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Summary

In this thesis we compute the Lascar rank for generic differential equations.

First we examine the case of generic linear differential equations. In this case,

we show that there is a definable bijection between the solution set of a generic

underdetermined system of k linear differential equations in n ≥ 2 variables and

An−k. We explore how this result can be applied to non-generic linear differential

equations.

Next we consider the case of a generic non-linear differential equations. We show

that the differential tangent space above a generic point is given by a generic linear

differential equation. We compute the Lascar rank by utilizing the relationship

between differential tangent spaces and the underlying variety combined with our

result for generic linear varieties applied to the tangent space above a generic

point.
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1
Introduction

A differential ring is given by a pair (R, δ) where R is a ring and δ : R→ R is an

additive ring homomorphism such that for x, y ∈ R,

δ(xy) = δ(x)y + xδ(y).

The ring of differential polynomials, R{X}, is a differential ring constructed by

extending the differential to the polynomial ring R[X0, X1, . . .] via

δ(Xn) = Xn+1.
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Differential algebraic geometry focuses on the study of solution sets of differential

polynomial equations; similar to algebraic geometry and the study of the solution

sets of polynomial equations. In the 1930s Ritt began studying differential poly-

nomials from an analytic perspective in [18]. Later, Ritt wrote a foundational

text for the subject of differential algebra [19] with some analytic assumptions

about the objects appearing. Kolchin expanded upon the work of Ritt by taking

a completely algebraic approach to the differential algebra in [6] and [7]. Kolchin’s

approach to the subject gave rise to the differential algebraic analogs of most no-

tions from classical algebraic geometry (e.g., Zariski topology, Hilbert polynomial,

Tangent Bundle). For instance, in classical algebraic geometry algebraically closed

fields are used as universal domains for the study of solution sets to polynomial

equations. In differential algebra the universal domains are differentially closed

fields.

Model theory is the study of definable sets (in first-order structures). The

framework of model theory is very general and often used to understand the

structure of definable sets. For instance, the definable subsets of a real closed field

are finite unions of intervals and points. The tools developed in model theory are

very general, however they have several nontrivial applications. One example of

this is Hrushovski’s proof of the Mordell-Lang conjecture for function fields [4].

Differential algebra is one of the best examples of a theory where the general tools

of model theory can be applied to produce interesting results.

The connections between model theory and differential algebra began in the

late 1950s with Robinson’s first order axioms for the theory of differentially closed
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fields (DCF) in [20]. Robinson’s work shows that DCF has quantifier elimination,

hence the definable sets are given by the constructible sets in the Kolchin topology.

Blum gave a more concise set of axioms for DCF in [1] and showed that DCF is

ω-stable. Lascar rank (RU) and Morley rank (RM) are notions of dimension

for definable sets and types coming from stability theory. These notions have

useful applications in several areas, including DCF. In our context, these ranks

are closely related to differential transcendence, in particular this relationship can

be seen in the following inequality

ω · tdδ(X) ≤ RU(X) ≤ RM(X) ≤ ω · (tdδ(X) + 1)

Morley rank and Lascar rank have been studied intensely in DCF. For instance,

if RM(X) is a limit ordinal then RM(X) = RU(X) [16]. In general these two

ranks are not equal within DCF [5]. These notions of rank in DCF are used in

Hrushovski’s proof of the Mordell-Lang conjecture for function fields [4].

Computing the rank of specific differential polynomials can lead to interesting

results. In [3] Freitag and Scanlon compute the Lascar rank for the j-function

(over C) by applying several analytic results about the j-function; ultimately

they use this towards their result about intersections of elliptic curves with certain

isogeny classes. Another example is in [12] where Nagloo and Pillay compute the

transcendence degree of extensions of C(t) by solutions to certain classes of generic

Painlevé equations. Their rank computations for Painlevé equations utilize a series

of computations applicable specifically to Painlevé equations from the Japanese

school of differential algebra.
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The objective of this thesis is to compute Lascar rank for generic differential

equations.

In chapter 2 we start with a review the preliminary materials needed for this

thesis. There are sections for fundamentals of model theory and differential al-

gebra; as well as a section on model theory of differential fields which connects

the ideas from the first two sections. Most importantly the last section contains

characterizations of forking independence in DCF.

Chapter 3 focuses on generic linear differential equations. In this setting we

think of the coefficients of the equations as independent differential transcenden-

tals over some differential field K. The main result of this section is the following

Main Theorem 1 (Theorem 31). Let n > k ≥ 1. The solution set to a system of

k generic linear differential equations in n variables is in definable bijection with

An−k.

The definable bijection from the above theorem arises as a composition of maps

to reduce the order equations within the system; ultimately reducing to a system

of linear equations of order 0. In particular this shows that the Lascar rank of the

system is ω(n−k). Moreover, by the Lascar inequality, ω(n−k) is a lower bound

for the Lascar rank of the zero set of any system of k differential polynomials in n

variables. We observe that the maps used in the proof of theorem are rational maps

defined using the coefficients of the system. Thus it is possible to use the technique

more generally (in the cases where the coefficients are not generic) provided that

all of the maps are definable; the main issue is that (in the case that the coefficients

are not generic) some of the necessary maps could have vanishing denominators.

4



We explore what these conditions are in the case of a single equation. Lastly, we

consider the example of equations with constant coefficients and show that these

conditions are met when the coefficients are algebraically independent over Q.

Next, in chapter 4 we review the notions of differential prolongations, arcs, and

tangent spaces. The exposition of this chapter follows [10] with slight adaptations

to our setting. Differential tangent spaces and prolongations have several appli-

cations in differential algebra. For instance, they are used to describe a geometric

axiomatization of DCF [13]. They are also used in the proof of Zilber dichotomy

for DCF [15]. There are several connections between differential varieties and

their tangent spaces. For instance, a differential variety and the tangent space

above a generic point have the same Kolchin polynomial.

In chapter 5 we use differential tangent spaces to transition from non-linear

differential varieties to linear differential varieties. In particular we show that the

tangent space above a generic point of a generic non-linear differential equation

is given by a linear differential equations with generic coefficients. Therefore we

can use our result for linear differential equations (Theorem 31) to determine the

∆-rank of this variety (the differential tangent space above a generic point). Using

this we compute the Lascar rank of the underlying variety.
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2
Background

This chapter contains an overview of the background material needed for the

thesis. Each section focuses on introducing definitions as well as stating some

fundamental results. The areas covered are Model Theory, Differential Algebra,

and Model Theory of Differentially Closed Fields.

2.1 Model Theory

This section provides an introduction to some fundamental notions and ideas from

Model Theory. Many of the definitions in this section are given with regards to

generality of model theory; in section 2.3 we will see many of the notions from this
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section in the context that is most relevant to this thesis. For a more in detailed

exposition of these topics see the following textbooks [8] and [23].

Model theory examines mathematical structures through first-order logic.

Definition 1. A first-order language, L, consists of the following:

1. A set F of function symbols and a positive integer nf for each f ∈ F .

2. A set R of relation symbols and a positive integer nR for each R ∈ R.

3. A set C of constant symbols.

The nf and nR denote the arity of the corresponding functions and relations.

Many languages arise naturally in mathematics. Here are a few examples:

• The language of graphs is L = {E}, where E is a binary relation symbol.

• The language of abelian groups is L = {0,+,−}, where 0 is a constant, and

+,− are binary function symbols.

• The language of rings is LR = {0, 1,+,−, ·}, where 0 and 1 are constant

symbols, and +,−, · are binary function symbols.

Note that the sets F ,R, C can be empty. In fact the empty language in which

all 3 sets are empty is also a first-order language.

The symbols of first-order language L have no limitations imposed their mean-

ing. In order to give meaning to the symbols of a first-order language they must

be interpreted within a L-structure.
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Definition 2. A L-structure, M, consists of the following:

1. A nonempty set M which is called the universe or underlying set of M.

2. A function fM : Mnf →M for every f ∈ F .

3. A set RM ⊂MnR for every R ∈ R.

4. An element cM ∈M for every c ∈ C.

Many naturally occurring first-order languages are motivated by their corre-

sponding first-order structures, where the interpretations are intuitive. For exam-

ple given an algebraic ring R, we get a LR-structure by taking the set R as the

underlying set, and interpreting the constants 0, 1 to be the 0 and 1 of the ring,

as well as interpreting the functions +,−, · to be the usual addition, subtraction,

and multiplication for the ring.

Definition 3. Let L be a language. The collection of L-terms is constructed us-

ing the function and constant symbols of L as well as variables x0, x1, . . . according

to the following rules:

1. Every constant and variable is a L-term.

2. Given an n-ary function f and L-terms t1, . . . , tn, then f(t1, . . . , tn) is a

L-term.

