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SUMMARY

Transmembrane (TM) proteins are important proteins as they serve as gateways to permit

substance transport and/or signaling transduction between interior and exterior of cells. β–

barrel membrane proteins (βMPs) are a major type of TM proteins. They are solely found

in the outer membranes of Gram–negative bacteria, mitochondria, and chloroplast. βMPs

serve a multitude of essential cellular functions, including reaction catalysis, protein anchoring,

metabolite transportation, and outer–membrane biogenesis. In bacteria, βMPs are also found

to be responsible for the release of virulence factors and are implicated in multidrug resistance.

Dysfunctional βMPs in mitochondria are related to neurodegenerative diseases as well. The

effective pore formation ability and the high stability in the membrane of βMPs grant them

large potential in applications of bionanotechnology. βMPs have drawn increasing attention in

their promising application, including protein profiling, DNA sequencing, and small molecule

detection. In order to investigate the roles of βMPs in biological and pathological processes

and to develope engineering or designing methods of βMPs for biotechnical applications, it is

critical for us to understand structural and thermodynamical properties of βMPs.

Despite the important roles of βMPs in cellualr process, limited availability of βMP struc-

tures hinders understanding of their structural properties and structure–function relationship.

It was estimated that there exist hundreds of βMPs in each Gram–negative bacterium genome,

while there are only around 60 non–homologous structures deposited in the Protein Data Bank

when this study was conducted. This limitation is due to the great difficulty of experimental
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SUMMARY (Continued)

determination of TM protein structures because of their amphipathic nature. It is therefore

important to develop accurate and efficient computational structure prediction methods for

these proteins. We have developed a method to predict the 3D structures of βMPs. We predict

strand registers and construct 3D structures of TM domains of βMPs accurately, including pro-

teins for which no prediction has been attempted before. Our method also accurately predicts

structures from protein families with a limited number of sequences and proteins with novel

folds. An average mainchain RMSD of 3.48Å is achieved between predicted and experimentally

resolved structures of TM domains, which is a significant improvement (>3Å) over a recent

study. For βMPs with NMR structures, the deviation between predictions and experimentally

solved structures is similar to the difference among the NMR structures, indicating excellent

prediction accuracy. Moreover, we can now accurately model the extended β-barrels and loops

in non-TM domains, increasing the overall coverage of structure prediction by > 30%.

In additional to structural properties, it is also important to characterize thermodynamical

properties of βMPs, which is important to understand their folding and stability, and may help

in understanding the structure–function relationship. One major contributing factor to ther-

modynamic stability of membrane proteins is free energy of transferring amino acid sidechains

from aqueous environment into lipid bilayers, known as transfer free energy (TFE). However,

experimental measurement of TFEs of βMPs is challenging. A recent computational method

has been developed to calculate TFEs, the results of which are in excellent agreement with ex-

perimentally measured values. However, the application of the method is limited to only small

βMPs due to its computational complexity. We have improved this method and developed an
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approximation method, which is comparably accurate but much faster than the original method.

The new method enables the systematical calculation of TFEs of all βMP regardless of the size

of the proteins. Based on the TFEs calculated from a representative set of βMPs, we further

derived a TFE profile named General Transfer Free Energy Profile (GeTFEP). The GeTFEP

agrees well with experimentally measured and computationally derived TFEs. Analysis based

on the GeTFEP shows that residues in different regions of the TM segments of βMPs have

different roles during the membrane insertion process. Results further reveal the importance

of the sequence pattern of TM strands in stabilizing βMPs in the membrane environment. In

addition, we show that GeTFEP can be used to predict the positioning and the orientation

of βMPs in the membrane. We also show that GeTFEP can be used to identify structurally

or functionally important amino acid residue sites of βMPs. Furthermore, the TM segments

of α–helical membrane proteins can be accurately predicted with GeTFEP, suggesting that

the GeTFEP captures fundamental thermodynamic properties of amino acid residues inside

membrane, and is of general applicability in studying membrane protein.

The methods reported in this thesis require only sequence information, implying their gen-

eral applications to genome -wide studies. The structure prediction and the TFE characteriza-

tion methods provide ways to investigate properties of novel βMPs without conducting expen-

sive wet lab experiments. They will also be useful in bionanotechnologies such as engineering

existing βMPs and in design novel ones.
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CHAPTER 1

INTRODUCTION

1.1 Overview

β–barrel membrane proteins (βMPs) are one major type of transmembrane (TM) proteins.

They are solely found in the out membranes of Gram–negative bacteria, mitochondria, and

chloroplast, so they are also known as outer membrane proteins (OMPs). βMPs serve a multi-

tude of essential cellular functions, including reaction catalysis, protein anchoring, metabolite

transportation, and outer–membrane biogenesis (9; 10; 11; 12; 13). In bacteria, βMPs are also

found to be responsible for the release of virulence factors (14) and are implicated in multidrug

resistance (15). Dysfunctional βMPs in mitochondria are also related to neurodegenerative

diseases (16; 17). The ability for effective pore formation and the high stability in the mem-

brane of βMPs have drawn increasing attention to βMPs due to their promise in a number of

applications in bionanotechnology, including protein profiling (18), DNA sequencing (19), and

small molecule detection (20).

In order to investigate the roles of βMPs in biological and pathological processes and to en-

gineer or to design novel βMPs for biotechnical applications, it is critical for us to understand

structural and thermodynamical properties of βMPs. Experimental approaches are usually

costly and time consuming. It is therefore important to develop accurate and efficient com-

putational methods to study these properties, which is the main focus of this thesis. There

1
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are four chapters in this thesis. Chapter 1 is a brief overview of β barrel membrane proteins,

their structures and thermodynamical properties. Chapter 2 studies the structural properties

of βMPs, where we developed a accurate 3D structure prediction method for βMPs. Chapter

3 focuses on the transfer free energies (TFEs), an important thermodynamical properties, of

βMPs, where we improved a computational method for TFE calculation. In Chapter 4, we

derived a general TFE profile for membrane proteins, and used the thermodynamical stability

of βMPs inside the membrane.

1.2 Structures of β–barrel membrane proteins

The most prominent component of a βMP is its TM domain, formed by the β–strands that

is assembled in the antiparallel arrangement forming a barrel–like shape (Figure 1A). Between

adjacent β–strands, extensive hydrogen bonds (H–bonds) are formed among residues, providing

the strong thermodynamical stability of the proteins (21). The barrel–like structures divide the

TM space into two sides: the interior or the lumen– side, and the exterior or the lipid– side

(Figure 1B). This distinction gives rise to the amphipathicity of the TM domains of βMPs.

The residues on β–strands with lumen–facing sidechains are usually hydrophilic, while those

with lipid–facing sidechains are usually hydrophobic since they are in the hydrophobic lipid

environment (22).

βMPs vary in their sizes. The number of β–strands forming the barrel domains was thought

to range from 8 to 26 when I was conducting the research of this thesis. With the development

of the cryogenic electron microscopy (Cryo–EM) technology, now we have seen much more

complex βMPs such as the Salmonella SPI-1 type III secretion injectisome secretin (InvG,
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Figure 1: A. OmpF (PDB code: 2omf) has a barrel–like structure formed by β–sheet. B. The
top view of OmpF shows that its TM domain devides the space into lumen–side and lipid–
side. C. The barrel domain of α–hemolysin (PDB code: 7ahl) is formed by repeated β–strand
hairpin. D. OmpF forms the functional unit in the membrane in a homotrimeric state.

PDB code: 6dv3) formed by 45 TM β–strands (23) and the Gasdermin A3 membrane pore

(PDB code: 6cb8) formed by 108 TM β–strands (24). Concordant with the antiparallel nature

of the β–sheets that formed the barrels, all βMPs have even numbers of β–strands, except the

voltage–dependent anion channel (VDAC, PDB code: 3emn) (25), which has 19 TM β–strands.

The first and the last strands of VDAC contact with each other in a parallel arrangement, while

the other adjacent strands of VDAC remain the antiparallel arrangement.

The barrel domain of a βMP is usually formed by a single amino acid chain. For example,

the barrel domain of the Outer membrane protein F (OmpF, PDB code: 2omf) (26) is formed

by a single amino acid chain consisting of 16 β–strands (Figure 1A). There are also several

multichain–barrels, formed by repeated subunits of β–sheets as in the case of efflux pump

component TolC (PDB code: 1ek9) (27), or by repeated β–strand hairpins as in the case of
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bacterial toxin α–hemolysin (PDB code: 7ahl, Figure 1C) (12). These multichain βMPs are

excreted as monomers, and assembled into multichain single β–barrels inside the membrane.

Some single–chain βMPs also dwell in oligomeric status by forming homodimers or homotrimers

(28; 26). The outer membrane phospholipase A (OmpLA, PDB code: 1qd6), an enzyme that

catalyzes the phospholipids hydrolysis, has a homodimeric structure (28). Its enzymatic activity

is regulated by the reversible dimerization (28). OmpF porins form homotrimeric biological

units inside bacterial outer membranes (PDB code: 2omf, Figure 1D) (26).

The β–strands of the barrel domains are connected by long loops on the extracellular side,

and by short turns on the periplasmic side of the outer membrane (29). Loops are the most

flexible regions of βMPs, and are important for their functions (30). Nuclear magnetic resonance

(NMR) structures of βMPs show that these loops adopt multiple conformations (31; 32), which

likely contribute to the challenges in predicting binding affinity of βMP–ligand interactions (33).

In addition to the β–barrel domains and the loops, these proteins often have in–plug and out–

clamp domains for structural and functional purposes (34).

1.3 Thermodynamical properties of β–barrel membrane proteins

Thermodynamical studies utilize heating (35) and denaturants (1) to induce folding/unfolding

processes to investigate factors stabilizing membrane proteins (36). One important factor re-

vealed by such studies on α–helical peptides is backbone H–bonds among mainchain residues,

which greatly reduce the energy cost of their insertion into membranes (36). There are two

different types of H–bonds among adjacent β–strands in βMPs: one is C=O· · ·H–N called

strong hydrogen bonds, and the other is C=)· · ·H–C called weak hydrogen bonds (Figure 2A).
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Figure 2: A. Interstrand interactions between β–strands of βMPs. Red dashed lines indicate the
strong H–bonds, green the weak H–bonds, and blue the sidechain interactions. Figure adapted
from Ref (3). B. An example hydrophobicity scale measured in Ref(4). Figure adapted from
Ref (4).

Extensive H–bonds of these two types are formed among residues between adjacent β–strands,

providing the strong thermodynamical stability of the proteins (21). Indeed in a thermal de-

naturation test, human mitochondrial protein–conducting channel protein hTom40A had an

apparent melting temperature of 73°C (37).

A combinatorial analysis of mainchain H–bonds showed that there are characteristic prefer-

ences of different types of residue pairing even for the same type (strong or weak) H–bonds (3),

implying that contribution of mainchain H–bonded pairing between different types of residues

to the thermodynamical stability of the βMP could be different. Thus, different regions in a

βMP may have different stability depending on the local amino acid composition. Following
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such rationale, a computational approach was developed to identify weakly stable regions of

βMP barrel domains (34). It shows that these regions are usually stabilized by interactions

from oligomerization or by interactions with other in–plug or out–clamp domains (34).

In addition to H–bonds, energy cost of transferring residue sidechains from water envi-

ronment to the membrane environment is another important factor stabilizing βMPs (38; 36).

Experiments have measured these energies using different host systems, such as peptides (4; 39)

and proteins (1). Since these TFEs quantify relative hydrophobicity of amino acids, they are

also called hydrophobicity scales (Figure 2B),which has generated considerably insights to our

understanding of membrane proteins, such as identification of membrane proteins and their

topology, interpretation of folding process, and prediction of structurally or functionally impor-

tant sites (40; 41; 8; 42; 43).



CHAPTER 2

HIGH RESOLUTION STRUCTURE PREDICTION OF β-BARREL

MEMBRANE PROTEINS

Adapted from Tian, W., Lin, M., Tang, K., Liang, J., and Naveed, H.: High–resolution

structure prediction of β–barrel membrane proteins. Proceedings of the National Academy of

Sciences, 115(7):1511–1516, 2018.

2.1 Introduction

A major obstacle in studies of βMPs is the limited availability of structural data. Only ∼

320 βMP structures, of which ∼ 59 are nonhomologous, have been deposited in the Protein

Data Bank (PDB) that contains > 135, 000 protein structures (44). Computational studies

have contributed to expand our knowledge of βMPs by successfully predicting βMP sequences

at genome–wide scale (45; 46), identifying TM segments (47; 48), and uncovering sequence

and spatial motifs (22; 49). The stability, oligomerization state, protein–protein interaction

interfaces and the transfer free energy of residues in the TM regions of βMPs can also be

accurately computed (34; 50; 51; 52; 42; 53; 43).

Template–based methods for structure prediction have been successfully applied in studies

of globular proteins (54). They have also been employed to predict 3D structures of βMPs but

have achieved limited success with novel folds due to the limited availability of templates for

βMPs (55). Recently solved structures of the voltage–dependent anion channel (VDAC) found

7
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in mitochondria (25), the usher protein PapC from P pilus (56), and LPS-assembly protein

LptD from S flexneri (57) contain 19, 24 and 26 TM β-strands, respectively. These structures

are incompatible with the generally observed βMP topologies that consist of even TM strands,

with the number ranging between 8 and 22 (29). Template based methods perform poorly

on these novel structures, as homologous template structures do not exist for these proteins.

Second, when homologous templates can be found for βMPs, the template protein sequences

need to have exactly the same number of TM β-strands, so the radius of the barrel, which

depends on the number of TM β-strands can be modeled accurately (58; 59). As an example,

BamA with 16 TM segments (60) is a homologue of Toc75 protein, which is predicted to contain

18 segments (61). Therefore using the 3D structure of BamA as a template to model Toc75

protein will likely results in low quality predictions. General purpose template–free structure

prediction methods do not generate accurate structures of βMPs, as these proteins can be large,

with the number of residues reaching 800.

A recently published βMP specific method that combines sequence covariation for contact

prediction with a machine learning based method achieved limited progress, with a mainchain

RMSD of 6.66Å for predicted structures of TM regions, before it was adjusted to a better pub-

lished value of 4.45Å when only a subset of residues were aligned instead of all TM residues (62).

Another template–free βMP specific method, 3D-SPoT, can predict the TM regions of βMPs

with an average mainchain RMSD of 4.14Å (61). Despite such progress, further improvement

in prediction methods to generate accurate structural models is required to bridge the gap be-
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tween identified βMP sequences and resolved βMP structures, so that modeled structures can

be used directly for applications such as nanopore engineering and drug design/delivery.

In this study, we describe a template–free method for predicting 3D structures of βMPs,

which provides significant improvement over previous methods. Our approach, named 3D–

BMPP (3D Beta–barrel Membrane Protein Predictor), is based on a statistical mechanical

model (63) that incorporates sequence covariation information, and is built upon a parametric

structural model of intertwined zigzag coils. In a blind test of 51 nonhomologous βMPs, our

prediction generates accurate 3D structures of TM regions with an average mainchain RMSD of

3.48Å. This represents a significant improvement of ∼ 3.1Å compared to a recent study (62) over

a much bigger dataset (51 vs 17 proteins). In addition, predictions are expanded to include non-

TM regions, including both extended β-sheets and loops, resulting in significant increase in the

coverage of residues compared to previous methods. Furthermore, our method can be applied

to model structures of βMPs with novel folds, including those from mitochondria of eukaryotes,

as evidenced by the accurately modeled structures of VDAC, and FimD. Our method is general

and can be applied to genome–wide structural prediction of βMPs.

