatile memory technologies 

such as PCM either as a swap area or in a hybrid main memory [7, 17, 34, 88]. 

 Reducing Overheads of Write Operations in NVMs 

Many recent studies have focused on mitigating the overheads of write operations in PCM-

based main memories. Lee et al. [15] proposed a scheme called eager writeback, which writes the 

LRU dirty cache lines back into the main memory before their eviction to improve system 

performance. A variation of eager writeback is proposed in [25] to improve PCM performance by 

early and eagerly writing back the long latency SET operations. In [24], the concept of write 

cancellation is introduced to prioritize reads over writes to immediately service the incoming 

reads; this scheme cancels the conflict writes. The performance overhead of write operations is 

alleviated by parallelizing read or write accesses with an ongoing write in [1]. Moreover, Zhou et 

al. [38] developed a non-blocking PCM bank design which aims to service subsequent reads or 

writes in parallel with an on-going write. Xia et al. [32] explored the possibility of removing the 

unmodified data from a single write and then, merging modified data of multiple writes to be sent 

within one write request to improve PCM write bandwidth. In addition, Zhang et al. [37] has 

shown that only a small portion of the main memory is frequently accessed in a given time period. 

Based on that observation, their scheme records and predicts the memory regions’ write 

frequencies in order to select a proper write latency (i.e., the number of SET iterations) for every 

incoming memory write operation to improve system performance and memory lifetime. 

There are also many studies on reducing the write overheads of other types of non-volatile 

memory technologies such as STT-RAM and ReRAM. Zhang et al. [36] proposed a scheme called 
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Mellow Writes that extends memory controllers to selectively perform slow writes to reduce the 

impact of writes on endurance and performance of the ReRAM-based memories. Kultursay et al. 

[13], investigated the possibility of replacing DRAM with STT-RAM for main memories. In that 

work, STT-RAM write overheads are reduced by bypassing the row buffer writes and tracking 

dirty blocks to perform partial writes within a row. Typically, STT-RAM is considered as an 

alternative to SRAM caches or used in SRAM-NVM hybrid caches. To alleviate the write overheads 

of STT-RAM in a hybrid cache, Wang et al. [29] presented an adaptive placement and migration 

policy based on the access pattern of different classes of write operations in LLC. Wu et al. [31] 

partitioned hybrid cache into read and write regions and migrated cache blocks within the cache 

to mitigate the write overheads of STT-RAM. 

Some studies have proposed techniques for reducing the number of LLC writebacks to the 

non-volatile component of a hybrid main memory consisting of an NVM and DRAM [6, 35]. In 

reference [6], a miss penalty-aware LRU-based cache replacement policy, called MALRU is 

proposed to consider the asymmetry of cache miss penalty on DRAM and NVM. The MALRU 

scheme keeps the high-latency NVM blocks as well as the low-latency DRAM blocks with good 

temporal locality in a reserved area to protect them from being evicted from the LLC. Similarly, 

Zhang et al. [35] proposed a writeback-aware LLC management scheme for hybrid main memory 

systems to reduce the number of writebacks to NVM by improving the hit ratio of the NVM 

memory blocks in the cache. It should be noted that these techniques are only applicable for 

hybrid main memories. To balance the pressure on cache sets, the set balancing cache (i.e., SBC) 

proposed in [27] tries to associate sets with maximum “saturation counters” (i.e., sets with large 

datasets) with sets with small saturation counters. Though SBC reduces cache miss rate, it is not 

always able to reduce the number of writebacks. There are some sets with saturation counters 

smaller than the maximum value, which write back more frequently than those with maximum 
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saturation counter values. However, the SBC scheme shares resources between two sets only when 

a set’s saturation counter reaches its maximum.  
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A REFRESH-FREE HYBRID DRAM/PCM MAIN MEMORY SYSTEM  

 Introduction 

Technological advances have scaled up the size of applications working sets drastically. This 

growing trend is expected to continue even faster in future. Moreover, the number of cores that 

share a single memory system is increasing on chip multiprocessors. Hence, the aggregate amount 

of data that the main memory must be able to support is becoming larger over time. This makes 

main memory an even more critical component in modern computing systems. Meanwhile, 

DRAM is facing two main challenges. First, its scalability is limited. Second, it requires periodic 

refresh operations, which consume considerable amount of time and energy. Recently, scalable 

non-volatile memory technologies such as PCM have emerged as DRAM alternatives. However, 

PCM, as other NVMs, has a number of shortcomings. First, PCM has higher access latency and 

energy compared to DRAM. Second, PCM cells have limited write endurance. 

To overcome the shortcomings of both technologies, hybrid DRAM/PCM main memories have 

been proposed. Such designs typically consist of a modest sized off-chip DRAM cache for a much 

larger PCM storage. However, in future, satisfying system demands on performance with such a 

small DRAM cache, no matter how well managed, might be impossible. On the other hand, using 

a larger DRAM cache can also incur significant performance and energy overheads due to DRAM 

refresh operations. In this study, we present Refree [66], a scheme that eliminates DRAM refresh 

operations in a hybrid DRAM/PCM main memory system. 

Parts of this chapter has been presented in [66]. Copyright © 2016, IEEE. 
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The basic idea behind Refree is to evict a row from DRAM if at any point the row has to be 

refreshed. In fact, as will be shown later in this chapter, such rows mostly hold nonvaluable (i.e., 

useless in near future) data. Hence, there is no need to refresh and keep those rows in the DRAM 

cache. In addition, a recently accessed row has already been “refreshed” by the access and does 

not need to be refreshed either. To keep the data integrity, the dirty columns of the row that is 

being evicted from the DRAM cache must be written back to the PCM. Since PCM has long write 

latency, we propose a scheme that distributes writebacks of a dirty DRAM row over an epoch time 

(i.e., 128ms) instead of performing them all at once, to prevent long-time blockage of other 

requests (i.e., DRAM read misses) to the PCM storage. Generally, to remove DRAM refresh 

operations completely, Refree considers two refresh-reducing factors that have been proposed in 

previous studies [20, 46]: the access pattern and retention time of DRAM rows. More specifically, 

each valid row is monitored for time periods equal to half of its retention time. Upon any access 

to the row within each of such time periods, the row will be marked as accessed. The access 

actually gives immunity to the row from being refreshed or invalidated at the end of the time 

period. On the other hand, a non-accessed row will be invalidated from the DRAM cache or if it is 

dirty, be written back to PCM. 

Our experimental results show that Refree reduces the hybrid main memory’s power 

consumption with negligible performance impact compared to existing refresh-reduction 

techniques. For a quad-core system with a hybrid main memory system of a 4GB DRAM cache 

and 32GB PCM, Refree reduces the memory power consumption of NAS [60] and PARSEC [6] 

applications by 11.7% and 3.1% on average, compared to baseline auto-refresh and one of the most 

effective refresh-reduction schemes, respectively. Refree improves performance by 4.2%, on 

average, compared to baseline auto-refresh while incurs only a negligible performance overhead, 

by 0.2% on average, compared to a recent refresh-reduction scheme. 
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 Motivation 

The adverse effects of DRAM refresh are expected to aggravate with each generation of 

technology. It is predicted that refresh accounts for 50% of throughput loss and 50% of the total 

energy consumption in a future 64GB DRAM system [5, 46]. Figure 3 shows the variation and 

projection of ���� (i.e., latency of each auto-refresh operation) for different memory chip densities 

for Micron DDR3-800 [59]. The significant growth of ����  with the increase in memory size is 

depicted in the figure. For instance, the value of ���� for a 32GB DDR4 is 1.34 times more than 

that of a 16GB memory [5]. The auto-refresh operation energy is also proportional to	���� [54]. 

Therefore, using larger DRAM caches, although necessary, can incur significant performance and 

energy penalties due to DRAM refresh operations. 

In addition, storing memory pages that are rarely accessed in the DRAM cache is only a waste 

of energy and the precious cache space. Hence, our main goal in this work is to address these 

two issues simultaneously by eliminating DRAM cache refresh operations and putting those rarely 

accessed pages away in PCM. In this work, a hybrid main memory, which includes a DRAM cache 

and a larger PCM storage, is considered. Refree aims to eliminate DRAM refresh operations 

 
Figure 3. Variation and projection of ���� for different memory chip densities [59]. 

 
 
 
 

0

100

200

300

400

500

600

700

0 1 2 3 4 5 6 7 8 9

T
im

e
 i
n

 n
a

n
o

se
co

n
d

Memory Chip Density

Projected TRFC

1Gb    2Gb                 4Gb                          8Gb

JEDEC TRFC



27 

 

completely. Considering that the refresh cost is more prominent in larger DRAMs, Refree is 

expected to become even more effective for future DRAM/PCM hybrid memory systems. It is also 

worth mentioning that, in this work we have considered PCM as NVM, but our scheme is also 

applicable for other types of NVMs. 

 Refree Overview 

To eliminate DRAM refresh operations, Refree considers both the access pattern of rows and 

their retention times at the same time. In general, Refree performs a periodic row-level 

monitoring and classifies DRAM rows into two categories, “accessed” or “non-accessed”. An 

accessed row does not need to be refreshed because it has recently been activated by a request and 

thus refreshed; and a non-accessed row does not need to be refreshed either because it has not 

been accessed for a long time and thus is very likely to hold inactive data and can be evicted from 

the DRAM cache. In this way, all refresh operations on the DRAM cache will be eliminated. 

In our work, DRAM rows are monitored for time intervals equal to half of their retention times 

for any accesses.  We believe that this time interval (i.e., 128ms) is long enough so that if a row is 

not accessed within it, we can conclude that the row is “inactive” and thus there is no need to keep 

it in the DRAM cache. Our experimental results also support such conclusion. An evicted row 

must also be written back into PCM if it has been updated in the DRAM cache. Initially, all rows 

are marked as non-accessed. The status of a row changes to accessed at its insertion to the DRAM 

cache or receiving a regular memory request from the CPU. 

The skipping of refresh operation for an accessed row or the eviction of a non-accessed row is 

performed at an “evaluation point” of the row, which is when a DRAM row’s current monitoring 

process ends, and next monitoring process starts. The monitoring process restarts when the row’s 
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current epoch time, which is set to half of the row’s retention time in our experiment, expires. We 

will discuss the monitoring process in detail next. 

 Monitoring Process 

A row must be monitored after being inserted in the DRAM cache. If the row receives no 

requests from one evaluation point to the next, it may need to be evicted from the cache. The main 

challenge here is to determine the time interval between two consecutive evaluation points of each 

DRAM row. This interval must be long enough so that if a row remains non-accessed during the 

interval, it could be concluded that the row is not needed in the DRAM cache and keeping it in 

PCM is sufficient. Otherwise, highly active rows might be evicted from the cache by mistake, 

causing significant power and performance degradations. On the other hand, the interval cannot 

be too long for keeping data integrity. A row, even if remains non-accessed during the interval, 

must be able to safely retain its data. To effectively address this issue, we have brought DRAM 

rows’ retention time into the picture. In fact, majority of rows in a DRAM device are strong and 

have a very long retention time of 256ms. A previous study [46] has shown that in a 32GB DRAM 

system only up to 28/978 rows have a 64ms/128ms retention time while the rest of the rows have 

a 256ms retention time. 

Ideally, once a row is accessed, its data remains undamaged for a time interval equal to its 

retention time. However, keeping track of the exact elapsed time is impractical. Two of the 

previously proposed access-aware, refresh-reduction schemes have tackled this problem using 

two different techniques. The first one considers a counting-down timeout counter for each row, 

which is reset to its maximum upon any access [20]. The second one divides every retention time 

into a number of steps and within one retention time, refreshes rows at the same step as that they 

were accessed at in the previous retention time [1]. In our work, to keep the hardware overheads 
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at minimum and guarantee the data integrity, we set the evaluation point at every row’s half 

retention time. This means that for majority of the rows, we are considering a time interval as 

long as 128ms to find out whether the row must be kept in the cache or not. More specifically, for 

each row, its access status from one of its evaluation points to the next is represented with a single 

access bit. The access bit of a valid row will be set to ‘1’ upon every access and reset to ‘0’ at every 

evaluation point. 

Each row must be evaluated at its evaluation points: the row’s access bit is checked. If the 

access bit is ‘1’, the monitoring process will restart for the row; otherwise, the row will be evicted 

from the DRAM cache and written back to the PCM if dirty. Similar to a previous study [46], our 

scheme classifies the rows of each DRAM bank, based on their retention time, into three 

categories: rows with retention time of 64ms (weak), 128ms (mediocre) or 256ms (strong). Thus, 

weak rows will be evaluated every 32ms, mediocre rows every 64ms and strong rows every 128ms. 

The group of rows that are evaluated in each refresh interval is called “evaluation group”. To 

form the evaluation groups, we divide the total number of rows in each DRAM bank into 8K 

groups. The evaluation groups are classified into three categories: (1) “strong”: evaluation groups 

that include strong rows only, (2) “weak”: evaluation groups that include at least one weak row 

and (3) “mediocre”: evaluation groups that consist of at least one mediocre row but no weak rows. 

The proposed monitoring process is depicted in Figure 4. To determine the evaluation points on 

the time line, we consider a two-bit “period counter” that is incremented every 32ms. The first 

refresh intervals after incrementing the period counter (i.e., every 32ms) are assigned to the weak 

evaluation groups. We call these refresh intervals “weak evaluation intervals”. In each weak 

evaluation interval, all the valid rows of a weak evaluation group are evaluated. A weak evaluation 

group may also contain mediocre and strong rows. Ideally, those rows can be evaluated less 

frequently. However, to minimize the hardware and management overheads, Refree considers all 
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rows in a weak evaluation group as weak. Note that most groups are strong groups. The immediate 

refresh intervals after the weak evaluation intervals are called “mediocre evaluation intervals”, 

which are assigned to the mediocre evaluation groups. Generally, all the mediocre evaluation 

groups can be evaluated every 64ms when the period counter is even. However, to unify the 

assignment of evaluation intervals, Refree evaluates half of the mediocre evaluation groups every 

32ms. To do so, a one-bit flag is used; the flag is initialized to the LSB of the period counter every 

32ms (i.e., ‘0’ when the period counter is even and ‘1’ when it is odd). When a mediocre evaluation 

group is found, Refree evaluates it if the flag is ‘0’ and then sets the flag to ‘1’; otherwise Refree 

skips that mediocre group and sets the flag to ‘0’. In each mediocre evaluation interval, all the 

valid rows of a mediocre evaluation group are evaluated. A mediocre evaluation group may also 

have some strong rows (but not weak rows). Ideally, those strong rows can be evaluated less 

frequently. However, similar to the scenario explained for the weak evaluation groups, Refree 

considers all rows in a mediocre evaluation group as mediocre to minimize hardware and 

management overheads. Finally, all the remaining vacant refresh intervals can be used for 

evaluating the strong evaluation groups (“strong evaluation intervals”). To unify the assignment 

 

Figure 4. Different types of evaluation intervals in a 128ms time epoch. 
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of evaluation intervals, Refree evaluates one-fourth of the strong evaluation groups every 32ms. 

To do so, a two-bit flag is used, which is initialized to the value of the period counter every 32ms. 

When a strong evaluation group is found, Refree evaluates it if the flag is ‘00’ and then increments 

the flag; otherwise Refree skips that strong group and only increments the flag. 

To determine the evaluation intervals types, a 2-bit counter called “category counter” is used. 

Refree considers an evaluation interval weak, mediocre or strong based on the category counter’s 

value; ‘0’ representing weak, ‘1’ representing mediocre, ‘2’ representing strong and ‘3’ 

representing “free of evaluation”. The category counter is reset to ‘0’ every 32ms and is 

incremented after evaluating the groups that belong to the category represented by the counter’s 

current value. To traverse the evaluation groups, a 13-bit counter called “general group counter” 

is used. 

 DRAM Cache Structure 

Data can be stored in the DRAM cache at different granularities. The size of a DRAM cache 

line could be as small as a processor cache line or as large as a memory page. Generally, finer 

grained caching manages the cache space more efficiently but with higher management overhead. 