Terms are the basic elements that can be examine within first-order logic. Given

a L-structure M, and a L-term t(x1, . . . , xn), where x1, . . . , xn contains all of

the variables which appear in the term t. Then we can view t as a function,
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tM : Mn → M . Where tM(a) is given by evaluating at a in M (i.e., evaluating

the function composition by using the interpretation of the function symbols in

M after substituting ai for xi and substituting cM for every c ∈ C which appears

in t.)

Definition 4. Let L be a language. The collection of L-formulas is built up

using the following inductive construction:

1. t1 = t2, where t1 and t2 are L-terms

2. R(t1, . . . , tn), where R is a n-ary relation symbol and t1, . . . , tn are L-terms

3. ¬ψ, where ψ is an L-formula

4. (ψ1 ∧ ψ2), where ψ1 and ψ2 are L-formulas

5. ∃xψ, where x is a variable and ψ is an L-formula

Definition 5. Let ϕ(x) be a formula and M a L-structure. Let a ∈M, then we

define M |= ϕ(a) by induction as follows:

1. If ϕ is t1 = t2, then M |= ϕ(a) if tM1 (a) = tM2 (a).

2. If ϕ is R(t1, . . . , tnR), then M |= ϕ(a) if (tM1 (a), . . . , tMnR(a) ∈ RM.

3. If ϕ is ¬ψ, then M |= ϕ(a) is M 6|= ψ(a).

4. If ϕ is (ψ ∧ θ), then M |= ϕ(a) if M |= ψ(a) and M |= θ(a).

5. If ϕ is (ψ ∨ θ), then M |= ϕ(a) if M |= ψ(a) or M |= θ(a).
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6. If ϕ is ∃xjψ(x, xj), thenM |= ϕ(a) if there is b ∈M such thatM |= ψ(a, b).

7. If ϕ is ∀xjψ(x, xj), then M |= ϕ(a) if M |= ψ(a, b) for all b ∈M .

If M |= ϕ(a) we say that M satisfies ϕ(a).

Definition 6. Let M be a L-structure. We say that X ⊂ Mn is definable if

there is a formula ϕ(x1, . . . , xn, y1, . . . , ym) and b ∈Mm such that

X = {a ∈M :M |= ϕ(a, b)}.

We say that a set X is definable over A if there is exists a formula φ(x, y) and

b ∈ A such that φ(x, b) defines X.

For A ⊂M we have the following notions of closures for A:

1. Let b ∈M . We say that b is definable over A if {b} is definable over A. The

definable closure of A, denoted dcl(A), is {b ∈M : {b} is definable over A}.

2. Let b ∈ M . We say that b is algebraic over A if there is a finite set X

such that b ∈ X and X is definable over A. The algebraic closure of A,

denoted acl(A), is {b ∈M : b is algebraic over A}.

Example 7. Let K be an algebraically closed field of characteristic 0 (in the

language of fields). Then for A ⊂ K, dcl(A) is the field generated by A and

acl(A) is the algebraic closure of the field generated by A.

Understanding the definable sets of a structure is a key aspect of model theory.

The definable sets of a structure can be wildly complicated e.g., the natural num-

bers N in L = {+, ·, 0, 1} can define a universal Turing machine via a first order
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formula (and a Gödel encoding), hence the definable sets of this structure are not

computable. On the other hand the definable sets of a structure can be tame e.g.,

for C in L = {+, ·, 0, 1} the definable sets are the Zariski-constructible sets (this

follows from Chevellay’s theorem).

Definition 8. Let L be a language. A L-formula with no free variables (i.e.,

every variable xi appearing is inside of a ∀xi or ∃xi) is called a L-sentence. A

set of L-sentences T is called a L-theory. A L-theory is satisfiable if there is

an L-structure M, such that M |= T .

For a L-sentence φ we use the notation T |= φ if and only if M |= φ for every

M |= T .

A L-theory T is a complete theory if for every L-sentence φ, either T |= φ

or T |= ¬φ.

Many concepts in model theory occur on of the level of theories (i.e., properties

shared by all models of a theory). A few examples of such properties are quanti-

fier elimination, elimination of imaginaries, ω-stable, simple, o-minimal,

and NIP.

Definition 9. Let M be a L-structure and A ⊂ M . Let LA denote the language

obtained by adding constant symbols to L for every a ∈ A. Let p be a set of LA-

formulas in the variables x1, . . . , xn. We call p a type over A if p ∪ ThA(M) is

satisfiable. We call p a complete type if φ ∈ p or ¬φ ∈ p for all LA-formulas

φ in the variables x1, . . . , xn. We let SMn (A) denote the set of all complete types

over A in n variables.
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Given a type p ∈ SMn (A), we say that p is realized in M if there is some

a ∈M such that M |= φ(a) for all φ(x) ∈ p.

For A ⊂M and a ∈M , we consider the type of a over A given by

tp(a/A) = {φ(x) ∈ LA|M |= φ(a)}

Note that this is a complete type since for every LA-formula either M |= φ(a) or

M |= ¬φ(a).

We can view SMn (A) as a topological space with a basis generated by sets of

the form

[φ] := {p ∈ SMn (A) : φ ∈ p}

This is called the Stone Topology. It follows from the compactness theorem

that this topology is compact.

Definition 10. Let λ be an infinite cardinal and let T be a L-theory. We say that

T is λ-stable if whenever M |= T and A ⊂M with |A| ≤ λ, then |SMn (A)| ≤ λ.

We say that T is stable if it is stable some λ.

Definition 11. Let κ be an infinite cardinal and let M |= T . We say that M is

κ-saturated if for every A ⊂M , if |A| < κ and p ∈ SMn (A) then p is realized in

M.

κ-saturated models exist for arbitrarily large κ.∗ IfM |= T is κ-saturated, then

for all N |= T with |N | ≤ κ, there is an elementary embedding of N into M.

∗Note that often set theoretic assumptions are needed to show that κ-saturated models exist
for particular κ (i.e., κ-saturated models exist for strongly inaccessible cardinals).
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It is common to let U be a κ-saturated model for some sufficiently large κ and

consider the models we are interested in as being embedding into this model.

Next we introduce the model theoretic notion of forking. Our presentation of

forking for types is based on [14, Chapters 2, 3]. There is a more general definition

of forking for formulas which can be found in the previously mentioned sources

([8], [23]).

For the rest of this section we make the following technical assumption that T is

a complete and stable theory in a countable language, and T has infinite models.

Definition 12. 1. Let p(x) ∈ Sn(A). Then the class of p is

cl(p) := {φ(x, y) : there is some a ∈ A such that φ(x, a) ∈ p}

Note that cl(p) is the set L-formulas which are represented in p.

2. The fundamental order for n-types is denoted

On(T ) := ({cl(p) : p ∈ Sn(M),M |= T},⊆)

3. For p(x), q(x) n-types over models of T , we write p ≤ q if cl(p) ⊆ cl(q), and

p ∼ q if cl(p) = cl(q).

4. Let p ∈ Sn(A). Then we define

Cp = {cl(q) : q ⊃ p, q ∈ Sn(M), where A ⊂M and M |= T}
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Lemma 13. For any p ∈ S(A), Cp has a minimal element. We denote this class

by β(p) i.e., β(p) is the least class of a type over a model which extends p.

Definition 14. Let A ⊂ B, p ∈ Sn(A), q ∈ Sn(B) and p ⊂ q. Then we say that q

does not fork over A, or equivalently q is a nonforking extension of p, if

β(p) = β(q).

We say that A is independent from B over C, denoted

A |̂
C
B

if for every finite tuple a from A, tp(a/B∪C) is a nonforking extension of tp(a/C).

Remark 15. Nonforking is a notion of independence that generalizes the notion

of algebraic independence for algebraically closed fields. The following are some

basic properties of forking independence.

1. (Symmetry) A |̂
C
B if and only if B |̂

C
A

2. (Invariance) If σ ∈ Aut(U) and A |̂
C
B, then σ(A) |̂

σ(C)
σ(B)

3. (Transitivity) Let C ⊂ B ⊂ D. Then A |̂
C
D if and only if A |̂

C
B and

A |̂
B
D.

4. (Existence) For all a,B, and C there exists b such that tp(a/C) = tp(b/C)

and b |̂
C
B

14



Definition 16. Let T be an ω-stable theory. Let A ⊂ U and p ∈ Sn(A). The

U-rank of p is defined inductively (over the collection of ordinals) by

RU(p) = sup{RU(q) + 1 : ∃B,A ⊂ B ⊂M, q ∈ Sn(B), p ⊂ q and q forks over A}

We will often refer to this as the Lascar rank of p. We often write RU(a/A)

for RU(tp(a/A)).

Remark 17. Here are a few properties of Lascar rank:

1. RU(a/A) is an ordinal.

2. RU(a/A) = 0 if and only if a ∈ acl(A).

3. (Lascar inequality)

RU(a/A, b) +RU(b/A) ≤ RU(a, b/A) ≤ RU(a/A, b)⊕RU(b/A)

the ⊕ denotes the Cantor sum of ordinals.