2.2 Methods and Materials

2.2.1 Dataset

We use 59 non–homologous βMPs (resolution 1.45Å– 3.2Å) with less than 30% pairwise

sequence identity for this study. The PDB codes of these proteins are 1a0s, 1bxw, 1e54, 1ek9,

1fep, 1i78, 1k24, 1kmo, 1nqe, 1p4t, 1prn, 1qd6, 1qj8, 1t16, 1thq, 1tly, 1uyn, 1xkw, 1yc9, 2erv,

2f1c, 2f1t, 2fcp, 2gr8, 2lhf, 2lme, 2mlh, 2mpr, 2o4v, 2omf, 2por, 2qdz, 2vqi, 2wjr, 2ynk, 3aeh,
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3b07, 3bs0, 3csl, 3dwo, 3dzm, 3emn, 3fid, 3kvn, 3o44, 3pik, 3rbh, 3rfz, 3syb, 3szv, 3v8x, 3vzt,

4c00, 4e1s, 4gey, 4n75, 4pr7, 4q35, and 7ahl.

We also use NMR structures to character the intrinsic flexibility of βMPs and to evaluate

our loop modeling. The PDB codes of the NMR structures used are 1g90 and 1ge4 for OmpA,

1orm, 1q9f, 1q9g and 2mnh for OmpX, 1mm4 and 1mm5 for PagP, 2jqy for OmpG, 2mhl for

OmpW, 2lhf for OprH, and 2maf and 2mlh for Opa60.

2.2.2 Workflow of 3D–BMPP

βMPs have strong thermal and chemical resistance due to the well–knit H–bond net-

work (37), in which each residue in the TM strand is H–bonded to residues on the adjacent TM

strands (Figure 4). We use a physical model that accounts for strong H–bonds, weak H–bonds,

and sidechain interactions between adjacent strands in the barrel domain (64; 63; 65; 34). In

addition, we incorporate interstrand loop entropy, right handedness of the βMP, and medium–

to–long range contacts predicted from sequence covariation information.

To predict structures of βMPs, we proceed in four steps: predicting strand registers (inter-

strand H–bond contacts) locally, optimizing strand registers globally predicting 3D coordinates

of residues in barrel domains, and modeling non–barrel–domain residues (Figure 3).

2.2.3 Secondary structure determination

Existing computational approaches can successfully identify the location of β-strands (47;

48). However, to assess our 3D modeling approach without any short coming from the secondary

structure prediction we use the β-strands from the DSSP program that uses PDB structure to

calculate the location of the β-strands (66). Only lcut number of resides from the periplasmic
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Figure 3: The flowchart of βMP structure prediction method 3D–BMPP. The strand regis-
ters are predicted using a combination of empirical energy function and sequence covariation
information. Global shear optimization is then performed upon the predicted register candi-
dates. The 3D coordinates of Cα atoms of TM and non-TM residues are then predicted using
a parametric structural model. We also predict ensembles of loop conformations.
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side of each DSSP strand are used for register prediction. We choose lcut = 12 since the length

of strands in the dataset has a mean of 12.7, mode of 12, and median of 12. For 3D structure

construction, complete DSSP strands are used.

2.2.4 Strand Register Prediction

We use a discrete model of reduced states to represent the conformational space of the

strands, in which the relative position between a pair of adjacent strands can adopt L1 +L2−1

different registers, where L1 and L2 are the lengths of the two strands (Figure 4) (34). In a

strand pair, we fix one strand while sliding the other strand up and down to generate all possible

conformations in the discrete state space, each of which has different interstrand residue contacts

and thus the register (Figure 3).

To predict the register of a stand pair, we have developed a model incorporating both the

empirical potential scores of physical interactions between strands from our previous study(61)

and the sequence covariation information that can identify medium–to–large range residue

contacts based on the concept that spatially close residues might coevolve. Our model gives a

score for each register with Equation 2.1

E(r) = Eemp(r) + Esc(r), (2.1)

where r is a given register of the strand pair, Eemp(r) is the empirical potential score of physical

interstrand interactions, and Esc is the score from sequence covariation analysis. The register

with the lowest score is selected as the prediction.
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Figure 4: Model for interstrand interactions between adjacent strands.

2.2.4.1 Model for interstrand interactions

The model for physical interactions between a strand pair from Ref(61) is used in this study.

Briefly, the model assumes that neighboring strands interact through canonical strong H–bonds,

weak H–bonds, and non-H–bonds (sidechain interactions), which is based on the observation of

the periodic dyad bonding repeat pattern of antiparallel β-sheets (63) (Figure 4). The entropy

for unbonded regions and left/right handedness of the strand pair are considered as well. See
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Ref(61) for more detailed description of the model. The total empirical score of certain register

r of a given strand pair is calculated with the empirical scoring function

Eemp(r) =α
∑
ki

∑
ki+1

ESH(ki, ki+1; r) + β
∑
ki

∑
ki+1

EWH(ki, ki+1; r)

γ
∑
ki

∑
ki+1

ENH(ki, ki+1; r) + δ ln(
nref + ∆L(r)

nref
) + ε[LH(r)],

(2.2)

where ESH(ki, ki+1; r), EWH(ki, ki+1; r), and ENH(ki, ki+1; r) are the empirical energies of

strong, weak, and non-H–bonds between the residue ki on strand i and the residue ki+1 on

strand i + 1, respectively. nref = 8.5 is the average length of loops. ∆L(r) is related to the

number of residues that do not share a H–bond with the adjacent strand in the register r, minus

the difference in strand lengths. LH(r) is the penalty for left handed twist (r < 0) since all

β-sheets are right handed.

LH(r) =


r r < 0

0 otherwise

(2.3)

2.2.4.2 Model for sequence covariation

We use PSICOV(67) to calculate the sequence covariation scores of each residue pairs in TM

regions. The score of certain register of a strand pair is calculated as the weighted summation

of sequence covariation scores of residue pairs:

Esc =w0

∑
ki

∑
ki+1

δ(dki,ki+1
, 0)Q(ki, ki+1) + w1

∑
ki

∑
ki+1

δ(dki,ki+1
, 1)Q(ki, ki+1)

+ w2

∑
ki

∑
ki+1

δ(dki,ki+1
, 2)Q(ki, ki+1)

(2.4)
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Figure 5: Model for calculating sequence covariation between adjacent strands.

where Q(i, j) is the sequence covariation score of the residues ki and ki+1, dki,ki+1
is the distance

between the two residues in the discretized conformational state space (Figure 5), wc (c =

0, 1, or 2) is the weight of residue pair whose distance is c, and δ(dki,ki+1
, c) is the Kronecker

delta function which identifies if the distance of the residues ki and ki+1 is c. All residue pairs

with distance larger than 2 are ignored in the calculation, for they are unlikely to have any

physical interaction.

2.2.4.3 Parameter determination and cross–validation

Based on the number of strands (or equivalently, number of residues) and the stability

of the proteins(34), we divide the dataset into five subsets (Table I). All 59 βMPs are used

to construct the empirical potential function, but predictions are only made for 51 proteins,
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TABLE I: The groups of βMPs in this study. All the six groups are used in the construction
of the empirical energy function. Structure predictions are made for only the first five groups.

Group Description PDB code

1 Small βMPs (N < 16) without 1bxw, 1qj8, 1p4t, 2f1t, 1thq, 2erv, 2lhf,
in–plugs or out–clamps 2mlh, 3dzm, 1qd6, 2f1c, 1k24, 1i78,

2wjr, 4pr7

2 Small βMPs (N < 16) with 1t16, 1uyn, 1tly, 3aeh, 3bs0, 3dwo, 3fid,
in–plugs or out–clamps 3kvn, 4e1s

3 Medium oligomeric βMPs 2mpr, 1a0s, 2omf, 2por, 1prn, 1e54, 2o4v,
(16 ≤ N < 20) 3vzt, 4n75

4 Medium monomeric βMPs 2qdz, 2ynk, 3emn, 3rbh, 3syb, 3szv,
(16 ≤ N < 20) 4c00, 4gey

5 Large βMPs (N ≥ 20) 1fep, 2fcp, 1kmo, 1nqe, 1xkw, 2vqi, 3csl,
3rfz, 3v8x, 4q35

6 Multichain βMPs 1ek9, 1yc9, 2gr8, 2lme, 3pik, 3b07,
3o44, 7ahl

after excluding multichain–barrel βMPs to avoid over estimation of repeated interaction types

(Table I).

We first fix the weights (w0, w1, and w2) in the sequence covariation model. Since the

sequence covariation analysis comes purely from sequences and needs no prior knowledge of

the dataset, we neither use the leave–one–out scheme for the searching of these three weights,

nor discriminate the groups of the dataset. The weights (w0, w1, and w2) are determined by

searching for the values such that the score Esc alone can give a best prediction of the registers

of the neighboring strand pairs in the dataset.
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TABLE II: Values for α, β, γ, δ, ε, w0, w1, and w2.

Group α β γ δ ε w0 w1 w2

1 0.026 0.038 0.036 0.245 0.050

-0.500 -0.136 -0.364
2 0.055 0.100 0.075 0.450 0.120
3 0.000 0.082 0.006 0.052 0.074
4 0.045 0.020 0.024 0.290 0.100
5 0.045 0.024 0.014 0.110 0.135

Then the leave–one–out cross–validation (LOOCV) is used for searching the other unde-

termined weights (α, β, γ, δ, and ε) in Equation 2.2 so that the total scores calculated via

Equation 2.1 give the best prediction. In LOOCV, we left one protein out of the data set

while using the other proteins to construct the empirical potential function. The registers of

the leave–out protein were predicted. This process was repeated for each protein to find the

optimized values of the group–specific parameters (α, β, γ, δ, and ε), which gave the best

register prediction accuracy for that group. The parameters (α, β, γ, δ, and ε) were optimized

using an adaptive grid search. The final values used in the model is listed in Table II.

2.2.4.4 Sidechain direction prediction

The sidechain of a strand residue can be either lipid–facing or lumen–facing. Ignoring β-

bulge, sidechain directions of a strand follow an alternative lipid–facing–lumen–facing pattern

Hence, we only predict the sidechain direction of the first residue on the periplasmic side of

each strand, and sidechain direction of all the other residues can be obtained accordingly.
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In the original reduced state space (RSS) model, there are 2, 5, and 2 residues in the extra-

cellular headgroup, the core, and the periplasmic headgroup regions, respectively (Figure 4).

However, it is known that membrane could become either thinner or thicker around TM pro-

teins adaptively. So, we use a variant of RSS where the number of the resides in each of these

three regions can vary by 1 from the original RSS while the total thickness of these three regions

is restricted to 7-11 residues.

We enumerated the combination of the sidechain directions and the legit conformations

in the RSS variant aforementioned, and used the single body potential (34) derived from our

βMP dataset to calculate the energy of each combination. The sidechain directions that give

the lowest energy within the enumeration of each strand are selected as predictions, which gives

a 98% accuracy.

2.2.4.5 Global register optimization

Strand register prediction considers H–bonds contact two adjacent strands at a time. How-

ever, global H–bond pattern is better represented by the shear number of the protein.

The shear number is the displacement of the relative positions in the TM strands if one

starts to follow the backbone H–bond between strands, beginning from strand 1 and returning

after a full circle to the same strand (see Figure 6, more examples can be found in Ref(68)). The

shear number of a βMP also equals to the sum of the strand registers. When these registers are

not known, the shear number can be estimated reliably from the number of TM strands (61)

as the most common shear number Scom of the βMPs of the same strand number (Table III).
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Figure 6: Shear number is the displacement of the relative positions in the TM strands if one
starts to follow the backbone H–bond between strands, starting from strand 1 and returning
after a full circle to the same strand. For example, the shear number for the 4 strand β-barrel
shown above is n− 1.

The predicted shear number S of a βMP can be calculated as the sum of the predicted strand

registers:

S =

N∑
i=1

ri, , (2.5)

where ri is the predicted strand register of the i-th strand. N is the total number of strands.

We optimize strand register prediction so that the predicted shear number S can be as close

as possible to the most common shear number Scom. For each strand, two register candidates

with lowest scores in the register prediction step are kept. The summation of the first register

candidate of each strand gives the predicted shear number before optimization. This selection

also gives the total score for the predicted protein conformation by summing up the score of

each predicted register. The global shear optimization attempts to replace the first candidate

with the second one of each strand in the final selection so that the predicted shear number is
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TABLE III: Shear number of βMPs.

PDB code N S PDB code N S PDB code N S PDB code N S

1qj8 8 8 3aeh 12 14 2o4v 16 20 3szv 18 22
1bxw 8 10 3fid 12 14 2omf 16 20 3emn 19 20
1p4t 8 10 3kvn 12 14 2por 16 20 1fep 22 24
1thq 8 10 4e1s 12 14 2qdz 16 20 1kmo 22 24
2erv 8 10 4pr7 12 14 3vzt 16 20 1nqe 22 24
2f1t 8 10 1qd6 12 16 4c00 16 20 1xkw 22 24
2lhf 8 10 1tly 12 16 4gey 16 20 2fcp 22 24
2mlh 8 10 1t16 14 14 4n75 16 22 3csl 22 24
3dzm 8 10 3bs0 14 14 2ynk 18 20 3v8x 22 24
1i78 10 12 3dwo 14 14 1a0s 18 20 2vqi 24 26
1k24 10 12 2f1c 14 16 2mpr 18 22 3rfz 24 26
1uyn 12 14 1e54 16 20 3rbh 18 22 4q35 26 30
2wjr 12 14 1prn 16 20 3syb 18 22

as close to the target shear as possible while keeping the total score for the protein as close to

the minimum score as possible.

The register candidates are first filtered according to the predicted sidechain directions of

the first periplasmic residues of that strand and of its sequential neighbor: If the first residues

of the i–th strand and of the (i + 1)-th strand have the same sidechain direction, only the

candidate(s) of the i–th strand with even register number is kept; otherwise, the odd one(s).

This criteria is based on the fact that H–bonded residues on adjacent strands always have the

same sidechain direction. When neither of the candidates satisfy this criteria, both are kept.

Subsequently, the strands are sorted in ascending order according to the difference between

the scores of the two candidates of each strand. The difference is 0 if only one candidate was
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kept in the previous step. We scan the strands in this order and make the final selection for

each strand. For the top two strands, the second candidate will be selected if it can bring the

predicted shear number S closer to the target Scom. For the remaining strands, the second

candidate will be selected only when it can keep the predicted shear number S in same parity

with the target shear number Scomand can also reduce the shear number difference |S − Scom|

between prediction and target.

After optimization, the error in predicted shear numbers is decreased from −0.69± 3.63 to

0.12±1.34. The improved global shear accuracy will lead to overall more accurate 3D structure

prediction of βMPs.

2.2.5 Parametric model for 3D structures of barrel domains.

Parametric models have had recent successes in modeling and designing structures of α-

helical proteins (69; 70). In this work, we have developed a novel parametric structural model,

named intertwined zigzag coil model to generate 3D structures of βMPs from predicted strand

registers (Figure 8). Following previous studies (61; 71), we model the overall shape of the β-

barrel as a ideal cylinder. The Cα trace of each strand is described as a coiled zigzag wrapping

around the hypothetical cylinder. This model captures the zigzag nature of a polypeptide in

the βMP and the varied distance between Cα atoms on adjacent strands (Figure 7), which

improves positioning of Cα atoms.

2.2.5.1 Cα trace construction

An intertwined coil model was used in one previous study (61), in which the Cα trace of

a βMP was generated, followed by backbone generation, sidechain generation, and molecular
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dynamics (MD) minimization. If we look closely at the Cα trace of a βMP structure, however,

we find that the intertwined coil model is not able to capture the following geometric properties:

1) the Cα trace of a strand is not as smooth as a coil, but is zigzag–like (Figure 7a). The Cα

atoms of lipid–facing residues are farther away from the vertical axis of the barrel compared to

those of lumen–facing residues; and 2) the Cα atoms on two adjacent strands are not equidistant

as depicted by the intertwined coil model. The distance between of Cα atoms of residues sharing

strong H–bonds are larger than those sharing non-H–bonds (Figure 7b and Figure 7c).

