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SUMMARY

Deadlock is found to be one of the most complex problems that can negatively impact the

reliability of programs. If deadlocks are not detected and resolved, this can cause permanent

thread blockage. Typically, current deadlocks’ resolver are based on computation rollback and

timeout, which leads to significant delays and inefficient utilization of resources. Therefore, this

research presents Deadlock Detector and Solver (DDS), which has the capability to effectively

detect and resolve deadlocks in Java programs without requiring code annotations and with a

modest performance overhead. DDS depends on a supervisory controller that aims at moni-

toring program execution. DDS efficiently detects deadlocks caused by hold-and wait cycles on

monitor locks. Unlike existing deadlock detectors and solvers, upon detecting a deadlock, DDS

employs a preemptive approach to break up the deadlock. Hence, the aim of this empirical

research is to detect and resolve deadlocks at runtime. The research aims to assess the effec-

tiveness of DDS on benchmarks of deadlocking and non-deadlocking programs. It will further

examine the effects and causes of deadlocks within Java programs.

The functionality adopted for detecting and resolving deadlocks is based on the lock graph

consisting of vertices and directed edges. The size of the graph is further optimized for efficiency.

If the running application does not have any contention for locks and if no thread requests a

resource that is not available at that moment, then the lock graph will be empty. For each

lock contention, a vertex is added for each the requester and owner threads. With each edge

xvi



SUMMARY (Continued)

addition, the graph is checked for the presence of a cycle. When a thread acquires the resource it

was waiting for, the corresponding edge from the graph is removed, along with incident vertices.

The technique to resolve a deadlock depends on preempting a lock in the detected deadlock

cycle. The thread holding the lock is called the “victim” thread. In this strategy, the lock is

returned to the victim thread once another thread has used it. Nevertheless, in order to make

this strategy function, it was crucial that one of the threads in a deadlock is suitable to be

victimized. In this regard, a preprocessing technique is employed, which is aimed at detecting

threads that can be victimized without affecting the program state. In order to achieve this, the

location of source code is identified in which a thread acquires a lock. Consider the following

scenario: The thread changes the object secured by the lock or a shared object positioned in

the path between the two synchronized points, and the thread attempts to acquire a second

lock prior to releasing the first lock. In this scenario, a harmful statement is defined as a source

code statement that alters a locked object or a shared object before a second lock is requested

by a specified thread. Here, the preprocessor stores synchronized points. The preprocessor also

locates the statements that request and release the locks. At last, the preprocessor observes

and assesses the statements for possibly harmful statements in potential deadlock locations. As

a result, a so-called synchronization tree was created, which captures all locking data from the

Java application including both reentrant locks and intrinsic (monitor) locks. The tree shows

all flows of calls among locking statements in the source code.

In addition, the preprocessor generates a list of harmful statements along with their loca-

tions. The preprocessor annotates the locations of the harmful statements, which is included
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SUMMARY (Continued)

in the generated list. The annotation process is done using Software Transactional Memories

STMs—a nonblocking methodology to ensure that any write operation is made atomically. The

annotation process ensures the consistency of the program state in the runtime monitoring when

a deadlock occurs and we have no candidate “victim” thread.

Our empirical findings show that DDS has the ability to solve deadlocks in Java programs

without considerable runtime overhead. The probability of deadlocks is however lower than the

samples of the experiment. The research found an average overhead performance of about 5.93%

with respect to regular performance—when running the benchmarks without injecting harmful

statements— of the deadlock detector and solver. This shows that STM has no significant

effect. In the absence of deadlocks, there will be no effects on the flow of the program. Hence,

DDS can effectively function without affecting the semantics of the program under monitoring.

It involves a modest runtime overhead. The findings of the research showed that the DDS

method is scalable and does not incur a noticeable overhead with the increase in the number of

synchronization points and the number of threads. It is also found that the combination of lock

preemption and software transactional memory can be effectively used to resolve deadlocks at

runtime.

xviii



CHAPTER 1

INTRODUCTION

The introduction of this chapter have been previously published in:

• E. Aldakheel, U. Buy and S. Kaur, “DDS: Deadlock Detector and Solver,” 2018 IEEE In-

ternational Symposium on Software Reliability Engineering Workshops (ISSREW), Mem-

phis, TN, 2018, pp. 216-223. doi: 10.1109/ISSREW.2018.00009

• E. Aldakheel, “Deadlock Detector and Solver (DDS),” 2018 IEEE/ACM 40th Interna-

tional Conference on Software Engineering: Companion (ICSE-Companion), Gothenburg,

2018, pp. 512-514.

It is observed that multicore hardware development is consistent with the increasing ten-

dency towards the use of concurrent software. Software developers are increasingly found to be

making use of language constructs like Java threads so as to leverage the abilities of multicore

hardware (1).

In cases where data structures are shared by more than one thread, successful avoidance

of data races is heavily dependent on synchronization of object. The occurrence of data races

takes place if the data structure is concurrently accessed by several threads, with a minimum

of one instance of this access changing the shared data structure. However, object locking can

lead to deadlocks, which can be very challenging to trace via testing given their tendency of

self-manifestation.

1
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1.1 The Deadlock Problem

Deadlock is a highly complicated challenge in that it can cause serious impact on the consis-

tency and reliability of multithreaded programs with multiple asynchronous threads. Deadlocks

take place when a number of threads are mutually blocked thereby preventing a resource from

being accessed by another thread (2). The current deadlock resolving methods are typically

comprised of timeout and rollback mechanisms. To recover from deadlocks, a common practice

is to rollback computations, but this is likely to cause considerable delays. If deadlocks are left

undetected, they may lead to permanent thread blockage (1).

The following discussion begins with a brief background of the research problem. Accord-

ingly, background information encompasses a preview of multicore hardware as well as its rela-

tionship with Java threads. Later, a discussion of this research problem continues with various

scenarios of deadlock. The first situation entails the well-known problem of dining philosophers’,

whereas the second one is a banking transaction that clearly shows the mechanism in which

aliasing can result in deadlocks. Here, we also highlight the problem statement. In addition,

this chapter presents the discussion of the research problem, with a focus on demonstrating its

significance as an important research area. This is expounded in detail in Section 1.1.3 below.

1.1.1 Background Information

The concept of multicore computing platforms has evolved over the past decade, and its

use has increased. The aim of the platforms is to exploit the computational power of multicore

hardware through the ability to execute multiple threads simultaneously (1). In order to exploit

multicore hardware, software developers need to utilize concurrency within their software pro-
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grams to maximize the capabilities of hardware (2). The benefit of the resultant concurrency

is faster program execution. The inclusion of object synchronization is known to be important

for avoiding data races, which refers to a situation when the data structure gets concurrently

shared by several threads, wherein one such access makes changes in the shared structure.

The high-level programming language - Java is known as one of the first ones that added

threads for supporting concurrency in execution (3). In addition, Java supports thread synchro-

nization with object-locking mechanisms like intrinsic locks, reentrant locks, and semaphores.

In Java programming, a thread functions as an autonomous path of execution. In the program-

ming, every thread has the ability to execute a synchronously with respect to other threads.

Prior to accessing a shared object, a thread is first required to acquire a mutual exclusion lock

on the object. In the case of the lock not being owned by any thread, the thread trying to

obtain the lock will succeed in acquiring it. In the opposite case, the thread needs to wait

while the lock is not available. However, concurrency brings about certain complex bugs due to

its non-deterministic behavior. Software developers experience the deadlock problem as one of

the main challenges affecting program reliability. Deadlock occurs when a hold-and-wait cycle

takes place concerning locked objects. In addition, it is particularly difficult to detect deadlock

using testing because it is inclined to occur non-deterministically.

We found that DDS has the ability to resolve deadlocks by effectively preempting an intrinsic

lock or reentrant lock from a thread introduced in a deadlock. Each instance of a Java class has

an intrinsic lock associated with it. A thread has the ability to obtain the lock on an object with

either a synchronized block or a synchronized method. When the lock on a particular object
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is achievable, a synchronized block can be executed. In this scenario, the thread executing

the synchronized block obtains the lock and runs the block. Once the thread completes the

function of the block, the lock is released. No other threads are allowed to obtain the lock.

A synchronized method works by locking the object receiving a method invocation; when the

method returns, the lock is released. In either case, a thread is blocked and required to pause

if the requested lock is not available (4).

Reentrant locks provide additional flexibility, because they are obtained and released at

arbitrary locations within the program code. Hence, the scope of the locking is not limited to

a single block similar to intrinsic locks. A thread sends a request and releases a lock by calling

the lock and unlock functions on a lock object. In the event a thread requests a lock which

is already under the hold of another thread, the requester’s thread will be blocked until the

release of the resource.

1.1.2 Illustrative Examples of the Problem

The deadlocks can be best explained and illustrated through the example of the dining

philosophers’ problem in which five philosophers are dining at a table, as shown in Figure 1.

On the table, there are five bowls and five forks, with one bowl and one fork for each philosopher.

In order to eat philosophers, require two forks located adjacent to their respective bowls. After

finishing eating, they are able to continue to think after placing the fork over the table. In this

example, it is reasonable to view philosophers as threads, whereas forks could be regarded to be

resources. In the event that all philosophers pick up their right fork first, deadlock takes place

because each philosopher cannot acquire the left fork, which another philosopher is holding.
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Figure 1: Deadlocking scenario for the dining philosophers’ problem with five philosophers—
named Ph#—where each philosopher holds the fork to the right—named fork#—and blocked
to their left fork—named fork# mod 5.
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public class Account{

double balance;

int id;

public void withdraw(double amount){

balance -= amount;

}

public void deposit(double amount){

balance += amount;

}

public void transfer(Account from, Account to, double amount){

synchronized(from){

from.withdraw(amount);

synchronized(to){

to.deposit(amount);

} //release(to);

} //release(from);

}

}

Figure 2: Deadlocking scenario in banking transaction when running transfer(x, y) and
transfer(y, x) simultaneously by two different threads. (Adapted from (5)).

Locking mechanisms tend to interact with other language features such as aliasing. This can

be explained in the following way: Consider a simple banking transaction, as shown in Figure 2.

Two threads try to execute money transfer from account x to account y and vice versa. Two

threads that make attempts to gain access (control) over the resource (account) in the opposite

order, thus causing deadlocks.

1.1.3 Significance of the Problem

In Java programming, deadlock is one of the most complex yet critical issues that can con-

siderably affect the reliability of concurrent programs. The occurrence of deadlocks is attributed

to the blockage of multiple threads, while simultaneously accessing a shared resource demanded

by a different thread. The conventional methods to resolve deadlocks mainly depend on roll-

back mechanisms and timeout. However, recovery from deadlocks mostly entails the rollback
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Figure 3: Overview of DDS approach contains monitoring a running program and preemption
action when the deadlock occurs represented by dashed arrow.

of computations, causing considerable delays. Therefore, this study is significant because it

evaluates DDS and provides an assessment of the efficiency of DDS in resolving deadlocks.

The aim of the thesis is to resolve deadlock with the help of DDS while executing a program

without decreasing concurrency and with uncertain time and space overheads. In this regard,

the method of DDS mainly comprises three elements: a preprocessor, a detector and a resolver

algorithm.

1.2 Overview of the Approach

This research introduces a complete solution based on a supervisory controller called the

deadlock detector and solver (DDS). DDS continuously monitors a running program to detect

and resolve deadlocks at runtime, as shown in Figure 3.
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1.2.1 Our Supervisory Controller

The approach adopted to carry out the research includes three components: runtime dead-

lock detector, runtime deadlock solver, and preprocessing. At the runtime, the DDS employs

two components: the detector algorithm and the solver algorithm. The purpose of this detector

and solver is to monitor, detect, and resolve deadlocks at runtime. The detector algorithm

performs the detection of deadlocks through monitoring the way locks are requested, obtained,

and released.

Before we explain the components of our approach, we must define our scope and assump-

tions. The DDS approach detects and resolves resource deadlock automatically at the runtime.

The detection and resolution of resource deadlock involves intrinsic locks and reentrant locks.

We performed an interprocedural analysis and an alias analysis offline during the preprocessing

phase. The purpose of these analyses was to identify “harmful statements” within the source

code, which represents places in the program where preempting a lock could affect the program’s

consistency. We assume that the monitored application does not contain any semaphores, which

could contribute to the deadlock. In addition, we assume that the application does not have I/O

statements when STM is used. If an I/O statement is presented in a method that is protected

using STM, then STM cannot rollback the effects of those statements.

1.2.1.1 Detector Algorithm

The functionality for detecting and resolving deadlocks is based on the lock order graph,

referred to here as the lock graph, which consists of vertices and directed edges. Each vertex

represents a mutex lock held by a thread, and each edge stands for a request relationship
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Figure 4: Overview of DDS approach including both runtime monitoring and offline prepro-
cessing.

between two threads for a specific mutex. The presence of a cycle in the lock graph indicates

the existence of a deadlock. An edge from v1 to v2 means that the thread holding the lock

associated with v1 is trying to acquire the lock associated with v2, which is concurrently held

by another thread.

1.2.1.2 Solver Algorithm

Another component in the runtime monitoring is the Solver algorithm. If the lock graph

contains a cycle, a deadlock has taken place. In this scenario, the detector locates an affected

thread and notifies the solver of the affected thread. The solver algorithm makes the affected

thread release the held lock. Thereafter, another thread that requires the lock can obtain it.
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Once the lock is released by the second thread, the solver algorithm returns the lock to the

affected thread, which can then continue processing. We denote the thread whose mutex lock

is preempted as the victim thread.

1.2.1.3 Preprocessing

The third component of the DDS approach is the preprocessing. Preprocessing is an impor-

tant part of supporting the performance of an application to ensure it remains consistent. Our

solver algorithm for resolving deadlocks is based on preempting one of the locks involved in the

deadlock cycle. The preprocessing phase guarantees that the lock preemption is safe, that is, it

does not leave the application in an inconsistent state. We want to ensure that lock preemption

is safe because we do not rollback computations to recover from an inconsistent state.

Underlying this method is an inherent risk that a thread t1 may have modified the object

o whose lock is involved in the deadlock. In this case, t1 should not be chosen as the victim

thread because o could be in an inconsistent state when another thread is given o ′s lock. When

we find that lock preemption is not safe, we guard shared objects using STM.

If the solver algorithm victimizes a lock, and we have modified a shared object protected

by that lock, the victimized lock is considered a harmful statement. In other words, we cannot

victimize that lock because that will leave the program in an inconsistent state. Thus, harmful

statements need to be protected to maintain the application in a consistent state. Therefore,

we are using the STM —a nonblocking mechanism to ensure that any written update is per-

formed with atomicity as one thread at a time— to protect the harmful statements. In this
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preprocessing phase, we identify locations where the STM is needed to prevent the preemption

of the lock from leaving a shared object in an inconsistent state.

Under this approach, at first, the source code is analyzed to identify the program locations

where a request for lock acquisitions is made. See Figure 4. The generated set of program

locations is then used to create a tree showing call dependencies among those locations. Here,

a tree vertex signifies the location of a program that entails locking, and an edge symbolizes the

presence of a control flow path between two locations. For each application, there is a single

tree. We specifically consider paths between lock acquisition points. The statements along such

paths are examined to determine whether any write operation on a shared object is performed.

If such a statement is found, then it is considered a harmful statement (i.e., mutex lock). In

this case, we cannot preempt the mutex lock that protects that statement. We examine the

entire tree for the presence of any harmful statements.

The preprocessing algorithm identifies situations in which there may not be any candidate

victim threads. In these cases, we apply a method based on a STM to resolve the deadlock by

automatically annotating the source code. We annotate the method that contains the harmful

statement using the Java annotation @Atomic. This annotation results in considering that

block as a transaction. A transaction in STM contains a sequence of read and writes on shared

variables that are executed atomically. In STM, a read operation accesses the value of a shared

variable. A write operation stores a new value to a shared variable. Therefore, using STM

guarantees that the access to the shared variables is atomic. The execution time overhead

introduced using STM is negligible because we are only using STM methodology with the
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methods that contain harmful statements. The other original methods without annotation do

not incur a performance penalty when we use STM. In addition, based on our benchmarks,

having a harmful statement is rare, and we were required to inject harmful statements in our

benchmarks to measure the execution time overhead and memory consumption overhead of

using STM.

