

Improving Energy Efficiency and Lifetime of Emerging Memory Systems

BY

BAHAREH POURSHIRAZI
B.S., Shahid Beheshti University, 2010
M.S., Shahid Beheshti University, 2013

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Electrical and Computer Engineering

in the Graduate College of the
University of Illinois at Chicago, 2019

Chicago, Illinois

Defense Committee:

Zhichun Zhu, Chair and Advisor

Ajay Kshemkalyani, Computer Science

Igor Paprotny

Wenjing Rao

Zhao Zhang

ii

Copyright

by Bahareh Pourshirazi

2019

iii

To my parents!

iv

ACKNOWLEDGEMENT

First off, I would like to express my sincere gratitude to my dissertation advisor, Dr. Zhichun

Zhu, for her invaluable guidance, encouragement and support during my PhD research.

I would like to thank my dissertation committee members Dr. Zhao Zhang, Dr. Igor Paprotny,

Dr. Wenjing Rao and Dr. Ajay Kshemkalyani for their insightful comments on my dissertation. I

would like to also thank Dr. Gokhan Memik of Northwestern University with whom I have been

fortunate to collaborate on several research projects. I would like to also thank Dr. Elaheh

Bozorgzadeh from University of California at Irvine for presenting our paper in DATE2018

conference. Special thanks to the amazing professors and staffs of ECE department of University

of Illinois at Chicago for their enormous support.

I am forever indebted to my parents for their unconditional love, constant encouragement and

support throughout my entire life. They have always been and will be my greatest teachers. I am

also thankful to Majed. This PhD would not have been possible without his love, encouragement

and the unbelievable faith he has in me.

BP

v

CONTRIBUTION OF AUTHORS

The contents of Chapter 3 have been published in IEEE International Parallel and Distributed

Processing Symposium (IPDPS2016) [66]. Prof. Zhichun Zhu, my advisor, was the leader of this

project. I was responsible for coming up with the ideas, performing the experiments and writing

the paper.

The contents of Chapter 4 have been published in The International Symposium on Memory

Systems (MEMSYS2017) [65]. Prof. Zhichun Zhu, my advisor, was the leader of this project. I was

responsible for coming up with the ideas, performing the experiments and writing the paper.

The contents of Chapter 5 have been published in Design, Automation and Test in Europe

Conference (DATE2018) [63] and in ACM Transactions on Design Automation of Electronic

Systems (TODAES2019) [64]. This research study was conducted in collaboration with two

individuals from the Northwestern University. Prof. Zhichun Zhu, my advisor, was the leader of

this project. I was responsible for coming up with the ideas, performing major parts of the

experiments and writing the paper. Majed Valad Beigi of Northwestern University helped me with

performing the experiments and writing the paper. Prof. Gokhan Memik of Northwestern

University helped me with writing the paper.

The study presented in Chapter 6 was conducted in collaboration with two individuals from

the Northwestern University. Prof. Gokhan Memik of Northwester University and Prof. Zhichun

Zhu lead this project. I was responsible for coming up with the ideas, performing the experiments

and writing parts of the work, which are included in this thesis.

vi

TABLE OF CONTENT

 Main Memory Organization ..7

 DRAM Refresh Operations ... 8

 Mobile DRAM Power Management ...10

 Phase Change Memory .. 11

 Impact of Write Operations on PCM ... 12

 Hybrid Main Memory .. 12

 DRAM as a Cache ... 14

 DRAM as Part of Memory .. 16

 Other Related Works ... 18

 Reducing Overheads of DRAM Refresh .. 18

 Data Placement and Migration in Hybrid Main Memories 19

 Reducing Energy Consumption of Main Memory in Mobile Devices 20

 Reducing Overheads of Write Operations in NVMs 21

 Introduction .. 24

 Motivation ... 26

 Refree Overview .. 27

 Monitoring Process ... 28

 DRAM Cache Structure .. 31

 Storage Overhead .. 32

 Results ... 33

 Methodology ... 33

 Power Evaluations .. 35

 Performance Evaluations .. 37

 Scalability .. 38

 Conclusion .. 40

 Introduction ... 41

 Motivation ... 43

 NEMO Overview ... 45

 Memory Page Classification .. 47

 Hot Rank Partitioning .. 48

CHAPTER PAGE

vii

 DRAM Cache Management .. 50

 Active Mode Management ... 51

 Page Migrations .. 52

 Storage Overhead .. 53

 Results ... 54

 Methodology ... 54

 Power Evaluations .. 58

 Performance Evaluations .. 62

 Impact of Design Parameters ... 63

 Conclusions ... 65

 Introduction .. 67

 Motivation ... 69

 WALL Overview ... 71

 Writeback-Aware Set Balancing Scheme ... 71

 Writeback-Aware Replacement Policy ... 74

 Set Balancing Simple Partner Assignment and Access Management 75

 Extended Partner Assignment Strategies ... 76

 Expansion Partner Assignment Strategy ... 77

 Contraction Partner Assignment Strategy .. 78

 Contraction-Expansion (ConExp) Strategy .. 79

 Overhead Analysis .. 80

 Results .. 81

 Methodology .. 81

 LLC Writeback Reduction ... 82

 LLC Miss Rate ... 84

 Energy Comparison .. 86

 Performance Comparison ... 87

 PCM Lifetime Enhancement ... 89

 Impact of Time Window Size .. 90

 Conclusions .. 91

 Introduction .. 93

 DynaSwap Overview .. 95

 Baseline Organization ... 95

 Page Classification and Monitoring .. 96

 Swap Group Classification .. 97

CHAPTER PAGE

TABLE OF CONTENT (Continued)

viii

 Swap Group Partner Assignment ... 98

 Swap Group Access Management ... 100

 Storage Overhead ... 101

 Results ... 102

 Methodology ... 102

 Performance Evaluations .. 104

 Energy Evaluations ... 106

 Conclusion ... 107

TABLE OF CONTENT (Continued)

CHAPTER PAGE

ix

LIST OF TABLES

I. Power states for a 1GB LPDDR2. .. 11

II. Comparison between DRAM and PCM [90]. ... 12

III. Refree’s total storage overhead. ... 33

IV. System configuration. .. 34

V. Workloads. ... 34

VI. System configuration. .. 55

VII. Workloads [25]. ... 56

VIII. Summary of Mix traces. .. 57

IX. Total Storage Overhead. .. 80

X. System Configuration. .. 81

XI. Evaluated workloads characteristics. .. 82

XII. DynaSwap’s total storage overhead. ... 102

XIII. System configuration. ...103

XIV. Workloads. ..103

TABLE PAGE

x

LIST OF FIGURES

1. The organization of memory system. ...7

2. Impact of reducing write traffic on PCM lifetime. .. 13

3. Variation and projection of ���� for different memory chip densities [59]. 26

4. Different types of evaluation intervals in a 128ms time epoch. 30

5. Normalized DRAM cache power consumption (top) and normalized total power
consumption of the hybrid main memory system (bottom). 35

6. Normalized Refree’s total number of writebacks. ... 36

7. DRAM cache miss rate (%). ... 37

8. Normalized Overall IPC. .. 38

9. Scalability results: (a) normalized total power consumption of the hybrid main
memory for different DRAM sizes; (b) normalized system IPC for different DRAM
sizes. ... 39

10. Total accessed memory pages. ... 44

11. Workflow of NEMO. .. 46

12. Page management process. .. 46

13. Normalized DRAM cache power consumption. .. 58

14. Normalized total power consumption of the hybrid main memory system. 59

15. DRAM cache miss rate (%). ... 60

16. Normalized total number of writebacks. .. 61

17. Normalized execution time. ... 62

18. Percentage of reduction in the number of active periods’ writebacks by NEMO
compared to Baseline. .. 63

19. NEMO’s (a) normalized total power consumption; (b) normalized execution time;
for different number of DRAM hot ranks. ... 64

20. Normalized total power consumption of the hybrid main memory for different
DRAM sizes. ... 65

21. Cumulative distribution of writebacks over LLC sets. (NOTE: sets are sorted in a
descending order based on their total number of writebacks). 70

22. Distribution of LLC sets based on the thresholds (wb: writebacks; sat: saturation;
NOTE: sat bars are only for the sets with wb < ����_�). 73

23. Design of WALL. .. 76

FIGURE PAGE

xi

24. Distribution of LLC sets after applying the expansion strategy. 78

25. Distribution of LLC sets after applying the contraction strategy. 79

26. WALL’s normalized LLC writebacks reduction. .. 83

27. Writebacks reduction of evaluated schemes. ... 83

28. Writebacks reduction of WALL with different partner assignment strategies 84

29. WALL’s normalized MPKI. .. 85

30. MPKI of evaluated schemes. .. 85

31. Normalized main memory energy. .. 87

32. Main memory energy of WALL with different partner assignment strategies. 87

33. Normalized IPC. ... 88

34. Normalized IPC of WALL with different partner assignment strategies. 88

35. Lifetime enhancement (years, log scale). .. 89

36. Lifetime enhancement of WALL with different partner assignment strategies. 89

37. WALL results for various window sizes: (a) writeback reduction of WALL for three
different time window sizes; (b) MPKI of WALL for three different time window
sizes. ... 90

38. An example illustrating how two swap groups are partnered. 100

39. The structure of a PRT entry of DynaSwap; fast swaps are supported. 101

40. IPC of the evaluated schemes. ... 104

41. DynaSwap page swap accuracy. ... 105

42. Normalized number of DRAM accesses. .. 105

43. Normalized main memory energy of the evaluated schemes. 106

LIST OF FIGURES (Continued)

FIGURE PAGE

xii

LIST OF ABBREVIATIONS

DRAM Dynamic Random-Access Memory

PCM Phase Change Memory

ReRAM, RRAM Resistive Random-Access Memory

STT-RAM Spin-Transfer Torque Random-Access Memory

NVM Non-Volatile Memory

LLC Last Level Cache

OS Operating System

RAS Row Address Strobe

SDRAM Synchronous Dynamic Random-Access Memory

DDR Double Data Rate

LPDDR Low Power Double Data Rate

SRAM Static Random-Access Memory

TLB Translation Lookaside Buffer

MEA Majority Element Algorithm

eDRAM Enhanced Dynamic Random-Access Memory

CMP Chip Multi-Processor

SECDED Single Error Correction/Double Error Detection

xiii

ECC Error Correction Code

LRU Least Recently Used

MRU Most Recently Used

NAS NASA Advanced Supercomputing

PARSEC Princeton Application Repository for Shared-Memory Computers

SPEC Standard Performance Evaluation Corporation

ACT Activation command

PRE Precharge command

SR Self-Refresh

DPD Deep Power Down

CPU Central Processing Unit

IPC Instructions Per Cycle

MQ Multi Queue

MPKI Misses Per Kilo Instructions

WPKI Writes Per Kilo Instructions

RPKI Reads Per Kilo Instructions

GBps Giga Bytes per second

MC Memory Controller

LIST OF ABBREVIATIONS (Continued)

xiv

SUMMARY

Main memory is a storage component in a computer system, where data of currently running

applications and programs are stored. In modern computing systems, the number of concurrently

running applications and each application’s working set size are increasing as a result of continued

advancements in technology. These have resulted in a growing aggregate amount of data that the

main memory must support. For several decades, Dynamic Random-Access Memory (DRAM) has

been the dominant technology for building main memories. However, DRAM can no longer satisfy

the memory capacity demands of the modern-day applications due to its scalability limit; it is very

expensive and difficult to scale DRAM cells down to feature sizes smaller than 20nm [27, 50]. On

the other hand, due to the dynamic, leaky nature of its capacitive cells, DRAM requires periodic

refresh operations to maintain its data integrity. In addition to wasting energy, refresh operations

degrade system performance by interfering with regular accesses to the main memory. Ever

worse, the adverse effects of DRAM refresh are expected to aggravate with each generation of

technology. It is predicted that refresh would account for 50% of throughput loss and 50% of the

total energy consumption in a future 64GB DRAM system [5, 46]. In current server systems,

DRAM memory consumes 20% to 40% of the total system energy [45, 78].

Due to the limited scalability and high refresh power of DRAM, other new technologies such

as Phase Change Memory (PCM), Resistive Random-Access Memory (ReRAM) and Spin-Transfer

Torque RAM (STT-RAM) have recently emerged as potential alternatives to DRAM. These Non-

Volatile Memory (NVM) technologies are much more scalable than DRAM and within the same

area budget used by a DRAM, can provide a much higher capacity for the main memory due to

xv

their higher densities [38, 39, 70]. Moreover, NVM cells are resistive and can preserve their data

without being refreshed. However, NVMs also have a number of shortcomings. First, they have

longer access latencies compared to DRAM. Second, NVMs consume much higher dynamic

energy compared to DRAM (especially for write operations). Finally, NVM cells have limited write

endurance. Hence, simply replacing DRAM with an NVM, without any modifications, could

adversely impact memory system performance, energy efficiency, and lifetime.

In this thesis, we present novel architectural techniques that enable incorporating emerging

non-volatile technologies into the memory system design while fulfilling system requirements on

performance and energy efficiency. We start by studying “hybrid main memories”. Hybrid main

memories, which incorporate both DRAM and NVM, enable systems to benefit from the large

capacity of an NVM and lower access latency and energy of a DRAM. We first present Refree, a

scheme that eliminates DRAM refresh operations in a hybrid DRAM/PCM main memory [66].

Then, we present NEMO, a scheme that improves the energy efficiency of a mobile device with

hybrid DRAM/PCM main memory by placing cold memory pages in PCM [65]. Our third work

called WALL, focuses on PCM-based main memories. More specifically, the energy efficiency and

lifetime of a PCM-based main memory is improved by reducing the number of writebacks from

the Last Level Cache (LLC) to PCM. Finally, our last work called DynaSwap is a page swap

management scheme that improves performance and energy efficiency of a flat address space

hybrid DRAM/NVM main memory.

Refree eliminates DRAM refresh operations in a hybrid DRAM/NVM main memory, where

DRAM serves as a hardware-managed cache for the PCM. The basic idea behind Refree is to evict

a row from DRAM if at any point the row has to be refreshed. In fact, such rows mostly hold

nonvaluable (i.e., useless in near future) data. Thus, there is no need to refresh and keep those

SUMMARY (Continued)

xvi

rows in the DRAM. In addition, a recently accessed row has already been “refreshed” by the access

and does not need to be refreshed either. To keep the data integrity, the dirty columns of the row

that is being evicted from the DRAM cache must be written back to PCM. Since the PCM has long

write latency, we propose a scheme that distributes writebacks of a dirty DRAM row over an epoch

time (i.e., 128ms) instead of performing them all at once, to prevent long-time blockage of other

requests, which are actually DRAM read misses, to the PCM storage. Refree can effectively reduce

the memory power consumption with only a small performance impact. The effectiveness of

Refree would further improve for future systems with larger DRAM sizes.

NEMO improves the energy efficiency of a hybrid DRAM/PCM main memory in a mobile

device. To do so, NEMO powers off as many power-hungry DRAM components as possible, as

long as it does not impact the performance. Specifically, when the mobile device is in idle state,

which is the case most of time, only a selective set of data that is critical to performance is kept in

a single DRAM rank, while the rest of data is stored in PCM, so that the remaining DRAM ranks

can be powered off. To do so, NEMO classifies memory pages based on their usage frequency and

recency into hot and cold. Then, it places the hot pages that are more likely to be reused in future

in the DRAM, which has lower access latency compared to PCM, and stores the cold memory

pages in PCM, which has near-zero idle power. In addition, NEMO predicts the number of DRAM

ranks that need to be powered on when the mobile device becomes active for further energy

saving. NEMO can effectively reduce the memory power consumption without negative

performance impact.

WALL improves performance, energy efficiency, and lifetime of a PCM-based main memory

system by reducing the number of writebacks from LLC to PCM. In general, WALL consists of a

writeback-aware set balancing mechanism and a writeback-aware replacement policy. Writebacks

SUMMARY (Continued)

xvii

of the last level cache are not uniformly distributed among its sets; some sets have far more

writebacks than others while some sets rarely see a writeback. The proposed set balancing

mechanism reduces the number of writebacks by employing the underutilized sets with

infrequent writebacks as storage units (inside LLC) for storing the evicted dirty lines of sets with

many writebacks. Moreover, the proposed writeback-aware replacement policy tries to keep the

dirty blocks that are frequently accessed after eviction in the LLC. To do so, it allows the dirty

eviction victims (i.e., dirty LRU block) to stay in the cache and be re-accessed; if the block becomes

LRU block again without being accessed, it will be evicted from LLC then. The WALL design is

very simple with small overheads.

In a hardware-managed flat address space hybrid DRAM/NVM main memory, a swap group

is defined as a group of pages in DRAM and NVM that can be swapped with each other. DynaSwap

dynamically associate swap groups with each other in such a way that a swap group with many

high frequently accessed pages can benefit from the DRAM space of a swap group with low

frequently accessed pages. In other words, unlike previous studies that create swap groups solely

based on the physical address of memory pages, we try to create swap groups based on their access

patterns. Assigning enough DRAM segments to a swap group based on its demand (i.e., its access

patterns in the current interval) can improve performance and energy efficiency of the memory

system by reducing the number of unnecessary swaps.

SUMMARY (Continued)

1

INTRODUCTION

In modern computer systems, “memory wall” problems including main memory’s high access

latency, high energy consumption and lack of scalability are among the major bottlenecks of

system performance and energy efficiency. In today’s computer systems with multi-core and

many-core processors, the increase in the number of concurrently running applications and each

application’s working set size have resulted in a growing aggregate amount of data that the main

memory must support. For several decades, DRAM has been the dominant technology for

building main memories. However, DRAM can no longer satisfy the memory capacity demands

of the modern-day applications due to its scalability limit; it is very expensive and difficult to scale

DRAM cells down to feature sizes smaller than 20nm [27, 50]. On the other hand, due to the

dynamic, leaky nature of its capacitive cells, DRAM requires periodic refresh operations to

maintain its data integrity. In addition to wasting energy, refresh operations degrade system

performance by interfering with regular accesses to the main memory. Ever worse, the adverse

effects of DRAM refresh are expected to aggravate with each generation of technology. It is

predicted that refresh would account for 50% of throughput loss and 50% of the total energy

consumption in a future 64GB DRAM system [5, 46]. In current server systems, DRAM memory

consumes 20% to 40% of the total system energy [45, 78].

Due to the aforementioned problems of DRAM, NVM technologies such as PCM [40, 70, 90]

and ReRAM [11] have emerged as DRAM alternatives. These NVM technologies are much more

Parts of this chapter has been presented in [63, 64, 65, 66]. Copyright © 2016, 2018, IEEE.
Copyright © 2017, 2019, ACM.

2

scalable and denser than DRAM [38, 39]. Moreover, NVM cells are resistive and can preserve

their data without being refreshed. Therefore, the static energy overhead of NVMs is much lower

than that of DRAM. However, NVMs generally suffer from longer access latencies and higher

dynamic energy consumptions (especially for the write operations) compared to DRAM.

Moreover, NVM cells have limited write endurance. Hence, simply replacing DRAM with an NVM

as main memory, without any modifications, can adversely impact memory system performance,

energy efficiency and lifetime.

To benefit from the large capacity of an NVM while keeping access latency and energy close to

that of a DRAM, hybrid main memories, which incorporate both DRAM and NVM, have been

proposed. In a hybrid DRAM/NVM main memory, DRAM can serve as a hardware-managed

cache for the NVM [41, 51, 70, 84]. Existing studies have shown benefits from a relatively small

DRAM cache. However, in future, satisfying system demands on performance and energy-

efficiency with such fair-sized DRAM caches becomes impossible. Generally, a larger DRAM cache

can alleviate overheads of hybrid main memory on system performance and energy consumption

by accommodating more data and reducing the number of accesses serviced in NVM. However,

the larger the DRAM cache, the higher the refresh costs. We address this problem in Chapter 3 by

presenting Refree, a scheme that eliminates DRAM refresh operations in a hybrid DRAM/PCM

main memory [66]. Specifically, when it is time to refresh a row, Refree evicts the row from the

DRAM cache instead. This can be done since a recently accessed row has already been “refreshed”

by the access; while a row that hasn’t been accessed for a long time is very likely to hold obsolete

data and does not need to be refreshed and kept in the DRAM. If an evicted row is dirty, it will be

written back to the PCM. To alleviate the potential performance loss due to the long PCM write

latency, Refree distributes writebacks of a dirty DRAM row over an epoch time (i.e., 128ms) to

prevent long-time blockage of other requests to the PCM devices. Our simulation results reveal

3

that Refree can achieve an average of 11.7% reduction in memory power consumption and 4.2%

performance improvement on a quad-core system running NAS [60] and PARSEC [6]

applications with 4GB DRAM and 32GB PCM, compared to the standard auto-refresh scheme.

Compared with a previously proposed refresh-reduction scheme [5], Refree can save main

memory power by 3.1% on average, with a negligible 0.2% performance loss.

To reduce DRAM refresh and background power in a hybrid DRAM/PCM main memory (i.e.,

DRAM cache plus PCM) in a mobile device, we present a scheme called NEMO in Chapter 4.

Mobile devices run on small batteries with limited capacities. Hence, energy consumption is an

important factor that determines the usability duration of a mobile device. Main memory

consumes a significant portion of the total system energy especially when the mobile device is

idle, which is the case most of the times [13]. Moreover, in current and future systems, it is very

likely that users tend to run various mobile applications simultaneously, which further increases

the aggregate memory demands of mobile devices. Therefore, optimizations on memory energy

consumption have become even more critical in those devices. Our proposed scheme, NEMO,

powers off as many power-hungry DRAM components as possible, as long as it does not impact

the performance. Specifically, when the mobile device is in idle state, only a selective set of data

that is critical to performance is kept in a single DRAM rank, while the rest of data is stored in

PCM, so that the remaining DRAM ranks can be powered off. To do so, NEMO classifies memory

pages based on their usage frequency and recency into hot and cold. Then, it places the hot

memory pages that are more likely to be re-used in future in the DRAM, which has lower access

latency compared to PCM, and stores cold memory pages in PCM, which has near-zero idle power.

In addition, NEMO predicts the number of DRAM ranks that need to be powered on when the

mobile device becomes active for further energy saving. Our simulation results reveal that NEMO

achieves on average, 10.2% reduction in memory power consumption and 1.7% performance

4

improvement on a system running various combinations of Moby benchmark applications [25]

with 128MB DRAM and 1GB PCM, compared with the approach that simply puts DRAM into self-

refresh low-power mode during idle state.

The main shortcomings of non-volatile memories are mostly related to the write operations;

the latency and energy consumption of writing to an NVM is much higher than those of reads. To

deal with the high overheads of write operations in NVM-based main memories, there are two

common types of solutions. First category is to minimize the impact of writes on performance by

optimizing the NVM architecture. Second category is reducing the total number of writes sent to

the NVM main memory by modifying the Last Level Cache (LLC) management policies [80]. To

alleviate the write-related overheads of a PCM-based main memory, in Chapter 5, we present a

scheme called WALL [63, 64], which falls into the second category. WALL improves performance,

energy efficiency, and lifetime of a PCM-based main memory system by reducing the number of

LLC writebacks. In Chapter 5, we first investigate the writeback behaviour of LLC sets and show

that writebacks are not uniformly distributed among sets; some sets observe much higher

writeback rates than others. Then, we propose a writeback-aware set-balancing mechanism that

employs the underutilized LLC sets with few writebacks as an auxiliary storage for the evicted

dirty lines from sets with frequent writebacks. We also propose a simple and effective writeback-

aware replacement policy to avoid the eviction of the dirty blocks that are highly re-used after

being evicted from the cache. Our experimental results show that WALL achieves an average of

30.9% reduction in the total number of LLC writebacks, compared to the baseline scheme, which

uses the LRU replacement policy. As a result, WALL can reduce the memory energy consumption

by 23.1% and enhance PCM lifetime by 1.29×, on average, on an 8-core system with a 4GB PCM

main memory, running memory-intensive applications.

5

To benefit from the total capacity of both DRAM and NVM and their aggregate bandwidth in

a hybrid DRAM/NVM main memory, DRAM can also be used as part of the OS-visible main

memory [14, 36, 37, 67, 74, 75]. Such organization is called a “flat address space hybrid main

memory”. In a flat address space hybrid memory, DRAM has a limited capacity. Moreover,

memory access behaviour of programs changes during execution. Hence, to take advantage of

performance benefits of DRAM, data may need to be migrated (i.e., swapped) between DRAM and

NVM. Since hardware requires meta-data storage to keep track of the migrated data, migrations

are typically performed at a coarse granularity (e.g., memory pages). Existing schemes on flat

hybrid memories typically partition the memory space into “swap groups” and allow only DRAM

(i.e., fast memory) and NVM (i.e., slow memory) pages that belong to the same swap group to be

swapped with each other. However, within a given interval, a swap group may contain more “high

frequently accessed” pages than the number of DRAM segments (i.e., each segment contains a

memory page) assigned to it (i.e., “swap group associativity”). This can cause frequent back and

forth migrations of those pages between DRAM and NVM. Meanwhile, pages in another swap

group may all be “low frequently accessed”. Hence, most of the page migrations, which are very

costly in terms of performance and energy, can be avoided by dynamically adjusting the structure

of the swap groups based on programs behaviour. To address the limitation of statically structured

swap groups, we propose DynaSwap in Chapter 6. Specifically, DynaSwap dynamically associate

swap groups with each other in such a way that a swap group with many high frequently accessed

pages can benefit from the DRAM space of a swap group with low frequently accessed pages. In

other words, unlike previous studies that create swap groups solely based on the physical address

of memory pages, we try to create swap groups based on their access patterns. Assigning enough

DRAM segments to a swap group based on its demand (i.e., its access patterns in the current

interval) can improve performance and energy efficiency of the memory system by reducing the

number of unnecessary swaps. Our experimental results show that DynaSwap can efficiently

6

utilize DRAM capacity and improve the overall performance and main memory energy efficiency

by 30.1% and 13.5% on average, respectively, compared to a state-of-art baseline design.