To capture these geometric properties, we developed a parametric structural model of in-

tertwined zigzag coils, in which the Cα trace of each strand is depicted by a zigzag coil that

wraps around a hypothetical cylinder. To calculate the Cα position of a strand, we first build

a coil basis for the strand (Figure 8a).

The tilt angle θ of coil basis with respect to the vertical cylinder axis and the radius r of

the cylinder are calculated using Equation 2.6 following McLachlan(71):

θ = arctan(
SA

NB
),

r =
B

2 sin( πN ) cos θ
,

(2.6)

where A is the distance between projections of consecutive Cα atoms on the same coil basis,

and B is the distance between projections of Cα atoms sharing a strong or non–H–bond on

adjacent strands. Note that A and B here are not the intra- and the inter–strand Cα distances.

N is the number of β-strands, and S is the shear number for the βMP.
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Figure 7: Geometric properties of βMPs. (a) The Cα trace of a β-strand shows a zigzag pattern
(red). The structure used here is TodX (PDB code:3bs0). (b) Distribution of distance between
consecutive Cα atoms on the same strand. (c) Distribution of distance between Cα atoms of
residues sharing a non–H–bond (green) and of those sharing a strong H–bond (blue) on adjacent
strands.
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Figure 8: The parametric structural model of intertwined zigzag coils. (a) One zigzag coil (blue)
and the corresponding coil basis (black) wrap around the hypothetical cylinder (grey). (b) The
relative position and the corresponding parameters of coil bases are shown after unwrapping
the coil bases onto a plane.

Using time curves from differential geometry (72), each position j of Cα projection on coil

basis i is represented by a parametric curve represented by Equation 2.7.

ci(tij) =

(
r cos(tij −

2πi

N
), r sin(tij −

2πi

N
), btij

)
,

b =
r

tan θ
,

(2.7)

where ci(·) is the parametric curve of the i-th coil basis. Let Vr(tij) be the vector from position

j of coil basis i to position j of coil basis i+ 1, and Tr(tij) the tangent vector at position j of

coil basis i. Given that the vector between two Cα atoms sharing a strong or non–H–bond on
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adjacent strands is roughly perpendicular to the strands, the inner product of the two vectors

should be 0:

Vr(tij) · Tr(tij) = 0,

Vr(tij) = ci+1(ti+1,j)− ci(tij),

Tr(tij) =

(
−r
c

sin(tij),
r

c
cos(tij),

b

c

)
,

c =
√
r2 + b2.

(2.8)

By solving Equation 2.8, tij can be written as

tij =
sij
c
,

sij = (j −
i−1∑
k=1

Rk)A+ i
2πr2

cN
,

(2.9)

where Rk is the register of the k-th strand. Here is where we can feed the register prediction

results to the intertwined zigzag coil model

Using different radii for the lipid–facing and the lumen–facing residues, c̃i(tij), the zigzag

pattern of the Cα trace (Figure 8a) can be taken into account by Equation 2.10.

c̃i(tij) =

(
r′ cos(tij −

2πi

N
), r′ sin(tij −

2πi

N
), btij

)
,

b =
r

tan θ
,

r′ =


r + ∆r, if the position is lipid–facing

r −∆r, if the position is lumen–facing

.

(2.10)
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Considering that the distance between Cα atoms of residues sharing a strong H–bond is

different from the distance between those sharing a non–H–bond (Figure 7c), the 3D coordinates

Ci(tij) of Cα atoms in the intertwined coiled zigzag model can be written as Equation 2.11

Ci(tij) =



c̃i(tij) + ∆w
Vr′ (tij)
‖Vr′ (tij)‖

, if i is odd and the position is lipid–facing,

or i is even and the position is lumen–facing

c̃i(tij)−∆w
Vr′ (ti−1,j)
‖Vr′ (ti−1,j)‖ , otherwise

. (2.11)

2.2.5.2 Parameter estimation

The intrastrand Cα distance has very little variance from its mean value of 3.79 Å, while the

interstrand Cα distance of residues sharing a strong or a non–H–bond have different means (5.26

Å and 4.41 Å, respectively) and relatively larger variances (Figure 7c). We used B = 4.83Å,

which is the mean value of interstrand Cα distance of residues sharing a strong or a non–H–bond,

and did a grid search for the values of A, ∆d, and ∆w that satisfy the following criteria:

1. Any value that makes the intrastrand Cα distance out of the range [3.79±0.02] is rejected,

2. The average interstrand Cα distances of residues sharing a strong H–bond and of residues

sharing a non–H–bond are as close to 5.26Å and to 4.41Å as possible,

The best parameters we found are A = 3.345Å, ∆r = 0.83Å, and ∆w = 0.22Å. The intertwined

zigzag coil model using these parameters give intrastrand Cα distances of 3.77±0.06, interstrand

Cα distances of residues sharing a strong H–bond of 5.28±0.19 and interstrand Cα distances of
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residues not sharing a strong H–bond of 4.43± 0.18, which agree well with the experimentally

solved structures (Figure 7b and Figure 7c)

As for a βMP with N strands, an approximation for the shear number S is



S = N, N = 14,

S = N + 4, N = 16 or 18,

S = N + 2, otherwise.

(2.12)

which is correct for all βMP structures with the exception of OmpX, OmpLA, Tsx, OmpG,

Wzi, LptD and VDAC in our data set.

2.2.5.3 Construction of backbones and sidechains

Based on the predicted Cα trace, we used Gront et al.’s BBQ algorithm (73) to construct

the backbone of the barrel. This algorithm constructs a four–residue fragments using three

internal coordinates, namely, the three distances between Cα atoms. Positions of C, O, and N

atoms are then determined based on information from known PDB structures (73). As loop

region is ignored in our model at this stage, the strands are disconnected with each other.

Directly applying BBQ to these disconnected strands tends to make mistake at the ends of

the strands. Therefore, we constructed two additional pseudo Cα atoms to both extracellular

end and periplasmic end of each strand using the same formula (Equation 2.11) The backbone

obtained from BBQ was then fed to the Scwrl4 program(74) for sidechain generation. The
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pseudo Cα atoms and the corresponding backbone and sidechain atoms were removed after

that, which leaves the 3D structure of the barrel domain.

2.2.6 Predict structures of βMP loops

Loops are the most flexible regions of βMPs, and are important for their functions (30).

NMR structures of βMPs show that these loops adopt multiple conformations (31; 32), which

likely contribute to the challenges in predicting binding affinity of βMP–ligand interactions (33).

We model loops by investigating a large ensemble of loop conformations generated using an

improved version of the m-DiSGro algorithm (75) with better volume avoidance control that

guarantees clash–free conformations of the sampled loops. For each of the 7 βMPs with available

NMR structures, once the structure of the barrel domain is predicted, we sampled 3 × 104 to

3 × 105 multi–loop conformations, with the specific number of conformations dictated by the

number and the lengths of loops. We then perform clustering to generate an ensemble of ∼ 400

multi–loop conformations as prediction for each protein.

2.3 Results

2.3.1 Register prediction

The results of strand register prediction for 51 βMPs show that overall 655 out of 771

registers are predicted correctly, representing an accuracy of ∼ 85% (see Table XVI for details).

This is a significant improvement over previous βMP register prediction methods of Jackups

and Liang (∼ 46%) (63), Randall et al. (∼ 48%) (55), Naveed et al. (∼ 73%) (61) and Hayat et

al. (∼ 44%) (62). It is also important to note that the dataset used is much larger than those

used in the previous studies (Table IV). For 8 βMPs (OpA60, autotransporter Hbp, TodX,
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TABLE IV: Comparison of different methods for strand register and 3D structure prediction
for TM regions of βMPs. 3D-BMPP can predict strand registers with an accuracy of ∼85%,
and 3D structures of TM regions with an average mainchain RMSD of 3.48Å and average all
atom RMSD of 4.26Å for a much bigger dataset (51 vs 14 – 23 βMPs).

Method Num of Num of Register Avg mainchain Avg all atom
βMPs strands accuracy TM-RMSD TM-RMSD

Jackups and Liang, 2005 (63) 19 256 46% — —
TMBpro–server, 2008 (55) 14 214 48% — 7.3Å

3D-SPoT, 2012 (61) 23 324 73% 4.12Å 5.6Å
EVfold bb, 2015 (62) 17 265 44% 6.66Å —

3D-BMPP, 2018 (76) 51 771 85% 3.48Å 4.26Å

EstA, FhuA, FecA, FptA, and HasR that contain 8, 12, 14, 12, 22, 22, 22, and 22 strands

respectively), we are able to predict all the strand registers correctly.

To assess the contribution of the sequence covariation information and the patterns of

hydrogen–bonds and sidechain interactions (HSC), we predicted the strand registers using

sequence covariation data and a reduced state space (SC+RSS). The strand register predic-

tion accuracy with SC+RSS was found to be 52%, representing significant deterioration from

the accuracy of 69% (61) using HSC+RSS. This result indicates that patterns of H–bonds and

sidechain interactions derived from structural data can predict local strand registers more accu-

rately than sequence covariation information. This conclusion is consistent with that of Hayat

et al., in which machine learning and sequence covariation were used to predict the strand reg-

ister at an accuracy of 44% (62), suggesting that the reduced state space model also contributes

significantly to the improved the accuracy of strand register prediction.
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The sidechain orientation of the TM residues is an important determinant of the structure of

βMPs. A residue can be either lipid–facing or lumen–facing, with consecutive residues in the TM

region taking alternating orientations. Pore–facing residues are predominantly responsible for

protein function (e.g., flux control of metabolites and ion–sensing), while lipid–facing residues

are mostly responsible for protein insertion and stability. Residues on adjacent strands have the

same sidechain orientation when they share strong H–bonds or sidechain interactions. Incorrect

strand register can lead to erroneous sidechain orientation prediction. The correct prediction

of strand register is therefore an important requirement in structure prediction of βMPs and is

well recognized in literature (55). Our method can predict strand register at 85% accuracy. In

contrast, the criteria was relaxed to allow +1 or -1 difference in strand register in a previous

study (62). While this relaxation made the register prediction results more presentable (65%

after relaxation vs 44% before relaxation), it is problematic, as it would lead to prediction of

TM residues to adopt erroneous orientation opposite to that of the native structures. Such

incorrect TM residue orientations would imply completely different properties of the barrel

interior and exterior. Here we report correct prediction only when we are able to exactly match

the register with the experimentally resolved structure.

2.3.2 Predicted 3D structures of TM regions of βMPs

Feeding the predicted registers of each βMP into the intertwined zigzag coil model, we con-

structed the 3D structures of TM regions of βMPs. Figure 9A depicts the predicted structures

(green) of the TM regions of protein OmpA, TodX, Porin, BamA, OpdO and HasR, which are

shown superimposed on experimentally determined structures (cyan). The RMSDs of the main-
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Figure 9: Structure prediction of TM regions. (A) Predicted structures of the TM regions
(green) superimposed on experimentally determined structures (cyan): OmpA (1bxw), TodX
(3bs0), Porin (1prn), BamA (4n75), OpdO (3szv), and HasR (3csl). (B) Predicted structures of
the TM regions of proteins with novel folds (green) superimposed on experimentally determined
structures (cyan): VDAC (3emn), FimD (3rfz), PapC (2vqi), and LptD (4q35). PapC and LptD
are shown in top view.

chain atoms between the computed and experimentally resolved structures are 1.39Å, 1.30Å,

2.44Å, 3.44Å, 3.20Å and 2.71Å for OmpA, TodX, Porin, BamA, OpdO and HasR, respectively.

The structures of the TM regions of 51 βMPs are predicted with an average RMSD of 3.48Å

for mainchain atoms and 4.26Å for all atoms (see Table XVI and Figure 24 for details).

2.3.2.1 Intrinsic flexibility

TM regions of βMPs have considerable intrinsic flexibility: the NMR structures have an

average mutual Cα-RMSD of 2.11 ± 0.79Å for the 7 βMPs with known NMR data (Table V,

Column 2). The difference between the NMR and X-ray structures is more pronounced, with an

average Cα-RMSD of 3.18± 1.16Å (Table V, Column 3). In contrast, the average Cα-RMSDs
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TABLE V: Flexibility of TM regions of βMPs and the accuracy of the prediction of
3D-BMPP. DTM

s1,s2 is the average of the mutual Cα-RMSD between structures s1 and s2.
* As no X-ray structures for these proteins are available, we used the first model of the NMR
data.

PDB code DTM
nmr,nmr DTM

nmr,X-ray DTM
pred,nmr DTM

pred,X-ray

1bxw 1.41±0.42 1.99±0.31 1.83±0.15 1.36
1qj8 2.50±0.74 2.48±0.80 3.11±0.46 2.65
1thq 1.99±0.58 4.53±0.38 5.30±0.42 3.32
2f1c 2.42±0.37 2.80±0.21 3.93±0.21 3.06
2f1t 2.13±0.35 4.30±0.11 4.08±0.14 3.12
2lhf 0.82±0.22 No X-ray 1.60±0.08 1.48*
2mlh 1.48±0.28 No X-ray 1.49±0.14 1.44*

Mean 2.11±0.79 3.18±1.16 3.09±1.39 2.35±0.82

of our predicted structures against NMR and X-ray structures are 3.09± 1.39 and 2.35± 0.82,

respectively (Table V, Column 4, 5). These differences are similar to the structural differences

originating from the intrinsic flexibility of the proteins, suggesting that our prediction of TM

regions of βMPs has excellent accuracy comparable to NMR structures.

2.3.2.2 Predicted structures of βMPs with novel folds.

It is challenging to predict the structures of βMPs with novel folds. βMPs were considered to

have even numbers of strands from 8 to 22 (77). A βMP is considered to have a novel fold when

its number of strands has not been observed in other experimentally determined structures. For

example, VDAC in mitochondria has an odd number (19) of strands (25); PapC, FimD, and

LptD all have more than 22 strands (24, 24, and 26, respectively). Predicting structures of a

number of βMPs including VDAC, FimD, and LptD with reasonable accuracy was not possible
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in a recent study (62), likely due to inaccurate residue contact predictions and limitations in

machine learning based procedure. Template–based prediction methods either fail to build any

model or generate very poor structures. With the improved modeling procedure of 3D-BMPP,

we are able to model the TM regions of the VDAC, FimD, PapC and LptD proteins with

a mainchain RMSD of 3.53Å, 4.74Å, 6.06Å and 7.25Å, respectively (Figure 9B). While the

structure of VDAC was previously predicted with an accuracy of 3.9Å (61) and 7.41Å (62), to

the best of our knowledge the structures of FimD, PapC, and LptD have not been successfully

predicted prior to this study. The large RMSDs of predicted structures of PapC and LptD

show that our current idealized cylindrical structural model cannot yet model deformed barrels

effectively.

2.3.2.3 Predicted structures of non-TM regions of βMPs

We also model the structures of the non-TM regions of βMPs, including the extended β-

sheets (extended barrels) and loops connecting adjacent strands. The extended barrels have

overall similar structures to those of the TM barrels. Including the extended barrel in our

prediction increases the coverage of the modeled structures by 20% when measured by the

average number of residues modeled in the 51 structures (159 in TM regions vs 191 in whole

barrel regions, with the largest modeled barrel structure containing 350 residues), with little

deterioration in the average mainchain RMSD (3.48Å vs 3.80Å).

2.3.2.4 Detailed prediction results of the barrel domains of all 51 βMPs

The set of 51 βMP structures are listed in Table XVI, along with the PDB codes, the

organism for the protein, the number of TM strands, and the RMSD values between the TM
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region and the TM+extended barrel regions of real and modeled structures for mainchain

and all atom models. It also lists the number of strands for which the strand register is

correctly predicted before and after global shear optimization. The TM-regions of the predicted

structures superimposed on experimentally determined structures are shown in Figure 24. A

plot showing the RMSD against the size of the proteins can be seen in Figure 10.