1.2.2 Existing Approaches

The current methods available for detecting deadlocks are often impractical for detecting

them in real-world situations (6; 7; 8; 9; 10) because their algorithms are based on finding a

cycle in the lock graph, which has never been optimized. This is far from optimal, particularly

for real-world application where we could have a large number of threads. This results in a

noticeable slowdown when detecting or avoiding deadlocks. In some cases, they experience

significant performance degradation (11; 12; 13; 14). Therefore, it is important to have a

runtime monitoring methodology to detect and resolve deadlocks efficiently without manual

code annotations as well as with reasonable performance overhead. In this way, it is essential

to assess DDS, which is a runtime approach to detect and resolve deadlocks. Unlike Grace (14),

Cilk (15), Cilk-5 (16), and UnDead (17), DDS does not force a deterministic code execution.

Many other methods need to have manual code annotations (13; 18; 19; 20). When there are no

deadlocks, the typical runtime overhead of running the DDS is normally lower than 5% of the

original program’s runtime. To detect deadlocks, other researchers, (3; 21; 13; 22; 23; 24; 25),

have also utilized lock graphs. The approach presented in the current study differs from the



13

existing methods because our lock graph has been used not only to detect deadlocks but also

to resolve them by choosing a “victim” from the threads involved in the deadlock.

1.3 Challenges

A number of challenges are related to the inclusion of reentrant locks in the preprocessing

phase. One of the challenges is related to the scope of locking. The scope of intrinsic locks

in synchronized blocks and synchronized methods is clear. The scope of a block is the block

of code between the curly braces. The scope of the synchronized methods is the body of the

method. Consequently, the intrinsic locks provide clear guidelines on where to start and where

to stop the analysis. Reentrant locks do not show the scope of the lock based on the source

code. Finding the scope requires an extensive search for all paths between “lock” and “unlock”

statements.

Another challenge is concerned with the ability of reentrant locks to be performed on a lock

object instance that can be locked and unlocked a number of times. For the analysis, the pairs

must be corresponding exactly, which means that extraordinary care is required to determine

the correct pairings. One lock can have multiple unlocks based on the control flow graph. This

challenge becomes more complex in the scenario where there is no unlocking statement because

a program with locking could be run even if there is no unlocking.

Object aliasing also creates elusive issues related to determining the harmful statements.

Hence, it is not easy to identify which object is synchronized in the presence of the alias of the

synchronized object. If one object is synchronized, whereas another object is changed in the

path of the synchronized point in the tree, it cannot be declared that one object is different
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from the other object since both objects can be the same because of aliasing. However, there

is no feasibility of totally resolving the aliasing issue. Thus, the third significant challenge in

the study is related to aliasing for DDS preprocessing.

1.4 Contributions

This study makes significant contributions, to the state of art in resolving deadlocks, by

discussing and analyzing DDS, a supervisory control methodology for detecting and resolving

deadlocks in Java programs. It also contributes by assessing the effectiveness of the DDS

in detecting and resolving deadlocks at runtime. The empirical assessment contributes by

providing an evaluation of the efficiency of the preprocessing component of the DDS employed

to identify situations where no lock can be safely preempted.

This study makes the following specific contributions:

1. It discusses the DDS, a supervisory control methodology for detecting and resolving dead-

locks in Java programs.

2. It empirically evaluates the effectiveness of the DDS in detecting and resolving deadlocks

at runtime.

3. It empirically assesses the efficiency of the preprocessing component of the DDS, which

is used to identify situations where no lock can be safely preempted.

4. It empirically evaluates the efficiency of STM in DDS by measuring the overhead of using

a STM methodology.
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The study also reports empirical results obtained from the application of DDS to 11 open-

source deadlock benchmarks. These benchmarks had a changing number of input sizes. To

achieve the findings, each benchmark was run 60 times to increase the coverage of deadlock

detection and its resolution. The average CPU time overhead of supervision never exceeded

7.1% of the original program’s runtime. The DDS showed a linear runtime increase with the

increase in the input size and thread number. It resolved deadlocks effectively and efficiently.

Thus, the adopted approach is found to be significantly scalable.

This dissertation is organized into eight chapters including the introduction chapter. The

remainder of this dissertation has been organized in the following manner:

Chapter 2 provides background information on mutual exclusion of Java and the concept

of software transactional memory.

Chapter 3 highlights the related work on deadlock detection, avoidance, and prevention.

We explain how they are different from our proposed work.

Chapter 4 presents the preprocessing algorithm of DDS. The preprocessing phase identifies

and guards the harmful statements in the program under control.

Chapter 5 illustrates runtime monitoring, which includes two major components: the

detector and solver algorithms.

Chapter 6 explains the implementation details of DDS to apply it to Java language. It also

displays selected benchmarks to evaluate the DDS effectiveness with some experiment results.

Chapter 7 illustrates how the DDS methodology can be applied to any programming

language other than Java. We focus on DDS application in C++ language. In addition, we
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present how the deadlocks are handled in distributed systems and whether we can apply our

methodology in such systems.

Finally, Chapter 8 provides conclusions on our supervisory controller method DDS and

some of the future research work.



CHAPTER 2

BACKGROUND

Parts of this chapter have been previously published in:

• E. Aldakheel, U. Buy and S. Kaur, “DDS: Deadlock Detector and Solver,” 2018 IEEE In-

ternational Symposium on Software Reliability Engineering Workshops (ISSREW), Mem-

phis, TN, 2018, pp. 216-223. doi: 10.1109/ISSREW.2018.00009

In this chapter we provide some necessary background information on Java mutual exclusion

for intrinsic locks and reentrant locks, and software transactional memory. This chapter will

help the reader understand some of the concepts that will be presented in the following chapters

of this dissertation.

2.1 Java Mutual Exclusion

Java has multiple constructs for inter-thre ad synchronization and communication. In this

thesis, we will focus on intrinsic locks and reentrant locks. Java programming adequately

manages and supports multithreading. In order to perform multithreading or concurrent pro-

gramming, it is important to have effective synchronization and concurrency mechanisms for

threads.

2.1.1 Intrinsic Locks

Every class instance in Java has an intrinsic lock associated with it. A thread can acquire

a lock on an object using either a synchronized block or a synchronized method as shown

17
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in Figure 5. A synchronized block can be executed only if the lock on the specified object is

available. In this case, the thread executing the synchronized block statement acquires the lock

and executes the block. The lock is relinquished when the thread completes the execution of

the block. A synchronized method works similarly, except that it locks the object receiving

a method invocation. The lock is relinquished when the synchronized method returns. In

either case, if the requested lock is not available, the thread is blocked and forced to wait. In

Figure 5, we protect incrementing and decrementing the integer i using intrinsic locks. The use

of intrinsic locks in the presented example avoids data races, ensuring that only one thread at

a time can modify the value of i. All synchronized statements in Figure 5 lock the same object

(this).

2.1.2 Reentrant Locks

Reentrant locks in Java provide synchronization and increased flexibility compared to in-

trinsic locks. The reentrant locks apply the interface of class “Lock” to synchronize access to

shared resources. In this way, the code that is involved in the operation of the shared resource

has a request to acquire and relinquish a lock.

Reentrant locks supply additional flexibility with respect to intrinsic locks because they are

acquired and relinquished at arbitrary locations in the program code. Thus, the scope of the

locking is not confined to a single block or method as it is with intrinsic locks. A thread requests

and relinquishes a lock by calling the lock and unlock functions on a lock object. See Figure 6.

As with intrinsic locks, attempting to acquire a reentrant lock will block the requesting thread

if the lock is held by another thread. Reentrant locks are effective locking mechanisms that do
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public class Counter_Example{

// shared among multiple threads

private int i;

private int readCount;

...

// synchronized method

public synchronized void increment()

{

i++; // critical section

}

public void decrement()

{

// synchronized block

synchronized(this)

{

i--; // critical section

}

}

public int value()

{

// synchronized block

synchronized(this)

{

readCount++; // critical section

return i;

}

}

...

}

Figure 5: An example showing intrinsic locks using “synchronized” keyword.
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public class DiningPhilosophers{

static Lock[] chopsticks; // shared among multiple threads

...

public void pickupChopsticks()

{

// starting point of the critical section A

chopsticks[left].lock(); //pickup left fork

// starting point of the critical section B

chopsticks[right].lock(); //pickup right fork

}

public void putdownChopsticks()

{

chopsticks[left].unlock(); //put down left fork

// ending point of the critical section A

chopsticks[right].unlock(); //put down right fork

// ending point of the critical section B

}

public void round()

{

pickupChopsticks(); //locking the forks

eat();

putdownChopsticks(); //releasing the forks

think();

}

}

Figure 6: An example showing reentrant locks using “lock” and “unlock” keywords.

not cause problems related to lock reentry. Reentry happens when a thread tries to acquire a

lock that the thread already holds (26).

2.1.3 Difference between Intrinsic and Reentrant Locks

Reentrant locks were introduced in Java 1.5. Before reentrant locks existed, concurrency

was achieved with the help of synchronized methods and blocks. Reentrant locks are aimed at

improving the functionality of intrinsic locks. Intrinsic locks are effective in most situations;

however, they have certain functional limitations (27). Whereas both intrinsic and reentrant

locks can be used to achieve concurrency (28), reentrant locks have the following features:

1. Arbitrary scope as shown in our DiningPhilosophers class presented in Figure 6.



21

public class trylock_method{

static Lock l; // shared among multiple threads

...

public boolean done()

{

boolean flag = false;

if (l.tryLock())

{

try

{

flag = true;

// critical section

} finally {

l.unlock();

}

} else {

// if the lock is not available perform alternative actions

System.out.println("The requested lock is not available!");

}

return flag;

}

...

}

Figure 7: An example showing reentrant locks using “trylock” and “unlock” keywords.

2. Only work on lock objects (i.e., chopsticks in Figure 6).

2.1.3.1 Test for Availability

Intrinsic locks play an important role in various aspects of synchronization. For example,

they allow limited access to objects and create important happens-before relationships for vis-

ibility (29). One limitation associated with intrinsic locks is that there is no way to perform a

test of whether the lock is available to be acquired. If a thread requires a lock but is not able

to acquire it, the thread will be blocked until it can acquire the lock.

Reentrant locks provide a convenient way to check the lock availability before acquiring

the lock using the statement “trylock”. Using trylock on a lock inquires weather the lock is



22

available at that particular time—time of lock request. Statement trylock returns true if the

lock is available and false if the lock was not available at the time when the method was

invoked. See Figure 7. Thus, if trylock returns true, we must unlock the locked object after

completing the critical section, which is a segment of code that accesses shared resources and

must be executed atomically. Essentially, trylock is a nonblocking lock that locks the lock if it

is available; otherwise, the thread will continue executing the next statements. This flexibility

to try for lock, without causing the thread to block if the lock is not available, results in better

performance because threads are not blocked while checking for the lock availability.

2.1.3.2 Non-Block Structured Locking

It is necessary for intrinsic locks to get released within the same block of code where their

original acquisition took place. This, in turn, leads to simple coding that is able to interact

easily with exception handling. However, the block-structured locking lacks flexibility because

its scope is limited—it is defined by method or block scope only. Nonetheless, this is not the

only reason for not using intrinsic locks. Some cases require a locking mechanism that is more

flexible for better performance (30; 31).

Reentrant locks have an arbitrary scope that is defined dynamically. A thread uses lock to

get hold of the lock, or it waits until the lock becomes available. The thread that holds the

lock must issue unlock to release the lock and become available for other waiting threads.

2.1.3.3 Fairness

Compared to intrinsic locks, reentrant locks are considerably more flexible and offer a choice

of two fairness policies—an unfair lock or a fair lock. With regard to acquiring access to the
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shared resources, unfair locks do not guarantee any particular order of threads to get hold of

the lock. Fair locks allow acquiring locks in the order in which they were requested. In other

words, if one thread is in the waiting queue for a considerably longer period of time than another

thread, it is certain that once the present thread is complete, the thread that has been waiting

the longest will be able to access the shared resource. Thus, the advantage of the unfair lock

is that it helps reduce wait time and increases an application’s overall throughput because it

allows the thread to acquire the lock when it becomes available regardless of its order in the

waiting queue (32).

2.1.3.4 Reentrancy

Another difference between intrinsic and reentrant locks is related to the ability of reentrant

locks to simplify the development of object-oriented concurrent code. On the one hand, during

the absence of reentrant locks, when it is observed that a subclass ends up overriding a syn-

chronized method before calling the superclass method—which gets synchronized on the same

object —lead to a deadlock (30). Intrinsic locks are not capable of reentering a lock—they will

attempt to acquire the lock they already hold.

On the other hand, a hold count is assigned to every reentrant lock. Once a reentrant lock

is acquired, the hold count for that lock is increased by one. Once a thread releases a reentrant

lock, the hold count for that lock is decreased by one. The reentrant lock is free once the hold

count reaches zero. The maximum number of recursive reentrant locks a thread can reach is

2,147,483,647. If a thread exceeds this limit, the locking method shows an error. A thread
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public class Widget

{

public synchronized void doSomething()

{

...

}

}

public class LoggingWidget extends Widget

{

public synchronized void doSomething()

{

System.out.println(toString() + ": calling doSomething");

super.doSomething();

}

}

Figure 8: Reentrancy issue using intrinsic causing a deadlock situation (27).

cannot acquire a lock held by another thread by increasing the count because the count is

associated with the thread for reentrancy purpose.

We use Figure 8 to explain the reentrancy issue associated with intrinsic locks. The methods

of doSomething in Widget and LoggingWidget are synchronized; therefore, both methods

attempt to acquire the intrinsic lock prior to continuing. Both synchronized statements in Fig-

ure 8 lock the same object, this. The call to super.doSomething cannot, in this instance,

succeed in acquiring the lock on this object because the current thread is already holding the

intrinsic lock on this object. As a result, the thread would always be waiting for a lock that it

would not be able to acquire, leading the thread to end up in a deadlock with itself. Reentrant

locks have the ability to avoid this kinds of deadlock situations (27).
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2.2 Software Transactional Memory

Software Transactional Memories (STMs) (33) apply the transaction concept to mainstream

programming, largely as a means of simplifying concurrency programming. The central concept

behind STMs is that programmers specify the operations that should be implemented atom-

ically, tasking an underlying transactional framework with the implementation of the desired

atomicity while retaining significant parallelism. From the viewpoint of STMs, operations im-

plemented during a transaction have no special meaning associated with them. They merely

constitute sequences of writes and reads to shared locations of memory. STMs intercept ac-

cesses to shared locations to determine when two simultaneous transactions interfere with one

another, causing the STM to restart, abort, or stall at least one such transaction. Several STM

methodologies exist, and they differ significantly in the manners in which they ensure operation

atomicity. For our work, we chose an existing STM framework named Deuce (34).

Deuce is an open-source transactional memory framework specifically aimed at Java multi-

threading. An advantage of Deuce is that it supports a wide set of features without altering

existing Java libraries or the Java compiler.

Deuce is considered nonintrusive because language extensions or modifications to the Java

virtual machine (JVM ) are not necessary. It utilizes, by default, an initial locking design that

identifies individual field-level conflicts without significantly increasing memory footprints (no

additional data are included in the classes). As a result, the garbage collection overhead is

minimal.
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Deuce has undergone extensive optimization for efficiency, and although there is room for

improvement, performance assessments on numerous high-end machines show that it has excel-

lent scalability. Existing benchmarks indicate that its performance surpasses that of alternative

JVM-independent Java STMs, such as the DSTM2 framework (35), typically by two orders of

magnitude. Deuce generally scales appropriately on multiple workloads and shows that a high-

performance Java STM can be implemented even in the absence of ad-hoc compilation. In

summary, we chose Deuce because of its high level of performance and usability with respect

to competing STMs, including DSTM2 (35), JVSTM (36), and AtomJava (37).



