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SUMMARY

The motto of Internetting everything, everywhere, all the time is becoming reality thanks to the

increasing number and diversity of devices with Internet connectivity such as smart phones, tablets,

wearable devices, and connected vehicles. The booming of devices with diverse applications has a sig-

nificant social and economic impact. Yet, existing resource allocation and network coding mechanisms

do not address the full range of challenges, specifically heterogeneity; these newly emerging devices and

applications are highly heterogeneous and dynamic in nature. The goal of this thesis is to develop new

networking and coding mechanisms that make better use of available resources by taking into account

the heterogeneity.

The first chapter of this thesis focuses on transportation systems of heterogeneously connected vehi-

cles. Due to technical equipment constraints, security and privacy concerns, and lossy communication

channel qualities, vehicles may not have connectivity all the time. In this context, it is crucial to take into

account this heterogeneous connectivity while developing network control mechanisms. In this chapter,

we (i) focus on an isolated intersection and develop the connectivity-aware traffic phase scheduling al-

gorithm for heterogeneously connected vehicles that increases the average number of vehicles passing

the intersection and (ii) focus on the transportation system and develop shortest routing algorithm with

minimum traveling delay for heterogeneously connected vehicles.

The second chapter investigates the performance of wireless networks of devices with heterogeneous

(per-flow and FIFO) queues. In particular, we consider a scenario where there are arbitrary number of

heterogeneous queues (per-flow and FIFO queues) shared by arbitrary number of flows. These queues
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share the same transmission medium such that only one queue can transmit data at a time. In this setup,

we formulate the support region, which is characterized by the set of arrival rates that can be stably

supported in the network. In general, the support region of this system is non-convex, which makes it

difficult to obtain the optimal operating point for the system. Therefore, we further develop a convex

inner-bound on the support region, which can be proved to be tight in certain cases. With this convex

inner bound, we are able to develop a centralized resource allocation scheme; dFC. Based on the

structure of dFC, we develop a stochastic flow control and scheduling algorithm; qFC. We approve

that qFC converges to the optimal operating point in the convex inner bound.

The third chapter focuses on managing heterogeneous traffic generated by Internet of Things (IoT)

devices over cellular networks. Nowadays, a large variety of traffic, time-sensitive “foreground” traffic

(e.g., web browsing) and time-insensitive “background” traffic (e.g., software updates), compete for the

scarce cellular bandwidth, especially on the downlink. While there is limited in-network support for

traffic prioritization, existing end-to-end, “low priority transport protocols” exhibit sub-optimal perfor-

mance in cellular networks. In this chapter, we develop management schemes for heterogeneous priority

traffic to fully utilize available resources. In particular, we propose (i) Sneaker, which yields to time-

sensitive foreground traffic during periods of congestion and enables time insensitive background traffic

to efficiently utilize any spare capacity, and (ii) Legilimens, which is an agile TCP variant for cellular

downlink transfers, and is able to deliver traffic using only the spare capacity on the downlink.

The last part of this thesis focuses on optimal coded computation for distributed computing network

with heterogeneous helper devices. In this chapter, we focus on (n, k) MDS coded computation for

matrix-matrix multiplication with hard deadline. We analyze the probability of master device meeting
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the deadline and characterize the optimal k that maximizes this probability by taking into account het-

erogeneity of helper devices. Obtaining the optimal k requires integer programming which could be

time consuming. To speed up the calculation of k, we further develop approximated solution k that has

much reduced time complexity and close optimal performance.

xx



CHAPTER 1

INTRODUCTION

The contents of this chapters are based on our work that is published in [1–4].©2016 IEEE. Reprinted,

with permission, from [3]. ©2015 IEEE. Reprinted, with permission, from [2]. ©2019 IEEE. Reprinted,

with permission, from [4].

1.1 Motivation

Recent years have witnessed the dramatic growth of connectivity in heterogeneous networks such as

connected vehicles, cellphones and computers. This trend has posed tremendous challenges for current

networks with limited resources and advocated new network control mechanisms to address a number of

critical issues. Specifically, the heterogeneity in these emerging devices that arises with their dynamic

nature has to be addressed in order to better understand current networks. In this thesis, we particu-

larly focus on transportation systems and wireless networks and the goal is to develop new networking

mechanisms that make better use of available resources by taking into account the heterogeneity.

In transportation systems, the rapidly increasing number of vehicles in metropolitan transportation

systems, has introduced several challenges including higher traffic congestion, delay, accidents, energy

consumption, and air pollution. For example, the average of yearly delay per auto commuter due to

congestion was 38 hours, and it was as high as 60 hours in large metropolitan areas in 2011 [5]. The

congestion caused 2.9 billion gallons of wasted fuel in 2011, and this figure keeps increasing yearly [5],

e.g., the increase was 3.8% in Illinois between years 2011 and 2012 [6]. This trend poses a challenge

1
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for efficient transportation systems, so new traffic management mechanisms are needed to address the

ever increasing transportation challenges and eliminate the inefficiency.

A straightforward approach to address the congestion problem is to enhance the capacity of trans-

portation systems, which requires significant investment. On the other hand, it is extremely important to

understand the capacity of existing as well as future transportation systems so that (i) available resources

are effectively and fully utilized, and (ii) new transportation systems are developed based on the actual

need. Capacity characterization of transportation systems and utilizing available capacity are getting

increasing interest recently [7], [8], [9]. This is thanks to connected vehicle, which makes utilization of

available capacity possible with the communication and coordination abilities of vehicles. In general,

the connection among vehicle are enabled by the Internet connection via cellular network [7], [8], [9] or

device-to-device (D2D) connection such as Bluetooth and WiFi-Direct [10]. In this context, to possibly

take advantage of connected vehicles, two critical tasks, which are the focus of this thesis, have to be

addressed. First, it is crucial to understand how heterogeneous communication affects the performance

of transportation systems. And second, it is crucial to take into account practical constraints that arise

from real transportation systems while characterizing capacity to fully utilize underlying resources in

transportation systems.

In wireless data networks, the recent growth in mobile and media-rich applications continuously

increases the demand for wireless bandwidth, and puts a strain on wireless networks [11], [12]. This

dramatic increase in demand poses a challenge for current wireless networks, and calls for new network

control mechanisms that make better use of scarce wireless resources. Furthermore, most existing, espe-

cially low-cost, wireless devices have a relatively rigid architecture with limited processing power and
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energy storage capacities that are not compatible with the needs of existing theoretical network control

algorithms. One important problem is that low-cost wireless interface cards are built using First-In,

First-Out (FIFO) queueing structure, which is not compatible with the per-flow queueing requirements

of the optimal network control schemes such as backpressure routing and sheduling [13]. Per-flow and

FIFO queues coexist in current wireless network, and our focus on this problem is to investigates the

performance of wireless networks of devices with heterogeneous (per-flow and FIFO) queues.

The backpressure routing and scheduling paradigm has emerged from the pioneering work [13],

[14], which showed that, in wireless networks where nodes route and schedule packets based on queue

backlogs, one can stabilize the queues for any feasible traffic. It has also been shown that backpressure

can be combined with flow control to provide utility-optimal operation [15]. Yet, backpressure routing

and scheduling require each node in the network to construct per-flow queues. When a FIFO queue

is used instead of per-flow queues, the well-known head-of-line (HoL) blocking phenomenon occurs.

Although HoL blocking in FIFO queues is a well-known problem, achievable throughput with FIFO

queues in a wireless network is generally not known. In particular, the network support region, which is

characterized by a set of feasible arrival rates that can be stably supported (i.e., not overflowing buffers),

as well as the resource allocation schemes to achieve optimal operating point in the support region are

still open problems.

In cellular networks, Internet of Things (IoT) has emerged as a new paradigm in which a large num-

ber of heterogeneous devices such as smart phones, wireless sensors, smart meters, health monitoring

devices, etc., remain connected to the Internet. As the staggering growth of IoT devices continues, it is

estimated that we will have billions of IoT devices in the next five years [16], [17]. Such an exponential
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growth of IoT devices will have a significant impact on cellular networks over which a vast number of

such devices with diverse throughput, latency, and signaling requirements will communicate. There-

fore, we need smarter network mechanisms to manage the heterogeneous traffic demand from these

applications, especially during peak hours. Our goal is to develop a solution for real-time prioritiza-

tion of background traffic while achieving high network utilization without affecting foreground traffic.

With our solution, the background traffic must quickly yield to foreground traffic when the network is

busy but must quickly recapture spare capacity when the network becomes lightly loaded. Our stated

goal cannot be accomplished with trivial transport layer modifications due to the scale and complex

cross-layer interactions between transport (TCP) and link (LTE) layers.

In recent years, the increasing number of machine learning algorithms require computationally in-

tensive calculations, which could be challenging to be carried out by a single device. Fortunately,

distributed computation provides promises to address this challenge, where a master device can divide

computation intensive tasks into small sub-tasks and allocates sub-tasks to a group of helper devices. As

a result, such distributed computing frameworks such as Spark [18] and MapReduce [19] could support

large scale tasks on data size at the order of petabytes. However, such distributed computation frames

also suffer from some challenges due to the heterogeneous nature of helper devices, one of which is the

straggler effect. This fact harms the performance of many time-sensitive applications where the whole

computing task has to be done by a hard deadline. Coding strategies have been applied in distributed

computation systems to provide resiliency against the stragglers effect that could speed up the whole

computation process. However, when there is a hard deadline set for the computation tasks, arbitrary

coding strategies could delay the process and result in missing the deadline, which cause the whole
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computation tasks to fail. Therefore, it is crucial to develop optimal coding strategies for a distributed

computation system with heterogeneous helper devices by taking into account the deadline.

1.2 Thesis Contributions

The thesis considers design and optimization of heterogeneous networks. In particular, we consider

the intelligent transportation system and develop optimal traffic phase scheduling and shortest routing

algorithms. In addition, we consider wireless networks and develop optimal resource allocation and

scheduling algorithms for heterogeneous (per-flow and FIFO) queues. Moreover, we consider cellular

networks and develop (i) in-network traffic controller and (ii) low priority transport protocol to support

heterogeneous priority traffic. Finally, we consider distributed computing network with heterogeneous

helper devices and develop optimal coded computation schemes to maximize the probability of master

device meeting the deadline. More specifically, the contributions are the following:

• We study the traffic phase scheduling decisions at isolated intersections and develop a connectivity-

aware traffic phase scheduling algorithm for heterogeneously connected vehicles [1].

• We study the impact of the blocking problem to the waiting time at intersections of a transportation

system and develop a shortest delay routing algorithm [2].

• We study the performance of heterogeneous (per-flow and FIFO) queues over wireless networks

and develop optimal flow control and scheduling algorithms [3].

• We study the heterogeneous priority traffic over cellular networks and develop (i) in-network

controller (Sneaker) and (ii) low priority transport protocol (Legilimens) to managing background

traffic transmission [4].
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• We study the distributed computing network with heterogeneous helper devices and develop op-

timal coded computation scheme to maximize the probability of master device meeting the dead-

line.

Next, we describe each contribution with more details.

1.2.1 Connectivity-Aware Traffic Phase Scheduling for Heterogeneously Connected Vehicles

The increasing population and growing cities introduce several challenges in metropolitan areas,

and one of the most challenging areas is transportation systems. Traditional traffic light scheduling

algorithm does not take into account vehicles’ connectivity and thus waste much time on scheduling

traffics. Thanks to the large scale of connectivity in today’s transportation network, vehicles are able

to transmit and receive information, which has potential of reducing congestion, delay, energy, and

improving reliability. However, it is crucial to understand how heterogeneous communication affects

the performance of transportation systems.

In this thesis, we investigate the impact of heterogeneous communication on traffic phase schedul-

ing problem in transportation networks. Specifically, we model arriving and departing vehicles at an

intersection as a queuing model. In particular, we investigate two queuing models; single-lane model

and one+two lane model. We develop a connectivity-aware traffic scheduling algorithm, which we name

Connectivity-Aware Max-Weight (CAMW), by taking into account the congestion levels at intersections

and the heterogeneous communications. The crucial parts of CAMW are expectation and learning com-

ponents. In the expectation component, we characterize the expected number of vehicles that can pass

through the intersections by taking into account the heterogeneous connectivity. In the learning compo-

nent, we infer the directions of vehicles even if they do not directly communicate. The expectation and
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learning components collectively determine the number of vehicles that can pass through the intersec-

tions. We evaluate CAMW via simulations, which confirm our analysis, and show that our algorithm

significantly improves intersection efficiency as compared to the baseline; the max-weight algorithm.