4. Let X be a definable set. RU(X) = sup{RU(a/B) : a ∈ X} where B is any

small set of parameters over which X is defined.

5. Let X, Y be definable sets. If f : X → Y is a definable bijection then

RU(X) = RU(Y ).
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2.2 Differential Algebra

This section reviews some fundamental definitions from differential algebra. For

a more detailed exposition of Differential Algebra see [6], [7] and [19]. The pre-

sentation here is limited to the case of differential rings with a single derivation,

as this is the case we will need for this thesis (opposed to the more general setting

of rings with multiple commuting derivations). Throughout this section all rings

are assumed to be commutative.

Definition 18. Let R be a ring. A derivation is an additive map δ : R → R

that satisfies the Leibniz rule,

δ(ab) = δ(a)b+ aδ(b)

A differential ring is a ring with a derivation. When R is a field we call it a

differential field.

One example of a differential ring is to let R be any ring and equip it with

the trivial derivation δ : R → 0. Another example is C∞, the ring of infinitely

differential real value functions on (0, 1), with the standard derivative.

The kernel of the derivation is called the ring of constants, denoted CR (often

denoted by C when R is implicit). That is CR = {a ∈ R : δ(a) = 0}.

For a differential ring R we construct the ring of differential polynomials

R{x} by R{x} = R[x0, x1, . . .] with the structure that δ(xn) = xn+1. In this ring

we identify xn as the nth derivative of x.
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Throughout this thesis we use the following notation for derivatives,

δ(x) = x′, δ2(x) = x′′, and δn(x) = x(n) for n ∈ N.

For f ∈ R{x} \R, the order of f is the largest n such that x(n) appears in f .

Definition 19. An ideal I in R{x} is a differential ideal if δ(f) ∈ I for all

f ∈ I. Given A ⊂ R{x}, we will use [A] to denote the differential ideal generated

by A, and we use {A} to denote the radical differential ideal generated by A (i.e.,

{A} =
√

[A]).

Let L ⊃ K be differential fields and a ∈ L. We let I(a/K) denote the differ-

ential ideal of differential polynomials in K{x} that vanish at a. We say that a

is differentially transcendental over K if I(a/K) = {0}. Otherwise a is

differentially algebraic over K.

Theorem 20 (Ritt-Raudenbush Basis Theorem). Let R ⊃ Q be a differential ring

such that every radical differential ideal is finitely generated. Then every radical

differential ideal in R{x} is finitely generated.

Definition 21. Let K be a differential field. We say that X ⊂ Kn is Kolchin

closed if there are f1, . . . , fm ∈ K{x} such that

X = {a ∈ Kn : f1(a) = · · · = fm(a) = 0}

We refer to the topology generated by the Kolchin closed sets as the Kolchin

topology. The previous theorem tells us that an intersection of Kolchin closed
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sets is given by a finite number of differential polynomials.

The Kolchin topology is the differential analog of the Zariski topology for alge-

braic geometry.

For X ⊂ An we will use X to denote the Zariski closure of X. We will use X
Kol

for the closure of X in the Kolchin topology.

Definition 22. An affine differential variety V defined over K is a Kolchin

closed subset of An defined over K (i.e., the zero set of a collection of differential

polynomials over K).

For I ⊂ K{x} and V ⊂ An, we have the following notions,

1. V(I) := {a ∈ An : f(a) = 0 for all f ∈ I}

2. I(V/K) := {f ∈ K{x} : f(a) = 0 for all a ∈ V }.

Theorem 23 (Differential Nullstellensatz). Let K be a differential field. Let

Σ ⊂ K{x} be a set of differential polynomials. Then I(V(Σ)/K) = {Σ}.

An affine differential variety V is irreducible over K if it is not equal to the

union of two proper closed differential subvarieties defined over K. Every affine

differential variety over K has a unique decomposition into irreducible differential

subvarieties.

Definition 24. Let V be an irreducible differential variety over K. We call a

point a ∈ V generic over K if a is not contained in any proper differential

subvariety of V over K.

Next we introduce the notion of the Kolchin polynomial from [6].
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Theorem 25. Let a be a finite tuple from an extension of K. Then there exists

a numerical polynomial ωa/K(t) with the following properties.

1. For sufficiently large t ∈ N, ωa/K(t) is equal to the transcendence degree of

K((δj(a))0≤j≤t).

2. The degree of ωa/K is ≤ 1.

3. We can write ωa/K(t) in the following form

ωa/K(t) = d1(t+ 1) + d2

where di ∈ Z, in this case d1 is the differential transcendence degree of K〈a〉

over K.

4. If b is a tuple from K〈a〉, then there is t0 ∈ N such that for sufficiently large

t ∈ N , ωb/K(t) ≤ ωa/K(t+ t0).

We call ωa/K the Kolchin polynomial of a over K. The degree of ωa/K(t) is

called the differential type of a over K, denoted ∆-type(a/K). Similarly, the

leading coefficient of ωa/K(t) is called the typical differential dimension of a

over K, denoted ∆-dim(a/K). In general the Kolchin polynomial is not a dif-

ferential birational invariant, however the ∆-type and ∆-dim are both differential

birational invariants.

A result in [22] shows that Kolchin polynomials are well ordered under eventual

domination (i.e., f ≤ g if and only if f(t) ≤ g(t) for all sufficiently large t ∈ N).

Thus we can extend the notion of Kolchin polynomials to V a differential variety
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as follows

ωV := sup{ωa/F : a ∈ V } where F is any field over which V is defined.

2.3 Model Theory of Differential Fields

In this section we review model theory of differential fields which combines notions

from sections 2.1 and 2.2. For a more in depth exposition of Model Theory of

Differential Fields see [9, Chapter 2].

We focus on working within the theory of differentially closed fields (DCF). We

will use the language L = {+, ·,−, δ, 0, 1}. The theory of DCF has the following

axioms

1. axioms for algebraically closed fields of characteristic zero.

2. ∀x, y δ(x+ y) = δ(x) + δ(y)

3. ∀x, y δ(xy) = xδ(y) + yδ(x)

4. For any non-constant differential polynomials f(x) and g(x) where the order

of g is less than the order of f , there is a y such that f(y) = 0 ∧ g(y) 6= 0.

For the rest of this thesis we will assume that all rings are characteristic 0. We

also let U |= DCF be a κ-saturated model for a sufficiently large κ.

Theorem 26. The theory DCF has the following model theoretic properties:

1. Quantifier Elimination,
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2. ω-stable,

3. Elimination of Imaginaries

One consequence of Theorem 26 is that the definable sets are the constructible

sets in the Kolchin topology.

Quantifier elimination also gives a bijective correspondence between complete

types over K, differential prime ideals, and irreducible varieties over K as follows

p 7→ Ip := {f(x) ∈ K{x} : ”f(x) = 0” ∈ p} 7→ Vp := V(Ip)

The correspondence between varieties and types is given by V 7→ tp(a/K) where

a is a generic point of V . Thus for a ∈ U, V(Itp(a/K)) is a differential variety over

K where a is a generic point.

The forking relation has several characterizations in DCF; the following char-

acterizations are useful for our considerations:

1. If K ⊂ F and p ∈ Sn(F ), then p does not fork over K if and only if Vp is an

irreducible component of Vp|K over F .

2. Let K ⊂ F1, F2 be differential fields, then F1 |̂ K F2 if F1 and F2 are

algebraically disjoint over K i.e., if a ∈ F1 is algebraically independent over

K then it is algebraically independent over F2. For A,B,C ⊂ U we write

A |̂
C
B if Q〈AC〉 |̂ Q〈C〉 Q〈BC〉.

It follows from the first characterization that if q ⊃ p is a forking extension,

then ωq(t) < ωp(t).
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These characterizations are used in [17] to prove the following facts:

1. RU(a/B) = ω ⇐⇒ a is differentially transcendental over Q〈B〉

2. RU(An) = ωn
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3
Linear Differential Equations

3.1 Introduction

In this chapter we present our results for defining a bijection between differential

varieties given by linear differential equations and affine spaces. We are then able

to make conclusion about the Lascar rank of these varieties since it is preserved

by definable bijections. The main result is motivated by generalizing an algorithm

used to define a bijection between a generic linear differential equation of order 2

in 2 variables and A1. We first present that example then generalize the method to

a fully generic linear equation of arbitrary order in any fixed number of variables.
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The results are then further generalized to systems of generic linear differential

equations.

Upon understanding the algorithm in the context of generic linear equations we

analyze the process to see how it can be applied to define similar bijections for

certain non-generic linear equations.

3.2 Generic Linear Equations

The main result of this section is Theorem 31 which establishes a definable bijec-

tion between the solution set a system of generic linear differential equations and

A`, where ` depends on the number of equations and variables in the system. We

begin by considering some warm-up examples to motivate the techniques applied

throughout this section.