CHAPTER 3

RELATED WORK

Parts of this chapter have been previously published in:

• E. Aldakheel, U. Buy, “Efficient Run-time Method for Detecting and Resolving Dead-

locks in Java Programs,” In 33rd European Conference on Object-Oriented Programming

Workshops (ECOOP), London, UK, 2019.

• E. Aldakheel, U. Buy and S. Kaur, “DDS: Deadlock Detector and Solver,” 2018 IEEE In-

ternational Symposium on Software Reliability Engineering Workshops (ISSREW), Mem-

phis, TN, 2018, pp. 216-223. doi: 10.1109/ISSREW.2018.00009

Because of its nondeterministic behavior, concurrent software is significantly vulnerable

to defects (i.e., deadlocks). Therefore, overall, deadlock is the most complex issue that is

characterized by the inability to be diagnosed and debugged (22). For a deadlock to take place,

four necessary conditions need to be illustrated.

1. Mutual Exclusion: No more than one thread can simultaneously access the resource.

Put simply, it is not possible to share resources.

2. Hold and Wait: A thread has the ability to hold a resource (i.e., lock) and simultane-

ously wait for another resource possibly held by another thread to be available.

3. No Preemption: Once a thread holds a resource, the resource cannot be taken away

from that thread until the thread voluntarily releases it.

27
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4. Circular Wait: A set of threads each one of them is holding a resource and waiting

for another thread in the set to release a resource. Thus, we must have a set of threads

{t1, t2, ..., tn} where every ti is waiting for t(i+1)%n.

In this chapter, some of the previously presented techniques and tools aimed at detecting

and handling deadlocks in multicore systems are highlighted. Deadlocks can be handled using

three different strategies: detection and resolution, prevention, and avoidance. In previous

work, both static and dynamic approaches were employed to detect and handle deadlocks,

including runtime monitoring and model checking. To detect deadlocks, the majority of these

techniques rely on finding a cycle in the lock order graphs or cyclic lock dependencies.

3.1 Deadlock Prediction and Detection

The ultimate goal of the work presented in this section is to predict and detect dead-

lock occurrences. The discussed methodologies do not have resolution strategies, unlike our

method DDS, which resolves the detected deadlock.

3.1.1 Static Approaches

Static approaches seek to detect all deadlocks that may be present in a program under

analysis. Williams et al. (38) presented a static analysis tool that used a flow-sensitive and

context-sensitive analysis to detect deadlocks in Java libraries. Unlike DDS, this approach does

not address reentrant locks. Similarly, RacerX (39), which is a tool for C based systems, uses

a flow-sensitive analysis and context-sensitive analysis to detect deadlocks and data races, and

requires that source code annotations be done manually. A static approach to detect a deadlock

for data-centric synchronization programs was presented in (20). However, in this approach,
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code is manually annotated to determine the ordering between various instances of atomic sets;

each atomic set is a group of shared memory locations. Unfortunately, such static approaches

report false positives. By contrast, DDS is completely automatic, does not require manual

annotation, and focuses exclusively on inferring the runtime information without creating any

false positives.

Although model checkers are not scalable because of the state space explosion problem, they

do demonstrate high coverage of deadlocks. Bogor (40) is an automatic deadlock detector that

transforms shared resources and global variables implemented in the Java program into an input

for its model checkers. Afterward, Bogor creates an automaton that represents all the possible

states of the Java program, enabling it to assess the occurrence of a deadlock. Gadara (13)

is another tool that detects deadlocks using model checking. It detects all potential deadlock

candidates, including false positives, unlike the proposed approach, which does not introduce

false positives; the absence of false positives can be attributed to the use of runtime monitoring,

which only records actual deadlocks.

The use of reentrant locks in the deadlock analysis of multithreaded programs requires a

more sophisticated detection approach. The infinite states of these multithreaded programs

require a detection approach that promises visible access to objects. To address such com-

plexity, Laneve defined a simple calculus featuring a recursion, threads, and synchronizations

approach (42). This approach has efficiently detected deadlocks by creating a link between an

abstract model and the program. The static semantics of this object model can help in detecting

deadlocks in programming languages such as Java. The approach is based on verifying that the
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public void m1()

{

lock.lock();

a = 1;

aIsOne.signalAll();

// missing ‘‘unlock’’

}

public void m2()

{

lock.lock();

while(a != 1)

aIsOne.await();

a = 0;

lock.unlock();

}

Figure 9: An example showing faulty design of reentrant locks by missing the “unlock” in m1

function (41).

created model—based on its extraction process for dependencies between threads and locks by

means of acquire (own) and request (want)—does not contain any cycle. It is possible to extend

this approach to core calculus that features access to shared objects, creation and execution of

threads, as well as Java-like synchronization primitives (42). Nevertheless, DDS is more precise

in detecting deadlock and does not report any false positives in contrast to Laneve (42).

Kamburjan (41) proposes a deadlock detection system based on conditional synchroniza-

tion. The approach integrates a heavyweight deductive-verification tool with lightweight static

analysis, and utilizes a theorem to analyze side effects. Yet the incorrect application of the

synchronization primitives can result in an erroneous design. Additionally, the application of

this detection system is limited to deadlocks caused by faulty system design, as shown in Fig-

ure 9, and excludes those caused by implementation bugs, as shown in Figure 10. The two

examples contain condition variable (i.e., aIsOne). Condition variables are conditions that are



31

public void m1()

{

lock.lock();

a = 2; // bug

aIsOne.signalAll();

lock.unlock();

}

public void m2()

{

lock.lock();

while(a != 1)

aIsOne.await();

a = 0;

lock.unlock();

}

Figure 10: An example showing an implementation bug in the use of reentrant locks. m2 waits
for m1 to proceed by changing “a” state (41).

defined relative to lock objects. They provide inter-thread communication similar to the ones

provided using wait, notify, and notifyAll. Calling await on a condition causes the thread

to wait (block) until anther thread calls signal or signalAll, which causes the blocked thread

on await to activate and proceed with its execution. Condition variables can cause a commu-

nication deadlock, which is outside the scope of this work. DDS detects deadlocks regardless

of the cause.

Metcalf and Yavuz (43) present regression analysis as another static analysis-based detection

approach to detect deadlocks in multithreaded Java applications. The approach is based on

filtering code changes that employ locks in an inappropriate order. This detection approach

maintains a watch list of lock-type pairs, which can later be used by software developers in

detecting deadlocks. However, this approach introduces false positives, unlike DDS.
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3.1.2 Dynamic Approaches

Dynamic analysis of a model helps us understand the workflow and behavior of the program

in various situations. It can assist in identifying problematic areas and eliminating loopholes

in the system. MagicFuzzer (21) has presented a deadlock detection method for large-scale C

and C++ applications. Furthermore, as an improvement over MagicFuzzer, MagicLock (25) is

presented as being more efficient and scalable at detecting deadlocks in large scale programs.

The MagicLock scalability comes from the lock reduction process. The lock reduction process

is intended to reduce the size of the lock graph, which contains vertices and edges, by removing

those vertices and edges that will not participate in a deadlock (e.g., vertices with no incoming

edges or outgoing edges). Still, MagicLock reports false positives, whereas DDS does not report

any false positives and creates an optimized lock graph, eliminating the need to preprocess a

graph to make it scalable before proceeding to find a cycle.

Another tool, called Sherlock (7), detects deadlocks based on concolic execution (44), which

uses both concrete and symbolic values as inputs to execute a program both normally and sym-

bolically. Concolic execution collects symbolic constraints with every branch point in the nor-

mal (concrete) execution path and schedules various permutations to execute threads, thereby

navigating the execution toward a deadlock scenario. Dirk (45) is a deadlock prediction tool

that can map a single run of a program to predict bugs in an exponential number of runs. Dirk

stands as the first sound deadlock-prediction technique for Java programs. Here, “sound” means

that all the predicted bugs can manifest. Unlike DDS, however, MagicFuzzer (21), Sherlock (7)

and Dirk (45) do not resolve deadlocks, report on false positives, and introduce noticeable
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overhead. Separately, in order to reduce false positives, ASN (46) proposed to confirm—if the

detected deadlock is a real deadlock and it is not a false positive—a detected deadlock for large

scale multithreaded programs.

ConLock (47) is another dynamic analyzer, whose main purpose is to confirm that a deadlock

has occurred. ConLock+ (48), which has a higher confirmation rate, was subsequently designed

as an extension. ConLock (47) and ConLock+ (48) can also be used in combination with other

tools that report false positive deadlock cycles.

Yet another runtime monitoring algorithm is the Quality Virtual Machine (QVM) (49),

which continuously monitors an execution of a deployed Java program and potentially detects

existing defects. QVM can detect a deadlock when enabling heap probes, a dynamic checking

method for various heap operations that allows the user to specify the overhead budget. QVM

collects as much information as the budget allows during the program runtime. In contrast to

DDS, QVM simply reports on deadlocks and does not resolve them.

CLAP is a runtime-based tool for C/C++, created by Huang et al. (50), that can reproduce

a concurrency bug by logging a thread’s local execution paths. In a second step, CLAP ex-

plores memory dependencies that can reproduce logged bugs such as deadlocks. The GoodLock

algorithm (51) uses runtime analysis to guide a model checker that can detect potential Java

program deadlocks. This algorithm cannot detect deadlocks involving more than two threads,

however. Thus, it was later generalized to detect deadlocks involving any number of threads

using static analysis (52).
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Deadlocks usually appear in Java language wherever multiple threads are interacting. Pulse

has been identified as a novel operating system mechanism that executes as a system daemon

and can help in the dynamic detection of various types of deadlocks (6), including in I/O events.

It discovers the dependencies and constructs a general resource graph. The effectiveness of Pulse

can be attributed to its ability to peek into the future. Even though Pulse detects multiple types

of deadlocks in applications, it still introduces noticeable runtime overhead, false negatives (miss

to report a real deadlock), and false positives, unlike DDS. Pulse takes three seconds on average

for each deadlock detection, whereas DDS detects a deadlock in one-thousand of a second. Thus,

DDS outperforms Pulse in terms of introduced runtime overhead (efficiency).

Avoidance is yet another method used to manage deadlocks (53). Armus (53) is a verification

tool that dynamically detects and avoids barrier deadlocks. A barrier is a point in the execution

path of a multithreaded program at which each thread is blocked until all the threads have

reached the barrier.

The methods of addressing deadlocks that allow a user to work without modifying the source

code of the program significantly help the user to determine the location of a deadlock. Li et

al. (54) presented an intelligent deadlock locating scheme for multithreaded programs written in

C/C++, Qt, and Java that utilizes a deadlock location scheme for these languages, which works

through the modification of three resource functions: mutex, lock, and semaphore. DDS does

not modify any kernel or operating system implementation, unlike the Li et al. (54) approach,

which is based on modifying the POSIX Thread (pthread) kernel.

For further information in distributed systems’ deadlock detection, see Section 7.2.1.
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3.2 Deadlock Recovery, Prevention, and Avoidance

3.2.1 Deadlock Recovery

Dfixer (11) fixes deadlock by lock pre-acquisitions, an approach that entails disrupting

the hold-and-wait condition, whereas our tool works on the preemption of one of the threads

involved in a deadlock cycle. Dfixer selects one of the threads that potentially may be introduced

in a deadlock and allows the selected thread to hold the previously held lock and pre-acquire the

other needed locks. DDS detects deadlocks at runtime and then eliminates them. In contrast,

Dfixer (11) is merely a fixing tool for C++ programs, which reduces concurrency by holding

too many locks in advance.

Another tool, Sammati (55) is a runtime tool for POSIX multithreaded program that detects

and eliminates deadlocks by rolling back to the location of the lock acquisition that caused the

deadlock. Subsequently, Sammati performs the required memory updates. Likewise, Rx [14]

detects and resolves deadlocks by rolling back computations. However, the victim thread is

not arbitrarily chosen, as it is in the case of Sammati (55)—instead, the chosen thread requires

light recovery. Furthermore, ConAir (56) can detect a deadlock by turning locks into locks

with timeouts. When a lock reaches timeout, ConAir (56) recovers the issue by preempting

and re-executing the thread that asked for the timed-out lock. Similarly, Rx (12) recovers

from the deadlock by re-executing the last part of code based on the last recorded checkpoint

within a new environment. Rx, however, suffers from false positives. DDS does not roll back

computations unless a harmful statement is presented in the path between two synchronization

points. DDS has the advantage of minimizing memory and processing power consumption. In
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addition, ConAir, Sammati, and Rx are based on thread preemption, unlike DDS, which is

based on resource preemption.

3.2.2 Deadlock Prevention

Deadlocks can be prevented by ensuring that at least one of the necessary conditions listed in

the introduction of Chapter 3 does not hold. The Synchronized-By-Default (SBD) concurrency

model is STM-based approach that prevents deadlocks (57) by breaking the first of the four

required conditions for a deadlock to occur. Breaking the mutual exclusion condition results

in making the nonshareable resource accessible simultaneously by any number of threads. The

model considers that all program code must be run in atomic sections unless the programmer

identifies nonatomic segments of the code. SBD carries the STM concept by dividing the pro-

gram into atomic sections. The rule of SBD is to detect when a nonshareable resource has been

modified simultaneously by more than one thread. When the SBD detects the modification, it

will commit only one of the access and re-execute the other aborted threads again.

Another runtime tool for C/C++, called Grace (14), eliminates multithreading errors, in-

cluding deadlock. It essentially makes the program execution deterministic through its behavior

aligned with sequential single-threaded programs, by converting every thread spawn to a func-

tion invocation and all of the presented locks to a no-ops. Similarly, more tools, like Cilk (15)

and Cilk-5 (16) are based on the idea of deterministic execution. Cilk expresses the idea of

speculative parallelism and is very simple to use. The user has to add the three keywords to

the C-based source code. The first key word in Cilk is incorporated into the function header.

Then, the programmer introduces spawn in the place where he or she wants it to be run in
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parallel with the parent thread. The last key word to be used is sync, which identifies the join

points for the thread to be combined again. Cilk and Cilk-5 operate at C language, which is

a procedural language, whereas UnDead (17) works on C++, which is an object-oriented lan-

guage. DDS does not force deterministic execution. DDS uses the supervisory approach, which

performs the task of coordination without adversely affecting the performance of the program

because it runs in parallel with the Java program.

3.2.3 Deadlock Avoidance

Deadlock avoidance is more flexible than deadlock prevention because avoidance does not

require one of the four conditions to be completely broken. Instead, the programmer must

guarantee that the system is always in a safe state, which means it is not in a deadlock state

and can allocate resources up to the maximum number of resources available in the system. To

check the system’s state before each allocation of a resource to a thread, the programmer may

need to know the following in advance:

• The maximum number of resources each thread needs.

• The current allocated resources in each thread in the system (owned resources).

• The maximum number of available resources in the system.

The request will be granted if the system’s state remains safe after the thread acquires the

needed resource. In other words, the request is approved only if the system’s resulting state is

a safe state.
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While DDS resolves deadlocks, Gadara (13) avoids the existing deadlocks in programs by

avoiding potentially unsafe lock acquisitions based on the static and dynamic analyses conducted

in the offline stage, not during the runtime.

Communix (58), Dimmunix (58), and the optimized Dimmunix (59) are runtime tools that

build an immune system against deadlocks by preventing the reoccurrence of a previous deadlock

pattern. When a deadlock occurs during runtime, Dimmunix stores the deadlock signatures

to avoid that flow of execution in the future. All signatures of deadlock flow that have been

captured are stored in a database so they may be avoided in the subsequent runs. Communix

is responsible for the distribution of the signatures in the online application. Thus, any user

who uses the same application over the Internet will receive the same immunity for every single

application under the Communix system. Communix is scalable and effective in protecting

Java applications against any problematic signatures.