1.2.2 Blocking Avoidance in Transportation Systems

We investigate the impact of the blocking problem to transportation systems. The blocking problem

naturally arises in transportation systems as multiple vehicles with different itineraries share available

resources. Under that the assumption of heterogeneous communication among connected vehicles, we

consider that different vehicles, depending on their Internet connection capabilities, may communicate

their intentions (e.g., whether they will turn left or right or continue straight) to intersections (specifi-

cally to devices attached to traffic lights). We consider that information collected by these devices are

transmitted to and processed in a cloud-based traffic control system. Thus, a cloud-based system, based

on the intention information, can calculate waiting times at intersections.

In this thesis, we investigate the impact of blocking problem in transportation systems by modeling

arriving and departing vehicles at an intersection as a queuing model. Again, we investigate two queuing

models; single-lane model and one+two lane model. For each model, we characterize average waiting

times by taking into account the vehicles that can communicate their intentions (to turn left, right,

or go straight) and blocking probability. We then design an algorithm that finds the routes (or set of

intersections) between a starting and ending points with shortest delay. The shortest delay algorithm that

we design takes into account the average waiting times at intersections, hence blocking probabilities.

Lastly, we evaluate our algorithm via simulations for a multiple-intersection transportation network.
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The simulation results confirm our analysis, and show that our shortest delay algorithm significantly

improves over blocking-unaware schemes.

1.2.3 Flow Control and Scheduling for Heterogeneous (Per-Flow and FIFO) Queues over Wire-

less Networks

The dramatic increase of demand in resources poses a challenge for current wireless networks, and

calls for new network control mechanisms that make better use of scarce wireless resources. Though

backpressure routing and scheduling paradigm can provide utility-optimal operation for systems with

per-flow queues, achievable throughput with FIFO queues in a wireless network is still an open problem.

In this thesis, we consider a general scenario where per-flow and FIFO queues coexist. We in-

vestigate the performance of these heterogeneous queues over wireless networks, and characterize the

support region of the network where an arbitrary number of heterogeneous queues are shared by an ar-

bitrary number of flows. The support region of the queueing system under investigation is non-convex.

Thus, we develop a convex inner-bound on the support region, which is provably tight for certain op-

erating points. We then develop a resource allocation scheme; dFC, and a queue-based stochastic

flow control and scheduling algorithm; qFC. We show that qFC achieves optimal operating point in

the convex inner bound. Lastly, we evaluate our schemes via simulations for multiple heterogeneous

queues and flows. The simulation results show that our algorithms significantly improve the throughput

as compared to the well-known queue-based flow control and max-weight scheduling schemes.

1.2.4 Managing Background Traffic over Cellular Network Using Sneaker

With the dramatic growth of connected devices in Internet of Things, new control mechanism are

urgently needed to utilize the considerably limited resources. Furthermore, due to the dynamic and
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heterogeneous nature of different types of devices, it is critical to develop efficient prioritization traffic

management mechanisms to ensure different Quality of Service (QoS) requirement are met.

In this thesis, our goal is to develop in-network controller, called Sneaker, that co-exists with end-

to-end protocols (i.e., TCP) without requiring changes to existing schedulers and manages background

traffic to yield priority to regular traffic. To achieve these goals, we first study the interaction of TCP

with common cellular schedulers. Then, we formulate the problem as a Network Utility Maximization

(NUM) problem to determine the optimal transmission rate of background flows. Using this optimal

transmission rate, we derive an optimal dropping rate for background flows. Because the optimal drop-

ping rate is hard to realize in practice, we identify a close approximation to the optimal rate, which

is easy to implement and works in harmony with end-to-end protocols. We show that our practical

dropping rate avoids TCP timeouts for background flows and achieves the intended prioritization of

foreground flows. Extensive ns-3 simulations confirm our analysis and show that Sneaker outperforms

an aggressive baseline that gives strict priority to foreground traffic. Further, we also show that Sneaker

performs better than existing low priority transport protocols.

1.2.5 Managing Background Traffic over Cellular Network Using Legilimens

Another way of managing background traffic in cellular network is to design a solution for low prior-

ity data transport while keeping the existing network infrastructures (e.g., scheduler, QCI management,

etc.) unchanged.

In this part of thesis, our goal is to develop a low priority transport protocol, called Legilimens,

for real-time prioritization of background traffic while achieving high network utilization without af-

fecting foreground traffic. We first studied the interaction of TCP with cellular network and identified
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critical reasons why existing low priority transport protocols do not work as expected. Then based on

the analytical guidelines, we develop a two-phase rate control mechanism, Legilimens, that achieves

the optimal resource allocation for low priority users. We focus on optimizing Legilimens for cellular

downlink traffic. To that end, we design a novel algorithm that quickly estimates capacity and load

based on packet inter-arrival times, not round-trip time (RTT) or one-way delay (OWD). We implement

Legilimens in Linux as a sender-only modification to the network stack, enabling simpler and incremen-

tal deployment, without changes to the cellular infrastructure. We conduct simulations and experiments

in ns-3, PhatomNet and real network, and results show that Legilimens is superior to other protocols

in transferring large volumes of data without interfering with regular user traffic.

1.2.6 Optimal Coded Computation with Hard Deadlines

Coded distributed computing networks provide system robustness against stragglers due to hetero-

geneous nature of devices. However, when given a deadline, arbitrary coding strategies may delay whole

calculation process and cause the task to fail.

In this thesis, we consider the problem of coded distributed computing with hard deadlines. In par-

ticular, we consider a distributed computing framework with one master device and n helper devices,

whose task is to solve one of the most important tasks in machine learning algorithms: matrix multi-

plication, by a given deadline. Due to heterogeneous nature of helper devices, we assume random task

processing time on each device and characterize the performance of uncoded and (n, k) MDS coded

computation with hard deadlines. Moreover, we develop optimal k to maximize the probability of meet-

ing the deadline. Obtaining the optimal k requires integer programming which could be time consuming.

To speed up the calculation of k, we develop approximated solution with much reduced time complex-
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ity. Simulation results show that coded computation outperforms uncoded computation and baseline,

and our approximated solution achieves very close performance as compared to the optimal solution.

1.3 Thesis Organization

The rest of the dissertation is organized as follows. In Chapter 2, we present our work on control

and optimization of heterogeneously connected vehicles, namely, the connectivity-aware traffic phase

scheduling algorithm and the shortest routing algorithm in a transportation system while avoiding block-

ing. In Chapter 3, we present the optimal flow control and scheduling algorithm for heterogeneous

(per-flow and FIFO) queues over wireless networks. In Chapter 4, we present our work on managing

background traffic to support heterogeneous priority data transmission in cellular networks. In Chapter

5, we present our work on optimal coded computation for distributed computing network with het-

erogeneous helper devices by taking into account hard deadlines. And in Chapter 6, we conclude the

thesis.



CHAPTER 2

CONTROL AND OPTIMIZATION OF HETEROGENEOUSLY CONNECTED

VEHICLES

The contents of this chapter are based on our works that are published in the proceedings of the

2016 ACM CarSys workshop [1] and 2015 IEEE Allerton conference [2]. ©2015 IEEE. Reprinted, with

permission, from [2].©2016 ACM. Reprinted, with permission, from [1].

We consider a transportation system of heterogeneously connected vehicles, where not all vehicles

are able to communicate. Heterogeneous connectivity in transportation systems is coupled to practical

constraints such that (i) not all vehicles may be equipped with devices having communication inter-

faces, (ii) some vehicles may not prefer to communicate due to privacy and security reasons, and (iii)

communication links are not perfect and packet losses and delay occur in practice. In this context, it

is crucial to develop control algorithms by taking into account the heterogeneity. In this part of the

thesis, we develop (i) a connectivity-aware traffic phase scheduling algorithm for heterogeneously con-

nected vehicles that increases the intersection efficiency (in terms of the average number of vehicles that

are allowed to pass the intersection) by taking into account the heterogeneity, and (ii) a shortest delay

algorithm that calculates the routes with shortest delays between two points in a transportation network.

12
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2.1 Connectivity-Aware Traffic Phase Scheduling Algorithm

2.1.1 Background

The increasing population and growing cities introduce several challenges in metropolitan areas,

and one of the most challenging areas is transportation systems. In particular, the rapidly increasing

number of vehicles in metropolitan transportation systems, has introduced several challenges including

higher traffic congestion, delay, accidents, energy consumption, and air pollution.

Fortunately, advances in communication and networking theories offer vast amount of opportunities

to address ever increasing challenges in transportation systems. In particular, connected vehicles, i.e.,

vehicles that are connected to the Internet via cellular connections and to each other via device-to-device

(D2D) connections such as Bluetooth or WiFi-Direct [10], are able to transmit and receive information

to improve the control and management of traffic, which has potential of reducing congestion, delay,

energy, and improving reliability. In this context, it is crucial to understand how heterogeneous commu-

nication affects the performance of transportation systems.

Example 1. Let us consider Figure 1, which shows an isolated intersection, and all four possible traffic

light phases. Traffic lights could be configured in four different phases: Phases I, II, III, and IV. E.g.,

Phase I corresponds to the case that only north-south and south-north bounds are allowed to pass

through the intersection. The traffic light scheduling determines the phase that should be activated. Note

that only one phase could be activated at a time. It is clear that scheduling decisions should be made

based on the congestion levels of different directions (or traffic bounds). For example, selecting either

Phase I or Phase III in the specific example of Figure 1 looks a better decision as compared to Phase
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(a) Phase I (φ = 1) (b) Phase II (φ = 2) (c) Phase III (φ = 3) (d) Phase IV (φ = 4)

Figure 1. An example intersection with four possible traffic phases.

II or Phase IV, because Phase I and Phase III have a larger number of vehicles in their corresponding

queues.

Example 1 is a widely known problem in network control and optimization theory, and the optimal

solution to this problem is the popular max-weight algorithm [20]. The broader idea behind max-weight

algorithm is to prioritize the scheduling decisions with larger weights, which corresponds to congestion

level, loss probabilities, and link qualities. The max-weight idea is applied to transportation systems

as well in previous work [9, 21–23] that schedules traffic phases according to congestion levels, which

has potential of allowing more vehicles to pass and reduce waiting times at intersections. This approach

works well in a scenario that the directions of all vehicles are known a-priori. For example, if all devices

communicate with the traffic light in terms of their intentions about their directions (e.g., turn right, go

straight, etc.), the traffic light determines which phase to activate using the max-weight scheduling

algorithm. However, due to heterogeneity of communication in connected vehicles, only a percentage

of vehicles communicate their intentions. In this heterogeneous setup, new connectivity-aware traffic

phase scheduling algorithms are needed as illustrated in the next example.
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L

(a) Only the first vehicle com-

municates

L

(b) Only the second vehicle

communicates

Figure 2. An example single-lane intersection, where vehicles are going straight, turning left and

turning right respectively.

Example 2. Let us consider Figure 2, which shows one of the four incoming traffic lanes in an inter-

section. This is a one-way single-lane road, where we call the first vehicle at the intersection as the

head-of-line (HoL) vehicle. In Figure 2(a), the HoL vehicle has communication ability, and the vehicles

are going straight, turning left, and turning right, respectively. In this case, the traffic light knows that

the HoL vehicle is going straight (because the HoL vehicle communicates), so it arranges its phase

accordingly.

Now let us consider Figure 2(b), where the directions of vehicles are the same; i.e., straight, left,

and right. Yet, in this scenario HoL vehicle does not communicate, but only the vehicle behind HoL

communicates. In this case, although the traffic light knows that the second vehicle is going to the left,

it has no idea of the HoL vehicle’s intention. If the traffic phase, possibly determined as a solution to the

max-weight algorithm, does not match the intention of the HoL vehicle, then the HoL vehicle blocks the

other vehicles at the intersection, and no vehicles can pass. Similarly, HoL blocking can be observed

in more involved multiple-lane scenarios. As seen, the max-weight algorithm may not be optimal in
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some scenarios due to heterogeneous connectivity, which makes the development of new scheduling

algorithms, by taking into account heterogeneity, crucial. �

In this section , we develop a connectivity-aware traffic phase scheduling algorithm by taking into

account heterogeneous communications of connected vehicles. Our approach follows a similar idea to

the max-weight scheduling algorithm, which makes scheduling decisions based on congestion levels at

intersections. However, our algorithm, which we name Connectivity-Aware Max-Weight (CAMW), is

fundamentally different from the max-weight as we take into account heterogeneous communications

while determining congestion levels. In particular, CAMW has two critical components to determine

congestion: (i) Expectation: This component calculates the expected number of vehicles that can pass

through the intersection at every phase based on the number of vehicles, and the percentage of commu-

nicating vehicles at the intersection. (ii) Learning: This component learns the directions of vehicles even

if the vehicles do not directly communicate with the traffic light. The expectation and learning compo-

nents of our algorithm operate together in harmony to make better decision on traffic phase scheduling.