7

BACKGROUND AND RELATED WORK

 Main Memory Organization

Conventional memory systems are organized hierarchically (Figure 1). The highest level of the

hierarchy is “channel”; each channel can operate independently from other channels. A channel

contains one or more “ranks”. Ranks in a channel share the channel bandwidth but can operate

in parallel (i.e., rank-level parallelism). Moreover, each rank contains one or more “banks”. Banks

can also operate in parallel (i.e., bank-level parallelism). However, bank-level parallelism is

restricted by both the channel bandwidth and the resources shared between banks in a memory

device (e.g., device power). Finally, a bank is a two-dimensional array of memory cells; consisting

of many “rows” and “columns”.

Figure 1. The organization of memory system.

channel

rank

bank

rank

bank

Memory Controller

cell cel l cel l…

… … …

row cel l cel l cel l…

row buffer

Parts of this chapter has been presented in [63, 64, 65, 66]. Copyright © 2016, 2018, IEEE.
Copyright © 2017, 2019, ACM.

8

On an access to a bank, the row holding the requested data is first copied into a “row buffer”

(row is “activated”). In this way, the subsequent requests to the row will be served promptly from

the row buffer (i.e., row buffer hit).

 DRAM Refresh Operations

Dynamic Random-Access Memory (DRAM) has been the dominant technology for building

main memories for several decades. The storage element of a DRAM cell is a capacitor that stores

data in the form of a small electrical charge. The DRAM capacitive cells are naturally leaky and

lose their data over time. To prevent data loss from happening, DRAM devices require periodic

refresh operations. The process of refreshing restores the charge leaked from each individual cell

of a row by “activating” or “opening” the row. Typically, the refresh operation for each DRAM row

is performed once every 64ms (32ms at high temperatures) as specified by JEDEC standards [28,

29]. This time duration is called “retention time” or	��
�.

In commodity DRAMs, two modes of refreshing are supported: 1- “Burst Refresh”: In this

mode, with every refresh command from the main memory, all DRAM rows undergo refresh in

succession. This scheme was used in early generations of DRAM and has one major drawback:

refreshing in a bursty fashion degrades system performance by delaying the regular accesses to

the memory module for a long time. 2- “Distributed Refresh”: This is employed in current DDR

devices to avoid the long latency of burst refreshing. In this mode, rows of a bank are divided into

8K groups (called “refresh groups”) and each group is refreshed within a 7.8µs (3.9µs at high

temperatures) time interval (called “refresh interval” or	��
��). Modern DRAM controllers send

an auto-refresh (AR) command to the DRAM device once every	��
��, and then the device decides

which rows to be refreshed using an internal refresh counter. The time that the device takes to

9

complete the refresh operation is called “refresh cycle time” or ���� and is proportional to the

number of rows per refresh group.

Refresh operations add significant power and performance overheads to the system. The

power overhead comes from the energy consumed to activate the rows. The performance cost

mainly results from the inaccessibility of a bank to regular requests while performing refreshes.

Alas, these negative effects are expected to exacerbate as DRAM density increases. As the number

of rows per bank increases, so does the number of rows that are refreshed with each auto-refresh

command. In fact, while other timing parameters of DRAM remain almost constant from one

generation to another, ���� is growing exponentially [5, 59].

To improve the performance and energy efficiency of DDR devices, some prior studies have

attempted to reduce the number of refresh operations by considering either the access recency [1,

20, 26] or the retention time [5, 46] of rows. The proposed techniques in [20, 46] perform

refreshing at a row-level granularity. In old asynchronous DRAM devices, the memory controller

was able to perform row-level refreshing by issuing RAS-only commands [57]. However, this

method requires additional power for sending row addresses on the bus and thus is deprecated

by JEDEC standards. In current devices, issuing an ACTIVATE command followed by a

PRECHARGE command is the only way to implement row level refreshing.

The access-aware refresh reduction schemes are based on the fact that a row needs to be

opened and thereby is automatically refreshed on regular accesses. In other words, for up to

��
� after accessing a row, the integrity of its data is guaranteed [20]. Moreover, a refresh

operation to a row that doesn’t hold valid data is utterly unnecessary and can be skipped [26]. In

the meantime, the leakage current differs among the cells of a DRAM device. In general, a cell can

be either “leaky” or “normal”. Of all the cells, very few are leaky and lose their data faster, whereas

10

the rest are normal and retain their stored charge for a longer period of time [23, 33]. The time

period that a cell can safely preserve its stored data is referred to as its “retention time”. The

standard retention time (��
�) is in fact the retention time of the leakiest cell on the device.

However, a row that doesn’t have any leaky cell is “strong” and can be refreshed at a slower than

nominal rate. Hence, previous retention-aware refresh reduction schemes schedule the refresh

operations for every single row [46] or a refresh group [5] based on the cell’s retention time

information.

 Mobile DRAM Power Management

In power management, a rank is the smallest unit that can be controlled to operate in several

different power states. In general, the power consumption of a rank can be classified into two

main categories, “active” and “background” [49]. The power required to serve memory reads and

writes is the active power, while the background power is consumed all the time even without any

memory accesses. Background power contributes significantly to the total DRAM power [49]. In

fact, in addition to the periodic refresh operations, the other components of a rank, such as row

and column decoders and sense amplifiers, are also power hungry [42]. Hence, different low-

power operating states are provided by SDRAM architectures to disable some of these sources of

energy consumption and reduce the background power.

The power consumption of a rank varies among different power states. To reduce the

background power, a rank can be put into a low power state when it is idle. However, to power up

the rank and restore it to the active state, its disabled hardware components need to be

reactivated. Transition among different power states incurs latency and energy penalties.

Basically, a power state is described by its power consumption and resynchronization time, the

time that it takes to exit the power state and go back to the active mode. A power state that

11

consumes less energy typically has higher resynchronization time. The major power states

provided by Low-Power DDR2 (LPDDR2) are summarized in TABLE I. The power consumption

values are calculated with DRAM System Power Calculator [56]. The current and voltage

parameters are obtained from a LPDDR2 datasheet [55].

 Phase Change Memory

Phase Change Memory (PCM) is a type of non-volatile memory technology that has been

explored as an alternative to DRAM due to its better scalability, lower leakage energy and non-

volatility [66, 72]. One of the key advantages of PCM over DRAM is its scalability. In fact, PCM

can scale down to feature sizes as small as 8nm [27]. Another benefit of the PCM technology is its

zero-leakage power. The resistive characteristic of PCM cells allows them to retain their data for

a long time with no need for periodic refreshes. Also, PCM exhibits much better static energy

parameters compared to DRAM [88]. Despite of its many advantages, PCM also has a number of

drawbacks. Compared to DRAM, each read/write operation in PCM has longer latency and

consumes more energy [84]. Further, a PCM cell has much lower write endurance. TABLE II

summarizes PCM and DRAM attributes.

TABLE I. Power states for a 1GB LPDDR2.

Power States Power (mW) Comments

ACT 20.5 DRAM power for ACT/PRECHARGE commands

ACT_PDN 9.4 Background power used during active power-down

PRE_PDN 3.4 Background power used during precharge power-down

SREF 1.4 Self-Refresh (SR) standby power

DPD 0.2 Deep Power-Down (DPD) standby power

12

 Impact of Write Operations on PCM

Phase change memory has higher write access energy and latency than DRAM (2 to 8 times

[39]) and limited write endurance. A previous study [2] has shown that the long-latency write

operations can increase the effective latency of read requests by 1.2 to 1.8 times. In addition, the

number of write operations in PCM affects its lifetime. The PCM-based memory system lifetime

can be calculated as [70]:

System	Lifetime � Y	�years ! 	
w#$%	.		S

B
	. 2)*+

In this formula, B is the write traffic (or write rate, GBps), Y is the maximum number of years

that a PCM with size S and cell endurance of ,-./ can last. The effect of reducing the write traffic

on the expected PCM lifetime is shown in Figure 2. It should be noted that the results of the figure

are independent of S and ,012. It is also assumed that the writes are distributed uniformly across

the entire PCM memory.

 Hybrid Main Memory

Non-volatile memory (NVM) technologies such as PCM, ReRAM and STT-RAM have been

explored as potential replacements to DRAM due to their higher density, better scalability, and

TABLE II. Comparison between DRAM and PCM [89].

Memory
Technology

NVM Idle Power
Read

Latency
Write

Latency
Endurance

DRAM No ∼0.1 W/GB 50 ns ∼20-50 ns ∞

PCM Yes ≪ 0.1 W 50-100 ns ∼1 us 108

13

lower leakage power [81, 83]. However, NVMs have two major limitations and cannot replace

DRAM without any modifications. First, NVMs have higher access latency and energy compared

to DRAM. Second, NVM cells have limited write endurance, which can adversely impact their

lifetime [15, 77, 85].

Hybrid main memories, which incorporate both DRAM and NVMs, have been proposed as a

potential solution that can benefit from both technologies. In a hybrid main memory, DRAM,

which has lower read/write latency and energy, can serve as a cache for the NVM [41, 51, 70, 84].

In this case, the entire working set of the application initially resides in NVM. Then, upon every

DRAM cache miss, the requested data is copied from NVM into the DRAM cache. DRAM can also

be used as part of a flat address space hybrid main memory [14, 36, 37, 67, 74, 75] to enhance the

overall OS-visible capacity of memory. The flat address configuration is beneficial for data-

intensive applications (i.e., with large working sets) when DRAM space constitutes a large fraction

of the overall memory capacity [14, 36, 37, 67, 74, 75].

Figure 2. Impact of reducing write traffic on PCM lifetime.

0

2

4

6

8

10

0 10 20 30 40 50 60 70 80 90

N
o

rm
a

li
ze

d
 L

if
e

ti
m

e
 (

×
)

Write Reduction (%)

14

 DRAM as a Cache

The benefits of using a small DRAM as a conventional cache in a DRAM/PCM hybrid main

memory was first investigated by Qureshi et al. [70]. In that system, the DRAM component of the

main memory is organized as a 16-way set associative cache with cache blocks as large as a

memory page. In general, the major challenges of designing a DRAM cache structure are

minimizing hit latency, tag storage overhead and complexity of page placement and migration.

Prior studies have proposed various DRAM cache structures based on their design goals.

To design a power-efficient and high-performance hybrid DRAM/NVM main memory, three

questions must be answered: First, what granularity of data movement between DRAM and NVM

will satisfy system’s demands best? Prior studies, which consider DRAM as a cache for either a

DRAM-based main memory or NVM component of a hybrid main memory, migrate data either at

the granularity of a memory page [43, 70, 71, 84, 87] or a processor’s cache block [18, 22, 44, 48,

51, 69]. In [70], the migration of data from PCM to DRAM is performed in pages, but, upon

evicting a row from DRAM, only the dirty columns of the row are written back to PCM to reduce

the number of PCM writes. The DRAM row buffer locality can be effectively exploited in such

“row-based” DRAM caches. Nevertheless, migrating data at a finer-granularity reduces the

migration latency and prevents the subsequent memory requests to be blocked for a long time but

with a higher management cost [22, 48]. Moreover, cache structures with blocks of the same size

as a processor cache block manage the cache space more efficiently by minimizing overfetching.

Second, how to effectively manage caching overheads? In order to have fast accesses, previous

study [70] uses a separate 1MB SRAM to store the caching information (i.e., tags, dirty/valid bits

and LRU information) for a 16-way set-associative 1GB DRAM cache with 4KB blocks. This cache

structure is simple and incurs low management costs. However, for the same size (1GB) finer-

15

grained DRAM cache (e.g., with 64B blocks) or a larger DRAM cache, the area overhead of a

separate SRAM storage makes it impractical. To overcome this challenge, some prior studies [48,

51, 69] have proposed to store the caching information in the DRAM cache itself. For example,

LH-cache [48] places an entire cache set in a DRAM row and reserves three out of 32 columns of

the row for tags; and Alloy cache [69] integrates both tag and data into a single entity and transfers

an entity in five bus cycles. However, the tag storage overhead of such tag-in DRAM caches is still

large and occupies 12.5% (i.e., 128MB per 1GB) of the total DRAM cache space [69]. To address

the aforementioned challenge, a recent study [44] has proposed a page-based, fully associative,

tagless DRAM cache that completely removes the cache management data structures. To

eliminate cache tags, the conventional TLB is replaced with cache-map TLB (cTLB) that stores

virtual-to-cache, instead of virtual-to-physical address mappings. The cTLB uses the same

hardware resources as the original page table. In addition, the cache replacement mechanism is

implemented by exploiting a Global Inverted Page Table (GIPT), which stores the cache-to-

physical mappings for the cached pages, and a Free Queue that maintains a list of cache blocks to

be evicted. This cache structure has zero tag storage overhead, low average access time (i.e., high

hit rate due to being fully associative) and high energy efficiency [44].

Finally, the last question: what data is worthy of occupying DRAM cache space? This question

is answered by previous studies in two different ways. The first one is based on the access pattern

of rows [43, 71, 87]. Those schemes predict that a row is more likely to be reused in near future if

it has been frequently accessed in the past (i.e., hot page). Hence, they migrate hot pages from

NVM to DRAM. The second one is based on the number of row buffer misses of NVM rows [84].

This scheme counts the number of row buffer misses for the recently accessed rows in PCM and

migrates to DRAM the rows that have been highly reused but mostly missed in row buffers.

16

 DRAM as Part of Memory

In a flat address hybrid memory, fast and slow memory modules (e.g., DRAM and NVM) are

organized in parallel as two separate storage elements, each holding a portion of the working set

[43, 71, 87]. A flat address space hybrid main memory can be managed by software to create a

heterogeneous main memory. However, in such memory systems, the difficult task of page

placement and migration must be handled by OS, which also needs hardware support to gather

per-page access statistics [44]. Hence, previous studies have mostly focused on hardware-

managed techniques [14, 36, 37, 67, 74, 75]. To improve performance and energy efficiency of a

hardware-managed flat hybrid memory, pages can be swapped between the slow (e.g., an NVM)

and fast (e.g., DRAM) memory modules to ensure that frequently accessed pages are placed in the

fast memory.

Sim et al. [75] proposed a hardware-managed flat hybrid memory design, which we will refer

to as PoM (i.e., Part of Memory). PoM performs migrations at the granularity of pages (i.e., 2KB)

and uses a “remapping table” to keep track of the pages it swaps between the fast and slow

memory. To keep the bookkeeping costs practical, migrations are only allowed within sets of

pages, which we will refer to as “swap groups”. In other words, multiple pages of slow memory

and a page of fast memory form a swap group, and only one page of the group can reside in the

fast memory at a time. PoM monitors the memory accesses with a counter per swap group and

initiates a page migration when the counter reaches a threshold.

In [14], a cache-like flat memory management scheme called CAMEO is proposed to close the

gap between cache and flat memory architectures. CAMEO works similarly to PoM but does so at

the granularity of cache lines (i.e., 64B). It places the remapping meta-data next to data within

the same row and initiates a migration upon every access to the slow memory. The major

17

limitation of both PoM and CAMEO is that multiple frequently accessed pages/lines may exist

within the same swap group. In such case, the direct-mapped structure of both designs (i.e.,

multiple rows/blocks in the slow memory are mapped to a row/block in the fast memory) forces

pages/lines in a swap group to compete for a single row/block of the fast memory. This can cause

frequent back and forth movement of those pages/lines between the fast and slow memory

modules.

Using smaller swap granularities enables CAMEO to keep the swap bandwidth low. However,

it requires higher meta-data storage and eliminates the opportunity to benefit from programs

spatial locality. To optimize the swap granularity, SILC-FM [74] supports sub-block interleaving

between two pages in the fast and slow memories (i.e., migration granularity ranges from 64B to

2KB). It also improves the migration flexibility by making the direct-mapped structure of swap

groups into set-associative. However, while PoM and CAMEO allow a page to reside anywhere

within a swap group (i.e., fast swaps), SILC-FM requires the original mapping in a swap group to

be restored before each swap (i.e., slow swaps).

The MemPod scheme proposed in [67] further improves migration flexibility by making it

fully-associative. More specifically, it partitions the memory space into large clusters and allows

an any-to-any page swap between the fast and slow memories within a cluster. To predict the

future hot pages for migration to the fast memory, MemPod employs the Majority Element

Algorithm (MEA) [31] and performs migrations at the granularity of pages after pre-defined time

epochs. The major limitation of MemPod is that its fully-associative structure comes at the cost of

a significant increase in the meta-data area overhead.

A recent study, PageSeer [37], adapts correlation prefetching (i.e., the pages that are accessed

in some order at some point are likely to be accessed in the same/similar order in the future) to

identify the pages that are to be accessed soon and exploits page walks to migrate those pages

18

into the fast memory ahead of time. It associates an access counter with each page and triggers a

swap for the page when the counter reaches a threshold. The swap restriction of PoM is also

relaxed by making the swap groups set-associative. However, this design suffers from slow swaps.

Moreover, PageSeer also assigns a limited number of statically-specified fast memory rows to all

the swap groups while swap groups can have different access behaviours.

 Other Related Works

 Reducing Overheads of DRAM Refresh

Some recent studies have tried to alleviate the power and performance overheads of refreshing

in DRAM-based main memories or eDRAM-based on-chip caches. Some existing schemes such

as Flikker [47], RAIDR [46] and Flexible Auto-Refresh [5] reduce unnecessary refresh operations

by taking DRAM rows retention time into account. More specifically, Flikker allows the

programmer to divide the application data into critical and non-critical portions. It then refreshes

the non-critical part of the memory at a lower than nominal rate and the critical part at the regular

rate. The RAIDR scheme groups rows into bins based on their retention time and refreshes bins

at different rates. Since most of the DRAM cells and thus their corresponding rows are strong and

need to be refreshed at lower rates, RAIDR is able to remove a large percentage of refresh

operations. Flexible Auto-Refresh skips the unneeded refreshes while it performs the remaining

refresh operations using the default auto-refresh mechanism. To do so, the architecture of the

memory controller is modified to enable reading, writing and incrementing the refresh counter in

a DRAM device.

Some studies reduce the number of refresh operations by considering the access pattern of

DRAM rows. Among those are Smart Refresh [20] for off-chip DRAM main memories and Refrint

19

[1] for on-chip eDRAM caches. The smart refresh scheme eliminates refreshes to the accessed

rows. This scheme employs a time out counter for each row that is reset to its maximum upon an

access or refresh to the row. The Refrint scheme refreshes only the data that is likely to be used in

near future and has not been accessed recently. Generally, DRAM can be used as either an off-

chip cache in a hybrid main memory [70] or an on-chip cache in 3D CMPs [69]. Moshnyaga et al.

[58] proposed a software-based scheme to reduce the off-chip DRAM cache refresh energy in a

DRAM/Flash memory system. This technique recognizes active and non-refreshed banks based

on the access pattern of their data and disables refresh to the banks that contain only non-

modified data in a given time period. For on-chip eDRAM-based caches, memory access

behaviour is exploited in [1, 10]. They postpone refresh to the rows that are accessed intensively

and bypass refresh to the dead cache lines.

 Data Placement and Migration in Hybrid Main Memories

One of the challenging issues related to the hybrid main memories is to decide which data to

place in which memory component. For hybrid memory systems that consist of multiple different

technologies, managing data placement and movement between the two technologies is a major

challenge. Some of the previous studies including [71, 87] take page accesses into consideration

and migrate hot pages from PCM to DRAM. The memory controller uses a modified multi-queue

algorithm for determining hot and cold pages. In addition, since row buffer misses are much more

costly in terms of energy and latency in PCM, Yoon et al. [84] migrate data that frequently misses

in the row buffer from PCM to DRAM. Based on their cost-benefit analysis, they determine a

dynamic threshold to decide whether a row has low row buffer locality or not.

20

 Reducing Energy Consumption of Main Memory in Mobile Devices

One of the prime consumers of energy in mobile systems is the main memory. To reduce main

memory’s power consumption, a prior study [17] has investigated the effectiveness of some energy

management mechanisms on smartphones. In that work, Power-Aware Virtual Memory (PAVM)

[24] and Immediate Power Down (IPD), Immediate Self Refresh (ISR) [21] schemes are

discussed. The PAVM scheme is an OS-level approach that maps all pages of an application into

a few ranks and turns on only those ranks when the application is running. However, one major

limitation of PAVM is that when multiple applications are simultaneously running on a device,

the memory pages of each application may reside in a different rank. In fact, the worst-case

scenario happens when the applications that are frequently launched together, each gets assigned

to a distinct memory rank. In that case, all the memory ranks need to be turned on most of the

times. The IPD/ISR mechanism immediately puts an active rank into a lower power state after

serving a memory request. Though this scheme could work well for workloads with lower memory

intensities, it can have negative impacts on system energy efficiency and performance for the

memory-intensive applications.

A recent study [13] pointed out that devices such as smartphones and tablets are idle most of

the times. To save refresh power during the long idle periods, Chou et al. [13] proposed Morphable

ECC (MECC). It reduces refresh rate in idle mode by using strong error correction, while in active

mode, it prevents performance degradation by using weak error correction. There are two main

downsides of MECC. First, current mobile devices are not supported with ECC. Thus, MECC that

requires the same area overhead as traditional SECDED (i.e., 12.5%) is not the best solution for

compact mobile devices. Second, MECC does not power off the DRAM main memory in idle mode.

Thus, only up to half of the DRAM idle power would be saved. The limited memory size of portable

devices is another challenging issue that has a direct impact on user experience. The LRU-based

21

task killing policy of Android platforms results in restarting a large number of applications when

the available memory capacity is not sufficient to accommodate all the applications’ datasets. To

deal with this problem, some prior studies have benefited from non-volatile memory technologies

such as PCM either as a swap area or in a hybrid main memory [7, 17, 34, 88].

 Reducing Overheads of Write Operations in NVMs

Many recent studies have focused on mitigating the overheads of write operations in PCM-

based main memories. Lee et al. [15] proposed a scheme called eager writeback, which writes the

LRU dirty cache lines back into the main memory before their eviction to improve system

performance. A variation of eager writeback is proposed in [25] to improve PCM performance by

early and eagerly writing back the long latency SET operations. In [24], the concept of write

cancellation is introduced to prioritize reads over writes to immediately service the incoming

reads; this scheme cancels the conflict writes. The performance overhead of write operations is

alleviated by parallelizing read or write accesses with an ongoing write in [1]. Moreover, Zhou et

al. [38] developed a non-blocking PCM bank design which aims to service subsequent reads or

writes in parallel with an on-going write. Xia et al. [32] explored the possibility of removing the

unmodified data from a single write and then, merging modified data of multiple writes to be sent

within one write request to improve PCM write bandwidth. In addition, Zhang et al. [37] has

shown that only a small portion of the main memory is frequently accessed in a given time period.

Based on that observation, their scheme records and predicts the memory regions’ write

frequencies in order to select a proper write latency (i.e., the number of SET iterations) for every

incoming memory write operation to improve system performance and memory lifetime.

There are also many studies on reducing the write overheads of other types of non-volatile

memory technologies such as STT-RAM and ReRAM. Zhang et al. [36] proposed a scheme called

22

Mellow Writes that extends memory controllers to selectively perform slow writes to reduce the

impact of writes on endurance and performance of the ReRAM-based memories. Kultursay et al.

[13], investigated the possibility of replacing DRAM with STT-RAM for main memories. In that

work, STT-RAM write overheads are reduced by bypassing the row buffer writes and tracking

dirty blocks to perform partial writes within a row. Typically, STT-RAM is considered as an

alternative to SRAM caches or used in SRAM-NVM hybrid caches. To alleviate the write overheads

of STT-RAM in a hybrid cache, Wang et al. [29] presented an adaptive placement and migration

policy based on the access pattern of different classes of write operations in LLC. Wu et al. [31]

partitioned hybrid cache into read and write regions and migrated cache blocks within the cache

to mitigate the write overheads of STT-RAM.

Some studies have proposed techniques for reducing the number of LLC writebacks to the

non-volatile component of a hybrid main memory consisting of an NVM and DRAM [6, 35]. In

reference [6], a miss penalty-aware LRU-based cache replacement policy, called MALRU is

proposed to consider the asymmetry of cache miss penalty on DRAM and NVM. The MALRU

scheme keeps the high-latency NVM blocks as well as the low-latency DRAM blocks with good

temporal locality in a reserved area to protect them from being evicted from the LLC. Similarly,

Zhang et al. [35] proposed a writeback-aware LLC management scheme for hybrid main memory

systems to reduce the number of writebacks to NVM by improving the hit ratio of the NVM

memory blocks in the cache. It should be noted that these techniques are only applicable for

hybrid main memories. To balance the pressure on cache sets, the set balancing cache (i.e., SBC)

proposed in [27] tries to associate sets with maximum “saturation counters” (i.e., sets with large

datasets) with sets with small saturation counters. Though SBC reduces cache miss rate, it is not

always able to reduce the number of writebacks. There are some sets with saturation counters

smaller than the maximum value, which write back more frequently than those with maximum

23

saturation counter values. However, the SBC scheme shares resources between two sets only when

a set’s saturation counter reaches its maximum.

24

A REFRESH-FREE HYBRID DRAM/PCM MAIN MEMORY SYSTEM

 Introduction

Technological advances have scaled up the size of applications working sets drastically. This

growing trend is expected to continue even faster in future. Moreover, the number of cores that

share a single memory system is increasing on chip multiprocessors. Hence, the aggregate amount

of data that the main memory must be able to support is becoming larger over time. This makes

main memory an even more critical component in modern computing systems. Meanwhile,

DRAM is facing two main challenges. First, its scalability is limited. Second, it requires periodic

refresh operations, which consume considerable amount of time and energy. Recently, scalable

non-volatile memory technologies such as PCM have emerged as DRAM alternatives. However,

PCM, as other NVMs, has a number of shortcomings. First, PCM has higher access latency and

energy compared to DRAM. Second, PCM cells have limited write endurance.