2.3.2.5 Comparison with a previous study.

The accuracy of structure prediction is not sensitive to size of βMPs. For example, the

prediction of a large βMP Iron(III) dicitrate transport protein FecA protein (237 TM residues)

has a 2.71Å RMSD. This is in contrast to other prediction methods, where there is considerable

deterioration in the quality of predicted structures (Table VI and Figure 10). The average TM-

score of our predicted structures also compare favorably with those of a recent study (0.73 vs

0.54) (62). Furthermore, our results are over a much bigger dataset (51 vs 17 proteins). Thus,

these results represent a very significant improvement. Moreover, the parametric structural

model of intertwined zigzag coils improves accuracy of sidechains, as the all atom RMSD has

improved by more than 1.30Å (4.26Å vs 5.60Å) compared to a previous study (61).

In a recent study, structures for 17 proteins (compared to the 51 proteins in this study)

were predicted with an RMSD of 6.66 Å(62), as the number of sequences available for the

remaining proteins is insufficient for computing sequence covariation. Our results show that

this limitation can be removed by combining patterns of H–bond and sidechain interactions

derived from experimentally resolved 3D structures with the sequence covariation information.

Figure 11 shows that even when the available sequences are insufficient for sequence covariation
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analysis alone (accuracy ∼ 30%), our model model can make accurate strand register prediction

(∼ 70%). Our improved modeling methodology can predict the 3D structures of 51 βMPs with

an average RMSD of 3.48 Å. Moreover, in Ref(62), TM-align was employed to assess accuracy

of predicted structures, which does not give the appropriate assessment of prediction accuracy.

TM-align is used when the correspondence or residue–residue mappings between two structures

are not known, as it will decide which portions of the sub–structures are sufficiently similar

for RMSD/TM-score calculation. In the case of computing the RMSD of a predicted structure

and a known PDB structure, direct mappings of all TM residues between the two structures

are already known and a straightforward direct RMSD calculation is required. We have carried

out a direct measurement of RMSD using predicted structures of Hayat et al. The RMSD

calculated using this approach is 6.66 Å, as compared to the reported 4.45 Å, which is the

average RMSD of a subset of TM residues selected by TM-align. In addition, the authors

of Ref(62) inflated their accuracy in strand register prediction by considering the predictions

that were off by ±1 register as correct. As there is a direct relationship between the sidechain

orientation and the functions of the proteins, this relaxed definition of “correct” registration

implies erroneous sidechain orientation and thus incorrect functional regions of the proteins.

2.3.3 Structures of loops.

The predicted loop conformations are diverse (Figure 12A), and represent the broad con-

formational space that is accessible to loops (78). Examples of predicted loops are shown in

Figure 12.
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TABLE VI: Protein size and average mainchain RMSD using different prediction methods.
Proteins with the number of strands ≤ 14 are grouped into the small dataset, those with >
14 and ≤ 20 strands are grouped into the medium dataset, and proteins with > 20 strands
are grouped into the large dataset. In contrast to the other prediction methods, the quality of
prediction of our methods, 3D-BMPP, does not deteriorate for large–sized proteins.

Method Small Medium Large

TMBpro–server, 2008 6.0 6.3 11.8
3D-SPoT, 2012 3.9 4.5 4.0
EVfold bb, 2015 4.9 7.7 9.3

3D-BMPP, 2018 3.0 3.9 4.0

Figure 10: RMSDs of our prediction against the size of the proteins. Each blue dot represents
one of the 51 predicted structures, while each red dot shows the average RMSD of predicted
structures with the same corresponding strand number.
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Figure 11: Our method on register prediction does not suffer from the limitation of requiring
a large number (∼ 1000) of available sequences for sequence covariation analysis. This figure
shows how the number of available sequences affect register prediction accuracy. The numbers
of sequences are found by HHblits (5). Each blue dot represents the register prediction for one
protein using our model, while each red dot represents the prediction made by the sequence
covariation analysis results alone (using Equation 2.4 and Figure 5). The blue and red curves
are fitted from the corresponding dots, respectively. The inset shows the details of proteins
when the available number of sequences is limited. In these cases, our model can still make
accurate prediction (accuracy at ∼ 0.7 = 70%) while the prediction made using covariation
analysis along is not reliable (∼ 0.3 = 30%)



38

TABLE VII: Comparison of the accuracy of loop prediction for βMPs. We are able to sample
most of the loop conformations seen in the NMR structures with <3Å deterioration in Cα-
RMSD.

PDB code Dbarrel
nmr,nmr ∆Dloop

nmr,nmr Dbarrel
nmr,pred ∆Dloop

nmr,pred

1bxw 2.78±0.72 3.83±1.25 3.35±0.51 3.00±0.55
1qj8 3.31±0.80 0.61±0.26 4.14±0.57 0.67±0.27
1thq 1.99±0.58 0.79±0.35 5.30±0.42 0.52±0.21
2f1c 3.33±0.61 3.76±0.94 5.29±0.50 2.78±0.48
2f1t 2.58±0.54 1.01±0.55 4.35±0.15 0.45±0.20
2lhf 0.85±0.24 1.94±0.60 1.63±0.09 2.05±0.27
2mlh 1.48±0.28 1.51±0.64 1.49±0.14 0.99±0.26

Mean 3.65±1.21 1.03±0.89 3.64±1.46 1.12±0.89

To assess the quality of the predicted loop conformations, we define a metric ∆Dloop
s1,s2 that

measures how Cα-RMSD between structures s1 and s2 is changed upon incorporation of the loop

regions: ∆Dloop
s1,s2 = Dwhole

s1,s2 −D
barrel
s1,s2 , where Dwhole

s1,s2 is the Cα-RMSD between the structures s1

and s2 including both the barrel and loop regions, and Dbarrel
s1,s2 the Cα-RMSD between the barrel

domains only. Since the number M of available NMR structures for each protein is limited

compared to our predictions (∼ 10 – 20 vs ∼ 400), we selected M predicted conformations

closest to the NMR structures by ∆Dloop
nmr,pred from the modeled ensemble for each protein. The

resulting ∆Dloop
nmr,pred’s calculated using these structures are < 3Å, with an average of 1.12±0.89

(Table VII Column 5), which is on par with the values of ∆Dloop
nmr,nmr (Table VII Column 3),

suggesting that we are able to sample the loop conformations observed in the NMR structures

accurately.
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Figure 12: Structure prediction of loop regions. (A) Ensemble of predicted loop structures of
OmpX (1qj8). (B & C) Examples of predicted loops on extracellular side (b, green) and on
periplasmic side (c, green) superimposed on the corresponding NMR structure (cyan) (6). The
black arrows indicate the big fluctuations in the barrel region.

2.4 Discussion

Due to the difficulties in experimental determination of membrane protein structures, there

are a limited number of structures of nonhomologous βMPs. However, it is estimated that

there are 15,000 βMPs across 600 different gram–negative chromosomes (79). Computational

modeling has the promise to provide working 3D models for these sequences, enabling novel

applications in nanopore engineering, drug design/delivery, as well as furthering understanding

of the structural basis of function and mechanism of these βMPs. We have developed a method

for predicting structures of βMPs, which combines a statistical mechanical model, sequence

covariation information, and global register optimization, with a parametric structural model

of intertwined zigzag coils. The results show that we can accurately predict structures of βMPs

with a significantly expanded coverage of extended β-sheets and loops.
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The incorporation of global register optimization increases the accuracy of the predicted

structures by 0.24Å on average, suggesting that global H–bond network cannot be approximated

accurately using local strand register alone. As an example, for the βMPs OmpA (PDB code:

1bxw), hypothetical protein HB27 (PDB code: 3dzm), and PagL (PDB code: 2erv), the strand

registers were predicted correctly for 6 out of 8 strands before global register optimization,

with an error in shear number of −4, −6, −6 respectively. After global register optimization,

the strand register was predicted correctly for 8, 6, 4 strands respectively, and the error in

shear number becomes 0 in all three cases. Moreover, the mainchain RMSD of these predicted

structures is improved by 2.7Å, 2.5Å and 1.5Å , respectively.

Our parametric model of intertwined zigzag coils captures the zigzag nature of a polypeptide

and the varied distance between Cα atoms of two adjacent strands, which depends on whether

the respective residues share a mainchain H–bond. This results in significant improvement in

RMSD for all atoms in general and sidechain atoms in particular. When we constructed struc-

tures of all 51 βMPs using our parametric model with true registers. The average mainchain

RMSD of these structures was 2.5Å. Given our prediction accuracy of 3.48Å in this study, only

∼ 1Å error on average is due to incorrect register prediction, while the 2.5Å error is due to the

structural deviation of βMPs from the ideal cylindrical shape.

Currently this ideal cylindrical model cannot capture ellipticity, twist, and curvature of local

surface of the deformed barrel domains such as those observed in PapC and LptD (Figure 9B),

and alternative hyperboloid models have been discussed in literature (80; 81). However, as

current understanding of the physical factors determining these geometric properties is incom-
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plete, further investigation of the heterogeneity of interactions in the TM region is required to

develop more accurate geometric model that can account for deformed barrel domain.

In a recent study, structures for only 17 proteins (compared to 51 proteins in this study) were

predicted (62), as the number of sequences available for the remaining proteins were insufficient

to analyze sequence covariation. Here, we show that this limitation can be removed by com-

bining patterns of H–bond and sidechain interactions derived from experimentally determined

3D structures with the sequence covariation information (Figure 11). Our method predicts the

3D structures of 51 βMPs with an average RMSD of 3.48Å, which compares favorably over the

recent study that has an average RMSD of 6.66Å (62).

Our method revealed basic organizational principles of βMPs and requires no template

structures. In addition, TM regions of βMPs with novel fold can also be modeled effectively,

as evidenced by the predicted structures of VDAC and FimD. Furthermore, non-TM regions

including both extended β-sheets and loops can be predicted accurately for the first time.

Overall, our method opens the possibility of structural studies of many βMPs, including those

in eukaryotic mitochondria and chloroplasts.



CHAPTER 3

EFFICIENT COMPUTATION OF TRANSFER FREE ENERGIES OF

AMINO ACIDS IN BETA–BARREL MEMBRANE PROTEINS

Adapted from Tian, W., Lin, M., Naveed, H., and Liang, J.: Efficient computation of trans-

fer free energies of amino acids in beta–barrel membrane proteins. Bioinformatics, 33(11):1664–

1671, 2017.

3.1 Introduction

The transfer free energies (TFEs) of amino acid sidechains from aqueous environment to

lipid bilayers provide the fundamental energetic contribution to the thermodynamic stability

of βMPs (38; 82). The TFEs have been measured experimentally using different systems.

Wimley and White used a set of peptides as the host and measured the water–to–octanol TFEs

(4). Hessa et al. further measured TFEs by investigating the degree of insertion of a set of

polypeptides through the translocon–meditated pathway into the endoplasmic reticulum (ER)

membrane (39). A more recent significant development was reported by Moon and Fleming,

who directly measured water–to–bilayer TFEs of amino acid residues in the context of a native

transmembrane (TM) protein and a phospholipid bilayer for the first time (1).

In the study of Moon and Fleming (1), the protein outer membrane phospholipase A (Om-

pLA) was used as the TM scaffold, and the position of residue 210 which is close to the midplane

of OmpLA was chosen as the host position Figure 13. The TFE of a residue from aqueous en-

42
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Figure 13: OmpLA and the residue 210. Figure adapted from Ref (1)

vironment to this position on the midplane of the lipid bilayer was measured, which is taken

as the difference between the free energies of the spontaneous insertion of the scaffolds with

that residue and with Ala at position 210. The TFEs of Leu and Arg to depths other than

the midplane of the bilayer were also reported (1). This study provided direct measurements

of the TFEs in the context of a whole protein. However, given the heterogeneity of the mem-

brane along the bilayer normal direction, the reported TFEs are specific to positions near the

midplane of lipid bilayers, except those of Leu and Arg. Moreover, experimental studies are

costly and limited to a handful of client proteins due to the technical difficulties in establishing

conditions for reversible folding (83; 84). It is therefore desirable to develop computational

methods that allow rapidly computation of TFEs of residues at different depths of any βMP.

Several knowledge–based methods can approximate the TFE with statistical potentials cal-

culated from depth–dependent propensities of amino acid residues (85; 86; 87; 88). However,

this approach neglects important physical interactions between residues that are known to be
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important (42). In addition, these methods can only estimate averaged TFEs, but do not

account for the specific local environment of a residue. TFEs have also been derived using

molecular dynamics (MD) simulations (89; 90). However, the choice of the reference state

remains a challenging problem, as reproducing TFEs of different residues requires different

reference states (89).

An ab initio computational method has been recently developed, which can be used to

compute the TFEs of TM residues in OmpLA (42). This method takes into account key

physical interactions in the TM region and enumerates all conformations of the TM region

in a reduced discrete conformational state space. While the computed TFEs of OmpLA are

in an excellent agreement with the experimentally measured values, the application of this

method is limited to βMPs with 14 or less TM strands, as the time cost of the enumeration

of conformations grows rapidly with the number of strands. A computationally more efficient

method is therefore necessary for larger βMPs.

Here we describe an approximation method to compute the TFEs of TM residues. Our

approximation method is based on the divide–and–conquer strategy for conformational state

enumeration, and allows rapid and accurate calculation of TFEs. We applied this new method to

OmpLA, and the computed TFEs are in excellent agreement with the experimentally measured

values. Our method can be used to derive the depth–dependent TFE profiles of all βMPs

currently known, including the largest one consists of 26 strands.
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TABLE VIII: The PDB codes of the βMPs used in this study.

Strand # PDB code

8 1bxw, 1p4t, 1qj8, 1thq, 2erv, 2f1t, 2lhf, 2mlh, 3dzm
10 1i78, 1k24
12 1qd6, 1tly, 1uyn, 2wjr, 3aeh, 3fid, 3kvn, 4e1s, 4pr7
14 1t16, 2f1c, 3bs0, 3dwo
16 1e54, 1prn, 2o4v, 2omf, 2por, 2qdz, 3vzt, 4c00, 4gey, 4k3c
18 1a0s, 2mpr, 2ynk, 3rbh, 3syb, 3szv
22 1fep, 1kmo, 1nqe, 1xkw, 2fcp, 3csl, 3v8x
24 2vqi, 3rfz
26 4q35

3.2 Methods and Materials

3.2.1 Dataset

We use 50 non–homologous βMPs (resolution 1.45Å– 3.2Å) with less than 30% pairwise

sequence identity for this study. The PDB codes of these proteins and the number of strands

for each βMPs are listed in Table VIII

3.2.2 Reduced state space

Bacterial βMPs currently with known structures have even number of anti–parallel β–

strands. Each strand of βMPs interacts with two neighbor strands via periodic repeating dyad

bonds, which are characterized as strong H–bonds, weak H–bonds, and non–H–bonds (Van der

Waals forces between sidechains) (91; 64; 3). We use a previously developed model to describe

the state space of conformations of the TM region of a βMP (34; 42). In this model, the TM

region of a βMP has n strands, each with a length of L. The model uses L = 16 based on
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the earlier study (3), but can take βMPs with TM strands of other length as input. A residue

on one strand interacts with residues on the two neighbor strands via the three different types

of interactions. The i-th strand can slide di residues away from its canonical central position,

which is set as di = 0 (Figure 14A). The canonical central position of a strand is determined

from the OPM database (92). A specific conformation of the TM region is therefore represented

by a n-dimensional vector d in the state space:

d = (d1, · · · , dn) ∈ Zn.