The simulation results demonstrate that CAMW algorithm significantly improves the intersection effi-

ciency (in terms of the average number of vehicles that are allowed to pass the intersection) over the

baseline algorithm; max-weight. The following are the key contributions of this work:

• We investigate the impact of heterogeneous communication on traffic phase scheduling problem

in transportation networks. We develop a connectivity-aware traffic scheduling algorithm, which

we name Connectivity-Aware Max-Weight (CAMW), by taking into account the congestion levels

at intersections and the heterogeneous communications.
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• The crucial parts of CAMW are expectation and learning components. In the expectation com-

ponent, we characterize the expected number of vehicles that can pass through the intersections

by taking into account the heterogeneous connectivity. In the learning component, we infer the

directions of vehicles even if they do not directly communicate. The expectation and learning

components collectively determine the number of vehicles that can pass through the intersections.

• We evaluate CAMW via simulations, which confirm our analysis, and show that our algorithm

significantly improves intersection efficiency as compared to the baseline; the max-weight algo-

rithm.

2.1.2 Related Work

This work combines ideas from traffic phase scheduling, queuing theory, and network optimization.

In this section, we discuss the most relevant literature from these areas.

Traffic phase scheduling: Design and development of traffic phase scheduling algorithms have a

long history; more than 50 years [24]. Thus, there is huge literature in the area, especially on the design

of optimal pre-timed policies [24–26], which activate traffic phases according to a time-periodic pre-

defined schedule. These policies do not meet expectations under changing arrival times, which require

adaptive control [27]. The adaptive control mechanisms including [28], [25], [29], [30], [31] and [32],

optimize control variables, such as traffic phases, based on traffic measures, and apply them on short

term.

Queueing theory: Using queuing theory to analyze transportation systems has also very long history

[33]. E.g., [24,34,35] considered one-lane queues and calculated the expected queue length and arrivals
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using probability generation functions. Other modeling strategies are also studied; such as the queuing

network model [36], cell transmission model [37], store-and-forward [10], and petri-nets [38].

Network optimization and its applications to transportation systems: Max-weight scheduling algo-

rithm and backpressure routing and scheduling algorithms [20] arising from network optimization area

has triggered significant research in wireless networks [39, 40]. This topic has also inspired research in

transportation systems [9, 21–23]. Feedback control algorithms to ensure maximum stability are pro-

posed both under deterministic arrivals [22] and stochastic arrivals [23,41] following backpressure idea.

The infinite buffer assumption of backpressure framework is studied by capacity aware back-pressure

algorithm in [42].

Our work in perspective: As compared to the previous work briefly summarized above, our work fo-

cuses on connected vehicles and investigates the scenario where vehicles communicate heterogeneously.

In this scenario, we develop an efficient connectivity-aware traffic phase scheduling algorithm by em-

ploying expectation and learning of congestion levels at intersections.

2.1.3 System Model

In this section, we present our system model including traffic lights and phases as well as our queuing

models of the traffic.

Traffic lights and phases: In our system model, we focus on an intersection controlled by a traffic

light. The four traffic phases we consider in this chapter are shown in Figure 1. We define φ as a phase

decision, e.g., φ = 1 corresponds to Phase I in Figure 1. The set of phases is Φ, and φ ∈ Φ.

We consider that time is slotted, and at each time slot t, a phase decision is made. Each traffic phase

lasts for n time slots. Vehicles have a chance to pass the intersection only when the corresponding traffic
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Figure 3. Two queuing models considered in this chapter, where λ1 and λ2 are the arrival rates of

straight-going and left-turning traffic, respectively.(a) Single-lane traffic model. (b) One+two lane

model.

phase is active, i.e., ON. For instance, vehicles in the south-north bound lanes may pass the intersection

only when phase φ = 1 is ON in Figure 1.

Modeling intersections with queues: We model the isolated intersection as a set of queues following

[2]. Typically, there are four queues for each direction (for south-north, north-south, west-east, and east-

west bound) at an intersection. We specifically focus on one direction and model it using two models:

Queue I, which is one-lane model shown in Figure 3(a) and Queue II; which is a one+two lane

model shown in Figure 3(b).

Note that for both of Queue I and Queue II, we can consider straight-continuing and right-

turning traffic as the same traffic, since they share the similar right of way. Thus, to demonstrate the

analysis in a simple way, we simply consider that the right-turning and straight-continuing traffics are

combined together, and we call both right-turning and straight-continuing vehicles as straight-going

vehicles.
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At each slot, vehicles arrive into intersections, where λ1 and λ2 are the average arrival rates of

straight-going and left-turning vehicles, respectively. In our analysis, the arrivals can follow any i.i.d.

distribution. In this setup, when a vehicle enters the intersection, it can connect to the traffic light either

using cellular or vehicle-to-vehicle communications. Thus, it can communicate its intention with the

traffic light about its destination, i.e., turning left, going straight, etc. The probability of communication

for each vehicle is ρ.

If a vehicle does not communicate, we model their intentions probabilistically, where p1 is the

probability that a vehicle (which does not communicate its intention) will go straight, while p2 is the

probability that it will turn left.

2.1.4 Connectivity-Aware Traffic Phase Scheduling

2.1.4.1 CAMW: Connectivity-Aware Max-Weight

In this section, we develop our connectivity-aware traffic phase scheduling algorithm by taking into

account heterogeneous communications. We consider the setup shown in Figure 1 for phases. Our

scheduling algorithm, which we call Connectivity-Aware Max-Weight (CAMW), determines the phase

φ by optimizing

max
φ

∑
i∈{1,...4}

Qi(t)Ẽ(Kφ
i (t))

s.t. φ ∈ Φ. (2.1)

where Qi(t) is the number of vehicles in the ith incoming queue at time slot t, and Ẽ(Kφ
i (t)) is the

estimated number of vehicles that can pass the intersection from the ith incoming queue under traffic
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phase φ ∈ Φ. Note that one active phase lasts for n time slots and it takes one time slot for a vehicle

to pass the intersection. In other words, at most n vehicles in a queue can pass the intersection during

one green light phase. The optimization problem in Equation 2.1 applies to all queuing models (i.e.,

includes both Queue I and Queue II ).

Note that Equation 2.1 determines the phase by taking into accountQi(t) and Ẽ(Kφ
i (t)). The queue

size information Qi(t) can be easily determined by traffic lights using sensors that count the number of

approaching vehicles. In other words, Equation 2.1 prioritizes phases with larger Qi(t) values. This is

an approach followed by the classical max-weight algorithm. However, as we discussed earlier, using

Qi(t) alone is not sufficient when vehicles heterogeneously communicate with traffic lights. In this case,

since each device has different destinations, blocking can occur. I.e., even if Qi(t) is large, the number

of vehicles that can pass through the intersection could be small due to blocking. Thus, to reflect this

fact, we include the term Ẽ(Kφ
i (t)) in the optimization problem.

Ẽ(Kφ
i (t)) is the estimated number of vehicles that can pass the intersection from the ith incoming

queue under traffic phase φ ∈ Φ. Ẽ(Kφ
i (t)) is found using two steps: expectation and learning. The key

idea behind expectation part is to calculate the expected number of vehicles, which is E(Kφ
i (t)), that

can pass the intersection at phase φ, while the key idea of the learning part is to fine tune E(Kφ
i (t)) and

find Ẽ(Kφ
i (t)) by learning the directions of vehicles that do not communicate. In the next two sections,

we present the expectation and learning components of CAMW.
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Figure 4. An illustrative example of communicating vehicles in a queue at a time slot. Communicating

vehicles are at labeled locations; v1, v2, · · · , vT .

2.1.4.2 Expectation

2.1.4.2.1 Calculation of E(Kφ
i (t)) for Queue I

Let us focus on phase φ ∈ Φ and the ith queue, where i ∈ {1, 2, 3, 4}. In this setup, T (t) (T (t) ≤

n) denotes the number of vehicles that have communication abilities at time slot t, and vl(t) (l =

1, 2, · · · , T ) denotes the location of the lth communicating vehicle in the queue. For example, v2(t) = 3

means that the second communicating vehicle in the queue is actually the third vehicle in the queue.

Figure 4 illustrates an example locations of communicating vehicles. Note that the vehicles that do not

communicate are not assigned any location labels.

Now, let us define two conditions; C1 andC2. The first conditionC1 requires that all communicating

vehicles would like to go to the same direction and aligned with the traffic phase, while the second

condition C2 corresponds to the case that the first communicating vehicle that is not aligned with the

traffic phase is in the location of vL(t) (L = 1, 2, · · · , T ). Note that the conditions C1 and C2 are

complementary. The next theorem characterizes the expected number of vehicles that would leave

queue i at phase φ = 1. Note that E(Kφ=1
i (t)) calculation can be directly generalized to E(Kφ

i (t)),

∀φ ∈ Φ.
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Theorem 1. Assume that all the queues in an intersection follow Queue I. The expected number

of vehicles that would leave the ith queue and pass the intersection at traffic phase φ = 1 ∈ Φ is

characterized by

E(Kφ=1
i (t)) =



∑T (t)
l=0

p1−l1
p2

((p1 + p2vl(t))p
vl(t)−1
1

+(1− 2p1 − p2vl+1(t))p
vl+1(t)−2
1 )

+np
n−T (t)
1 , if C1 holds

∑L−1
l=0

p1−l1
p2

((p1 + p2vl(t))p
vl(t)−1
1

+(1− 2p1 − p2vl+1(t))p
vl+1(t)−2
1 )

+(vL(t)− 1)p
vL(t)−L
1 , if C2 holds.

(2.2)

Proof. Here, we specifically focus on the calculation of E(Kφ=1
i (t)), where φ = 1 corresponds to the

phase in Figure 1(a) to explain our the proof in an easier way.

We first derive the calculation of E(Kφ=1
i (t)) when all communicating vehicles are going straight.

The calculation of E(Kφ=1
i (t)) for other cases will be obtained based on this derivation. If all commu-

nicating vehicles are going straight at time slot t, we can consider the queue as divided into (T + 1)

blocks by the T communicating vehicles. (Note that T is the number of communicating vehicles in a

queue).
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Let a random variable J denote the number of vehicles that can pass the intersection. The prob-

ability that j vehicles pass the intersection is P [J = j], and it behaves similarly to the geometric

distribution. However, the probability distribution is different when j falls into different blocks due to

the communicating vehicles that go straight. To be more precise, we have

P [J = j] =



pj1p2, 1 ≤ j ≤ v1 − 2

pj−1
1 p2, v1 ≤ j ≤ v2 − 2

...

pj−T1 p2, vT ≤ j ≤ n− 1

pn−T1 , j = n

(2.3)

Note that P [J = v1 − 1], P [J = v2 − 1], · · · , P [J = vT − 1] are all 0. The reason is that the

communicating vehicles at locations v1, v2, · · · , vT are all going straight, and if vl−1 vehicles can pass

the intersection. Then, vl vehicles can pass the intersection for sure (l = 1, 2, · · · , T ).

Using Equation 2.3, we can obtain the expected number of vehicles that can pass the intersection as

E(Kφ=1
i (t)) when all communicating vehicles are going straight. I.e.,

E(Kφ=1
i (t)) =

v1−2∑
j=1

jpj1p2 +

v2−2∑
j=v1

jpj−1
1 p2 + · · ·

+

n−1∑
j=vT

jpj−T1 p2 + npn−T1 (2.4)
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In Equation 2.4,
∑vl+1−2

j=vl
jpj−l1 p2 can be expressed as p1−l

1 p2
∑vl+1−2

j=vl
jpj−1

1 = p1−l
1 p2

∂(
∑vl+1−2

j=vl
pj1)

∂p1
=

p1−l1
p2

((p1 + p2vl)p
vl−1
1 + (1 − 2p1 − p2vl+1)p

vl+1−2
1 ). Thus, we can obtain E(Kφ=1

i (t)) when all

communicating vehicles are going straight as

E(Kφ=1
i (t)) =

T∑
l=0

p1−l
1

p2
((p1 + p2vl)p

vl−1
1

+(1− 2p1 − p2vl+1)p
vl+1−2
1 ) + npn−T1 (2.5)

Note that we have v0 = 1, vT+1 = n+ 1 in Equation 2.5 to make it consistent with Equation 2.4.