To overcome the shortcomings of both technologies, hybrid DRAM/PCM main memories have

been proposed. Such designs typically consist of a modest sized off-chip DRAM cache for a much

larger PCM storage. However, in future, satisfying system demands on performance with such a

small DRAM cache, no matter how well managed, might be impossible. On the other hand, using

a larger DRAM cache can also incur significant performance and energy overheads due to DRAM

refresh operations. In this study, we present Refree [66], a scheme that eliminates DRAM refresh

operations in a hybrid DRAM/PCM main memory system.

Parts of this chapter has been presented in [66]. Copyright © 2016, IEEE.

25

The basic idea behind Refree is to evict a row from DRAM if at any point the row has to be

refreshed. In fact, as will be shown later in this chapter, such rows mostly hold nonvaluable (i.e.,

useless in near future) data. Hence, there is no need to refresh and keep those rows in the DRAM

cache. In addition, a recently accessed row has already been “refreshed” by the access and does

not need to be refreshed either. To keep the data integrity, the dirty columns of the row that is

being evicted from the DRAM cache must be written back to the PCM. Since PCM has long write

latency, we propose a scheme that distributes writebacks of a dirty DRAM row over an epoch time

(i.e., 128ms) instead of performing them all at once, to prevent long-time blockage of other

requests (i.e., DRAM read misses) to the PCM storage. Generally, to remove DRAM refresh

operations completely, Refree considers two refresh-reducing factors that have been proposed in

previous studies [20, 46]: the access pattern and retention time of DRAM rows. More specifically,

each valid row is monitored for time periods equal to half of its retention time. Upon any access

to the row within each of such time periods, the row will be marked as accessed. The access

actually gives immunity to the row from being refreshed or invalidated at the end of the time

period. On the other hand, a non-accessed row will be invalidated from the DRAM cache or if it is

dirty, be written back to PCM.

Our experimental results show that Refree reduces the hybrid main memory’s power

consumption with negligible performance impact compared to existing refresh-reduction

techniques. For a quad-core system with a hybrid main memory system of a 4GB DRAM cache

and 32GB PCM, Refree reduces the memory power consumption of NAS [60] and PARSEC [6]

applications by 11.7% and 3.1% on average, compared to baseline auto-refresh and one of the most

effective refresh-reduction schemes, respectively. Refree improves performance by 4.2%, on

average, compared to baseline auto-refresh while incurs only a negligible performance overhead,

by 0.2% on average, compared to a recent refresh-reduction scheme.

26

 Motivation

The adverse effects of DRAM refresh are expected to aggravate with each generation of

technology. It is predicted that refresh accounts for 50% of throughput loss and 50% of the total

energy consumption in a future 64GB DRAM system [5, 46]. Figure 3 shows the variation and

projection of ���� (i.e., latency of each auto-refresh operation) for different memory chip densities

for Micron DDR3-800 [59]. The significant growth of ���� with the increase in memory size is

depicted in the figure. For instance, the value of ���� for a 32GB DDR4 is 1.34 times more than

that of a 16GB memory [5]. The auto-refresh operation energy is also proportional to	���� [54].

Therefore, using larger DRAM caches, although necessary, can incur significant performance and

energy penalties due to DRAM refresh operations.

In addition, storing memory pages that are rarely accessed in the DRAM cache is only a waste

of energy and the precious cache space. Hence, our main goal in this work is to address these

two issues simultaneously by eliminating DRAM cache refresh operations and putting those rarely

accessed pages away in PCM. In this work, a hybrid main memory, which includes a DRAM cache

and a larger PCM storage, is considered. Refree aims to eliminate DRAM refresh operations

Figure 3. Variation and projection of ���� for different memory chip densities [59].

0

100

200

300

400

500

600

700

0 1 2 3 4 5 6 7 8 9

T
im

e
 i
n

 n
a

n
o

se
co

n
d

Memory Chip Density

Projected TRFC

1Gb 2Gb 4Gb 8Gb

JEDEC TRFC

27

completely. Considering that the refresh cost is more prominent in larger DRAMs, Refree is

expected to become even more effective for future DRAM/PCM hybrid memory systems. It is also

worth mentioning that, in this work we have considered PCM as NVM, but our scheme is also

applicable for other types of NVMs.

 Refree Overview

To eliminate DRAM refresh operations, Refree considers both the access pattern of rows and

their retention times at the same time. In general, Refree performs a periodic row-level

monitoring and classifies DRAM rows into two categories, “accessed” or “non-accessed”. An

accessed row does not need to be refreshed because it has recently been activated by a request and

thus refreshed; and a non-accessed row does not need to be refreshed either because it has not

been accessed for a long time and thus is very likely to hold inactive data and can be evicted from

the DRAM cache. In this way, all refresh operations on the DRAM cache will be eliminated.

In our work, DRAM rows are monitored for time intervals equal to half of their retention times

for any accesses. We believe that this time interval (i.e., 128ms) is long enough so that if a row is

not accessed within it, we can conclude that the row is “inactive” and thus there is no need to keep

it in the DRAM cache. Our experimental results also support such conclusion. An evicted row

must also be written back into PCM if it has been updated in the DRAM cache. Initially, all rows

are marked as non-accessed. The status of a row changes to accessed at its insertion to the DRAM

cache or receiving a regular memory request from the CPU.

The skipping of refresh operation for an accessed row or the eviction of a non-accessed row is

performed at an “evaluation point” of the row, which is when a DRAM row’s current monitoring

process ends, and next monitoring process starts. The monitoring process restarts when the row’s

28

current epoch time, which is set to half of the row’s retention time in our experiment, expires. We

will discuss the monitoring process in detail next.

 Monitoring Process

A row must be monitored after being inserted in the DRAM cache. If the row receives no

requests from one evaluation point to the next, it may need to be evicted from the cache. The main

challenge here is to determine the time interval between two consecutive evaluation points of each

DRAM row. This interval must be long enough so that if a row remains non-accessed during the

interval, it could be concluded that the row is not needed in the DRAM cache and keeping it in

PCM is sufficient. Otherwise, highly active rows might be evicted from the cache by mistake,

causing significant power and performance degradations. On the other hand, the interval cannot

be too long for keeping data integrity. A row, even if remains non-accessed during the interval,

must be able to safely retain its data. To effectively address this issue, we have brought DRAM

rows’ retention time into the picture. In fact, majority of rows in a DRAM device are strong and

have a very long retention time of 256ms. A previous study [46] has shown that in a 32GB DRAM

system only up to 28/978 rows have a 64ms/128ms retention time while the rest of the rows have

a 256ms retention time.

Ideally, once a row is accessed, its data remains undamaged for a time interval equal to its

retention time. However, keeping track of the exact elapsed time is impractical. Two of the

previously proposed access-aware, refresh-reduction schemes have tackled this problem using

two different techniques. The first one considers a counting-down timeout counter for each row,

which is reset to its maximum upon any access [20]. The second one divides every retention time

into a number of steps and within one retention time, refreshes rows at the same step as that they

were accessed at in the previous retention time [1]. In our work, to keep the hardware overheads

29

at minimum and guarantee the data integrity, we set the evaluation point at every row’s half

retention time. This means that for majority of the rows, we are considering a time interval as

long as 128ms to find out whether the row must be kept in the cache or not. More specifically, for

each row, its access status from one of its evaluation points to the next is represented with a single

access bit. The access bit of a valid row will be set to ‘1’ upon every access and reset to ‘0’ at every

evaluation point.

Each row must be evaluated at its evaluation points: the row’s access bit is checked. If the

access bit is ‘1’, the monitoring process will restart for the row; otherwise, the row will be evicted

from the DRAM cache and written back to the PCM if dirty. Similar to a previous study [46], our

scheme classifies the rows of each DRAM bank, based on their retention time, into three

categories: rows with retention time of 64ms (weak), 128ms (mediocre) or 256ms (strong). Thus,

weak rows will be evaluated every 32ms, mediocre rows every 64ms and strong rows every 128ms.

The group of rows that are evaluated in each refresh interval is called “evaluation group”. To

form the evaluation groups, we divide the total number of rows in each DRAM bank into 8K

groups. The evaluation groups are classified into three categories: (1) “strong”: evaluation groups

that include strong rows only, (2) “weak”: evaluation groups that include at least one weak row

and (3) “mediocre”: evaluation groups that consist of at least one mediocre row but no weak rows.

The proposed monitoring process is depicted in Figure 4. To determine the evaluation points on

the time line, we consider a two-bit “period counter” that is incremented every 32ms. The first

refresh intervals after incrementing the period counter (i.e., every 32ms) are assigned to the weak

evaluation groups. We call these refresh intervals “weak evaluation intervals”. In each weak

evaluation interval, all the valid rows of a weak evaluation group are evaluated. A weak evaluation

group may also contain mediocre and strong rows. Ideally, those rows can be evaluated less

frequently. However, to minimize the hardware and management overheads, Refree considers all

30

rows in a weak evaluation group as weak. Note that most groups are strong groups. The immediate

refresh intervals after the weak evaluation intervals are called “mediocre evaluation intervals”,

which are assigned to the mediocre evaluation groups. Generally, all the mediocre evaluation

groups can be evaluated every 64ms when the period counter is even. However, to unify the

assignment of evaluation intervals, Refree evaluates half of the mediocre evaluation groups every

32ms. To do so, a one-bit flag is used; the flag is initialized to the LSB of the period counter every

32ms (i.e., ‘0’ when the period counter is even and ‘1’ when it is odd). When a mediocre evaluation

group is found, Refree evaluates it if the flag is ‘0’ and then sets the flag to ‘1’; otherwise Refree

skips that mediocre group and sets the flag to ‘0’. In each mediocre evaluation interval, all the

valid rows of a mediocre evaluation group are evaluated. A mediocre evaluation group may also

have some strong rows (but not weak rows). Ideally, those strong rows can be evaluated less

frequently. However, similar to the scenario explained for the weak evaluation groups, Refree

considers all rows in a mediocre evaluation group as mediocre to minimize hardware and

management overheads. Finally, all the remaining vacant refresh intervals can be used for

evaluating the strong evaluation groups (“strong evaluation intervals”). To unify the assignment

Figure 4. Different types of evaluation intervals in a 128ms time epoch.

32 ms = 4K × ��
��

period counter = 0

…… ……..

32 ms = 4K × ��
��

period counter = 1

…… ……..

32 ms = 4K × ��
��

period counter = 2

…… ……..

32 ms = 4K × ��
��

period counter = 3

…… ……..

< 28 × ��
��

weak intervals
< 978 × ��
��

mediocre intervals
>7K × ��
��

strong intervals

free of

evaluation

31

of evaluation intervals, Refree evaluates one-fourth of the strong evaluation groups every 32ms.

To do so, a two-bit flag is used, which is initialized to the value of the period counter every 32ms.

When a strong evaluation group is found, Refree evaluates it if the flag is ‘00’ and then increments

the flag; otherwise Refree skips that strong group and only increments the flag.

To determine the evaluation intervals types, a 2-bit counter called “category counter” is used.

Refree considers an evaluation interval weak, mediocre or strong based on the category counter’s

value; ‘0’ representing weak, ‘1’ representing mediocre, ‘2’ representing strong and ‘3’

representing “free of evaluation”. The category counter is reset to ‘0’ every 32ms and is

incremented after evaluating the groups that belong to the category represented by the counter’s

current value. To traverse the evaluation groups, a 13-bit counter called “general group counter”

is used.

 DRAM Cache Structure

Data can be stored in the DRAM cache at different granularities. The size of a DRAM cache

line could be as small as a processor cache line or as large as a memory page. Generally, finer

grained caching manages the cache space more efficiently but with higher management overhead.

To the best of our knowledge, among the previously proposed DRAM cache structures, Alloy cache

structure [69] might be the best candidate for an off-chip Giga-scale DRAM cache due to its

minimum cache management overheads. The Alloy cache is a direct-mapped, tag-in DRAM cache

that has a cache line size of a processor’s cache line and transfers both data and tag as one entity.

In our work, writing back the dirty non-accessed rows to the PCM storage is needed to

eliminate DRAM refreshes. Hence, it seems that it would be more beneficial to cache all or at least

some of the columns of a PCM row in a single DRAM row (e.g., considering each DRAM row either

32

as a set or a single DRAM cache line). The reason is: in this way when a row needs to be written

back, all the write requests sent to the PCM device will hit in the row buffer. However, our

experiments indicate that the average number of dirty entities in each valid row of the DRAM

cache with Alloy structure for the benchmarks shown in TABLE V is relatively small (i.e., 7 out of

28 entities). Furthermore, the experimental results show that most of the rows in an Alloy cache

are active most of time, which reduces the number of evictions and thus writebacks. Hence, we

use Alloy cache as our DRAM cache structure. We have also considered a small buffer, called WBB,

for handling the eager writebacks sent to the PCM by the DRAM controller. The requests buffered

in WBB will be sent out to the PCM when the PCM is idle or WBB is full. It is worth noting that

Refree exploits Line Level WritesBacks (LLWB) proposed in [70] to alleviate the overheads of

writing a DRAM row back to the PCM. This scheme writes back the dirty columns (i.e., dirty

entities) of a row only.

For each row, a valid status bit is considered to determine the validity of a row in the DRAM

cache. As stated before, Refree evaluates only the valid rows of the DRAM cache because it is

obvious that invalid rows do not need to be refreshed at all. Similarly, one dirty bit is used to

indicate whether a row is dirty or not. This bit is set for the row with at least one dirty entity. The

total hardware overhead incurred by these status bits is only 16KB (2×64K bits) per bank.

 Storage Overhead

TABLE III summarizes the storage overhead of Refree per DRAM rank. Note that our

proposed approach does not need the information about each individual row’s retention time.

Hence, Refree uses the bloom filters of RAIDR [46] for storing the category of evaluation groups

instead of row’s retention time bins. As depicted in the table, the total storage overhead is almost

194 KB per rank or 0.02% of total DRAM capacity.

33

 Results

 Methodology

In this work, we model a quad-core processor using Gem5 simulator [19] integrated with

NVMAIN [62], a cycle accurate main memory simulator designed to simulate emerging non-

volatile memories at the architectural level. The system configuration of our experiments is shown

in TABLE IV. We collect runtime statistics from the full-system simulations. The DRAM

configurations (i.e., timing and current parameters) are obtained from [52]. The PCM

configurations are generated by NVSIM [16] and CACTI [8]. Note that the cell parameters used

in NVSIM are based on the projections by [12]. The benchmarks used in this study are chosen

from NAS [60] and PARSEC [6] as depicted in TABLE V. Six NAS and three PARSEC workloads

covering the range of memory footprints of the whole NAS and PARSEC suites are selected. For

all the workloads, we use either sampled reference or native input sets to represent a real-world

execution scenario and run the applications for two Billion instructions.

TABLE III. Refree’s total storage overhead.

Type Storage

Row status (valid/dirty) information 16 KB

Row access information 8 KB

General group counter size 13 bits

Row counter size 16 bits

Mediocre groups flag 1 bit

Strong groups flag 2 bits

Category counter size 2 bits

Storage Overhead per Bank ~ 24.005 KB

Evaluation groups category information 1.25 KB

Period counter 2 bits

Total Storage Overhead ~ 194 KB

34

We compare Refree with hybrid main memory systems that each employs a different DRAM

refresh scheme. The implementations are all based on the configuration parameters depicted in

TABLE IV. Also, it is assumed that in a DRAM memory rank, 28 rows are weak, 978 are mediocre

and the remaining ~511K rows are strong.

1) All-bank Auto Refresh (AR): In this scheme, the memory controller divides DRAM rows into

8K groups and refreshes each group within a refresh interval or ��
��.

2) Flexible AR (REFLEX): This scheme, which is based on the policy employed in [5], refreshes

weak and strong rows once every 64ms and 256ms, respectively, through auto-refresh command.

To the best of our knowledge, this recently proposed scheme has the lowest power consumption

and execution time among the previously proposed refresh reducing schemes.

TABLE IV. System configuration.

Processor 4-core, 4.0 GHz, out-of-order

L1 Cache
Private, 64KB per core, 8-way, LRU, 64B cache line, write-
back, write allocate

L2 Cache
Shared, 1MB, 8-way, LRU, 64B cache line, write-back, write
allocate

Memory
Controller

Open page, FR-FCFS, 64-entry queues (per-rank), address
mapping: page interleaving

Main
Memory

DRAM

4GB, DDR3, 1333Mbps

2 Channels, 2 Ranks per channel

DRAM Device: MT41J512M8

PCM

32GB, 4 Channels, each with 8GB DIMM, 1 Rank
per channel

�567= 150ns, �86567= 100ns, �89:= 120ns

TABLE V. Workloads.

Workload Applications

NAS bt, cg, ft, ua, mg, sp

PARSEC caneal, dedup, freqmine

35

3) Access-Aware Refree (AA_Refree): This is Refree; but considers all DRAM rows as weak. In

other words, it assumes a 64ms retention time for all the DRAM rows.

4) No Refresh: This is the ideal scheme that assumes there is no need to refresh DRAM rows at

all.

 Power Evaluations

Figure 5 shows the power consumption of the 4GB DRAM cache (top) and the total power

consumption of the hybrid main memory (bottom) for different refresh schemes. The results are

normalized to baseline auto-refresh. Refree achieves up to 20.7% and 6.9% reduction in DRAM

cache power consumption (16.9% and 5.6% on average), compared to AR and REFLEX,

respectively. This reduction is mainly because of the following reasons: First, Refree is both

access- and retention-aware, which decreases the number of candidate rows for either refresh or

eviction/writeback. Second, to evict a non-accessed clean row from the DRAM cache, Refree

Figure 5. Normalized DRAM cache power consumption (top) and normalized total power
consumption of the hybrid main memory system (bottom).

0.6

0.8

1

1.2

bt cg ft ua mg sp canneal dedup freqmine GMEAN

N
o

rm
a

li
ze

d

D
R

A
M

 P
o

w
e

r

AR AA_Refree REFLEX Refree No Refresh

0.6

0.8

1

1.2

bt cg ft ua mg sp canneal dedup freqmine GMEAN

N
o

rm
a

li
ze

d

To
ta

l
P

o
w

e
r

AR AA_Refree REFLEX Refree No Refresh

36

resets the valid status bit of the row to ‘0’. Thus, there will be no need to access the row itself in

the DRAM. On the other hand, REFLEX or any other refresh scheme refreshes all the DRAM rows

at some point any way. Third, the non-accessed rows that are unlikely to be reused in near future

can be stored in PCM for a long time with no additional cost. However, to retain such rows in

DRAM, they need to be periodically refreshed. Refree reduces the total power consumption of the

hybrid main memory by 11.7% and 3.1% on average, compared to AR and REFLEX, respectively.

Results also reveal that Refree reaches within 2.2% of total power consumption as compared to

the ideal no-refresh scheme. Generally, the power consumption of Refree depends on its increase

on the number of writebacks to the PCM device and DRAM cache miss rate.

Figure 6 shows the total number of DRAM cache entities written back to the PCM storage by

Refree for the selected benchmarks. The results are normalized to baseline auto-refresh. The

increase in the total number of writebacks is only 1.4% on average. The eager writebacks of Refree

are 5.7% of the total number of writebacks on average. However, the number of normal writebacks

under Refree is dropped compared with auto-refresh. This indicates that a large percentage of

Refree’s eager writebacks actually overlaps with the writebacks that would naturally happen

throughout the execution of the baseline. In other words, the data that Refree recognizes as

Figure 6. Normalized Refree’s total number of writebacks.

0.92

0.96

1

1.04

bt cg ft ua mg sp canneal dedup freqmine GMEANN
o

rm
a

li
ze

d
 D

R
A

M

C
a

ch
e

 W
ri

te
b

a
ck

s WriteBacks Eager WriteBacks

37

inactive and proactively writes back, will most probably be written back and replaced later, when

the baseline scheme is running.

 Figure 7 depicts the values of DRAM cache miss rate for baseline auto-refresh and Refree.

Simulation results show that Refree only increases the average DRAM cache miss rate slightly

from 6.4% by AR to 6.9% by Refree. Note that, all of the three schemes, AR, REFLEX and the ideal

no-refresh, use the same DRAM cache management policy. Hence, the miss rate values and the

number of writebacks are also the same in the three schemes. Refree consumes 7.4% less power

than AA_Refree. This is because Refree is retention-aware. The reduction is directly related to

having a longer monitoring interval for stronger rows and thereby a more accurate access-based

row classification.

 Performance Evaluations

Figure 8 compares the overall IPC values for different refresh schemes. The results are

normalized to baseline auto-refresh.

Refree improves performance by up to 9.2% (4.2% on average), compared to AR. The reason

for this improvement is: First, Refree eliminates refresh operations entirely and it does not

increase the DRAM cache miss rate considerably. Second, the obstruction of regular requests to

Figure 7. DRAM cache miss rate (%).

0

5

10

15

bt cg ft ua mg sp canneal dedup freqmine GMEAN

D
R

A
M

 C
a

ch
e

M
is

s
R

a
te

 (
%

) AR Refree

38

the PCM by Refree’s proactive writebacks is largely prevented by distributing writebacks over a

large time epoch and the use of WBB. Third, Refree allows the memory controller to employ bank-

level parallelism while row evaluation process is in progress. Fourth, requests to a DRAM bank

can be served simultaneously with the eviction of non-active clean rows from it. Last, new data

can replace a proactively evicted data without waiting for its eviction or writeback.

 Compared to REFLEX, Refree has a negligible performance degradation, by 0.2% on average

(up to 0.6%). The small increase in the DRAM cache miss rate is the main reason for such

degradation. Refree also achieves, on average, 5.8% performance improvement compared to

AA_Refree. The monitoring time interval considered in AA_Refree is two or four times shorter

than most of the intervals of Refree. This causes some active rows to be evicted from the DRAM

cache by mistakes, thereby increasing the DRAM cache miss rate and the number of writebacks

to PCM.

 Scalability

Figure 9 shows the hybrid main memory’s total power consumption and the overall IPC values

for different DRAM cache sizes, respectively. All the results are normalized to baseline auto

refresh with 1GB DRAM cache.

Figure 8. Normalized Overall IPC.

0.6

0.8

1

1.2

bt cg ft ua mg sp canneal dedup freqmine GMEAN

N
o

rm
a

li
ze

d

IP
C

AR AA_Refree REFLEX Refree No Refresh

39

Results show that Refree can achieve, on average, 7.3%, 8.6%, 11.7% and 15.0% reduction in

the total power consumption of a hybrid main memory with a 1GB, 2GB, 4GB and 8GB DRAM

cache, respectively, compared to baseline auto-refresh. In addition, our scheme improves

performance of a hybrid main memory with a 1GB, 2GB, 4GB and 8GB DRAM cache, on average

by, 0.9%, 1.9%, 4.2% and 7.4% respectively, compared to the baseline auto refresh.

Compared with REFLEX, Refree reduces the total power consumption of a hybrid main

memory with a 1GB, 2GB, 4GB and 8GB DRAM cache by 1.6%, 2.0%, 3.1% and 4.3% on average,

respectively. Also, while Refree degrades performance of a hybrid main memory with a 1GB, 2GB

and 4GB DRAM cache by 0.8%, 0.7% and 0.2%, on average, it improves the performance of a

hybrid main memory with an 8GB DRAM cache by 0.2% on average, compared to REFLEX. The

Refree scheme is more effective for larger DRAM caches because: First, the cost of refresh

(a)

(b)

Figure 9. Scalability results: (a) normalized total power consumption of the hybrid main
memory for different DRAM sizes; (b) normalized system IPC for different DRAM sizes.

0.6

0.8

1

1.2

1GB DRAM 2GB DRAM 4GB DRAM 8GB DRAM

N
o

rm
a

li
ze

d

To
ta

l
P

o
w

e
r

AR AA_Refree REFLEX Refree No Refresh

0.6

0.8

1

1.2

1.4

1GB DRAM 2GB DRAM 4GB DRAM 8GB DRAM

N
o

rm
a

li
ze

d

IP
C

AR AA_Refree REFLEX Refree No Refresh

40

operations is higher in larger DRAMs. Second, when DRAM capacity and thus the number of

requests served in DRAM increases, a larger portion of the hybrid main memory’s energy and

execution time will be reduced by improving the DRAM cache. Third, REFLEX always reduces a

fixed number and up to a specific percentage of refresh operations while decisions made by Refree

are access-based and dynamic.

 Conclusion

In this chapter, we proposed a scheme called Refree to eliminate refresh operations of the

DRAM cache in a hybrid DRAM/PCM main memory to improve system performance and energy

efficiency. Our proposed scheme, Refree, takes all the refresh-reducing factors including rows’

access pattern and retention time into consideration.

In general, a row that is accessed at least once within its retention time does not need to be

refreshed. On the other hand, most of the rows in a DRAM device are strong and have very long

retention times. Hence, a row that is not accessed within such long retention time can be

recognized as not frequently accessed or dead and does not need to be refreshed and kept in the

DRAM cache either. Refree then evicts an inactive row from the DRAM cache instead of refreshing

it and writes it back to PCM if the row is dirty. The experimental results revealed that Refree can

effectively reduce the memory power consumption with small performance impact. The

effectiveness of Refree would further improve for future systems with larger DRAM sizes.

41

AN ENERGY-EFFICIENT HYBRID DRAM/PCM MAIN MEMORY FOR MOBILE

DEVICES

 Introduction

Today, mobile platforms such as smartphones and tablets are the most commonly used

computing devices in our daily lives. The capacity of main memory in mobile devices is limited

due to scalability limit of DRAM (e.g., 1GB for iPhone 6). This can degrade user experience while

multiple applications with large memory footprints are running on the device [34]. In fact, a

recent study [76] has reported that in Android systems, more than 15% of applications must be

relaunched when the available memory capacity is insufficient. To deal with this problem, hybrid

main memory systems have been studied for mobile devices [7, 17, 34, 88]. In this study, we

consider a hybrid DRAM/PCM main memory.