Definition 27. A generic linear differential equation of order m in n variables

(over K) is given by an equation of the form:

n−1∑
i=0

m∑
j=0

ai,jx
(j)
i + c = 0 (3.1)

where the coefficients ai,j, c are independent differential transcendentals (over K).

Example 28. For a warm-up example we consider a generic linear differential

equation of order 1 in two variables.

a1x
′ + a0x+ b1y

′ + b0y + c = 0 (3.2)

24



Now we apply the definable map (x, y) 7→ (z, y) where z = x+ b1
a1
y. Thus,

x = z − b1

a1

y and x′ = z′ −
(
b1

a1

)′
y − b1

a1

y′.

Substituting these expressions for x, x′ into equation (3.2) we get the following

equation in z, y

a1z
′ + a0z +

(
b0 − a1

(
b1

a1

)′
− a0b1

a1

)
y + c = 0 (3.3)

In particular,

y = − a1z
′ + a0z + c

b0 − a1

(
b1
a1

)′
− a0b1

a1

Thus y is definable from z. Therefore the solutions of equation (3.3) are pa-

rameterized by z, and there are no restrictions on the choice of z, so the solution

set is in definable bijection with A1. In particular, this shows that the solution set

of (3.2) has Lascar rank ω.

From the Lascar inequality gives the follow bounds for the Lascar rank of this

variety

ω ≤ RU(x, y/K) ≤ ω + 1.

Thus we see that in this case the lower bound is realized. The results throughout

this section will continue to realize the lower bounds from the Lascar inequality.

Example 29. Now we consider the case of a generic linear equation of order 2
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in 2 variables

a2x
′′
0 + a1x

′
0 + a0x0 + b2x

′′
1 + b1x

′
1 + b0x1 + c = 0 (3.4)

Let V denote the linear differential variety over K given by (3.4).

Now we apply the following definable map which reduces the order of equation

(3.4) in the variable x1.

(x0, x1) 7→ (y0, x1), where y0 = x0 +
b2

a2

x1 (3.5)

The map (3.5) is a definable bijection. Moreover we represent equation (3.4) in

terms of the variables y0, x1 by making the following substitutions

x0 = y0 −
b2

a2

x1 (3.6)

x′0 = y′0 −
b2

a2

x′1 −
(
b2

a2

)′
x1 (3.7)

x′′0 = y′′0 −
b2

a2

x′′1 − 2

(
b2

a2

)′
x′1 −

(
b2

a2

)′′
x1 (3.8)

The resulting equation is

a2y
′′
0+a1y

′
0+a0y0+

(
b1 − 2a2

(
b2

a2

)′
− a1

b2

a2

)
x′1+

(
b0 − a2

(
b2

a2

)′′
− a1

(
b2

a2

)′
− a0

b2

a2

)
x1+c = 0

(3.9)

To keep the notation more compact we substitute b1,j for the coefficients of x
(j)
1
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in equation (3.9). That is

b1,1 = b1 − 2a2

(
b2

a2

)′
− a1

(
b2

a2

)
b1,0 = b0 − a2

(
b2

a2

)′′
− a1

(
b2

a2

)′
− a0

(
b2

a2

)

This substitution allows us to express equation (3.9) as

a2y
′′
0 + a1y

′
0 + a0y0 + b1,1x

′
1 + b1,0x1 + c = 0 (3.10)

Now we apply another following definable map to reduce the order of equation

(3.10) in the variable y0.

(y0, x1) 7→ (y0, y1) where y1 = x1 +
a2

b1,1

y′0 (3.11)

Again we note that the map given in (3.11) is a definable bijection. To express

equation (3.10) in terms y0, y1 we make the following substitutions

x1 = y1 −
a2

b1,1

y′0 (3.12)

x′1 = y′1 −
(
a2

b1,1

)′
y′0 −

a2

b1,1

y′′0 (3.13)

This substitution allows us to express equation (3.10) as

(
a1 − b1,1

(
a2

b1,1

)′
− b1,0

a2

b1,1

)
y′0 + a0y0 + b1,1y

′
1 + b1,0y1 + c = 0 (3.14)
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Again, for ease of notation we will substitute a1,j for the coefficient of y
(j)
0 in

(3.14). So

a1,1 = a1 − b1,1

(
a2

b1,1

)′
− b1,0

a2

b1,1

a1,0 = a0

Thus equation (3.14) becomes the following linear equation of order 1 in the

variables y0, y1.

a1,1y
′
0 + a1,0y0 + b1,1y

′
1 + b1,0y1 + c = 0 (3.15)

Thus by applying the composition of the maps (3.5) and (3.11) we see that the

solutions of equation (3.4) are in definable bijection with the solutions of (3.15).

In Example 28 we showed that the Lascar rank of (3.15) is ω, hence the Lascar

rank of (3.4) is ω.

In this case the bounds for the Lascar rank of (3.4) coming from the Lascar

inequality are

ω ≤ RU(x, y/K) ≤ ω + 2

Again we note that the lower bound is realized.

Using the maps from example 29 for motivation we generalize the result to the

following lemma.

Lemma 30. Let n ≥ 2. The solution set of a generic linear differential equation

in n variables is in definable bijection with An−1.
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Proof. We prove this by induction on the order of the generic linear differential

equation.

For the case of order 0 the linear differential equation is

a0,0x0 + a1,0x1 + · · ·+ an−1,0xn−1 + c = 0

We observe that

x0 = − 1

a0,0

(a1,0x1 + · · ·+ an−1,0xn−1 + c)

so x0 ∈ dcl(x1, . . . , xn−1). Thus this equation is dependent only on the variables

x1, . . . , xn−1. Since the coefficients are generic the solution set is in definable

bijection with An−1.

For the inductive step we start with a generic linear equation of order m and

apply definable maps and change the variables to end up with a generic linear

equation of order m−1. The maps we want to use are generalizations of the maps

applied in Example 29.

First we apply the map

(x0, x1, . . . , xn−1) 7→ (y0, x1, . . . , xn) where y0 = x0 +
n∑
i=1

ai,m
a0,m

xi (3.16)

Note that x
(m)
0 = y

(m)
0 −

n−1∑
i=1

ai,m
a0,m

x
(m)
i + lower order terms in xi.

The lower order derivatives of x0 will contribute to the lower order terms of
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x1, . . . , xn−1, thus altering the coefficients of these variables. We apply the map

(3.16) to equation (3.1) and substitute y0 for x0. We also make a substitution for

the coefficients where we let bi,j be the coefficient for x
(j)
i for i ≥ 1. This gives the

following equation,

m∑
j=0

a0,jy
(j)
0 +

n−1∑
i=1

m−1∑
j=0

bi,jx
(j)
i + c = 0. (3.17)

Thus the variables x1, . . . , xn−1 now all appear with order m − 1 in equation

(3.17).

We need to show that the coefficients of equation (3.17) are generic over K. We

show that the set coefficients is differentially algebraically independent over K.

Suppose not, then there is some differential polynomial p ∈ K{x} such that

p(a0,0, . . . , a0,m, b0,0, . . . , bn−1,m−1) = 0. However the coefficients bi,j are given by

rational differential expressions in terms of ai,j. Therefore we can make this sub-

stitution and then clear the denominators. This gives a differential polynomial

relationship over K among the {ai,j} contradicting that the {ai,j} are generic over

K.

Next we apply the map

(y0, x1, . . . , xn−1) 7→ (y0, y1, x2, . . . xn−1) where y1 = x1 +
a0,m

b1,m−1

y′0 (3.18)

Note that x
(m−1)
1 = y

(m−1)
1 − a0,m

b1,m−1

y
(m)
0 + lower order terms in y0.

Again we see that the lower order derivatives of x1 will introduce addition lower

order terms in y0. By applying the map (3.18) to equation (3.17) and substituting
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b0,j for the coefficients of y
(j)
0 we get an equation of the form.

1∑
i=0

m−1∑
j=0

bi,jy
(j)
i +

n−1∑
i=2

m−1∑
j=0

bi,jx
(j)
i + c = 0 (3.19)

Therefore the resulting equation has order m − 1 in all n variables. Again we

need to check that the coefficients of equation (3.19) are generic. When we applied

the map to produce (3.19) this introduced the coefficients b0,j, which are given by

differential rational expressions in a0,j and b1,j. Thus as above we see that if there

was a differential polynomial relationship among the coefficients of (3.19) then we

could express the b0,j in terms of a0,j and b1,j then clear the denominators from

this rational expression. Contradicting that the coefficients of (3.17) are generic.

The composition of the maps (3.16) and (3.18) give a definable bijection between

the solutions of (3.1) and (3.19). By induction there is a definable bijection

between (3.19) and An−1. Therefore taking the composition of these two maps

gives desired definable bijection between (3.1) and An−1.