When there are some communicating vehicles going left, let vL(t) be the location of the first com-

municating vehicle that goes left. There are (L−1) communicating vehicles in front of vL(t) that going

straight and (T − L) communicating vehicles behind vL(t) which will be blocked for sure. Now, we

only focus on the vehicles between the location 1 to (vL(t) − 1). There are (L − 1) communicating

vehicles among them, and all of the communicating vehicles are going straight. Thus, we can use the

similar analysis as used in Equation 2.4 except that now the maximum number of vehicles that can pass

the intersection is (vL(t) − 1) instead of n. Therefore, we have the expected number of vehicles that

can pass the intersection E(Kφ=1
i (t)) when the first communicating vehicle that turns left is at location

vL(t). Thus,

E(Kφ=1
i (t)) =

L−1∑
l=0

p1−l
1

p2
((p1 + p2vl)p

vl−1
1 +

(1− 2p1 − p2vl+1)p
vl+1−2
1 ) + (vL(t)− 1)p

vL(t)−L
1 (2.6)



26

By taking into account all the (T + 1) situations, we conclude that

E(Kφ=1
i (t)) =



∑T (t)
l=0

p1−l1
p2

((p1 + p2vl(t))p
vl(t)−1
1

+(1− 2p1 − p2vl+1(t))p
vl+1(t)−2
1 )

+np
n−T (t)
1 , if C1 holds

∑L−1
l=0

p1−l1
p2

((p1 + p2vl(t))p
vl(t)−1
1

+(1− 2p1 − p2vl+1(t))p
vl+1(t)−2
1 )

+(vL(t)− 1)p
vL(t)−L
1 , if C2 holds.

(2.7)

By following the same analysis, we can obtain E(Kφ
i (t)) for φ = 2, 3, 4. This concludes the

proof.

2.1.4.2.2 Calculation of E(Kφ
i (t)) for Queue II

Queue II assumes that there are dedicated lanes for left-turning and straight-going vehicles, which

makes it fundamentally different than Queue I. In this setup, we consider that traffic lights can sense

whether the HoL location of each dedicated lane is empty or not. Thus, in Queue II, the first two

vehicles in the queue will indirectly communicate their intentions to the traffic light. Figure 5 demon-

strates four possible configurations for HoL vehicles. For example, in Figure 5(a), HoL position of the
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Figure 5. Four possible configurations (Conf. I to Conf IV) for the first three vehicles in Queue II,

where L and S denote that the intention of the vehicle is to turn left or go straight, respectively, while

E denotes that the location is empty (due to previous blocking).

straight going lane is empty (shown with E), the traffic light will know that two vehicles in the queue

will turn left. On the other hand, in Figure 5(b), the traffic light knows that in the dedicated lanes, one

vehicle will go straight, and the other will turn left, but it does not know the intentions of the other

vehicles as long as they do not explicitly communicate with the traffic light.

The crucial observation with Queue II is that if the vehicles that indirectly communicate with

the traffic light are separated from the queue, the rest of the vehicles form a sub-queue. For example, all

the vehicles other than (i) the first two left-turning vehicles in Figure 5(a), and (ii) the two vehicles that

are going straight and turning left in Figure 5(b), form a sub-queue. The important property of the sub-

queue is that it follows Queue I, and can be modeled using the location labels as shown in Figure 4.

Thus, we can calculateE(Kφ
i (t)) of Queue II using the similar analysis we have in Section 2.1.4.2.1.

Next, we provide the details of our E(Kφ=1
i (t)) calculation. Again, following the same idea, one can

calculate E(Kφ
i (t)),∀φ ∈ Φ
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Let T (t) denotes the number of communicating vehicles in the sub-queue at time t, C3 is the con-

dition that all communicating vehicles in the sub-queue go to the same direction aligned with the traffic

phase, and C4 denotes the condition that the first communicating vehicle in the sub-queue that goes to

a different direction than what the traffic phase allows is at location vL(t) (L = 1, 2, · · · , T ). The next

theorem characterizes the expected number of vehicles that would leave queue i at phase φ = 1 for

model Queue II.

Theorem 2. Assume that all the queues in an intersection follow Queue II. Then, if the first three

vehicles of the ith incoming queue are in the form of Figure 5(a) or Figure 5(d), the expected number of

transmittable vehicles is characterized by

E(Kφ=1
i (t)) =



2 +
∑T (t)

l=0
p1−l1
p2

((p1 + p2vl(t))

p
vl(t)−1
1 + (1− 2p1 − p2vl+1(t))

p
vl+1(t)−2
1 ) + (n− 2)p

n−2−T (t)
1 , if C3 holds

2 +
∑L−1

l=0
p1−l1
p2

((p1 + p2vl(t))

p
vl(t)−1
1 + (1− 2p1 − p2vl+1(t))

p
vl+1(t)−2
1 ) + (vL(t)− 1)p

vL(t)−L
1 , if C4 holds

(2.8)

where T (t) ≤ n− 2.
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And if the first three vehicles of the ith incoming queue are in the form of Figure 5(b) or Figure 5(c),

the expected number of transmittable vehicles is characterized by

E(Kφ=1
i (t)) =



1 +
∑T (t)

l=0
p1−l1
p2

((p1 + p2vl(t))

p
vl(t)−1
1 + (1− 2p1 − p2vl+1(t))

p
vl+1(t)−2
1 ) + (n− 1)p

n−1−T (t)
1 , if C3 holds

1 +
∑L−1

l=0
p1−l1
p2

((p1 + p2vl(t))

p
vl(t)−1
1 + (1− 2p1 − p2vl+1(t))

p
vl+1(t)−2
1 ) + (vL(t)− 1)p

vL(t)−L
1 , if C4 holds

(2.9)

where T (t) ≤ n− 1.

Proof. The number of vehicles that can be guaranteed to pass the intersection under certain traffic phase

depends on the configuration of the first three vehicles in the queue. First, we consider the case that the

first three vehicles are in the form of Figure 5(a) or Figure 5(d). In this case, at least two vehicles can

pass the intersection for the corresponding traffic phase, so we need to consider the rest of the vehicles,

i.e., n−2 vehicles assuming that n is the queue size. Noting that n−2 vehicles form a sub-queue in this

setup, and assuming that T (t) (T (t) ≤ n − 2) vehicles communicate the sub-queue, it is clear that the

sub-queue is represented by Queue I. Thus, Equation 2.8 is obtained by adding two to Equation 2.2.
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On the other hand, if the first three vehicles are in the form of Figure 5(b) or Figure 5(c), at least

one vehicle can pass the intersection at any traffic phase configuration. In this scenario, one vehicle is

considered as guaranteed to be transmitted, and the rest of the vehicles (n − 1 vehicles) form a sub-

queue. Similar to above discussion, the sub-queue follows Queue I, so Equation 2.9 is obtained by

adding one to Equation 2.2. This concludes the proof.

2.1.4.3 Learning

In the previous section, we characterized the expected number of vehicles E(Kφ
i (t)) that can pass

an intersection at phase φ from queue i. However, in our CAMW algorithm, which solves Equation 2.1,

we do not use E(Kφ
i (t)). The reason is that E(Kφ

i (t)) is an expected value and its granularity is poor.

In other words, if we use E(Kφ
i (t)) in Equation 2.1, we may end up with choosing a traffic phase that

allows no vehicles passing the intersection. In this case, the intersection is blocked. More importantly,

once the intersection is blocked, if we keep using E(Kφ
i (t)) in Equation 2.1, we may end up with

choosing the wrong traffic phase next time with high probability, which leads to a deadlock. To address

this issue, we introduce the learning mechanism, which works in the following way.

We assume that traffic lights can infer if blocking occurs at intersections, and use this information

in future decisions. For example, assume that the selected traffic phase at time t − 1 is φ = 1 (as

shown in Figure 1(a)), and Ẽ(Kφ=1
i (t − 1)) = E(Kφ=1

i (t − 1)). If blocking occurs, then the traffic

light can learn that both of the HoL vehicles in south-north bound queues must go left. Using this

information, Ẽ(Kφ=1
i (t)) is set to zero at time t so that φ = 1 is not selected again. Ẽ(Kφ=1

i (t + ∆))

is set to E(Kφ=1
i (t+ ∆)) again immediately after some vehicles are transmitted from the queues. This
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may take ∆ time slots. This learning mechanism applies to both Queue I and Queue II, but in

Queue II, separate lanes for each direction makes the learning process by default. I.e., in Queue

II, Ẽ(Kφ
i (t)) = E(Kφ

i (t)), ∀t.

2.1.5 Performance Evaluation

In this section, we consider an intersection controlled by a traffic light. Each arriving vehicle to

the intersection can communicate with probability ρ. Each green phase lasts for one or more time

slots. We assume that the arrival rate to each queue in the intersection is the same; i.e., λ1 and λ2 are

the same ∀i ∈ {1, 2, 3, 4}. We present the simulation results of our Connectivity-Aware Max-Weight

(CAMW) algorithm for both of Queue I and Queue II, as compared to the baseline, the max-

weight algorithm, which is briefly described next.

2.1.5.1 The baseline: max-weight algorithm

The max-weight scheduling algorithm determines a traffic phase as a solution to

max
ρ

4∑
i=1

Qi(t)K
φ
i (t)

s.t. φ ∈ Φ, (2.10)

where Kφ
i (t) is the weight of queue i for phase φ.1 The value of Kφ

i (t) depends on the intersection type

and the corresponding queuing models, which is explained next.

1Note that Kφ
i (t) = 1 in the original max-weight algorithm, while it varies in Equation 2.10 as explained in

this section. Thus, although we call this baseline the max-weight algorithm, it is actually the improved version of
the classical max-weight algorithm.
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(b) CAMW

Figure 6. The average queue size versus time for Queue I . Each green phase lasts for two time slots.

The arrival rate is λ1 = 0.18 and λ2 = 0.12 to each of the queue in the intersection.

First, let us consider Queue I. If the HoL vehicle in the ith queue can communicate, thenKφ
i (t) =

1 for the phase that is aligned with the direction of the HoL vehicle and Kφ
i (t) = 0 for the other three

phases. If the HoL vehicle cannot communicate, max-weight considers Kφ
i (t) = 1 for the phases that

control the ith queue if the queue length is larger than zero.

Second, we assume that all the queues in the intersection follow Queue II. In this setup, we take

into account the first two vehicles in the dedicated lanes. For example, if the first two vehicles from

the ith incoming queue are in the form of Figure 5(a), then Kφ
i (t) = 1 for the left turning phase, and

Kφ
i (t) = 0 for the other phases. On the other hand, if the first two vehicles are in the form of Figure 5(b),

then Kφ
i (t) = 1 for both the left-turning and straight-going phases.

2.1.5.2 Evaluation of CAMW for Queue I

We first assume all the queues in the intersection follow Queue I, and evaluate our CAMW al-

gorithm as compared to the baseline; max-weight. The evolution of the average queue size of the
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intersection for different scheduling algorithms is presented in Figure 6. Each green phase lasts for two

time slots. The arrival rate is λ1 = 0.18 and λ2 = 0.12 to each of the queue in the intersection. It can be

observed that when the communication probability is ρ = 1.0, both of the algorithms have the similar

performance. This is because every vehicle can communicate, so the max-weight algorithm, since the

traffic light can communicate with the HoL vehicle, can align the phases with the direction of HoL ve-

hicle. However, when the communication probability reduces to ρ = 0.7, max-weight cannot stabilize

the queues, while CAMW stabilizes. When ρ = 0.4, neither CAMW nor max-weight can stabilize the

queues, because the arrival rates fall out of the stability region. As can be seen CAMW supports higher

traffic rates than the max-weight algorithm thanks to exploiting connectivity of vehicles.

Figure 7 presents the intersection efficiency versus total arrival rate to each queue for different

communication probability ρ. The intersection efficiency is defined as the ratio of departing traffic to

arrival traffic. In this setup, each green phase lasts for two time slots. Each queue has the same arrival

rate, and λ1 = 1.5λ2. It can be observed that when ρ = 1.0, both of the algorithms can achieve very

similar intersection efficiency. However, if ρ 6= 1, the intersection efficiency of max-weight scheduling

algorithm drops almost to zero, while CAMW can still achieve satisfying intersection efficiency thanks

to taking into account heterogeneous communication probabilities.

2.1.5.3 Evaluation of CAMW for Queue II

In this section, we assume all the queues in the intersection follow Queue II. The evolution

of the average queue size of the intersection using CAMW and max-weight algorithm for different

communication probability ρ is presented in Figure 8. The arrival rate to each queue is λ1 = λ2 =

0.2 and each green phase lasts for two time slots. It can be observed from Figure 8(a) that when
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(b) ρ = 0.4
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(c) ρ = 0.7
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(d) ρ = 1.0

Figure 7. Intersection efficiency versus total arrival rate to each queue with different communication

probability ρ for Queue I . Each green phase lasts for two time slots and each queue has the same

arrival rate and λ1 = 1.5λ2.

communicating probability ρ is small, CAMW is slightly better than the max-weight algorithm, which

is because both of the two algorithm select traffic phases in a similar way when ρ is small. The average

queue sizes over 10,000 time slots when ρ = 0.1 using max-weight and CAMW are 10.6601 and 9.0236,

respectively. It can be observed from Figure 8(b) that when communicating probability ρ is large, our

algorithm improves much over max-weight algorithm. This is because the estimation accuracy in our

algorithm improves as ρ increases, which allows more vehicles to pass at each green phase. When
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(b) ρ = 0.9

Figure 8. The evolution of the average queue size of the intersection using our algorithm and

max-weight algorithm for different communication probability ρ for Queue II. The arrival rate to

each queue is λ1 = λ2 = 0.2 and each green phase lasts for two time slots.