We limit the state space by constraining the sliding window of each strand to (−l, · · · , l). Thus,

the reduced state space Ω for the conformations of the TM region is :

Ω = {d|d = (d1, · · · , dn) ∈ (−l, · · · , l)n}.

The size of the state space is |Ω| = wn, where w = 2l + 1 is the width of the sliding window

of the strands. In this study, we use l = 3, which makes Ω cover large enough conformational

state space while remain tractable.
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Figure 14: The reduced state space and the enumeration of conformational states . A. A strand
interacts with neighbor strands through three different types of interactions (3). Each strand
can slide up or down l positions. B. In approximation algorithms, the TM region of a βMP is
divided into two half–barrel segments (grey) and two boundary strands (red).
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3.2.3 Computing the TFE of an amino acid residue

The energy of the i-th strand of a specific conformation d is calculated using the empirical

energy function

E(i; d) = wBEB(i,d) + wIntraEIntra(i,d) + wSHESH(i,d)

+wWHEWH(i,d) + wNHENH(i,d), (3.1)

where EB is the single residue burial energy, which depends on the residue location and the

sidechain orientation; Eintra is the energy of intrastrand interactions among residues with the

same sidechain orientation; ESH, EWH, and ENH are the energies contributed by the interstrand

strong H–bonds, the weak H–bonds, and the non–H–bonds, respectively. wB, wIntra, wSH, wWH,

and wNH are the corresponding weight coefficients. The derivation of the energy terms can be

found in Ref (93; 3) and the values of the weights can be found in Ref (42). The total energy

of the TM region of the βMP with a specific conformation d can then be computed as

E(d) =
n∑
i

E(i; d).

The partition function Zlip of the TM conformational ensemble buried in the lipid bilayer can

be calculated as

Zlip =
∑
d∈Ω

exp(−E(d)

kBT
). (3.2)
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The corresponding free energy is Glip = −kBT lnZlip. The TFE of a residue in the TM region

of the βMP from the aqueous environment to the lipid environment can be calculated as ∆G =

Glip−Gaq, whereGaq is the free energy of the TM region of the βMP in the aqueous environment.

For a specific amino acid residue in a given position of the TM region, its TFE with respect to

an alanine at the same position can be calculated as ∆∆Gres = (Gres
lip − Gres

aq ) − (Gala
lip − Gala

aq ).

Assuming Gala
aq = Gres

aq , we have

∆∆Gres = Gres
lip −Gala

lip . (3.3)

3.2.4 Exact algorithm of partition function calculation

3.2.4.1 Exact algorithm

The key step in calculating the TFEs is the computation of the partition function of the

conformational ensemble of the TM region of a βMP. This can be achieved after enumerating

all wn number of conformations in the reduced state space Ω. The algorithm is listed as

Algorithm 1.

We first enumerate the conformations of each strand–triplet (di−1, di, di+1) in the local

state space (−l, · · · , l)3 (Algorithm 1, lines 1–5). The energy E(i; di−1, di, di+1) of the middle

strand in a local conformation (di−1, di, di+1) is calculated using Equation 3.1, and the value

is stored (Algorithm 1, line 3). The energy E(d) of a specific conformation d of the whole

TM region is then calculated by summing up the precomputed energies of the corresponding

strands E(d) =
∑n

i=1E(i; di−1, di, di+1) (Algorithm 1, line 8). This is repeated for all the

conformations of the TM region of the βMP in the reduced state space. The partition function
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can then be calculated using Equation 3.2 (Algorithm 1, lines 7–10). With this algorithm,

every conformation of the TM region in the reduced state space is examined, and the partition

function is computed exactly.

Algorithm 1: Exact algorithm of partition function calculation

. enumerate strand--triplet conformations and precompute energies of

strands

1 for i← 1 to n do
2 foreach (di−1, di, di+1) ∈ (−l, · · · , l)3 do
3 E(i; di−1, di, di+1)← energy of the middle strand ;
4 end

5 end
. compute the partition function

6 Z ← 0;
7 foreach d = (d1, · · · , dn) ∈ (−l, · · · , l)n do
8 E(d)←

∑n
i=1E(i; di−1, di, di+1);

9 Z ← Z + exp(−βE(d));

10 end
11 return Z ;

3.2.4.2 Time complexity

The time cost of the precomputation of strand energies (Algorithm 1, lines 1–5) is O(nw3).

This is negligible compared to the enumeration of the whole TM region and the computation

of the partition function (Algorithm 1, lines 7–10). To compute the energy E(d) of a specific

conformation d, n number of additions (a) and 1 exponentiation (e) are required (Algorithm 1,
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TABLE IX: Average running time using the exact algorithm (Algorithm 1) and the approx-
imation algorithm with the histogram scheme (Algorithm 3) to calculate all 20 substitutions
for a given host position. These values are recorded from programs running on a 2600MHZ
CPU written in C++ programming language except those marked by ∗, which are extrapolated
based on the complexity analysis (Equation 3.4).

# of strands Exact Algorithm Approx. Algorithm

8 5.07 sec 3.70 sec
10 4.26 min 1.03 min
12 3.58 hr 4.26 min
14 8.01 day 8.84 min
16 1.25 yr∗ 12.80 min
18 70.03 yr∗ 19.05 min
22 2.12× 105 yr∗ 7.22 hr
24 1.15× 107 yr∗ 2.09 day
26 6.22× 108 yr∗ 15.22 day

lines 8–9). Since there are wn number of different conformations in the reduced state space,

the time complexity of computing the partition function is

O ((an+ e) · wn) = O (nwn) . (3.4)

The running time of Algorithm 1 is only feasible when the number of strands is small (n ≤ 14).

Calculation of the partition function of a βMP with more strands would requires unrealistic

amount of time as the time complexity is superexponential (Table IX).
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3.2.5 Approximation algorithm of partition function calculation

3.2.5.1 Approximation algorithm

To compute the partition function of a βMP with a large number of strands (n > 14), we

have developed an approximation algorithm based on the divide–and–conquer strategy, which

is listed as Algorithm 2. We first divide the TM region of the βMP into four components. The

first two components are the two half–barrel segments, consisting of strands from i = 2 to n
2

and from i = n
2 + 2 to n, respectively. The other two components are the two boundary strands

i = 1 and i = n
2 + 1, separating the two half–barrel segments (Figure 14B).

For strands in the half–barrel segments, energies of strands are precomputed the same as in

Algorithm 1 (Algorithm 2, line 4). For the boundary strands, interactions between the strand

and the neighbor strands are ignored, and only the single strand energy Ê(i; d) is precomputed

(Algorithm 2, line 5) as Ê(i; d) = wBEB(i,d)+wIntraEIntra(i,d), which is the summation of the

first two terms of Equation 3.1. Conformations of each half–barrel segment are then enumerated,

and energies of these conformations are calculated and stored (Algorithm 2, lines 13–16 and

17–20). The total energy of a given conformation d of the whole TM region is then calculated

by combining the energies of the corresponding half–barrel segments and the boundary strands

(Algorithm 2, line 23). Overall, the partition function can be computed by enumerating the

positions of the boundary strands and the local conformations of the half–barrel segments.

The calculated free energyG of the TM region is underestimated, as the interactions between

the boundary strands and the neighbor strands are ignored. We note that the TFE of a residue

in the interior of a half–barrel segment is not affected much, given that the underestimation



53

is systematic for both the free energy terms Gres
lip and Gala

lip in Equation 3.3. In addition, the

overall impact of neglecting strand–strand interaction for the boundary strands will decreases

as the number of the strands increases, since the number of the neglected interactions over the

number of the total interactions within the TM region decreases.

3.2.5.2 Strand reindexing

The TFE of a residue on a boundary strand or a neighbor strand may not be of sufficient

accuracy. This can be solved by simply reindexing the strands of the βMP, so that the strand

containing the residue of interest is no longer a boundary strand. Specifically, we set the index

of the strand containing the residue of interest to dn4 e + 1, and change the indices of all the

other strands accordingly: For instance, if the residue is located on the 1st strand of a βMP

with 8 strands, the strands can be reindexed as (3, 4, 5, · · · , 8, 1, 2) instead of (1, 2, 3, · · · , 6, 7, 8).

We then again use the 1st and the (n2 + 1)-th strands as the boundary strands with the new

indices. The residue of interest will be located on the middle strand of a half–barrel segment

after reindexing, which minimizes the accuracy loss out of the approximation.

3.2.5.3 Time complexity

In the approximation algorithm, w2 number of combination of the positions of the boundary

strands are enumerated (Algorithm 2, lines 9–10). For a given combination of the positions of

the boundary strands, the conformations of each half–barrel segment are enumerated, and their

contributions to the partition function are computed (Algorithm 2, lines 11–26). Each half–

barrel segment has n
2 − 1 number of strands, resulting in w

n
2
−1 number of local conformational

states. Thus, (n2 −2) ·w
n
2
−1 number of addition operations are required to compute the energies
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Algorithm 2: Approximation algorithm of partition function calculation

1 reindex the strands if necessary ;
. enumerate strand--triplet conformations and precompute energies of

strands

2 for i← 1 to n do
3 foreach (di−1, di, di+1) ∈ (−l, · · · , l)3 do
4 E(i; di−1, di, di+1)← energy of the middle strand ;

5 Ê(i; di)← single strand energy of the middle strand ;

6 end

7 end
8 Z ← 0;
. enumerate positions of the boundary strands

9 for d1 ← −l to l do
10 for dn/2+1 ← −l to l do

11 LE1 ← new list ;
12 LE2 ← new list ;

. compute energies of the 1st half--barrel segment

13 foreach (d2, · · · , dn/2) ∈ (−l, · · · , l)n/2−1 do

14 E1 ←
∑n/2

i=2E(i; di−1, di, di+1);
15 insert E1 to LE1;

16 end
. compute energies of the 2nd half--barrel segment

17 foreach (dn/2+2, · · · , dn) ∈ (−l, · · · , l)n/2−1 do

18 E2 ←
∑n

i=n/2+2E(i; di−1, di, di+1);

19 insert E2 to LE2;

20 end
. combine energies of the four components

21 foreach E1 in LE1 do
22 foreach E2 in LE2 do

23 E ← E1 + E2 + Ê(i; di) + Ê(n/2 + 1; dn/2+1);

24 Z ← Z + exp(−βE);

25 end

26 end

27 end

28 end
29 return Z ;
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of the local conformations. The time complexity of enumerating both segments (Algorithm 2,

lines 13–20) is O
(

2 · a · (n2 − 2) · w
n
2
−1
)

= O
(
a(n− 4)w

n
2
−1
)

. Since the contribution of one

half–barrel segment to the partition function is independent of the other segment, (w
n
2
−1)2 times

of combining both segments into global conformations are required (Algorithm 2, lines 21–22),

where each combining operation needs 4 addition and 1 exponentiation operations (Algorithm 2,

lines 23–24). Therefore, together with the w2 number of positions of the boundary strands, the

overall time complexity of this approximation algorithm is

w2 ·O
(
a(n− 4)w

n
2
−1 + (w

n
2
−1)2 · (4a+ e)

)
= O

(
nw

n
2 + wn

)
. (3.5)

To summarize, the first term O
(
nw

n
2

)
of Equation 3.5 comes from energy calculation of the

two half–barrel segments, while the second term O (wn) comes from combining energies into

partition function. The overall complexity shows an exponential running time when n is large.

3.2.6 Approximation algorithm with histogram scheme

3.2.6.1 Histogram scheme

To further improve the approximation algorithm, we developed a histogram scheme which

reduces the time complexity of Equation 3.5. The approximation algorithm using this histogram

scheme is listed as Algorithm 3. We record both the maximum and the minimum energies

of each middle strands (Algorithm 3, lines 8–9) when enumerating the local conformation of

strand–triplets, from which the upper and the lower bounds of the energies of the two half–
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barrel segments can be estimated (Algorithm 3, lines 12–13). The range of energy for each

half–barrel segment is then divided into small intervals, each associated with a bin to record

the number of conformations of the half–barrel segment whose energy falls within this interval.

When calculating the energies of the conformations of the two half–barrel segments, we only

need to record the number of hits of each bin instead of storing the energy values (Algorithm 3,

lines 21–22 and 26–27). Note that the histogram scheme can also be used in the exact algorithm

to reduce the running time (Algorithm 4).

3.2.6.2 Time complexity

With this histogram scheme, the time complexity of combining the two half–barrel segments

(Algorithm 3, lines 29–36) no longer grows exponentially with the number of strands (the

second term in Equation 3.5), but depends only on the bin size and the ranges of the energies

(max1 −min1 and max2 −min2). In practice, the number of bins for a half–barrel segment

is typical less than 104, resulting in a much smaller cost to combine the energies of the two

half–barrel segments, namely, 108 additions, instead of the 1010 ∼ 1020 additions required in

Algorithm 2. With the histogram scheme, the second term O(wn) in Equation 3.5 becomes

roughly a constant for large n. Although the first term O(nw
n
2 ) remains superexponential, it

is much smaller than O(wn) when n > 14. TFEs of the largest βMP currently known (n = 26)

can be effectively computed using Algorithm 3.
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Algorithm 3: Approximation enumeration with histogram scheme

1 reindex the strands if necessary ;
. enumerate strand--triplet conformations and precompute energies of

strands

2 for i← 1 to n do
3 minEi ← +inf ;
4 maxEi ← -inf ;
5 foreach (di−1, di, di+1) ∈ (−l, · · · , l)3 do
6 E(i; di−1, di, di+1)← energy of the middle strand ;

7 Ê(i; di)← single strand energy of the middle strand ;

8 minEi ← min(minEi , E(i; di−1, di, di+1), Ê(i; di));

9 maxEi ← max(maxEi , E(i; di−1, di, di+1), Ê(i; di));

10 end

11 end
. estimate the ranges of the energies of the half--barrel segments

12 [min1,max1]← [
∑n/2

i=2 minEi ,
∑n/2

i=2 maxEi ];
13 [min2,max2]← [

∑n
i=n/2+2 minEi ,

∑n
i=n/2+2 maxEi ];

14 LBl ← new bin list covers range [min1,max1];
15 LBr ← new bin list covers range [min2,max2];
16 Z ← 0;
. (continue on the next page) ;
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Algorithm 3: (Cont’d) Approximation enumeration with histogram scheme

. enumerate positions of the boundary strands

17 for d1 ← −l to l do
18 for dn/2+1 ← −l to l do

. compute energies of the 1st half--barrel segment

19 foreach (d2, · · · , dn/2) ∈ (−l, · · · , l)n/2−1 do

20 E1 ←
∑n/2

i=2E(i; di−1, di, di+1);
21 from LB1 get bin b1 corresponding to E1;
22 b1 ← b1 + 1;

23 end
. compute energies of the 2nd half--barrel segment

24 foreach (dn/2+2, · · · , dn) ∈ (−l, · · · , l)n/2−1 do

25 E2 ←
∑n

i=n/2+2E(i; di−1, di, di+1);

26 from LB2 get bin b2 corresponding to E2;
27 b2 ← b2 + 1;

28 end
. combine energies of the four components

29 foreach b1 ∈ LB1 do
30 foreach b2 ∈ LB2 do
31 E1 ← the energy value corresponding to bin b1;
32 E2 ← the energy value corresponding to bin b2;

33 E ← E1 + E2 + Ê(i; di) + Ê(n/2 + 1; dn/2+1);

34 Z ← Z + b1 · b2 · exp(−βE);

35 end

36 end

37 end

38 end
39 return Z ;
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3.3 Results

3.3.1 Accuracy of the approximation algorithm

The exact algorithm was previously used to calculate the TFEs of the 20 amino acid residues

at the position 210 of OmpLA, and the results are in excellent agreement with experimental

measurements (42). To evaluate the accuracy of the approximation algorithms, we compare

results computed using the approximation algorithms on a collection of βMPs with strand

number n ≤ 12 with results computed using the exact algorithm. Specifically, for each lipid–

facing host position in the TM region of a βMP, the TFEs of all 20 amino acid substitutions

are calculated using the approximation algorithm (AA), the approximation algorithm with

reindexing (AAR), and the exact algorithm. For each host position, each method generates a

20 dimensional vector of the TFEs of the 20 amino acid substitution. The root–mean–square

error (RMSE) between the vectors computed using the approximation algorithms and using

the exact algorithm is then calculated to assess the accuracy of the approximation algorithms.