Voss, Cogumbreiro, and Sarker (60) introduced Transitive Joins (TJ) as a policy to address

programs with dynamic task parallelism and arbitrary join operations. They proposed an

online deadlock avoidance policy that handles illegal joins—which can cause a deadlock—as an

exception. The TJ policy guarantees that any join operation will not cause a deadlock if it was

permitted under TJ rules.

In this way, DDS with STM-support—our method for the automatic detection and resolution

of deadlocks at runtime—is effective in detecting the deadlock by using a supervisory controller

that monitors program execution and has the ability to automatically detect the deadlocks

due to the hold-and-wait cycles in Java locks. Hence, after detecting a deadlock, a preemptive
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strategy is used by the DDS to break it. We have designed a preprocessor that can identify

a mutex lock that can be safely removed whenever a deadlock occurs. If such a case does

not exist—which is very rare based on our experiment results—we can use STM methodology

to guard any harmful statement that contains locks that cannot be safely preempted because

they will leave the program in an inconsistent state. DDS combines a lock preemption strategy

and STM to resolve deadlocks at runtime. DDS imposes modest computational overhead at

runtime, even when STM is used, relative to the runtime of the original program. To the best of

our knowledge, we are the first approach to use the lock preemption strategy with STM support

to resolve the detected deadlocks. In addition, we did not force any deterministic execution as

in Grace (14), Cilk (15), Cilk-5 (16), and UnDead (17). DDS does not report any false positives

as in (20; 42; 43), RacerX (39), Bogor (40), Gadara (13), MagicFuzzer (21), MagicLock (25),

Sherlock (7), Dirk (45), and Pulse (6).

For further discussion about distributed systems’ deadlock handling, see Section 7.2.1.



CHAPTER 4

DDS PREPROCESSING

Parts of this chapter have been previously published in:

• E. Aldakheel, U. Buy, “Efficient Run-time Method for Detecting and Resolving Dead-

locks in Java Programs,” In 33rd European Conference on Object-Oriented Programming

Workshops (ECOOP), London, UK, 2019.

• E. Aldakheel, U. Buy and S. Kaur, “DDS: Deadlock Detector and Solver,” 2018 IEEE In-

ternational Symposium on Software Reliability Engineering Workshops (ISSREW), Mem-

phis, TN, 2018, pp. 216-223. doi: 10.1109/ISSREW.2018.00009

Our approach for resolving a deadlock is based on preempting a resource (i.e., an intrinsic

lock or a reentrant lock) in a detected deadlock cycle. The resource is held by a “victim”

thread. When another thread is finished using the resource, it is returned to the victimized

thread. In the preprocessing, we inspect the source code for the threads that cannot be victim-

ized. Our approach applies STM methodology when all threads involved in a deadlock cannot

be victimized because they may leave the program in an inconsistent state. In this chapter,

we first discuss the preprocessing architecture components and how they interact. Then, we

explain how to identify a harmful statement using the proposed architecture in which we apply

interprocedural flow analysis and alias analysis. Finally, we explain how we guard the harmful

statements using STM.

40
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Figure 11: DDS preprocessing architecture.

4.1 Architecture

The preprocessing aspect of our methodology is essential to maintain the application con-

sistency. We first analyze the source code to identify program locations where lock acquisitions

are requested. From the resulting set of program locations, we create a tree showing the depen-

dencies among those locations. A tree’s vertex represents a program location involving locking,

and an edge represents the existence of a path—meaning the child vertex is reachable through

its parent—between two locations. A single tree exists for each application under consideration.
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4.1.1 Architecture Components

Figure 11 shows different preprocessing components and how they interact. The compiler

at the end of the syntax analysis phase creates the Abstract Syntax Tree (AST). This results

in a tree representation of the source code’s abstract syntactic structure. AST includes vertices

that represent code elements, such as statements or loops, and edges that represent containment

relationships. Initially, the DDS launcher passes a “code element” extracted from the source

code based on AST to the DDS processor. This code element represents statements and expres-

sions within the statements. Afterward, the DDS processor identifies synchronized points from

the code elements (e.g., synchronized blocks and synchronized methods). In addition, the DDS

processor determines the invocations that call the synchronized points. The DDS processor

creates and maintains the preprocessing tree using AST and interprocedural flow analysis to

determine all reachable statements to the tree’s vertices. Moreover, the DDS processor exam-

ines statements that could produce harmful effects when their protective monitors are forced

to release in a deadlock condition. Potentially harmful statements are classified as statements

that write or modify either objects or variables that the monitors would otherwise protect. The

DDS processor uses alias analysis to identify may-alias relationships, meaning these memory

locations may contain a pointer to another memory location. We are performing a points-to

analysis to identify may-alias relationships for the objects and variables under consideration.

Another essential component is the DDS annotator. This component annotates the methods

that have a synchronization point and contain harmful statements before the second lock re-
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Figure 12: Flowchart for building DDS preprocessing tree during preprocessing stage.
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quest. In this step, we introduce STM to the source code by adding @Atomic annotation to the

methods—represented as vertices in the preprocessing’s tree—that contain harmful statements.

4.1.2 Building the Tree

To build the tree, the analysis iterates over the source code, as shown in Figure 12. It

builds a vertex for each synchronization point (e.g., synchronized block, synchronized method,

lock request, synchronized method invocation). Additionally, we store all vertices on a map for

lookup purposes. We create a unique key for each vertex in the source code. The root element—

the first vertex to be added to the tree—is a compilation time root package (CtRootPackage).

Each vertex has a parent vertex, which is either the root vertex or another synchronization

point represented by a vertex in the tree as illustrated in Figure 13. If a vertex is another

synchronization point vertex’s parent, that means a nested synchronization is in the code. All

vertices that have been added to the tree until this point are called direct vertices, referring to

their direct relationship to a synchronization point (e.g., the synchronized method A and the

method C which contains a synchronized block in Figure 14).

When we add all the direct synchronization points to the preprocessing’s tree as vertices, we

start to look for all the methods that invoke one of the synchronized vertices in our tree, which

we call indirect vertices (e.g., method B, which invokes synchronized method A in Figure 14).

We call it indirect because it does not have a synchronization point inside these methods and

instead points to either a method that has a synchronization point inside it or to an indirect

synchronization point. This process is done recursively until all the calls for a direct or indirect

vertex have been discovered and added to the tree, as seen in Figure 14.
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// for intrinsic locks

for (each synchronization point) do

find the parent vertex

generate a key for the current synchronization point

create a new vertex for the current synchronization point

add the vertex to the hashMap using the generated key

add the vertex to the found parent vertex

// for reentrant locks

for (each critical method invocation) do

find the closing points for the current invocation

// not under condition

if (the closing point is not in a branch)

// pair the lock() and unlock()

pair the two invocations

define the scope to be between the two invocations

start = lock() invocation

end = unlock() invocation

else

define the desired scope to be from the critical method invocation until the last reachable statement

start = lock() invocation

end = last reachable statement to the lock() invocation

// adding indirect vertices

for (each vertex in the tree) do

// An invocation of a vertex means that the invocation of the method contains the current vertex

recursively find all invocations of the vertex

if (an invocation is found)

// the following operations are for the method containing the invocation

generate a key for the current method

create a new indirect vertex for the current method

add the vertex to the hashMap using the generated key

add the vertex to the found parent vertex

if (the current vertex has children )

// means that this invocation takes place between two synchronization points

adjust the children vertices\rq{} parent to be the newly added vertex

Figure 13: Algorithm for building preprocessing’s tree.

Only one root is in any set of application source codes. Figure 14 shows an example of a

DDS preprocessing tree.

4.2 Identifying Harmful Statements

The tree construction is based on the program’s AST. We specifically consider paths between

lock acquisition points. The statements along these paths are examined to determine if any
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write operation is being performed on a shared object. If such a statement is found, then it is

considered a harmful statement. In this case, we cannot preempt the mutex lock that protects

that statement. We examine the entire tree for the presence of any harmful statements.

In a deadlock situation, a parent and a child monitor lock exist. The edge between these

two vertices is the set of statements the parent monitor protects. The difference between the

methods used to analyze potentially harmful statements is determined by the parent monitor

type (e.g., synchronized methods and lock statements). Potentially harmful statements in a

synchronized method must examine the write operations to object data members and object

data members’ compile-time aliasing. Unlike lock statements, potentially harmful statements

must inspect any write operation to the object data members, their compile-time aliasing, and

the lock object aliasing.

However, numerous challenges are related to the inclusion of reentrant locks in the prepro-

cessing step, as discussed in Chapter 1, Section 1.3. The first challenge concerns the scope of

the locking. Reentrant locks do not clearly define where a lock’s scope ends, necessitating an

extensive search for all possible closing points (i.e., unlock statements) to be included in the

lock vertex. The pairing process of lock and unlock invocations is conservative. In way similar

to Gerakios et al. (61), if the unlock invocation appears in a branch (not the same as where the

lock invocation executed), we do not pair the lock and the unlock invocations.

The second challenge is that reentrant locks are performed on a lock object instance that can

be locked and unlocked multiple times. Because our analysis requires the pairs to be matched

exactly, additional precautions must be taken to identify the correct pairing. One lock can have
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multiple unlocks based on the control flow graph, and we must consider all of these paths. This

challenge is further complicated in cases in which unlocking statements are missing because a

program without unlocking could be running. In this case, we inspect all the paths reachable

from that lock’s acquisition point.

Object aliasing in Java programs also causes subtle issues in determining harmful statements.

It cannot be easily determined which object is synchronized if an alias of the synchronized

object exists. For example, if object p is synchronized and object q is updated in the path of

a synchronized point in the tree, we cannot assume p differs from q because q and p could

be the same object due to aliasing. Unfortunately, it is impossible to completely resolve the

aliasing issue without the runtime support for arbitrary programs. Therefore, aliasing is the

third critical challenge for preprocessing.

To address aliasing, the preprocessing phase of DDS requires additional functionality to

evaluate aliasing occurrences resolvable at compile time. Unfortunately, not all occurrences of

aliasing can be resolved during compilation. We use a conservative approach by considering

all aliasing possibilities not resolved at compile time to be a harmful statement. This strategy

ensures that the program data are never left in an inconsistent state even though such data

may affect the runtime performance of DDS.

4.2.1 Handling Loops and Branches

In program analysis, loops and recursions are considered to be challenging structures, yet

they are crucial components in the development of algorithms and software. Both techniques

help the programmer execute a set of instructions for repeating all or part of the codes (62).
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Due to the complexities and time involved in the resolution of loops, researchers assume ex-

ecution of a single iteration as feasible for static analysis (63; 64). In proposing a framework

for a static loop analysis, Lokuciejewski et al. (63) explained the strength of a single execution

loop. They indicated that each time a loop is executed in static analysis, it must meet specific

constraints assuming the structure of the loop and the type of statements within the loop body.

With multiple iterations or recursions, it becomes quite challenging for the programmer to sat-

isfy these conditions. Single-step evaluation allows researchers to scan the loop headers and

bodies to ensure all conditions are satisfied before the evaluation. Similarly, in the JavaScript

applications, Madsen et al. (64) reported that appropriate unfolding of the event loop is essen-

tial. They considered it important for dealing with the constraints of a single nondeterministic

loop. In this regard, we assumed single loop execution for investigating Deadlock Detector

and Solver (DDS) in this research. Figure 15 indicates an example showing reentrant locks in

Java. Loops (in LoopNestedLock class) are used to illustrate the DDS preprocessing phase in

identifying harmful statements. We examine each statement in the loop body statements. In

case of the assignment statements (i.e., =, + = or − =), we perform aliasing analysis to find

all potential aliasing.

Second, like us, past researchers have assumed the execution of both the if and else branches.

The code in Figure 15 illustrates how we used conditional construct, i.e.,

if(i%2 > 0)...else...
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Figure 14: Example of a tree being built during the preprocessing stage of the DDS.

As per Lange et al. (65), the conditional constructs such as if-then-else allow programmers to

carry out conditional branching of the program. Conditional constructs exhibit the capacity to

yield either branch of a conditional branch through a nondeterministic step, which is extremely

important in static analysis. Therefore, we ensured that statements in all the branches are

executed.

Third, in this static analysis, we assumed array as a single lock. The same assumption has

been used by the other researchers (61). We mitigated the issue of determining the index of

such an array that is only determinable at runtime.
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4.2.2 Illustrative Examples

4.2.2.1 Intrinsic Locks

Looking at the example in Figure 14, we can see one synchronized method A and one

synchronized block in method C, which represent two vertices in the tree. In addition, we have

an invocation of the method A in the scope of method B. B is not a direct synchronized method,

but it contains an invocation for a direct method A; thus, we add B and the invocation of A to

the tree of synchronized points. As a final step, we add all the invocations of B—the indirect

method—to the tree to examine the tree paths for the presence of any harmful statements.

Based on the example presented, if we encounter a deadlock that involves an invocation of

method C, then we cannot preempt the monitor of the block in the method C because C

invokes B in the synchronized block that contains a harmful statement.

To solve this problem and ensure program consistency, we guard the method C using STM.

In addition, we consider aliasing, which could be resolved at compile time as part of the harmful

statement analysis. In our example, we must inspect the integer i and the object o. This

inspection guarantees that we do not modify an alias object between the two synchronization

points. If the aliasing cannot be resolved, we mark that statement as a harmful statement in

line with our conservative strategy.

4.2.2.2 Reentrant Locks

When we begin parsing the code, we create the root vertex. The code is parsed and searched

for methods that lock an object. These methods are considered as critical methods that can

potentially contain harmful statements. Our tree comprises critical methods that are repre-
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import java.util.concurrent.locks.ReentrantLock;

import java.util.concurrent.locks.Lock;

class LoopNestedLock

{

public final static int TOTAL_LOCKS = 4;

public Lock m_locks[];

public int m_ivar;

public static void main(String argv[])

{

LoopNestedLock lnl = new LoopNestedLock();

lnl.loop(false);

}

public LoopNestedLock()

{

m_locks = new ReentrantLock[TOTAL_LOCKS];

for (int j = 0; j < TOTAL_LOCKS; j++)

m_locks[j] = new ReentrantLock();

m_ivar = 0;

}

public void harmful_method()

{

m_ivar++; // harmful statement

}

public void loop(boolean include)

{

int j = 0;

for (int i = 0; i<TOTAL_LOCKS*2; i++)

{

if (i%2>0)

{

// statement B’

m_locks[(j+1)%TOTAL_LOCKS].unlock();

// statement A’

m_locks[j%TOTAL_LOCKS].unlock();

System.out.println("unlocking: " + ((j+1)%TOTAL_LOCKS) + "," + (j%TOTAL_LOCKS));

j += 2;

}

else

{

// statement A

m_locks[j%TOTAL_LOCKS].lock();

// method contains a harmful statement

harmful_method();

// statement B

m_locks[(j+1)%TOTAL_LOCKS].lock();

System.out.println("locking: " + (j%TOTAL_LOCKS) + "," + ((j+1)%TOTAL_LOCKS));

}

}

}

}

Figure 15: An example showing reentrant locks in Java.
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sented in the tree by their position in any given call stack. We create a critical method for each

unique lock in a method.

Looking at the example presented in Figure 15, both Statement A and Statement B are

critical methods. Each critical method is represented as a unique vertex in the tree.

Static code analysis of loops assumes a single execution of loops. This is justified by allowing

the analysis to take the most aggressive approach to finding harmful statements.

As for if-statements, we always assure both the if and else branch are executed. The

conditional state is based on runtime and cannot be always determined during static code

analysis; thus, we use the aggressive approach of considering all branches as taken when finding

harmful statements.

In static analysis of an array of locks, we assume the array is a single lock. This is done to

mitigate the issue of determining the index of such array that is only determinable at runtime.

In Figure 15, a single method contains two different locks. This will be represented in our

tree as a parent relationship between the two locks in the same method. These are considered

as two different critical methods in our tree as distinct vertices.