To the best of our knowledge, among the previously proposed DRAM cache structures, Alloy cache 

structure [69] might be the best candidate for an off-chip Giga-scale DRAM cache due to its 

minimum cache management overheads. The Alloy cache is a direct-mapped, tag-in DRAM cache 

that has a cache line size of a processor’s cache line and transfers both data and tag as one entity. 

In our work, writing back the dirty non-accessed rows to the PCM storage is needed to 

eliminate DRAM refreshes. Hence, it seems that it would be more beneficial to cache all or at least 

some of the columns of a PCM row in a single DRAM row (e.g., considering each DRAM row either 
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as a set or a single DRAM cache line). The reason is: in this way when a row needs to be written 

back, all the write requests sent to the PCM device will hit in the row buffer. However, our 

experiments indicate that the average number of dirty entities in each valid row of the DRAM 

cache with Alloy structure for the benchmarks shown in TABLE V is relatively small (i.e., 7 out of 

28 entities). Furthermore, the experimental results show that most of the rows in an Alloy cache 

are active most of time, which reduces the number of evictions and thus writebacks. Hence, we 

use Alloy cache as our DRAM cache structure. We have also considered a small buffer, called WBB, 

for handling the eager writebacks sent to the PCM by the DRAM controller. The requests buffered 

in WBB will be sent out to the PCM when the PCM is idle or WBB is full. It is worth noting that 

Refree exploits Line Level WritesBacks (LLWB) proposed in [70] to alleviate the overheads of 

writing a DRAM row back to the PCM. This scheme writes back the dirty columns (i.e., dirty 

entities) of a row only. 

For each row, a valid status bit is considered to determine the validity of a row in the DRAM 

cache. As stated before, Refree evaluates only the valid rows of the DRAM cache because it is 

obvious that invalid rows do not need to be refreshed at all. Similarly, one dirty bit is used to 

indicate whether a row is dirty or not. This bit is set for the row with at least one dirty entity. The 

total hardware overhead incurred by these status bits is only 16KB (2×64K bits) per bank. 

 Storage Overhead 

TABLE III summarizes the storage overhead of Refree per DRAM rank. Note that our 

proposed approach does not need the information about each individual row’s retention time. 

Hence, Refree uses the bloom filters of RAIDR [46] for storing the category of evaluation groups 

instead of row’s retention time bins. As depicted in the table, the total storage overhead is almost 

194 KB per rank or 0.02% of total DRAM capacity. 
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 Results 

 Methodology  

In this work, we model a quad-core processor using Gem5 simulator [19] integrated with 

NVMAIN [62], a cycle accurate main memory simulator designed to simulate emerging non-

volatile memories at the architectural level. The system configuration of our experiments is shown 

in TABLE IV. We collect runtime statistics from the full-system simulations. The DRAM 

configurations (i.e., timing and current parameters) are obtained from [52]. The PCM 

configurations are generated by NVSIM [16] and CACTI [8]. Note that the cell parameters used 

in NVSIM are based on the projections by [12]. The benchmarks used in this study are chosen 

from NAS [60] and PARSEC [6] as depicted in TABLE V. Six NAS and three PARSEC workloads 

covering the range of memory footprints of the whole NAS and PARSEC suites are selected. For 

all the workloads, we use either sampled reference or native input sets to represent a real-world 

execution scenario and run the applications for two Billion instructions. 

TABLE III. Refree’s total storage overhead. 

Type Storage 

Row status (valid/dirty) information 16 KB 

Row access information 8 KB 

General group counter size 13 bits 

Row counter size 16 bits 

Mediocre groups flag 1 bit 

Strong groups flag 2 bits 

Category counter size 2 bits 

Storage Overhead per Bank ~ 24.005 KB 

Evaluation groups category information 1.25 KB 

Period counter 2 bits 

Total Storage Overhead ~ 194 KB 
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We compare Refree with hybrid main memory systems that each employs a different DRAM 

refresh scheme. The implementations are all based on the configuration parameters depicted in 

TABLE IV. Also, it is assumed that in a DRAM memory rank, 28 rows are weak, 978 are mediocre 

and the remaining ~511K rows are strong. 

1) All-bank Auto Refresh (AR):  In this scheme, the memory controller divides DRAM rows into 

8K groups and refreshes each group within a refresh interval or ��
��. 

2) Flexible AR (REFLEX): This scheme, which is based on the policy employed in [5], refreshes 

weak and strong rows once every 64ms and 256ms, respectively, through auto-refresh command. 

To the best of our knowledge, this recently proposed scheme has the lowest power consumption 

and execution time among the previously proposed refresh reducing schemes. 

TABLE IV. System configuration. 

Processor 4-core, 4.0 GHz, out-of-order 

L1 Cache 
Private, 64KB per core, 8-way, LRU, 64B cache line, write-
back, write allocate 

L2 Cache 
Shared, 1MB, 8-way, LRU, 64B cache line, write-back, write 
allocate 

Memory 
Controller 

Open page, FR-FCFS, 64-entry queues (per-rank), address 
mapping: page interleaving 

Main 
Memory 

DRAM 

4GB, DDR3, 1333Mbps 

2 Channels, 2 Ranks per channel 

DRAM Device: MT41J512M8 

PCM 

32GB, 4 Channels, each with 8GB DIMM, 1 Rank 
per channel 

�567= 150ns, �86567= 100ns, �89:= 120ns 

 
 

TABLE V. Workloads. 

Workload Applications 

NAS bt, cg, ft, ua, mg, sp 

PARSEC caneal, dedup, freqmine 
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3) Access-Aware Refree (AA_Refree): This is Refree; but considers all DRAM rows as weak. In 

other words, it assumes a 64ms retention time for all the DRAM rows. 

4) No Refresh: This is the ideal scheme that assumes there is no need to refresh DRAM rows at 

all. 

 Power Evaluations 

Figure 5 shows the power consumption of the 4GB DRAM cache (top) and the total power 

consumption of the hybrid main memory (bottom) for different refresh schemes. The results are 

normalized to baseline auto-refresh. Refree achieves up to 20.7% and 6.9% reduction in DRAM 

cache power consumption (16.9% and 5.6% on average), compared to AR and REFLEX, 

respectively. This reduction is mainly because of the following reasons: First, Refree is both 

access- and retention-aware, which decreases the number of candidate rows for either refresh or 

eviction/writeback. Second, to evict a non-accessed clean row from the DRAM cache, Refree 

 

 

Figure 5. Normalized DRAM cache power consumption (top) and normalized total power 
consumption of the hybrid main memory system (bottom). 
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resets the valid status bit of the row to ‘0’. Thus, there will be no need to access the row itself in 

the DRAM. On the other hand, REFLEX or any other refresh scheme refreshes all the DRAM rows 

at some point any way. Third, the non-accessed rows that are unlikely to be reused in near future 

can be stored in PCM for a long time with no additional cost. However, to retain such rows in 

DRAM, they need to be periodically refreshed. Refree reduces the total power consumption of the 

hybrid main memory by 11.7% and 3.1% on average, compared to AR and REFLEX, respectively. 

Results also reveal that Refree reaches within 2.2% of total power consumption as compared to 

the ideal no-refresh scheme. Generally, the power consumption of Refree depends on its increase 

on the number of writebacks to the PCM device and DRAM cache miss rate. 

Figure 6 shows the total number of DRAM cache entities written back to the PCM storage by 

Refree for the selected benchmarks. The results are normalized to baseline auto-refresh. The 

increase in the total number of writebacks is only 1.4% on average. The eager writebacks of Refree 

are 5.7% of the total number of writebacks on average. However, the number of normal writebacks 

under Refree is dropped compared with auto-refresh. This indicates that a large percentage of 

Refree’s eager writebacks actually overlaps with the writebacks that would naturally happen 

throughout the execution of the baseline. In other words, the data that Refree recognizes as 

Figure 6. Normalized Refree’s total number of writebacks. 

 
 
 
 

0.92

0.96

1

1.04

bt cg ft ua mg sp canneal dedup freqmine GMEANN
o

rm
a

li
ze

d
 D

R
A

M
 

C
a

ch
e

 W
ri

te
b

a
ck

s WriteBacks Eager WriteBacks



37 

 

inactive and proactively writes back, will most probably be written back and replaced later, when 

the baseline scheme is running. 

 Figure 7 depicts the values of DRAM cache miss rate for baseline auto-refresh and Refree. 

Simulation results show that Refree only increases the average DRAM cache miss rate slightly 

from 6.4% by AR to 6.9% by Refree. Note that, all of the three schemes, AR, REFLEX and the ideal 

no-refresh, use the same DRAM cache management policy. Hence, the miss rate values and the 

number of writebacks are also the same in the three schemes. Refree consumes 7.4% less power 

than AA_Refree. This is because Refree is retention-aware. The reduction is directly related to 

having a longer monitoring interval for stronger rows and thereby a more accurate access-based 

row classification. 

 Performance Evaluations 

Figure 8 compares the overall IPC values for different refresh schemes. The results are 

normalized to baseline auto-refresh. 

Refree improves performance by up to 9.2% (4.2% on average), compared to AR. The reason 

for this improvement is: First, Refree eliminates refresh operations entirely and it does not 

increase the DRAM cache miss rate considerably. Second, the obstruction of regular requests to 

Figure 7. DRAM cache miss rate (%). 
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the PCM by Refree’s proactive writebacks is largely prevented by distributing writebacks over a 

large time epoch and the use of WBB. Third, Refree allows the memory controller to employ bank-

level parallelism while row evaluation process is in progress. Fourth, requests to a DRAM bank 

can be served simultaneously with the eviction of non-active clean rows from it. Last, new data 

can replace a proactively evicted data without waiting for its eviction or writeback. 

 Compared to REFLEX, Refree has a negligible performance degradation, by 0.2% on average 

(up to 0.6%). The small increase in the DRAM cache miss rate is the main reason for such 

degradation. Refree also achieves, on average, 5.8% performance improvement compared to 

AA_Refree. The monitoring time interval considered in AA_Refree is two or four times shorter 

than most of the intervals of Refree. This causes some active rows to be evicted from the DRAM 

cache by mistakes, thereby increasing the DRAM cache miss rate and the number of writebacks 

to PCM. 

 Scalability 

Figure 9 shows the hybrid main memory’s total power consumption and the overall IPC values 

for different DRAM cache sizes, respectively. All the results are normalized to baseline auto 

refresh with 1GB DRAM cache. 

 

Figure 8. Normalized Overall IPC. 
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Results show that Refree can achieve, on average, 7.3%, 8.6%, 11.7% and 15.0% reduction in 

the total power consumption of a hybrid main memory with a 1GB, 2GB, 4GB and 8GB DRAM 

cache, respectively, compared to baseline auto-refresh. In addition, our scheme improves 

performance of a hybrid main memory with a 1GB, 2GB, 4GB and 8GB DRAM cache, on average 

by, 0.9%, 1.9%, 4.2% and 7.4% respectively, compared to the baseline auto refresh. 

Compared with REFLEX, Refree reduces the total power consumption of a hybrid main 

memory with a 1GB, 2GB, 4GB and 8GB DRAM cache by 1.6%, 2.0%, 3.1% and 4.3% on average, 

respectively.  Also, while Refree degrades performance of a hybrid main memory with a 1GB, 2GB 

and 4GB DRAM cache by 0.8%, 0.7% and 0.2%, on average, it improves the performance of a 

hybrid main memory with an 8GB DRAM cache by 0.2% on average, compared to REFLEX. The 

Refree scheme is more effective for larger DRAM caches because: First, the cost of refresh 

 

(a) 

 
(b) 

Figure 9. Scalability results: (a) normalized total power consumption of the hybrid main 
memory for different DRAM sizes; (b) normalized system IPC for different DRAM sizes.  
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operations is higher in larger DRAMs. Second, when DRAM capacity and thus the number of 

requests served in DRAM increases, a larger portion of the hybrid main memory’s energy and 

execution time will be reduced by improving the DRAM cache. Third, REFLEX always reduces a 

fixed number and up to a specific percentage of refresh operations while decisions made by Refree 

are access-based and dynamic. 

 Conclusion 

In this chapter, we proposed a scheme called Refree to eliminate refresh operations of the 

DRAM cache in a hybrid DRAM/PCM main memory to improve system performance and energy 

efficiency. Our proposed scheme, Refree, takes all the refresh-reducing factors including rows’ 

access pattern and retention time into consideration. 

In general, a row that is accessed at least once within its retention time does not need to be 

refreshed. On the other hand, most of the rows in a DRAM device are strong and have very long 

retention times. Hence, a row that is not accessed within such long retention time can be 

recognized as not frequently accessed or dead and does not need to be refreshed and kept in the 

DRAM cache either. Refree then evicts an inactive row from the DRAM cache instead of refreshing 

it and writes it back to PCM if the row is dirty.  The experimental results revealed that Refree can 

effectively reduce the memory power consumption with small performance impact. The 

effectiveness of Refree would further improve for future systems with larger DRAM sizes. 
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AN ENERGY-EFFICIENT HYBRID DRAM/PCM MAIN MEMORY FOR MOBILE 

DEVICES 

 Introduction 

Today, mobile platforms such as smartphones and tablets are the most commonly used 

computing devices in our daily lives. The capacity of main memory in mobile devices is limited 

due to scalability limit of DRAM (e.g., 1GB for iPhone 6). This can degrade user experience while 

multiple applications with large memory footprints are running on the device [34]. In fact, a 

recent study [76] has reported that in Android systems, more than 15% of applications must be 

relaunched when the available memory capacity is insufficient. To deal with this problem, hybrid 

main memory systems have been studied for mobile devices [7, 17, 34, 88]. In this study, we 

consider a hybrid DRAM/PCM main memory. 

Mobile devices run on small batteries and need power management to extend battery life and 

ensure device usability [9]. Meanwhile, DRAM consumes large amounts of background energy 

even when the mobile device is idle, and its processor is powered off. The usage pattern of mobile 

devices is bursty; they are idle 90% to 95% of time and experience only sudden short bursts of 

activity between their long idle periods [13, 30]. The energy consumption of a DRAM-based main 

memory during idle periods contributes to 30% of the total system energy, including both active 

and idle periods [9]. To reduce the memory energy consumption during idle periods, DRAM 

Parts of this chapter has been presented in [65]. Copyright © 2017, ACM 
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memory can be put into low power modes [13, 17], which only perform self-refresh operations to 

maintain data integrity. 

In this study, we propose NEMO [65], a scheme that improves energy efficiency of mobile 

devices with a hybrid DRAM/PCM main memory. The basic idea behind NEMO is to prevent 

unnecessary consumption of energy by the main memory without having a negative impact on 

performance. To do so, NEMO powers off as many power-hungry DRAM components as possible 

by dynamically managing data placement and movement between the two memory modules. 

More specifically, when the mobile device is in idle state, to minimize DRAM’s power 

consumption, only a selective set of data that is critical to performance and fits in a single DRAM 

rank is kept in DRAM, while the rest of data is stored in PCM, which has near zero idle power. 

Moreover, to reduce memory power consumption during active states, NEMO predicts the 

number of DRAM ranks that need to be powered on based on user’s behaviour in the past. 

For each application, NEMO classifies its memory pages into two categories, “hot” and “cold”, 

based on pages access frequency and recency in the past. It then places the hot pages, which are 

much more likely to be reused when user re-runs the application, in DRAM that has lower access 

latency compared to PCM. This actually prevents performance loss. On the other hand, keeping 

cold memory pages, which are less likely to be reused in future, in DRAM would cost large 

amounts of refresh energy especially during the mobile device’s long idle periods. Hence, cold 

memory pages are stored into PCM, which has near-zero idle power. It should be noted that, page 

migrations between DRAM and PCM are performed during the idle periods and are off the critical 

path of memory accesses to minimize performance penalty. 