For instance, an RMSE value of 0.1 kcal/mol indicates that the error of the TFEs of a given

residue calculated by the approximation algorithm is on average 0.1 kcal/mol compared to the

exact algorithm, and this level of accuracy is sufficient. Examples of the 20 dimensional vectors

and of the RMSEs can be found in Table XVII.

Table X summarized the accuracies of the approximation algorithms. For AA, the calculated

TFEs residues around boundary strands (BD) are less accurate than those of the residues in

interior of half–barrel segments. When strand reindexing is applied (AAR), the accuracy is

improved significantly.
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TABLE X: The average RMSEs between the results of the approximation algorithms and of
the exact algorithm. The column BD shows the RMSEs of the TFEs of the residues on or
neighboring a boundary strand, while the column non–BD shows the RMSEs of the residues in
the interior of a half–barrel segment. Small RMSE values correspond to high accuracy.

AA AAR

# of strands BD non–BD overall

8 0.3436 0.1603 0.2743 0.1519
10 0.4773 0.1863 0.3350 0.0950
12 0.3430 0.0875 0.1932 0.0461

As expected, the accuracy improves as the number of strands increases for both AA and

AAR. The accuracy of AAR is already adequate when the number of strand is as small as 12,

indicating that AAR will give accurate results for larger βMPs.

Bin size for the histogram scheme

To identify the appropriate size of the small energy intervals, or the bin size, used in the

histogram scheme, we assess the accuracy of results calculated using a version of the exact algo-

rithm where the histogram scheme is used (Algorithm 4) by comparing with results calculated

with the original exact algorithm (Algorithm 1). Different bin sizes are tested. The accuracy

improves as the bin size decreases (Table XI), and is already sufficiently accurate when the bin

size is set to 0.01 kcal/mol. Indeed, using the approximation algorithm with reindexing and

the histogram scheme at the bin size of 0.01 kcal/mol, the calculated TFEs of the host position

210 in OmpLA are in excellent agreement with the experimental data (Figure 15) as the exact

algorithm (42). There is a deviation of our result of Pro from that of the experimental measure-
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TABLE XI: The RMSEs between results of exact algorithms with and without the histogram
scheme. Different bin sizes (BS) are tested. The unit of the bin sizes is kcal/mol.

# of strands BS=1 BS=0.1 BS=0.01 BS=0.001

8 0.2000 0.0385 0.0042 0.0004
10 0.2375 0.0422 0.0052 0.0005
12 0.1660 0.0318 0.0203 0.0003

TABLE XII: Comparison between the method in this study and the other computational meth-
ods. The R2 of the results of each computational method is calculated against experimentally
measured values (1). The original column is calculated with all 20 amino acids, while the
filtered column is calculated with Cys, Met, Thr, Trp, and Tyr excluded.
1: Data of Cys not reported.
2: Data of Trp and Tyr not reported.
3: Data of Cys, Met, and Thr not reported.

R2 Original Filtered

Adamian et al.(85) 0.73 0.73
Slusky et al.1(88) NA 0.32

Schramm et al.2(86) NA 0.53
Hsieh et al.3(87) NA 0.66

This study 0.81 0.80

ment. We note that the TFE of Pro is known to have wide discrepancy among different scales

(4; 39; 1). Comparison between the results of our method and other computational studies is

shown in Table XII.
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Figure 15: TFE ∆∆G210s at the host position 210 of OmpLA. Computed TFEs are shown
in blue bars. Experimentally measured values are shown in red bars. The results of the
approximation method correlate well with the experimental data with an R2 of 0.81 (inset).
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3.3.2 Efficiency of the approximation algorithms

Compared with the exact algorithm, the approximation algorithm using the histogram

scheme has significantly improved computing efficiency (Table IX). For all βMPs we tested,

including the largest βMP currently known (n = 26), the computation of TFEs at any host

position can be completed in a realistic amount of time.

3.3.3 Transfer free energy profile of a large βMP

With guaranteed accuracy and efficiency of the approximation algorithm, we are able to

extend the calculation of TFEs beyond small βMPs to medium and large βMPs. We calculated

TFEs for residues in the TM region of lipopolysaccharide transport proteins D (LptD, PDB

code: 4q35) (57), which has 26 TM strands. The full set of 116 lipid–facing host positions in

the TM region are systematically substituted to all the 20 amino acids, and the corresponding

TFEs calculated. By averaging the TFEs of the same amino acid residues in the same depth

of lipid bilayer following ref (42), we obtained the depth–dependent TFE profile of this βMP

(Figure 16). As the outer membrane is highly heterogeneous, the energy cost of transferring

one residue into positions of different depth in the lipid bilayer is different, which is consistent

with the profile of OmpLA previously reported (42). Moreover, comparison of these two TFE

profiles suggest that they are highly correlated (R2 = 0.94) despite their differences in size,

assembly state, and function.

3.4 Discussion

The free energies of transferring amino acid sidechains from an aqueous environment to lipid

bilayers quantify the fundamental energetic contributions to the thermodynamic stability of the
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Figure 16: The depth–dependent TFE profile of lipopolysaccharide transport proteins D (PDB
code: 4q35). The profile was calculated by systematically substituting each residue at all
lipid–facing host positions in the TM region to the other 19 amino acids. The averages and
the standard deviations of the calculated TFEs of the same amino acid substitution at host
positions of the same depth are plotted. The position index of the depth is 0 at the midplane,
and -4 – -1 on the periplasmic leaflet and 1 – 4 on the extracellular leaflet.
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TM regions of TM proteins. A previously reported ab initio method can successfully calculate

the TFEs of the lipid–facing residues of OmpLA, a βMP with 12 strands (42). However, the

method was not applicable to large βMPs since it requires an unrealistic amount of computing

time. We have developed an efficient approximation method based on the divide–and–conquer

strategy and a histogram scheme. The new algorithm enables us to compute TFEs of residues

for all βMPs currently with known structures.

In the new approximation method, we first divide the TM region of a βMP into two half–

barrel segments, and enumerate conformations of each half–barrel segment. The energies of the

half–barrel segments are then combined into the partition function of the whole TM region.

In general, the TM region of a βMP can be divided into k number of partial–barrel segments,

and conformation enumeration and partition function combination can be carried out in a way

similar to that of dividing the TM region into just two half–barrel segments. Without the

histogram scheme, the time complexity of an algorithm with k partial–barrel segments will be

O
(

(n− 2k)w
n
k

+k−1 + wn
)

, where the first term comes from the conformation numeration and

the energy calculation of the partial–barrel segments, and the second from combining these

energies into the partition function. Since the second term dominates the time complexity,

increasing k will not reduce the running time significantly while reducing the accuracy. There-

fore, we chose k = 2 in this study, and introduced a histogram scheme which further reduces

the second term of the time cost to roughly a constant.

Our current study focuses on the βMPs located in the bacterial outer membrane. However,

other βMPs, such as the VDAC protein in mitochondria and the beta–barrel toxins such as α–
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hemolysin and γ–hemolysin can also be studied using our methods. While the bacterial outer

membrane is asymmetric, as the outer leaflet consists of lipopolysaccharides, the membrane

environments for VDAC and the beta–barrel toxins are symmetric. This difference can be taken

into account with minor modification to the empirical energy function used in the computation

as demonstrated in (42). Another difference with VDAC is that it has an odd number of

strands, resulting in the parallel N– and C–terminal strands instead of the anti–parallel N– and

C–terminal strands in all the other βMPs. This can be accounted for by using the appropriate

H–bond pattern for this unique strand pair.

Furthermore, our method does not require knowledge of experimentally solved or compu-

tationally predicted structures, as long as the sequences of the TM region can be determined.

Several methods predicting TM segments from the sequence can be used to identify TM strands

(47; 94; 48). The absolute accuracy in strand prediction is not required. For example, devia-

tions of the midplane position will have limited effects in the computed TFEs, as the correct

position will be included during enumeration, and those conformations with significant devia-

tions will have higher energy and contribute little in their Boltzmann factors. As an example,

we calculated the TFEs of the position 210 of OmpLA using the TM segments predicted by

BOCTOPUS2 (48), and the results agree well with the experimental results (R2 = 0.76).

βMPs are drawing increasing attention because of their potential applications in bionan-

otechnology, including protein profiling (18), DNA sequencing (19), and small molecule detec-

tion (20). With our new methods, we can derive the depth–dependent TFE profile of each

βMPs, which may help in understanding the general folding principles and membrane insertion
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processes of βMPs, as well as in delineating the structure–function relationship of a specific

βMP. Such knowledges may also help in tailoring natural βMPs or designing artificial βMP

channels with desired stability.



CHAPTER 4

GETFEP: A GENERAL TRANSFER FREE ENERGY PROFILE OF

TRANSMEMBRANE PROTEINS

4.1 Introduction

A widely used measure to estimate the stabilities of membrane proteins is the transfer

free energies (TFEs), which quantify the free energies of transferring amino acid residues from

aqueous environment into lipid bilayers. The computational method described in the previous

chapter enables us in efficient and reliable calculation of TFEs of any lipid–facing TM resides

in βMPs (see Chapter 2 and Ref (53) for details). However, it is still useful if a general TFE

profile applicable for all βMPs can be derived, which will not only help us in understanding

βMP folding process and structure–funciton relationship, but also facilitate efficient evaluation

of future engineering and design of βMP nanopores.

Although experiments can measure TFEs of specific residues in certain systems(4; 36; 39; 1),

the technical challenges and high cost restrain large scale measurements. Complementing ex-

perimentally measured TFEs, several hydrophobicity scales have been derived computationally,

which can aid in our understanding of the governing principles of membrane protein folding

(95; 96; 97). The EZα and EZβ empirical potentials are knowledge–based hydrophobicity

scales. They have been successfully applied in predicting the positioning of membrane pro-

teins in the lipid bilayer, in discriminating sidechain decoys, and in identifying protein–lipid

68
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interfaces (98; 87). However, these scales obtained from statistical analysis do not consider the

physical interactions either between residues from neighboring helices/strands or within the

same helix/strand, which are known to be important for membrane protein folding(99; 100).

There have also been studies based on molecular dynamics (MD) simulations to calculate TFEs

(101; 89; 102), although the choice of the reference state before membrane insertion remains a

challenging task (89).

In this study, we use the our new TFE calculation method to compute the depth–dependent

TFE profile of each βMP in a non–redundant set of 58 βMPs. After examining their overall

patterns, we found that there exists a general TFE profile applicable to all βMPs, which we call

the General Transfer Free Energy Profile (GeTFEP). The GeTFEP agrees well with previously

measured and computed TFEs. Analysis based on GeTFEP shows that residues in different

regions of the TM segment have different roles during the membrane insertion process. Our

results further reveal the importance of the sequence pattern of TM segments in stabilizing

βMPs in the membrane environment. In addition, we also show that GeTFEP can be used

to predict positioning and orientation of βMPs when embedded in the membrane, with overall

results in good agreement with experimental data. Furthermore, we show that the GeTFEP

can be used to locate structurally or functionally important sites of βMPs. In addition, TM

segments of α–helical membrane proteins (αMPs) can also be accurately predicted using the

GeTFEP, suggesting that the GeTFEP captures fundamental thermodynamic properties of

amino acid residues inside membrane, and has general applicability in studying membrane

protein.
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4.2 Materials and methods

4.2.1 Dataset

We use 58 non–homologous β–barrel membrane proteins with less than 30% pairwise se-

quence identity for this study. The PDB codes are: 1a0s, 1bxw, 1e54, 1ek9, 1fep, 1i78, 1k24,

1kmo, 1nqe, 1p4t, 1prn, 1qd6, 1qj8, 1t16, 1thq, 1tly, 1uyn, 1xkw, 1yc9, 2erv, 2f1c, 2f1t, 2fcp,

2gr8, 2lhf, 2lme, 2mlh, 2mpr, 2o4v, 2omf, 2por, 2qdz, 2vqi, 2wjr, 2ynk, 3aeh, 3bs0, 3csl, 3dwo,

3dzm, 3fid, 3kvn, 3pik, 3rbh, 3rfz, 3syb, 3szv, 3v8x, 3vzt, 4c00, 4e1s, 4gey, 4k3c, 4pr7, 4q35,

7ahl, 3b07, 3o44.

4.3 Results

4.3.1 GeTFEP: General Transfer Free Energy Profile

4.3.1.1 Computation of TFE profiles of βMPs

Using the computational method to calculate TFEs (see Chapter 2 and Ref (53) for details),

we calculate the depth–dependent TFE profiles for each βMP in the dataset. Briefly, for each

βMP, we substituted each lipid–facing residue in the TM region to the other 19 amino acids.

We calculated the TFEs of each amino acid substitution using Ala as the reference. The TFE

profile of the protein was then obtained by taking average of the TFE values of the same amino

acid type at the same depth position in the membrane. As an example, Figure 16 shows the

computed TFE profile of the protein LptD, the largest βMP with known structure (PDB code:

4q35).
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4.3.1.2 Derivation of the general TFE profiles of βMPs by clustering analysis.

Although the 58 βMPs are in different oligomerization states, have different sizes (strand

numbers) of TM segments, and come from different organisms, their TFE profiles are remarkably

similar. To see if the profiles have similar patterns, we clustered the 58 TFE profiles using

hierarchical clustering. We used euclidean distance between the TFE profiles of the βMPs and

single linkage in the hierarchical clustering, and evaluated the clustering using the silhouette

score, In practice, a > 0.5 silhouette score indicates a good clustering Our results show that

it is not reasonable to cluster the βMPs into two groups, since the silhouette score is < 0.5

at 2 clusters (Figure 17A). When we increase the number of clusters, the silhouette score

keeps decreasing. Therefore, we conclude that only one group exists for our βMP dataset.

Figure 17B visualizes the cluster result after the profiles of βMPs are reduced to a 3D space

using the Principal Component Analysis (PCA).

In the hierarchical clustering, we also tried other parameter settings with correlation distance

and/or other reasonable linkages (eg. average linkage or weighted linkage), and the conclusion

remains the same.

Results of clustering analysis show that the 58 βMPs can be grouped into only one group

(with 56 βMPs) and two outliers: α– and γ–hemolysins (PDB codes: 7ahl and 3b07). Unlike

the other βMPs, the TM regions of both α– and γ–hemolysins are formed by repeated β–hairpin

(Figure 25B), which make their TFE profiles highly sensitive to the composition of the β–hairpin

and the local interactions of residues within the hairpin (Figure 25 C and D). Accordingly, we

further investigate whether α– and γ–hemolysins have truly different thermodynamic properties
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Figure 17: A. Visualization of the βMP TFE profiles after reduced to a 3D space via PCA. B.
The silhouette scores for different cluster numbers of the βMP TFE profiles.
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than the other βMPs, or their outlier status is due to the special architecture of repeated β–

hairpins.

We first computed the TFE profiles of artificially generated hemolysin–like βMPs con-

structed by repeating each β–hairpin in our βMP set. Altogether, we computed TFE profiles

for 778 artificial hemolysin–like βMPs. We then sampled from these profiles with replacement,

and computed the distribution of the distance from each sampled profile to the average profile of

all sampled artificial βMPs. The distances from the TFE profiles of both α– and γ– hemolysins

to the average profile are at the 80th percentile in the distance distribution (Figure 18B), in-

dicating that α– and γ–hemolysins are not fundamentally different in their thermodynamic

properties from other βMPs. Therefore, we conclude that a general TFE profile exists and is

applicable to all βMPs, including α– and γ–hemolysins. We derive the General Transfer Free

Energy Profile (GeTFEP) by averaging the TFEs of a specific amino acid at the same lipid

bilayer depth position for all 58 βMPs (Figure 18C).