Next we extend the result of Lemma 30 to systems of generic linear equations

with the following theorem.

Theorem 31. Let n > k ≥ 1. The solution set to a system of k generic linear

differential equations in n variables is in definable bijection with An−k.

Proof. We prove this by induction on the number of equations in the system. The

base case of k = 1 is done by Lemma 30.

Now we consider a system of k generic linear differential equations in n vari-

ables (i.e., the set of all coefficients appearing in the system is a differentially
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independent set)

n−1∑
i=0

m0∑
j=0

a0,i,jx
(j)
i + c0 = 0

...

n−1∑
i=0

mk−1∑
j=0

ak−1,i,jx
(j)
i + ck−1 = 0

(3.20)

We reduce the first equation of the system (3.20) to an equation of order 0 by

applying the maps from the proof of lemma 30.

n−1∑
i=0

b0,i,0yi + c0 = 0 (3.21)

Throughout this process we have applied several maps to the variables xi and

we must apply these to the other k−1 equations of (3.20). We make substitutions

for the coefficients of these equations so that the system is now of the form

n−1∑
i=0

b0,i,0yi + c0 = 0

n−1∑
i=0

m1∑
j=0

b1,i,jy
(j)
i + c1 = 0

...

n−1∑
i=0

mk−1∑
j=0

bk−1,i,jy
(j)
i + ck−1 = 0

(3.22)
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From equation (3.21) we see that

y0 =
1

b0,0,0

(−c0 −
n−1∑
i=1

b0,i,0yi) (3.23)

Hence, y0 is definable from y1, . . . , yn−1.

Therefore we can use equation (3.23) to eliminate y0 from the other k − 1

equations of (3.22). Therefore we have a definable bijection between the solutions

of the system (3.20) and the solutions of a system of k − 1 equations in n − 1

variables. As in the proof of lemma 30 we see that the coefficients for this system

are still generic as any nontrivial differential algebraic relationship among them

yields a relation among the original coefficients by expanding their expressions in

terms of the original coefficients and clearing denominators.

By induction there is a definable bijection between the solutions of this system

of k − 1 equations in n − 1 variables and An−k. Taking the composition of this

map and the map constructed above gives the desired definable bijection between

the solutions of (3.20) and An−k.

Corollary 32. Let n > k ≥ 1. Let V be the differential algebraic variety cor-

responding to a system of k generic linear differential equations in n variables.

Then V has no proper subvarieties of rank ω · (n − k) nor any subvarieties of

∆-dim n− k.

Proof. Suppose towards a contradiction that W ⊂ V is a proper subvariety of

rank ω · (n−k) (resp. ∆-dim n−k). By Theorem 31 there is a definable bijection

between V and An−k. Under this bijection the image of W is a proper subvariety
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of An−k with rank ω ·(n−k) (resp. ∆-dim n−k), but no such subvariety exists.

Corollary 33. Let n > k ≥ 1. Let V be the differential algebraic variety cor-

responding to a system of k generic linear differential equations in n variables.

Then V has Lascar rank ω · (n− k).

3.3 Non-generic Coefficients

In the proof of Theorem 31 we do not need fully generic coefficients to construct

the bijection. Instead what we need is that in each application of (3.16) and (3.18)

the coefficient appearing in the denominator has not vanished. In this section we

present a recursive system of conditions that the coefficients of a system of linear

differential equations must satisfy in order to be able to utilize the process from the

proof of Theorem 31. We say that the coefficients for a system of linear differential

equations are sufficiently generic if they satisfy the conditions necessary to

construct a definable bijection to An−k.

3.3.1 Analysis of a Single Equation

Let’s examine what occurs when reducing a linear differential equation of order 3

in two variables.

Example 34. Throughout this example we apply maps and make substitutions

similar to example 29 in order to reduce the order of the equation. At the end

we see what conditions the coefficients need to satisfy for all of the maps to be

definable and thus produce a bijection with A1.
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Notation: We use the subscripts of the variables to keep track of how many

iterations of the maps we have applied (i.e., the maps we use be such that xi 7→

xi+1). Also we will be making the substitutions ai,j (resp. bi,j) for the coefficient

of x
(j)
i (resp. yji ) where appropriate.

We start with a linear differential equation of order 3 in 2 variables

a0,3x
′′′
0 + a0,2x

′′
0 + a0,1x

′
0 + a0,0x0 + b0,3y

′′′
0 + b0,2y

′′
0 + b0,1y

′
0 + b0,0y0 + c = 0 (3.24)

Next we apply the following definable map to equation (3.24)

(x0, y0) 7→ (x1, y0) where x1 = x0 +
b0,3

a0,3

y0 (3.25)

Note that in order to define the map (3.25) we require that a0,3 6= 0.

We can make the following substitutions

x0 = x1 −
b0,3

a0,3

y0

x′0 = x′1 −
(
b0,3

a0,3

)′
y0 −

b0,3

a0,3

y′0

x′′0 = x′′1 −
(
b0,3

a0,3

)′′
y0 − 2

(
b0,3

a0,3

)′
y′0 −

b0,3

a0,3

y′′0

x′′′0 = x′′′1 −
(
b0,3

a0,3

)′′′
y0 − 3

(
b0,3

a0,3

)′′
y′0 − 3

(
b0,3

a0,3

)′
y′′0 −

b0,3

a0,3

y′′′0

(3.26)

After applying this map and making the substitutions for the resulting coeffi-
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cients we write equation (3.24) in the following form

a0,3x
′′′
1 + a0,2x

′′
1 + a0,1x

′
1 + a0,0x1 + b1,2y

′′
0 + b1,1y

′
0 + b1,0y0 + c = 0 (3.27)

Next we apply the following map to equation (3.27)

(x1, y0) 7→ (x1, y1) where y1 = y0 +
a0,3

b1,2

x′1 (3.28)

Note that in order to define the map (3.28) requires that b1,2 6= 0 .

Thus we make the following substitutions,

y0 = y1 −
a0,3

b1,2

x′1

y′0 = y′1 −
(
a0,3

b1,2

)′
x′1 −

a0,3

b1,2

x′′1

y′′0 = y′′1 −
(
a0,3

b1,2

)′′
x′1 − 2

(
a0,3

b1,2

)′
x′′1 −

a0,3

b1,2

x′′′1

(3.29)

After applying map (3.28) and making the substitutions for the resulting coeffi-

cients we write equation (3.27) in the following form

a1,2x
′′
1 + a1,1x

′
1 + a1,0x1 + b1,2y

′′
1 + b1,1y

′
1 + b1,0y1 + c = 0 (3.30)

Next we apply the following map to (3.30)

(x1, y1) 7→ (x2, y1) where x2 = x1 +
b1,2

a1,2

y1 (3.31)

Note that in order to define the map (3.31) requires a1,2 6= 0.
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Thus we make the following substitutions

x1 = x2 −
b1,2

a1,2

y1

x′1 = x′2 −
(
b1,2

a1,2

)′
y1 −

b1,2

a1,2

y′1

x′′1 = x′′2 −
(
b1,2

a1,2

)′′
y1 − 2

(
b1,2

a1,2

)′
y′1 −

b1,2

a1,2

y′′1

(3.32)

After applying map (3.31) and making the substitutions for the resulting coeffi-

cients we write equation (3.30) in the following form

a1,2x
′′
2 + a1,1x

′
2 + a1,0x2 + b2,1y

′
1 + b2,0y1 + c = 0 (3.33)

Next we apply the following map to equation (3.33)

(x2, y1) 7→ (x2, y2) where y2 = y1 +
a1,2

b2,1

x′2 (3.34)

Note that map (3.34) requires b2,1 6= 0 in order to be applicable.

Thus

y1 = y2 −
a1,2

b2,1

x′2

y′1 = y′2 −
(
a1,2

b2,1

)′
x′2 −

a1,2

b2,1

x′′2

(3.35)

After applying map (3.34) and making the substitutions for the resulting coeffi-
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cients we write equation (3.33) as

a2,1x
′
2 + a2,0x2 + b2,1y

′
2 + b2,0y2 + C = 0 (3.36)

Finally we apply the following map to (3.36)

(x2, y2) 7→ (x3, y2) where x3 = x2 +
b2,1

a2,1

y1 (3.37)

Note that in order to define the map (3.37) requires a2,1 6= 0.

Thus we can make the substitutions

x2 = x3 −
b2,1

a2,1

y2

x′2 = x′3 −
(
b2,1

a2,1

)′
y2 −

b2,1

a2,1

y′2

(3.38)

This simplifies to the following equation

a2,1x
′
3 + a2,0x3 + b3,0y2 + c = 0 (3.39)

Note that if b3,0 6= 0 then in (3.39) y2 is definable from x3. As in the end of

example 28 we see that the set of solutions is in definable bijection with A1.