Our experimental results indicate that NEMO can effectively improve energy efficiency and 

performance of a hybrid DRAM/PCM main memory used in a mobile device.  For a mobile system 

with a hybrid main memory of 128MB DRAM cache and 1GB PCM running Moby benchmarks 
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[25], NEMO reduces the memory system power consumption by 10.2% and improves 

performance by 1.7%, on average, compared with simply putting DRAM into self-refresh mode 

during idle period. 

 Motivation 

Reducing the energy consumption of mobile devices has become a major concern in recent 

decades. On such devices, the number of power-hungry hardware components is growing as a 

result of technological advancement. In the meantime, the battery size is limited; thereby supply 

cannot meet demand if energy dissipation is not managed wisely. 

The usage pattern of portable devices, such as smartphones and tablets, is bursty with long 

idle periods. For such devices, the active periods account for only 5%-10% of time [13, 30], and 

are very short (a few minutes). Thus, the number of frequently accessed memory pages for the 

running applications can be small in each active period. Furthermore, the number of running 

applications and their memory intensity vary among active periods. In some active periods, the 

memory system is very busy serving requests from multiple memory-intensive applications, while 

in others, the memory system is not that overloaded. Meanwhile, during the long idle periods 

(90%-95% of time), a great portion of the total system energy is consumed by the main memory. 

Therefore, it can be concluded that: 1) in active mode, DRAM memory will consume a great deal 

of unnecessary background power if all of its components remain turned on all the time; and 2) 

in idle mode, although there are no accesses to the memory system, DRAM continues to consume 

background energy to retain data. 
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To improve main memory efficiency, a prior study [17] has also benefited from a hybrid 

DRAM/PCM main memory system for mobile devices, in which the entire working set of the most 

frequently invoked applications is placed in DRAM and the rest of the applications’ working set is 

stored in PCM. However, there are some major shortcomings with that approach. First, the 

working set of a highly invoked application is not entirely hot (i.e., highly accessed). Our results 

show that, on average, only 20.6% of all the accessed memory pages are highly accessed (i.e., 

accessed more than 28 times) for a selected set of mobile applications as depicted in Figure 10. 

The experimental parameters and methodology are explained in Section 4.10.1. Second, the highly 

accessed memory pages of the less frequently invoked applications are always accessed in PCM. 

This can significantly degrade system’s performance and energy efficiency when those cold 

applications are running. Finally, when the number of highly invoked applications is large, fitting 

the entire working set of all those applications in DRAM becomes impossible; thereby the working 

set of some hot applications would be inevitably moved to PCM. This can also degrade system 

performance and increase power consumption. 

In order to reduce DRAM background power during idle times, a recent study [13] has 

proposed Morphable ECC (MECC), which reduces refresh rate by using strong error correction 

codes. However, MECC only reduces the energy spent by refresh operations, which counts for less 

 

Figure 10. Total accessed memory pages. 
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than half of DRAM background power consumed during idle mode. In this study, our main goal 

is to reduce main memory’s background power during both active and idle modes without 

impacting the performance. We consider a hybrid main memory system that includes a DRAM 

cache and a larger PCM for mobile devices. It should be noted that our scheme is also applicable 

for other types of NVMs. Our scheme reduces main memory’s background power by dynamically 

predicting the number of DRAM ranks that need to be turned on during the active period and only 

powering on one DRAM rank for critical data during the idle period. 

 NEMO Overview 

Our proposed scheme, NEMO, benefits from the large capacity provided by PCM to store the 

less frequently accessed (i.e., cold) memory pages of all applications during the long idle periods, 

while the most frequently accessed (i.e., hot) memory pages are stored in DRAM for better 

performance. In idle mode, the hottest pages of running applications are collected in a single 

DRAM rank, referred to as the “hot rank”. The hot rank is then put into self-refresh state to 

maintain its data. The contents of the rest of DRAM ranks are stored into PCM and those ranks 

are put into deep power-down state, the lowest possible power state. In active mode, the number 

of DRAM ranks that need to be turned on in addition to the hot rank is predicted based on the 

applications’ launching pattern and memory intensity in past. Figure 11 depicts the workflow of 

NEMO. The rank and page management process is illustrated in Figure 12 and is explained in 

detail next. 
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Figure 11. Workflow of NEMO. 
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 Memory Page Classification 

NEMO classifies memory pages of an application into two categories, hot and cold. It then 

allocates a small portion of the DRAM cache to the applications’ hottest pages so that they are 

always accessed in DRAM, which has lower access latency and dynamic energy compared to PCM. 

In general, this approach is beneficial because the hottest memory pages (of all the applications), 

which are more probable to be reused in future, are always kept in DRAM and cannot be evicted 

or replaced by the cold pages. On the other hand, during the long idle periods, cold memory pages 

are stored into PCM to prevent consuming energy for retaining nonvaluable data in the DRAM. 

To classify an application’s pages into two categories based on their hotness, NEMO adopts 

an algorithm similar to Multi Queue (MQ) proposed in a previous study [92]. The Multi Queue 

algorithm uses multiple LRU queues numbered from 0 to n-1 (i.e., Q0...Qn-1) plus a history buffer 

(i.e., Qout) that keeps the access frequencies of the recently evicted blocks. When a cache block is 

accessed for the first time, its descriptor, which includes the block identifier and its frequency 

counter, is inserted into the head entry of Q0. The frequency counter of the block is incremented 

on every cache hit to the block. Once the frequency counter of the block reaches 2i+1, its descriptor 

will be promoted from Qi to Qi+1. Moreover, an expiration time is associated with each cache block. 

If the block stays in Qi for a time period equal to its expiration time without any accesses, it will 

be demoted to Qi-1. The frequency counter of a demoted block is halved by shifting right one bit. 

The block identifier and access frequency of a recently evicted block is kept in Qout for some period 

of time; Qout is a FIFO queue of limited size. It is worth mentioning that the updates to the MQ 

structure are performed by the memory controller and are off the critical path of memory accesses. 

In this study, each DRAM cache block has the same size as a memory page. Similar to the 

previous studies [49, 87, 92], our scheme assumes n = 16 and that as few as eight queues (i.e., Q8 
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to Q15) are sufficient to separate hot pages from the others. NEMO considers an MQ structure for 

each application that has been executed so far. The MQ structure of an application is not updated 

when the application is not running, and it is cleared and updated again when the application is 

re-launched. To turn off as many power-hungry DRAM components as possible during the long 

idle periods (90-95% of time), NEMO stores the hottest pages of all the applications in the DRAM 

hot rank and migrates the dirty cold pages of all the applications to PCM, which has near-zero idle 

power. The hot rank is shared among all the applications, but not uniformly. The hot rank 

partitioning scheme is discussed next. 

 Hot Rank Partitioning 

In a mobile device, applications are not used in the same manner. User may favour some 

applications over the others and use them more frequently. In other words, the likelihood of being 

invoked in an active period varies among the applications. At the same time, mobile applications 

differ in their working set sizes. Thus, when partitioning the hot rank, NEMO considers both the 

usage probability of applications and their memory capacity demands. On entering an idle mode, 

the DRAM hot rank is partitioned among the applications as following: 
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In this formula, P9QR is the number of rows (pages) allocated to application K in the hot rank; 

9:Q is the capacity demand of application K; ST is the weight associated to application K based 

on its usage frequency and recency; 9U�VW_�VXQ and 9U�VW_�YZ are DRAM rank size and row size, 

respectively; and APPS is the total number of applications invoked at least once so far. More 

specifically, the capacity demand or 9:Q represents the amount of memory space that application 
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K requires to store its hottest pages. To quantify the capacity demand, the number of memory 

pages that belong to the eight highest-ranked LRU queues (i.e., Q8 to Q15) of the application is 

counted. 

Furthermore, to compute applications’ weights, we use a modified MQ structure, referred to 

as AMQ, with m LRU queues (i.e., q0 to qm-1). Once an application is used for the first time, its 

descriptor (i.e., identifier and frequency counter) is put at the head entry of q0. The weights are 

positive integers between 1 to APPS and are assigned in descending order to the applications 

selected in order from qm-1 to q0, and in each queue, from the most to the least recently used 

position. In other words, the higher the usage frequency and recency of an application in past, the 

larger its weight. The reason is that such application is also more probable to be reused in the near 

future. In this study, we assume m = 8 and an expiration time of two active periods, which means 

if an application is not used for two consecutive active periods, its descriptor will be demoted from 

qi to qi-1. On a side note, since we are using the floor value of 9Q, at most APPS rows may not be 

allocated to any application at the end. In such case, we assign those rows to the application with 

the highest weight. 

After determining the share of an application from the hot rank, NEMO migrates the hottest 

pages of the application (those that are not already in the hot rank) to its assigned portion. The 

migrations start from the LRU queues with the highest rank until the assigned portion becomes 

full. In other words, hot pages are selected in order from Q15 to Q0, and in each queue, from the 

most to the least recently used position (i.e., tail to head) from the application’s MQ structure. 

Then, the dirty rows in the rest of the DRAM ranks will be written back to PCM, which consumes 

a negligible amount of idle power. Note that all these migrations take place during the idle period 

and thereby do not incur any performance penalty. The hot rank is then put into SR (Self-Refresh) 
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state to maintain its data till the following active period. The rest of the DRAM ranks are put into 

DPD (Deep Power Down) state, which consumes close to zero background energy. 

 DRAM Cache Management 

In this work, a DRAM/PCM hybrid main memory is considered for mobile devices. The 

application’s working set initially resides in PCM, and DRAM is employed as a hardware-managed 

cache for the PCM. Generally, data can be stored in DRAM caches at different granularities. The 

size of a DRAM cache block could be as small as a processor cache block or as large as a memory 

page. For our proposed scheme, NEMO, using a page-based DRAM cache structure that stores all 

the columns of a PCM row in a single DRAM row is more beneficial for two reasons: First, row 

buffer locality is expected to be high for mobile applications. In fact, our experimental results 

reveal that for the selected set of mobile workloads, the row buffer hit rate ranges from 81.4% for 

FrozzenBubble to 89.9% for TTPod when the workloads run individually, and row interleaving 

address mapping is used. Second, in this way, when a row needs to be written back, all the write 

requests sent to the PCM device will hit in the row buffer. This minimizes the energy and latency 

overheads of the writeback operations. On the other hand, mobile devices are small, thereby it is 

very important to keep the area overheads at minimum. Thus, in this study, we use the page-based 

tagless DRAM cache structure proposed in [44]. The latency penalty of the tagless cache is zero 

in case of a DRAM cache hit (for cachable pages); and is a cache fill plus the GIPT (global inverted 

page table) update latency in case of a DRAM cache miss. 

The cache replacement policy is modified in our work; NEMO chooses the eviction victims 

from the coldest memory pages of the applications, starting from the coldest application. In other 

words, it selects victims from the lowest-ranked, non-empty LRU queue of the applications MQ 

structures, while the applications are sorted in ascending order of their weights. It is worth 
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mentioning that this approach is different from the original MQ replacement policy, which uses 

only one set of LRU queues for the cache. In fact, simply employing the non-modified MQ 

regardless of the applications usage pattern is not helpful for mobile devices. This is because the 

cold memory pages of an application that is running in the current active period could evict the 

hot memory pages of the applications executed in the previous active periods (because those pages 

are demoted to the lower-ranked queues) even though those applications might be reused in the 

near future again. 

  Active Mode Management 

Memory capacity demand is not the same among the active periods. For an active period, the 

required DRAM cache space could be smaller than the actual DRAM size (e.g., when only one 

application with low memory intensity is running). Therefore, by predicting the number of the 

DRAM ranks that need to be turned on (in addition to the hot rank), NEMO also minimizes DRAM 

background power during the active periods. The reason that we choose prediction over 

adjustment is that the active periods are relatively short and busy; thus, gradually powering up 

the DRAM ranks when the mobile device is in the active state can be detrimental to system 

performance. The prediction hides the powering up penalty by turning on the DRAM ranks 

simultaneously with the mobile device idle-to-active state transition. Moreover, to prevent the 

misprediction penalty during the initial active periods where there is not enough knowledge about 

the system’s past, NEMO turns on all the DRAM ranks for a specific number of active periods (two 

in this study) at the beginning. 

In general, to predict the number of DRAM ranks to be powered up, NEMO predicts how many 

applications and which ones are likely to be invoked in the next active period. Then, the number 

of DRAM ranks required to store the predicted applications’ data is calculated. Specifically, the 
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prediction model works in three steps as following. First, the number of applications that are likely 

to be invoked in the next active period is predicted. To do so, a small “prediction buffer” is used, 

which is indexed from 1 to p. The i’th element of the prediction buffer is incremented whenever 

the number of running applications in an active period is i. In other words, the i’th element of the 

prediction buffer returns the number of active periods in past during which i applications were 

running (p’th element for i ≥ p). The index of the maximum value of all the elements stored in the 

prediction buffer is used as the predicted number of applications for the next active period. In 

case of having multiple indices with the same maximum value, the largest index is used as the 

predicted number. Second, after predicting the number of applications, the applications 

themselves are chosen from the AMQ structure in descending order of their weights. The number 

of memory pages accessed by the predicted applications (referred to as NoP) is then counted as 

the number of memory pages that are not migrated to the hot rank and are in Q0 to Q15 of the 

applications MQ structures. Finally, the minimum number of DRAM ranks required to 

accommodate those pages is determined as ( 

	
[\]

@IJDK_J^_`
 ). 

 Page Migrations 

There are two types of page migrations performed by NEMO at the beginning of an idle period: 

1) migrating hot memory pages to the DRAM hot rank; 2) writing back the dirty cold pages (i.e., 

the pages that are not migrated to the hot rank) to PCM. 

To minimize the runtime overhead of page migrations, NEMO takes advantage of bank-level 

parallelism in two ways: First, consecutive row migrations are sent to different banks of the hot 

rank in a round robin way (i.e., the first row to the first bank, the second row to the second bank 

and so on). To indicate whether a memory page is in the hot rank or not, we add one additional 
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bit, referred to as HR (Hot Row) to cTLB. After migrating a memory page to the hot rank, we 

update the page’s cache address and set its HR bit to one in cTLB. Second, writebacks to PCM and 

migrations to the hot rank are not initiated from the same bank in a DRAM rank. Moreover, in 

order to reduce the number of DRAM cache writebacks during the idle periods, NEMO eagerly 

writes back the dirty cold pages of the applications (sorted in ascending order of their weights) to 

PCM whenever the bus is idle and clears the pages’ dirty bits. The eager writebacks start from the 

lowest-ranked, non-empty LRU queue, and in each queue, from the least recently used position. 

It should be noted that page migrations to PCM and to the hot rank can also be performed in 

parallel by equipping each DRAM rank with one extra row-buffer similar to [49]. However, we do 

not use this method because it requires some fundamental changes to the structure of the DRAM 

ranks. 

 Storage Overhead 

The NEMO design includes three components: MQ module, AMQ module, and the prediction 

buffer, which are integrated into the memory controller. Song et al. [76] have reported that based 

on their collected usage logs from different users, a user had used on average 52 applications over 

a period of two weeks but only 10 applications among them had been heavily used. Hence, in this 

study we assume that the MQ module can keep the MQ structures of up to sixteen applications 

and if the total number of invoked applications exceeds sixteen, the new application MQ structure 

replaces the coldest application’s MQ structure starting from its lowest ranked LRU queues. 

1) MQ module: The size of each block descriptor in our design is 117 bits, among which 16 bits are 

used for the corresponding cache address, 32 bits for the block’s last access time, 4 bits for the 

queue number in MQ, 15 bits for the frequency counter, 4 bits for the application number, and 46 

bits for the pointers to other descriptors. Upon eviction of a block, the physical page number 
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(PPN) of the block is recovered from GIPT, then the evicted block is added to the history buffer of 

MQ. The history buffer Qout is a small buffer with 30K entries with 61 bits each (42 bits for PPN, 

15 bits for the frequency counter and 4 bits for the application number). For a 128MB DRAM 

cache, the total storage overhead of the MQ module is 1.13MB. The MQ structures are stored in 

the DRAM hot rank. However, to avoid performance degradation, similar to [49], we add a small 

on-chip entry cache (16KB with 1K entries) to the memory controller for storing the most recently 

used MQ structures. To find a DRAM cache block’s MQ entry, the memory controller uses hashing 

with the corresponding cache address. Misses in the entry cache generate requests to DRAM. 