We traverse the tree to discover harmful statements that are identified by statements be-

tween vertices. In the example presented in Figure 15, the harmful method contains a harmful

statement and is in between two critical method vertices. This statement modifies a data mem-

ber, resulting in it qualifying as a harmful statement.

In addition, we search for reference aliasing to handle assignments of lack objects in the

static code analysis. Each alias must be followed for harmful statements.
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4.3 Guarding Harmful Statements

We start by providing a conceptual overview of DeuceSTM, followed by applying the tool

annotation directive to our previously explained examples.

4.3.1 Conceptual Overview of DeuceSTM

One of the biggest challenges in applying the DDS approach is the “missing potential vic-

tims” problem. In this regard, software transactional memory (STM) methodology, which is a

nonblocking methodology, was used in the annotation process. DeuceSTM, a Java-based STM,

was applied. It ensured that any write operation was created atomically. Annotation process

was crucial for ascertaining the program state in the runtime monitoring at the time of deadlock

occurrence. The STM approach provided us with a powerful tool (i.e., the atomic block) that

would ease multithreaded programming and allow for additional parallelism. Notably, the state-

ments stated in an atomic block tend to perform as a singular atomic unit. All these statements

are either executed collectively or none take effect at all. By using the STM approach in this

investigation, we enclosed the method on the top call stack that contains the lock acquisition—

that protects the shared memory—via an atomic block. DeuceSTM helped prevent redundant

memory accesses and redundant write-set operations, specifically record keeping (66).

Owing to the homogeneity of DeuceSTM’s library, Afek et al. (66) augmented all its STM

functions to receive an additional inward parameter, advice, which is a plain bit set and signifies

precalculated information. Because this parameter was used to fine-tune the instrumentation, it

was transmitted to the STM write function during the process of writing fields that will remain

unread. One bit in particular corresponded to “no-read-after-write.” Subsequently, another
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pass was used for implementing static analysis methods to identify optimization opportunities

specific to redacted STM read and write operations (67). By augmenting the underlying STM

compiler’s interface, DeuceSTM allowed the acceptance of information , which is necessary to

optimize the STM library method call.

We use DeuceSTM to ensure that when the solver algorithm victimizes a lock, the program

remains in a consistent state. For this purpose, STM was used to protect the harmful statements

and maintain the application in a consistent state. To do so, we first analyzed the source code,

which allowed us to identify the program locations where a request for lock acquisitions was

made. Subsequently, a tree was created using the AST of the program. The trees main purpose

was to exhibit call dependencies among different locations. A single tree was created for each

application. Furthermore, paths between lock acquisition points were considered. The paths

between lock acquisition points were analyzed specifically to determine whether any write to a

shared object was performed. We investigated the entire tree for the presence of any harmful

statements to be guarded using STM. DeuceSTM is used to annotate the top method in the

call stack, which protects the harmful statement by locking.

Conceptually, with the help of DeuceSTM, it was possible to avoid any addition to the

language or changes to the JVM. With the implementation of atomic blocks, we did not need

to consider the variables as part of the transaction and avoided the problem of missing victim

threads. At the time of execution, STM requested a Java agent that permits DeuceSTM to

interrupt every class loaded and deploy it before JVM loads it. Using @Atomic directive gets

STM to work while program is running even if we do not encounter a deadlock. If a deadlock
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occurs, the shared memory is covered by the @Atomic directive, such that if we preempt a

lock and two threads interleave in the atomic block of code, STM will abort the interleaved

transactions and only commit the one that executed the block autonomously.

4.3.2 Applying DeuceSTM to the Presented Example

In the DDS annotator, we guard the top method containing a synchronization point in the

call stack; if we find a harmful statement between the two nested synchronization points, we

still have the lock on that transaction. This way, we can guarantee whether STM takes the

action of rollback, which is only possible in the case of a deadlock. If we do not encounter a

deadlock, the shared memory is protected by the parent synchronization point. In other words,

thanks to the lock, we always have only one thread at a time accessing the shared memory.

The only case wherein we may encounter such an alternate scenario is when a deadlock occurs

and we preempt a lock from the victimized thread. The preemption results in only one other

thread acquiring the preempted lock, thus accessing the shared memory.

Placing the @Atomic annotation on the method containing the lock guarantees the trans-

action is committed while the thread holds the appropriate lock. Generally, we guard the top

method in the call stack that contains a synchronization point.

In case of the dining philosophers’ example presented in Figure 6, the unlock method,

which is putdownChopsticks, is higher in the call stack; thus, we guard the method containing

unlock invocation. If the lock invocation is higher or at the same level as the call stack where

the unlock invocation takes place, then we guard the method containing lock invocation.
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Subsequently, from the collection of identified harmful statements, we pass the top meth-

ods in the call stack containing the synchronization statements to the DDS annotator. This

process annotates the methods with the @Atomic declarations to guard the statements from

preemption, helping maintain consistency. Adding @Atomic annotations to a method allows it

to perform autonomously. This step results in adding @Atomic annotation to method C in Fig-

ure 14 example. In Figure 15, the DDS processor identifies loop method to be passed to the DDS

annotator because it is the top method in the call stack containing the synchronization point

(Statement A). Thus, loop method is annotated with @Atomic to execute autonomously.



CHAPTER 5

DDS RUNTIME

Parts of this chapter have been previously published in:

• E. Aldakheel, U. Buy, “Efficient Run-time Method for Detecting and Resolving Dead-

locks in Java Programs,” In 33rd European Conference on Object-Oriented Programming

Workshops (ECOOP), London, United Kingdom, 2019.

• E. Aldakheel, U. Buy and S. Kaur, “DDS: Deadlock Detector and Solver,” 2018 IEEE In-

ternational Symposium on Software Reliability Engineering Workshops (ISSREW), Mem-

phis, TN, 2018, pp. 216-223. doi: 10.1109/ISSREW.2018.00009

• E. Aldakheel, “Deadlock Detector and Solver (DDS),” 2018 IEEE/ACM 40th Interna-

tional Conference on Software Engineering: Companion (ICSE-Companion), Gothenburg,

2018, pp. 512-514.

Our methodology consists of two steps. In the previous chapter, we explained the first stage,

which is DDS preprocessing. In this chapter, we explain the core of our methodology, which is

the runtime monitoring. In this step, we continuously monitor specific actions (e.g., acquiring

and releasing mutex locks) and detect and resolve deadlocks at runtime. We first discuss the

runtime architecture components and how they interact and then illustrate how to detect a

deadlock using our architecture. Finally, we explain how we resolve the detected deadlocks.

57
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Figure 16: Runtime architecture of Deadlock Detector and Solver (DDS).

5.1 Runtime Architecture Components

The framework for detecting and resolving deadlocks is based on the lock order graph,

referred to here as the lock graph, which consists of vertices and directed edges. Each vertex

represents a mutex lock held by a thread, and each edge represents a request relationship

between two threads for a specific mutex. The presence of a cycle in the lock graph indicates

a deadlock.
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5.1.1 Observer

At this stage, we monitor a running program on a specific operating system (e.g., Linux

and Apple’s macOS). The DDS observer monitors the running program, as shown in Figure 16.

The observer is notified of relevant events when they pertain to mutex lock objects, then the

deadlock detector get notified about relevant events by the observer. We record the events and

the functions of interest in as a callback. The events occurring in a running program that we

monitor are as follows:

• Reentrant lock request, which represents a thread requesting a lock. This request blocks

the thread until the lock is free.

• Reentrant lock acquire means that a thread requesting a lock has obtained the lock (the

lock currently locked by the requester thread).

• Reentrant lock release occurs when a thread unlocks the locked object (the acquired lock).

• Monitor request results in a thread being in wait status until the lock becomes available

or the lock being acquired if the monitor in question is available.

• Monitor lock acquisition happens when the requesting thread gets access to the monitor.

• Monitor lock release occurs when the thread holding the lock releases the lock; thus, the

monitor is available for the next requester thread.

The JVMTI toolset allows us to define the following callbacks:

• Lock contended enter callback function represents a situation in which a thread attempts

to acquire a reentrant lock currently held by another thread.
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• Lock contended entered callback function occurs when a blocked thread (waiting for a

lock) acquires the needed lock.

• Monitor contended enter callback function occurs when a thread attempts to acquire a

monitor lock held by another thread.

• Monitor contended entered callback function occurs when a waiting thread acquires the

monitor for which it was waiting.

5.1.2 Detector

The detector uses information passed by the observer to build and maintain the lock graph.

Weather a vertex or an edge is added to the lock graph, the deadlock detector checks for cycles,

indicating the existence of a deadlock. Based on the listed events and functions, the observer

notifies the deadlock detector of the need to take the required action. We keep track of the

objects and threads. The deadlock detector stores the obtained information in maps for lookup

and retrieval. For each object, the deadlock detector generates a unique hash ID. In each map, it

saves objects (e.g., locks and threads) using their hash IDs. When a thread acquires a lock, the

deadlock detector adds the lock associated with the thread to the owning map. When a thread

releases a lock, the deadlock detector removes the lock entry from the owning map. In addition,

the deadlock detector maintains a map of vertices in cycle, which is essential in detecting and

resolving deadlocks. The primary functions of the deadlock detector are to build the graph and

call the deadlock solver if a cycle is detected, which means a deadlock has been found.
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5.1.2.1 DDS Graph

This graph is the core of the deadlock detector. The main components of the graph are the

vertices and the edges that connect the vertices. The DDS graph has directed edges to represent

the needs between the vertices—which represent the threads. Thus, an edge e1 from vertex v1

to vertex v2 means that v1 needs a lock held by v2.

Each vertex in the graph has a name, its thread name. In addition, each vertex includes a

list of edges. Each edge points at an owner vertex. Each vertex has a list of owned locks. The

graph has three main functions. These functionalities form the core that detects deadlocks at

the runtime. The following list explains each:

• Add edge enables the addition of an edge to the current graph. The addition of an edge

represents the need relationship between the two vertices.

• Remove edge occurs when a blocking thread— represented as a vertex in the DDS graph—

acquires the lock for which the thread was waiting.

• Finding a cycle in the DDS graph means that a deadlock exists if the current graph has

a cycle.

5.1.3 Solver

The deadlock solver is activated when the deadlock detector detects a deadlock. The deadlock

solver is responsible for resolving the detected deadlock. In this component, the deadlock solver

identifies the victim thread. Then, the deadlock solver identifies the participating object (e.g.,

lock or monitor) that belongs to the victim thread. It obtains the object’s class name and the
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signature that the deadlock solver is going to preempt from the victim thread. Based on the

information provided, the deadlock solver retrieves the object from the heap. It tags the object

based on our tag classification. The deadlock solver has the following three tag states:

• “Clear” means that each object is initially in a clear state. The object is also tagged as

clear when the preemption process is done—in other words, when the detected deadlock

has been resolved.

• The “Unlock” means that an object in the heap has been preempted from the victim

thread. It is the object to be locked by a thread other than the victim thread.

• The “Lock” state occurs when the preempted object is again returned to the victim

thread. This means that the victim thread again holds the lock object.

5.2 The Detector Algorithm

DDS detects deadlocks by monitoring requests, acquisitions, and releases of mutex locks.

The key structure used to detect deadlocks is the lock graph, as illustrated in Section 5.1.2.1. A

vertex v1 represents the lock held by a thread t1. Suppose that t1 also requests an unavailable

lock modeled by another vertex v2. In this case, we add an edge from v1 to v2 to indicate that

the thread holding the lock corresponding to v1 is waiting for the lock associated with v2 to

be released. Therefore, an edge e1 from vertex v1 to vertex v2 means that thread t1 needs a

resource (i.e., data structure) locked by another thread t2.

The existence of a cycle in this lock graph represents the presence of a deadlock. Any

thread that does not hold a resource does not have any vertices or edges in the lock graph.
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Algorithm 1: Runtime DDS detector algorithm for monitor locks.

1 Function monitor contended enter(thr, obj) /* algorithm to detect deadlocks and

maintain the graph for the monitor. */

2 begin
Data: current thread and object
Result: call DDS solver when a deadlock is detected

3 if !owner.find(obj) then
4 begin
5 thr←− currentowneroftheobject
6 owner[obj]←− thr

7 end
8 else
9 begin

10 ownerTh←− owner.find(obj)
11 graph.addEdge(thr, ownerTh, obj)

/* checks the graph for a cycle after adding an edge */

12

13 if !graph.dag() then
14 begin
15 wait(≈ 20milliseconds)

/* rechecks for a cycle in case we have communication delays */

16

17 if !graph.dag() then
18 begin
19 deadlockDetected←− true
20 if deadlockDetected then
21 begin

/* call DDS solver algorithm to resolve the detected deadlock */

22

23 solver(thr, obj)

24 end

25 end

26 end
27 else
28 begin
29 deadlockDetected←− false
30 end

31 end

32 end
33 Function monitor contended entered(thr, obj) /* algorithm to delete an edge from

the graph */

34 begin
Data: current thread and object.
Result: deleting edge from the graph.

35 owner.find(obj)
36 owner.erase(obj)
37 graph.removeEdge(thr, obj)

38 end
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The size of the graph is further optimized as follows: If the running application does not have

any contention—that is, if no thread requests a resource that is unavailable at that moment

—the lock graph will be empty. For each contention, we add a vertex for each the requesting

and owner threads. With each edge addition, we check the graph for the presence of a cycle.

For cycle detection, we used a variant of Depth First Search (DFS) in order to search the

graph. The algorithm complexity is O(V + E)—wherein V refers to the vertexes in totality,

while E indicates edges (numerically speaking) in lock graph. As soon as a thread acquires the

resource for which it has been waiting, we remove the corresponding edge from the graph. In

this case, we also update the information associated with vn to indicate that tm now holds the

corresponding lock. When the thread releases a resource, we remove the corresponding vertex

from the graph.

The detector algorithm activates when a resource contention occurs. For the monitor locks,

we need to obtain information regarding the requester thread and the owning thread. All the

information is contained within the class boundary—the class that uses monitor locks (i.e.,

synchronized block and synchronized method)—; thus, there is no need to obtain external

information. The thread requester tr, the thread owner to, and the resource l comprise the

needed information to be hashed and added to the maps. In addition, we need to add the

information to the graph. As soon as we add an edge e from tr to to to the graph, as shown

in line (11) of Algorithm 1, we check whether the result indicates the formation of a cycle,

which would indicate a deadlock exists. However, the formation of a cycle does not always

indicate a deadlock. In some cases, the communication delays among the DDS components (i.e.,
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observer, detector, and graph) mean that a deadlock has not occurred. For instance, a delay

between an event of interest happening in the running program and the corresponding callback

being invoked in the DDS imply that the DDS may still have outdated information about the

running program. Experiments using Java programs indicate that this delay is usually 10 to 20

milliseconds; however, this delay does not affect the validity of our analysis because deadlocks

are persistent. Once a deadlock occurs, it is sustained until the DDS resolves it. For this reason,

we recheck the conditions of a circular hold-and-wait pattern after this short delay.

The monitor contended entered function is activated when a thread enters the monitor

after waiting for another thread to free the monitor. This signal prompts the elimination of edges

from the lock graph. Edge removal is achieved by starting from the monitor contended entered

event that the observer detects when monitoring the running program. The observer then sends

the activation of the monitor contended entered event to the deadlock detector. Based on the

previous signal, the deadlock detector then sends a remove-edge request to the graph to remove

the designated edge from the graph, as shown in line (37) of Algorithm 1.

We also handle reentrant locks in our DDS methodology. The primary difference between

the monitor locks and the reentrant locks is that the reentrant locks are objects and do not have

any associations with a specific class or scope. This difference means that the information is

not contained in a specific place; thus, we have to search in the heap for the lock object as well

as the requester and owner threads. Afterward, we add them to the maps and lock graph, just

as we did for the monitor locks. Similar to what we did with the monitor locks, we add an edge

to the graph with every lock contended enter call, which represents a resource contention, as
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Algorithm 2: Runtime DDS detector algorithm for reentrant locks.