To complete the entire process we require that all of the following coefficients

a0,3, b1,2, a1,2, b2,1, a2,1 and b3,0 do not vanish. Each of these coefficients can be ex-

pressed by a rational differential expression in terms of the original coefficients a0,i

and b0,i by unpacking the recursive substitutions we made throughout the process.
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Doing this gives the following conditions ∗

a0,3 6= 0 (3.40)

b1,2 = b0,2 − 3a0,3

(
b0,3

a0,3

)′
− a0,2 · b0,3

a0,3

6= 0 (3.41)

a1,2 =

a0,3 ·
(
b0,1 − a0,1 ·

(
b0,3
a0,3

)
− 2 · a0,2 ·

(
b0,3
a0,3

)′
− 3 · a0,3 ·

(
b0,3
a0,3

)′′)
b0,2 − 3a0,3

(
b0,3
a0,3

)′
− a0,2·b0,3

a0,3

− 2

(
b0,2 − 3a0,3

(
b0,3

a0,3

)′
− a0,2 · b0,3

a0,3

) a0,3

b0,2 − 3a0,3

(
b0,3
a0,3

)′
− a0,2·b0,3

a0,3


′

6= 0

(3.42)

b2,1 = b1,1 −
a1,1 · b1,2

a1,2

− 2a1,2

(
b1,2

a1,2

)′
6= 0 (3.43)

a2,1 = a1,1 −
b2,0 · a1,2

b2,1

− b2,1 ·
(
a1,2

b2,1

)′
6= 0 (3.44)

b3,0 = b2,0 −
a2,0 · b2,1

a2,1

− a2,1 ·
(
b2,1

a2,1

)′
6= 0 (3.45)

Next we perform a recursive analysis to determine sufficient conditions for the

solution set of linear differential equation of the following form to be in definable

∗We did not expand all of the conditions out to be in terms of the original coefficients. We
include this example to illustrate the point that it is possible to explicitly determine what the
necessary conditions on the coefficients for a given order and degree. If one wants to verify the
conditions for examples beyond the case of order two in two variables in this manner then the
use of computers is strongly recommended.
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bijection with An−1.

n∑
i=0

m∑
j=0

a0,i,jx
(j)
0,i + c = 0 (3.46)

The strategy is to apply appropriate versions of the maps (3.16) and (3.18) to

reduce the order of the resulting equation on each application.

The purpose of map (3.16) is to make the variable of highest order unique;

we can denote this coordinate by xk,i′ . To reduce the order of xk,i′ we use the

map (3.18) which requires some non-zero ak,i,j where i 6= i′. After k iterations of

applying these maps the composition of the maps will give a bijection between

the solution sets of (3.46) and an equation with the following form:

n∑
i=0

m−k∑
j=0

ak,i,jx
(j)
k,i + c = 0 (3.47)

WLOG (up to applying a permutation of the coordinates) we may assume that

xk,0 is of the highest order and if some ak,i,m−k 6= 0 then ak,1,m−k 6= 0.
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Then the coefficients ak,i,j in (3.47) can be computed as follows:

For i > 0 and 0 ≤ j ≤ m− k :

ak+1,i,j = ak,i,j −
m−k∑
`=j

ak,0,`

(
`

j

)(
ak,i,m−k
ak,0,m−k

)(`−j)

For i = 0 and 0 ≤ j ≤ m− k :

ak+1,0,0 = ak,0,0

ak+1,0,j = ak,0,j −
m−k−1∑
`=j−1

ak+1,1,`

(
`

j − 1

)(
ak,0,m−k

ak+1,1,m−k−1

)(`−j+1)

(3.48)

In order to produce a bijection between the solution sets of (3.46) and a linear

equation of order 0 we need to apply m iterations of the maps which reduce the

order, hence need a`,0,m−` 6= 0 and a`,1,m−` 6= 0 for 0 ≤ ` ≤ m. Note that such a

bijection will give the desired result of being a bijection to An−1.

3.3.2 Constant Coefficients

Example 35. In this example we consider the case where the coefficients of (3.46)

are all constants of the differential field K.

When working with constants all of the derivatives vanish, hence the conditions
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of (3.48) simply to the following

For i > 0 and 0 ≤ j ≤ m− k :

ak+1,i,j = ak,i,j − ak,0,j
(
ak,i,m−k
ak,0,m−k

)
For i = 0 and 0 ≤ j ≤ m− k :

ak+1,0,0 = ak,0,0

ak+1,0,j = ak,0,j − ak+1,1,j−1

(
ak,0,m−k

ak+1,1,m−k−1

)
(3.49)

From this example we see that the coefficients are given by rational algebraic

expressions. Hence if all the coefficients are algebraically independent over Q,

then none the coefficients appearing the transformations will vanish. This proves

the following Theorem.

Theorem 36. Let n ≥ 2 and let V be a differential variety given by a linear equa-

tion in n variables with constant coefficients. If the coefficients are algebraically

independent over Q, then there is a definable bijection between V and An−1.

We present one last example here to show that it is not always the case that

the lower bound from the Lascar inequality is always obtained.

Example 37. Consider the differential equation

x′ + y′ = 0 (3.50)

Note that here if we try to apply the reduction map (x, y) 7→ (z, y) where z =
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x+ y, then we end up with the equation

z′ = 0 (3.51)

In particular we see that we do not have a y which we can use to reduce the order

of z. Hence we cannot perform further reductions and construct a map to an affine

space. Instead, what we see is that in equation (3.51) (in terms of z, y) there are

no restrictions on y and that z satisfies an equation of order 1. Moreover there is

no relationship between the variables, hence equation (3.51) (in z, y) has Lascar

rank ω+ 1. Therefore, (3.50) has Lascar rank ω+ 1, which is the upper bound for

the Lascar rank of this equation coming from the Lascar inequality.

Moreover, this example can be generalized to

x(m) + y(m) = 0 (3.52)

A similar argument shows that (3.52) has Lascar rank ω +m, which is the upper

bound for the Lascar rank of this equation coming from the Lascar inequality.
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4
Differential Tangent and Arc Spaces

4.1 Introduction

This chapter is an exposition of differential arc and tangent spaces. Differential

arc spaces were originally developed in [15].

The presentation of differential arc spaces used for this chapter follows the

presentation in [11] and [10]. For differential tangent spaces we use [6] and [7].

The presentation in this chapter is adapted to the setting of differential rings

with a single derivation. Analogous definitions for the case of several commuting

derivations can be found in the cited texts.
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4.2 Arc Spaces

In this section we review the construction of Arc spaces in the algebraic setting.

For this section let S and T be schemes and π : T → S be a map of schemes.

Definition 38. Let Y be a scheme over T , then we construct a set-valued functor

on the category of schemes over S, RT/S(Y ), given by S ′ 7→ Y (S ′ ×S T ). Here

Y (S ′×ST ) denotes the set of (S ′×ST ) valued points of Y over T (i.e., HomT (S ′×S

T, Y )). If this is a representable functor, then we denote the representing object

by RT/S(Y ); this is the Weil restriction of Y from T to S.

When T is finite over S and Y satisfies that every finite set of points is contained

in an affine open subset, then the Weil restriction is representable. We are working

in a setting where these conditions are satisfied, therefore we implicitly assume

these conditions hold whenever necessary.

The relevant setting is the following. Let k be a field and S = Spec(k). Let

T = Spec(k(m)) where

k(m) := k[ε]/(εm+1).

Let Y = X ×k k(m), where X is an affine variety over k. k(m) is a k-algebra via

the natural map,

a 7→ a+ 0ε+ · · ·+ 0εm.

Definition 39. The mth arc bundle of X over k is Rk(m)/k(X ⊗k k(m)), the

Weil restriction of X ⊗k k(m) from Spec(k(m)) to Spec(k). We will denote this by

Am(X/k) or AmX when k is implicit.
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Note that AmX is not necessarily a reduced or irreducible scheme over k.

Example 40. Given a k-algebra, R, AmX(R) can be identified with X(R[ε]/(εm+1)).

In particular, AmX(k) is identified with X(k(m)). Hence when X ⊂ A` is an affine

variety we get equations for AmX ⊂ A`(m+1) by the following process:

Let X = Spec(k[x1, . . . , x`]/({fj}j∈J))

then

AmX = Spec(k[{xi,s}1≤i≤`,0≤s≤m]/({fj,t}j∈J,0≤t≤m))

where fj,t ∈ k[{xi,s}1≤i≤`,0≤s≤m] is given by

fj

((
m∑
t=0

xi,tε
t

)
1≤i≤`

)
=

m∑
t=0

fj,tε
t

computed in the ring k[{xi,s}1≤i≤`,0≤s≤m, ε]/(ε
m+1).