Mobile devices run on small batteries and need power management to extend battery life and

ensure device usability [9]. Meanwhile, DRAM consumes large amounts of background energy

even when the mobile device is idle, and its processor is powered off. The usage pattern of mobile

devices is bursty; they are idle 90% to 95% of time and experience only sudden short bursts of

activity between their long idle periods [13, 30]. The energy consumption of a DRAM-based main

memory during idle periods contributes to 30% of the total system energy, including both active

and idle periods [9]. To reduce the memory energy consumption during idle periods, DRAM

Parts of this chapter has been presented in [65]. Copyright © 2017, ACM

42

memory can be put into low power modes [13, 17], which only perform self-refresh operations to

maintain data integrity.

In this study, we propose NEMO [65], a scheme that improves energy efficiency of mobile

devices with a hybrid DRAM/PCM main memory. The basic idea behind NEMO is to prevent

unnecessary consumption of energy by the main memory without having a negative impact on

performance. To do so, NEMO powers off as many power-hungry DRAM components as possible

by dynamically managing data placement and movement between the two memory modules.

More specifically, when the mobile device is in idle state, to minimize DRAM’s power

consumption, only a selective set of data that is critical to performance and fits in a single DRAM

rank is kept in DRAM, while the rest of data is stored in PCM, which has near zero idle power.

Moreover, to reduce memory power consumption during active states, NEMO predicts the

number of DRAM ranks that need to be powered on based on user’s behaviour in the past.

For each application, NEMO classifies its memory pages into two categories, “hot” and “cold”,

based on pages access frequency and recency in the past. It then places the hot pages, which are

much more likely to be reused when user re-runs the application, in DRAM that has lower access

latency compared to PCM. This actually prevents performance loss. On the other hand, keeping

cold memory pages, which are less likely to be reused in future, in DRAM would cost large

amounts of refresh energy especially during the mobile device’s long idle periods. Hence, cold

memory pages are stored into PCM, which has near-zero idle power. It should be noted that, page

migrations between DRAM and PCM are performed during the idle periods and are off the critical

path of memory accesses to minimize performance penalty.

Our experimental results indicate that NEMO can effectively improve energy efficiency and

performance of a hybrid DRAM/PCM main memory used in a mobile device. For a mobile system

with a hybrid main memory of 128MB DRAM cache and 1GB PCM running Moby benchmarks

43

[25], NEMO reduces the memory system power consumption by 10.2% and improves

performance by 1.7%, on average, compared with simply putting DRAM into self-refresh mode

during idle period.

 Motivation

Reducing the energy consumption of mobile devices has become a major concern in recent

decades. On such devices, the number of power-hungry hardware components is growing as a

result of technological advancement. In the meantime, the battery size is limited; thereby supply

cannot meet demand if energy dissipation is not managed wisely.

The usage pattern of portable devices, such as smartphones and tablets, is bursty with long

idle periods. For such devices, the active periods account for only 5%-10% of time [13, 30], and

are very short (a few minutes). Thus, the number of frequently accessed memory pages for the

running applications can be small in each active period. Furthermore, the number of running

applications and their memory intensity vary among active periods. In some active periods, the

memory system is very busy serving requests from multiple memory-intensive applications, while

in others, the memory system is not that overloaded. Meanwhile, during the long idle periods

(90%-95% of time), a great portion of the total system energy is consumed by the main memory.

Therefore, it can be concluded that: 1) in active mode, DRAM memory will consume a great deal

of unnecessary background power if all of its components remain turned on all the time; and 2)

in idle mode, although there are no accesses to the memory system, DRAM continues to consume

background energy to retain data.

44

To improve main memory efficiency, a prior study [17] has also benefited from a hybrid

DRAM/PCM main memory system for mobile devices, in which the entire working set of the most

frequently invoked applications is placed in DRAM and the rest of the applications’ working set is

stored in PCM. However, there are some major shortcomings with that approach. First, the

working set of a highly invoked application is not entirely hot (i.e., highly accessed). Our results

show that, on average, only 20.6% of all the accessed memory pages are highly accessed (i.e.,

accessed more than 28 times) for a selected set of mobile applications as depicted in Figure 10.

The experimental parameters and methodology are explained in Section 4.10.1. Second, the highly

accessed memory pages of the less frequently invoked applications are always accessed in PCM.

This can significantly degrade system’s performance and energy efficiency when those cold

applications are running. Finally, when the number of highly invoked applications is large, fitting

the entire working set of all those applications in DRAM becomes impossible; thereby the working

set of some hot applications would be inevitably moved to PCM. This can also degrade system

performance and increase power consumption.

In order to reduce DRAM background power during idle times, a recent study [13] has

proposed Morphable ECC (MECC), which reduces refresh rate by using strong error correction

codes. However, MECC only reduces the energy spent by refresh operations, which counts for less

Figure 10. Total accessed memory pages.

0

10

20

30

40

50

adobe biadumap bbench frozenbubble k9mail mxplayer kingsofoffice netease sinaweibo ttpod

To
ta

l
A

cc
e

ss
e

d

P
a

g
e

s
(×

1
0

0
0

)

Low Frequntly Accessed High Frequntly Accessed

45

than half of DRAM background power consumed during idle mode. In this study, our main goal

is to reduce main memory’s background power during both active and idle modes without

impacting the performance. We consider a hybrid main memory system that includes a DRAM

cache and a larger PCM for mobile devices. It should be noted that our scheme is also applicable

for other types of NVMs. Our scheme reduces main memory’s background power by dynamically

predicting the number of DRAM ranks that need to be turned on during the active period and only

powering on one DRAM rank for critical data during the idle period.

 NEMO Overview

Our proposed scheme, NEMO, benefits from the large capacity provided by PCM to store the

less frequently accessed (i.e., cold) memory pages of all applications during the long idle periods,

while the most frequently accessed (i.e., hot) memory pages are stored in DRAM for better

performance. In idle mode, the hottest pages of running applications are collected in a single

DRAM rank, referred to as the “hot rank”. The hot rank is then put into self-refresh state to

maintain its data. The contents of the rest of DRAM ranks are stored into PCM and those ranks

are put into deep power-down state, the lowest possible power state. In active mode, the number

of DRAM ranks that need to be turned on in addition to the hot rank is predicted based on the

applications’ launching pattern and memory intensity in past. Figure 11 depicts the workflow of

NEMO. The rank and page management process is illustrated in Figure 12 and is explained in

detail next.

46

Figure 11. Workflow of NEMO.

Figure 12. Page management process.

Enter the rest of
DRAM ranks into

DPD state

Enter the DRAM
hot rank into
SREF state

Complete page
management

process

Power up the
predicted #of
DRAM ranks

Power up DRAM
hot rank

Predict #of
DRAM ranks to
be powered up

Upon System Active-to-Idle
State Transition

Upon System Idle-to-Active
State Transition

For each application

Partition DRAM hot
rank among applications

NO

YES

YES

YES

NO

For each memory page

Hot?

Evict from DRAM cache

Dirty?Hot rank partition full?

Write back to PCM

Is it in the hot rank?

NOYES

Hotter than any row in the partition?

Evict partition’s coldest

E
vi

ct
ed

P
ag

e

Migrate to hot rank

NO

Classify memory pages
into “hot” and “cold”

YES

NO

NA

NA

NA : No Action

47

 Memory Page Classification

NEMO classifies memory pages of an application into two categories, hot and cold. It then

allocates a small portion of the DRAM cache to the applications’ hottest pages so that they are

always accessed in DRAM, which has lower access latency and dynamic energy compared to PCM.

In general, this approach is beneficial because the hottest memory pages (of all the applications),

which are more probable to be reused in future, are always kept in DRAM and cannot be evicted

or replaced by the cold pages. On the other hand, during the long idle periods, cold memory pages

are stored into PCM to prevent consuming energy for retaining nonvaluable data in the DRAM.

To classify an application’s pages into two categories based on their hotness, NEMO adopts

an algorithm similar to Multi Queue (MQ) proposed in a previous study [92]. The Multi Queue

algorithm uses multiple LRU queues numbered from 0 to n-1 (i.e., Q0...Qn-1) plus a history buffer

(i.e., Qout) that keeps the access frequencies of the recently evicted blocks. When a cache block is

accessed for the first time, its descriptor, which includes the block identifier and its frequency

counter, is inserted into the head entry of Q0. The frequency counter of the block is incremented

on every cache hit to the block. Once the frequency counter of the block reaches 2i+1, its descriptor

will be promoted from Qi to Qi+1. Moreover, an expiration time is associated with each cache block.

If the block stays in Qi for a time period equal to its expiration time without any accesses, it will

be demoted to Qi-1. The frequency counter of a demoted block is halved by shifting right one bit.

The block identifier and access frequency of a recently evicted block is kept in Qout for some period

of time; Qout is a FIFO queue of limited size. It is worth mentioning that the updates to the MQ

structure are performed by the memory controller and are off the critical path of memory accesses.

In this study, each DRAM cache block has the same size as a memory page. Similar to the

previous studies [49, 87, 92], our scheme assumes n = 16 and that as few as eight queues (i.e., Q8

48

to Q15) are sufficient to separate hot pages from the others. NEMO considers an MQ structure for

each application that has been executed so far. The MQ structure of an application is not updated

when the application is not running, and it is cleared and updated again when the application is

re-launched. To turn off as many power-hungry DRAM components as possible during the long

idle periods (90-95% of time), NEMO stores the hottest pages of all the applications in the DRAM

hot rank and migrates the dirty cold pages of all the applications to PCM, which has near-zero idle

power. The hot rank is shared among all the applications, but not uniformly. The hot rank

partitioning scheme is discussed next.

 Hot Rank Partitioning

In a mobile device, applications are not used in the same manner. User may favour some

applications over the others and use them more frequently. In other words, the likelihood of being

invoked in an active period varies among the applications. At the same time, mobile applications

differ in their working set sizes. Thus, when partitioning the hot rank, NEMO considers both the

usage probability of applications and their memory capacity demands. On entering an idle mode,

the DRAM hot rank is partitioned among the applications as following:

C< =
 => ? @A>

∑ =C ? @AC
DEEF
CGH

 ?
@IJDK_JDM>

@IJDK_JNO

In this formula, P9QR is the number of rows (pages) allocated to application K in the hot rank;

9:Q is the capacity demand of application K; ST is the weight associated to application K based

on its usage frequency and recency; 9U�VW_�VXQ and 9U�VW_�YZ are DRAM rank size and row size,

respectively; and APPS is the total number of applications invoked at least once so far. More

specifically, the capacity demand or 9:Q represents the amount of memory space that application

49

K requires to store its hottest pages. To quantify the capacity demand, the number of memory

pages that belong to the eight highest-ranked LRU queues (i.e., Q8 to Q15) of the application is

counted.

Furthermore, to compute applications’ weights, we use a modified MQ structure, referred to

as AMQ, with m LRU queues (i.e., q0 to qm-1). Once an application is used for the first time, its

descriptor (i.e., identifier and frequency counter) is put at the head entry of q0. The weights are

positive integers between 1 to APPS and are assigned in descending order to the applications

selected in order from qm-1 to q0, and in each queue, from the most to the least recently used

position. In other words, the higher the usage frequency and recency of an application in past, the

larger its weight. The reason is that such application is also more probable to be reused in the near

future. In this study, we assume m = 8 and an expiration time of two active periods, which means

if an application is not used for two consecutive active periods, its descriptor will be demoted from

qi to qi-1. On a side note, since we are using the floor value of 9Q, at most APPS rows may not be

allocated to any application at the end. In such case, we assign those rows to the application with

the highest weight.

After determining the share of an application from the hot rank, NEMO migrates the hottest

pages of the application (those that are not already in the hot rank) to its assigned portion. The

migrations start from the LRU queues with the highest rank until the assigned portion becomes

full. In other words, hot pages are selected in order from Q15 to Q0, and in each queue, from the

most to the least recently used position (i.e., tail to head) from the application’s MQ structure.

Then, the dirty rows in the rest of the DRAM ranks will be written back to PCM, which consumes

a negligible amount of idle power. Note that all these migrations take place during the idle period

and thereby do not incur any performance penalty. The hot rank is then put into SR (Self-Refresh)

50

state to maintain its data till the following active period. The rest of the DRAM ranks are put into

DPD (Deep Power Down) state, which consumes close to zero background energy.

 DRAM Cache Management

In this work, a DRAM/PCM hybrid main memory is considered for mobile devices. The

application’s working set initially resides in PCM, and DRAM is employed as a hardware-managed

cache for the PCM. Generally, data can be stored in DRAM caches at different granularities. The

size of a DRAM cache block could be as small as a processor cache block or as large as a memory

page. For our proposed scheme, NEMO, using a page-based DRAM cache structure that stores all

the columns of a PCM row in a single DRAM row is more beneficial for two reasons: First, row

buffer locality is expected to be high for mobile applications. In fact, our experimental results

reveal that for the selected set of mobile workloads, the row buffer hit rate ranges from 81.4% for

FrozzenBubble to 89.9% for TTPod when the workloads run individually, and row interleaving

address mapping is used. Second, in this way, when a row needs to be written back, all the write

requests sent to the PCM device will hit in the row buffer. This minimizes the energy and latency

overheads of the writeback operations. On the other hand, mobile devices are small, thereby it is

very important to keep the area overheads at minimum. Thus, in this study, we use the page-based

tagless DRAM cache structure proposed in [44]. The latency penalty of the tagless cache is zero

in case of a DRAM cache hit (for cachable pages); and is a cache fill plus the GIPT (global inverted

page table) update latency in case of a DRAM cache miss.

The cache replacement policy is modified in our work; NEMO chooses the eviction victims

from the coldest memory pages of the applications, starting from the coldest application. In other

words, it selects victims from the lowest-ranked, non-empty LRU queue of the applications MQ

structures, while the applications are sorted in ascending order of their weights. It is worth

51

mentioning that this approach is different from the original MQ replacement policy, which uses

only one set of LRU queues for the cache. In fact, simply employing the non-modified MQ

regardless of the applications usage pattern is not helpful for mobile devices. This is because the

cold memory pages of an application that is running in the current active period could evict the

hot memory pages of the applications executed in the previous active periods (because those pages

are demoted to the lower-ranked queues) even though those applications might be reused in the

near future again.

 Active Mode Management

Memory capacity demand is not the same among the active periods. For an active period, the

required DRAM cache space could be smaller than the actual DRAM size (e.g., when only one

application with low memory intensity is running). Therefore, by predicting the number of the

DRAM ranks that need to be turned on (in addition to the hot rank), NEMO also minimizes DRAM

background power during the active periods. The reason that we choose prediction over

adjustment is that the active periods are relatively short and busy; thus, gradually powering up

the DRAM ranks when the mobile device is in the active state can be detrimental to system

performance. The prediction hides the powering up penalty by turning on the DRAM ranks

simultaneously with the mobile device idle-to-active state transition. Moreover, to prevent the

misprediction penalty during the initial active periods where there is not enough knowledge about

the system’s past, NEMO turns on all the DRAM ranks for a specific number of active periods (two

in this study) at the beginning.

In general, to predict the number of DRAM ranks to be powered up, NEMO predicts how many

applications and which ones are likely to be invoked in the next active period. Then, the number

of DRAM ranks required to store the predicted applications’ data is calculated. Specifically, the

52

prediction model works in three steps as following. First, the number of applications that are likely

to be invoked in the next active period is predicted. To do so, a small “prediction buffer” is used,

which is indexed from 1 to p. The i’th element of the prediction buffer is incremented whenever

the number of running applications in an active period is i. In other words, the i’th element of the

prediction buffer returns the number of active periods in past during which i applications were

running (p’th element for i ≥ p). The index of the maximum value of all the elements stored in the

prediction buffer is used as the predicted number of applications for the next active period. In

case of having multiple indices with the same maximum value, the largest index is used as the

predicted number. Second, after predicting the number of applications, the applications

themselves are chosen from the AMQ structure in descending order of their weights. The number

of memory pages accessed by the predicted applications (referred to as NoP) is then counted as

the number of memory pages that are not migrated to the hot rank and are in Q0 to Q15 of the

applications MQ structures. Finally, the minimum number of DRAM ranks required to

accommodate those pages is determined as (

	
[\]

@IJDK_J^_`
).

 Page Migrations

There are two types of page migrations performed by NEMO at the beginning of an idle period:

1) migrating hot memory pages to the DRAM hot rank; 2) writing back the dirty cold pages (i.e.,

the pages that are not migrated to the hot rank) to PCM.

To minimize the runtime overhead of page migrations, NEMO takes advantage of bank-level

parallelism in two ways: First, consecutive row migrations are sent to different banks of the hot

rank in a round robin way (i.e., the first row to the first bank, the second row to the second bank

and so on). To indicate whether a memory page is in the hot rank or not, we add one additional

53

bit, referred to as HR (Hot Row) to cTLB. After migrating a memory page to the hot rank, we

update the page’s cache address and set its HR bit to one in cTLB. Second, writebacks to PCM and

migrations to the hot rank are not initiated from the same bank in a DRAM rank. Moreover, in

order to reduce the number of DRAM cache writebacks during the idle periods, NEMO eagerly

writes back the dirty cold pages of the applications (sorted in ascending order of their weights) to

PCM whenever the bus is idle and clears the pages’ dirty bits. The eager writebacks start from the

lowest-ranked, non-empty LRU queue, and in each queue, from the least recently used position.

It should be noted that page migrations to PCM and to the hot rank can also be performed in

parallel by equipping each DRAM rank with one extra row-buffer similar to [49]. However, we do

not use this method because it requires some fundamental changes to the structure of the DRAM

ranks.

 Storage Overhead

The NEMO design includes three components: MQ module, AMQ module, and the prediction

buffer, which are integrated into the memory controller. Song et al. [76] have reported that based

on their collected usage logs from different users, a user had used on average 52 applications over

a period of two weeks but only 10 applications among them had been heavily used. Hence, in this

study we assume that the MQ module can keep the MQ structures of up to sixteen applications

and if the total number of invoked applications exceeds sixteen, the new application MQ structure

replaces the coldest application’s MQ structure starting from its lowest ranked LRU queues.

1) MQ module: The size of each block descriptor in our design is 117 bits, among which 16 bits are

used for the corresponding cache address, 32 bits for the block’s last access time, 4 bits for the

queue number in MQ, 15 bits for the frequency counter, 4 bits for the application number, and 46

bits for the pointers to other descriptors. Upon eviction of a block, the physical page number

54

(PPN) of the block is recovered from GIPT, then the evicted block is added to the history buffer of

MQ. The history buffer Qout is a small buffer with 30K entries with 61 bits each (42 bits for PPN,

15 bits for the frequency counter and 4 bits for the application number). For a 128MB DRAM

cache, the total storage overhead of the MQ module is 1.13MB. The MQ structures are stored in

the DRAM hot rank. However, to avoid performance degradation, similar to [49], we add a small

on-chip entry cache (16KB with 1K entries) to the memory controller for storing the most recently

used MQ structures. To find a DRAM cache block’s MQ entry, the memory controller uses hashing

with the corresponding cache address. Misses in the entry cache generate requests to DRAM.

2) AMQ module: Assuming 8 LRU queues, the space overhead of AMQ is 100 bits per application

descriptor: 10 bits for the application number (for all the applications), 3 bits for the queue

number in AMQ, 32 bits for the last active period in which the application is run, 7 bits for the

frequency counter, and 48 bits for the pointers to other descriptors. Hence, the total storage

overhead of AMQ is 12.5KB.

3) Prediction buffer: Assuming 30 bits per entry and 10 entries, the size of the prediction buffer

is only 300B. The AMQ and the prediction buffer are stored in the DRAM hot rank. In our

evaluations, all the overheads incurred by these new components are considered. Overall, for a

hybrid main memory with 128MB DRAM plus 1GB PCM, the area overhead of NEMO is less than

0.9% of the DRAM cache space, which is negligible.

 Results

 Methodology

Because our experiments need to study the behaviour of mobile applications for long running

period, we use a combination of execution- and trace-driven simulations in our study. First, we

55

use cycle-accurate simulators to collect main memory access traces (reads and writes with

timestamps) from running benchmark workloads. Then, we create the mixes of traces and replay

the mixes on our detailed memory system simulator. To collect memory traces, we model a quad-

core processor on a scalable application-level architectural performance simulator based on Gem5

simulator [19] integrated with NVMAIN [62], a cycle accurate main memory simulator designed

to simulate emerging non-volatile memories at the architectural level. The system configuration

of our experiments is shown in TABLE VI. The DRAM configurations (i.e., timing and current

parameters) are obtained from [53]. The PCM configurations are generated by NVSIM [16] and

CACTI [8]. Note that the cell parameters used in NVSIM are based on the projections by [12]. For

the main memory, we pick a small size to match the footprint of the workloads. The benchmark

workloads used in this study are chosen from the Moby benchmark suite [25] as depicted in

TABLE VII. We run each workload for the number of instructions given in the table. The selected

workloads are reprehensive of a wide range of applications that are commonly used in mobile

devices. In current and future mobile systems, various combinations of these workloads are likely

to be executed by the user in an active period. Therefore, in this work, to mimic user’s behaviour,

TABLE VI. System configuration.

Processor ARM, quad-core, 2.0 GHz, out-of-order

L1 Cache 32 KB, 4-way, LRU, 64B cache line, write-back, write allocate

L2 Cache 512 KB, 16-way, LRU, 64B cache line, write-back, write allocate

Memory
Controller

Open page, FR-FCFS, 64-entry queues (per-rank), address
mapping: page interleaving

Main
Memory

DRAM

128MB, LPDDR, 200MHz bus speed

1 channel, 4 ranks/channel, 4 banks/rank, 4k
rows/bank, 32 columns/row

DRAM Device: MT46H8M16LF

PCM

1GB, 1 channel, 1 rank/channel, 8 banks/rank,
64k rows/bank, 32 columns/row

�567= 150ns, �86567= 100ns, �89:= 120ns

56

we create our mix traces in three steps. In the first step, we select a set of workloads (i.e., five

benchmarks) that are likely to be run together to create a mix trace. In the second step, a random

subset of the selected workloads is combined to model an active period. The active periods are

obtained from multi-programming executions. For each mix trace, a predefined usage frequency

is assigned to each workload that determines how often the workload must be repeated. Though

only a fixed set of workloads is used in a mix trace, the number and types of the workloads running

in its active periods are not the same. Finally, the memory traces of six active periods that all use

the same set of workloads are concatenated to create a mix trace. Overall, the system is assumed

to be idle for 90% of time. Since the memory traces of the active periods are large, we consider

only six active periods for each mix trace. TABLE VIII summarizes the mix traces.

We compare NEMO with hybrid main memories that each uses a different power management

technique in DRAM during the idle periods. Schemes that only use a DRAM-based memory need

to put all the DRAM ranks into self-refresh state during the idle periods, which consumes

additional power. Also, a hybrid main memory provides significant performance and energy

TABLE VII. Workloads [25].

Benchmark IC* Description Input

BBench 2.48 Web Browser Web pages

K9Mail 1.18 Email Client Buffered emails

SinaWeibo 2.23 Social Network Buffered texts

NeteaseNews 2.65 News Reader Buffered news

KingSoftOffice 2.24 Document Editor A doc file

AdobeReader 2.09 Document Editor A PDF file

BaiduMap 3.53 Map Client Buffered maps

MXPlayer 3.84 Video Player A video file

TTPod 3.87 Audio Player A music file

FrozzenBubble 0.28 Puzzle Game Null

*IC: Instruction Count (Billions)

57

benefits compared to a conventional DRAM-based memory for mobile devices [17]. Hence, we

only compare NEMO with other hybrid main memories.

1) Self-Refreshing Idles (SRI): this scheme puts all the DRAM ranks into SR state when the mobile

device is idle and is used as our baseline.

2) NEMO Idle Optimized (NEMOI): this scheme works similar to NEMO during idle periods but

does not perform NEMO’s active period optimizations.

3) Ideal Idles (IDI): this is a non-practical scheme that assumes there is no need to perform

refresh operations to maintain data in the DRAM cache during the idle periods.

4) Ideal Actives (IDA): this is also a non-practical scheme that works similar to NEMO during the

idle periods but for each active period (including the initial two active periods) turns on the

minimum number of DRAM ranks needed to hold the entire working set of the workloads within

that active period. In other words, IDA knows the exact number of DRAM ranks in advance. It

should be noted that, the working set size of all the applications within a mix trace is larger than

the DRAM cache size. However, the working set size of the currently running applications within

an active period can be smaller than the DRAM cache size.

TABLE VIII. Summary of Mix traces.

MIX 1
Workloads K9Mail SinaWeibo BBench NeteaseNews KingSoftOffice

Usage Frequencies 3 (actives: 1,4,6) 3 (actives: 3,5,6) 2 (actives: 2,5) 2 (actives: 3,6) 1 (active: 4)

MIX 2
Workloads MXPlayer K9Mail BaiduMap AdobeReader FrozzenBubble

Usage Frequencies 4 (actives: 1,4,5,6) 3 (actives: 1,3,6) 2 (actives: 1,6) 1 (active: 2) 1 (active: 5)

MIX 3
Workloads BBench TTPod BaiduMap NeteaseNews FrozzenBubble

Usage Frequencies 5 (actives: 1,2,3,4,6) 2 (active: 1,5) 1 (active: 2) 1 (active: 2) 1 (active: 3)

MIX 4
Workloads MXPlayer AdobeReader K9Mail SinaWeibo TTPod

Usage Frequencies 3 (actives: 1,3,6) 2 (actives: 2,5) 2 (actives: 2,5) 2 (actives: 1,4) 1 (active:2)

MIX 5
Workloads NeteaseNews KingSoftOffice AdobeReader BaiduMap MXPlayer

Usage Frequencies 2 (active: 1,6) 1 (active: 2) 1 (active: 3) 1 (active: 4) 1 (active: 5)

MIX 6
Workloads BBench SinaWeibo KingSoftOffice BaiduMap TTPod

Usage Frequencies 3 (actives: 1,4,5) 3 (actives: 1,2,5) 3 (actives: 1,2,6) 3 (actives: 2,3,4) 3 (actives: 3,4,6)

58

We use the same DRAM cache structure (fully-associative tagless cache) for all the schemes

but the cache replacement policy for the SRI and IDI schemes is LRU. Moreover, for all the

schemes, whenever there is no request to the memory system during the active periods, the DRAM

ranks are put into active power down state, which has a very short resynchronization time, to

reduce the active power consumption.