1 Function lock contended enter(thr, obj) /* Algorithm to detect deadlocks by

building the lock graph when a thread attempts to acquire an unavailable lock.

*/

2 begin
Data: current thread and object(lock)
Result: call DDS solver when a deadlock is detected

3 obj←− getBlocker(thr)
4 owner←− getOwner(obj)
5 if !owner then
6 begin
7 error←− OwnerNotFound
8 exit()

9 end
10 else
11 begin
12 ownerTh←− owner
13 graph.addEdge(thr, ownerTh, obj)

/* checks the graph for a cycle after adding an edge */

14

15 if !graph.dag() then
16 begin
17 wait(≈ 20milliseconds)

/* rechecks for a cycle in the event of communication delays */

18

19 if !graph.dag() then
20 begin
21 deadlockDetected←− true
22 if deadlockDetected then
23 begin

/* call DDS solver to resolve the detected deadlock */

24

25 solver(thr, obj)

26 end

27 end

28 end
29 else
30 begin
31 deadlockDetected←− false
32 end

33 end

34 end
35 Function lock contended entered(thr, obj) /* Algorithm to delete edge from the

graph when a thread obtains a for which it has been waiting */

36 begin
Data: current thread and object(lock)
Result: deleting edge from the graph

37 owner←− getOwner(obj)
38 owner.erase(obj)
39 graph.removeEdge(thr, obj)

40 end
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shown in line (13) of Algorithm 2. The lock contended enter is applied when a thread tries

to lock a reentrant lock that another thread has already acquired.

A blocked thread acquiring a lock for which it has been waiting activates the lock contended entered

function. The lock contended entered signal received from the observer causes an edge re-

moval, as shown in line (39) of Algorithm 2.

5.3 The Solver Algorithm

A deadlock has occurred only if a cycle exists in the lock graph. In this case, the detector

notifies the solver of the need to choose a victim thread. The solver forces the victim thread

to release the lock by issuing a wait or unlock statement on the victim thread; then, another

thread that needs that lock can acquire it. After the second thread releases the lock, the solver

requests a notify or lock statement on the victim thread, allowing the victim thread to obtain

the lost lock and continue processing.

The solver resolves the deadlock by preempting a mutex lock from one of the threads

involved in creating the deadlock. When the deadlock is detected, the solver forcibly releases a

lock in the chain, resolving the reported deadlock. The solver selects the object and the type

of method to be performed on the victim thread. In a monitor lock case, we utilize the wait

method, as presented in line (8) of Algorithm 3. Attributing solver to the deadlock issuing a

wait to the victim thread, the victim thread releases the monitor that the same thread held.

Subsequently, it blocks itself until the monitor is available (is released).

In the reentrant lock case, we obtain the locked object then employ the unlock method, as

presented in line (10) of Algorithm 4. In addition, we tag the object with “unlock” status to
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Algorithm 3: Runtime DDS solver algorithm for monitor locks.

1 Function monitor solver(thr, obj) /* algorithm to detect and resolve

deadlocks. */

2 begin
Data: current thread and object
Result: resolves the detected deadlock by issuing a wait on the monitor lock

3 thrsInCy←− graph.getVertexsInCycle(thr)
4 vicThr←− randPickOne(thrsInCy)

/* gets object class and class signature */

5

6 mID←− GetMethodID(cls, "wait", sig)
/* call wait() on the victim thread with passing time out argument

(tOut) */

7

8 CallVoidMethod(obj,mID, tOut)

9 end

indicate that this object has been preempted from the victim thread. When the deadlock solver

issues an unlock on the victim thread’s object, the victim thread releases the lock. Subsequently,

it blocks itself until the lock is released (available again). As soon as the current thread—not

the victim thread—releases the lock, we tag the object with “lock” and relock it on the victim

thread by notifying the victim thread of the lock availability.
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Algorithm 4: Runtime DDS solver algorithm for reentrant locks.

1 Function lock contended enter(thr, obj) /* Algorithm to detect and resolve

deadlocks by building the lock graph when a thread attempts to acquire an

unavailable lock. */

2 begin
Data: current thread and object(lock)
Result: resolve the detected deadlock by using unlock

3 thrsInCy←− graph.getVertexsInCycle()
4 vicThr←− pickVictimthread(thrsInCy)

/* get object class and class signature to obtain the method id */

5

6 mID←− GetStaticMethodID(cls, "unlock", sig)
/* tag the ‘‘clear’’ object with ‘‘unlock’’ status */

7

8 obj.tag(unlock)
/* call unlock() on the victim thread */

9

10 CallStaticBooleanMethod(cls,mID, obj)
/* tag the ‘‘unlock’’ object with ‘‘lock’’ status and return it back to

the victim thread */

11

12 obj.tag(lock)
/* get object class and class signature to obtain the method id to

re-lock() when the tagged object get freed */

13

14 mID←− GetStaticMethodID(cls, "lock", sig)
/* tag the ‘‘lock’’ object with ‘‘clear’’ status again; so, no further

action is needed */

15

16 obj.tag(clear)
/* call lock() on the victim thread to return the lock back */

17

18 CallStaticBooleanMethod(cls,mID, obj)

19 end
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EXPERIMENTAL EVALUATION

Parts of this chapter have been previously published in:
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We empirically evaluated the effectiveness of the DDS in detecting and resolving deadlocks

at runtime. We specifically measured the overhead that the DDS imposes in detecting and

resolving a deadlock. In addition, we empirically evaluated the efficiency of preprocessing in

identifying the locks that should not be preempted by DDS when resolving a detected deadlock.

We report the preprocessing timing, even though this step is performed once offline before

compiling and running the program. The purpose was to ensure that the preprocessing step

is performed sufficiently quickly not to incur a long wait time (e.g., hours). We evaluated the

70
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DDS on a suite of multithreaded Java programs. In addition, we compared DDS runtime

performance with two other deadlock detectors. We ran all experiments on a Linux Ubuntu

16.04 LTS machine with a 1.70 GHz Intel Core i5 processor and 6 GB RAM. This chapter starts

with DDS implementation details followed by benchmark sets details. Finally, we display our

empirical results.

6.1 Implementation Details

Figure 17: DDS high level layered architecture overview.
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The implementation of DDS consists of three layers on top of the operating system, as

shown in Figure 17. At the bottom is the runtime monitoring layer, which is based on the Java

Virtual Machine (JVM). The JVM is a virtual machine to enable the Java program to run on

various operating systems. The JVM layer contains a tool to access native code contained in

the Java Native Interface (JNI) and the Java Virtual Machine Toolset Interface (JVMTI). The

JNI is an interface to enable a native method—written in a language other than Java— to be

called in or called back during program execution. We use the JNI to handle object retrieval and

lock preemption. The JVMTI is another component for implementing the DDS methodology

for the Java program. In particular, the JVMTI is responsible for the verious callbacks that

we use to implement our methods (e.g., monitor contended enter ... etc). The JVMTI is a

two-way communication tool interface that monitors and controls the running Java program.

The two-way communication is between an “agent” written using the JVMTI and the running

program in the JVM. The “agent” is notified of events of interest and can use the JNI to call

out and control the execution of the running program. Using the JVMTI, we can inspect the

state of a program running in the JVM, thus controlling the execution of the running program.

The next layer is the STM layer. Here we use DeuceSTM (34) to access memory utilities and

create transactions to guard the harmful statements. This layer uses Java enhanced with native

methods. The top layer performs the preprocessing step in Java using the Spoon toolkit (68).

6.1.1 Runtime Monitoring

A Java program is executed in the JVM, which is then monitored by the DDS via the

JVMTI. The DDS runtime implementation consists of two parts: the detector agent and the
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solver agent. The JVMTI allows the two DDS agents to communicate with the Java program,

which runs in the JVM.

The JVMTI provides third parties, such as our agents, with access to the environment of the

running Java program. The JVMTI also allows our agents to register callback functions that

are invoked whenever certain events occur in the JVM. We register various callbacks. Func-

tion monitor contended enter is called whenever a thread in the running program requests an

intrinsic lock currently held by another thread. Likewise, lock contended enter is called when-

ever a thread requests a reentrant lock. The JVMTI invokes callbacks monitor contended entered

and lock contended entered when a thread actually acquires a lock it has requested. We use

these callbacks to keep the lock graph up to date.

Figure 18 shows how the deadlock detector and solver agents interact. The JVMTI monitors

the JVM and notifies the deadlock detector agent of any events. The JVMTI notifies the

deadlock detector agent whenever a resource is acquired or is waiting to be relinquished based

on the JVM callbacks. Finally, the solver agent invokes either function wait or function unlock

on the victim thread through the JNI, depending on whether an intrinsic lock or reentrant lock

is preempted. We use the async-profiler tool (69) to obtain access to the reentrant lock object

involved in the deadlock.

The registered callbacks allow us to define and maintain the lock graph. As described in

Chapter 5, vertices in the graph represent locks held by threads. Edges represent threads

waiting for a lock held by another thread. Edges are typically added to a graph as part of

monitor contended enter and lock contended enter functionality. See Figure 18. Edges
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Figure 18: Architecture of Deadlock Detector and Solver (DDS) to monitor program written
in Java Language.

are removed from the graph as part of monitor contended entered and lock contended entered

functionality. After adding an edge to the graph, we check whether a cycle or, in this case,

a deadlock was formed as a result. The formation of a cycle does not always mean that a

deadlock occurred. In some cases, the communication delays among the JVM, JVMTI, and

DDS’s detector agents mean that a deadlock did not in fact occur. For this reason, we recheck

the conditions of a circular hold-and-wait pattern after a short delay (≈20 milliseconds).

Once we know that a deadlock has in fact occurred, we use the solver agent to remove the

deadlock. The solver agent uses the JNI to preempt a lock on the victim thread and resolve
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Figure 19: DDS preprocessing architecture to handle different type of locking.

the deadlock. The JNI allows Java code running in the JVM to “call out” external functions.

The JNI also allows external functions to “call in” Java functions contained in the JVM. We

use the latter capability of the JNI to make a call from our agent to a thread holding a lock

involved in a circular hold-and-wait pattern. We specifically call the wait method in order to

release an intrinsic lock in the hold-and-wait cycle. The thread receiving such a call is awakened

and given back the lock after the latter becomes available again. We call unlock on a reentrant

lock involved in the deadlock cycle to resolve the deadlock.
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6.1.2 Preprocessor

We perform the preprocessor step on Java source code using the Spoon toolkit (68). Fig-

ure 19 shows the flow of control in the preprocessor. Using Spoon’s launcher, we implement our

processor. The processor builds a tree whose vertices are statements acquiring either intrinsic or

reentrant locks. To handle locking and unlocking of reentrant locks, we trace through the flow of

calls, starting from each lock statement. In particular, the preprocessor allows us to identify the

program locations evidencing the acquisition of a second lock by a thread after the structures

involved in a first lock acquisition have been accessed and modified. In that case, the thread is

not a good candidate to be victimized. In this manner, we determine whether a shared object

is modified before a second lock is acquired. When this happens, we treat the locking statement

as harmful, and we annotate the top method—that contains the lock acquisition— in the call

stack, which protects the harmful statement with the label @Atomic. DeuceSTM (34) uses this

annotation to provide transactional atomicity to subsequent memory-writing operations in that

block of code which contains the harmful statement.

As the code is parsed, we create a unique key for each element. Using the key, we create a

hashmap. For each synchronized block, synchronized method, or invocation, we add a vertex to

the preprocessing tree. For lock invocations, we set the filterOnCritical—which is responsible

for detecting reentrant lock function calls to add them to the preprocessing tree—to lock, as-

suming a lock method was executed first before the unlock method. Then, we search for the lock

CriticalMethod—the data structure for storing critical methods (e.g., lock() and unlock())—

structure in the hashmap. We parse the invocation into a return, class/interface type, and class
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signature to compare those attributes to the hashmap, which contains the CriticalMethod.

Then, we search in the hashmap. If the hashmap is not populated with an entry for this key,

we provide a method to convert the key from a search to a new entry. Afterward, we search for

an unlock invocation for the same instance (that locked by the lock() method, such as m locks

in Figure 15) to add the pair (of lock() and unlock()) to the CriticalMethodPairing—which

is responsible for pairing the beginning (i.e., lock()) and the ending (i.e., unlock()) of a critical

section. For the purpose of pairing, any unlock invocation in the condition statement is not

the final stop in our search for a harmful statement because, at the time of compilation, we

do not know whether that condition will be taken. For the lock invocation, we examine all

the reachable statements for that lock point. If there are no condition statements between

the invocation of a lock for a specific instance and the invocation of the unlock for the same

instance, we can pair the two invocations using CriticalMethodPairing.

6.2 Benchmark Sets

We ran two sets of experiments. The first set of benchmarks is from the Java Grande

suite (70). It comprises the following programs:

• barrierbench, which simulates cyclic barriers in Java,

• crypt, which encrypts and decrypts an array of size N,

• moldyn, which is a molecular dynamics simulation,

• lufact, which performs a Linpack Lower-Upper factorization, preceded by a triangular

solve,
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TABLE II: BENCHMARK DETAILS, INCLUDING PROGRAM LENGTH IN LINES OF
JAVA SOURCE CODE, NUMBER OF SYNCHRONIZED STATEMENTS CONTAINED
THEREIN, AND SIZE OF THE INPUT SETS.

Benchmark
Name

Line
Count

Num. of
Syn. Stat.

First Input
Size Set

Second Input
Size Set

elevator 587 8 8 floors 50 floors

tsp 706 6 20 cities 25 cities

barrierbench 710 15 10,000 times 5,000 times

sor 783 14 1,000,000 elements 2,250,000 elements

crypt 1210 14 20,000,000 elements 50,000,000 elements

moldyn 1,451 14 2,048 particles 6,656 particles

lufact 1,563 14 1,000 elements 2,000 elements

raytracer 2,004 15 150 × 150 pixels 500 × 500 pixels

montecarlo 3,702 14 10,000 samples 60,000 samples

hedc 26,577 467 566 bytes N/A

fop 624,432 43 45.8 kB 102.6 kB

• raytracer, which is used to generate an image from different objects by tracing the path

of the light and simulating its effect with virtual objects, and

• montecarlo, a computational algorithm that relies on repetitive random sampling to pro-

duce numerical results.

We also added the following four benchmarks from Eidgenössische Technische Hochschule

(ETH) Zurich (71), in English the Swiss Federal Institute of Technology in Zurich, and the fop

program from the Apache Software Foundation (72) to the first set:

• elevator, which simulates elevator operations,

• tsp, a solver for the traveling salesman problem,

• sor, or successive over-relaxation, and
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• hedc, a web-crawler kernel application.

The fop benchmark renders an XML file, which includes XSL formatting objects in a page

layout.

More details on the selected benchmarks are presented in Table II.

The second benchmark set comprises deadlocking and nondeadlocking versions of the pop-

ular dining philosophers’ problem example. Our dining philosophers benchmark set has four

different versions of the dining philosophers’ program. There are two control versions, which

are deadlock free. The main purpose of these two control experiments is to determine CPU

times, elapsed times, and DDS overhead when no deadlocks can occur. The other two dining

philosophers programs are not deadlock free. For the latter versions, our intent was to measure

the overhead for detecting and resolving deadlocks. The four dining philosophers programs are

described below.

1. A nondeadlocking dining philosophers program, which uses intrinsic locks (named “NDD

Synch” in Table IV).

2. A nondeadlocking dining philosophers program, which uses reentrant locks (named “NDD

Lock” in Table IV).

3. A deadlocking dining philosophers program, which uses intrinsic locks (named “DD

Synch” in Table IV).

4. A deadlocking dining philosophers program, which uses reentrant locks (named “DD

Lock” in Table IV).
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Each philosopher alternates between eating and thinking by locking two forks shared with

neighboring philosophers. The number of forks is equal to the number of philosophers. The

program terminates after each philosopher has eaten 100 times. We used the intrinsic lock and

reentrant lock to synchronize the forks. The number of philosophers ranged from 10 to 100 to

evaluate the scalability of the agents.