2) AMQ module: Assuming 8 LRU queues, the space overhead of AMQ is 100 bits per application 

descriptor: 10 bits for the application number (for all the applications), 3 bits for the queue 

number in AMQ, 32 bits for the last active period in which the application is run, 7 bits for the 

frequency counter, and 48 bits for the pointers to other descriptors. Hence, the total storage 

overhead of AMQ is 12.5KB. 

3) Prediction buffer: Assuming 30 bits per entry and 10 entries, the size of the prediction buffer 

is only 300B. The AMQ and the prediction buffer are stored in the DRAM hot rank. In our 

evaluations, all the overheads incurred by these new components are considered. Overall, for a 

hybrid main memory with 128MB DRAM plus 1GB PCM, the area overhead of NEMO is less than 

0.9% of the DRAM cache space, which is negligible. 

 Results 

 Methodology 

Because our experiments need to study the behaviour of mobile applications for long running 

period, we use a combination of execution- and trace-driven simulations in our study. First, we 
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use cycle-accurate simulators to collect main memory access traces (reads and writes with 

timestamps) from running benchmark workloads. Then, we create the mixes of traces and replay 

the mixes on our detailed memory system simulator. To collect memory traces, we model a quad-

core processor on a scalable application-level architectural performance simulator based on Gem5 

simulator [19] integrated with NVMAIN [62], a cycle accurate main memory simulator designed 

to simulate emerging non-volatile memories at the architectural level. The system configuration 

of our experiments is shown in TABLE VI. The DRAM configurations (i.e., timing and current 

parameters) are obtained from [53]. The PCM configurations are generated by NVSIM [16] and 

CACTI [8]. Note that the cell parameters used in NVSIM are based on the projections by [12]. For 

the main memory, we pick a small size to match the footprint of the workloads. The benchmark 

workloads used in this study are chosen from the Moby benchmark suite [25] as depicted in 

TABLE VII. We run each workload for the number of instructions given in the table. The selected 

workloads are reprehensive of a wide range of applications that are commonly used in mobile 

devices. In current and future mobile systems, various combinations of these workloads are likely 

to be executed by the user in an active period. Therefore, in this work, to mimic user’s behaviour, 

TABLE VI. System configuration. 

Processor ARM, quad-core, 2.0 GHz, out-of-order 

L1 Cache 32 KB, 4-way, LRU, 64B cache line, write-back, write allocate 

L2 Cache 512 KB, 16-way, LRU, 64B cache line, write-back, write allocate 

Memory 
Controller 

Open page, FR-FCFS, 64-entry queues (per-rank), address 
mapping: page interleaving 

Main 
Memory 

DRAM 

128MB, LPDDR, 200MHz bus speed  

1 channel, 4 ranks/channel, 4 banks/rank, 4k 
rows/bank, 32 columns/row 

DRAM Device: MT46H8M16LF 

PCM 

1GB, 1 channel, 1 rank/channel, 8 banks/rank, 
64k rows/bank, 32 columns/row 

�567= 150ns, �86567= 100ns, �89:= 120ns 
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we create our mix traces in three steps. In the first step, we select a set of workloads (i.e., five 

benchmarks) that are likely to be run together to create a mix trace. In the second step, a random 

subset of the selected workloads is combined to model an active period. The active periods are 

obtained from multi-programming executions. For each mix trace, a predefined usage frequency 

is assigned to each workload that determines how often the workload must be repeated. Though 

only a fixed set of workloads is used in a mix trace, the number and types of the workloads running 

in its active periods are not the same. Finally, the memory traces of six active periods that all use 

the same set of workloads are concatenated to create a mix trace. Overall, the system is assumed 

to be idle for 90% of time. Since the memory traces of the active periods are large, we consider 

only six active periods for each mix trace. TABLE VIII summarizes the mix traces. 

We compare NEMO with hybrid main memories that each uses a different power management 

technique in DRAM during the idle periods. Schemes that only use a DRAM-based memory need 

to put all the DRAM ranks into self-refresh state during the idle periods, which consumes 

additional power. Also, a hybrid main memory provides significant performance and energy 

TABLE VII. Workloads [25]. 

Benchmark IC* Description Input 

BBench 2.48 Web Browser Web pages 

K9Mail 1.18 Email Client Buffered emails 

SinaWeibo 2.23 Social Network Buffered texts 

NeteaseNews 2.65 News Reader Buffered news 

KingSoftOffice 2.24 Document Editor A doc file 

AdobeReader 2.09 Document Editor A PDF file 

BaiduMap 3.53 Map Client Buffered maps 

MXPlayer 3.84 Video Player A video file 

TTPod 3.87 Audio Player A music file 

FrozzenBubble 0.28 Puzzle Game Null 

*IC: Instruction Count (Billions) 
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benefits compared to a conventional DRAM-based memory for mobile devices [17]. Hence, we 

only compare NEMO with other hybrid main memories. 

1) Self-Refreshing Idles (SRI): this scheme puts all the DRAM ranks into SR state when the mobile 

device is idle and is used as our baseline. 

2) NEMO Idle Optimized (NEMOI): this scheme works similar to NEMO during idle periods but 

does not perform NEMO’s active period optimizations. 

3) Ideal Idles (IDI): this is a non-practical scheme that assumes there is no need to perform 

refresh operations to maintain data in the DRAM cache during the idle periods. 

4) Ideal Actives (IDA): this is also a non-practical scheme that works similar to NEMO during the 

idle periods but for each active period (including the initial two active periods) turns on the 

minimum number of DRAM ranks needed to hold the entire working set of the workloads within 

that active period. In other words, IDA knows the exact number of DRAM ranks in advance. It 

should be noted that, the working set size of all the applications within a mix trace is larger than 

the DRAM cache size. However, the working set size of the currently running applications within 

an active period can be smaller than the DRAM cache size. 

TABLE VIII. Summary of Mix traces. 

MIX 1 
Workloads K9Mail SinaWeibo BBench NeteaseNews KingSoftOffice 

Usage Frequencies 3 (actives: 1,4,6) 3 (actives: 3,5,6) 2 (actives: 2,5) 2 (actives: 3,6) 1 (active: 4) 

MIX 2 
Workloads MXPlayer K9Mail BaiduMap AdobeReader FrozzenBubble 

Usage Frequencies 4 (actives: 1,4,5,6) 3 (actives: 1,3,6) 2 (actives: 1,6) 1 (active: 2) 1 (active: 5) 

MIX 3 
Workloads BBench TTPod BaiduMap NeteaseNews FrozzenBubble 

Usage Frequencies 5 (actives: 1,2,3,4,6) 2 (active: 1,5) 1 (active: 2) 1 (active: 2) 1 (active: 3) 

MIX 4 
Workloads MXPlayer AdobeReader K9Mail SinaWeibo TTPod 

Usage Frequencies 3 (actives: 1,3,6) 2 (actives: 2,5) 2 (actives: 2,5) 2 (actives: 1,4) 1 (active:2) 

MIX 5 
Workloads NeteaseNews KingSoftOffice AdobeReader BaiduMap MXPlayer 

Usage Frequencies 2 (active: 1,6) 1 (active: 2) 1 (active: 3) 1 (active: 4) 1 (active: 5) 

MIX 6 
Workloads BBench SinaWeibo KingSoftOffice BaiduMap TTPod 

Usage Frequencies 3 (actives: 1,4,5) 3 (actives: 1,2,5) 3 (actives: 1,2,6) 3 (actives: 2,3,4) 3 (actives: 3,4,6) 

 
 
 
 



58 

 

We use the same DRAM cache structure (fully-associative tagless cache) for all the schemes 

but the cache replacement policy for the SRI and IDI schemes is LRU. Moreover, for all the 

schemes, whenever there is no request to the memory system during the active periods, the DRAM 

ranks are put into active power down state, which has a very short resynchronization time, to 

reduce the active power consumption. 

 Power Evaluations 

Figure 13 compares the power consumption of the DRAM cache for the different schemes 

explained before. The results are all normalized to baseline SRI. NEMO achieves up to 22.2% 

(13.8% on average) reduction in DRAM cache power consumption compared to SRI. This 

reduction is the result of idle and active mode optimizations performed by NEMO. Hence, we have 

removed the active periods optimizations in NEMOI to highlight the effect of each optimization 

separately. The NEMOI scheme reduces DRAM cache power by up to 11.3% (8.6% on average) 

compared to SRI. The maximum power that can be saved during the idle periods is up to 19.0% 

(12.8% on average), as shown with IDI scheme. The extra power consumed by NEMOI compared 

to IDI is mainly because of the hot rank migrations and the power that the hot rank consumes in 

 

Figure 13. Normalized DRAM cache power consumption. 
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self-refresh state during the idle periods. The power that the prediction logic consumes has also 

been considered in our evaluations. NEMO further reduces DRAM cache power by 5.7% on 

average compared to NEMOI. More specifically, compared to NEMOI, the power reduction by 

NEMO is 12.3% for Mix 5, the lightest Mix; 0.0% for Mix 6, the heaviest Mix; and up to 9.2% (5.3% 

on average) for the rest of the Mixes, the common cases. These reductions are actually the direct 

results of NEMO’s active period optimizations. The benefit of the active period optimizations is 

largely due to eliminating all the auto-refresh operations in the powered down DRAM ranks. Note 

that, NEMO turns on all the DRAM ranks for the first two active periods for training purpose. For 

most workloads, NEMO’s power consumption is close to that of IDA, which always turns on the 

necessary number of DRAM ranks even during the initial two active periods (NEMO’s warm up 

period). The only exception is for Mix 5, which is the lightest mix. NEMO turns on more ranks 

than needed, which consumes some extra active power. On average, NEMO consumes 3.9% more 

DRAM power than IDA, which indicates that NEMO predicts the usage of DRAM ranks during 

the active mode accurately. 

Figure 14 shows the total power consumption of the hybrid main memory. The results are 

normalized to baseline SRI. The results show that NEMO reduces the total power consumption of 

 

Figure 14. Normalized total power consumption of the hybrid main memory system. 
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the main memory by up to 19.4% (10.2% on average) compared to SRI (ranging from 19.4% for 

Mix 5 to 3.5% for Mix 6). Moreover, NEMO consumes 4.2% less power than NEMOI. Generally, 

the power consumption of the hybrid main memory depends on the impact of NEMO on the 

DRAM cache miss-rate and the total number of writebacks. 

Figure 15 depicts the values of DRAM cache miss rate (in all the six active periods) for the 

evaluated schemes. Since the miss rate values for the IDI scheme is similar to SRI (they both use 

the same cache management policy), we only include SRI in the figure. Similarly, since the miss 

rate values for the IDA scheme is similar to NEMOI, we only include NEMOI in the figure. The 

results show that NEMO increases the average DRAM cache miss rate slightly from 17.1% by SRI 

to 17.4% by NEMO. However, the average DRAM cache miss rate is decreased from 17.1% by SRI 

to 16.2% by NEMOI. The reason for this reduction is: 1) in most cases, a large number of NEMOI 

(or NEMO)’s evictions are inevitable for providing the cache space required for new applications 

data; 2) during the idle periods, NEMOI (or NEMO) only evicts colder pages that are less likely to 

be re-accessed in the future; 3) during the active periods, NEMOI (or NEMO) chooses its eviction 

victims more wisely. In other words, the eviction victims of SRI are more likely to be accessed 

again at some point later. The reason for the increase in the average DRAM cache miss rate by 

 

Figure 15. DRAM cache miss rate (%). 
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NEMO compared to NEMOI is the active periods where the predicted number of DRAM ranks by 

NEMO is smaller than the actual number of ranks needed. It should be noted that even in those 

cases, NEMO’s DRAM cache replacement policy, which evicts only the dead pages, prevents any 

significant overhead. Moreover, our evaluation results reveal that the accuracy of the proposed 

predictor is 86.1% on average. This means that in most of the active periods of a Mix, the predicted 

number of ranks work similar to the situation when all the DRAM ranks (or in other words, the 

necessary number of ranks or more) are powered up. 

Figure 16 shows the total number of DRAM cache rows written back to PCM by NEMO. The 

results are normalized to baseline SRI. Compared to SRI, the number of writebacks is increased 

by 1.2% on average by NEMO; but is decreased by 0.4% on average by NEMOI. The increase in 

NEMO’s writebacks compared to NEMOI (1.6% on average) is the price we pay for powering up 

fewer ranks. For Mix 5, the number of rows written back by NEMOI is more than those by SRI. 

The reason is: in this case, some of the evictions/writebacks performed by NEMOI (NEMO) 

during the idle periods are not necessary (to empty the required cache space) during the regular 

executions of SRI. However, since most of the applications are run only once (or twice, in two far 

separated active periods) in this mix, it does not have much negative impact on the miss rate. It 

 

Figure 16. Normalized total number of writebacks. 
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should be noted that the increase in the number of writebacks is very small; thereby NEMO does 

not harm PCM lifetime. 

 Performance Evaluations 

Figure 17 shows the performance of the evaluated schemes for the Mix workloads. The results 

are normalized to baseline SRI. Since for IDI, only the power state of DRAM in idle periods (not 

the performance) is different from SRI, we only include SRI in the figure. Though the IDA scheme 

powers up fewer DRAM ranks than NEMOI (i.e., the necessary number of ranks only) during 

some of the active periods, it does not affect the DRAM cache miss rate or number of writebacks. 

Therefore, the performance values of IDA are the same as those of NEMOI. 

The results show that NEMO almost has no negative performance impact and even may 

improve performance. Compared with SRI, its performance is improved by 1.7% on average (up 

to 8.9%). The reasons for this improvement are: First, the number of writebacks performed during 

the active periods is always decreased for all the Mix workloads, although the total number of 

writebacks by NEMO is increased for some of the Mixes. Figure 18 shows the percentages of 

reduction in the number of active periods’ writebacks by NEMO compared to SRI. The decreased 

 

Figure 17. Normalized execution time. 
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number of writebacks alleviates the bus utilization during the active periods, which is very helpful 

especially when the bus is mostly busy with responding to the requests generated by DRAM cache 

misses. Second, as we discussed before, NEMO increases the DRAM cache miss rate only very 

slightly. The execution time of NEMO is 2.3% longer than NEMOI due to misprediction of the 

number of necessary DRAM ranks. It should be noted that all the migrations performed by NEMO 

during the idle periods are off the critical path of memory accesses and do not incur any 

performance penalty. 

 Impact of Design Parameters 

The hybrid main memory’s total power consumption and the total execution time of NEMO 

with different number of DRAM hot ranks are shown in Figure 19. The results are normalized to 

NEMO with one hot rank. We have included only the average values in the figure. 

Compared to NEMO with one hot rank, NEMO with zero hot ranks reduces main memory’s 

power by only 1.6% on average, while it incurs a performance loss of 3.7% on average. This is 

because the evictions/writebacks of the hottest pages are unnecessary and increase the DRAM 

cache miss rate. Moreover, compared to NEMO with one hot rank, NEMO with two hot ranks 

 

Figure 18. Percentage of reduction in the number of active periods’ writebacks by NEMO 
compared to Baseline. 
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improves performance by 0.8% but increases the total main memory’s power consumption by 

3.1% on average. This means that the pages stored in the second hot rank are not as critical to 

system’s performance as those pages stored in the first hot rank. In other words, keeping a second 

DRAM hot rank powered up increases the power consumption with a small performance benefit. 

Overall, based on the results, NEMO with one DRAM hot rank provides the best balance between 

the main memory’s power consumption and performance. That is why our scheme keeps only a 

single hot rank. 