ρ = 0.9, the average queue size over 10,000 time slots using max-weight and CAMW is 10.6601 and

4.3873, respectively. Note that CAMW performs better than max-weight when ρ increases in Queue

II, which is against the observation we had in Queue I. The reason is that while ρ affects max-

weight’s decision about HoL vehicles as explained in Equation 2.10 in Queue I, it does not have any

effect in Queue II.

Figure 9 presents the intersection efficiency versus total arrival rate to each queue for different

communication probabilities ρ. Each queue has the same total arrival rate and λ1 = λ2. Each green

phase lasts for two time slots. It can be observed that the performance of our algorithm improves as the

communicating probability ρ increases, while max-weight has the same performance as ρ changes. The

reason is that the estimation accuracy in our algorithm improves as ρ increases, so CAMW performs
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(b) ρ = 0.4
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(c) ρ = 0.7
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(d) ρ = 1.0

Figure 9. Intersection efficiency versus total arrival rate to each queue with different communication

probability ρ for Queue II. Each queue has the same total arrival rate and λ1 = λ2, and each green

phase lasts for two time slots.

better than the max-weight algorithm as ρ increases. Note that CAMW improves over max-weight by

14%, which is significant.

2.1.6 Conclusion

In this chapter, we considered a transportation system of heterogeneously connected vehicles, where

not all vehicles are able to communicate. For this setup, we developed a connectivity-aware max-weight

scheduling (CAMW) algorithm by taking into account the connectivity of vehicles. The crucial com-



37

ponents of CAMW are expectation and learning components, which determine the estimated number

of vehicles that can pass through the intersections by taking into account the heterogeneous commu-

nications. The simulations results show that CAMW algorithm significantly improves the intersection

efficiency over max-weight.

2.2 Blocking Avoidance in Transportation Systems

The blocking problem naturally arises in transportation systems as multiple vehicles with different

itineraries share available resources. In this section, we investigate the impact of the blocking problem to

the waiting time at the intersections of transportation systems. Again, we assume that different vehicles,

depending on their Internet connection capabilities, may communicate their intentions (e.g., whether

they will turn left or right or continue straight) to intersections (specifically to devices attached to traffic

lights). We consider that information collected by these devices are transmitted to and processed in

a cloud-based traffic control system. Thus, a cloud-based system, based on the intention information,

can calculate average waiting times at intersections. We consider this problem as a queuing model, and

we characterize average waiting times by taking into account (i) blocking probability, and (ii) vehicles’

ability to communicate their intentions. Then, by using average waiting times at intersection, we de-

velop a shortest delay algorithm that calculates the routes with shortest delays between two points in a

transportation network. Our simulation results confirm our analysis, and demonstrate that our shortest

delay algorithm significantly improves over baselines that are unaware of the blocking problem.

2.2.1 Background

In today’s metropolitan transportation systems, congestion is one of the major problems. Traffic

congestion causes delayed travel times as well as more energy consumption. In this section, we inves-
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Figure 10. An example intersection with multiple vehicles with different routes.

tigate the impact of the blocking problem to transportation systems. The blocking problem naturally

arises in transportation systems as multiple vehicles with different itineraries share available resources.

For example, there may be multiple vehicles that would like to continue straight at an intersection, and

they can block the other vehicles that would like to turn left. The next example illustrates the blocking

problem using a canonical example.

Example 3. Let us consider Figure 10, which is an example intersection, where vehicles may turn left,

go straight, or turn right. Figure 11(a) is a simple queue representation of Figure 10, where one-way

single-lane traffic is represented as a first-in-first-out (FIFO) queuing mechanism, and head-of-line

(HoL) vehicle corresponds to the first vehicle in the queue. Let us assume that the HoL vehicle would

like to turn right, but left-turn phase is on. In this case, the HoL vehicle blocks the other vehicles that are

waiting in the queue, i.e., at the intersection. Similar blocking behavior could also be observed in more

realistic scenarios such as in Figure 11(b), where lanes are dedicated to turn right (and go straight) or

turn left. For example, in Figure 11(b), let us assume that two vehicles are allowed to pass through an

intersection when light is on. However, HoL vehicles would like to turn left and right, and the vehicle

just behind the HoL vehicles would like to go straight. In this case, if left or right light is on, one vehicle
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Figure 11. Representation of the south-north bound queue in the intersection demonstrated in Figure 10

using (a) single-lane, (b) one+two-lane, and (c) two+three-lane queuing models. λL, λS , and λR are

the arrival rates of vehicles to the queue with destinations on the left, straight, and right, respectively.

can pass, if go-straight light is on, no vehicle can pass. Thus, even though two vehicles are allowed to

pass, only one vehicle can pass in the best-case scenario. A similar argument holds for the example in

Figure 11(c). As can be seen, blocking occurs in transportation systems, and it increases waiting time

and wastes energy. �

In this section, we analyze the effect of the blocking problem to waiting time (which is related to

energy consumption) at the intersections of transportation systems. We assume connected vehicles het-

erogeneously communicate their intentions to the traffic lights which further send this information to

the cloud. Thus, a cloud-based system, based on the intention information, can calculate waiting times

at intersections. This calculation would be deterministic if all vehicles could communicate their inten-

tions. However, this is not possible today as only a percentage of devices may have such communication

infrastructure. Even in a futuristic setup, where all devices have ability of communicating their inten-

tions, some people may prefer not to share this information due to privacy concerns. Thus, we consider
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a hybrid system model, where arbitrary number of devices can communicate their intentions. In this

setup, our goal is to (i) calculate average waiting time by taking into account the blocking problem, and

(ii) find shortest routes/paths in terms of waiting times. The following are the key contributions of this

work:

• We investigate the impact of blocking problem in transportation systems by modeling arriving

and departing vehicles at an intersection as a queuing model. In particular, we investigate two

queuing models; single-lane model in Figure 11(a) and one+two lane model in Figure 11(b). For

each model, we characterize average waiting times by taking into account the vehicles that can

communicate their intentions (to turn left, right, or go straight) and blocking probability.

• We design an algorithm that finds the routes (or set of intersections) between a starting and ending

points with shortest delay. The shortest delay algorithm that we design takes into account the

average waiting times at intersections, hence blocking probabilities.

• We evaluate our algorithm via simulations for a multiple-intersection transportation network. The

simulation results confirm our analysis, and show that our shortest delay algorithm significantly

improves over blocking-unaware schemes.

2.2.2 Related Work

Analyzing waiting times and modeling transportation systems using queueing theory have a long

history (more than 50 years) [33]. E.g., [24], [34], [35] considered one-lane queues and calculated

the expected queue length and arrivals using probability generation functions. These models focus

on fixed-cycle traffic signals, and they calculate the steady-state delays and queue lengths under the
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assumption that the arriving process does not change over time [27]. Time-dependent arrivals have also

been considered in [43], [44], [45], [46], [30], [31], [29], [32], [25], [28]. Different modeling strategies

are also studied; such as the queuing network model [36], cell transmission model [37], store-and-

forward [10], and petri-nets [38]. As compared to this line of work, our work considers (i) that some

vehicles can communicate their intentions, which affects the delay analysis, and (ii) blocking problem.

Recently, with the development of sensor technology, there is an increasing interest in terms of

estimating the average delay and queue length at isolated intersections using the information collected by

probing vehicles. The queue length estimation and estimation error are characterized in [47], [48], where

the probing vehicles can provide their location and entering and departure time in the road intersection

to a central controller. Isolated intersection is considered in [27], and optimal traffic cycle to adaptively

serve two directions of vehicles are calculated. An optimization scheme is proposed in [49] by taking

into account stochastic features of traffic flows in isolated intersections. As compared to this line of

work, we focus on the impact of blocking problem to waiting times in transportation systems.

There is also an increasing interest in terms of controlling transportation networks by analyzing the

network as a whole without focusing on specific intersections. For example, the control of a network of

signalized intersections is discussed in [9], with the goal of stabilizing waiting times at intersections by

considering the network as a whole and directing vehicles to appropriate intersections. However, this

line of work does not take into account the blocking probability and its impact to the waiting times and

queue sizes.
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2.2.3 System Model

We consider a transportation network consisting of multiple intersections. First, we will focus on

an intersection as exemplified in Figure 10 as isolated from the rest of the network, and characterize

waiting times by taking into account blocking problem. Then, we will consider multiple intersections

in a network, and determine the shortest delay routes/paths.

In our setup, we model each intersection as a set of queues. For example, in Figure 10, there are

four queues for each direction (for south-north, north-south, west-east, and east-west bounds). We

specifically focus one direction in our model; e.g., south-north bound in Figure 10, and model it using

two models: Queue I, which is one-lane model shown in Figure 11(a) and Queue II; which is a

one+two lane model shown in Figure 11(b). Thus, we are using the same queuing models as illustrated

in Section 2.1.3.

We consider a time-slotted system, where one vehicle is allowed to leave the queue during one time

slot. At each slot, the arrivals of vehicles are distributed according to Poisson distribution. In this setup,

when a vehicle enters a queue, it can communicate with the intersection and inform its intention in

terms of turning left or right or continuing straight. We call this “communication ability” of the vehicle

and, we call the probability that a vehicle has communication ability is “communication probability”.

I.e., each vehicle can communicate with the intersection (actually with the sensor possibly attached to

traffic lights) with some “communication probability”. In this setup, if vehicles at an intersection have

communication abilities, then the traffic light can arrange its phases accordingly, so blocking is avoided.

Otherwise, the traffic light selects a phase randomly, and blocking may occur.

Now, let us explain our queuing models; Queue I and Queue II in detail.
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2.2.3.1 Queue I

Queue I is a queuing model illustrated in Figure 11(a). In this setup, λL, λS , and λR correspond

to arrival rates of vehicles that would like to turn left, continue straight, and turn right. However, for

simplicity, we will assume in the rest of the chapter that λ1 = λL, λ2 = λS , and λ3 = λR.

In this setup, if the head-of-line (HoL) vehicle at time slot t has communication ability, then there is

no blocking in slot t. However, if the HoL vehicle does not have communication ability, traffic phases

for left, straight, and right are “ON” with probability p1, p2, and p3, respectively. Thus, if HoL vehicle

would like to turn left, but traffic phase turn right is “ON”, then blocking occurs. We consider in our

model that pi (i = 1, 2, 3) is pre-determined and independent and identically distributed (i.i.d) over time

slots.

In this setup, arrival traffic is Poisson and departure is any general traffic. Thus, we can model this

queue according to M/G/1 queue. However, the analysis is not straightforward due to blocking effect.

We present the details in Section 2.2.4.

2.2.3.2 Queue II

Our second queuing model is Queue II, which is shown in Figure 11(b). Similar to our analysis

in Section 2.1.3, to demonstrate the analysis in a simple way, we consider that the right-turning and

continuing-straight traffics are combined together. Thus, we consider the arrival rates as λ1 = λR + λS

and λ2 = λL. And we call both right-turning and straight-continuing vehicles as going-straight vehicles.

The simplified model is the same as Figure 3(b) in Section 2.1.3, which is replotted here as shown in

Figure 12.



44

λ2
λ1

S

LS

L

Figure 12. The queuing model with two vehicles in the head-of-line (HoL). The arrival rates of

right-turning and straight-continuing vehicles are merged as λ1 and the arrival rate of left-turning

vehicle is λ2.

In this model, there are two dedicated lanes for vehicles at the head-of-line (HoL), where left-turning

vehicles can only join the left lane, while the right-turning or straight-continuing vehicles can only join

the going straight lane.

In this setup, at any phase, at least one vehicle is transmitted. However, when we consider traffic

phases lasting for two slots, either one (if blocking occurs) or two (if there is no blocking) vehicles are

transmitted. In this model, we consider the case that traffic phases change at every two slots, and provide

analysis for this setup. Similar to Queue I, our goal is to characterize the average waiting time of this

model using M/G/1 queues. The details are provided in the next section.

2.2.4 Average Waiting Time Analysis

In this section, we characterize the average waiting time for Queue I and Queue II. Both

queuing models can be modeled as M/G/1 queues. Thus, the average waiting times should follow the

Pollaczek-Khinchine (PK) formula:

W =

3∑
i=1

λiE(x2)

2(1− ρ)
(2.11)
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where W is the average waiting time, x is the service time and ρ is the line utilization, ρ =
3∑
i=1

λiE(x).

However, in this formula, it is not straightforward to characterize the expected service time E(x) and

the second moment of the service time E(x2) due to different communication abilities of vehicles and

blocking. Thus, our main contribution in this section is the characterization of these parameters (E(x)

and E(x2)), which we discuss next.