6.3 Empirical Results

We ran the benchmarks 60 times and recorded the average runtime to compute the overhead

of both the preprocessor and runtime monitoring. For the deadlocking benchmarks, we checked

whether the agent detected and resolved the deadlocks. We also ran the nondeadlocking versions

with and without runtime monitoring and compared the runtime of the two versions. We also

measured the DDS overhead with the selected benchmarks in Table II. For each run, the

elapsed time and CPU time were recorded for each benchmark.

As of this writing DDS resolves deadlocks involving an arbitrary number of intrinsic locks

and up to two reentrant locks because of an issue related to obtain the lock object from the

heap and maintain it. We are currently expanding DDS to resolve deadlocks involving multiple

reentrant locks.

6.3.1 DDS Preprocessing Evaluation

We evaluated the preprocessor based on three criteria. First, we checked that the pre-

processor detects harmful statements correctly while also taking into account aliasing, which

can be resolved at time of compilation. Second, we checked that methods containing harmful



81

statements were guarded with the “@Atomic” annotation. Last, we measured the overhead of

preprocessing applications in our benchmark set.

To test the accuracy of the preprocessor in detecting harmful statements, we covered differ-

ent scenarios depending on the presence or absence of harmful statements. There were cases in

which a harmful statement was present between two successive lock requests. Additionally, we

introduced harmful statements distant by several function calls from the original lock acqui-

sition to test the preprocessor. Furthermore, we introduced synchronized statements in class

constructors. We also added a test set for aliasing, including test cases that could be resolved

during compilation and cases that had to be considered harmful statements. On the whole, we

had over 50 test cases to cover different types and combinations of the needed scenarios.

TABLE III: DDS PREPROCESSOR TIMINGS FOR THE CHOSEN BENCHMARKS.

Benchmark Name CPU Time in Seconds Elapsed Time in Seconds Number of Vertices

elevator 11.05 3.95 8

tsp 8.03 2.43 11

barrierbench 11.19 3.01 30

sor 10.29 3.08 22

crypt 10.59 3.06 22

moldyn 14.43 4.31 26

lufact 10.24 3.3 22

raytracer 14.59 4.58 32

montecarlo 15.64 5.23 26

hedc 256.77 223.57 745
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For all our test cases, our preprocessor successfully detected the injected harmful statements

and any aliasing that could occur at time of compilation. The elapsed times for all test cases

were under 2 seconds, and the CPU time never exceeded 8 seconds (adding the CPU time for

all four cores of our hardware platform).

All our benchmark applications performed the preprocessor step successfully. We artificially

injected harmful statements to evaluate both the preprocessor and the runtime monitoring under

different conditions. As for time measurement, the elapsed and CPU time grew linearly as the

number of the vertices increased, as shown in Table III. Note that elapsed times were generally

lower than CPU times because we ran our experiments on quad-core hardware.

6.3.2 DDS Runtime Evaluation

In this section, we discuss the overhead introduced using DDS for both sets of benchmarks.

We analyzed the dining philosophers programs in the first subsection to compare the overhead

introduced by resolving deadlocks in the deadlocked version of the dining philosophers problem.

Subsequently, we showed how DDS affects the runtime of selected real-world applications.

Finally, we measured the overhead of using DeuceSTM by artificially injecting harmful statement

in selected benchmarks.

6.3.2.1 Dining Philosophers Examples

We sought to evaluate the effectiveness of the DDS in detecting and resolving deadlocks. We

recorded the execution time for the four dining philosophers programs—illustrated in Section 6.2

—to evaluate the efficiency of the agents.
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The agents ran in parallel with the program, and the timing differences between each of the

variations and the overall performance were measured as shown in Table IV. A median growth

of 1.18% in CPU time was observed for nondeadlocking versions due to runtime monitoring,

whereas the median growth was 1.47% for the elapsed time. These numbers represent a linear

relationship between the time taken by the agents and the number of philosophers (threads).

DDS was able to identify all deadlocks that occurred. For the “DD Synch” version, DDS

successfully detected and resolved all deadlocks regardless of the number of locks involved in the

deadlock cycle. For the “DD Lock” version, DDS always succeeded in detecting all deadlocks

regardless of the number of the locks involved in a deadlock. However, on some occasions, DDS

was not successful in resolving deadlocks that involved more than two reentrant locks due to

lock object retrieval. We are currently investigating ways to address this limitation of the DDS.

It is worth mentioning that the vast majority of the deadlocks in real applications involve only

two locks (73).

Based on the observed timing in the deadlocking versions, we can state that resolving a

deadlock within the deadlocked versions incurs only a 4.6% overhead for the CPU time and 5%

overhead for the elapsed time.

6.3.2.2 Real-World Applications

We here report empirical results from the two benchmark sets described earlier. For most

benchmarks, we evaluated the DDS with two different input sizes and three different thread

numbers, namely 4, 8, and 16 threads. The elapsed time overhead and CPU time overhead for

both input sizes and different numbers of threads for all our benchmarks never exceeded 20%
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of the original program’s runtime. Our empirical results showed a linear relationship between

the overhead imposed by the DDS and the number of threads. (See Table V.)

Table V includes the columns “Benchmark,” which represents the benchmark name, and

“Setup,” which in turn corresponds to the input size for each run and the number of threads

to run the experiment. Furthermore, the table lists the elapsed time, CPU time averages, and

overhead percentage for each benchmark.

The “barrierbench” benchmark unexpectedly reported some negative CPU overheads. These

negative percentages were less than 2%, which is not significant. The main reason behind these

numbers is that “barrierbench” does not perform any heavy CPU operations; instead, it has

been designed to mimic the behavior of Java barriers. Therefore, most of the time threads wait

for other threads to proceed to the next step. This behavior introduces a degree of randomness

in the resulting runtimes.

In general, as we increased the input size, the overheads increased. Some of the benchmarks

showed lower overheads when we increased the input size. These benchmarks had a high

thread contention for locks with the smaller input size. As we increased the input size of

these benchmarks, we lowered the contention rate, which resulted in faster execution and lower

overhead percentages.

Based on the recorded timing in Table V for the selected benchmarks, we concluded that

using our supervisory controller, on average, incurred only 7.02% overhead for the CPU time

and 4.88% overhead for the elapsed time. These percentages showed when no harmful state-

ments were present; we believe that these numbers are quite reasonable.
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For most chosen benchmarks, we evaluated the DDS using STM by injecting harmful state-

ments in the source code of the benchmarks. Then, we measured the introduced overhead with

two different input sizes and three different thread numbers, namely 4, 16, and 32 threads, as

shown in Figure 20. DeuceSTM is implemented to work on Java version 7. If we have a Java

file that would not compile with Java 7, we can not use DeuceSTM with it.

The average elapsed time overheads for benchmarks running with STM was 5.83%, and the

CPU time overhead average was 14.4% with respect to the runtime of the benchmarks without

DDS agents. When comparing the runtime of the benchmarks running with STM and the

runtime of agents not using STM, we saw increases of only 7.4% and 1.4% for the CPU time

and elapsed time, respectively, of the agents with STM with respect to those without STM.

Additionally, we measured the memory consumption overhead percentage with respect to the

runtime without DDS agents. The median memory consumption overheads for benchmarks

running with STM was 22% of the original memory use.

The “barrierbench” and “moldyn” benchmarks reported negative percentages of overheads.

The main reason behind these numbers is that these benchmarks have sleep and barrier state-

ments that introduce a degree of randomness in the runtimes.

In general, as we increased the thread number, the overheads decreased. These benchmarks

had a high degree of contention managed by the STM with the smaller number of threads. As

we increased the input size of these benchmarks, the contention rate decreased, which resulted

in faster execution and lower overhead percentages.
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6.3.2.3 Comparison with Other Deadlock Detectors

It was difficult to conduct a one-to-one comparison of DDS with prior work because of the

absence of tools that resolve deadlock in Java programs to the best of our knowledge DDS

is the first runtime tool that detects and resolves deadlocks for Java programs using runtime

monitoring. Nevertheless, we found working tools for Java programs that can detect deadlocks

and were able to compare DDS with previous works.

We compared DDS with one static deadlock detector and one dynamic detector known

as “ThreadSafe” (74) and “JCarder” (75). By design, ThreadSafe reports false positives when

conducting a static analysis. The aim of ThreadSafe is to detect any possible deadlocks. Because

JCarder is a dynamic tool, it only identifies real deadlocks. The two detectors work on Java

byte codes. ThreadSafe parses compiled (.class) files to enable an interprocedural dataflow

analysis and to identify the control flow in each Java method. For each instruction, ThreadSafe

computes a lock set, which is later used to identify problematic or defective code. In the

last step, ThreadSafe uses a so-called Inconsistent Synchronization checker to report potential

deadlocks. JCarder dynamically instruments Java byte code to record information on lock

acquisition. Using runtime information, JCarder searches for cycles in the locks acquisition

graph.

We executed all our benchmarks in this experiment with two threads; the exception was

the “fop” benchmark, which initially started with one thread and then spawned to four. Based

on Table VI, we can see that ThreadSafe spent a considerable amount of time, 8844.12%

overhead, which is ≈ 3 minutes of running compared to ≈ 2 seconds total time of the original
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running program, analyzing fop’s source code. This occurred because ThreadSafe issued four

error counts within the source code and used timeout for these errors, causing a timing issue

for this benchmark. This result also raises a question about the approach’s scalability. On

the positive side, ThreadSafe can be used for not only detecting deadlocks but also identifying

access violations that can cause data races.

TABLE VI: COMPARISON OF DIFFERENT DEADLOCK DETECTOR TOOLS. THE
RECORDED MEASUREMENT INCLUDES THE AVERAGE TIME OVERHEAD MEA-
SUREMENT FOR BOTH CPU TIME AND ELAPSED TIME OVERHEAD PERCENTAGE.

Benchmark
DDS JCarder ThreadSafe

CPU% elapsed% CPU% elapsed% CPU% elapsed%

elevator 3.33 0.29 37.63 1.56 86.02 -99.95

barrierbench 18.18 9.84 26.23 11.29 81.25 72.77

sor 21.49 18.78 45.49 47.86 74.5 69.5

crypt 2.92 13.04 14.19 60.26 46.91 71.56

moldyn 8.12 11.21 16.44 23.39 46.22 53.2

lufact 4 8.89 15.04 28.07 81.75 80.84

raytracer 16.81 15.69 22.46 24.56 64.74 60.55

montecarlo 6.75 13.97 12.65 22 45.69 46.08

hedc 17.65 10 52.94 56 805.88 425

fop 2.38 2.94 2.86 5.88 3711.9 8844.12

The comparison shows that the performance of the DDS far exceeds that of JCarder and

ThreadSafe when it comes to CPU time and elapsed time, with the exception of the “elevator”

benchmark’s elapsed time relative to the ThreadSafe elapsed time. The fact that DDS is a

runtime tool monitoring the running program is the major reason for its elapsed time being
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longer compared to that of ThreadSafe. The waiting in the elevator is stimulated by the source

code of the elevator through the use of Java sleep statements. These statements led to higher

elapsed time for DDS. We compared the recorded times in seconds to the average times of the

uncontrolled version of the benchmarks and concluded that the maximum elapsed time overhead

obtained using DDS was 18% for the “sor” benchmark, while JCarder and ThreadSafe had the

highest elapsed time overhead at 47% and 69%, respectively.

It is then possible for us to conclude that, in general, DDS is more efficient than JCarder

and ThreadSafe in terms of added overhead. Finding a resolution for any detected deadlock at

runtime is the purpose of our methodology. JCarder and ThreadSafe do not resolve deadlocks.

6.3.3 Communication Cost for Runtime Monitoring

We mainly focused on the time taken by the two callbacks, monitor contended enter and

monitor contended entered, which were used to detect and resolve deadlocks. We analyzed

the effects on the performance when the program was run under supervision by recording

the average CPU time utilized by the two callbacks mentioned previously for over 100 runs.

Table VII showed that the time for calling these two callbacks was negligible compared to the

actual CPU time for the dining philosophers. Calling monitor contended enter almost always

yielded a higher CPU time compared to calling monitor contended entered; this was usual when

comparing monitor contended enter and monitor contended entered in Algorithm 1. The main

cycle search was in monitor contended enter, and monitor contended entered was only used for

edge and owner deletion. Further, if a deadlock was detected, then call wait was performed

through monitor contended enter by calling the appropriate JNI functions.
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TABLE VII: COMMUNICATION COST (CPU TIME) WHEN USING “MONITOR CON-
TENDED ENTER” COLUMN TITLED “ENTER” AND “MONITOR CONTENDED EN-
TERED” COLUMN TITLED “ENTERED” MEASURED IN MICROSECONDS FOR DIF-
FERENT NUMBERS OF THREADS BASED ON OVER 100 RUNS.

10 Threads 40 Threads 100 Threads
enter entered enter entered enter entered

Average 514.91 191.57 1060.58 330.32 1826.72 397.43

MIN 47 5 56 6 61 7

MAX 2043 907 6602 5337 13437 2563

Median 316 137 447 163 187 321

As we increased the number of the threads, resulting in larger graphs to search in, the time

growth increased linearly. The MIN row in Table VII represents the cases of empty graphs

before the addition of any vertex or edge. The MAX row shows the case in which almost all

the thread vertices and edges have already been added.

6.3.4 Limitation

With the current implementation, DDS does not always resolve the reentrant locks deadlock

if the deadlock involves more than two such locks. This limitation is due to difficulties in

retrieving a lock object using JVMTI. However, we are investigating ways to overcome this

limitation in future works. It is worth mentioning that according to Lobo and Castor (76) 92%

of the deadlocks involve only two resources between two threads.

An additional limitation is that we did not consider certain other locking mechanisms of

Java such as semaphores. We will consider semaphores in future extensions to this work.

DeuceSTM is only working with Java program compiled using Java version 7 and bellow.

We need to upgrade DeuceSTM to handle new features added after Java version 7 release.



CHAPTER 7

APPLICATION OF DDS

The current methodology discussed in the preceding chapters has been applied to Java.

The aim of this chapter is to explain in detail how this methodology can be applied to any

other language. We begin this chapter with an analysis of the source code and then move to

an examination of runtime monitoring. In this chapter, we try to identify whether any tool

exists that can instrument the source code. Previously, we used existing tools (e.g., JVMTI) to

monitor Java. Our focus now is on the application of existing tools to the other programming

languages such as C++. We endeavor to find a way to preempt a resource (lock) from the

victim thread (so for Java, we have used JNI) to issue a “wait” and “notify” functions for the

intrinsic locks and a “lock” and “unlock” functions for reentrant locks. This chapter highlights

what we need to do to accomplish the same process for any language other than Java (e.g.,

C++). Finally, we write about how we are planning to apply DDS methodology for distributed

systems that use a language supporting the locking mechanism for concurrency.

7.1 Application of DDS in a Multicore Environment to Any Other Language

In the first section we examine the process of applying DDS to any language other than

Java. In a multicore system, DDS has great potential to help resolve deadlocks at runtime.

The application of DDS using a locking mechanism can be categorized into the following steps.

96
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In the first step, the DDS is required to build a preprocessing tree. Such a tree represents the

synchronization point with application of a static analysis tool on the source code. It indicates

that DDS helps in checking the program code before testing.

In the second step, we modify the code to protect it from the harmful statements (i.e.,

protect the program state from the result of victimizing a harmful statement) using the STM

methodology. The second step is carried out during the preprocessing stage. However, in case

the language does not have any tool to monitor the running program and preempt a resource

during runtime, we need to instrument the source code, as described in the third step below.

In the third step, we instrument the source code for tracking the lock request, acquisi-

tion, and release during the runtime. Such instrumentation is the most important part of the

development of the optimized lock graph.

In the fourth step, in case of a cycle, we need to victimize (i.e., unlock) a lock from a thread

that participated in the deadlock cycle.