4.3.1.3 Comparison with other hydrophobicity scales

We then examine how GeTFEP compares with other hydrophobicity scales. Since most

experimentally measured scales are not depth–dependent, we first compare the scale of the

TFEs at the hydrocarbon core position of depth 0 in the GeTFEP with other hydrophobicity

scales. We refer this hydrophobicity scale as the mid–GeTFEP scale. The mid–GeTFEP

scale correlates well with the experimentally measured hydrophobicity scales, having Pearson

correlation coefficients r = 0.83 with the WW–scale, and r = 0.92 with the Bio–scale. It also

correlates well with the computational βMP OmpLA scale(42; 53), with r = 0.90 (Figure 26).



74

Figure 18: Derivation of the GeTFEP. A. Results of hierarchical clustering shows that all
βMPs in the dataset can be group into one cluster, except α– and γ–hemolysins (7ahl and
3b07). B. The distribution of distance between the sampled TFE profiles of the artificially
constructed hemolysin–like βMPs and their average TFE profile. The distances of both α–
and γ–hemolysins are at the 80th percentile of the distribution. C. The General Transfer Free
Energy Profile (GeTFEP) of each residues (blue), and the corresponding curves fitted by 3rd
degree polynomials (red).
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Figure 19: Comparison between the GeTFEP and the experimentally measured MF–scale.
A. The mid–GeTFEP scale agrees well with the MF–scale, except Pro and His. B. The
depth–dependent TFEs of Arg and Leu of GeTFEP also agree well with the experimental
measurements (1).

When compared with the experimentally measured MF–scale of the βMP OmpLA mid–

GeTFEP has a correlation of r = 0.87. One noticeable difference between mid–GeTFEP and

the MF–scale is that the TFE value of His is less unfavorable in mid–GeTFEP (Figure 19A).

This is expected since the MF–scale was measured in acidic condition at pH=3.8, where His

was fully protonated (1). The different value in mid–GeTFEP likely reflects the property of

His in physiological conditions of the outer membrane.

Another notable difference is Pro. It is found that Pro is unfavorable in the membrane

environment according to the mid–GeTFEP scale, while it is found to be favorable according

to the MF–scale (Figure 19A). Pro tends to disrupt the structures of both α–helix and β–sheet,
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and is thermodynamically unfavorable in the non–polar core of the membrane(103). The value

of Pro in the GetFEP–mid scale reflects the general situation.

We then examined the depth–dependency of the GeTFEP of Arg and Leu, whose exper-

imental results are available (1). Their TFEs at different depth positions of the membrane

are in good agreement with the experimentally measured values, with r = 0.87 for Arg and

r = 0.75 for Leu (Figure 19B), suggesting the GeTFEP captures the depth–dependency of

TFEs of amino acids.

4.3.2 Insertion of βMPs into membrane

4.3.2.1 βMP insertion as a thermodynamically driven spontaneous process

Upon synthesis in the cytoplasm, βMPs need to be transported across the periplasm and

then folded into the outer membrane. As there is no energy source such as ATP in the periplasm,

it was suggested that the free energies of βMP folding provide an adequate source to ensure

successful periplasm translocation (82). A computational study showed that the TFE of lipid–

facing residues of the hydrophobic core regions are indeed the main driving force for membrane

insertion (42). Analysis also showed that lipid–facing residues in the TM regions of of βMPs

have clear patterns of amino acid composition (3). However, it is still unclear whether the

insertion of βMPs into the membrane is primarily due to the extensive property of the hy-

drophobicity of lipid–facing residues, or the specific pattern of amino acid composition also

plays important roles.

To investigate this question, we employed a simplified βMP insertion model based on the

concerted folding mechanism proposed in Ref (7). We ignore the effects of non–TM loops
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and discretizes the insertion process into 17 steps (Figure 20A). We take the position recorded

in the widely–used Orientations of Proteins in Membranes (OPM) database(92) as the fully

inserted position of each βMP. This position is denoted as the reference position 0, and the

other positions are indexed accordingly from −8 to +8. βMPs start the insertion process at

position −8 from periplasmic side and become fully inserted into the membrane at position

0. From position 0 to +8, βMPs would translocate across the membrane. We assume that

the stability of the TM region of a βMP can be approximated by summarizing TFEs of all

lipid–facing residues in the membrane region. The stability of the βMP at each position was

then calculated using the GeTFEP following this additive model. As an example, Figure 20B

shows stability of the protein OmpA (PDB code: 1bxw) at different insertion positions. Overall,

results of all βMPs show a funnel–like pattern of insertion energy (Figure 20C). Most βMPs (52

of 58) have the minimum free energy when they are fully inserted into membranes (position 0.

See Table XVIII and Table XIX for details). The funnel–like pattern indicates that the insertion

of βMPs into outer membranes is indeed a spontaneous process. βMPs become energetically

trapped after being fully inserted.

For the βMPs (6 of 58) which are not most stable when fully inserted, the mismatch could

come either from wrong fully inserted positions or insufficiency of the additive model. However,

the most stable steps of all these βMPs are close to step 0 (steps 1 or -1), and the minimum

TFEs are close to the TFEs of step 0 as well (Table XIX). Nevertheless, we use only the 52

βMPs with energetic minimum in step 0 for the further tests in the next section.
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Figure 20: Illustration of the membrane insertion process of βMPs. A. The simplified βMP
insertion model following Ref (7). B. The computed insertion energies of the OmpA protein
at different depth positions. Contribution of different regions are color coded. C. Illustration
on how free energies change with the position of βMP in the membrane. The dashed red
segments show that lipid–facing residues in extracellular head group region sometimes become
energetically unfavorable.
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4.3.2.2 Importance of patterns of TM lipid–facing residues in membrane insertion

We then examine if the funnel–like insertion energy pattern arises from the extensive prop-

erty of the TFEs of the hydrophobic residues alone. We considered only the 52 βMPs whose

minimum free energies are at the fully inserted position. We first shuffled the sequences of

the β–strands within the TM segment of each βMP. While the sidechain direction as well as

the interstrand H–bond pairing at each residue position in β–strands are maintained, all TM

residues are permuted. Each βMP is shuffled 2,000 times. We found that it is highly unfavorable

to insert the shuffled βMPs into the membrane. This is expected, since the shuffling changes

hydrophobicity of TM segments βMPs. Before the shuffling, the ionizable/polar residues were

enriched among lumen–facing residues of βMPs, while lipid–facing residues were mostly apolar.

After the shuffling, they were much evenly distributed.

We then investigate how insertion energy is affected if only the lipid–facing residues are

shuffled. While the insertion of the shuffled βMPs remains energetically favorable (see Figure 21

for an example), shuffled βMPs are less stable compared to the original βMPs at the fully

inserted position for 50 out of 52 βMPs: The insertion energy for the shuffled βMPs is on

average 6.36 kcal/mol higher (Table XVIII). In addition, the fully inserted position (position

0) is no longer the most stable position for 17.4% of the shuffled βMPs (Table XVIII). These

results indicate that the locational patterns of lipid–facing residues (22) in the TM region are

optimized for βMPs to gain stability in the membrane environment.
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Figure 21: An example of the insertion TFEs (Omp32, PDB code:1e54). A. The insertion TFEs
of the intact Omp32 shows a funnel pattern. B. The insertion TFEs of the residue–shuffled
Omp32 regardless of sidechain directions. C. The insertion TFEs of the lipid–facing–residue–
shuffled Omp32

4.3.2.3 Roles of residues in different TM regions during membrane insertion

The TM segment of a βMP can be divided into three regions, namely, the periplasmic

headgroup region, the hydrophobic core region, and the extracellular headgroup region(3). We

investigate how these regions contribute to the insertion energy of the βMP. We found that

residues in the same regions across all 52 βMPs shared similar patterns in their insertion free

energy profile (Figure 20C), indicating that they play similar roles in the insertion process.

Among these, lipid–facing residues of the extracellular headgroup region facilitate the initial-

ization of the insertion process, as they are energetically favorable in the interfacial region on

the periplasmic side (position -8 and -7). As insertion proceeds, these residues become less fa-

vorable and occasionally unfavorable when they become more embedded in the membrane. At

this time, lipid–facing residues of the hydrophobic core region start to be inserted in the mem-
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brane, and strongly drive the insertion process (position -6 to -2). When lipid–facing residues of

the extracellular headgroup region approach the interfacial region of the extracellular side, they

become energetically favorable again. At the same time, lipid–facing residues of the periplasmic

headgroup region become inserted (position -1 and 0), and the TFE of the whole βMP reaches

its minimum at position 0.

Although lipid–facing residues of the hydrophobic core region are known to provide the main

driving force for membrane insertion of βMPs (42), we found that the TFEs of hydrophobic

core region do not reach their minimum when βMPs are fully inserted at position 0 for all 52

βMPs. Upon incorporation of contributions from other regions, the overall TFEs of the whole

βMPs indeed reach the minimum at the fully inserted position. The “W” shape of the free

energy curves of the two head group regions (the red and green curve in Figure 20C) suggests

that lipid–facing residues in these regions act like “energetic latches” to lock βMPs into their

fully inserted position.

4.3.2.4 Prediction of βMP positioning and orientation in the membrane

GeTFEP can be used to predict positioning and orientation of βMPs in the membrane,

similarly to previous studies (98; 87). Here, the membrane is idealized as an infinite slab with a

thickness of h. Each βMP is initially positioned in the membrane with its center of mass of the

barrel domain at the midplane of the membrane and its barrel axis aligned with the Normal

direction (z–axis) of the membrane (Figure 22A). The protein can be rotated around the x–

and y–axes with angles θx and θy, respectively. The two rotation angles together determine

the tilt angle of the protein. The protein can also be translated with a displacement dz. This
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Figure 22: Prediction of positioning and orientation of βMPs. A. The positioning and orien-
tation of the βMP inside the membrane are determine by the rotation angles θx and θy, the
translation displacement dz, and the membrane thickness h. B. The funnel–like landscape of
the stability of the BtuB protein. It shows how rotation angles affect the stability of BtuB
when dz and h are fixed.

displacement and the membrane thickness determine the TM segment of the protein. When

embedded in the membrane, the lipid–facing residues of the TM region and the loop residues are

used to calculate the total energy of the βMP using the GeTFEP. As an example, Figure 22B

shows how rotation angles θx and θy affect the stability of the protein BtuB (PDB code: 1nqe)

when the displacement dz and the membrane thickness h are fixed.

We systematically examine the parameter combination of θx, θy, dz, and h. A βMP is

predicted to take the position and the orientation when the lowest free energy is reached. The
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TABLE XIII: Comparison between the predicted positioning and orientation and experimental
results (2) of βMPs.

Protein PDB code Experiment GeTFEP OPM
TM tilt (°) FhuA 2fcp 46.0∗ 38.2 38.3

OmpA 1bxw 44.5∗ 40.2 38.7

Membrane FhuA 1fep ≥ 23.1 23.5 24.3
thickness (Å) OmpF 2omf ∼ 21.0 22.8 25.2

BtuB 1nqe ≥ 20.2 23.0 23.4
∗ The experimentally measured tilt angles are the upper bounds of the actual values (2).

predicted protein tilt angles of all 58 βMPs correlate well (r = 0.76) with OPM records(92).

The average protein tilt angle of 7.3° is consistent with that of 6.2± 1.8° recorded in the OPM.

The strand tilt angles and the membrane thickness predicted are again in good agreement with

experimentally determined results (Table XIII).

4.3.3 Prediction of structurally and functionally important sites of βMPs

While overall the computed TFEs of lipid–facing residues of βMPs follow the general pattern

of the GeTFEP, the TFE values of a specific residue in a particular βMP can deviate significantly

from values in the general profile. For a lipid–facing residue in a βMP, we calculate the z–score

of its TFE by z = TFE−µ
σ , where µ and σ are respectively the mean and the standard deviation

values in GeTFEP of the same amino acid in the same depth. We consider the deviation to

be significant when z > 1.64 or < −1.64 (which correspond to 5% and 95% in the Normal

distribution).
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Among all 3,500 lipid–facing residues in the TM segments of all 58 βMPs, we find that

305 or 8.7% of the residues have TFE values deviate significantly from the GeTFEP. Since

lipid–facing residues are overall the major contributors to the stability of βMPs as discussed

above, the deviation from the general profile indicate that the residue is likely to have important

roles other than providing stability. To understand the origin of these deviations, we examined

three proteins in details, namely, OmpLA, PagP, and PagL, which have sufficient experimental

information. We found that most deviant residues either have functional roles or have local

structures quite different from residues in the canonical model of beta barrels (Table XIV).

Among the deviant residues in OmpLA, 142H and 156N are both in the catalytic triad

(104; 105) that are essential for its phospholipase activities; 40L and 92Y are the sites where

substrates bind (28); Furthermore, the deviant residue 116P interacts with 92Y and 142H

through H–bonds. Among the deviant residues in PagP, 69L interacts with the out–clamp α–

helix of PagP (106); 27I and 125L are both at the lateral routes where β–hydrogen bonding is

absent (Figure 23), which ensure that substrates can access the protein interior so that PagP

can carry out its enzymatic functions (11). In PagL, the deviant residue 108I is in the ligand

binding site (107), and 126H is part of the catalytic triad of its enzymatic site (108).

As the calculation of TFEs does not require knowledge of 3D structures of βMPs, our

results suggest that deviation analysis can help to discover functional sites and/or structurally

anomalous sites using sequence information only. While our analysis is restricted to three

proteins due to the limited nature of experiment data, we believe overall deviant residues play
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TABLE XIV: Predicted important sites in OmpLA, PagP and PagL by deviation analysis

Protein Residue Notes

38N
40L Substrate binding (28)
92Y Substrate binding (28)

OmpLA(1qd6) 116P Interstand neighbor of 92Y and 142H
120L
142H Catalytic site (104; 105)
156N Catalytic site (104; 105)
237L

27I Lateral route from membrane to protein interior (106)
PagP(1thq) 69L Interact with the out–clamp α–helix (106)

125L Lateral route from membrane to protein interior (106)
131L

PagL(2erv) 108I Ligand binding site (107)
126H Catalytic site (108)

special roles in either performing biological function or in maintaining the unique structural

form of βMPs.

4.3.4 GeTFEP can predict TM region of α–helical membrane proteins

Although the MF–scale was measured in the βMP system, it was suggested that the scale

is also applicable to TM region of αMPs, since the MF–scale has a strong correlation with the

nonpolar solvent accessible surface areas of the residues (1). We hypothesize that the GeTFEP

may also reflects fundamental thermodynamic properties of transferring sidechains of amino

acids to the membrane environment, regardless whether the residue is in a β–barrel or a α–

helical membrane protein. We carried out the standard hydropathy analysis (40) using the
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Figure 23: Predicted important sites of PagP. Residues 27I and 125L are at the sites where the
H–bonds between the β–strands are disrupt. 69L has interaction with the out–clamp α–helix
of PagP.

Membrane Protein Explorer (MPEx) program (8) on 131 αMPs obtained from the MPTopo

database(109). Since MPEx uses depth–independent hydrophobicity scales, we used the mid–

GeTFEP scale for our calculation.