 Power Evaluations

Figure 13 compares the power consumption of the DRAM cache for the different schemes

explained before. The results are all normalized to baseline SRI. NEMO achieves up to 22.2%

(13.8% on average) reduction in DRAM cache power consumption compared to SRI. This

reduction is the result of idle and active mode optimizations performed by NEMO. Hence, we have

removed the active periods optimizations in NEMOI to highlight the effect of each optimization

separately. The NEMOI scheme reduces DRAM cache power by up to 11.3% (8.6% on average)

compared to SRI. The maximum power that can be saved during the idle periods is up to 19.0%

(12.8% on average), as shown with IDI scheme. The extra power consumed by NEMOI compared

to IDI is mainly because of the hot rank migrations and the power that the hot rank consumes in

Figure 13. Normalized DRAM cache power consumption.

0.6

0.7

0.8

0.9

1

1.1

Mix 1 Mix 2 Mix 3 Mix 4 Mix 5 Mix 6 GMEAN

N
o

rm
a

li
ze

d
 D

R
A

M

C
a

ch
e

 P
o

w
e

r

SRI NEMOI NEMO IDI IDA

59

self-refresh state during the idle periods. The power that the prediction logic consumes has also

been considered in our evaluations. NEMO further reduces DRAM cache power by 5.7% on

average compared to NEMOI. More specifically, compared to NEMOI, the power reduction by

NEMO is 12.3% for Mix 5, the lightest Mix; 0.0% for Mix 6, the heaviest Mix; and up to 9.2% (5.3%

on average) for the rest of the Mixes, the common cases. These reductions are actually the direct

results of NEMO’s active period optimizations. The benefit of the active period optimizations is

largely due to eliminating all the auto-refresh operations in the powered down DRAM ranks. Note

that, NEMO turns on all the DRAM ranks for the first two active periods for training purpose. For

most workloads, NEMO’s power consumption is close to that of IDA, which always turns on the

necessary number of DRAM ranks even during the initial two active periods (NEMO’s warm up

period). The only exception is for Mix 5, which is the lightest mix. NEMO turns on more ranks

than needed, which consumes some extra active power. On average, NEMO consumes 3.9% more

DRAM power than IDA, which indicates that NEMO predicts the usage of DRAM ranks during

the active mode accurately.

Figure 14 shows the total power consumption of the hybrid main memory. The results are

normalized to baseline SRI. The results show that NEMO reduces the total power consumption of

Figure 14. Normalized total power consumption of the hybrid main memory system.

0.6

0.7

0.8

0.9

1

1.1

Mix 1 Mix 2 Mix 3 Mix 4 Mix 5 Mix 6 GMEAN

N
o

rm
a

li
ze

d
 T

o
ta

l

P
o

w
e

r

SRI NEMOI NEMO IDI IDA

60

the main memory by up to 19.4% (10.2% on average) compared to SRI (ranging from 19.4% for

Mix 5 to 3.5% for Mix 6). Moreover, NEMO consumes 4.2% less power than NEMOI. Generally,

the power consumption of the hybrid main memory depends on the impact of NEMO on the

DRAM cache miss-rate and the total number of writebacks.

Figure 15 depicts the values of DRAM cache miss rate (in all the six active periods) for the

evaluated schemes. Since the miss rate values for the IDI scheme is similar to SRI (they both use

the same cache management policy), we only include SRI in the figure. Similarly, since the miss

rate values for the IDA scheme is similar to NEMOI, we only include NEMOI in the figure. The

results show that NEMO increases the average DRAM cache miss rate slightly from 17.1% by SRI

to 17.4% by NEMO. However, the average DRAM cache miss rate is decreased from 17.1% by SRI

to 16.2% by NEMOI. The reason for this reduction is: 1) in most cases, a large number of NEMOI

(or NEMO)’s evictions are inevitable for providing the cache space required for new applications

data; 2) during the idle periods, NEMOI (or NEMO) only evicts colder pages that are less likely to

be re-accessed in the future; 3) during the active periods, NEMOI (or NEMO) chooses its eviction

victims more wisely. In other words, the eviction victims of SRI are more likely to be accessed

again at some point later. The reason for the increase in the average DRAM cache miss rate by

Figure 15. DRAM cache miss rate (%).

0

5

10

15

20

25

30

Mix 1 Mix 2 Mix 3 Mix 4 Mix 5 Mix 6 GMEAN

D
R

A
M

 C
a

ch
e

 M
is

s

R
a

te
 (

%
)

SRI NEMOI NEMO

61

NEMO compared to NEMOI is the active periods where the predicted number of DRAM ranks by

NEMO is smaller than the actual number of ranks needed. It should be noted that even in those

cases, NEMO’s DRAM cache replacement policy, which evicts only the dead pages, prevents any

significant overhead. Moreover, our evaluation results reveal that the accuracy of the proposed

predictor is 86.1% on average. This means that in most of the active periods of a Mix, the predicted

number of ranks work similar to the situation when all the DRAM ranks (or in other words, the

necessary number of ranks or more) are powered up.

Figure 16 shows the total number of DRAM cache rows written back to PCM by NEMO. The

results are normalized to baseline SRI. Compared to SRI, the number of writebacks is increased

by 1.2% on average by NEMO; but is decreased by 0.4% on average by NEMOI. The increase in

NEMO’s writebacks compared to NEMOI (1.6% on average) is the price we pay for powering up

fewer ranks. For Mix 5, the number of rows written back by NEMOI is more than those by SRI.

The reason is: in this case, some of the evictions/writebacks performed by NEMOI (NEMO)

during the idle periods are not necessary (to empty the required cache space) during the regular

executions of SRI. However, since most of the applications are run only once (or twice, in two far

separated active periods) in this mix, it does not have much negative impact on the miss rate. It

Figure 16. Normalized total number of writebacks.

0.6

0.7

0.8

0.9

1

1.1

Mix 1 Mix 2 Mix 3 Mix 4 Mix 5 Mix 6 GMEAN

N
o

rm
a

li
ze

d
 D

R
A

M

C
a

ch
e

 W
ri

te
b

a
ck

s

SRI NEMOI NEMO

62

should be noted that the increase in the number of writebacks is very small; thereby NEMO does

not harm PCM lifetime.

 Performance Evaluations

Figure 17 shows the performance of the evaluated schemes for the Mix workloads. The results

are normalized to baseline SRI. Since for IDI, only the power state of DRAM in idle periods (not

the performance) is different from SRI, we only include SRI in the figure. Though the IDA scheme

powers up fewer DRAM ranks than NEMOI (i.e., the necessary number of ranks only) during

some of the active periods, it does not affect the DRAM cache miss rate or number of writebacks.

Therefore, the performance values of IDA are the same as those of NEMOI.

The results show that NEMO almost has no negative performance impact and even may

improve performance. Compared with SRI, its performance is improved by 1.7% on average (up

to 8.9%). The reasons for this improvement are: First, the number of writebacks performed during

the active periods is always decreased for all the Mix workloads, although the total number of

writebacks by NEMO is increased for some of the Mixes. Figure 18 shows the percentages of

reduction in the number of active periods’ writebacks by NEMO compared to SRI. The decreased

Figure 17. Normalized execution time.

0.6

0.7

0.8

0.9

1

1.1

Mix 1 Mix 2 Mix 3 Mix 4 Mix 5 Mix 6 GMEAN

N
o

rm
a

li
ze

d

E
xe

cu
ti

o
n

 T
im

e

SRI NEMOI NEMO

63

number of writebacks alleviates the bus utilization during the active periods, which is very helpful

especially when the bus is mostly busy with responding to the requests generated by DRAM cache

misses. Second, as we discussed before, NEMO increases the DRAM cache miss rate only very

slightly. The execution time of NEMO is 2.3% longer than NEMOI due to misprediction of the

number of necessary DRAM ranks. It should be noted that all the migrations performed by NEMO

during the idle periods are off the critical path of memory accesses and do not incur any

performance penalty.

 Impact of Design Parameters

The hybrid main memory’s total power consumption and the total execution time of NEMO

with different number of DRAM hot ranks are shown in Figure 19. The results are normalized to

NEMO with one hot rank. We have included only the average values in the figure.

Compared to NEMO with one hot rank, NEMO with zero hot ranks reduces main memory’s

power by only 1.6% on average, while it incurs a performance loss of 3.7% on average. This is

because the evictions/writebacks of the hottest pages are unnecessary and increase the DRAM

cache miss rate. Moreover, compared to NEMO with one hot rank, NEMO with two hot ranks

Figure 18. Percentage of reduction in the number of active periods’ writebacks by NEMO
compared to Baseline.

0

10

20

30

40

50

60

Mix 1 Mix 2 Mix 3 Mix 4 Mix 5 Mix 6

N
E

M
O

's
 A

ct
iv

e

P
e

ri
o

d
s

W
ri

te
B

a
ck

R
e

d
u

ct
io

n
 (

%
)

64

improves performance by 0.8% but increases the total main memory’s power consumption by

3.1% on average. This means that the pages stored in the second hot rank are not as critical to

system’s performance as those pages stored in the first hot rank. In other words, keeping a second

DRAM hot rank powered up increases the power consumption with a small performance benefit.

Overall, based on the results, NEMO with one DRAM hot rank provides the best balance between

the main memory’s power consumption and performance. That is why our scheme keeps only a

single hot rank.

Figure 20 shows the hybrid main memory’s total power consumption for different DRAM

cache sizes. The results are normalized to baseline SRI with 64MB DRAM cache. The results show

that NEMO can achieve, on average, 6.6%, 10.2%, and 18.1% reduction in the total power

consumption for a hybrid main memory with a 64MB, 128MB, and 256MB DRAM cache,

respectively, compared to baseline SRI. Using a larger DRAM cache for NEMO has several

benefits. First, when the DRAM is larger, the DRAM hot rank is also larger and can keep more hot

pages. Second, the obtainable power saving by the idle period optimizations becomes larger,

because the larger the DRAM, the higher the self-refresh operations energy. Third, the active

(a)

(b)

Figure 19. NEMO’s (a) normalized total power consumption; (b) normalized
execution time; for different number of DRAM hot ranks.

0.9

0.95

1

1.05

1.1

ZERO ONE TWON
o

rm
a

li
ze

d
 T

o
ta

l

P
o

w
e

r

Number of Hot Ranks

0.9

0.95

1

1.05

1.1

ZERO ONE TWO

N
o

rm
a

li
ze

d

E
xe

cu
ti

o
n

 T
im

e

Number of Hot Ranks

65

period optimizations can also be more effective because more data can be placed in each DRAM

rank and there will be more opportunities to power down some ranks. Besides, the background

power that can be saved during the active periods is also larger for larger DRAM caches. Forth,

when DRAM capacity and thus the number of requests served in DRAM increases, a larger portion

of the hybrid main memory’s energy will be reduced by improving the DRAM cache.

 Conclusions

In this chapter, we proposed a novel scheme called NEMO to minimize the background energy

of hybrid main memories used in mobile devices. To do so, NEMO takes advantage of the unique

usage pattern of mobile devices, which are idle most of the times.

During the long idle periods, NEMO evicts the nonvaluable memory pages (those that are less

likely to be reused in future) from the DRAM cache and collects the remaining hot memory pages

in a single DRAM rank, called the hot rank. It then powers off all the DRAM ranks except for the

hot rank. In addition, to minimize the background power during the active periods, it predicts the

number of DRAM ranks that needs to be powered up in addition to the hot rank based on the

Figure 20. Normalized total power consumption of the hybrid main memory for
different DRAM sizes.

0.6
0.7
0.8
0.9

1
1.1

64MB DRAM 128MB DRAM 256MB DRAM

N
o

rm
a

li
ze

d

To
ta

l
P

o
w

e
r SRI NEMOI NEMO IDI IDA

66

applications’ launching pattern in the past. The experimental results revealed that NEMO could

effectively reduce the memory power consumption without negative performance impact.

67

A WRITEBACK-AWARE LLC MANAGEMENT SCHEME FOR PCM-BASED

MAIN MEMORY SYSTEMS

 Introduction

Due to its scalability limits, DRAM can no longer satisfy the memory capacity demands of the

modern-day applications. Hence, PCM is gaining interest as DRAM replacement for building the

future main memories [4, 65, 66, 70, 72]. However, PCM suffers from some major shortcomings

including long write latency, high write energy consumption, and limited write endurance, which

are all related to write operations. To deal with the overheads of write operations in PCM, there

are two common types of solutions. First category is the optimizations on the PCM architecture

to minimize the impact of writes. For example, modifying the request scheduling policy in the

PCM main memory to alleviate the performance overheads of writes on reads [2, 68, 82, 91]; or

modifying the PCM main memory architecture to reduce or balance the write loads on PCM cells

and enhance their lifetime [86]. Second category is reducing the total number of writes sent to the

PCM main memory by modifying the Last Level Cache (LLC)’s management policies [80]. This

work falls into the latter category.

We propose WALL [63, 64], a novel dynamic writeback-aware LLC management scheme to

improve performance, energy efficiency, and lifetime of a PCM-based main memory system by

reducing the number of writebacks from LLC to PCM. In general, WALL consists of a writeback-

aware set balancing mechanism and a writeback-aware replacement policy. Writebacks of the last

Parts of this chapter has been presented in [63, 64]. Copyright © 2018, IEEE. Copyright ©
2019, ACM.

68

level cache are not uniformly distributed among its sets; some sets have far more writebacks than

others, while some sets rarely see writebacks (please see Section 5.2 for detailed results). The

proposed set balancing mechanism reduces the number of writebacks by employing the

underutilized sets with infrequent writebacks as auxiliary storage units (inside LLC) for the

evicted dirty lines from sets with many writebacks. Moreover, the proposed writeback-aware

replacement policy tries to keep the dirty blocks that are frequently accessed after eviction in LLC.

To do so, it allows the dirty eviction victims (i.e., dirty LRU block) to stay in the cache and be re-

accessed; if the block becomes LRU block again without being accessed, it will be evicted from

LLC then.

To implement the set balancing mechanism of WALL, we first propose a simple partner

assignment strategy [63]. The simple partner assignment strategy classifies sets into three

categories: 1) “writer”; sets with frequent writebacks; 2) “non-writer”; sets with infrequent

writebacks; and 3) “neutral”; sets that are neither writer nor non-writer. Each writer set is

partnered with a non-writer set until no non-writer sets are left un-partnered. Although this

partner assignment strategy has simple implementation and works effectively for many

workloads, it also has two limitations. First, it cannot always balance the number of writer and

non-writer sets; thereby some writer or non-writer sets may remain without partners. Second, it

does not guarantee the inclusion of writer sets with the largest number of writebacks or non-writer

sets with the smallest number of writebacks in the partner assignment process. We further

propose three novel partner assignment strategies called contraction, expansion and ConExp to

alleviate the limitations of the simple partner assignment strategy [64]. Specifically, when the

number of writer and non-writer sets are imbalanced, the expansion strategy includes some of the

neutral sets, which are the most eligible to be considered writer or non-writer, in the partner

assignment process. On the other hand, the contraction strategy addresses the second limitation

69

of the simple partner assignment strategy by first assigning partners to writer sets with the largest

number of writebacks and non-writer sets with the smallest number of writebacks. The ConExp

strategy is a combination of the contraction and expansion strategies to deal with both limitations

of the simple partner assignment strategy.

We evaluate our proposed schemes by running SPEC CPU2006, NAS and PARSEC workloads

on GEM5 [19] integrated with modified NVMAIN [62], which simulates the PCM-based main

memory system. The experimental results indicate that our schemes can reduce the total number

of LLC writebacks by 30.9%, on average, compared to a baseline scheme, which uses the LRU

replacement policy. As a result, for a system with eight cores and a 4GB PCM main memory, it

can enhance PCM lifetime by 1.29×, on average, and reduce the memory energy consumption by

23.1%, on average.

 Motivation

In this section, we explain the motivation of our work by investigating LLC sets’ writeback

behaviour. To this end, we have run three workloads, selected from different benchmark suites

(sp from NAS [60], gcc from SPEC CPU2006, and streamcluster from PARSEC [6]) on our

simulated system (please see Section 5.9.1 for more details).

Figure 21 shows the cumulative distribution of writebacks over LLC sets. The results reveal

that majority of the writebacks from the LLC to main memory are generated by less than half of

the LLC sets. For sp, 25% of the LLC sets, with the largest number of writebacks (i.e., frequent

writeback sets), are responsible for 41.1% of the total number of writebacks. On the other hand,

12.5% of the sets, with the smallest number of writebacks (i.e., infrequent writeback sets), are

accountable for only 5.3% of the total number of writebacks. In general, some sets tend to write

70

back much more frequently than others. For example, since 22.9% of the writebacks for sp are

performed by 12.5% of the frequent writeback sets, a frequent writeback set writes to main

memory about four times more frequently than an infrequent writeback set, on average. Similarly,

for gcc, 25% of the frequent writeback sets perform 49.6% of the writebacks while the same

percentage of the infrequent writeback sets are responsible for only 10.8% of the total number of

writebacks. Finally, for streamcluster, 20.7% of the writebacks are sourced from 6.3% of the

frequent writeback sets.

Based on this observation, we propose a set balancing mechanism to reduce the number of

writes to a PCM-based main memory system. More specifically, WALL aims to prevent a

noticeable percentage of write traffic from reaching the PCM main memory by taking the non-

uniform distribution of LLC set writebacks into account. The idea of avoiding the eviction of LLC

sets’ highly reused dirty blocks, which are likely to become eviction victims soon after being re-

inserted in the cache (i.e., frequent writeback blocks), has been discussed in a recent study called

WADE [80]. The WADE scheme partitions the blocks of each LLC set into two groups, “frequent

writeback blocks” and “non-frequent writeback blocks” and tries to keep the frequent writeback

blocks in the set to reduce the number of writes to the main memory. However, one major

Figure 21. Cumulative distribution of writebacks over LLC sets. (NOTE: sets are sorted
in a descending order based on their total number of writebacks).

22.9%

94.7

5.3%

0

20

40

60

80

100

0 12.5 25 37.5 50 62.5 75 87.5 100

P
e

rc
e

n
ta

g
e

 o
f

w
ri

te
b

a
c
k

s

Percentage of sets

sp

29.6%

94.9

5.1%

0

20

40

60

80

100

0 12.5 25 37.5 50 62.5 75 87.5 100

P
e

rc
e

n
ta

g
e

 o
f

w
ri

te
b

a
ck

s
Percentage of sets

gcc

27.4%

91.3

8.7%

0

20

40

60

80

100

0 12.5 25 37.5 50 62.5 75 87.5 100

P
e

rc
e

n
ta

g
e

 o
f

w
ri

te
b

a
ck

s

Percentage of sets

streamcluster

71

shortcoming of WADE is that for every set, irrespective of its characteristics, it considers the non-

frequent writeback blocks of the set as the only replacement candidates; while other sets might

have clean, underutilized lines. Moreover, WADE is rather complex. In our study, a simple but

effective writeback-aware replacement policy is also proposed to keep the frequent writeback

blocks in the cache. Overall, WALL can reduce the number of LLC writebacks by considering the

writeback behaviour of sets and their blocks at the same time.

 WALL Overview

The WALL scheme comprises of a writeback-aware set balancing mechanism and a writeback-

aware replacement policy. The set balancing mechanism classifies LLC sets into three categories,

“writers” (i.e., frequent writeback sets), “non-writers” (i.e., infrequent writeback sets) and

“neutral”. To reduce the number of write requests to PCM, the non-writer sets are used to store

the evicted dirty lines from the writer sets. Specifically, each writer set is partnered with a non-

writer set (until there is no non-writer set left) and upon eviction of an LRU dirty line from the

writer set, the line will be inserted into the set’s partner instead of being written back to the main

memory. Besides, our writeback-aware replacement policy further reduces the number of LLC

writebacks by keeping the frequent writeback blocks in the cache.

 Writeback-Aware Set Balancing Scheme

To decide whether a set is writer or non-writer, WALL monitors the number of writebacks,

and accesses of each LLC set for a time window. Generally, a set is “writer” if the number of

writebacks from it exceeds a certain threshold (i.e., �abca_�), but a set with relatively small

number of writebacks is not necessarily a good partner set. A non-writer set must have enough

72

space to store the evicted dirty blocks of its writer partner without noticeable performance

penalty. To measure the degree to which a set can hold its working set, we employ a saturating

arithmetic miss counter (i.e., saturation counter) similar to that in a previous study [73]. For a K-

way set associative cache, the working range of the saturation miss counter is from 0 to 2K-1 [73].

Upon every access, the saturation counter is incremented if the access results in a miss and

decremented otherwise. To count the number of writebacks, we also use a saturating writeback

frequency counter for each set that is incremented upon every writeback from the set. At the end

of a monitoring period, we divide the writeback values by two (i.e., shift the counters right by one

bit). This actually reduces the impact of set’s writeback behaviour in the past on the type of the

set in the current time period.

WALL considers a set “non-writer” if both of saturation and writeback counters are smaller

than specific thresholds (i.e., �de�, ����_�). For a set with writeback frequency counter of W and

saturation counter of M, the set is considered writer if (W ≥ fghig_jk), non-writer if (M ≤ fl1m & W

≤ fnoj_jk) and neutral otherwise. We divide the total execution time of programs into epochs of

10r accesses to the LLC. On entering an epoch, the partnership between two sets can be easily

broken if the writer set has no blocks in its non-writer partner. The thresholds are re-calculated

and if there is a pair of writer and non-writer sets with no partners, they will be assigned to each

other. Note that for a set with partner (i.e., a writer set with blocks in its partner or a non-writer

set that holds some of its partners’ blocks), we do not change the set type. Our experiments show

that set types rarely change after an initial set type identification epoch and most partnerships

remain intact. On the other hand, to avoid overfill a non-writer set, if the saturation counter of a

non-writer set reaches α × fl1m, where α is 2 in our experiments, the insertion of blocks from its

writer partner will be suspended until the set’s saturation counter retrieves to values smaller than

fl1m. To reduce implementation complexities, we assume each writer set is partnered with only

73

one non-writer set. In other words, the number of the paired writer and non-writer sets is equal

to the size of the smaller group of writer and non-writer sets. We later discuss how accesses to sets

and their partners are handled in Section 5.6.

To determine the writeback thresholds, three simple steps are followed. First, the arithmetic

mean of all the writeback values is computed and referred to as the overall average. Then, fnoj_jk

is computed as the arithmetic mean of the writeback values smaller than the overall average.

Finally, fghig_jk is computed as the arithmetic mean of the writeback values larger than the overall

average. Note that since these thresholds cannot guarantee an equal number of writer and non-

writer sets, some writer sets may remain without a partner at the end. Moreover, we assume fl1m

= K/4 (i.e., K is the set associativity). Figure 22 depicts the distribution of sets based on the

discussed thresholds for the workloads shown in TABLE XI (see Section 5.9.1). The results are

based on the values obtained after the initial epoch of 10r accesses to the LLC. It should be noted

that the saturation bars (i.e., bars with horizontal axis title of “sat”) in the figure are only for the

sets with writeback counters smaller than fnoj_jk. Our results show that the selected thresholds

can distinguish different types of sets from each other effectively.

Figure 22. Distribution of LLC sets based on the thresholds (wb: writebacks; sat:
saturation; NOTE: sat bars are only for the sets with wb < ����_�).

0

20

40

60

80

100

wb sat wb sat wb sat wb sat wb sat wb sat wb sat wb sat

sp ua stream dedup gcc mcf mix1 mix2

P
e

rc
e

n
ta

g
e

 o
f

S
e

ts

 < [] > < >�de�����_�	- �abca_�	 �abca_�	����_�	 �de�

74

 Writeback-Aware Replacement Policy

In addition to assigning partners to writer sets, WALL enables a writeback-aware replacement

policy inside the LLC sets to further reduce the number of writebacks to the PCM. To keep the

“frequent writeback blocks” in the cache, such blocks need to be identified first. We propose a

much simpler yet effective method compared to the prediction scheme discussed in WADE [80],

because such prediction schemes are usually complex and costly in terms of area, energy, and/or

performance overheads.

The intrinsic definition of a frequent writeback block is a block that is frequently reused each

time after being evicted from the cache. Generally, our scheme avoids the eviction of such blocks

by giving the dirty victims a second chance to stay in the cache and be accessed again. To keep

track of the dirty blocks that have been given a second chance, a one-bit flag called FV (i.e., Former

Victim) is considered for each block. We assume the baseline replacement policy is LRU. When a

replacement is needed in an LLC set, the dirty status bit of the LRU line (i.e., the eviction victim)

is checked; if the LRU block is clean, it will be evicted from the cache but if the block is dirty, two

scenarios are possible. First, the block is not a former victim (FV = 0). In this case, the line will be

moved to the MRU position of the access stack and will be marked as a former victim (i.e., its FV

flag will be set to ‘1’), this process will be repeated until finding an eviction victim. Second, the

block is a former victim (FV = 1) and has become the eviction victim for the second time without

being accessed. In this case, the block will be evicted from the cache. If a cache line with FV = 1 is

accessed, its FV bit will be reset to ‘0’. The reason is that such block is likely to be a frequent

writeback block. It should be noted that all these steps happen in parallel with the resolution of

the miss, thereby there is no performance penalty.

75

We use the proposed replacement policy for the non-writer and neutral sets. Since writer sets

usually have high miss rate values and often choose dirty blocks as eviction victims, for those sets,

we use the baseline LRU replacement policy. However, on eviction of an LRU dirty block from a

writer set with a partner, the block will be inserted into the set’s partner.