One of the key components in DDS is the lock graph, which we mentioned in the third step.

A lock graph is simply a directed graph, as we described earlier—Chapter 5, Section 5.1.2.1.

It captures locks and threads data. In this scenario, it can be used in numerous languages

to point to lock information and thread creations. Directed edges symbolize the sequence or

pattern for lock acquisition. The source code is required for building the graph at the runtime

of every event of interest. Lock graphs are important in deadlock detection because they help

in detecting cycles. While checking cycles in lock graphs, deadlocks are checked in two or more

threads because every resource request is at risk of being affected by a deadlock. Different
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languages can use class-level locks that apply atomic methods using synchronization—intrinsic

locks. In addition, reentrant locks can be used as special classes in different languages.

When applying DDS to any other language, the main challenge, which we can phase, relates

to the preempting of a resource lock in a multicore system. To address this issue, we need to

control and access the thread scheduler and attain information about the execution (e.g., mutex

lock and unlock). Preemption of the thread’s resource resolves the detected deadlock. The first

approach would ensure that in case of a thread being made to wait when it requests new

resources, any other resource that was previously held is implicitly released. When resources

are requested but not present, the system checks to observe the resources that are held by

threads are in a blocked state as they wait for other resources. Upon identification of a cycle in

the lock graph, a resource needs to be preempted from a victim thread. Then, the victimized

thread is added to the front of the waiting list for the resources that have been taken away.

7.1.1 Applying DDS to C++

As described above, we have four main steps. In this section, we illustrate what tools could

be used and what needs to be done for each step.

In the first step, we use CodeSurfer (77) to build a preprocessing tree of the DDS. CodeSurfer

is a static analysis tool that provides a wide range of functionalities (e.g., Control Flow Graph

(CFG) and AST) through its Application Programming Interface (API). Using CodeSurfer, we

can implement our preprocessing algorithm to build the tree. The tool proves useful because

it can explore all the execution paths and threads interleaving within the program. It is very

helpful in determining the state’s reachability.
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In the second step, we use the simplified version of Transactional Memory Technical Spec-

ification (TMTS) (78) to modify the code and protect it from the harmful statements’ effect.

Based on the harmful statements list we obtained in the previous step, we guard their locations

with “transaction safe” block. Using the proposed keyword, the compiler is able to create and

instrument clones for functions reachable to the guard block during the runtime. Therefore,

we have a history of memories’ contents in case we need to rollback a transaction. In the

clones, every memory access (i.e., read and write) is replaced by a function call to a STM

implementation.

In the third step, we monitor and control the source code using Steroids library (79). Steroids

is a dynamic analysis library that allows DDS to control the thread scheduler and track the

lock request, acquisition, and release during the runtime. This support is granted through the

instrumentation of the bitcode for every call to a pthread function—pthread is a c library for

thread execution, which includes a set of programming types and function calls. Steroids is

compiled as a shared static library and provides a C++ interface. In this step, we build the

lock graph as we monitor the locks’ request and release.

In the fourth step, in the event we have a cycle in our lock graph, we need to victimize a

lock from a thread that participated in the detected deadlock cycle. This step is also performed

using Steroids by calling unlock on the victimized mutex (i.e., lock) during runtime.

7.2 Application of the DDS to a Distributed System

Distributed systems are subject to deadlocks. However, the detection of generalized dead-

locks is fairly challenging in a distributed system. A distributed system comprises P processes
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(called nodes). All these processes are combined through communication channels. A dis-

tributed system does not contain a global shared memory. The nodes communicate with each

other by sending messages directly over their channels. These passages are consistently delivered

with limited but random delays. Distributed systems are mainly presumed to be fault-free.

The distributed system functions by allowing the node to make requests and blocks. During

this process, the node goes into the idle state from the active state. The system continues to

reference the blocking or granting of requests from the node by indicating whether they are true

or false. Hence, upon having enough true requests granted, the node again assumes the active

state from the idle state. Kshemkalyani and Singhal (80) explained how the node unblocks: it

removes the outstanding requirements it sent but that are not yet decided or that are decided

but not cast off in the assessment of unblocking the condition of requested nodes. Another

attribute of the distributed system is related to the type of nodes operating therein. These can

be process or resource managers; process nodes disperse a request to another process and get

blocked after waiting for a reply. Meanwhile, the resource manager allows the process to access

the resource needed to grant the request. However, during a request—that is, communication

in progress—within the system, the resource manager is unable to reply to the process nodes,

or the process nodes are unable to send requests to the resource manager using a single-request

model. In the single-request model, the simplest request model, each process is restricted to

requesting only one resource at a time. Different request models have been discussed in the

literature (80; 81; 82) (e.g., single-request, AND-request, OR-request, and generalized request).

In the AND-request model, each process is allowed to request any number of resources. The
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process is active (i.e., unblock) when all the requested resources are granted. The third model

is the OR-request model, which allows each process to request any number of resources. The

process is active (i.e., unblock) when any one of the requested resources are granted. In the

generalized request model, also known as the P-out-of-Q request model, each process is allowed

to request any number of resources Q. The process is active (i.e., unblock) when the P number

of the requested resources Q is granted. Using the generalized request model, we can represent

the AND-request model by having P = Q. Additionally, we can represent an OR-request by

having P = 1. In the single-request and AND-request models, the cycle that is within the WFG

is the requirement for a deadlock. For the OR-request model, a knot that is in the WFG is the

requirement for the deadlock.

In the following sections, we highlight some of the strategies used for handling deadlocks

in distributed systems. In addition, we illustrate whether we can use our methodology in

distributed system environments.

7.2.1 Deadlock-Handling Strategies in Distributed Systems

Deadlocks can be handled using three strategies: deadlock prevention, deadlock avoidance,

and deadlock detection, as we explained in Chapter 3. In a distributed system, it is rather

complex to implement different deadlock-handling strategies given that no one in the system is

aware of the condition of other processes in the system. As a result, this hidden information

leads to certain irregular delays.

Deadlock prevention is the first and one of the most important strategies for handling

deadlock, which is achieved through attaining a process that needs the required resources prior
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to the implementation (83). In the traditional methods of deadlock prevention, a request

message is sent to sites holding resources through the current requester process. However,

this method was criticized for inefficiencies that caused it to decrease the concurrency of the

system. Moreover, during the phase of acquiring the resource, a deadlock is likely to take

place in different processes. The problem may be solved by pushing processes for the required

resources (84).

According to Pyla and Varadarajan (55), a deadlock avoidance strategy entails an approach

wherein a resource is allowed to access a process in a situation when the subsequent system

condition is safe — when a system can access all resources without entering a deadlock state.

However, Zhonghii et al. (85) argued that a deadlock avoidance strategy can be ineffective in

a distributed system. They explained that to avoid deadlock, a significant storage dimension

is required that has widespread communication facilities for maintaining the information on

the global state of the system. In addition, Ali et al. (86) determined that the verification

process for a secure global state is required to be reciprocally exclusive so that a number of

sites are enabled to concurrently undertake the process of verification. As a result, the process

of verification rigorously restrains the system output and the concurrency. Moreover, it is

logically more costly to verify for a secure state for a considerably large number of processes

and resources.

Deadlock detection, the third deadlock-handling strategy, deals with detecting different

deadlocks taking place in the system (87). Deadlock detection requires supervision of the

process resource status interaction to detect the presence of any cyclical wait state. According
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to Banerjee and Chrysanthis (88), deadlock detection offers two main supportive conditions:

when a cycle is detected in the Wait for Graph (WFG) and the state endures while waiting for it

to be detected and broken and when the detection of the cycle is able to continue concurrently

with regular activities of the system. Hence, running the detection algorithm concurrently with

the running system has no negative impact on the throughput of the system, meaning that the

literature has been more focused on deadlock detection.

7.2.2 Applying DDS to Distributed Systems

Some of the identified causes behind the deadlock in the distributed system include the

absence of a global time concept, algorithms being based on ad hoc methods, and incorrect

assumptions about the stability of deadlocks. Because of the absence of the concept of global

time, most of the algorithms do not consider the causality relations between the events oc-

curring at different sites, resulting in the enclosure of unpredictable states. Kshemkalyani and

Singhal (89) concluded that a distributed deadlock needs to be defined in a more direct manner

to understand the causal relationship among the events and processes/sites. According to them,

the possibility of the global cycle must be considered in order to understand the existence of

different segments at nonoverlapping time intervals.

Kshemkalyani and Singhal (90) proposed one-phase algorithm premised on the two simul-

taneous sweeps in the distributed system’s messages to trace generalized deadlocks efficiently.

The algorithm takes “a snapshot of a distributed WFG” into account in the outward sweep

whereas it reduces the recorded distributed WFG in the inward sweep to evaluate the presence

of a deadlock. One of the significant features of this algorithm is its ability to overlap (in time)
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the two sweeps in the process. The researchers drew inferences from the two past investigations

into the two-phases algorithm. Both research studies were based on the two-phases algorithm.

Bracha and Toeug (91) proposed that the algorithm recorded a snapshot of distributed WFG

in the first phase before simulating the granting of requests in the second phase to ascertain the

presence of generalized deadlocks. Both phases are nested within each other and subsequently

terminated (i.e., the first phase was followed by the second one). In contrast, in the second algo-

rithm proposed by Wang et al. (92), the first phase recorded a snapshot of a distributed WFG,

whereas the second phase reduced the static WFG recorded in the first phase for detection of

deadlock. Under this proposed approach, the first phase was terminated using a termination

detection technique prior to initiating the second phase.

Based on the previous discussion of distributed systems, we can see that DDS methodology

can be deployed in a distributed system. However, this would occur under a major assumption-

namely, the deadlock’s stay persistence —cycle in the graph means deadlock. With the current

methodology, we can detect the deadlock caused by the single-request model only. Currently,

DDS can be applied to every single node in the distributed system to resolve local deadlock. To

expand DDS, we would think of the preprocessing step as the manager to build a centralized list

of all the requests. The following is how we are planning to apply DDS to distributed systems.

In the first step, CodeSurfer could be used for the preprocessing step to build the tree of

the DDS. We can implement our preprocessing algorithm to build the tree. In addition, in this

step we can have a log of all the requests to help in managing the communication later. This
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step is helpful because each process does not know anything about the other processes in the

system. This list will make it feasible to monitor the system activity from a centralized point.

In the second step, we suggest TM2C (93) as software transactional memory for the dis-

tributed systems. Based on the harmful statements generated from the first step, we could

guard their locations by instrumenting the source code. The read-and-write memory access of

the block of the code, which was run using TM2C, would be monitored for any write or read

conflict. If the system detects a conflict, it will perform a rollback and a reexecute for that

block of code.

In the third step, we would monitor and control the source code by instrumenting the

resource request and checking whether the current process is blocked because the resource is

currently unavailable. If so, we would need to add an edge into our lock graph (called WFG

in the distributed systems literature). The main challenge in this step is the communication

delay. In distributed systems, there are lots of factors to be taken into account (e.g., network

congestion).

In the fourth step, in case we have a cycle in our lock graph, we would need to victimize a

resource from a process and then return it after the other waiting process releases it.

Hence, based on the analysis of existing tools that can be used for the application of DDS

on other languages and for the application of DDS in a distributed environment, the current

methodology can be applied to C++. By following the four steps presented in Section 7.1.1, it

would be easier for us to apply the current methodology by following the stages. Conversely,

applying the DDS in the distributed system for dealing with the issue of deadlocks is not
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completely feasible at this stage. Although we propose applying the DDS in the distributed

system, it would only be in the systems that use the single-request model. DDS can be applied

on a single node within the distributed system to solve local deadlocks. The DDS methodology

is based on finding a cycle in the lock graph; thus DDS cannot be applied to detect and resolve

the OR-request or generalized request deadlocks because they are based on finding a knot in the

graph. In distributed systems, deadlock handling is challenging because no site possesses what

can be referred to as precise information or knowledge regarding the system’s state. The lack of

precise information occurs due to the inter site communication having a finite and unpredictable

delay. This challenge of the process’s knowledge of the system needs to be addressed in detail

before extending DDS to distributed systems.



CHAPTER 8

CONCLUSION AND FUTURE WORK

8.1 Conclusion

This study evaluated the causes and effects of deadlocks within the Java program and devised

a method of resolving deadlocks. The deadlock problem has been a significant challenge affecting

program reliability because of the multithreaded software, whose need has increased over the

past decade, which presents complex bugs because of its nondeterministic behavior. Deadlock

Detector and Solver (DDS), a runtime methodology that has a preprocessing stage to assist the

runtime in resolving the deadlock when there is a harmful statement, has been proposed as an

effective solution to the problem. In addition, Software Transactional Memory (STM) is used

to guard against any harmful statements and ensure that any written update is performed with

atomicity one thread at a time. STM incurs median overhead of 22% for memory and 4% for

elapsed time with respect to the runtime without DDS.

DDS is different than other existing approaches to resolving deadlocks in the way it rectifies

and fixes detected deadlocks. The current methodologies for resolving deadlocks unravel the

issues by suspending the involved threads, rolling back to a safe point in the execution history,

and reexecuting from that specific point. However, the DDS approach is based on resource

preemption from a thread, which has not been involved in modifying a shared object. We guar-

antee the program state of our anticipation approach through a preprocessing phase conducted
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offline, which detects program positions in which locks can be preempted without disturbing

the stability—constancy— of shared objects.

The experiments performed during the study confirm that the DDS’s overhead grows linearly

with an increase in the number of threads. The findings show that our adopted approach

is scalable and does not incur noticeable overhead when the number of synchronized points

increases or the size of the program (line of code) increases. The study also succeeded in

determining the runtime overhead of the supervisor controller (DDS) relative to the runtime

of the controlled program to be approximately 5% on average. This indicated that the DDS

quickly detects and resolves the deadlock during runtime. The results also indicated that the

DDS could offer a fully automatic approach without the need for manual adjustments. In

addition, DDS fixes the deadlocks without undermining the concurrency extent by prompting

any part of the controlled program to perform deterministically.

Furthermore, according to this study, deadlocks observed in Java (during runtime) programs

can be resolved by the DDS. The tests were undertaken with two levels of getting deadlocked

programs unlocked, thus proving the effectiveness of the DDS. The DDS methodology was also

tested on the hypothetical cases, although scarce and infrequent in the real world, and it proved

to be effective. Conversely, where deadlocks are missing, no effects are manifested in the Java

program’s flow. Thus, the DDS agent can effectively perform its role without causing any

substantial modification to the overhead. Moreover, it is possible to extent this methodology

to other languages utilizing locking of objects to achieve their synchronization.
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8.2 Future Work

Our future work encompasses performing deeper analyses to estimate the rates of deadlock

and harmful statements by measuring performance metrics such as duration of deadlock and

mean waiting times of blocked processes. Additionally, in our future work, we suggest extending

the methodology to:

1. Handle semaphores, which are synchronization objects that regulate access by several

processes to a shared resource in a multithreaded programming environment.

2. Resolve deadlocks caused by reentrant locks that encompass more than two reentrant

locks because the current method does not always succeed in resolving reentrant lock

deadlocks that comprise more than two locks.

3. Find a solution for STM because it does not handle I/O operations; thus, if we roll

back and reexecute, it will exclude I/O operations. Additionally, STM does not permit

the manipulation of a nontransactional mutable state or I/O operations. In our future

work, we should find an alternative to STM that permits the handling of I/O operations.

Consequently, this will enable rollback and reexecution without excluding I/O operations.

4. Apply our DDS methodology to other programming languages. Because our study has

focused on using DDS to solve deadlocks within Java programs, we should consider re-

searching the use of DDS to resolve deadlocks in other programming languages, such as

C++ or C#, in our future work.
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We also need more benchmarks to expose our methodology to real-world deadlock systems

with the use of STM. We need to find a benchmark that has enough harmful statements

instead of rarely having one because we injected a harmful statement in the benchmark to test

our methodology’s overhead.
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