Figure 20 shows the hybrid main memory’s total power consumption for different DRAM 

cache sizes. The results are normalized to baseline SRI with 64MB DRAM cache. The results show 

that NEMO can achieve, on average, 6.6%, 10.2%, and 18.1% reduction in the total power 

consumption for a hybrid main memory with a 64MB, 128MB, and 256MB DRAM cache, 

respectively, compared to baseline SRI. Using a larger DRAM cache for NEMO has several 

benefits. First, when the DRAM is larger, the DRAM hot rank is also larger and can keep more hot 

pages. Second, the obtainable power saving by the idle period optimizations becomes larger, 

because the larger the DRAM, the higher the self-refresh operations energy. Third, the active 

 
(a) 

 
(b) 

Figure 19. NEMO’s (a) normalized total power consumption; (b) normalized 
execution time; for different number of DRAM hot ranks. 
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period optimizations can also be more effective because more data can be placed in each DRAM 

rank and there will be more opportunities to power down some ranks. Besides, the background 

power that can be saved during the active periods is also larger for larger DRAM caches. Forth, 

when DRAM capacity and thus the number of requests served in DRAM increases, a larger portion 

of the hybrid main memory’s energy will be reduced by improving the DRAM cache. 

 Conclusions 

In this chapter, we proposed a novel scheme called NEMO to minimize the background energy 

of hybrid main memories used in mobile devices. To do so, NEMO takes advantage of the unique 

usage pattern of mobile devices, which are idle most of the times. 

During the long idle periods, NEMO evicts the nonvaluable memory pages (those that are less 

likely to be reused in future) from the DRAM cache and collects the remaining hot memory pages 

in a single DRAM rank, called the hot rank. It then powers off all the DRAM ranks except for the 

hot rank. In addition, to minimize the background power during the active periods, it predicts the 

number of DRAM ranks that needs to be powered up in addition to the hot rank based on the 

 

Figure 20. Normalized total power consumption of the hybrid main memory for 
different DRAM sizes. 
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applications’ launching pattern in the past. The experimental results revealed that NEMO could 

effectively reduce the memory power consumption without negative performance impact. 
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A WRITEBACK-AWARE LLC MANAGEMENT SCHEME FOR PCM-BASED 

MAIN MEMORY SYSTEMS 

 Introduction 

Due to its scalability limits, DRAM can no longer satisfy the memory capacity demands of the 

modern-day applications. Hence, PCM is gaining interest as DRAM replacement for building the 

future main memories [4, 65, 66, 70, 72]. However, PCM suffers from some major shortcomings 

including long write latency, high write energy consumption, and limited write endurance, which 

are all related to write operations. To deal with the overheads of write operations in PCM, there 

are two common types of solutions. First category is the optimizations on the PCM architecture 

to minimize the impact of writes. For example, modifying the request scheduling policy in the 

PCM main memory to alleviate the performance overheads of writes on reads [2, 68, 82, 91]; or 

modifying the PCM main memory architecture to reduce or balance the write loads on PCM cells 

and enhance their lifetime [86]. Second category is reducing the total number of writes sent to the 

PCM main memory by modifying the Last Level Cache (LLC)’s management policies [80]. This 

work falls into the latter category. 

We propose WALL [63, 64], a novel dynamic writeback-aware LLC management scheme to 

improve performance, energy efficiency, and lifetime of a PCM-based main memory system by 

reducing the number of writebacks from LLC to PCM. In general, WALL consists of a writeback-

aware set balancing mechanism and a writeback-aware replacement policy. Writebacks of the last 

Parts of this chapter has been presented in [63, 64]. Copyright © 2018, IEEE. Copyright © 
2019, ACM. 
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level cache are not uniformly distributed among its sets; some sets have far more writebacks than 

others, while some sets rarely see writebacks (please see Section 5.2 for detailed results). The 

proposed set balancing mechanism reduces the number of writebacks by employing the 

underutilized sets with infrequent writebacks as auxiliary storage units (inside LLC) for the 

evicted dirty lines from sets with many writebacks. Moreover, the proposed writeback-aware 

replacement policy tries to keep the dirty blocks that are frequently accessed after eviction in LLC. 

To do so, it allows the dirty eviction victims (i.e., dirty LRU block) to stay in the cache and be re-

accessed; if the block becomes LRU block again without being accessed, it will be evicted from 

LLC then. 

To implement the set balancing mechanism of WALL, we first propose a simple partner 

assignment strategy [63]. The simple partner assignment strategy classifies sets into three 

categories: 1) “writer”; sets with frequent writebacks; 2) “non-writer”; sets with infrequent 

writebacks; and 3) “neutral”; sets that are neither writer nor non-writer. Each writer set is 

partnered with a non-writer set until no non-writer sets are left un-partnered. Although this 

partner assignment strategy has simple implementation and works effectively for many 

workloads, it also has two limitations. First, it cannot always balance the number of writer and 

non-writer sets; thereby some writer or non-writer sets may remain without partners. Second, it 

does not guarantee the inclusion of writer sets with the largest number of writebacks or non-writer 

sets with the smallest number of writebacks in the partner assignment process. We further 

propose three novel partner assignment strategies called contraction, expansion and ConExp to 

alleviate the limitations of the simple partner assignment strategy [64]. Specifically, when the 

number of writer and non-writer sets are imbalanced, the expansion strategy includes some of the 

neutral sets, which are the most eligible to be considered writer or non-writer, in the partner 

assignment process. On the other hand, the contraction strategy addresses the second limitation 
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of the simple partner assignment strategy by first assigning partners to writer sets with the largest 

number of writebacks and non-writer sets with the smallest number of writebacks. The ConExp 

strategy is a combination of the contraction and expansion strategies to deal with both limitations 

of the simple partner assignment strategy. 

We evaluate our proposed schemes by running SPEC CPU2006, NAS and PARSEC workloads 

on GEM5 [19] integrated with modified NVMAIN [62], which simulates the PCM-based main 

memory system. The experimental results indicate that our schemes can reduce the total number 

of LLC writebacks by 30.9%, on average, compared to a baseline scheme, which uses the LRU 

replacement policy. As a result, for a system with eight cores and a 4GB PCM main memory, it 

can enhance PCM lifetime by 1.29×, on average, and reduce the memory energy consumption by 

23.1%, on average. 

 Motivation 

In this section, we explain the motivation of our work by investigating LLC sets’ writeback 

behaviour. To this end, we have run three workloads, selected from different benchmark suites 

(sp from NAS [60], gcc from SPEC CPU2006, and streamcluster from PARSEC [6]) on our 

simulated system (please see Section 5.9.1 for more details). 

Figure 21 shows the cumulative distribution of writebacks over LLC sets. The results reveal 

that majority of the writebacks from the LLC to main memory are generated by less than half of 

the LLC sets. For sp, 25% of the LLC sets, with the largest number of writebacks (i.e., frequent 

writeback sets), are responsible for 41.1% of the total number of writebacks. On the other hand, 

12.5% of the sets, with the smallest number of writebacks (i.e., infrequent writeback sets), are 

accountable for only 5.3% of the total number of writebacks. In general, some sets tend to write 
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back much more frequently than others. For example, since 22.9% of the writebacks for sp are 

performed by 12.5% of the frequent writeback sets, a frequent writeback set writes to main 

memory about four times more frequently than an infrequent writeback set, on average. Similarly, 

for gcc, 25% of the frequent writeback sets perform 49.6% of the writebacks while the same 

percentage of the infrequent writeback sets are responsible for only 10.8% of the total number of 

writebacks. Finally, for streamcluster, 20.7% of the writebacks are sourced from 6.3% of the 

frequent writeback sets. 

Based on this observation, we propose a set balancing mechanism to reduce the number of 

writes to a PCM-based main memory system. More specifically, WALL aims to prevent a 

noticeable percentage of write traffic from reaching the PCM main memory by taking the non-

uniform distribution of LLC set writebacks into account. The idea of avoiding the eviction of LLC 

sets’ highly reused dirty blocks, which are likely to become eviction victims soon after being re-

inserted in the cache (i.e., frequent writeback blocks), has been discussed in a recent study called 

WADE [80]. The WADE scheme partitions the blocks of each LLC set into two groups, “frequent 

writeback blocks” and “non-frequent writeback blocks” and tries to keep the frequent writeback 

blocks in the set to reduce the number of writes to the main memory. However, one major 

   

Figure 21. Cumulative distribution of writebacks over LLC sets. (NOTE: sets are sorted 
in a descending order based on their total number of writebacks). 
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shortcoming of WADE is that for every set, irrespective of its characteristics, it considers the non-

frequent writeback blocks of the set as the only replacement candidates; while other sets might 

have clean, underutilized lines. Moreover, WADE is rather complex. In our study, a simple but 

effective writeback-aware replacement policy is also proposed to keep the frequent writeback 

blocks in the cache. Overall, WALL can reduce the number of LLC writebacks by considering the 

writeback behaviour of sets and their blocks at the same time. 

 WALL Overview 

The WALL scheme comprises of a writeback-aware set balancing mechanism and a writeback-

aware replacement policy. The set balancing mechanism classifies LLC sets into three categories, 

“writers” (i.e., frequent writeback sets), “non-writers” (i.e., infrequent writeback sets) and 

“neutral”. To reduce the number of write requests to PCM, the non-writer sets are used to store 

the evicted dirty lines from the writer sets. Specifically, each writer set is partnered with a non-

writer set (until there is no non-writer set left) and upon eviction of an LRU dirty line from the 

writer set, the line will be inserted into the set’s partner instead of being written back to the main 

memory. Besides, our writeback-aware replacement policy further reduces the number of LLC 

writebacks by keeping the frequent writeback blocks in the cache. 

 Writeback-Aware Set Balancing Scheme 

To decide whether a set is writer or non-writer, WALL monitors the number of writebacks, 

and accesses of each LLC set for a time window. Generally, a set is “writer” if the number of 

writebacks from it exceeds a certain threshold (i.e., �abca_�	), but a set with relatively small 

number of writebacks is not necessarily a good partner set. A non-writer set must have enough 
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space to store the evicted dirty blocks of its writer partner without noticeable performance 

penalty. To measure the degree to which a set can hold its working set, we employ a saturating 

arithmetic miss counter (i.e., saturation counter) similar to that in a previous study [73]. For a K-

way set associative cache, the working range of the saturation miss counter is from 0 to 2K-1 [73]. 

Upon every access, the saturation counter is incremented if the access results in a miss and 

decremented otherwise. To count the number of writebacks, we also use a saturating writeback 

frequency counter for each set that is incremented upon every writeback from the set. At the end 

of a monitoring period, we divide the writeback values by two (i.e., shift the counters right by one 

bit). This actually reduces the impact of set’s writeback behaviour in the past on the type of the 

set in the current time period. 

WALL considers a set “non-writer” if both of saturation and writeback counters are smaller 

than specific thresholds (i.e., �de�, ����_�	). For a set with writeback frequency counter of W and 

saturation counter of M, the set is considered writer if (W ≥ fghig_jk), non-writer if (M ≤ fl1m & W 

≤ fnoj_jk) and neutral otherwise. We divide the total execution time of programs into epochs of 

10r accesses to the LLC. On entering an epoch, the partnership between two sets can be easily 

broken if the writer set has no blocks in its non-writer partner. The thresholds are re-calculated 

and if there is a pair of writer and non-writer sets with no partners, they will be assigned to each 

other. Note that for a set with partner (i.e., a writer set with blocks in its partner or a non-writer 

set that holds some of its partners’ blocks), we do not change the set type. Our experiments show 

that set types rarely change after an initial set type identification epoch and most partnerships 

remain intact. On the other hand, to avoid overfill a non-writer set, if the saturation counter of a 

non-writer set reaches α × fl1m, where α is 2 in our experiments, the insertion of blocks from its 

writer partner will be suspended until the set’s saturation counter retrieves to values smaller than 

fl1m. To reduce implementation complexities, we assume each writer set is partnered with only 
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one non-writer set. In other words, the number of the paired writer and non-writer sets is equal 

to the size of the smaller group of writer and non-writer sets. We later discuss how accesses to sets 

and their partners are handled in Section 5.6. 

To determine the writeback thresholds, three simple steps are followed. First, the arithmetic 

mean of all the writeback values is computed and referred to as the overall average. Then, fnoj_jk 

is computed as the arithmetic mean of the writeback values smaller than the overall average. 

Finally, fghig_jk  is computed as the arithmetic mean of the writeback values larger than the overall 

average. Note that since these thresholds cannot guarantee an equal number of writer and non-

writer sets, some writer sets may remain without a partner at the end. Moreover, we assume fl1m 

= K/4 (i.e., K is the set associativity). Figure 22 depicts the distribution of sets based on the 

discussed thresholds for the workloads shown in TABLE XI (see Section 5.9.1). The results are 

based on the values obtained after the initial epoch of 10r accesses to the LLC. It should be noted 

that the saturation bars (i.e., bars with horizontal axis title of “sat”) in the figure are only for the 

sets with writeback counters smaller than fnoj_jk. Our results show that the selected thresholds 

can distinguish different types of sets from each other effectively. 

 

Figure 22. Distribution of LLC sets based on the thresholds (wb: writebacks; sat: 
saturation; NOTE: sat bars are only for the sets with wb < ����_�	). 
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 Writeback-Aware Replacement Policy 

In addition to assigning partners to writer sets, WALL enables a writeback-aware replacement 

policy inside the LLC sets to further reduce the number of writebacks to the PCM. To keep the 

“frequent writeback blocks” in the cache, such blocks need to be identified first. We propose a 

much simpler yet effective method compared to the prediction scheme discussed in WADE [80], 

because such prediction schemes are usually complex and costly in terms of area, energy, and/or 

performance overheads. 

The intrinsic definition of a frequent writeback block is a block that is frequently reused each 

time after being evicted from the cache. Generally, our scheme avoids the eviction of such blocks 

by giving the dirty victims a second chance to stay in the cache and be accessed again. To keep 

track of the dirty blocks that have been given a second chance, a one-bit flag called FV (i.e., Former 

Victim) is considered for each block. We assume the baseline replacement policy is LRU. When a 

replacement is needed in an LLC set, the dirty status bit of the LRU line (i.e., the eviction victim) 

is checked; if the LRU block is clean, it will be evicted from the cache but if the block is dirty, two 

scenarios are possible. First, the block is not a former victim (FV = 0). In this case, the line will be 

moved to the MRU position of the access stack and will be marked as a former victim (i.e., its FV 

flag will be set to ‘1’), this process will be repeated until finding an eviction victim. Second, the 

block is a former victim (FV = 1) and has become the eviction victim for the second time without 

being accessed. In this case, the block will be evicted from the cache. If a cache line with FV = 1 is 

accessed, its FV bit will be reset to ‘0’. The reason is that such block is likely to be a frequent 

writeback block. It should be noted that all these steps happen in parallel with the resolution of 

the miss, thereby there is no performance penalty. 
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We use the proposed replacement policy for the non-writer and neutral sets. Since writer sets 

usually have high miss rate values and often choose dirty blocks as eviction victims, for those sets, 

we use the baseline LRU replacement policy. However, on eviction of an LRU dirty block from a 

writer set with a partner, the block will be inserted into the set’s partner. 

 Set Balancing Simple Partner Assignment and Access Management 

For writer sets with large number of writebacks, changing the replacement policy may cause 

a non-trivial increase in the sets’ miss rates. Hence, the writeback-aware replacement policy is 

applied to those sets that are not writer (i.e., neutral and non-writer sets). Instead, WALL virtually 

increases the associativity of a writer set by assigning a non-writer partner to it. We first propose 

a simple partner assignment strategy and access management for set-balancing LLC. The reason 

that we have excluded the neutral sets from the partnering process is that it is not beneficial to 

write from one set to another set with similar writeback or miss frequencies. 