 Set Balancing Simple Partner Assignment and Access Management

For writer sets with large number of writebacks, changing the replacement policy may cause

a non-trivial increase in the sets’ miss rates. Hence, the writeback-aware replacement policy is

applied to those sets that are not writer (i.e., neutral and non-writer sets). Instead, WALL virtually

increases the associativity of a writer set by assigning a non-writer partner to it. We first propose

a simple partner assignment strategy and access management for set-balancing LLC. The reason

that we have excluded the neutral sets from the partnering process is that it is not beneficial to

write from one set to another set with similar writeback or miss frequencies.

The partner of a writer set is selected randomly from the non-writer sets. To keep tracking the

partners, a small direct-access remap table is introduced. The indices of the sets’ partners are

saved in the remap table, which is indexed by set indices. For a set with no partner, its own index

is stored. When an LRU dirty line is evicted from a writer set with a partner, it will be inserted

into the set’s partner. To show whether a block in a non-writer set is repositioned from the set’s

writer partner or not, a one-bit flag called RB (i.e., Repositioned Block) is considered for each

block. The remap table is also augmented with one-bit flag P (i.e., Partnered) for each set to show

whether a writer set has any blocks in its partner or not. Upon an access to a writer set, if the

access results in a miss, the remap table is checked, if P is ‘1’, the set’s partner will be accessed for

the block; otherwise, main memory will be accessed as usual. If the access also misses in the set’s

76

partner, main memory must be accessed. If all the repositioned blocks of a writer set get evicted

from its partner, P flag of the writer set will be reset to ‘0’.

The design of WALL is depicted in Figure 23. On an eviction of a block from an LLC set, we

first decide whether the block needs to be written back to the PCM or not. If not, depending on

the set type, the block either remains in the set as MRU or will be written back into the set’s

partner. To specify the type of each set, a 2-bit register called ST is considered per set (i.e., the set

is writer if ST = “11”, non-writer if ST = “10”, and neutral if ST = “00” or “01”).

 Extended Partner Assignment Strategies

The simple partner assignment strategy of WALL explained in the previous section cannot

guarantee an equal number of writer and non-writer sets. In other words, some writer sets may

remain without partners at the end of the partner assignment process. In this section, to efficiently

Figure 23. Design of WALL.

victim

to

PCM

dirty FV

1 to PCM

to MRU

1

0

d
ir

ty
 F

V

1 1
1 0 0

0 X 1 clean evict

insert into

partner of Set(n)

move to

MRU

S
T

[0
]

S
T

[1
]

1 writer1 0
1 0 1

1 neutral

ST[0] ST[1]

non-writer

0 X

ST: Set Type

1

0

...

MRU

LRU

...

LRU

MRU

finding another victim

Set(n) Set(n)

77

exploit the available storage space of the non-writer sets and to further reduce the number of

writebacks from the writer sets, we propose three more partner assignment strategies called

expansion, contraction and ConExp, which is a combination of contraction and expansion

strategies.

 Expansion Partner Assignment Strategy

The expansion strategy modifies the writeback thresholds to balance the number of writer and

non-writer sets. Specifically, when the number of non-writer sets is considerably smaller than the

writer sets, the expansion strategy finds the most eligible neutral sets to be added to the non-

writer sets. On the other hand, when the number of writer sets is smaller, the expansion strategy

assigns the remaining (without partners) non-writer sets, to the neutral sets that can benefit the

most from the partnership.

To avoid enlarging the group of writer or non-writer sets unreasonably (i.e., causing more

imbalance in the sizes of the two groups), we define an expansion condition; the expansion

strategy is applicable only when the size of the larger group is at least β× the size of the smaller

group. Our evaluations show that β = 1.5 provides the best balance between the number of writer

and non-writer sets. The writeback thresholds of the expansion strategy are represented as

fs2t_noj_jk and fs2t_ghig_jk. When the expansion condition is true, considering a neutral set with

writeback frequency counter of W and saturation counter of M, the two possible scenarios are as

follows: 1) If non-writer sets are fewer, the neutral set is considered “semi non-writer” if (M ≤ fl1m

& W ≤ fs2t_noj_jk). To determine fs2t_noj_jk, the arithmetic mean of the writeback values between

fnoj_jk and the overall average is computed. 2) If writer sets are fewer, the neutral set is

considered “semi writer” if W ≥ fs2t_ghig_jk. The value of fs2t_ghig_jk is also computed as the

78

arithmetic mean of the writeback values between the fghig_jk and the overall average. Figure 24

shows the distribution of sets with the expansion strategy after the initial monitoring epoch.

The expansion strategy starts by assigning the original writer and non-writer sets as partners.

Then, it continues by assigning the remaining writer/non-writer sets to the semi non-writer/semi

writer sets until no semi non-writer/non-writer set remains without a partner.

 Contraction Partner Assignment Strategy

Since the number of writer and non-writer sets are usually not the same, some sets remain

without a partner. On the other hand, it is beneficial to always keep the writer sets with the largest

number of writebacks, or “super writer sets”, and non-writer sets with the smallest number of

writebacks, or “super non-writer” sets, included in the partner assignment process.

The contraction strategy distinguishes the super writer and super non-writer sets from the

rest of the sets using two writeback thresholds called fuov_ghig_jk and fuov_noj_jk. Specifically, a

Figure 24. Distribution of LLC sets after applying the expansion strategy.

0

20

40

60

80

100

sp ua stream dedup gcc mcf mix1 mix2

P
e

rc
e

n
ta

g
e

 o
f

S
e

ts
non-writer semi non-writer neutral semi writer writer

79

non-writer set with writeback counter of W is considered super non-writer if W ≤ fuov_noj_jk and

a writer set with writeback counter of W is considered super writer if W ≥ fuov_ghig_jk. To

determine the fuov_noj_jk, the arithmetic mean of the writeback values smaller than the fnoj_jk is

computed. Also, fuov_ghig_jk is computed as the arithmetic mean of the writeback values larger

than the fghig_jk. Figure 25 illustrates the distribution of sets with the contraction strategy after

the initial monitoring epoch. The contraction strategy starts from assigning partners to super

writer and super non-writer sets and then continues by assigning partners to the remaining writer

and non-writer sets.

 Contraction-Expansion (ConExp) Strategy

There are two main shortcomings with the expansion strategy. First, since the semi non-writer

sets are less effective than the non-writer sets in reducing the number of writebacks, assigning

them as partners to the super writer sets should be avoided. Second, although the expansion

strategy tries to balance the number of writer and non-writer sets, the super writer or super non-

Figure 25. Distribution of LLC sets after applying the contraction strategy.

0

20

40

60

80

100

sp ua stream dedup gcc mcf mix1 mix2

P
e

rc
e

n
ta

g
e

 o
f

S
e

ts
super non-writer non-writer neutral writer super writer

80

writer sets may still be excluded from the partner assignment process. To alleviate these problems,

we propose the ConExp strategy, which is a combination of the contraction and expansion

strategies. ConExp assigns partners, in order, to the super sets, then to the original writer and

non-writer sets, and finally to the semi sets, until no non-writer or semi non-writer set remains

without a partner. It is worth mentioning that the semi and super writer sets are represented

(treated the same) as the writer sets and the semi and super non-writer sets as the non-writer sets.

Hence, these strategies do not require any additional hardware overheads.

 Overhead Analysis

TABLE IX summarizes the storage overhead of WALL. The total storage overhead of WALL is

less than 0.6% of the LLC capacity. It is worth mentioning that this overhead is about half of that

of WADE [80].

Calculating the writeback thresholds and updating the remap table (i.e., pairing writer and

non-writer sets) are only performed once at the end of each epoch. Hence, their performance

impacts are negligible.

TABLE IX. Total Storage Overhead.

Type Storage Type Storage

FV per block 16 KB Saturation counter (6-bit) per set 3 KB

RB per block 16 KB Writeback counter (8-bit) per set 4 KB

P per set 0.5 KB Remap table 6 KB

ST per set 1 KB TOTAL 46.5 KB

81

 Results

 Methodology

For this work, we model an 8-core processor using the GEM5 full-system simulator integrated

with NVMAIN. The system configuration of our experiments is shown in TABLE X. The PCM

configurations are generated by NVSIM [16] and CACTI [8], the cell parameters used in NVSIM

are based on the projections by [12]. The benchmarks used in this study are chosen from NAS

[60], SPEC CPU2006 and PARSEC [6] as depicted in TABLE XI. The selected benchmarks are

some of the memory-intensive workloads from the three benchmark suites. For all the workloads,

we use either sampled reference or native input sets to represent a real-world execution scenario

and run the applications for two billion instructions, after two billion instructions for cache warm-

up phase.

We compare WALL with 1) Baseline that uses the LRU replacement policy, 2) Baseline double-

way, a baseline cache of the same size with double the associativity, and 3) WADE, which is the

TABLE X. System Configuration.

Processor and on-chip Caches

Cores 8 cores, out-of-order, 2.0 GHz

L1-I/D Split 32KB I/D-cache/core, 4-way, 8-MSHR, 2-cycle hit

L2 256KB/core, 8-way, 12-MSHR, 12-cycle hit

L3 (LLC) SRAM: Shared, 8MB, 32-way, 32-MSHR, 35-cycle hit

Coherency MOESI directory, 2×4 grid packet NoC, XY routing

Main Memory

PCM

4GB, 4 Channel, 1 rank/channel, 4 banks/rank, 400 MHz

�567= 150ns, �86567= 100ns, �89:= 120ns

Cell endurance = 32×106 writes

MC
Four controllers, Open page, 32-entry queues (one read queue
and one write queue), Write drain threshold: high = 80%, low =
50%, Address mapping: page interleaving

82

scheme proposed in [80]. In PCM, we always prioritize reads over writes if write queue is less than

80% full.

 LLC Writeback Reduction

Figure 26 shows the writeback reduction of WALL for the different types of LLC sets. The

results are normalized to the baseline scheme. It is worth mentioning that any writeback of a

writer set’s lines from its partner is considered for the original writer set.

 The WALL scheme when using the simple partner assignment strategy achieves an average

of 26.6% writeback reduction, compared to the Baseline scheme. The three main reasons for this

reduction are: 1) The efficacy of the set type identification process. 2) The capability of the

writeback-aware set balancing scheme in reducing the writer sets’ writebacks; the number of

writebacks originated from writer sets is reduced by 39.5%, on average (i.e., from 33.4% to 20.1%

of the Baseline total writebacks), while the writebacks originated from non-writer sets are

increased slightly from 10.4% to 13.1% of the Baseline total number of writebacks. 3) The proposed

writeback-aware replacement policy has been able to reduce the writebacks originated from the

TABLE XI. Evaluated workloads characteristics.

(RPKI/WPKI: main memory Reads/Writes Per 1000 Instructions)

Workload RPKI WPKI Workload RPKI WPKI

from the NAS benchmarks (8-Thread)

sp 4.98 2.55 ua 3.12 2.67

from the PARSEC benchmarks (8-Thread)

stream 24.4 0.21 dedup 11.5 8.32

from the SPEC CPU2006 benchmarks

8×gcc 7.42 1.59 8×mcf 43.5 9.02

mix1 2.91 1.90 mix2 12.7 4.21

mix1: 4×lbm, 4×bzip mix2: 4×cactusADM, 4×leslie3D

83

neutral sets by 28.6%, on average (i.e., from 56.2% to 40.1% of the Baseline total writebacks). It

is worth noting that for some of the benchmarks, the proposed replacement policy has also been

able to reduce the number of writebacks originated from the non-writer sets.

Figure 27 compares the normalized writebacks reduction of the evaluated schemes. Compared

with Baseline double-way and WADE, WALL reduces the number of writebacks by 23.3% and

16.4%, on average, respectively. Based on the results, duplicating the set associativity is not very

helpful in reducing the number of LLC writebacks; our baseline implementation is 32-way and

increasing the associativity beyond that does not cause a significant improvement.

Figure 28 compares the writeback reduction of the extended partner assignment strategies.

The results are normalized to the simple partner assignment strategy. The expansion strategy can

Figure 26. WALL’s normalized LLC writebacks reduction.

Figure 27. Writebacks reduction of evaluated schemes.

0

0.4

0.8

1.2

B
a

se
li

n
e

W
A

LL

B
a

se
li

n
e

W
A

LL

B
a

se
li

n
e

W
A

LL

B
a

se
li

n
e

W
A

LL

B
a

se
li

n
e

W
A

LL

B
a

se
li

n
e

W
A

LL

B
a

se
li

n
e

W
A

LL

B
a

se
li

n
e

W
A

LL

B
a

se
li

n
e

W
A

LL

sp ua stream dedup gcc mcf mix1 mix2 Average

N
o

rm
a

li
ze

d
 W

ri
te

b
a

ck
s

non-writer neutral writer

0

0.4

0.8

1.2

sp ua stream dedup gcc mcf mix1 mix2 Average

LL
C

 W
ri

te
b

a
ck

s

R
e

d
u

ct
io

n

Baseline Baseline double-way WADE WALL

84

reduce the number of writebacks by 3.6%, on average (by up to 9.2% for gcc). This reduction is

caused by including more writer (or semi writer) sets in the partner assignment process. The

contraction strategy can reduce the number of writebacks by 3.4%, on average (by up to 4.6% for

ua). The reason for this reduction is the fact that sets with highest write frequency (super writer

sets) are always assigned a partner, which is in the super non-writer sets (i.e., one that has the

smallest write frequency). ConExp, which uses the benefits of both strategies, can reduce the

number of writebacks by 5.9%, on average (by up to 12.7% for mix1), compared to the simple

partner assignment strategy. In other words, ConExp strategy can reduce the number of

writebacks by 30.9%, on average, compared to the Baseline scheme.

 LLC Miss Rate

Figure 29 shows the normalized MPKI (Misses Per Kilo Instructions) of WALL for different

types of LLC sets. The accesses that result in a hit in a writer set’s partner are considered for the

original writer set.

Figure 30 shows the normalized MPKI of the evaluated schemes. Results reveal that WALL

when using the simple partner assignment strategy reduces the MPKI by 2.4%, on average,

compared to the Baseline. This reduction is mainly because WALL stores the frequently reused

Figure 28. Writebacks reduction of WALL with different partner assignment
strategies.

0.8

0.9

1

1.1

sp ua stream dedup gcc mcf mix1 mix2 Average

LL
C

 W
ri

te
b

a
ck

s

R
e

d
u

ct
io

n

WALL WALL + Expansion WALL + Contraction WALL + ConExp

85

dirty blocks of writer sets in the non-writer partners and performs similarly to doubling the

associativity of those cache sets. More specifically, the MPKI of writer sets is reduced by 27.8%,

on average (i.e., from 30.7% to 22.1% of the Baseline total MPKI). On the other hand, the MPKI

is increased from 12.0% to 16.2% of the Baseline total MPKI for the non-writer sets and from

57.3% to 59.1% for the neutral sets, on average, respectively. For some cases, the writeback-aware

replacement policy has incurred miss penalties by evicting the clean lines that are later reused

more frequently than the saved dirty blocks (i.e., those that have been given a second chance). For

other cases, the dirty lines kept in LLC by the writeback-aware replacement policy are re-

referenced more than the lines evicted by them instead. It should be noted that the penalty is

small because we give only a second chance to the dirty victims of the sets. The set-balancing

Figure 29. WALL’s normalized MPKI.

Figure 30. MPKI of evaluated schemes.

0

0.4

0.8

1.2

B
a

se
li

n
e

W
A

LL

B
a

se
li

n
e

W
A

LL

B
a

se
li

n
e

W
A

LL

B
a

se
li

n
e

W
A

LL

B
a

se
li

n
e

W
A

LL

B
a

se
li

n
e

W
A

LL

B
a

se
li

n
e

W
A

LL

B
a

se
li

n
e

W
A

LL

B
a

se
li

n
e

W
A

LL

sp ua stream dedup gcc mcf mix1 mix2 Average

N
o

rm
a

li
ze

d
 M

P
K

I non-writer neutral writer

0

0.4

0.8

1.2

sp ua stream dedup gcc mcf mix1 mix2 Average

N
o

rm
la

iz
e

d

M
P

K
I

Baseline Baseline double-way WADE WALL

86

scheme reduces the MPKI of writer sets at the cost of increasing the MPKI of non-writer sets.

However, since the non-writer sets are usually underutilized, the increase is small. Compared with

the LRU replacement policy (used for both Baseline and Baseline double-way), our scheme has

higher management cost and increases the MPKI slightly for some benchmarks. However, our

evaluations reveal that it does not have a noticeable negative impact on the cache miss rate.

Compared with Baseline double-way, WALL increases the MPKI by 1.0%, on average. However,

WALL reduces the MPKI by 0.3%, on average, compared to WADE because WADE does not

distinguish different set types.

 Energy Comparison

Figure 31 shows the normalized energy of the PCM main memory for the evaluated schemes.

WALL when using the simple partner assignment strategy can save main memory’s energy by

19.2%, on average, compared to the Baseline. Compared with Baseline double-way and WADE,

WALL reduces the energy consumption of the PCM main memory by 16.5% and 11.3% on average,

respectively. The energy consumption of writing to PCM is much higher than that of reads. Hence,

the energy saving is mainly due to the reduction in the number of write requests issued to PCM

by WALL. That is also the reason that Baseline double-way exhibits a higher power consumption

compared to WALL; Baseline double-way experiences a smaller MPKI, but a higher rate of

writebacks. Unlike WADE, which uses complex prediction schemes, the energy consumption of

the logic components added to LLC by WALL is negligible.

Figure 32 shows the normalized energy of the main memory for the extended partner

assignment strategies. Compared to the simple partner assignment strategy, the expansion and

the contraction strategies can save main memory’s energy consumption by 2.7% and 3.0%, on

average, respectively. The ConExp strategy can reduce the main memory’s energy by 4.8%, on

87

average, compared to the simple partner assignment strategy. In other words, ConExp strategy

can reduce the energy consumption of the PCM main memory by 23.1%, on average, compared to

the Baseline scheme.

 Performance Comparison

Figure 33 compares the normalized system IPC of the evaluated schemes. The overhead of the

second searches in partners of the writer sets is considered in our experiments. WALL when using

the simple partner assignment strategy improves performance by 6.7% on average, compared to

the Baseline scheme. Compared with Baseline double-way and WADE, WALL improves system

performance by 4.9% and 3.2% on average, respectively. The latency of writing to PCM is much

higher than that of reads. Hence, the reduced average access latency of the PCM main memory is

Figure 31. Normalized main memory energy.

Figure 32. Main memory energy of WALL with different partner assignment
strategies.

0

0.4

0.8

1.2

sp ua stream dedup gcc mcf mix1 mix2 GMEAN

M
a

in
 M

e
m

o
ry

E
n

e
rg

y

Baseline Baseline double-way WADE WALL

0.8

0.9

1

1.1

sp ua stream dedup gcc mcf mix1 mix2 GMEAN

M
a

in
 M

e
m

o
ry

E
n

e
rg

y

WALL WALL + Expansion WALL + Contraction WALL + ConExp

88

the major reason for the performance improvement. The results indicate that WALL can reduce

the PCM average access latency by 12.6%, on average, compared to the Baseline. The reduction is

due to reducing the PCM write traffic and thus the queuing delay of the PCM read requests.

Figure 34 illustrates the normalized system IPC of WALL with the extended partner

assignment strategies. Compared to the simple partner assignment strategy, the expansion and

contraction strategies can improve the system performance by 0.7% and 1.5%, on average,

respectively. ConExp, which uses the benefits of the both strategies, can improve performance by

2.1%, on average, compared to the simple partner assignment strategy. Compared to Baseline,

ConExp strategy can improve performance by 8.7%, on average.

Figure 33. Normalized IPC.

Figure 34. Normalized IPC of WALL with different partner assignment strategies.

0

0.4

0.8

1.2

1.6

sp ua stream dedup gcc mcf mix1 mix2 GMEAN

N
o

rm
la

iz
e

d
 IP

C

Baseline Baseline double-way WADE WALL

0.8

1

1.2

sp ua stream dedup gcc mcf mix1 mix2 GMEAN

N
o

rm
a

li
ze

d
 IP

C

WALL WALL + Expansion WALL + Contraction WALL + ConExp

89

 PCM Lifetime Enhancement

Figure 35 compares the PCM lifetime enhancement of the evaluated schemes. The lifetime is

calculated based on the analytical model in [70] explained in the Background Chapter Section

2.4.1. It should be noted that PCM lifetime is inversely proportional to the writes per cycle or write

rate (GBps). WALL when using the simple partner assignment strategy can enhance PCM lifetime

by 1.25×, on average, compared to the Baseline. Compared with Baseline double-way and WADE,

WALL enhances the PCM lifetime by 1.21× and 1.17× on average, respectively. Alleviating the write

traffic sent out to the PCM main memory by WALL is the reason for the lifetime enhancement.

Figure 36 shows the PCM lifetime enhancement of the extended partner assignment

strategies. ConExp can enhance PCM lifetime by 1.04×, on average, compared to the simple

Figure 35. Lifetime enhancement (years, log scale).

Figure 36. Lifetime enhancement of WALL with different partner assignment
strategies.

1

4

16

64

256

sp ua stream dedup gcc mcf mix1 mix2 GMEAN

Li
fe

ti
m

e
 (
y

e
a

rs
) Baseline Baseline double-way WADE WALL

1

4

16

64

256

sp ua stream dedup gcc mcf mix1 mix2 GMEAN

Li
fe

ti
m

e
 (
y

e
a

rs
) WALL WALL + Expansion WALL + Contraction WALL + ConExp

90

partner assignment strategy. In other words, ConExp strategy can enhance PCM lifetime by 1.29×

compared to the Baseline scheme.

 Impact of Time Window Size

For experimental results presented so far, the set types are checked and adjusted with an

epoch of 10r	LLC accesses, because our experiments indicate that this provides the best balance

between the writeback reduction and storage overhead. Next, we discuss the impact of time

window size. We choose to use the number of LLC accesses instead of the number of cycles

because WALL works based on the number of writebacks/accesses of the sets and epochs with the

same number of cycles may have very different number of writebacks/accesses. In other words,

to obtain a consistent approach among the epochs, we choose the number of LLC accesses rather

than cycles. Figure 37 compares the average writeback and miss rate values of WALL + ConExp

for three different time window sizes.

The results are normalized to 10r LLC access time windows. Our goal is to reduce the number

of writebacks while keeping the storage overhead at minimum. The evaluations show that using

(a)

(b)

Figure 37. WALL results for various window sizes: (a) writeback reduction of
WALL for three different time window sizes; (b) MPKI of WALL for three

different time window sizes.

0.9

1

1.1

1.2

0.5×10^7 10^7 2×10^7

N
o

rm
a

li
ze

d

W
ri

te
b

a
ck

Time Window

0.9

1

1.1

0.5×10^7 10^7 2×10^7

N
o

rm
a

li
ze

d

M
P

K
I

Time Window

91

time windows of 0.5×10r accesses results in 10.3% more writebacks and 6.3% higher miss rate

compared to time windows of 10r accesses. The reason is that time windows of 0.5×10r accesses

are not long enough, resulting in incorrect identification of some set types. Identifying a neutral

set as non-writer and assigning a writer partner to it can increase its writeback and miss rate

values because the set will not have enough space for its writer partner’s blocks. Moreover,

identifying a writer set as neutral can also increase its writeback and miss rate values because

writer sets need to be managed differently as we explained in Section 5.4. Finally, identifying a

neutral set as writer or a non-writer set as neutral may prevent us from using the set-balancing

scheme efficiently.

Our results also show that for time windows of 2×10r accesses, larger writeback counters are

required; otherwise counters will saturate causing sets types to be identified incorrectly. However,

even when larger writeback counters are used for time windows of 2×10r accesses, the reduction

in the number of writebacks is small (i.e., only 1.2%) compared to time windows of 10r accesses.

Hence, the selected time windows of 10r LLC accesses gives us the best balance between the

writeback reduction and storage overhead.

 Conclusions

In this chapter, a novel writeback-aware LLC management scheme is proposed to reduce the

number of LLC writebacks to a PCM based main memory to improve its energy efficiency and

lifetime.

We first investigated the non-uniformity of the LLC sets writebacks and proposed a writeback-

aware set-balancing mechanism based on that. To implement the set-balancing mechanism, we

first proposed a simple partner assignment strategy. Then, to further optimize our proposed

92

WALL scheme, we proposed three novel partner assignment strategies, called contraction,

expansion, and ConExp to pair sets with different behaviours more efficiently compared to the

simple partner assignment strategy. In addition, we proposed a simple but effective writeback-

aware replacement policy to keep the frequently reused dirty lines of the sets in the cache. Our

evaluation results revealed that WALL can achieve a significant reduction in the total number of

writebacks to PCM; thereby improving the system performance, energy efficiency and PCM

lifetime.

93

A DYNAMIC PAGE SWAP MANAGEMENT SCHEME FOR HYBRID

DRAM/NVM MAIN MEMORY SYSTEMS

 Introduction

It is now well known that DRAM can no longer satisfy the increasing memory capacity and

bandwidth demands of many modern-day applications in the era of “Big Data” [27, 50]. Non-

volatile memory technologies such as PCM, ReRAM and STT-RAM have been explored as

potential replacements to DRAM due to their higher density, better scalability, and lower leakage

power [79, 81, 83]. However, NVMs have also a number of drawbacks. First, these technologies

have higher access latency and energy compared to DRAM [15]. Second, NVM cells have limited

write endurance, which can adversely affect their lifetime [15, 85]. Hybrid memory systems, which

incorporate both NVM and DRAM, enable systems to benefit from the large capacity of an NVM

and lower access latency and energy of a DRAM. In a hybrid memory system, DRAM can be used

either as a hardware-managed cache for NVM, or as part of a flat address space hybrid main

memory. To be able to benefit from the total visible capacity of both DRAM and NVM (i.e., to

avoid data replications) and their aggregate bandwidth, some recent studies have focused on flat

address space hybrid main memories [14, 36, 37, 67, 74, 75]. In this work, we consider a hardware-

managed flat address space hybrid main memory. A flat address space hybrid main memory can

also be managed by the OS. However, page migrations under OS control can incur significant

performance penalties [75].