2.2.4.1 Average Waiting Time for Queue I

In Queue I, if there is a mismatch between the traffic phases and HoL vehicle, then blocking

occurs. For example, if HoL vehicle would like to turn left, but traffic phase turn right is “ON”, then

blocking occurs. This kind of blocking occurs only if HoL vehicle does not have communication ability.

Thus, we discuss three scenarios with different levels of communication abilities; (i) all vehicles have

communication abilities, (ii) none of the vehicles have communication abilities, (iii) a percentage of

vehicles have communication abilities. Note that the first two scenarios are actually the special cases of

the third scenario. However, we present the average waiting time analysis for these scenarios as well in

the following to better explain our approach.

2.2.4.1.1 All Vehicles Have Communication Abilities

Since every vehicle has communication ability, the traffic light always knows where the HoL vehicle

would like to go. Thus, it can arrange the traffic phase accordingly, so the service time x in Equation 2.11

will be 1. Thus, E(x) = 1 and E(x2) = 1, and Equation 2.11 is expressed as

W =

3∑
i=1

λiE(x2)

2(1− ρ)
=

3∑
i=1

λi

2(1−
∑3

i=1 λi)
(2.12)
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where the total arrival rate to the queue is
∑3

i=1 λi. Note that this is a trivial scenario without any

blocking. Next, we consider the case that none of the vehicles have communication abilities.

2.2.4.1.2 None of the Vehicles Have Communication Abilities

If none of the vehicles have communication abilities, then the traffic lights randomly choose phases for

left, straight or right with probabilities; p1, p2, p3, respectively.

In this setup, the HoL vehicle can take more than one slots to pass the intersection. Therefore, the

service time x can be any positive integer. If the service time x = n, ∀n ∈ R+, this means that there has

been a mismatch between the HoL vehicle and the traffic phases in the last n − 1 slots. Therefore, the

probability that the vehicle pass the intersection at the nth slot is P [x = n], and it follows the geometric

distribution

P [x = n] =
3∑
i=1

αi(1− pi)n−1pi (2.13)

where αi, (i = 1, 2, 3) is the probability that the HoL vehicle is going to left, straight or right. It is

straightforward to see that αi = λi/
3∑
i=1

λi. Thus, Equation 2.13 is expressed as

P [x = n] =

∑3
i=1 λi(1− pi)n−1pi∑3

i=1 λi
(2.14)

Using Equation 2.14, we can calculate E(x) and E(x2), the expected service time; E(x) is obtained as

E(x) =

∞∑
n=1

nP [x = n] (2.15)

=

∑3
i=1 λipi

∑∞
n=1 n(1− pi)n−1∑3
i=1 λi

(2.16)
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where
∑∞

n=1 n(1− pi)n−1 is expressed as
∑∞

n=1
∂(−(1−pi)n)

∂pi
=

∂(
∑∞
n=1(−(1−pi)n))

∂pi
= (−∂(1−pi)/pi

∂pi
) =

1
p2i

. Thus, Equation 2.16 is expressed as

E(x) =

∑3
i=1 λipi

1
p2i∑3

i=1 λi
=

∑3
i=1

λi
pi∑3

i=1 λi
(2.17)

The line utilization is calculated as

ρ =

3∑
i=1

λiE(x) =

3∑
i=1

λi
pi

(2.18)

The second moment of the service time; E(x2) is calculated as

E(x2) =
∞∑
n=1

n2
∑3

i=1 λi(1− pi)n−1pi∑3
i=1 λi

(2.19)

=

∑3
i=1 λipi

∑∞
n=1 n

2(1− pi)n−1∑3
i=1 λi

(2.20)

where
∑∞

n=1 n
2(1− pi)n−1 is expressed as (2− pi)/p3

i . Thus, Equation 2.20 is expressed as

E(x2) =

∑3
i=1 λipi

2−pi
p3i∑3

i=1 λi
=

∑3
i=1 λi

2−pi
p2i∑3

i=1 λi
(2.21)

Finally, by using PK formula in Equation 2.11, we can obtain the average waiting time as

W =

3∑
i=1

λiE(x2)

2(1− ρ)
=

3∑
i=1

λi
2−pi
p2i

2(1−
∑3

i=1
λi
pi

)
, (2.22)
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Note that the average waiting time for this scenario directly depends on the traffic phase probabil-

ities. This is intuitive as the mismatch between vehicles and traffic lights increases the waiting time,

which directly affects the average waiting time.

2.2.4.1.3 A Percentage of Vehicles Have Communication Abilities

Now, we assume that a percentage of vehicles has communication abilities. Let pt denotes the com-

munication probability of a vehicle. In this scenario, when the HoL vehicle has communication ability,

then the traffic phases could be arranged accordingly, and the vehicle immediately passes the intersec-

tion (i.e., it can take 1 slot to pass the intersection). On the other hand, when the vehicle does not have

communication ability, then the traffic phases will be left, straight or right randomly with probabilities

p1, p2 and p3, respectively.

In this scenario, the service time x = 1 occurs in two cases. The first case is that the HoL vehicle has

communication ability. The second case is that the HoL vehicle does not have communication ability,

but the traffic phase is aligned with the direction of the vehicle in the first slot (note that it may take

longer). The probability of the second case is (1 − pt)
3∑
i=1

αipi = (1 − pt)
∑3
i=1 λipi∑3
i=1 λi

. Thus, we can

calculate the probability that the service time is equal to 1 as

P [x = 1] = pt + (1− pt)
∑3

i=1 λipi∑3
i=1 λi

(2.23)
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If the service time is larger than 1, we know that this only happens when the HoL vehicle does not

have communication abilities. Thus, the calculation for x > 1 case is similar to the scenario that none

of the vehicles have communication abilities. Thus, the probability of service time to be n(n ≥ 2) is

P [x = n] = (1− pt)
∑3

i=1 λi(1− pi)n−1pi∑3
i=1 λi

(2.24)

Using P [x = n] in Equation 2.24, we can calculate E(x) and E(x2). The expected service time can be

obtained by

E(x) = pt + (1− pt)
∞∑
n=1

n
∑3

i=1 λi(1− pi)n−1pi∑3
i=1 λi

(2.25)

Using the result in calculation for E(x) in section 2.2.4.1.2, we can obtain

E(x) = pt + (1− pt)
∑3

i=1
λi
pi∑3

i=1 λi
(2.26)

Thus, the line utilization is

ρ =

3∑
i=1

(λipt + (1− pt)
λi
pi

) (2.27)

In addition, the calculation of the second moment of the service time is similar to that in section

2.2.4.1.2.

E(x2) = pt + (1− pt)
∞∑
n=1

n2
∑3

i=1 λi(1− pi)n−1pi∑3
i=1 λi

(2.28)
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Using the result in calculation for E(x2) in section 2.2.4.1.2, we can obtain

E(x2) = pt +
1− pt∑3
i=1 λi

3∑
i=1

λi
2− pi
p2
i

(2.29)

Finally, by using PK formula in Equation 2.11, we can obtain the average waiting time as

W =

∑3
i=1

[
λipt + (1− pt)λi(2−pi)p2i

]
2
{

1−
∑3

i=1

[
λipt + (1− pt)λipi

]} (2.30)

2.2.4.2 Average Waiting Time for Queue II

Now, we consider the characterization of the average waiting time for Queue II shown in Fig-

ure 12. In this model, we consider that traffic phases change at every two slots. Thus, in this two-slot

duration, one vehicle passes if there is blocking, and two vehicles can pass if there is no blocking.

Similar to Queue I, we consider different levels of communication abilities for vehicles; (i) all ve-

hicles have communication abilities, (ii) none of the vehicles have communication abilities, and (iii) a

percentage of vehicles has communication abilities. Next, we present our analysis for each scenario.

2.2.4.2.1 All Vehicles Have Communication Abilities

If every vehicle has communication abilities, two vehicles can pass at every two-slot duration. Thus,

the service time for vehicles is always 1. Therefore, the average waiting time will be the same as in

Equation 2.12.
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(a) Configuration I (b) Configuration

II

(c) Configuration

III

(d) Configuration

IV

Figure 13. Four possible configurations for the first three vehicles in Queue II.

2.2.4.2.2 None of the Vehicles Have Communication Abilities

When none of the vehicles have communication abilities, traffic phases can be arranged depending

on the first three vehicle configurations in the queue. Thus, we need to consider the four possible

configurations of the first three vehicles as shown in Figure 5 in Section 2.1.3, which is replotted here

in Figure 13.

When the first three vehicles in the HoL are in the form of Figure 13(a) or Figure 13(d), i.e., where

one of the HoL positions is empty, we assume that the traffic light can sense whether this location is

empty or not. As long as it senses an empty location, e.g., an empty left-turning HoL location, it can

be estimated that the only possible configuration is Configuration IV in Figure 13(d). Then, the traffic

light can arrange its phase to align with the configuration. On the other hand, if the configurations

are Configuration II (Figure 13(b) ) or Configuration III (Figure 13(c)), the traffic light will randomly

arrange its phases.

Based on the discussion above, we know that the service time can be 1 when there is an empty

HoL location or the traffic phase allows two vehicles go within two slots when there are no empty HoL

locations. Since the service time can be 1 or 2 when there are no empty HoL locations, to calculate the
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(a) Conf. II:

Left-turn phase

ON

(b) Conf. II:

Go-straight

phase ON

(c) Conf. III:

Left-turn phase

ON

(d) Conf. III:

Go-straight

phase ON

Figure 14. Vehicle configurations expansion; Configuration II and Configuration III in Figure 13 for

different traffic phases. (a) Configuration II: Left turn phase is ON. (b) Configuration II: Go straight

phase is ON. (c) Configuration III: Left turn phase is ON. (d) Configuration III: Go straight phase is

ON.

expected service time in this case, we can expand Figure 13(b) and Figure 13(c) with traffic light status

to make the calculation more efficient. The expansion is illustrated in Figure 14.

Now, it is clear that the service time will be 1 when the HoL vehicles and traffic light are in the form

of Figure 13(a), Figure 13(d), Figure 14(a), or Figure 14(d), and will be 2 when they are in the form

Figure 14(b) or Figure 14(c).

By taking into account all possible configurations in Figure 13 and Figure 14, we can obtain six

states of the system. Let S1, S2, S3, S4, S5 and S6 denote these six states. Thus, we can use a Markov

chain to calculate the stationary probability of the six states and accordingly, the probability distribution

of the service time. The Markov chain is shown in Figure 15.
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Now, let x be the random variable representing service time. At stationary state, it is clear that

P [x = 2] = P [S3] +P [S4], where P [Si](i = 1, . . . , 6) is the stationary probability that the system is at

state Si. Since the service time can only be 1 or 2, then P [x = 1] = 1− P [x = 2]. Solving the balance

equations of the Markov chain in Figure 15, we can obtain

P [x = 2] =
2λ1λ2(λ1p2 + λ2p1)

(λ1 + λ2)(λ2
1p2 + λ2

2p1 + 4λ1λ2)
(2.31)

Hence

E(x) = 1 +
2λ1λ2(λ1p2 + λ2p1)

(λ1 + λ2)(λ2
1p2 + λ2

2p1 + 4λ1λ2)
(2.32)

E(x2) = 1 +
6λ1λ2(λ1p2 + λ2p1)

(λ1 + λ2)(λ2
1p2 + λ2

2p1 + 4λ1λ2)
(2.33)

Therefore, by using PK formula in Equation 2.11, we can obtain the average waiting time as

W =
(λ1 + λ2) + 6λ1λ2(λ1p2+λ2p1)

λ21p2+λ22p1+4λ1λ2

2
[
1− (λ1 + λ2)− 2λ1λ2(λ1p2+λ2p1)

λ21p2+λ22p1+4λ1λ2

] (2.34)

2.2.4.2.3 A Percentage of Vehicles Have Communication Abilities

Now, we assume that the probability of a vehicle has a communication ability is pt. A major difference

in Queue II as compared to Queue I is that we have dedicated lanes for left-turning and straight-
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Figure 15. The Markov chain for states Si (i = 1, . . . , 6), where αi (i = 1, 2) denotes the probability

that the HoL vehicle is going straight or left and pi (i = 1, 2) denotes the probability that the traffic

light choose go-straight or turn-left phases.

going vehicles in Queue II. Since we assume that traffic lights can sense whether a dedicated lane

(HoL location) is empty or not, then the first two vehicles in HoL locations will indirectly communicate

their intentions. i.e., even if a vehicle does not communicate their intention, when it goes to turn-left

lane, then it can be sensed by the traffic light, and its intention can be inferred.