The partner of a writer set is selected randomly from the non-writer sets. To keep tracking the 

partners, a small direct-access remap table is introduced. The indices of the sets’ partners are 

saved in the remap table, which is indexed by set indices. For a set with no partner, its own index 

is stored. When an LRU dirty line is evicted from a writer set with a partner, it will be inserted 

into the set’s partner. To show whether a block in a non-writer set is repositioned from the set’s 

writer partner or not, a one-bit flag called RB (i.e., Repositioned Block) is considered for each 

block. The remap table is also augmented with one-bit flag P (i.e., Partnered) for each set to show 

whether a writer set has any blocks in its partner or not. Upon an access to a writer set, if the 

access results in a miss, the remap table is checked, if P is ‘1’, the set’s partner will be accessed for 

the block; otherwise, main memory will be accessed as usual. If the access also misses in the set’s 
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partner, main memory must be accessed. If all the repositioned blocks of a writer set get evicted 

from its partner, P flag of the writer set will be reset to ‘0’. 

The design of WALL is depicted in Figure 23. On an eviction of a block from an LLC set, we 

first decide whether the block needs to be written back to the PCM or not. If not, depending on 

the set type, the block either remains in the set as MRU or will be written back into the set’s 

partner. To specify the type of each set, a 2-bit register called ST is considered per set (i.e., the set 

is writer if ST = “11”, non-writer if ST = “10”, and neutral if ST = “00” or “01”). 

 Extended Partner Assignment Strategies 

The simple partner assignment strategy of WALL explained in the previous section cannot 

guarantee an equal number of writer and non-writer sets. In other words, some writer sets may 

remain without partners at the end of the partner assignment process. In this section, to efficiently 

 

Figure 23. Design of WALL. 
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exploit the available storage space of the non-writer sets and to further reduce the number of 

writebacks from the writer sets, we propose three more partner assignment strategies called 

expansion, contraction and ConExp, which is a combination of contraction and expansion 

strategies. 

 Expansion Partner Assignment Strategy 

The expansion strategy modifies the writeback thresholds to balance the number of writer and 

non-writer sets. Specifically, when the number of non-writer sets is considerably smaller than the 

writer sets, the expansion strategy finds the most eligible neutral sets to be added to the non-

writer sets. On the other hand, when the number of writer sets is smaller, the expansion strategy 

assigns the remaining (without partners) non-writer sets, to the neutral sets that can benefit the 

most from the partnership. 

To avoid enlarging the group of writer or non-writer sets unreasonably (i.e., causing more 

imbalance in the sizes of the two groups), we define an expansion condition; the expansion 

strategy is applicable only when the size of the larger group is at least β× the size of the smaller 

group. Our evaluations show that β = 1.5 provides the best balance between the number of writer 

and non-writer sets. The writeback thresholds of the expansion strategy are represented as 

fs2t_noj_jk and fs2t_ghig_jk. When the expansion condition is true, considering a neutral set with 

writeback frequency counter of W and saturation counter of M, the two possible scenarios are as 

follows: 1) If non-writer sets are fewer, the neutral set is considered “semi non-writer” if (M ≤ fl1m 

& W ≤ fs2t_noj_jk). To determine fs2t_noj_jk, the arithmetic mean of the writeback values between 

fnoj_jk and the overall average is computed. 2) If writer sets are fewer, the neutral set is 

considered “semi writer” if W ≥ fs2t_ghig_jk. The value of fs2t_ghig_jk is also computed as the 
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arithmetic mean of the writeback values between the fghig_jk and the overall average. Figure 24 

shows the distribution of sets with the expansion strategy after the initial monitoring epoch. 

The expansion strategy starts by assigning the original writer and non-writer sets as partners. 

Then, it continues by assigning the remaining writer/non-writer sets to the semi non-writer/semi 

writer sets until no semi non-writer/non-writer set remains without a partner. 

 Contraction Partner Assignment Strategy  

Since the number of writer and non-writer sets are usually not the same, some sets remain 

without a partner. On the other hand, it is beneficial to always keep the writer sets with the largest 

number of writebacks, or “super writer sets”, and non-writer sets with the smallest number of 

writebacks, or “super non-writer” sets, included in the partner assignment process. 

The contraction strategy distinguishes the super writer and super non-writer sets from the 

rest of the sets using two writeback thresholds called fuov_ghig_jk and fuov_noj_jk. Specifically, a 

 
Figure 24. Distribution of LLC sets after applying the expansion strategy. 
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non-writer set with writeback counter of W is considered super non-writer if W ≤ fuov_noj_jk and 

a writer set with writeback counter of W is considered super writer if W ≥ fuov_ghig_jk. To 

determine the fuov_noj_jk, the arithmetic mean of the writeback values smaller than the fnoj_jk is 

computed. Also, fuov_ghig_jk is computed as the arithmetic mean of the writeback values larger 

than the fghig_jk. Figure 25 illustrates the distribution of sets with the contraction strategy after 

the initial monitoring epoch. The contraction strategy starts from assigning partners to super 

writer and super non-writer sets and then continues by assigning partners to the remaining writer 

and non-writer sets. 

 Contraction-Expansion (ConExp) Strategy 

There are two main shortcomings with the expansion strategy. First, since the semi non-writer 

sets are less effective than the non-writer sets in reducing the number of writebacks, assigning 

them as partners to the super writer sets should be avoided. Second, although the expansion 

strategy tries to balance the number of writer and non-writer sets, the super writer or super non-

 
Figure 25. Distribution of LLC sets after applying the contraction strategy. 
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writer sets may still be excluded from the partner assignment process. To alleviate these problems, 

we propose the ConExp strategy, which is a combination of the contraction and expansion 

strategies. ConExp assigns partners, in order, to the super sets, then to the original writer and 

non-writer sets, and finally to the semi sets, until no non-writer or semi non-writer set remains 

without a partner. It is worth mentioning that the semi and super writer sets are represented 

(treated the same) as the writer sets and the semi and super non-writer sets as the non-writer sets. 

Hence, these strategies do not require any additional hardware overheads. 

 Overhead Analysis 

TABLE IX summarizes the storage overhead of WALL. The total storage overhead of WALL is 

less than 0.6% of the LLC capacity. It is worth mentioning that this overhead is about half of that 

of WADE [80]. 

Calculating the writeback thresholds and updating the remap table (i.e., pairing writer and 

non-writer sets) are only performed once at the end of each epoch. Hence, their performance 

impacts are negligible. 

TABLE IX. Total Storage Overhead. 

Type Storage Type Storage 

FV per block 16 KB Saturation counter (6-bit) per set 3 KB 

RB per block 16 KB Writeback counter (8-bit) per set 4 KB 

P per set 0.5 KB Remap table 6 KB 

ST per set 1 KB TOTAL 46.5 KB 

 
 
 
 



81 

 

 Results 

 Methodology 

For this work, we model an 8-core processor using the GEM5 full-system simulator integrated 

with NVMAIN. The system configuration of our experiments is shown in TABLE X. The PCM 

configurations are generated by NVSIM [16] and CACTI [8], the cell parameters used in NVSIM 

are based on the projections by [12]. The benchmarks used in this study are chosen from NAS 

[60], SPEC CPU2006 and PARSEC [6] as depicted in TABLE XI. The selected benchmarks are 

some of the memory-intensive workloads from the three benchmark suites. For all the workloads, 

we use either sampled reference or native input sets to represent a real-world execution scenario 

and run the applications for two billion instructions, after two billion instructions for cache warm-

up phase. 

We compare WALL with 1) Baseline that uses the LRU replacement policy, 2) Baseline double-

way, a baseline cache of the same size with double the associativity, and 3) WADE, which is the 

TABLE X. System Configuration. 

Processor and on-chip Caches 

Cores 8 cores, out-of-order, 2.0 GHz 

L1-I/D  Split 32KB I/D-cache/core, 4-way, 8-MSHR, 2-cycle hit  

L2 256KB/core, 8-way, 12-MSHR, 12-cycle hit 

L3 (LLC) SRAM: Shared, 8MB, 32-way, 32-MSHR, 35-cycle hit 

Coherency  MOESI directory, 2×4 grid packet NoC, XY routing 

Main Memory 

PCM 

4GB, 4 Channel, 1 rank/channel, 4 banks/rank, 400 MHz 

�567= 150ns, �86567= 100ns, �89:= 120ns 

Cell endurance = 32×106 writes  

MC 
Four controllers, Open page, 32-entry queues (one read queue 
and one write queue), Write drain threshold: high = 80%, low = 
50%, Address mapping: page interleaving 
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scheme proposed in [80]. In PCM, we always prioritize reads over writes if write queue is less than 

80% full. 

 LLC Writeback Reduction 

Figure 26 shows the writeback reduction of WALL for the different types of LLC sets. The 

results are normalized to the baseline scheme. It is worth mentioning that any writeback of a 

writer set’s lines from its partner is considered for the original writer set. 

 The WALL scheme when using the simple partner assignment strategy achieves an average 

of 26.6% writeback reduction, compared to the Baseline scheme. The three main reasons for this 

reduction are: 1) The efficacy of the set type identification process. 2) The capability of the 

writeback-aware set balancing scheme in reducing the writer sets’ writebacks; the number of 

writebacks originated from writer sets is reduced by 39.5%, on average (i.e., from 33.4% to 20.1% 

of the Baseline total writebacks), while the writebacks originated from non-writer sets are 

increased slightly from 10.4% to 13.1% of the Baseline total number of writebacks. 3) The proposed 

writeback-aware replacement policy has been able to reduce the writebacks originated from the 

TABLE XI. Evaluated workloads characteristics. 

(RPKI/WPKI: main memory Reads/Writes Per 1000 Instructions) 

Workload RPKI WPKI Workload RPKI  WPKI 

from the NAS benchmarks (8-Thread) 

sp 4.98 2.55 ua 3.12 2.67 

from the PARSEC benchmarks (8-Thread) 

stream 24.4 0.21 dedup 11.5 8.32 

from the SPEC CPU2006 benchmarks 

8×gcc 7.42 1.59 8×mcf 43.5 9.02 

mix1 2.91 1.90 mix2 12.7 4.21 

mix1: 4×lbm, 4×bzip mix2: 4×cactusADM, 4×leslie3D 
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neutral sets by 28.6%, on average (i.e., from 56.2% to 40.1% of the Baseline total writebacks). It 

is worth noting that for some of the benchmarks, the proposed replacement policy has also been 

able to reduce the number of writebacks originated from the non-writer sets. 

Figure 27 compares the normalized writebacks reduction of the evaluated schemes. Compared 

with Baseline double-way and WADE, WALL reduces the number of writebacks by 23.3% and 

16.4%, on average, respectively. Based on the results, duplicating the set associativity is not very 

helpful in reducing the number of LLC writebacks; our baseline implementation is 32-way and 

increasing the associativity beyond that does not cause a significant improvement. 

Figure 28 compares the writeback reduction of the extended partner assignment strategies. 

The results are normalized to the simple partner assignment strategy. The expansion strategy can 

 

Figure 26. WALL’s normalized LLC writebacks reduction. 

 
 

 

Figure 27. Writebacks reduction of evaluated schemes. 
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reduce the number of writebacks by 3.6%, on average (by up to 9.2% for gcc). This reduction is 

caused by including more writer (or semi writer) sets in the partner assignment process. The 

contraction strategy can reduce the number of writebacks by 3.4%, on average (by up to 4.6% for 

ua). The reason for this reduction is the fact that sets with highest write frequency (super writer 

sets) are always assigned a partner, which is in the super non-writer sets (i.e., one that has the 

smallest write frequency). ConExp, which uses the benefits of both strategies, can reduce the 

number of writebacks by 5.9%, on average (by up to 12.7% for mix1), compared to the simple 

partner assignment strategy. In other words, ConExp strategy can reduce the number of 

writebacks by 30.9%, on average, compared to the Baseline scheme. 

 LLC Miss Rate 

Figure 29 shows the normalized MPKI (Misses Per Kilo Instructions) of WALL for different 

types of LLC sets. The accesses that result in a hit in a writer set’s partner are considered for the 

original writer set. 

Figure 30 shows the normalized MPKI of the evaluated schemes. Results reveal that WALL 

when using the simple partner assignment strategy reduces the MPKI by 2.4%, on average, 

compared to the Baseline. This reduction is mainly because WALL stores the frequently reused 

 

Figure 28. Writebacks reduction of WALL with different partner assignment 
strategies. 
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dirty blocks of writer sets in the non-writer partners and performs similarly to doubling the 

associativity of those cache sets. More specifically, the MPKI of writer sets is reduced by 27.8%, 

on average (i.e., from 30.7% to 22.1% of the Baseline total MPKI). On the other hand, the MPKI 

is increased from 12.0% to 16.2% of the Baseline total MPKI for the non-writer sets and from 

57.3% to 59.1% for the neutral sets, on average, respectively. For some cases, the writeback-aware 

replacement policy has incurred miss penalties by evicting the clean lines that are later reused 

more frequently than the saved dirty blocks (i.e., those that have been given a second chance). For 

other cases, the dirty lines kept in LLC by the writeback-aware replacement policy are re-

referenced more than the lines evicted by them instead. It should be noted that the penalty is 

small because we give only a second chance to the dirty victims of the sets. The set-balancing 

 

Figure 29. WALL’s normalized MPKI. 

 
 

 

Figure 30. MPKI of evaluated schemes. 

 
 
 
 

0

0.4

0.8

1.2

B
a

se
li

n
e

W
A

LL

B
a

se
li

n
e

W
A

LL

B
a

se
li

n
e

W
A

LL

B
a

se
li

n
e

W
A

LL

B
a

se
li

n
e

W
A

LL

B
a

se
li

n
e

W
A

LL

B
a

se
li

n
e

W
A

LL

B
a

se
li

n
e

W
A

LL

B
a

se
li

n
e

W
A

LL

sp ua stream dedup gcc mcf mix1 mix2 Average

N
o

rm
a

li
ze

d
 M

P
K

I non-writer neutral writer

0

0.4

0.8

1.2

sp ua stream dedup gcc mcf mix1 mix2 Average

N
o

rm
la

iz
e

d
 

M
P

K
I

Baseline Baseline double-way WADE WALL



86 

 

scheme reduces the MPKI of writer sets at the cost of increasing the MPKI of non-writer sets. 

However, since the non-writer sets are usually underutilized, the increase is small. Compared with 

the LRU replacement policy (used for both Baseline and Baseline double-way), our scheme has 

higher management cost and increases the MPKI slightly for some benchmarks. However, our 

evaluations reveal that it does not have a noticeable negative impact on the cache miss rate. 

Compared with Baseline double-way, WALL increases the MPKI by 1.0%, on average. However, 

WALL reduces the MPKI by 0.3%, on average, compared to WADE because WADE does not 

distinguish different set types. 

 Energy Comparison 

Figure 31 shows the normalized energy of the PCM main memory for the evaluated schemes. 

WALL when using the simple partner assignment strategy can save main memory’s energy by 

19.2%, on average, compared to the Baseline. Compared with Baseline double-way and WADE, 

WALL reduces the energy consumption of the PCM main memory by 16.5% and 11.3% on average, 

respectively. The energy consumption of writing to PCM is much higher than that of reads. Hence, 

the energy saving is mainly due to the reduction in the number of write requests issued to PCM 

by WALL. That is also the reason that Baseline double-way exhibits a higher power consumption 

compared to WALL; Baseline double-way experiences a smaller MPKI, but a higher rate of 

writebacks. Unlike WADE, which uses complex prediction schemes, the energy consumption of 

the logic components added to LLC by WALL is negligible. 

Figure 32 shows the normalized energy of the main memory for the extended partner 

assignment strategies. Compared to the simple partner assignment strategy, the expansion and 

the contraction strategies can save main memory’s energy consumption by 2.7% and 3.0%, on 

average, respectively. The ConExp strategy can reduce the main memory’s energy by 4.8%, on 
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average, compared to the simple partner assignment strategy. In other words, ConExp strategy 

can reduce the energy consumption of the PCM main memory by 23.1%, on average, compared to 

the Baseline scheme. 