The results show that this simple analysis correctly predicts both the TM regions and the

numbers of the TM segments for 90 or ∼69% of the 131 αMPs in the dataset (see Figure 27A for

an example). This compares favorably to other hydrophobicity scales, including those measured

or derived from αMPs (Table XV). For most of the remaining 41 proteins, GeTFEP correctly

predicted the TM regions, but predicted the numbers of the TM segments incorrectly due to

the ambiguity in assignment of whether two consecutive TM segments should be considered as

one TM segment (see Figure 27B for an example). Examination of the number of TM residues

correctly predicted by the mid–GeTFEP scale show that we achieves a precision of ∼85% and
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a recall of ∼71%, which compares favorably to other hydrophobicity scales (Table XV). These

results suggest that the GeTFEP reflects fundamental thermodynamic properties of amino acid

residues inside membrane, and can be used to study the general stability of both α–helical and

β–barrel membrane proteins.

4.3.4.1 The validity of transfer free energy value of Pro in the GeTFEP

We further examine the TFE value of Pro in the mid-GeTFEP scale, which is qualitatively

different from that in the MF–scale. We swapped the value of Pro from MF–scale into the mid–

GeTFEP scale, and used this Pro–swapped scale in the hydropathy analysis. This is reasonable

as the mid–GeTFEP scale is strongly correlated with the MF–scale, and has comparable values.

However, we found that the precision of predicting TM residues deteriorates significantly from

85% using the mid–GeTFEP scale to 72% using the Pro–swapped scale (Table XV). This

result suggests that Pro is more likely to be membrane unfavorable as characterized by the

mid–GeTFEP scale rather than membrane favorable as characterized by the MF–scale.

4.4 Conclusions and discussion

In this study, we derived the General Transfer Free Energy Profile (GeTFEP) from a non–

redundant set of 58 βMPs. We showed that the GeTFEP agrees well with previous exper-

imentally measured and computationally derived TFEs. The GeTFEP reveals fundamental

thermodynamic properties of amino acid residues inside membrane environment, and it is use-

ful in analysis of stability and function of membrane proteins (110).

As the lipid membrane bilayer is anisotropic along the bilayer normal (111), a residue at

different depth of the membrane will have different interaction with lipid molecules in the
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TABLE XV: Prediction of TM segments and residues αMPs. The mid-GeTFEP scale performs
better than the other hydrophobicity scales. The first three scales are measured or derived in
α–helical systems, the others in βMPs.

Hydrophobicity αMPs % (#) with TM TM res. TM res. TM res.
scale segs. correctly predicted precision recall F–measure

WW–scale 50%(66) 73% 75% 0.74
Bio–scale 22%(29) 95% 21% 0.34
EZα 49%(64) 71% 77% 0.74

MF–scale 48%(63) 77% 65% 0.70
Pro–swapped 49%(64) 72% 74% 0.71
mid–GeTFEP 69%(90) 85% 71% 0.78

environment, resulting in the depth–dependency of TFEs. However, there are few experimental

measurements of TFEs at different depth positions other than the hydrophobic core, except

Arg and Leu (1). Comparison between the GeTFEP and the experimentally measured values

of Arg and Leu shows that the GeTFEP captures this depth–dependency well.

In addition, the GeTFEP exhibits asymmetric values between TFEs of residues in the

membrane inner leaflet (depth -4 to 0) and in the outer leaflet (depth 0 to +4, Figure 18C).

Most βMPs in our dataset resides in the bacterial outer membrane, whose outer leaflet contains

additional complex lipolysaccharides in contrast to its inner leaflet of phospholipids. This

asymmetry in membrane composition results in the asymmetry of the TFEs in the GeTFEP.

To understand membrane proteins in an environment of symmetric membrane leaflets, we also

derived a symmetric TFE profile, named sym–GeTFEP, by mirroring the TFE values of the

inner leaflet side of the GeTFEP (Figure 28). In this study, the sym–GeTFEP was used
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to analyze the non–outer–membrane βMPs, e.g. α– and γ–hemolysins and vibrio cholerae

cytolysin.

We explored the energetic contribution of different regions of βMPs during the membrane

insertion process. Our analysis showed that the stability of βMPs does not come alone from the

extensive property of the hydrophobicity of lipid–facing residues in the TM segment. Rather,

the pattern of the amino acid residues in the TM segment also play significant roles. Results

from analysis of sequence shuffling show that the patterns and location of amino acid residues

are optimized to stabilize βMPs in the membrane environment. Using the GeTFEP, we are

also able to predict membrane positioning and orientations of βMPs.

The GeTFEP can also be used to detect structurally or functionally important residues

in βMPs. This can be achieved by examination of residues whose TFEs deviate significantly

from the GeTFEP. As calculation of TFEs of residues of a specific βMP only requires rough

estimation of relative positions between adjacent β–strands, which can be reliably predicted

from the protein sequence (61; 76), computing the TFE deviation therefore requires only se-

quence information. The GeTFEP–deviation analysis can aid in discovery of functional sites or

structurally important sites in novel βMPs, without requiring knowledge of their 3D structures.

In addition, GeTFEP–based analysis can aid in design and engineering of novel βMPs.

Furthermore, we demonstrated that GeTFEP can be used to predict TM residues of αMPs.

Results showed that GeTFEP performs better than the hydrophobicity scales measured/calculated

in αMP systems, suggesting that the GeTFEP reflects fundamental thermodynamic properties
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of amino acid residues inside membrane, and can be used to study the general stability of both

α–helical and β–barrel membrane proteins.



CHAPTER 5

CONCLUSION

In this thesis, we have developed computational methods to predict 3D structures of βMPs

and to calculate transfer free energies of residues in βMPs. In addition, we have dervied a

general transfer free energy profile based on the systematical calculation of TFEs of βMPs.

5.1 3D structure prediction of βMPs

We predicted interstrand interaction between β–strands of βMPs using a combination of an

empirical energy function and information from sequence covariation analysis. We are able to

predict the strand registers at an accuray of 85%, which is a big improvement from previous

studies. We then introduced a global shear optimization scheme to adjust the registers predicted

from local information. This optimization step help to improve the accuracy of further 3D

structure construction. We also developed a parametric structural template named intertwined

zigzag coil model, which captures major geometric properties of the barrel domains of βMPs, to

construct their 3D structures. In a blind test of 51 nonhomologous βMPs, including proteins for

which no prediction has been attempted before, our method generates accurate 3D structures of

TM regions with an average main-chain rmsd of 3.48Å. which is a significant improvement over

previous studies. In addition, predictions are expanded to include non-TM regions, including

both extended β–sheets and loops, resulting in over 30% increase in the coverage of residues

compared with previous methods.

91
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5.2 Transfer free energy computation

In this study, we improved a method for calculation of transfer free energy of βMPs (42).

Although the original method can accurately calculate TFEs, its application is limited to only

small βMPs due to its computational complexity. We have introduced several approximation

schemes, resulting in large reducing in time cost of TFE computation with little loss of the

computational accuracy. The new method is efficient and applicable to all bacterial TMBs

regardless of the size of the proteins.

5.3 GeTFEP: General Transfer Free Energy Profile for membrane proteins

In this study, we derived a TFE profile named General Transfer Free Energy Profile (GeT-

FEP) based on systematical computation of the TFEs of 58 βMPs. The GeTFEP agrees well

with experimentally measured and computationally derived TFEs. Analysis based on the GeT-

FEP shows that residues in different regions of the TM segments of βMPs have different roles

during the membrane insertion process. Results further reveal the importance of the sequence

pattern of transmembrane strands in stabilizing βMPs in the membrane environment. In addi-

tion, we show that GeTFEP can be used to predict the positioning and the orientation of βMPs

in the membrane. We also show that GeTFEP can be used to identify structurally or function-

ally important amino acid residue sites of βMPs. Furthermore, the TM segments of α–helical

membrane proteins can be accurately predicted with GeTFEP, suggesting that the GeTFEP

captures fundamental thermodynamic properties of amino acid residues inside membrane, and

is of general applicability in studying membrane proteins.
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Figure 24: Structure prediction of TM regions. Predicted structures of the TM regions (green)
are superimposed on experimentally determined structures (cyan). (Continue on the next page)
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Figure 24: (Cont’d) Structure prediction of TM regions. Predicted structures of the TM regions
(green) are superimposed on experimentally determined structures (cyan).
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Algorithm 4: Exact algorithm with the histogram scheme. This algorithm is compared
with the exact algorithm without the histogram scheme (Algorithm 1 in the main text)
to determine the appropriate bin size.

. enumerate strand--triplet conformations and precompute energies of

strands

1 for i← 1 to n do
2 minEi ← +inf ;
3 maxEi ← -inf ;
4 foreach (di−1, di, di+1) ∈ (−l, · · · , l)3 do
5 E(i; di−1, di, di+1)← energy of the middle strand ;
6 minEi ← min(minEi , E(i; di−1, di, di+1));
7 maxEi ← max(maxEi , E(i; di−1, di, di+1));

8 end

9 end
. estimate the ranges of the energies of the TM region

10 [minE ,maxE ]← [
∑n

i=1 minEi ,
∑n

i=1 maxEi ];
11 LB ← new bin list covers range [minE ,maxE ];
12 Z ← 0;
. compute the partition function

13 foreach d = (d1, · · · , dn) ∈ (−l, · · · , l)n do
14 E ←

∑n
i=1E(i; di−1, di, di+1);

15 from LB get bin b corresponding to E;
16 b← b+ 1;

17 end
18 foreach b ∈ LB do
19 E ← the energy value corresponding to bin b;
20 Z ← Z + b · exp(−βE);

21 end
22 return Z ;
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TABLE XVII: Examples of the 20D TFE vectors calculated using our methods. The RMSEs
between the results calculated from the approximation algorithm (Algorithm 3) and the exact
algorithm (Algorithm 1) are listed in the last row. The average RMSEs in Table X and Table XI
in the main text are computed from this kind of vectors of corresponding residues.

seqid 210 120

Algorithm 1 3 1 3

A 0.0000 0.0000 0.0000 0.0000
R 3.2799 3.2081 2.0733 2.0717
N 3.2325 3.1320 1.8049 1.8016
D 4.1038 3.7979 1.6017 1.6030
C 0.3648 0.3667 -0.5673 -0.5664
Q 2.0878 2.0105 1.6194 1.6192
E 2.7305 2.6250 1.6726 1.6726
G 1.1782 1.1580 0.2463 0.2467
H 3.5356 2.8931 -0.3928 -0.3904
I -1.4800 -1.4935 -2.3433 -2.3410
L -2.2877 -2.2880 -3.1131 -3.1105
K 3.8210 3.7209 4.0928 4.0737
M -0.6982 -0.6919 -0.9090 -0.9246
F -1.8795 -1.8751 -1.5421 -1.5400
P 1.5798 1.4134 2.9298 2.9030
S 1.6882 1.6822 1.6991 1.6942
T 1.0420 1.0432 1.0402 1.0412
W -0.2927 -0.3090 0.3138 0.3139
Y -0.6041 -0.5941 -0.3928 -0.3922
V -1.4205 -1.4311 -1.6605 -1.6590

RMSE 0.1699 0.0083
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A B

C D

7ahl 3b07

Figure 25: Structures and TFE profiles of α– and γ–hemolysin. A. A typical TFE profile of
βMPs (FptA, PDB code: 1xkw). B. The structures of α–hemolysin (PDB code: 7ahl) and
γ–hemolysin (PDB code: 3b07) Both TM segments are constructed with repeated β–hairpins.
C. The TFE profile of α–hemolysin. D. The TFE profile of γ–hemolysin. Since the structures
are both repeated hairpin, there is only one data point for each amino acid residue in every
depth of their profiles.
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TABLE XVIII: The insertion TFEs of WT and lipid–facing residue–shuffled βMPs calculated
with GeTFEP. The ∆∆G shows the differences between TFEs of the WT βMPs at step 0 and
the average of the minimum TFEs of the lipid–facing residue–shuffled βMPs. (Continue on the
next page)

PDB code Position w/ min ∆∆G min ∆∆G mis–insertion # (of 2,000) ∆∆∆G

1bxw 0 -23.58 616 1.63
1e54 0 -46.03 66 7.90
1ek9 0 -58.23 403 10.35
1fep 0 -61.58 35 8.53
1i78 0 -30.88 216 4.58
1k24 0 -33.41 163 1.99
1kmo 0 -60.55 16 7.95
1nqe 0 -49.83 91 6.18
1p4t 0 -25.68 282 3.61
1prn 0 -43.02 959 9.74
1qd6 0 -34.92 559 7.02
1qj8 0 -21.53 196 4.15
1t16 0 -45.64 08 9.88
1thq 0 -23.10 253 5.52
1tly 0 -28.58 415 2.42
1uyn 0 -33.95 128 4.81
1xkw 0 -59.91 133 9.54
2erv 0 -24.56 398 4.54
2f1c 0 -43.85 473 0.14
2f1t 0 -23.14 280 3.00
2fcp 0 -52.14 717 6.73
2lhf 0 -16.19 757 2.89
2lme 0 -34.17 525 -2.64
2mlh 0 -26.15 676 1.55
2mpr 0 -36.30 688 9.95
2o4v 0 -48.16 190 7.11
2omf 0 -37.71 98 8.65
2por 0 -32.70 994 8.12
2qdz 0 -52.23 289 10.44
2vqi 0 -43.92 441 15.28
2wjr 0 -33.58 72 5.30
2ynk 0 -44.68 141 7.75
3aeh 0 -25.59 471 6.23
3b07 0 -5.14 1670 0.67
3bs0 0 -47.60 95 6.18
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TABLE XVIII: (Cont’d) The insertion TFEs of WT and lipid–facing residue–shuffled βMPs
calculated with GeTFEP. The ∆∆G shows the differences between TFEs of the WT βMPs at
step 0 and the average of the minimum TFEs of the lipid–facing residue–shuffled βMPs.

PDB code Position w/ min ∆∆G min ∆∆G mis–insertion # (of 2,000) ∆∆∆G

3csl 0 -70.94 11 9.55
3dwo 0 -48.32 41 9.17
3dzm 0 -33.27 86 1.26
3kvn 0 -36.38 116 6.60
3pik 0 -36.54 779 4.83
3rbh 0 -41.60 162 6.78
3syb 0 -45.97 236 10.70
3szv 0 -55.25 129 12.65
3v8x 0 -58.94 68 13.24
3vzt 0 -25.56 1018 4.71
4c00 0 -36.32 147 6.76
4e1s 0 -36.20 112 7.20
4gey 0 -49.42 164 8.25
4k3c 0 -48.53 92 6.36
4pr7 0 -38.13 104 3.15
4q35 0 -55.56 97 12.52
7ahl 0 -3.93 1246 -0.49

Summary 17.4% 6.36± 3.70
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TABLE XIX: The computed insertion TFEs of the 6 βMPs that do not have the minimum
energy at position 0. However, their most stable position is close to 0, and the minimum TFEs
are close to their TFEs at position 0. Nonetheless, we exclude these 6 βMPs in our other
analysis of membrane insertion stability.

PDB code Position w/ min ∆∆G min ∆∆G Position 0 ∆∆G

1a0s 1 -29.77 -30.92
1yc9 -1 -48.40 -49.94
2gr8 -1 -22.74 -24.37
3fid -1 -35.96 -36.37
3o44 1 -23.77 -29.70
3rfz -1 -43.08 -43.46
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Figure 26: Comparison between the mid–GeTFEP scale and other hydrophobicity scales. The
mid-GeTFEP scale agrees well with previously measured or derived hydrophobicity scales.
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Figure 27: Hydropathy analysis with mid–GeTFEP. The blue segments are the known TM
segments, while the red ones are predicted by the hydropathy analysis. The analysis was carried
out using Membrane Protein Explorer (MPEx) (8) A. An example (AChR pore α subunit)
shows both the TM region and the number of the TM segments are correctly predicted. B. An
example (AChR pore γ subunit) shows the predicted number of the TM segments are wrong,
though the TM regions are correctly predicted.
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Figure 28: The sym–GeTFEP for symmetric membranes. This profile is derived by mirroring
the left part (depth -4 to -1) of the original GeTFEP.
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