Thus, it only matters whether the third vehicle (the vehicle right behind the HoL locations) has

communication ability or not. Note that if the third vehicle has communication ability, then the service

time will always be 1 (i.e., 2 vehicles can pass in two slots) since traffic phases can be arranged to match

the configurations of the first three vehicles. If the third vehicle does not have communication ability,

then the probability distribution of service times will be exactly the same as that in section 2.2.4.2.2.
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Therefore, the service time becomes 2 when the third vehicle does not have communication ability and

the traffic phase does not match its intention. Similar to the analysis in Section 2.2.4.2.2, we have

W =
(λ1 + λ2) + 6(1−pt)λ1λ2(λ1p2+λ2p1)

λ21p2+λ22p1+4λ1λ2

2
[
1− (λ1 + λ2)− 2(1−pt)λ1λ2(λ1p2+λ2p1)

λ21p2+λ22p1+4λ1λ2

] (2.35)

2.2.5 Shortest Delay Algorithm

In this section, we consider a transportation system, which consists of multiple intersections and

roads. In this setup, by using the average waiting time analysis in Section 2.2.4, we develop a shortest

delay algorithm.

In particular, we consider the transportation network as a weighted directed graph G with N nodes

and M edges, each node represents an intersection and each edge represents a road that connects two

intersections. Let V (G), E(G) denotes the set of nodes and edges respectively. Then |V (G)| = N ,

|E(G)| = M . The weight of each edge is the sum of the average waiting time in the arrival node

(intersection) and the traveling time between the two nodes (intersections) on that edge (road). Given

the starting and destination nodes in the graph, the goal of our algorithm is to find a path that returns

the shortest waiting time (i.e., shortest delay path). The shortest delay algorithm is expressed more

specifically in the following.

• Given the arrival rate of traffic flows into each node n ∈ V (G) and communication probability of

vehicles arriving into that node, we can calculate the average waiting time Wn using the waiting

time analysis in Section 2.2.4. For Queue I, Wn is Equation 2.30 and for Queue II, Wn is

Equation 2.35.
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• We assume that vehicles travel at a steady speed of s over an edge between two nodes before

arriving into the queue/intersection. Thus, the traveling time between two nodes tm (m ∈ E(G))

can be obtained by dividing the length of the edge Lm by the speed s, i.e., tm = Lm/s. Then, the

total traveling time Tm is the sum of Wn and tm, i.e., Tm = Wn + tm, and Tm is assigned as the

weight of edge m.

• Finally, given the starting and ending nodes, we run Dijkstra’s algorithm and return the shortest

path it finds. Since the weight of each edge is the total traveling time on that edge, the shortest

path we obtain in this way becomes the shortest delay algorithm.

Note that our shortest delay algorithm finds the routes with the shortest average waiting times and

less blocking probabilities, so it provides blocking avoidance over transportation networks. We note

that in multiple-intersection transportation networks (with vehicles making decisions based on estimated

waiting times), arrival rates of vehicles would be more generic than Poisson arrivals. In this sense, our

algorithm in this section is an approximation. In the next section, we show the effectiveness of our

algorithm.

2.2.6 Performance Evaluation

In this section, we first consider isolated intersections, and evaluate our waiting time analysis pro-

vided in Section 2.2.4. Then, we consider a larger transportation network with multiple intersections,

and evaluate our shortest delay algorithm developed in Section 2.2.5.
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Figure 16. Queue I. (a) Average waiting time for different total arrival rates with different

communication probabilities pt. (b) Average queue size versus communication probability pt. The

arrival rates are λ1 = λ2 = λ3 = 0.1.

2.2.6.1 Evaluation of Average Waiting Time at Isolated Intersections

2.2.6.1.1 Queue I

The simulated average waiting time for Queue I versus total arrival rate is shown in Figure 16(a). We

assume that λ1 = λ2 = λ3.

It can be observed from Figure 16(a) that the average waiting time increases as the total arrival rate

increases. This is because the congestion becomes worse as more vehicles enter the queue. Meanwhile,

for a fixed total arrival rate, the average waiting time increases as the communication probability pt

decreases, due to the increasing randomness of the traffic signal.

Figure 16(b) shows the average queue size versus communication probability pt over 10,000 time

slots. It can be observed that the average queue size decreases as the communication probability pt
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Figure 17. Queue II. (a) Average waiting time for different total arrival rates with different

communication probabilities pt. (b) Average queue size versus communication probability pt. The

arrival rates are λ1 = λ2 = 0.15.

increases. It is expected as when pt increases blocking probability reduces. This shows it is very

important that vehicles communicate their intentions to the traffic light to avoid blocking.

2.2.6.1.2 Queue II

The simulated average waiting time for Queue II versus total arrival rate is shown in Figure 17(a),

where we assume that λ1 = λ2.

Figure 17(a) shows the similar relationship between total arrival rate and average waiting time as

shown in Figure 16(a). However, it can be observed in Figure 17(a) that in most cases the average

waiting time is much less than that in Figure 16(a) for the same total arrival rate and communication

probability pt (pt 6= 1). Only when pt = 1, the average waiting times are the same in Figure 17(a) and
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Figure 16(a) for the same total arrival rate. This is because when pt 6= 1, at least one vehicle passes

during two time slots in Queue II. However, it is possible that no vehicles can pass during several

time slots in Queue I. Only when pt = 1, the service rate will always be 1 in both Queue I and

Queue II, and their average waiting times are closer to each other.

Figure 17(b) shows the average queue size versus communication probability pt over 10,000 time

slots. In general, when communication probability pt is fixed, the average queue size in Queue II is

smaller than that in Queue I. In addition, the average queue size in Queue II is almost linearly

decreases as the communication probability pt increases.

2.2.6.2 Evaluation of the Shortest Delay Algorithm

In this section, we evaluate our algorithm using an illustrative transportation network as shown in

Figure 18. In this network, there are four nodes, where node 1 and 4 are the starting and ending nodes,

while node 2 and 3 are two intermediate intersections/nodes . The total arrival rate to node 2 and node

3 is λn2 and λn3 respectively. Assuming that a percentage of vehicles has communication abilities at

node 2, and none of the vehicles have communication abilities at node 3, we evaluate the estimated

end-to-end traveling time (or delay). Next, we briefly describe our baselines.

2.2.6.2.1 Baselines

We consider a baseline algorithm that uses the same method as our algorithm except that it does not

take into account the communication probability of vehicles. In other words, none of the vehicles

can communicate their intentions in the baseline algorithm. Thus, the evaluation of our shortest delay
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Figure 18. An illustrative transportation network with four nodes. The total arrival rate to node 2 and

node 3 is λn2 and λn3, respectively.

algorithm as compared to the baseline will show the benefit communication ability to overall delay, and

avoiding blocking. The baseline algorithm is summarized briefly in the following.

• Given the arrival rate into each node, we calculate the average waiting time Wn in each node

without considering the communication ability of vehicles. For Queue I, Wn is Equation 2.22

and for Queue II, Wn is Equation 2.34.

• Similar to our shortest delay algorithm, the total traveling time Tm on road/edge m is the sum of

Wn and tm, i.e., Tm = W + tm, and Tmis assigned as the weight of edge m.

• Given the starting and ending nodes, we run Dijkstra’s algorithm and return the shortest path it

finds.
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Figure 19. Queue I. (a) Estimated traveling time vs communication probability pt at node 2. (b)

Estimated traveling time vs arrival rate at node 2.

Next, we present our simulation results for Queue I and Queue II. In the transportation net-

work in Figure 18, we know that there are only two paths from node 1 to 4; they are 1 → 2 → 4

and 1 → 3 → 4 as shown in bold directed lines in Figure 18. To clearly see the effect of blocking and

waiting times at intersections/queues, we assume that the four road segments in Figure 18 have the same

length. Thus, without violating generality, we assume that the traveling times over each road/link is 0,

i.e., both in the baseline and our algorithm tm = 0 (m = 1, 2, 3, 4).

2.2.6.2.2 Queue I

In this section, we consider that all the queuing model in the intersections of the road network follow

Queue I, which is shown in Figure 11(a).
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We assume that the arrival rates to node 2 are λ1 = λ2 = λ3 = 0.4/3, and the arrival rates to node 3

are λ1 = λ2 = λ3 = 0.1. Figure 19(a) presents the traveling time versus communication probability pt

at node 2. Since the baseline algorithm does not take into account the communication ability of vehicles,

it will choose the path 1 → 3 → 4 as the shortest path since the total arrival rate at node 3 is smaller

than node 2. However, if we take into account the communication ability of vehicles (i.e., if we use our

algorithm), Figure 19(a) shows that the traveling time will decrease as our algorithm chooses the path

1→ 2→ 4 instead of 1→ 3→ 4 when the communication probability pt at node 2 is larger than 0.3.

Let us assume that the arrival rates to node 3 are λ1 = λ2 = λ3 = 0.1, and the communication

probability at node 2 is pt = 0.7. Figure 19(b) presents the traveling time versus total arrival rates at

node 2 (we assume λ1 = λ2 = λ3 at node 2). Again, since the baseline algorithm does not take into

account the communication ability of vehicles, it will choose the path 1→ 2→ 4 when λn2 ≤ λn3 and

switches to path 1 → 3 → 4 when λn2 > λn3. However, our algorithm chooses path 1 → 2 → 4 even

for λn3 < λn2 < 0.6 because of taking into account the communication ability of vehicles in node 2.

Thus, the estimated traveling time using our algorithm is smaller than the baseline for λn2 < 0.6.

2.2.6.2.3 Queue II

In this section, we consider that all the queuing model in the intersections of the transportation network

follow Queue II, which is shown in Figure 12.

Let us assume that the arrival rates to node 2 is λ1 = λ2 = 0.45, and the arrival rates to node 3 is

λ1 = λ2 = 0.4. Figure 20(a) presents the traveling time versus communication probability pt at node

2. Similar to Queue I, our algorithm improves over the baseline.
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Figure 20. Queue II. (a) Estimated traveling time vs communication probability pt at node 2. (b)

Estimated traveling time vs arrival rate at node 2.

Let us assume that the arrival rates to node 3 are λ1 = λ2 = 0.3, and the communication probability

at node 2 is pt = 1.0. Figure 20(b) presents the traveling time versus total arrival rates at node 2 (we

assume that λ1 = λ2 at node 2). Similar to Queue I, our algorithm improves over the baseline.

2.2.7 Conclusion

In this chapter, we investigated the blocking problem which naturally arises in transportation net-

works, where multiple vehicles with different itineraries share available resources. We characterized

waiting times at intersections of transportation systems by taking into account blocking probability as

well as the communication probability of vehicles. Then, by using average waiting times at intersec-

tion, we developed a shortest delay algorithm that calculates the routes with shortest delays between

two points in a transportation network. Our simulation results show that our shortest delay algorithm

significantly improves over baselines that are unaware of the blocking problem.



CHAPTER 3

FLOW CONTROL AND SCHEDULING FOR HETEROGENEOUS (PER-FLOW

AND FIFO) QUEUES OVER WIRELESS NETWORKS

The contents of this chapters are based on our work that is published in the proceedings of 2016 ITA

workshop [3]. ©2016 IEEE. Reprinted, with permission, from [3].

We investigate the performance of wireless networks of devices with heterogeneous (per-flow and

FIFO) queues. We consider a general scenario where an arbitrary number of per-flow and FIFO queues,

which are served by a wireless medium, are shared by an arbitrary number of flows. In this setup,

we formulate the support region, which is characterized by the set of arrival rates that can be stably

supported in the network. In general, the support region of this system is non-convex. Thus, we develop

a convex inner-bound on the support region, which is provably tight in certain cases. The convexity

of the inner bound allows us to develop a resource allocation scheme; dFC. Based on the structure

of dFC, we develop a stochastic flow control and scheduling algorithm; qFC. We show that qFC

achieves optimal operating point in the convex inner bound. Simulation results show that our algorithms

significantly improve the throughput of wireless networks with FIFO queues, as compared to the well-

known queue-based flow control and max-weight scheduling.

3.1 Background

The recent growth in mobile and media-rich applications continuously increases the demand for

wireless bandwidth, and puts a strain on wireless networks [11], [12]. This dramatic increase in demand

64
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poses a challenge for current wireless networks, and calls for new network control mechanisms that

make better use of scarce wireless resources. Furthermore, most existing, especially low-cost, wireless

devices have a relatively rigid architecture with limited processing power and energy storage capacities

that are not compatible with the needs of existing theoretical network control algorithms. One important

problem, and the focus of this chapter, is that low-cost wireless interface cards are built using First-In,

First-Out (FIFO) queueing structure, which is not compatible with the per-flow queueing requirements

of the optimal network control schemes such as backpressure routing and sheduling [13].

The backpressure routing and scheduling paradigm has emerged from the pioneering work [13],

[14], which showed that, in wireless networks where nodes route and schedule packets based on queue

backlogs, one can stabilize the queues for any feasible traffic. It has also been shown that backpressure

can be combined with flow control to provide utility-optimal operation [15]. Yet, backpressure routing

and scheduling require each node in the network to construct per-flow queues. The following example

demonstrates the operation of backpressure.