Let f : X → Y be a regular map of varieties over k. Then we have an induced

map, Am(f) : AmX → AmY given by f evaluated on X(k[ε]/(εm+1)]). More

specifically, let X ⊂ A`, Y ⊂ Ar and f = (f1, . . . , fr). Let b ∈ AmX(k) we can

view b as a point in A`(k[ε]/(εm+1)). Then Am(f)(b) = (f1(b), . . . , fr(b)) where

we compute fi(b) in k[ε]/(εm+1).

For ` ≥ m there is a natural map ρ`,m : A` → Am induced by the quotient map

k(`) → k(m). For a ∈ X, the mth arc space of X at a, denoted AmXa is the fiber

over a of the map ρm,0.

Next we give a summary of some basic properties for algebraic arc spaces; proofs
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of these lemmas can be found in [10].

Lemma 41. Let X be an algebraic variety over a field k and a ∈ X(k) a smooth

point, then for any pair of natural numbers ` > m ≥ 0 the restriction of the map

ρ`,m : A`X → AmX to A`Xa(k) is surjective onto AmXa(k).

Lemma 42. Let f : X → Y be a regular map of algebraic varieties over the

field k. Let m be a natural number and am ∈ AmX(k) such that a := ρm(am)

is a smooth point of X and f(a) is a smooth point of Y . Let X̃ be the fiber of

ρm+1,m : Am+1X → AmX over am, and Ỹ the fiber of ρm+1,m : Am+1Y → AmY

over Am(f)(am). Then there are biregular maps ψX : X̃ → TaX and ψY : Ỹ →

Tf(a)Y so that the following diagram is commutative

X̃ Ỹ

TaX Tf(a)Y

Am+1(f)

ψX ψY

dfa

Lemma 43. Let f : X → Y be a dominant map of algebraic varieties over the

field k. Suppose a ∈ X(k) is a smooth point and f(a) ∈ Y (k) is smooth on

Y , and dfa has rank equal to the dimension of Y . Then for every m, the map

Am(f) : AmXa(k)→ AmYf(a)(k) is surjective.

Lemma 44. Let K be an algebraically closed field of characteristic zero and

X, Y ⊂ Z are irreducible algebraic varieties over k. If a ∈ X(k) ∩ Y (k), then

X = Y if and only if AmXa(k) = AmYa(k) for all m > 0.
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4.3 Prolongation Sequences

In this section we review the construction of prolongation sequences; continuing

towards the development of differential arc spaces as presented in [10].

Let R be a differential ring and let d be the derivation on R. We will use the

following notation

Rm := R[η]/(η)m+1

This ring is a R-algebra via the exponential map E : R→ Rm given by

a 7→
∑

0≤α≤m

1

α!
δα(a)ηα

Definition 45. Let X be an algebraic variety over a differential field K, the mth

prolongation τmX of X is the Weil restriction of X ×E km from Spec(Km) to

Spec(K) (i.e., τmX = RKm/K(X ×E Km)).

Note that when δ is the trivial derivation (i.e., δ = 0), τm and Am are the same.

For ` ≥ m, the quotient maps K` → Km induce maps π`,m : τ` → τm. We often

denote the map πm,0 by πm. We also have a map, ∇m : X → τmX given by

x 7→
∑

0≤α≤m

1

α!
δα(x)ηα

In some situations we consider τmX under its canonical embedding into the

iterated prolongation τmX :=

m times︷ ︸︸ ︷
τ ◦ · · · ◦ τX. The iterated prolongation has the

section map ∇m : X → τmX :=

m times︷ ︸︸ ︷
∇ ◦ · · · ◦ ∇. Then the map from K[η]/(η)m+1 to
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K[ξ1, . . . , ξm]/((ξj)
2
1≤j≤m) given by η 7→

∑
j ξj gives an embedding τmX ↪→ τmX.

This embedding gives an extension of the map π`,m : τ`X → τmX (for ` ≥ m) to

π`,m : τ `X → τmX given by

`−m times︷ ︸︸ ︷
π1 ◦ · · · ◦ π1.

We have the following lemma that taking prolongations and taking arcs com-

mute for algebraic varieties. The proof of this lemma is in [10].

Lemma 46. τmAr(X) = Arτm(X).

For a differential variety X over K and ` ∈ N, we let X be the Zariski closure

of X and let τ`X be the Zariski closure of ∇`(X) in τ`X(K).

Note that X is determined by the its prolongation sequence

〈π`,m : τ`X → τmX|` ≥ m〉

Observe that

X = {a ∈ X(k) : ∇`(a) ∈ τ`X(K), ∀` ≥ 0}

Conversely, suppose Y is an algebraic variety and 〈X` ⊂ τ`Y |` ≥ 0〉 is a sequence

of algebraic subvarieties such that:

1. π`+1 restricts to a dominant map from X`+1 to X` and

2. X`+1 is a closed subvariety of τX`, under the embeddings τ`Y in τ `Y and

τ`+1Y in τ `+1Y ,

then there exists a unique differential subvariety X of Y such that τ`X = X`.

This establishes an equivalence of categories between differential subvarieties and

prolongation sequences.
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Definition 47. Let K be a differentially closed field. Let X be an irreducible dif-

ferential over K and let X be the Zariski closure of X. Then the mth differential

arc bundle of X, A∆
mX is given by the following prolongation sequence

〈Am(πs,t) : AmτsX → AmτtX|s ≥ t〉

For a ∈ X the mth differential arc space of X at a is the fiber above a of

ρm : AmX → X restricted to A∆
mX.

The following definition and lemmas establish a connection between differential

arc bundles and the differential tangent space developed by Kolchin in [7] (which

we discuss in the next section).

Definition 48. Let a ∈ X, then a is a smooth point if ∇s(a) is a smooth point

on Xs for every s and d(πs,t)∇s(a) has full rank for every s ≥ t.

If a ∈ X is a smooth point, then ∇s(A∆
mXa) = Am(Xs)∇s(a).

Lemma 49 ([10], Lemma 2.11). Let X ⊂ A` be a differential variety. If a ∈ X

is a smooth point, then A∆
1 Xa is canonically isomorphic to T∆

a X.

Lemma 50 ([10], Corollary 2.12). Let X ⊂ A` be a differential variety and a ∈ X

a smooth point (as in Definition 48). Then ωA∆
mXa

(t) = mωX(t).

In particular, for a ∈ X smooth we see that A∆
1 Xa has the same Kolchin poly-

nomial as X.

The (first) prolongation of a variety τ1V is often useful in applications as gen-

erators for the differential variety can be explicitly computed. If V ⊂ An is a

differential variety over K, then τ1V ⊂ A2n is generated by
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f(x) = 0 and
∑
i≤n

j≤ord(f)

∂f

∂x
(j)
i

(x)u
(j)
i + f δ(x) = 0 for f ∈ I(V/K)

where f δ(x) is the differential polynomial given by applying δ to all of the

coefficients of f .

4.4 Differential Tangent Spaces

In this section we review the construction of differential tangent spaces. This is

based on the work by Kolchin in [7].

Definition 51. Let V ⊂ An be a differential variety over K. The differential

tangent bundle of V , is the differential variety given by

f(x) = 0 and
∑
i≤n

j≤ord(f)

∂f

∂x
(j)
i

(x)ζ
(j)
i = 0, for f ∈ I(V/K)

We denote this by T∆V ⊂ A2n. We also have the map for projection onto the first

n coordinates π : T∆V → V .

For a point a ∈ V , the fiber of this projection over a gives the differential

tangent space over a which we denote by T∆
a V .

Lemma 52. Let V be a differential variety. If W ⊂ V is differential subvariety,

then T∆
a W ⊂ T∆

a V for all a ∈ W .

Proof. Since W ⊂ V , then I(W ) ⊃ I(V ). Therefore T∆W ⊂ T∆V ; in particular

this holds on the fiber above a for a ∈ W .
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Definition 53. A point a ∈ V is smooth if the differential tangent space over a

has the same Kolchin polynomial as V , that is

ωV/K(t) = ωT∆
a V/K〈a〉(t)

Note that this definition of a smooth point is different than the definition given

in the previous section (Definition 48). However both definitions hold on dense

open sets. In particular, if a ∈ V is generic, then ωV (t) = ωT∆
a V

(t) = ωA∆
1 Va

(t). In

fact, the result at a generic point a ∈ V, ωV (t) = ωT∆
a V

(t) was originally shown by

Kolchin in [7].

4.5 Applications of Differential Tangent and Arc Spaces

In this section we present a brief overview of some applications of the concepts

from this chapter. We want to give a sense of the different types of results that

have been shown by using these ideas.

Kolchin defined differential tangent spaces in [6] and [7] where he creates a

foundation for differential algebra by establishing differential analogs of algebraic

concepts. In particular this was part of his development of Lie Theory for differ-

ential algebra.