94

In flat address space hybrid memories, DRAM has a limited capacity. Moreover, memory

access behaviour of programs changes during execution. Hence, data may need to be migrated

(i.e., swapped) between DRAM and NVM to take advantage of performance benefits of DRAM.

Since hardware requires meta-data storage to keep track of the migrated data, migrations are

typically performed at a coarse granularity (e.g., memory pages). Page migrations are costly.

Therefore, a main challenge in flat memories is correctly deciding which migrations are beneficial

to performance. Typically, such decisions have to be made dynamically at run-time [37, 67, 74].

Existing schemes consider the changing memory access patterns of programs when making

migration decisions. However, they all suffer from one major limitation. In those studies, the

memory space is statically partitioned into “swap groups” and only DRAM (i.e., fast memory) and

NVM (i.e., slow memory) pages that belong to the same swap group can be swapped with each

other. However, within a given interval, a swap group may contain more “high frequently

accessed” pages than the number of DRAM segments (i.e., each segment contains a memory page)

assigned to it (i.e., “swap group associativity”). This can cause frequent back and forth migrations

of those pages between DRAM and NVM. Meanwhile, pages in another swap group may all be

“low frequently accessed”. Hence, most of the page migrations, which are very costly in terms of

performance and energy, can be avoided by dynamically adjusting the structure of the swap

groups based on programs behaviour.

In this study, to address the limitation of statically structured swap groups, we propose

DynaSwap to dynamically associate swap groups with each other in such a way that a swap group

with many high frequently accessed pages can benefit from the DRAM space of a swap group with

low frequently accessed pages. In other words, unlike previous studies that create swap groups

solely based on the physical address of memory pages, we try to create swap groups based on their

access patterns. Assigning enough DRAM segments to a swap group based on its demand (i.e., its

95

access patterns in the current interval) can improve performance and energy efficiency of the

memory system by reducing the number of unnecessary swaps. Our experimental results show

that DynaSwap can efficiently utilize DRAM capacity and improve the overall performance and

main memory energy efficiency by 30.1% and 13.5% on average, respectively, compared to a state-

of-art baseline design.

 DynaSwap Overview

In our design, swap groups are dynamically merged with each other so that a swap group with

many frequently accessed pages can benefit from the DRAM resources of a swap group with rarely

accessed pages. Moreover, to be able to adjust the structure of the swap groups and initiate page

swaps ahead of time and off critical path, we employ the LSTM (i.e., Long Short-Term Memory)-

based address predictor proposed in [3] to predict sequence of future LLC miss (i.e., main memory

access) addresses. By doing so, the access latency of the incoming requests can be reduced. The

address predictor relies on the deep recurrent neural network models to predict a sequence of

future LLC miss addresses using a sequence of past LLC miss addresses. More specifically, the

address predictor uses a sequence of 10 past memory accesses (for each access, the concatenation

of the miss causing instruction’s PC and the miss address is used) as input to predict a sequence

of 10 future memory accesses (please refer to [3] for more details).

 Baseline Organization

In this work, we use an organization similar to PoM [75] as our baseline. However, since the

direct-mapped structure of PoM forces pages of a swap group to compete for a single DRAM

segment, we first extend the PoM organization so that it can support associativity. To keep track

of the swapped pages (i.e., pages that are relocated from their original OS-allocated location), a

96

Page Remapping Table (PRT) is required. Upon every access to the main memory, the remapping

table needs to be accessed first to determine where to fetch the requested data from (i.e., the

original or the hardware-remapped address). Hence, to avoid incurring significant performance

penalties, a PRT cache (PRTc) is also usually employed.

We define a K-way set-associative swap group as a swap group that consists of K segments in

DRAM and M×K segments in NVM (i.e., assuming NVM is M times larger than DRAM). Since in

a PoM-like PRT structure, the information about all pages of a swap group reside within a single

PRT entry, increasing the associativity of swap groups beyond a certain point comes at the cost of

a significant increase in the PRTc area and latency overheads. Hence, for our baseline

organization, we consider an associativity of two and then propose a scheme that dynamically

increases (i.e., doubles) the associativity of swap groups based on their demand.

 Page Classification and Monitoring

We classify the memory pages into two categories: high- and low-frequently accessed. By

doing so, in a swap group, a high frequently accessed page in NVM can simply be swapped with a

low frequently accessed page in DRAM.

The access frequency of a page in future can be estimated based on its access frequency in the

past [36, 37]. More specifically, a memory page that observes a burst of accesses at some point

during the execution of a program, will probably observe the same burst of accesses if it is re-used

after a while in future. Hence, we consider a page “high frequently accessed” if it is now being

actively used and has seen a large number of accesses in the past. To monitor pages access

patterns, we use a Page Monitoring Table (PMT). Each PMT entry contains the Page Physical

Address (PPN) and an Access Counter (AC). AC is a saturating counter that is incremented by one

97

upon observing an LLC miss to the page. Since PMT is too large to be stored on-chip, we keep a

PMT cache (PMTc) in the memory controller. PMTc can also be used as a temporal filter to

identify periods when pages are actively used; a page is being actively used if its entry is resident

in PMTc.

To categorize pages, we augment each PRT entry with two one-bit flags, called Actively

Accessed (AA) and Frequently Accessed (FA) per page location. The AA flag of a page is set to ‘1’

upon inserting its entry into the PMTc and reset to ‘0’ upon its eviction. Moreover, the FA flag of

a page is set to ‘1’ when its AC reaches a certain threshold (access threshold). The access threshold

is set so that the attainable savings of a swap would be more than its costs. Upon eviction of a page

entry from PMTc, the FA flag of the page is reset to ‘0’ only if the value of AC is smaller than the

access threshold. The value of AC is then divided by 2 to maintain information on history of

accesses. The AA and FA flags show whether the page is being actively and frequently used or

not; a page is considered high frequently accessed if both its AA and FA flags are ‘1’. On the other

hand, we prefer low frequently accessed pages with both AA and FA equal to ‘0’ as swap

candidates.

 Swap Group Classification

Our experiments show that within a given interval during the execution of a program, only a

small portion of the main memory is frequently accessed. For example, when running mcf from

SPEC2006 benchmark suite, in every interval of one million LLC misses, only 24.4% of the

accessed swap groups (i.e., swap groups that are accessed at least once during program execution)

have received more than 200 accesses on average (please refer to Section 6.9.1 for details of our

simulation environment). In other words, while a small percentage of the swap groups service a

large portion of the accesses within an interval, other swap groups are not frequently accessed.

98

Based on this observation, we classify the swap groups into two categories; SATURATED (SAT)

and NON-SATURATED (NON-SAT).

A swap group is recognized as “SAT” if its number of high frequently accessed pages is larger

than the swap groups associativity. Otherwise, the swap group is recognized as NON-SAT. In other

words, while a NON-SAT swap group does not utilize its DRAM resources efficiently, a SAT swap

group requires more DRAM segments than its baseline associativity. Hence, we double the

associativity of a SAT swap group by associating a NON-SAT swap group as “partner” to it. This

way, the SAT swap group can use the DRAM segments of its partner as auxiliary fast storage units

for storing its high frequently accessed pages. To be able to create a partnership that can provide

enough DRAM space for a SAT swap group, we only use NON-SAT swap groups with no high

frequently accessed pages as partners.

Figure 38 illustrates an example of how a swap group is recognized as SAT and assigned with

a NON-SAT partner. In this example, page P1 with FA = 1 (i.e., a page that is likely to receive a

large number of accesses) is in NVM within swap group SG1. It is predicted to be accessed soon

(by the LSTM-Based Address Predictor). Hence, DynaSwap tries to prefetch P1 into DRAM.

However, since all pages in DRAM segments of SG1 are high frequently accessed (i.e., there are

no swap candidates inside SG1), SG1 is recognized as SAT. SG2, which is a NON-SAT swap group

with no high frequently accessed pages, is assigned as the partner to SG1. Then, P1 is swapped

with P2, which is a low frequently accessed page in SG2’s DRAM.

 Swap Group Partner Assignment

To be able to find a NON-SAT partner for each SAT swap group, we keep a one-bit flag called

Swap group Type (ST) per swap group in the memory controller; ST = 0 represents a NON-SAT

99

swap group with no partner. The value of ST is initialized to ‘0’ and is set to ‘1’ if any page in the

swap group becomes high frequently accessed or the swap group is assigned as a partner. ST of a

swap group is reset to ‘0’ when its partnership ends, and all of its pages become low frequently

accessed. Whenever a swap group is recognized as SAT, we randomly choose a swap group with

ST = 0 as its partner. For a 512MB DRAM with 4KB memory pages and swap group associativity

of two, the area overhead of keeping ST flags is 8KB. Moreover, we keep the index of a swap

group’s partner in a register in the swap group’s PRT entry. For a swap group with no partner, its

own index is stored in the register.

To identify the pages that belong to partner of a swap group, we augment PRT with a one-bit

flag called Displaced Page (DP) per page location: DP = 1 indicates that the page is repositioned

from its original swap group. For displaced pages (i.e., with DP = 1) we use slow swaps. For

example, in Figure 38, if a page, say P3, in SG2 needs to be moved to DRAM, and it has to go to

the place currently occupied by P1, we first swap P1 and P2 to put P1 back into its original location.

If P2 becomes high frequently accessed while it is in NVM, it is swapped with P1 back into its

original location in SG2’s DRAM. For these swaps, we perform an optimized slow swap proposed

in [37].

We enable a swap group to push pages of its partner out of its DRAM space if it needs its own

DRAM resources at any point. Specifically, if 1) a page in a NON-SAT swap group with a partner

becomes high frequently accessed and 2) no low frequently accessed pages can be found in the

swap group’s DRAM, the page will be swapped with a displaced page from the swap group’s

partner (i.e., page with DP = 1). Based on our experiments, this scenario does not happen

frequently. Moreover, if a page with DP = 1 in DRAM becomes low frequently accessed, we

proactively migrate it back into NVM in its original swap group when the memory is idle. The

partnership between two swap groups is broken if no pages with DP = 1 remain in any of the swap

100

groups. It is worth mentioning that if a SAT swap group with a partner becomes NON-SAT,

DynaSwap does not break the partnership between the two swap groups. Instead, it prefetches

the high frequently accessed pages of the swap group into its own DRAM space (not its partner’s)

until it becomes SAT again.

 Swap Group Access Management

The PRTc (PRT in case of a PRTc miss) needs to be accessed on every main memory access

[75]. Upon an access to a page, if we cannot find the page (i.e., tag of the page with DP = 0) in its

corresponding swap group’s PRTc entry, we also need to access the PRTc entry of the swap group’s

partner (i.e., for page’s tag with DP = 1). It should be noted that we access the PRTc entries at the

time when the page is predicted to be accessed. Hence, these accesses are not performed on the

critical path of program execution when the prediction is accurate, which is the case most of the

Figure 38. An example illustrating how two swap groups are partnered.

SG2

P1

SG1

P2

DRAM

SG2

P2

SG1

P1

NVM

partners

P1 with FA = 1 is predicted to

be accessed soon

High frequently accessed page

Low frequently accessed page

101

time (please refer to Section 6.9.2 for more details). The structure of a PRT entry, when fast swaps

are supported, is shown in Figure 39. In this figure, the partner register size is based on a 512MB

DRAM with page size of 4KB and swap group associativity of two.

If a page with FA = 1 and DP = 0 in NVM is predicted to be accessed soon, we first try to swap

the page with a low frequently accessed page or a page with DP = 1 in the swap group’s DRAM. If

we cannot find any swap candidate inside the swap group itself, we look for one in the swap

group’s partner (we assign a partner to the swap group if it does not have any).

 Storage Overhead

The total storage overhead of DynaSwap is shown in TABLE XII. The total storage overhead

of the memory controller is 104KB, which is very small. Moreover, DynaSwap occupies only less

than 0.8% of the DRAM space.

Figure 39. The structure of a PRT entry of DynaSwap; fast swaps are supported.

16 bit partner register

4bit tag

4bit tag

4bit tag

4bit tag

4bit tag
A

A
FA D

P

A
A

FA D
P

A
A

FA D
P

A
A

FA D
P

A
A

FA D
P

4bit tag

4bit tag

4bit tag

4bit tag

4bit tag

A
A

FA D
P

A
A

FA D
P

A
A

FA D
P

A
A

FA D
P

A
A

FA D
P

102

 Results

 Methodology

We model a quad core processor and a 2.5 GB main memory composed of a 2 GB ReRAM and

a 512MB DRAM using Gem5 full-system simulator [19] integrated with Ramulator [35], a cycle

accurate main memory simulator. We extend Ramulator to support flat address space hybrid

memories. The latency and energy values of main memory and LLC are generated using CACTI

[20] and DESTINY [61]. Note that the ReRAM cell parameters used in DESTINY are based on the

projections by [32]. The system configuration of our experiments is shown in TABLE XIII. The

benchmarks used in this study are chosen from SPEC2006 as shown in TABLE XIV. For all

workloads, we use either sampled reference or native input sets to represent a real-world

execution scenario and run the applications for 0.5 billion instructions, after a 1.5 billion

instructions warm-up phase. To generate the information required for the LSTM-based address

predictor including the miss causing instructions’ PCs and LLC miss addresses, we capture the

memory trace of applications using the Exec debug flag in Gem5. We also use the generated

dynamic traces for our evaluations.

TABLE XII. DynaSwap’s total storage overhead.

in Memory Controller Storage

PRTc 32 KB

PMTc 64 KB

Swap Type (ST) flags 8 KB

Total in-MC Overhead 104 KB

in DRAM Storage

PRT 688 KB

PMT 3.28 MB

Total in-DRAM Overhead 3.95 MB

103

We compare our scheme with two state-of-the-art hybrid main memory systems: PoM [75]

and MemPod [67].

1) PoM: we configure PoM based on the specifications in [75] and adjust some of the parameters

based on our configuration. Based on our memory timing model, we set the value of K to 8. For

the SRC, which is the equivalent of our PRTc, we use a 32KB cache similar to DynaSwap.

2) MemPod: for the MEA algorithm used in MemPod for its swap decisions, we use 64 MEA

counters and 50µs MEA intervals similar to the original paper. We also use a 32KB cache for the

remapping table.

TABLE XIII. System configuration.

Processor 4-core, 2.5 GHz, out-of-order

L1 Cache
Split I/D, Private, 32KB per core, 4-way, LRU, 2-cycle access
latency

L2 Cache 256KB, 8-way, 8-cycle access latency

L3 Cache 4MB Shared, 16-way, 31-cycle access latency

Memory
Controller

One memory controller per channels

Read Queue: 64 entries

Write Queue: 64 entries, Write drain threshold: α (high) =
80%, β(low)=50%.

Main
Memory

DRAM

512MB, 1GHz: DDR- 4 channels, 1 rank, 8 banks,
1K rows, 64-bit bus width

�8w5= 28 cycles, �89:= �9w5 = �8x = 11 cycles, �S8
= 12 cycles

ReRAM

2GB, 2channels, 1 rank, 8 banks, 8K rows, 64-bit
bus width

�89:= 18 cycles, �9w5= 11 cycles

TABLE XIV. Workloads.

Workloads: from the SPEC CPU2006 benchmarks

mcf×4 leslie3D×4 milc×4 lbm×4

mix1: leslie3D×2, omnetpp×2 mix2: libquantum×2, mcf×2

mix3: bwaves-soplex-omnetpp-libq. mix4: milc-bwaves-soplex-lbm

104

3) DynaSwap: the configuration details of our scheme are described in TABLE XII and TABLE

XIII. Both PMT and PRT are in DRAM. PMTc and PRTc are in the memory controller. In our

design, we use a 64KB, 8-way set associative PMTc and a 32KB, 4-way set associative PRTc.

 Performance Evaluations

Figure 40 compares the IPC values of the evaluated schemes. The results are normalized to

MemPod. Results reveal that DynaSwap can outperform PoM and MemPod by 23.6% and 30.1%

on average, respectively.

The performance benefits of our proposed scheme come from two main factors. First,

DynaSwap accurately prefetches a page from ReRAM into DRAM if it is likely to receive a large

number of accesses in the near future (i.e., its FA flag is ‘1’). It also performs majority of PRTc

accesses off the critical path of program execution thanks to the LSTM-Based address predictor

high accuracy (i.e., 82.4% on average). It should be noted that in case of a PRTc miss, the latency

of accessing PRT in DRAM is not negligible. Hence, the sooner we handle a PRTc miss, the better.

Figure 41 shows the accuracy of our page swap scheme. We consider a swap accurate if the number

of accesses to the swapped page in DRAM is high enough to justify the swap cost; if the swapped

Figure 40. IPC of the evaluated schemes.

0

0.4

0.8

1.2

1.6

mcf leslie3D milc lbm libq. mix1 mix2 mix3 mix4 GMEANN
o

rm
a

li
ze

d
 IP

C

MemPod PoM DynaSwap

105

page receives at least 12 accesses in DRAM, we recognize the swap as accurate. As shown in the

figure, DynaSwap is accurate in vast majority of applications with an average swap accuracy of

80.1%.

Second, our scheme dynamically increases the associativity of a swap group to accommodate

more highly accessed pages in DRAM. Figure 42 shows the fraction of main memory accesses

serviced in DRAM by the evaluated schemes. The results are normalized to MemPod. Results

reveal that DynaSwap can increase the number of accesses serviced in DRAM by 29.8% and

40.2% on average, compared to PoM and MemPod, respectively. In addition, while serving

majority of the requests in DRAM (i.e., 85.7% on average), DynaSwap also performs fewer swaps

compared to PoM and MemPod. It is also worth noting that similar to [37], to avoid saturating

Figure 41. DynaSwap page swap accuracy.

Figure 42. Normalized number of DRAM accesses.

0
20
40
60
80

100

mcf leslie3D milc lbm libq. mix1 mix2 mix3 mix4 GMEAN

P
a

g
e

 S
w

a
p

A
cc

u
ra

cy
 (

%
)

0

0.6

1.2

1.8

mcf leslie3D milc lbm libq. mix1 mix2 mix3 mix4 GMEAN

N
o

rm
a

li
ze

d

D
R

A
M

 A
cc

e
ss

e
s

MemPod PoM DynaSwap

106

DRAM channels and not using the NVM channels, we use a simple heuristic that declines the

swaps if 95% of the main memory requests of an application have been satisfied by DRAM.

 Energy Evaluations

Figure 43 shows the total hybrid main memory energy consumption for the evaluated

schemes. The results are normalized to MemPod. Results show that DynaSwap can reduce the

energy consumption of the hybrid main memory by 7.6% and 13.5% on average, compared to PoM

and MemPod, respectively. Generally, by moving the pages that are likely to receive a large

number of accesses into DRAM and also increasing the associativity of swap groups dynamically,

our design increases the number of accesses serviced in DRAM by 29.8% and 40.2% on average,

compared to PoM and MemPod (see Figure 42). Hence, it reduces the number of accesses serviced

in NVM, which has much higher dynamic energy compared to DRAM. More specifically, as we

mentioned before, the page swap accuracy of DynaSwap is high enough (80.1%, on average, as

shown in Figure 41) to justify the costs of swaps. In other words, a page is prefetched into DRAM

if it is likely to receive a large number of accesses in the near future, which can be determined

based on the access frequency of page in the past. On the other hand, to accommodate more such

Figure 43. Normalized main memory energy of the evaluated schemes.

0

0.4

0.8

1.2

mcf leslie3D milc lbm libq. mix1 mix2 mix3 mix4 GMEAN

N
o

rm
a

li
ze

d

M
M

 E
n

e
rg

y

MemPod PoM DynaSwap

107

pages in DRAM, which has much lower access energy compared to NVM, DynaSwap increases

the associativity of swap groups dynamically.

 Conclusion

In this chapter, we proposed DynaSwap, a scheme that improves system performance and

energy efficiency by efficiently utilizing DRAM space in a flat address space hybrid DRAM/NVM

main memory.

DynaSwap dynamically associates swap groups with each other in such a way that a swap

group with many high frequently accessed pages can benefit from the DRAM space of a swap

group with low frequently accessed pages. To do so, it classifies the swap groups into two

categories; SAT and NON-SAT. A swap group is recognized as SAT if its number of high frequently

accessed pages is larger than the swap groups associativity. Otherwise, the swap group is

recognized as NON-SAT. Since a SAT swap group requires more DRAM segments than its baseline

associativity, we double the associativity of a SAT swap group by associating a NON-SAT swap

group as partner to it. Our experimental results revealed that DynaSwap can efficiently utilize

DRAM capacity and improve the overall performance and main memory energy efficiency by

30.1% and 13.5% on average, respectively, compared to a state-of-art baseline design.

108

CONCLUSION

DRAM can no longer satisfy the memory capacity demands of the modern-day applications

due to its scalability limit and considerable amount of static and refresh power consumption. Non-

Volatile Memory (NVM) technologies such as Phase Change Memory (PCM) have recently

emerged as promising alternatives to DRAM. Compared to DRAM, NVMs have better scalability,

higher density and zero standby power. However, NVMs generally suffer from higher access

latency and energy (especially for the write operations) and limited write endurance. To benefit

from the large capacity of NVM and the lower access latency and energy of DRAM, hybrid

DRAM/NVM main memories, which incorporate both DRAM and NVM, have been proposed. In

this thesis, we presented novel schemes for improving the energy efficiency of hybrid main

memories or alleviating the write-related overheads of PCM-based memories. We first focused on

reducing DRAM refresh and background power in a hybrid DRAM/NVM main memory by

proposing two schemes called Refree and NEMO. Then, we presented WALL, a scheme that

improves the energy efficiency and lifetime of a PCM-based main memory by reducing the

number of writebacks from the LLC to PCM. Finally, we presented a scheme called DynaSwap to

efficiently utilize DRAM space in a flat address space hybrid main memory and improve its

performance and energy efficiency.

The Refree scheme eliminates refresh operations of the DRAM cache in a hybrid DRAM/PCM

main memory to improve system performance and energy efficiency. Refree takes all the refresh-

reducing factors including rows access pattern and retention time into consideration. Specifically,

a row that is accessed at least once within its retention time does not need to be refreshed. On the

Parts of this chapter has been presented in [63, 64, 65, 66]. Copyright © 2016, 2018, IEEE.
Copyright © 2017, 2019, ACM.

109

other hand, most of the rows in a DRAM device are strong and have very long retention times.

Hence, a row that is not accessed within such long retention time can be recognized as not

frequently accessed or dead and does not need to be refreshed and kept in the DRAM cache either.

Refree then evicts an inactive row from the DRAM cache instead of refreshing it and writes it back

to PCM if the row is dirty. The experimental results revealed that Refree can effectively reduce the

main memory power consumption with small performance impact. The effectiveness of Refree

would further improve for future systems with larger DRAM sizes.

The NEMO scheme minimizes the background energy of hybrid main memories used in

mobile devices. Specifically, NEMO takes advantage of the unique usage pattern of mobile devices,

which are idle most of the times. During the long idle periods, NEMO evicts the nonvaluable

memory pages (those that are less likely to be reused in future) from the DRAM cache and collects

the remaining hot memory pages in a single DRAM rank, called the hot rank. It then powers off

all the DRAM ranks except for the hot rank. In addition, to minimize the background power

during the active periods, it predicts the number of DRAM ranks that needs to be powered up in

addition to the hot rank based on the applications launching pattern in the past. The experimental

results revealed that NEMO could effectively reduce the memory power consumption without

negative performance impact.

The WALL scheme reduces the number of LLC writebacks to a PCM based main memory to

improve its energy efficiency and lifetime. In that work, we first investigated the non-uniformity

of the LLC sets’ writebacks and proposed a writeback-aware set-balancing mechanism based on

that. To implement the set-balancing mechanism, we first proposed a simple partner assignment

strategy. Then, to further optimize our proposed WALL scheme, we proposed three novel partner

assignment strategies, called contraction, expansion, and ConExp to pair sets with different

behaviours more efficiently compared to the simple partner assignment strategy that pairs writer

110

and non-writer sets randomly. In addition, we proposed a simple but effective writeback-aware

replacement policy to keep the frequently reused dirty lines of the sets in the cache. Our evaluation

results revealed that WALL can achieve a significant reduction in the total number of writebacks

to PCM; thereby improving the system performance, energy efficiency and PCM lifetime.

The DynaSwap scheme tries to efficiently utilize DRAM space in a flat address space hybrid

DRAM/NVM main memory to improve system performance and energy efficiency. Specifically,

DynaSwap dynamically associates swap groups with each other in such a way that a swap group

with many high frequently accessed pages can benefit from the DRAM space of a swap group with

low frequently accessed pages. To do so, it classifies the swap groups into two categories; SAT and

NON-SAT. A swap group is recognized as SAT if its number of high frequently accessed pages is

larger than the swap group’s associativity. Otherwise, the swap group is recognized as NON-SAT.

Since a SAT swap group requires more DRAM segments than its baseline associativity, we double

the associativity of a SAT swap group by associating a NON-SAT swap group as partner to it. Our

experimental results revealed that DynaSwap can efficiently utilize the DRAM capacity and

improve the overall system performance and main memory energy efficiency.

111

APPENDIX

COPYRIGHT PERMISSIONS

The contents of Chapter 3 have been published in IEEE International Parallel and Distributed

Processing Symposium (IPDPS2016) [66].

The contents of Chapter 4 have been published in The International Symposium on Memory

Systems (MEMSYS2017) [65].

The contents of Chapter 5 have been published in Design, Automation and Test in Europe

Conference (DATE2018) [63] and in ACM Transactions on Design Automation of Electronic

Systems (TODAES2019) [64].

The thesis/dissertation reuse permission of the publishers of the papers mentioned above are

presented in order in the following.

112

113

The following statement regarding “ACM Author Rights” is posted on ACM official website

(https://authors.acm.org/main.html).