 Performance Comparison 

Figure 33 compares the normalized system IPC of the evaluated schemes. The overhead of the 

second searches in partners of the writer sets is considered in our experiments. WALL when using 

the simple partner assignment strategy improves performance by 6.7% on average, compared to 

the Baseline scheme. Compared with Baseline double-way and WADE, WALL improves system 

performance by 4.9% and 3.2% on average, respectively. The latency of writing to PCM is much 

higher than that of reads. Hence, the reduced average access latency of the PCM main memory is 

 

Figure 31. Normalized main memory energy. 

 
 

 

Figure 32. Main memory energy of WALL with different partner assignment 
strategies. 
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the major reason for the performance improvement. The results indicate that WALL can reduce 

the PCM average access latency by 12.6%, on average, compared to the Baseline. The reduction is 

due to reducing the PCM write traffic and thus the queuing delay of the PCM read requests. 

Figure 34 illustrates the normalized system IPC of WALL with the extended partner 

assignment strategies. Compared to the simple partner assignment strategy, the expansion and 

contraction strategies can improve the system performance by 0.7% and 1.5%, on average, 

respectively. ConExp, which uses the benefits of the both strategies, can improve performance by 

2.1%, on average, compared to the simple partner assignment strategy. Compared to Baseline, 

ConExp strategy can improve performance by 8.7%, on average. 

 

Figure 33. Normalized IPC. 

 
 

 

 

Figure 34. Normalized IPC of WALL with different partner assignment strategies. 
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 PCM Lifetime Enhancement 

Figure 35 compares the PCM lifetime enhancement of the evaluated schemes. The lifetime is 

calculated based on the analytical model in [70] explained in the Background Chapter Section 

2.4.1. It should be noted that PCM lifetime is inversely proportional to the writes per cycle or write 

rate (GBps). WALL when using the simple partner assignment strategy can enhance PCM lifetime 

by 1.25×, on average, compared to the Baseline. Compared with Baseline double-way and WADE, 

WALL enhances the PCM lifetime by 1.21× and 1.17× on average, respectively. Alleviating the write 

traffic sent out to the PCM main memory by WALL is the reason for the lifetime enhancement. 

Figure 36 shows the PCM lifetime enhancement of the extended partner assignment 

strategies. ConExp can enhance PCM lifetime by 1.04×, on average, compared to the simple 

 

Figure 35. Lifetime enhancement (years, log scale). 

 
 

 

Figure 36. Lifetime enhancement of WALL with different partner assignment 
strategies. 
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partner assignment strategy. In other words, ConExp strategy can enhance PCM lifetime by 1.29× 

compared to the Baseline scheme. 

 Impact of Time Window Size 

For experimental results presented so far, the set types are checked and adjusted with an 

epoch of 10r	LLC accesses, because our experiments indicate that this provides the best balance 

between the writeback reduction and storage overhead. Next, we discuss the impact of time 

window size. We choose to use the number of LLC accesses instead of the number of cycles 

because WALL works based on the number of writebacks/accesses of the sets and epochs with the 

same number of cycles may have very different number of writebacks/accesses. In other words, 

to obtain a consistent approach among the epochs, we choose the number of LLC accesses rather 

than cycles. Figure 37 compares the average writeback and miss rate values of WALL + ConExp 

for three different time window sizes. 

The results are normalized to 10r LLC access time windows. Our goal is to reduce the number 

of writebacks while keeping the storage overhead at minimum. The evaluations show that using 

 
(a) 

 
(b) 

Figure 37. WALL results for various window sizes: (a) writeback reduction of 
WALL for three different time window sizes; (b) MPKI of WALL for three 

different time window sizes. 
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time windows of 0.5×10r accesses results in 10.3% more writebacks and 6.3% higher miss rate 

compared to time windows of 10r accesses. The reason is that time windows of 0.5×10r accesses 

are not long enough, resulting in incorrect identification of some set types. Identifying a neutral 

set as non-writer and assigning a writer partner to it can increase its writeback and miss rate 

values because the set will not have enough space for its writer partner’s blocks. Moreover, 

identifying a writer set as neutral can also increase its writeback and miss rate values because 

writer sets need to be managed differently as we explained in Section 5.4. Finally, identifying a 

neutral set as writer or a non-writer set as neutral may prevent us from using the set-balancing 

scheme efficiently. 

Our results also show that for time windows of 2×10r accesses, larger writeback counters are 

required; otherwise counters will saturate causing sets types to be identified incorrectly. However, 

even when larger writeback counters are used for time windows of 2×10r accesses, the reduction 

in the number of writebacks is small (i.e., only 1.2%) compared to time windows of 10r accesses. 

Hence, the selected time windows of 10r LLC accesses gives us the best balance between the 

writeback reduction and storage overhead. 

 Conclusions 

In this chapter, a novel writeback-aware LLC management scheme is proposed to reduce the 

number of LLC writebacks to a PCM based main memory to improve its energy efficiency and 

lifetime. 

We first investigated the non-uniformity of the LLC sets writebacks and proposed a writeback-

aware set-balancing mechanism based on that. To implement the set-balancing mechanism, we 

first proposed a simple partner assignment strategy. Then, to further optimize our proposed 
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WALL scheme, we proposed three novel partner assignment strategies, called contraction, 

expansion, and ConExp to pair sets with different behaviours more efficiently compared to the 

simple partner assignment strategy. In addition, we proposed a simple but effective writeback-

aware replacement policy to keep the frequently reused dirty lines of the sets in the cache. Our 

evaluation results revealed that WALL can achieve a significant reduction in the total number of 

writebacks to PCM; thereby improving the system performance, energy efficiency and PCM 

lifetime. 
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A DYNAMIC PAGE SWAP MANAGEMENT SCHEME FOR HYBRID 

DRAM/NVM MAIN MEMORY SYSTEMS  

 Introduction 

It is now well known that DRAM can no longer satisfy the increasing memory capacity and 

bandwidth demands of many modern-day applications in the era of “Big Data” [27, 50]. Non-

volatile memory technologies such as PCM, ReRAM and STT-RAM have been explored as 

potential replacements to DRAM due to their higher density, better scalability, and lower leakage 

power [79, 81, 83]. However, NVMs have also a number of drawbacks. First, these technologies 

have higher access latency and energy compared to DRAM [15]. Second, NVM cells have limited 

write endurance, which can adversely affect their lifetime [15, 85]. Hybrid memory systems, which 

incorporate both NVM and DRAM, enable systems to benefit from the large capacity of an NVM 

and lower access latency and energy of a DRAM. In a hybrid memory system, DRAM can be used 

either as a hardware-managed cache for NVM, or as part of a flat address space hybrid main 

memory. To be able to benefit from the total visible capacity of both DRAM and NVM (i.e., to 

avoid data replications) and their aggregate bandwidth, some recent studies have focused on flat 

address space hybrid main memories [14, 36, 37, 67, 74, 75]. In this work, we consider a hardware-

managed flat address space hybrid main memory. A flat address space hybrid main memory can 

also be managed by the OS. However, page migrations under OS control can incur significant 

performance penalties [75]. 



94 

 

In flat address space hybrid memories, DRAM has a limited capacity. Moreover, memory 

access behaviour of programs changes during execution. Hence, data may need to be migrated 

(i.e., swapped) between DRAM and NVM to take advantage of performance benefits of DRAM. 

Since hardware requires meta-data storage to keep track of the migrated data, migrations are 

typically performed at a coarse granularity (e.g., memory pages). Page migrations are costly. 

Therefore, a main challenge in flat memories is correctly deciding which migrations are beneficial 

to performance. Typically, such decisions have to be made dynamically at run-time [37, 67, 74]. 

Existing schemes consider the changing memory access patterns of programs when making 

migration decisions. However, they all suffer from one major limitation. In those studies, the 

memory space is statically partitioned into “swap groups” and only DRAM (i.e., fast memory) and 

NVM (i.e., slow memory) pages that belong to the same swap group can be swapped with each 

other. However, within a given interval, a swap group may contain more “high frequently 

accessed” pages than the number of DRAM segments (i.e., each segment contains a memory page) 

assigned to it (i.e., “swap group associativity”). This can cause frequent back and forth migrations 

of those pages between DRAM and NVM. Meanwhile, pages in another swap group may all be 

“low frequently accessed”. Hence, most of the page migrations, which are very costly in terms of 

performance and energy, can be avoided by dynamically adjusting the structure of the swap 

groups based on programs behaviour. 

In this study, to address the limitation of statically structured swap groups, we propose 

DynaSwap to dynamically associate swap groups with each other in such a way that a swap group 

with many high frequently accessed pages can benefit from the DRAM space of a swap group with 

low frequently accessed pages. In other words, unlike previous studies that create swap groups 

solely based on the physical address of memory pages, we try to create swap groups based on their 

access patterns. Assigning enough DRAM segments to a swap group based on its demand (i.e., its 
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access patterns in the current interval) can improve performance and energy efficiency of the 

memory system by reducing the number of unnecessary swaps. Our experimental results show 

that DynaSwap can efficiently utilize DRAM capacity and improve the overall performance and 

main memory energy efficiency by 30.1% and 13.5% on average, respectively, compared to a state-

of-art baseline design. 

 DynaSwap Overview 

In our design, swap groups are dynamically merged with each other so that a swap group with 

many frequently accessed pages can benefit from the DRAM resources of a swap group with rarely 

accessed pages. Moreover, to be able to adjust the structure of the swap groups and initiate page 

swaps ahead of time and off critical path, we employ the LSTM (i.e., Long Short-Term Memory)-

based address predictor proposed in [3] to predict sequence of future LLC miss (i.e., main memory 

access) addresses. By doing so, the access latency of the incoming requests can be reduced. The 

address predictor relies on the deep recurrent neural network models to predict a sequence of 

future LLC miss addresses using a sequence of past LLC miss addresses. More specifically, the 

address predictor uses a sequence of 10 past memory accesses (for each access, the concatenation 

of the miss causing instruction’s PC and the miss address is used) as input to predict a sequence 

of 10 future memory accesses (please refer to [3] for more details). 

 Baseline Organization 

In this work, we use an organization similar to PoM [75] as our baseline. However, since the 

direct-mapped structure of PoM forces pages of a swap group to compete for a single DRAM 

segment, we first extend the PoM organization so that it can support associativity. To keep track 

of the swapped pages (i.e., pages that are relocated from their original OS-allocated location), a 
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Page Remapping Table (PRT) is required. Upon every access to the main memory, the remapping 

table needs to be accessed first to determine where to fetch the requested data from (i.e., the 

original or the hardware-remapped address). Hence, to avoid incurring significant performance 

penalties, a PRT cache (PRTc) is also usually employed. 

We define a K-way set-associative swap group as a swap group that consists of K segments in 

DRAM and M×K segments in NVM (i.e., assuming NVM is M times larger than DRAM). Since in 

a PoM-like PRT structure, the information about all pages of a swap group reside within a single 

PRT entry, increasing the associativity of swap groups beyond a certain point comes at the cost of 

a significant increase in the PRTc area and latency overheads. Hence, for our baseline 

organization, we consider an associativity of two and then propose a scheme that dynamically 

increases (i.e., doubles) the associativity of swap groups based on their demand. 

 Page Classification and Monitoring 

We classify the memory pages into two categories: high- and low-frequently accessed. By 

doing so, in a swap group, a high frequently accessed page in NVM can simply be swapped with a 

low frequently accessed page in DRAM. 

The access frequency of a page in future can be estimated based on its access frequency in the 

past [36, 37]. More specifically, a memory page that observes a burst of accesses at some point 

during the execution of a program, will probably observe the same burst of accesses if it is re-used 

after a while in future. Hence, we consider a page “high frequently accessed” if it is now being 

actively used and has seen a large number of accesses in the past. To monitor pages access 

patterns, we use a Page Monitoring Table (PMT). Each PMT entry contains the Page Physical 

Address (PPN) and an Access Counter (AC). AC is a saturating counter that is incremented by one 
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upon observing an LLC miss to the page. Since PMT is too large to be stored on-chip, we keep a 

PMT cache (PMTc) in the memory controller. PMTc can also be used as a temporal filter to 

identify periods when pages are actively used; a page is being actively used if its entry is resident 

in PMTc. 

To categorize pages, we augment each PRT entry with two one-bit flags, called Actively 

Accessed (AA) and Frequently Accessed (FA) per page location. The AA flag of a page is set to ‘1’ 

upon inserting its entry into the PMTc and reset to ‘0’ upon its eviction. Moreover, the FA flag of 

a page is set to ‘1’ when its AC reaches a certain threshold (access threshold). The access threshold 

is set so that the attainable savings of a swap would be more than its costs. Upon eviction of a page 

entry from PMTc, the FA flag of the page is reset to ‘0’ only if the value of AC is smaller than the 

access threshold. The value of AC is then divided by 2 to maintain information on history of 

accesses. The AA and FA flags show whether the page is being actively and frequently used or 

not; a page is considered high frequently accessed if both its AA and FA flags are ‘1’. On the other 

hand, we prefer low frequently accessed pages with both AA and FA equal to ‘0’ as swap 

candidates. 

 Swap Group Classification 

Our experiments show that within a given interval during the execution of a program, only a 

small portion of the main memory is frequently accessed. For example, when running mcf from 

SPEC2006 benchmark suite, in every interval of one million LLC misses, only 24.4% of the 

accessed swap groups (i.e., swap groups that are accessed at least once during program execution) 

have received more than 200 accesses on average (please refer to Section 6.9.1 for details of our 

simulation environment). In other words, while a small percentage of the swap groups service a 

large portion of the accesses within an interval, other swap groups are not frequently accessed. 
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Based on this observation, we classify the swap groups into two categories; SATURATED (SAT) 

and NON-SATURATED (NON-SAT). 

A swap group is recognized as “SAT” if its number of high frequently accessed pages is larger 

than the swap groups associativity. Otherwise, the swap group is recognized as NON-SAT. In other 

words, while a NON-SAT swap group does not utilize its DRAM resources efficiently, a SAT swap 

group requires more DRAM segments than its baseline associativity. Hence, we double the 

associativity of a SAT swap group by associating a NON-SAT swap group as “partner” to it. This 

way, the SAT swap group can use the DRAM segments of its partner as auxiliary fast storage units 

for storing its high frequently accessed pages. To be able to create a partnership that can provide 

enough DRAM space for a SAT swap group, we only use NON-SAT swap groups with no high 

frequently accessed pages as partners. 

Figure 38 illustrates an example of how a swap group is recognized as SAT and assigned with 

a NON-SAT partner. In this example, page P1 with FA = 1 (i.e., a page that is likely to receive a 

large number of accesses) is in NVM within swap group SG1. It is predicted to be accessed soon 

(by the LSTM-Based Address Predictor). Hence, DynaSwap tries to prefetch P1 into DRAM. 

However, since all pages in DRAM segments of SG1 are high frequently accessed (i.e., there are 

no swap candidates inside SG1), SG1 is recognized as SAT. SG2, which is a NON-SAT swap group 

with no high frequently accessed pages, is assigned as the partner to SG1. Then, P1 is swapped 

with P2, which is a low frequently accessed page in SG2’s DRAM. 

 Swap Group Partner Assignment 

To be able to find a NON-SAT partner for each SAT swap group, we keep a one-bit flag called 

Swap group Type (ST) per swap group in the memory controller; ST = 0 represents a NON-SAT 
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swap group with no partner. The value of ST is initialized to ‘0’ and is set to ‘1’ if any page in the 

swap group becomes high frequently accessed or the swap group is assigned as a partner. ST of a 

swap group is reset to ‘0’ when its partnership ends, and all of its pages become low frequently 

accessed. Whenever a swap group is recognized as SAT, we randomly choose a swap group with 

ST = 0 as its partner. For a 512MB DRAM with 4KB memory pages and swap group associativity 

of two, the area overhead of keeping ST flags is 8KB. Moreover, we keep the index of a swap 

group’s partner in a register in the swap group’s PRT entry. For a swap group with no partner, its 

own index is stored in the register. 