In [13] prolongations spaces are used to give geometric axioms for differentially

closed fields of characteristic 0. The authors show that a differential field K is

differentially closed if

1. K is algebraically closed.
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2. Let V ⊂ Kn and W ⊂ τ1(V ) be irreducible varieties defined over K such

that W projections generically on V . Let U be a nonempty Zariski-open

subset of W defined over K. Then there is a point of the form (a,∇1(a)) ∈ U

where a ∈ V is generic over K.

These axioms were later generalized in [21] to produce a geometric axiomatization

of differentially closed fields with multiple commuting derivations.

In [15] the authors use differential jet spaces to prove Zilber dichotomy for

DCF0; the result that every type of Lascar rank 1 is either modular or nonorthog-

onal to CK . In [10] differential arc spaces are used to prove a version of Zilber

dichotomy for differentially closed fields with multiple commuting derivations; the

results that every non-locally modular regular type is nonorthogonal to a regular

type which is the generic type of a definable subgroup of the additive group.

Another application appears in [2] where prolongation spaces are used to obtain

an effective version of uniform bounding for differential fields with multiple com-

muting derivations. They produce an upper bound for the degree of the Zariski

closure of the solution set to a system of differential polynomials. The bound

given depends only on the order, degree and number of variables appearing in

the differential polynomials. Their proof utilizes prolongations by bounding the

degree of irreducible components of τ`(V ). They also produce an effective differen-

tial Nullstellensatz, i.e., they give an algorithm for determining if f ∈ {f1, . . . , fr}

with a bounded search space.

In chapter 5 we use differential tangent spaces to apply our results for linear

differential equations to non-linear differential equations. We do this by using
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the result that at generic points V and T∆
a V have the same Kolchin polynomial.

In chapter 3 we computed the Kolchin polynomial for linear differential varieties

with sufficiently generic coefficients. Thus we can bound the Lascar rank of the

non-linear variety if the coefficients for the tangent space are sufficiently generic.
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5
Non-Linear Differential Equations

5.1 Introduction

In this chapter we combine the results of chapter 3 along with the ideas of chapter

4 to prove results for non-linear differential equations.

5.2 Generic Non-linear Equations

The main result of this section is Theorem 57. We begin with a motivating

example.

Definition 54. A generic non-linear differential equation of order m and degree
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d in n variables (over K) is given an equation of the form

∑
∑
ei,j≤d

0≤ei,j

aei,j
∏

1≤i≤n
0≤j≤m

(
x

(j)
i

)ei,j
= 0

where the coefficients aei,j are independent differential transcendentals (over K).

In general a (non-linear) differential polynomial in n variables of order m and

degree d will have
d∑

k=0

(
n · (m+ 1) + k − 1

k

)
many terms.

Example 55. Let p(x, y) be a generic differential polynomial of order 1, degree 2

in two variables over K.

p(x, y) = a0(x′)2 + a1x
′x+ a2x

′y′ + a3x
′y + a4x

′ + a5x
2 + a6xy

′ + a7xy + a8x

+ a9(y′)2 + a10y
′y + a11y

′ + a12y
2 + a13y + a14

(5.1)

Let (α0, α1) be a generic point of the differential variety V = V(p(x, y)) over

K.
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Thus T∆
α V is given by the following linear equation

P (w, z) = (2a0α
′
0 + a1α0 + a2α

′
1 + a3α1 + a4)w′

+ (a1α
′
0 + 2a5α0 + a6α

′
1 + a7α1 + a8)w

+ (a2α
′
0 + a6α0 + 2a9α

′
1 + a10α1 + a11)z′

+ (a3α
′
0 + a7α0 + a10α

′
1 + 2a12α1 + a13)z

(5.2)

Let us make a substitution on the coefficients to rewrite equation (5.2) as

β1w
′ + β2w + β3z

′ + β4z.

In order to use Theorem 31 to determine the Lascar rank of T∆
α V we need to show

that the coefficients β1, . . . , β4 are generic over k〈α〉. Thus we need to show that

the differential transcendence degree of K〈α, β1, β2, β3, β4〉/k〈α〉 is 4.

Notice that β1 = 2a0α
′
0 + a1α0 + a2α

′
1 + a3α1 + a4, in particular the coefficient

a4 is only used in the definition of β1 (i.e., a4 does not appear in the definitions

of β2, β3, or β4). Similarly a8, a11, and a13 appear uniquely in the definitions of

β2, β3, and β4 respectively. Also note that a14 does not appear in any of the βi.

Let â := (a0, a1, . . .) excluding a4, a8, a11, a13, a14. Note that (a4, a8, a11, a13) is

definable from (β1, β2, β3, β4) over K〈α, â〉. The tuple (a4, a8, a11, a13) are inde-

pendent differential transcendentals over K〈α, â〉, since α is a generic solution

of p(x, y) which contains a14 (and a14 is not included in â). Therefore the dif-

ferential transcendence degree of (a4, a8, a11, a13) over K〈α, â〉 is 4. Hence the
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differential transcendence degree of (β1, β2, β3, β4) over K〈α, â〉 is 4. In particular

(β1, β2, β3, β4) are generic coefficients over K〈α〉.

Therefore by Corollary 32 we see that T∆
α V has no subvarieties of rank ω. We

want to use this to see that RU(α/K) = ω.

Suppose F ⊃ K and q = tp(α/F ) is a forking extension of tp(α/K). Let W be

the differential variety corresponding to q. Then α is a generic point of W and

T∆
α W ⊂ T∆

α V . Moreover ωT∆
α W

= ωW < ωV = ωT∆
α V

, since α is a generic point

of V and W and W ⊂ V is proper. Therefore T∆
α W ⊂ T∆

α V is proper.

Since T∆
α V contains no proper subvarieties with ∆-dim 1 we see that T∆

α W must

be finite rank. Hence W has finite rank, thus RU(α/K) ≤ ω as desired.

Now we want to generalize the previous example to arbitrary order and degree.

We start with the following lemma to show the coefficients for the tangent space

over a generic point are generic.

Lemma 56. Let V be a differential variety given by a generic differential equation

of order m in n variables. Let α ∈ V be a generic point. Then the coefficients of

the equation defining T∆
α V are generic over K〈α〉.

Proof. Let f(x) be the generic differential equation for V and let a denote the

coefficients of f . Let ai,j be the coefficient x
(j)
i in f . Note that we are looking at

the coefficients of the linear terms of f .

We make a substitution to write the equation defining T∆
α V as

n∑
i=1

m∑
j=0

βi,jz
(j)
i
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That is βi,j = ∂f

∂x
(j)
i

(α). In particular we see that ai,j only appears in the

definition of βi,j, since it is the coefficient of x
(j)
i in f .

Let â be a excluding the ai,j and c. We observe that the ai,j are definable from

the βi,j over K〈â, α〉. Also the ai,j are independent differential transcendentals

over K〈α, â〉 since α is a generic solution f(x) which is defined using c and c is

not definable over K〈â, α〉. Therefore the differential transcendence degree of the

βi,j over K〈α, â〉 is n · (m+ 1). In particular the βi,j are generic over K〈α〉.

Theorem 57. Let n ≥ 2 and let V be a differential variety given by a generic

differential equation of order m in n variables. Let α ∈ V be a generic point.

Then RU(α/K) ≤ ω · (n− 1).

Proof. Suppose F ⊃ K and q = tp(α/F ) is a forking extension of tp(α/K). Let

W be the differential variety corresponding to q. The α is a generic point of W

and T∆
α W ⊂ T∆

α V . Also ωT∆
α W

= ωW < ωV = ωT∆
α V

, since α is a generic point of

V and W ⊂ V is proper. Hence T∆
α W ⊂ T∆

α V is proper.

By Lemma 56 the linear differential equation for T∆
α V satisfies the conditions

of Theorem 31 over K〈α〉. Thus by Corollary 32, T∆
α V contains no proper subva-

rieties of ∆-dim n − 1. Therefore W must have Lascar rank < ω · (n − 1), since

ωW = ωT∆
α W

.

5.3 Further Directions and Comments

As in chapter 3 the results of this chapter be applied to compute the Lascar rank

for non-generic differential equations. In this case the conditions we need to satisfy
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are that for some generic point α, the equations defining T∆
α are sufficiently generic

(over K〈α〉). One obstacle is that the coefficients for T∆
α depend on α. This poses

a challenge to giving a more precise characterization of when these methods can

be applied to non-generic equations. Given the large number of coefficients of

non-linear differential equations it would be interesting to see if there multiple

formulations of sufficient conditions to yield sufficiently generic coefficients for

the tangent space above a generic point. In particular, our proof of Lemma 56

ultimately relies on the coefficients of the linear terms being generic with respect

to the rest of the coefficients. Are there sufficient conditions that can be described

for other subsets of coefficients to produce a similar result? What can be done in

the case of a non-linear equation that doesn’t have any linear terms?
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