114

115

The following statement regarding “ACM Author Rights” is posted on ACM official website

(https://authors.acm.org/main.html).

116

CITED LITERATURE

[1] Agrawal, A., Jain, P., Ansari, A., and Torrellas, J.: Refrint: Intelligent refresh to minimize power in
on-chip multiprocessor cache hierarchies. In Proceedings of 19th International Symposium on High
Performance Computer Architecture (HPCA), pages 400 - 411, 2013.

[2] Arjomand, M., Kandemir, M. T., Sivasubramaniam, A., and Das, C. R.: Boosting Access Parallelism
to PCM-Based Main Memory. In Proceedings of 43rd Annual International Symposium on Computer
Architecture (ISCA), pages 695-706 2016.

[3] Beigi, M. V.: Thermal-aware Optimizations for Emerging Technologies in 3D-Stacked Chips. PhD
Dissertation, Northwestern University, 2019.

[4] Beigi, M. V. and Memik, G.: TAPAS: Temperature-aware Adaptive Placement for 3D Stacked Hybrid
Caches. In Proceedings of International Symposium on Memory Systems (MEMSYS), pages 415-426,
2016.

[5] Bhati, I., Chishti, Z., Lu, S. L., and Jacob, B.: Flexible Auto-Refresh: Enabling Scalable and Energy-
Efficient DRAM Refresh Reductions. In Proceedings of 42nd Annual International Symposium on
Computer Architecture (ISCA), pages 235 - 246, 2015.

[6] Bienia, C., Kumar, S., Singh, J. P., and Li, K.: The PARSEC benchmark suite: Characterization and
architectural implications. In Proceedings of International Conference on Parallel Architectures and
Compilation Techniques (PACT), pages 72-81 2009.

[7] Bock, S., Childers, B. R., Melhem, R., and Mossé, D.: Concurrent page migration for mobile systems
with OS-managed hybrid memory. In Proceedings of the 11th ACM Conference on Computing
Frontiers (CF), 2014.

[8] CACTI-6.5. Available: http: //hpl .hp.com: research /cacti/

[9] Carroll, A. and Heiser, G.: An Analysis of Power Consumption in a Smartphone. In Proceedings of
USENIX annual technical conference, 2010.

[10] Chang, M.-T., Rosenfeld, P., Lu, S.-L., and Jacob, B.: Technology Comparison for Large Last-Level
Caches (L3Cs): Low-Leakage SRAM, Low Write-Energy STT-RAM, and Refresh-Optimized eDRAM.
In Proceedings of 19th International Symposium on High Performance Computer Architecture
(HPCA), pages 143 - 154, 2013.

[11] Chi, P., Li, S., Xu, C., Zhang, T., Zhao, J., Liu, Y., Wang, Y., and Xie, Y.: PRIME: A Novel Processing-
in-memory Architecture for Neural Network Computation in ReRAM-based Main Memory. In
Proceedings of 43rd Annual International Symposium on Computer Architecture (ISCA), pages 27-
39, 2016.

[12] Choi, Y., Song, I., Park, M.-H., Chung, H., Chang, S., and Cho, B.: A 20nm 1.8v 8gb pram with 40mb/s
program bandwidth. In Proceedings of International Solid-State Circuits Conference (ISSCC), pages
46 - 48, 2012.

[13] Chou, C., Nair, P., and Qureshi, M. K.: Reducing Refresh Power in Mobile Devices with Morphable
ECC. In Proceedings of International Conference on Dependable Systems and Networks (DSN),
pages 355 - 366, 2015.

[14] Chou, C. C., Jaleel, A., and Qureshi, M. K.: CAMEO: A two-level memory organization with capacity
of main memory and flexibility of hardware-managed cache. In Proceedings of 47th Annual
IEEE/ACM International Symposium on Microarchitecture, pages 1-12, 2014.

117

[15] Deng, Z., Zhang, L., Mishra, N., Hoffmann, H., and Chong, F. T.: Memory cocktail therapy: a general
learning-based framework to optimize dynamic tradeoffs in NVMs. In Proceedings of 50th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO), pages 232-244, 2017.

[16] Dong, X., Xu, C., Xie, Y., and Jouppi, N. P.: Nvsim: A circuitlevel performance, energy, and area
model for emerging nonvolatile memory. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems (TCAD), 31: 994 - 1007, 2012.

[17] Duan, R., Bi, M., and Gniady, C.: Exploring memory energy optimizations in smartphones. In
Proceedings of International Green Computing Conference and Workshops (IGCC), pages 1-8, 2011.

[18] Franey, S. and Lipasti, M.: Tag Tables. In Proceedings of 21st International Symposium on High
Performance Computer Architecture (HPCA), pages 514 - 525, 2015.

[19] gem5-simulator, Available: http: //gem5.org/

[20] Ghosh, M. and Lee, H.-H. S.: Smart Refresh: An Enhanced Memory Controller Design for Reducing
Energy in Conventional and 3D Die-Stacked DRAMs. In Proceedings of 40th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), pages 134 - 145, 2007.

[21] Huang, H., Shin, K. G., Lefurgy, C., Rajamani, K., Keller, T., Hensbergen, E. V., and Rawson, F.:
Cooperative Software–Hardware Power Management for Main Memory. In Proceedings of
Workshop on Power-Aware Computer Systems (PACS), 2004.

[22] Ham, T. J., Chelepalli, B. K., Xue, N., and Lee, B. C.: Disintegrated control for energy-efficient and
heterogeneous memory systems. In Proceedings of 19th International Symposium on High
Performance Computer Architecture (HPCA), pages 424 - 435, 2013.

[23] Hamamoto, T., Sugiura, S., and Sawada, S.: On the retention time distribution of dynamic random
access memory (DRAM). IEEE Transactions on Electrical Devices,1300 - 1309, 1998.

[24] Huang, H., Pillai, P., and Shin, K. G.: Design and implementation of power-aware virtual memory.
In Proceedings of Annual conference on USENIX Annual Technical Conference (ATEC), 2003.

[25] Huang, Y., Zha, Z., Chen, M., and Zhang, L.: Moby: A mobile benchmark suite for architectural
simulators. In Proceedings of International Symposium on Performance Analysis of Systems and
Software (ISPASS), pages 45-54, 2014.

[26] Isen, C. and John, L.: ESKIMO: Energy savings using Semantic Knowledge of Inconsequential
Memory Occupancy for DRAM subsystem. In Proceedings of 42nd Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), pages 337 - 346, 2009.

[27] ITRS: International technology roadmap for semiconductors. 2013.

[28] JEDEC: DDR3 SDRAM Specification. 2010.

[29] JEDEC: DDR4 STANDARD. 2012.

[30] Karlson, A. K., Meyers, B. R., Jacobs, A., Johns, P., and Kane, S. K.: Working Overtime: Patterns of
Smartphone and PC Usage in the Day of an Information Worker. In Proceedings of International
Conference on Pervasive Computing, pages 398-405, 2009.

[31] Karp, R. M., Shenker, S., and Papadimitriou, C. H.: A simple algorithm for finding frequent elements
in streams and bags. ACM Transactions on Database Systems (TODS), 28: 51-55, 2003.

[32] Kawahara, A., Azuma, R., Ikeda, Y., Kawai, K., Katoh, Y., Tanabe, K., Nakamura, T., Sumimoto, Y.,
Yamada, N., Nakai, N., Sakamoto, S., Hayakawa, Y., Tsuji, K., Yoneda, S., Himeno, A., Origasa, K.-i.,
Shimakawa, K., Takagi, T., Mikawa, T., and Aono, K.: An 8Mb multi-layered cross-point ReRAM
macro with 443MB/s write throughput. In Proceedings of International Solid-State Circuits
Conference (ISSCC), 2012.

[33] Kim, K. and Lee, J.: A New Investigation of Data Retention Time in Truly Nanoscaled DRAMs. IEEE
Electron Devices Society, 45: 846 - 848, 2009.

CITED LITERATURE (Continued)

118

[34] Kim, Y., Imani, M., Patil, S., and Rosing, T. S.: CAUSE: Critical application usage-aware memory
system using non-volatile memory for mobile devices. In Proceedings of International Conference on
Computer-Aided Design (ICCAD), pages 690-696, 2015.

[35] Kim, Y., Yang, W., and Mutlu, O.: Ramulator: A Fast and Extensible DRAM Simulator. Computer
Architecture Letters (CAL): 15:45-49, 2015.

[36] Knyaginin, D., Papaefstathiou, V., and Stenstrom, P.: ProFess: A Probabilistic Hybrid Main Memory
Management Framework for High Performance and Fairness. In Proceedings of 24th International
Symposium on High Performance Computer Architecture (HPCA), pages 143-155, 2018.

[37] Kokolis, A., Skarlatos, D., and Torrellas, J.: PageSeer: Using Page Walks to Trigger Page Swaps in
Hybrid Memory Systems. In Proceedings of 25th International Symposium on High Performance
Computer Architecture (HPCA), pages 596-608, 2019.

[38] Kultursay, E., Kandemir, M., Sivasubramaniam, A., and Mutlu, O.: Evaluating STT-RAM as an
energy-efficient main memory alternative. In Proceedings of International Symposium on
Performance Analysis of Systems and Software (ISPASS), pages 256 - 267, 2013.

[39] Lee, B. C., Ipek, E., Mutlu, O., and Burger, D.: Architecting phase change memory as a scalable DRAM
alternative. In Proceedings of 36th annual international symposium on Computer architecture
(ISCA), pages 2-13, 2009.

[40] Lee, B. C., Zhou, P., Yang, J., Zhang, Y., Zhao, B., Ipek, E., Mutlu, O., and Burger, D.: Phase-change
technology and the future of main memory. In Proceedings of IEEE MICRO, pages 131-141, 2010.

[41] Lee, H. G., Baek, S., Nicopoulos, C., and Kim, J.: An energy- and performance-aware DRAM cache
architecture for hybrid DRAM/PCM main memory systems. In Proceedings of 29th International
Conference on Computer Design (ICCD), pages 381 - 387, 2011.

[42] Lee, M., Seo, E., Lee, J., and Kim, J.-s.: PABC: Power-Aware Buffer Cache Management for Low
Power Consumption. IEEE Transactions on Computers 56: 488 - 501, 2007.

[43] Lee, S., Bahn, H., and Noh, S. H.: Characterizing Memory Write References for Efficient Management
of Hybrid PCM and DRAM Memory. In Proceedings of 19th Annual International Symposium on
Modelling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS),
pages 25-27, 2011.

[44] Lee, Y., Kim, J., Jang, H., Yang, H., Kim, J., Jeong, J., and Lee, J. W.: A fully associative, tagless
DRAM cache. In Proceedings of 42nd Annual International Symposium on Computer Architecture
(ISCA), pages 211-222 2015.

[45] Lim, K., Ranganathan, P., Chang, J., Patel, C., Mudge, T., and Reinhardt, S.: Understanding and
Designing New Server Architectures for Emerging Warehouse-Computing Environments. In
Proceedings of International Symposium on Computer Architecture (ISCA), pages 315-326, 2008.

[46] Liu, J., Jaiyen, B., Veras, R., and Mutlu, O.: RAIDR: Retention-Aware Intelligent DRAM Refresh. In
Proceedings of 39th Annual International Symposium on Computer Architecture (ISCA), pages 1-12,
2012.

[47] Liu, S., Pattabiraman, K., Moscibroda, T., and Zorn, B. G.: Flikker: Saving DRAM Refresh-power
through Critical Data Partitioning through Critical Data Partitioning. In Proceedings of Sixteenth
International conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), pages 213-224 2011.

[48] Loh, G. H. and Hill, M. D.: Efficiently enabling conventional block sizes for very large die-stacked
DRAM caches. In Proceedings of 44th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), pages 454-464, 2011.

[49] Lu, Y., Shanghai, C., Wu, D., He, B., Tang, X., Xu, J., and Guo, M.: Rank-Aware Dynamic Migrations
and Adaptive Demotions for DRAM Power Management. IEEE Transactions on Computers, 65: 187-
202, 2015.

CITED LITERATURE (Continued)

119

[50] Mandelman, J. A., Dennard, R. H., Bronner, G. B., DeBrosse, J. K., Divakaruni, R., Li, Y., and Radens,
C. J.: Challenges and future directions for the scaling of dynamic random-access memory (dram).
IBM Journal of Research and Development, 46: 187-212, 2002.

[51] Meza, J., Chang, J., Yoon, H., Mutlu, O., and Ranganathan, P.: Enabling efficient and scalable hybrid
memories using fine-granularity DRAM cache management. IEEE Computer Architecture Letters,
11: 61-64, 2012.

[52] Micron-Technology: 4Gb: x4, x8, x16 DDR3 SDRAM. 2011.

[53] Micron-Technology: 128Mb: x16, x32 Mobile LPDDR SDRAM. 2007.

[54] Micron-Technology: Calculating Memory System Power for DDR3. 2007.

[55] Micron-Technology: EDB1316BD Datasheet.2016.

[56] Micron-Technology: LPDDR2 System Power Calculator. 2013.

[57] Micron-Technology: Various methods of DRAM refresh. 1999.

[58] Moshnyaga, V. G., Vo, H., Reinman, G., and Potkonjak, M.: Reducing Energy of DRAM/Flash
Memory System by OS-Controlled Data Refresh. In Proceedings of International Symposium on
Circuits and Systems (ISCS), pages 2108 - 2111, 2007.

[59] Nair, P., Chou, C. C., and Qureshi, M. K.: Refresh pausing in DRAM memory systems. ACM
Transactions on Architecture and Code Optimization (TACO), 11: 10:1-10:25, 2014.

[60] NAS. The NAS parallel benchmarks.

[61] Poremba, M., Mittal, S., Li, D., Vetter, J. S., and Xie, Y.: DESTINY: A Tool for Modeling Emerging 3D
NVM and eDRAM caches. In Proceedings of Design, Automation & Test in Europe Conference
(DATE), pages 1543-1546, 2015.

[62] Poremba, M., Zhang, T., and Xie, Y.: NVMain 2.0: Architectural Simulator to Model (Non-)Volatile
Memory Systems. Computer Architecture Letters (CAL): 140 - 143, 2015.

[63] Pourshirazi, B., Beigi, M. V., Zhu, Z., and Memik, G.: WALL: A Writeback-Aware LLC Management
for PCM-based Main Memory Systems. In Proceedings of Design, Automation & Test in Europe
Conference (DATE), pages 449-454, 2018.

[64] Pourshirazi, B., Beigi, M. V., Zhu, Z., and Memik, G.: Writeback-Aware LLC Management for PCM-
based Main Memory Systems. ACM Transactions on Design Automation of Electronic Systems
(TODAES), 24: 18:1-18:19, 2019. DOI: 10.1145/3292009

[65] Pourshirazi, B. and Zhu, Z.: NEMO: An Energy-Efficient Hybrid Main Memory System for Mobile
Devices. In Proceedings of the International Symposium on Memory Systems (MEMSYS), 2017. DOI:
10.1145/3132402.3132445

[66] Pourshirazi, B. and Zhu, Z.: Refree: A Refresh-Free Hybrid DRAM/PCM Main Memory System. In
Proceedings of International Parallel and Distributed Processing Symposium (IPDPS), pages 566-
575, 2016.

[67] Prodromou, A., Meswani, M., Jayasena, N., Loh, G., and Tullsen, D. M.: MemPod: A Clustered
Architecture for Efficient and Scalable Migration in Flat Address Space Multi-level Memories. In
Proceedings of 23th International Symposium on High Performance Computer Architecture (HPCA),
pages 433-444, 2017.

[68] Qureshi, M. K., Franceschini, M. M., and Lastras-Montaño, L. A.: Improving read performance of
Phase Change Memories via Write Cancellation and Write Pausing. In Proceedings of 16th
International Symposium on High-Performance Computer Architecture (HPCA), 2010.

[69] Qureshi, M. K. and Loh, G. H.: Fundamental Latency Trade-offs in Architecting DRAM Caches. In
Proceedings of 45th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO),
pages 235-246 2012.

CITED LITERATURE (Continued)

120

[70] Qureshi, M. K., Srinivasan, V., and Rivers, J. A.: Scalable high performance main memory system
using phase-change memory technology. In Proceedings of 36th annual international symposium on
Computer architecture (ISCA), pages 24-33, 2009.

[71] Ramos, L. E., Gorbatov, E., and Bianchini, R.: Page placement in hybrid memory systems. In
Proceedings of International conference on Supercomputing (ICS), pages 85-95 2011.

[72] Raoux, S., Burr, G. W., Breitwisch, M. J., Rettner, C. T., Chen, Y. C., Shelby, R. M., Salinga, M., Krebs,
D., Chen, S.-H., Lung, H. L., and Lam, C. H.: Phase-change random access memory: A scalable
technolog. IBM Journal of Research and Development 52: 465 - 479, 2008.

[73] Rolán, D., Fraguela, B. B., and Doallo, R.: Adaptive line placement with the set balancing cache. In
Proceedings of 42nd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO),
pages 529-540, 2009.

[74] Ryoo, J. H., Meswani, M. R., Prodromou, A., and John, L. K.: SILC-FM: Subblocked InterLeaved
Cache-Like Flat Memory Organization. In Proceedings of 23th International Symposium on High
Performance Computer Architecture (HPCA), pages 349-360, 2017.

[75] Sim, J., Alameldeen, A. R., Chishti, Z., Wilkerson, C., and Kim, H.: Transparent Hardware
Management of Stacked DRAM as Part of Memory. In Proceedings of 47th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), pages 13-24, 2014.

[76] Song, W., Kim, Y., Kim, H., Lim, J., and Kim, J.: Personalized optimization for android smartphones.
ACM Transactions on Embedded Computing Systems (TECS), 13: 60:1-60:25, 2014.

[77] Strukov, D. B.: Endurance-write-speed tradeoffs in nonvolatile memories. Applied Physics A, 122: 1-
4, 2016.

[78] Udipi, A. N., Muralimanohar, N., Chatterjee, N., Balasubramonian, R., Davis, A., and Jouppi, N. P.:
Rethinking DRAM design and organization for energy-constrained multi-cores. In Proceedings of
37th annual international symposium on Computer architecture (ISCA), pages 175-186 2010.

[79] Wang, Z., Jiménez, D. A., Xu, C., Sun, G., and Xie, Y.: Adaptive Placement and Migration Policy for
an STT-RAM-Based Hybrid Cache. In Proceedings of 20th International Symposium on High
Performance Computer Architecture (HPCA), 2014.

[80] Wang, Z., Shan, S., Cao, T., Gu, J., Xu, Y., Mu, S., Xie, Y., and Jiménez, D. A.: WADE: Writeback-
aware dynamic cache management for NVM-based main memory system. ACM Transactions on
Architecture and Code Optimization (TACO), 10: 51:1-51:21, 2013.

[81] Wong, H.-S. P., Raoux, S., Kim, S., Liang, J., Reifenberg, J. P., Rajendran, B., Asheghi, M., and
Goodson, K. E.: Phase Change Memory. IEEE 98: 2201 - 2227, 2010.

[82] Xia, F., Jiang, D., Xiong, J., Chen, M., Zhang, L., and Sun, N.: DWC: dynamic write consolidation for
phase change memory systems. In Proceedings of 28th ACM international conference on
Supercomputing (ICS), pages 211 - 220, 2014.

[83] Xu, C., Niu, D., Muralimanohar, N., Balasubramonian, R., Zhang, T., Yu, S., and Xie, Y.: Overcoming
the Challenges of Crossbar Resistive Memory Architectures. In Proceedings of 21th International
Symposium on High Performance Computer Architecture (HPCA), 2015.

[84] Yoon, H., Meza, J., Ausavarungnirun, R., Harding, R. A., and Mutlu, O.: Row Buffer Locality Aware
Caching Policies for Hybrid Memories. In Proceedings of 30th International Conference on
Computer Design (ICCD), pages 337-344 2013.

[85] Zhang, L., Neely, B., Franklin, D., Strukov, D., Xie, Y., and Chong, F. T.: Mellow Writes: Extending
Lifetime in Resistive Memories through Selective Slow Write Backs. In Proceedings of 43rd Annual
International Symposium on Computer Architecture (ISCA), pages 519-531, 2016.

[86] Zhang, M., Zhang, L., Jiang, L., Liu, Z., and Chong, F. T.: Balancing Performance and Lifetime of
MLC PCM by Using a Region Retention Monitor. In Proceedings of 23th International Symposium
on High Performance Computer Architecture (HPCA), pages 385-396, 2017.

CITED LITERATURE (Continued)

121

[87] Zhang, W. and Li, T.: Exploring Phase Change Memory and 3D Die-Stacking for Power/Thermal
Friendly, Fast and Durable Memory Architectures. In Proceedings of International Conference on
Parallel Architectures and Compilation Techniques (PACT), pages 101 - 112, 2009.

[88] Zhong, K., Liu, D., Liang, L., Zhu, X., Long, L., Wang, Y., and Sha, E.: Energy-Efficient In-memory
Paging for Smartphones. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems 99: 1577 - 1590, 2015.

[89] Zhong, K., Zhu, X., Wang, T., Zhang, D., Luo, X., Liu, D., Liu, W., and Sha, E. H.-M.: DR. Swap:
energy-efficient paging for smartphones. In Proceedings of International symposium on Low power
electronics and design (ISLPED), 2014.

[90] Zhou, P., Zhao, B., Yang, J., and Zhang, Y.: A durable and energy efficient main memory using phase
change memory technology. In Proceedings of 36th annual international symposium on Computer
architecture (ISCA), pages 14-23 2009.

[91] Zhou, P., Zhao, B., Yang, J., and Zhang, Y.: Throughput Enhancement for Phase Change Memories.
IEEE Transactions on Computers (TC), 63: 2080 - 2093, 2014.

[92] Zhou, Y., Philbin, J., and Li, K.: The Multi-Queue Replacement Algorithm for Second Level Buffer
Caches. In Proceedings of The General Track: 2001 USENIX Annual Technical Conference (ATEC),
pages 91-104, 2001.

CITED LITERATURE (Continued)

122

VITA

Bahareh Pourshirazi
Web: https://www.linkedin.com/in/bahareh-pourshirazi-7871999a

Email: bahareh.pourshirazi@gmail.com

EDUCATION

University of Illinois at Chicago

Ph.D. in Computer Engineering, GPA: 4.0/4.0

Chicago, IL

2013–2019

Shahid Beheshti University

M.S. in Computer Engineering, GPA: 18.84/20

B.S. in Computer Engineering, GPA: 17.04/20

Tehran, Iran

2010-2013

2006-2010

PUBLICATIONS Conference (C), Journal (J)

J3 Pourshirazi, B., Beigi, M. V., Zhu, Z., and Memik, G.: Writeback-Aware LLC
Management for PCM-based Main Memory Systems. ACM Transactions on Design
Automation of Electronics Systems (TODAES), 2019.

C6 Pourshirazi, B., Beigi, M. V., Zhu, Z., and Memik, G.: WALL: A Writeback-Aware LLC
Management for PCM-based Main Memory Systems. In Proceedings of IEEE/ACM
Design, Automation, and Test in Europe Conference (DATE), Dresden, Germany, 2018.

C5 Pourshirazi, B., and Zhichun Zhu: NEMO: An Energy-Efficient Hybrid Main Memory
System for Mobile Devices. In ACM International Symposium on Memory Systems
(MEMSYS), Washington, DC, 2017.

C4 Pourshirazi, B., and Zhu, Z.: Refree: A Refresh-Free Hybrid DRAM/PCM Main
Memory System. In Proceedings of IEEE International Parallel and Distributed
Processing Symposium (IPDPS), Chicago, IL, 2016.

J2 Beigi, M. V., Safaei, F., and Pourshirazi, B.: Application-aware virtual paths insertion
for NoCs. Elsevier Journal of Microelectronics (Elsevier-Micro), vol. 45, issue.4, pages.
454-462, 2014.

C3 Beigi, M. V., Safaei, F., Belghadr, A., and Pourshirazi B.: A Dependable and Power
Efficient NoC Architecture. In Proceeding of IEEE Computer Society Annual Symposium
on VLSI (ISVLSI), Brazil, 2013.

C2 Beigi, M. V., Safaei, F., and Pourshirazi, B.: An Energy-Efficient Reconfigurable NoC
Architecture with RF-Interconnects. In Proceedings of EuroMicro conference on Digital
System Design (DSD), Spain, 2013.

J1 Beigi, M. V., Safaei, F., and Pourshirazi, B.: DBR: A Simple, Fast and Efficient Dynamic

123

Network Reconfiguration Based on Deadlock Recovery Scheme. International Journal of
VLSI design and Communication Systems (VLSICS), vol.3, no.5, 2012.

C1 Pourshirazi, B. and Jahanian, A.: RF-Interconnect resource assignment and placement
algorithms in application specific ICs to improve performance and reduce routing
congestion. In Proceedings of EuroMicro conference on Digital System Design (DSD),
Turkey, 2012.

AWARDS AND HONORS

Wexler award given to outstanding entry-level students 2013

Ontario trillium scholarship given to the best doctoral students from
around the world to study in Ontario

2013

Ranked third in M.S. program among all graduate students of computer
engineering, Shahid Beheshti University, Tehran, Iran

2013

Memocode World Design Contest fourth place in the world 2012

Gained the privilege to start M.S. in Shahid Beheshti University as a talented
student (ranked second with GPA 17.04/20 in B.S.)

2011

Qualified for Robocup World Championship 2008, China 2008

Iran open 2008 technical committee member (Virtual Robots League) 2008

Robocup Competitions third place in Iran Open 2008 (Virtual Robots
League)

2008

INDUSTRY EXPERIENCES

AMD Research, Santa Clara, CA

Research Co-op

Project: Developing and implementing a technique to reduce
data movement between GPU and CPU for deep neural
networks using Keras backend with TensorFlow framework

Jan. 2019 – May 2019

Institution for Research in Fundamental Sciences
(IPM), Tehran, Iran

Research Intern

Summer 2009

VITA (Continued)