To identify the pages that belong to partner of a swap group, we augment PRT with a one-bit 

flag called Displaced Page (DP) per page location: DP = 1 indicates that the page is repositioned 

from its original swap group. For displaced pages (i.e., with DP = 1) we use slow swaps. For 

example, in Figure 38, if a page, say P3, in SG2 needs to be moved to DRAM, and it has to go to 

the place currently occupied by P1, we first swap P1 and P2 to put P1 back into its original location. 

If P2 becomes high frequently accessed while it is in NVM, it is swapped with P1 back into its 

original location in SG2’s DRAM. For these swaps, we perform an optimized slow swap proposed 

in [37]. 

We enable a swap group to push pages of its partner out of its DRAM space if it needs its own 

DRAM resources at any point. Specifically, if 1) a page in a NON-SAT swap group with a partner 

becomes high frequently accessed and 2) no low frequently accessed pages can be found in the 

swap group’s DRAM, the page will be swapped with a displaced page from the swap group’s 

partner (i.e., page with DP = 1). Based on our experiments, this scenario does not happen 

frequently. Moreover, if a page with DP = 1 in DRAM becomes low frequently accessed, we 

proactively migrate it back into NVM in its original swap group when the memory is idle. The 

partnership between two swap groups is broken if no pages with DP = 1 remain in any of the swap 
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groups. It is worth mentioning that if a SAT swap group with a partner becomes NON-SAT, 

DynaSwap does not break the partnership between the two swap groups. Instead, it prefetches 

the high frequently accessed pages of the swap group into its own DRAM space (not its partner’s) 

until it becomes SAT again. 

 Swap Group Access Management 

The PRTc (PRT in case of a PRTc miss) needs to be accessed on every main memory access 

[75]. Upon an access to a page, if we cannot find the page (i.e., tag of the page with DP = 0) in its 

corresponding swap group’s PRTc entry, we also need to access the PRTc entry of the swap group’s 

partner (i.e., for page’s tag with DP = 1). It should be noted that we access the PRTc entries at the 

time when the page is predicted to be accessed. Hence, these accesses are not performed on the 

critical path of program execution when the prediction is accurate, which is the case most of the 

 

Figure 38. An example illustrating how two swap groups are partnered. 
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time (please refer to Section 6.9.2 for more details). The structure of a PRT entry, when fast swaps 

are supported, is shown in Figure 39. In this figure, the partner register size is based on a 512MB 

DRAM with page size of 4KB and swap group associativity of two. 

If a page with FA = 1 and DP = 0 in NVM is predicted to be accessed soon, we first try to swap 

the page with a low frequently accessed page or a page with DP = 1 in the swap group’s DRAM. If 

we cannot find any swap candidate inside the swap group itself, we look for one in the swap 

group’s partner (we assign a partner to the swap group if it does not have any). 

 Storage Overhead 

The total storage overhead of DynaSwap is shown in TABLE XII. The total storage overhead 

of the memory controller is 104KB, which is very small. Moreover, DynaSwap occupies only less 

than 0.8% of the DRAM space. 

 

Figure 39. The structure of a PRT entry of DynaSwap; fast swaps are supported. 
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 Results 

 Methodology 

We model a quad core processor and a 2.5 GB main memory composed of a 2 GB ReRAM and 

a 512MB DRAM using Gem5 full-system simulator [19] integrated with Ramulator [35], a cycle 

accurate main memory simulator. We extend Ramulator to support flat address space hybrid 

memories. The latency and energy values of main memory and LLC are generated using CACTI 

[20] and DESTINY [61]. Note that the ReRAM cell parameters used in DESTINY are based on the 

projections by [32]. The system configuration of our experiments is shown in TABLE XIII. The 

benchmarks used in this study are chosen from SPEC2006 as shown in TABLE XIV. For all 

workloads, we use either sampled reference or native input sets to represent a real-world 

execution scenario and run the applications for 0.5 billion instructions, after a 1.5 billion 

instructions warm-up phase. To generate the information required for the LSTM-based address 

predictor including the miss causing instructions’ PCs and LLC miss addresses, we capture the 

memory trace of applications using the Exec debug flag in Gem5. We also use the generated 

dynamic traces for our evaluations. 

TABLE XII. DynaSwap’s total storage overhead. 

in Memory Controller Storage 

PRTc  32 KB 

PMTc  64 KB 

Swap Type (ST) flags 8 KB 

Total in-MC Overhead 104 KB 

in DRAM  Storage 

PRT 688 KB 

PMT 3.28 MB 

Total in-DRAM Overhead 3.95 MB 
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We compare our scheme with two state-of-the-art hybrid main memory systems: PoM [75] 

and MemPod [67]. 

1) PoM: we configure PoM based on the specifications in [75] and adjust some of the parameters 

based on our configuration. Based on our memory timing model, we set the value of K to 8. For 

the SRC, which is the equivalent of our PRTc, we use a 32KB cache similar to DynaSwap. 

2) MemPod: for the MEA algorithm used in MemPod for its swap decisions, we use 64 MEA 

counters and 50µs MEA intervals similar to the original paper. We also use a 32KB cache for the 

remapping table. 

TABLE XIII. System configuration. 

Processor 4-core, 2.5 GHz, out-of-order 

L1 Cache 
Split I/D, Private, 32KB per core, 4-way, LRU, 2-cycle access 
latency 

L2 Cache 256KB, 8-way, 8-cycle access latency 

L3 Cache 4MB Shared, 16-way, 31-cycle access latency 

Memory 
Controller 

One memory controller per channels 

Read Queue: 64 entries 

Write Queue: 64 entries, Write drain threshold: α (high) = 
80%, β(low)=50%. 

Main 
Memory 

DRAM 

512MB, 1GHz: DDR- 4 channels, 1 rank, 8 banks, 
1K rows, 64-bit bus width 

�8w5= 28 cycles, �89:= �9w5 = �8x = 11 cycles, �S8 
= 12 cycles 

ReRAM 

2GB, 2channels, 1 rank, 8 banks, 8K rows, 64-bit 
bus width 

�89:= 18 cycles, �9w5= 11 cycles 
 

TABLE XIV. Workloads. 

Workloads: from the SPEC CPU2006 benchmarks 

mcf×4 leslie3D×4 milc×4 lbm×4 

mix1: leslie3D×2, omnetpp×2 mix2: libquantum×2, mcf×2 

mix3: bwaves-soplex-omnetpp-libq. mix4: milc-bwaves-soplex-lbm 
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3) DynaSwap: the configuration details of our scheme are described in TABLE XII and TABLE 

XIII. Both PMT and PRT are in DRAM. PMTc and PRTc are in the memory controller. In our 

design, we use a 64KB, 8-way set associative PMTc and a 32KB, 4-way set associative PRTc. 

 Performance Evaluations 

Figure 40 compares the IPC values of the evaluated schemes. The results are normalized to 

MemPod. Results reveal that DynaSwap can outperform PoM and MemPod by 23.6% and 30.1% 

on average, respectively. 

The performance benefits of our proposed scheme come from two main factors. First, 

DynaSwap accurately prefetches a page from ReRAM into DRAM if it is likely to receive a large 

number of accesses in the near future (i.e., its FA flag is ‘1’). It also performs majority of PRTc 

accesses off the critical path of program execution thanks to the LSTM-Based address predictor 

high accuracy (i.e., 82.4% on average). It should be noted that in case of a PRTc miss, the latency 

of accessing PRT in DRAM is not negligible. Hence, the sooner we handle a PRTc miss, the better. 

Figure 41 shows the accuracy of our page swap scheme. We consider a swap accurate if the number 

of accesses to the swapped page in DRAM is high enough to justify the swap cost; if the swapped 

 

Figure 40. IPC of the evaluated schemes. 
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page receives at least 12 accesses in DRAM, we recognize the swap as accurate. As shown in the 

figure, DynaSwap is accurate in vast majority of applications with an average swap accuracy of 

80.1%. 

Second, our scheme dynamically increases the associativity of a swap group to accommodate 

more highly accessed pages in DRAM. Figure 42 shows the fraction of main memory accesses 

serviced in DRAM by the evaluated schemes. The results are normalized to MemPod. Results 

reveal that DynaSwap can increase the number of accesses serviced in DRAM by 29.8% and 

40.2% on average, compared to PoM and MemPod, respectively. In addition, while serving 

majority of the requests in DRAM (i.e., 85.7% on average), DynaSwap also performs fewer swaps 

compared to PoM and MemPod. It is also worth noting that similar to [37], to avoid saturating 

 

Figure 41. DynaSwap page swap accuracy. 

 
 

 

Figure 42. Normalized number of DRAM accesses. 
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DRAM channels and not using the NVM channels, we use a simple heuristic that declines the 

swaps if 95% of the main memory requests of an application have been satisfied by DRAM. 

 Energy Evaluations 

Figure 43 shows the total hybrid main memory energy consumption for the evaluated 

schemes. The results are normalized to MemPod. Results show that DynaSwap can reduce the 

energy consumption of the hybrid main memory by 7.6% and 13.5% on average, compared to PoM 

and MemPod, respectively. Generally, by moving the pages that are likely to receive a large 

number of accesses into DRAM and also increasing the associativity of swap groups dynamically, 

our design increases the number of accesses serviced in DRAM by 29.8% and 40.2% on average, 

compared to PoM and MemPod (see Figure 42). Hence, it reduces the number of accesses serviced 

in NVM, which has much higher dynamic energy compared to DRAM. More specifically, as we 

mentioned before, the page swap accuracy of DynaSwap is high enough (80.1%, on average, as 

shown in Figure 41) to justify the costs of swaps. In other words, a page is prefetched into DRAM 

if it is likely to receive a large number of accesses in the near future, which can be determined 

based on the access frequency of page in the past. On the other hand, to accommodate more such 

 

Figure 43. Normalized main memory energy of the evaluated schemes. 

 
 
 
 

0

0.4

0.8

1.2

mcf leslie3D milc lbm libq. mix1 mix2 mix3 mix4 GMEAN

N
o

rm
a

li
ze

d
 

M
M

 E
n

e
rg

y

MemPod PoM DynaSwap



107 

 

pages in DRAM, which has much lower access energy compared to NVM, DynaSwap increases 

the associativity of swap groups dynamically. 

 Conclusion 

In this chapter, we proposed DynaSwap, a scheme that improves system performance and 

energy efficiency by efficiently utilizing DRAM space in a flat address space hybrid DRAM/NVM 

main memory. 

DynaSwap dynamically associates swap groups with each other in such a way that a swap 

group with many high frequently accessed pages can benefit from the DRAM space of a swap 

group with low frequently accessed pages. To do so, it classifies the swap groups into two 

categories; SAT and NON-SAT. A swap group is recognized as SAT if its number of high frequently 

accessed pages is larger than the swap groups associativity. Otherwise, the swap group is 

recognized as NON-SAT. Since a SAT swap group requires more DRAM segments than its baseline 

associativity, we double the associativity of a SAT swap group by associating a NON-SAT swap 

group as partner to it. Our experimental results revealed that DynaSwap can efficiently utilize 

DRAM capacity and improve the overall performance and main memory energy efficiency by 

30.1% and 13.5% on average, respectively, compared to a state-of-art baseline design. 
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CONCLUSION 

DRAM can no longer satisfy the memory capacity demands of the modern-day applications 

due to its scalability limit and considerable amount of static and refresh power consumption. Non-

Volatile Memory (NVM) technologies such as Phase Change Memory (PCM) have recently 

emerged as promising alternatives to DRAM. Compared to DRAM, NVMs have better scalability, 

higher density and zero standby power. However, NVMs generally suffer from higher access 

latency and energy (especially for the write operations) and limited write endurance. To benefit 

from the large capacity of NVM and the lower access latency and energy of DRAM, hybrid 

DRAM/NVM main memories, which incorporate both DRAM and NVM, have been proposed. In 

this thesis, we presented novel schemes for improving the energy efficiency of hybrid main 

memories or alleviating the write-related overheads of PCM-based memories. We first focused on 

reducing DRAM refresh and background power in a hybrid DRAM/NVM main memory by 

proposing two schemes called Refree and NEMO. Then, we presented WALL, a scheme that 

improves the energy efficiency and lifetime of a PCM-based main memory by reducing the 

number of writebacks from the LLC to PCM. Finally, we presented a scheme called DynaSwap to 

efficiently utilize DRAM space in a flat address space hybrid main memory and improve its 

performance and energy efficiency. 

The Refree scheme eliminates refresh operations of the DRAM cache in a hybrid DRAM/PCM 

main memory to improve system performance and energy efficiency. Refree takes all the refresh-

reducing factors including rows access pattern and retention time into consideration. Specifically, 

a row that is accessed at least once within its retention time does not need to be refreshed. On the 

Parts of this chapter has been presented in [63, 64, 65, 66]. Copyright © 2016, 2018, IEEE. 
Copyright © 2017, 2019, ACM. 
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other hand, most of the rows in a DRAM device are strong and have very long retention times. 

Hence, a row that is not accessed within such long retention time can be recognized as not 

frequently accessed or dead and does not need to be refreshed and kept in the DRAM cache either. 

Refree then evicts an inactive row from the DRAM cache instead of refreshing it and writes it back 

to PCM if the row is dirty. The experimental results revealed that Refree can effectively reduce the 

main memory power consumption with small performance impact. The effectiveness of Refree 

would further improve for future systems with larger DRAM sizes. 

The NEMO scheme minimizes the background energy of hybrid main memories used in 

mobile devices. Specifically, NEMO takes advantage of the unique usage pattern of mobile devices, 

which are idle most of the times. During the long idle periods, NEMO evicts the nonvaluable 

memory pages (those that are less likely to be reused in future) from the DRAM cache and collects 

the remaining hot memory pages in a single DRAM rank, called the hot rank. It then powers off 

all the DRAM ranks except for the hot rank. In addition, to minimize the background power 

during the active periods, it predicts the number of DRAM ranks that needs to be powered up in 

addition to the hot rank based on the applications launching pattern in the past. The experimental 

results revealed that NEMO could effectively reduce the memory power consumption without 

negative performance impact. 

The WALL scheme reduces the number of LLC writebacks to a PCM based main memory to 

improve its energy efficiency and lifetime. In that work, we first investigated the non-uniformity 

of the LLC sets’ writebacks and proposed a writeback-aware set-balancing mechanism based on 

that. To implement the set-balancing mechanism, we first proposed a simple partner assignment 

strategy. Then, to further optimize our proposed WALL scheme, we proposed three novel partner 

assignment strategies, called contraction, expansion, and ConExp to pair sets with different 

behaviours more efficiently compared to the simple partner assignment strategy that pairs writer 
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and non-writer sets randomly. In addition, we proposed a simple but effective writeback-aware 

replacement policy to keep the frequently reused dirty lines of the sets in the cache. Our evaluation 

results revealed that WALL can achieve a significant reduction in the total number of writebacks 

to PCM; thereby improving the system performance, energy efficiency and PCM lifetime.  

The DynaSwap scheme tries to efficiently utilize DRAM space in a flat address space hybrid 

DRAM/NVM main memory to improve system performance and energy efficiency. Specifically, 

DynaSwap dynamically associates swap groups with each other in such a way that a swap group 

with many high frequently accessed pages can benefit from the DRAM space of a swap group with 

low frequently accessed pages. To do so, it classifies the swap groups into two categories; SAT and 

NON-SAT. A swap group is recognized as SAT if its number of high frequently accessed pages is 

larger than the swap group’s associativity. Otherwise, the swap group is recognized as NON-SAT. 

Since a SAT swap group requires more DRAM segments than its baseline associativity, we double 

the associativity of a SAT swap group by associating a NON-SAT swap group as partner to it. Our 

experimental results revealed that DynaSwap can efficiently utilize the DRAM capacity and 

improve the overall system performance and main memory energy efficiency.  
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