Example 4. Let us consider a canonical example in Figure 21(a), where a transmitter node S, and two

receiver nodesA, B form a one-hop downlink topology. There are two flows with arrival rates λS,A and

λS,B destined to nodesA andB, respectively. The throughput optimal backpressure scheduling scheme,

also known as max-weight scheduling, assumes the availability of per-flow queues QS,A and QS,B as

seen in Figure 21(a), and makes a transmission decision at each transmission opportunity based on

queue backlogs, i.e., QS,A and QS,B . In particular, the max-weight scheduling algorithm determines

F ∗ = arg maxF∈{A,B}QS,F , and transmits from queue QS,F ∗ . It was shown in [13], [14] that if

the arrival rates λS,A and λS,B are inside the stability region of the wireless network, the max-weight
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QS,A QS,B

λS,A λS,B

(a) Per-flow queues

A B

S
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λS,A λS,B

(b) FIFO queue

Figure 21. Queueing structure of one-hop downlink topology with (a) per-flow queues, and (b) a FIFO

queue.

scheduling algorithm stabilizes the queues. On the other hand, in some devices, per-flow queues cannot

be constructed. In such a scenario, a FIFO queue, say QS is shared by flows A and B as shown in

Figure 21(b), and the packets are served from QS in a FIFO manner. �

FIFO queues are widely used in plenty of wireless communication scenarios due to hardware con-

straints. For example, constructing per-flow queues may not be feasible in some devices especially at

the link layer due to rigid architecture, and one FIFO queue is usually shared by multiple flows [50,51].

Although current WiFi-based devices have more than one hardware queue [52], their numbers are re-

stricted (up to 12 queues according to the list in [52]), while the number of flows passing through a

wireless device could be significantly higher. Also, multiple queues in wireless devices are mainly con-

structed for prioritized traffic such as voice, video, etc., which further limits their usage as per-flow

queues [52]. On the other hand, constructing per-flow queues may not be preferable in some other de-

vices such as sensors or home appliances for which maintaining and handling per-flow queues could

introduce too much processing and energy overhead [53]. Thus, some devices, either due to rigid ar-
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chitecture or limited processing power and energy capacities, inevitably use shared FIFO queues, which

makes the understanding of the behavior of FIFO queues over wireless networks very crucial.

Example 1 - continued: Let us consider Figure 21 again. When a FIFO queue is used instead of per-

flow queues, the well-known head-of-line (HoL) blocking phenomenon occurs. As an example, suppose

that at transmission instant t, the links S − A and S − B are at “ON” and “OFF” states, respectively.

In this case, a packet from QS,A can be transmitted if per-flow queues are constructed. Yet, in FIFO

case, if HoL packet in QS belongs to flow B, no packets can be transmitted and wireless resources are

wasted. �

Although HoL blocking in FIFO queues is a well-known problem, achievable throughput with FIFO

queues in a wireless network is generally not known. In particular, the network support region, which is

characterized by a set of feasible arrival rates that can be stably supported (i.e., not overflowing buffers),

as well as the resource allocation schemes to achieve optimal operating point in the support region are

still open problems.

In this work, we investigate a general wireless network where per-flow and FIFO queues coexist.

We consider a wireless network model presented in Figure 22 with multiple heterogeneous queues that

are in the same transmission and interference range.

Our first step towards understanding the performance of per-flow and FIFO queues in such a setup is

to characterize the support region of the network. Then, based on the structure of the support region, we

develop efficient resource allocation algorithms; Deterministic FIFO-Control (dFC) and Queue-Based

FIFO-Control (qFC). The following are the key contributions of this work:
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• We characterize the support region of a general scenario where an arbitrary number of per-flow

and FIFO queues are shared by an arbitrary number of flows.

• The support region of the heterogeneous queuing system under investigation is non-convex. Thus,

we develop a convex inner-bound on the support region, which is provably tight for certain oper-

ating points.

• We develop a resource allocation scheme; dFC, and a queue-based stochastic flow control and

scheduling algorithm; qFC. We show that qFC achieves optimal operating point in the convex

inner bound.

• We evaluate our schemes via simulations for multiple per-flow and FIFO queues and flows. The

simulation results show that our algorithms significantly improve the throughput as compared to

the well-known queue-based flow control and max-weight scheduling schemes.

3.2 Related Work

In this work, our goal is to understand FIFO queues in wireless networks and develop efficient flow

control and scheduling policies for such a setup. In the seminal paper [54], the authors analyze FIFO

queues in an input queued switch. They show that the use of FIFO queues in that context limits the

throughput to approximately 58% of the maximum achievable throughput. However, in the context of

wireless networks, similar results are in general not known.

Backpressure routing and scheduling framework has emerged from the pioneering work [13, 14],

which has generated a lot of research interest [55]; especially for wireless ad-hoc networks [56–61].

Furthermore, it has been shown that backpressure can be combined with flow control to provide utility-
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optimal operation guarantee [15,60]. Such previous work mainly considered per-flow queues. However,

FIFO queueing structure, which is the focus of this thesis, is not compatible with the per-flow queueing

requirements of these routing and scheduling schemes.

The strengths of backpressure-based network control have recently received increasing interest in

terms of practical implementation. Multi-path TCP scheme is implemented over wireless mesh net-

works in [62] for routing and scheduling packets using a backpressure based heuristic. At the link

layer, [63–65] propose, analyze, and evaluate link layer backpressure-based implementations with queue

prioritization and congestion window size adjustment. Backpressure is implemented over sensor net-

works [66] and wireless multi-hop networks [67]. In these schemes, either last-in, first-out queueing is

employed [66] or link layer FIFO queues are strictly controlled [67] to reduce the number of packets in

the FIFO queues, hence HoL blocking.

The backpressure routing and scheduling algorithm requires per-flow (or per-destination) informa-

tion, which may be difficult to obtain and maintain, especially in large multihop networks. There is

some work in the literature to stretch this necessity. For example, [68], [69] propose using real per-link

and virtual per-flow queues. Such a method reduces the number of queues required in each node, and

reduces the delay, but it still needs to construct per-link queues. Similarly, Queue Proportional Rate

Allocation (QPRA) scheduling algorithm in [70] is based on per-link queues and allocates resources

proportional to queue lengths while achieving maximum throughput. In this line, per link queues oper-

ating according to FIFO rule are considered in [71–74]. As compared to this line of work, we consider

shared FIFO queues over multiple links, where HoL blocking arises, which does not occur on per-link

FIFO queues.
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The main differences in our work are: (i) we consider heterogeneous (per-flow and FIFO) queues

shared by multiple flows where HoL blocking occurs as each flow is transmitted over a possibly different

wireless link, (ii) we characterize the support region of a general scenario where an arbitrary number of

per-flow and FIFO queues, which are served by a wireless medium, are shared by an arbitrary number

of flows, and (iii) we develop efficient resource allocation schemes to exploit achievable rate in such a

setup.

3.3 System Model

Wireless Network Setup: We consider a wireless network model presented in Figure 22 with N

FIFO queues. Let N be the set of FIFO queues, Qn be the nth FIFO queue, and Kn be the set of flows

passing through Qn. Also, let Qn and Kn denote the cardinalities of sets Qn and Kn, respectively. We

assume in our analysis that time is slotted, and t refers to the beginning of slot t. Note that this model

also covers per-flow queues as a FIFO queue could be considered as a per-flow queue if the number of

arrival flows to that queue is one. Therefore, for simplicity of terminology, we call both of per-flow and

FIFO queues as FIFO queues in the rest of the thesis.

Flow Rates: Each flow passing through Qn and destined for node k is generated according to an

arrival process λn,k(t) at time slot t. The arrivals are i.i.d. over the time slots such that for every n ∈ N

and k ∈ Kn, we have λn,k = E[λn,k(t)] and E[λn,k(t)
2] <∞, where E[·] denotes the expected value.

Channel Model: In our setup in Figure 22, as we mentioned earlier, we assume that all FIFO queues

are in the same transmission and interference range, i.e., only one FIFO queue could be served by a

shared wireless medium at time t. On the other hand, a channel state from a FIFO queue to a receiver

node may vary. In particular, at slot t, C(t) = {Cn,k(t)}∀n∈N ,k∈Kn is the channel state vector, where
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.... ....

Figure 22. The wireless network model that we consider in this thesis. N FIFO queues share a wireless

medium, where the nth FIFO queue, Qn carries Kn flows towards their respective receiver nodes. The

arrival rate of the kth flow passing through the nth queue is λn,k.

Cn,k(t) is the state of the link at time t from the nth queueQn to receiver node k such that k ∈ Kn. The

link state Cn,k(t) takes values from the set {ON,OFF} according to a probability distribution which

is i.i.d. over time slots. If Cn,k(t) = ON , packets can be transmitted to receiver node k with rate Rn,k.

We assume, for the sake of simplicity in this thesis, that Rn,k = 1, and 1 packet can be transmitted

at time slot t if Cn,k(t) = ON . If Cn,k(t) = OFF , no packets are transmitted. The ON and OFF

probabilities of Cn,k(t) are p̄n,k and pn,k, respectively. Note that Cn,k(t) only determines the channel

state; i.e., the actual transmission opportunity from Qn depends on the HoL packet as explained next.

Queue Structure and Evolution: Suppose that the Head-of-Line (HoL) packet of Qn at time t is

Hn(t) and it belongs to one of the flows in Kn. The HoL packet together with the channel state defines

the state of Qn. In particular, let Sn(t) be the state of Qn at time t such that Sn(t) ∈ {ON,OFF}.

The state of Qn is ON , i.e., Sn(t) = ON if Cn,Hn(t) = ON at time t. Otherwise, Sn(t) = OFF . We

define S = {S1, S2, · · · , SN} as the vector of states of all the FIFO queues and S = {S|S1, . . . , SN ∈

{ON,OFF}} as the set of all the vectors.
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Let us now consider the evolution of the HoL packet. If the state of queue Qn is ON at time t, i.e.,

Sn(t) = ON , the HoL packet can be transmitted (depending on the scheduling policy). If we assume

there are always packets in the queue, after the HoL packet being transmitted, a new packet is placed in

the HoL position in Qn. Let us denote the probability that this new HoL packet belongs to the kth flow

as αn,k. Since the packets follow Fist-in First-out pattern, αn,k depends on the arrival rates of all the

flows into Qn, that is, αn,k =
λn,k∑

k∈Kn λn,k
.

Now, we can consider the evolution of Qn. At time t,
∑

k∈Kn λn,k(t) packets arrive to Qn, and

gn(t) packets are served according to the FIFO manner. Thus, queue size Qn(t) evolves according to

the following dynamics.

Qn(t+ 1) ≤ max[Qn(t)− gn(t), 0] +
∑
k∈Kn

λn,k(t). (3.1)

Note that gn(t) depends on the states of the queues; S(t) at time t, which characterize the support region

of the wireless network. Note that S(t) depends on arrival rates of flows to each FIFO queue; i.e., λn,k

as well as the ON -OFF probability of each link, i.e., pn,k. In the next section, by taking into account

λn,k and pn,k, we characterize the support region of the wireless network.

3.4 Support Region

In this section, our goal is to characterize the support region of a wireless network where an arbitrary

number of FIFO queues are served by a shared wireless medium. As we mentioned earlier, the support

region is characterized by the set of arrival rate vectors that can be served by the shared medium without

overflowing the queues in the network. We first begin with the single-queue case shown in Figure 23 to
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1-p2
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2 FIFO Queue Support
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         Per-Flow Queue 
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Figure 23. (a) Single-FIFO queue; Q is shared by K flows. (b) Support region of a single-FIFO queue

as well as per-flow queues with two flows.

convey our approach for a canonical scenario, then we extend our support region analysis for arbitrary

number of FIFO queues and flows.

3.4.1 Single-FIFO Queue

We study the special case of a single FIFO queue Q1 where N = {1} with N = 1. For this special

case, we thus drop the queue index n from the notation in Section 3.3 for brevity. In other words, we

write Q instead of Qn, Ck(t) instead of Cn,k(t), and so on. Our main result in this context is then the

following theorem.

Theorem 3. For a FIFO queue Q shared by K = {1, . . . , K} flows, if the channel states Ck(t) and

arrival rates λk(t) are i.i.d. over time slots, the support region Λ includes all arrival rates satisfying

∑
k∈K

λk
p̄k
≤ 1. (3.2)

In other words, the support region of the single-FIFO queue system is Λ = {{λk}k∈K| Equation 3.2, λk ≥

0,∀k ∈ K}.
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Proof: Suppose we are given the set of arrival rates that are supported by the network, that is, the

total arrival rates are no more than the total service rate of the system, our goal is to prove that these

arrival rates satisfy
∑

k∈K
λk
p̄k
≤ 1.

The state of the FIFO queue Q takes values from {ON,OFF} depending the HoL packet and the

states of the wireless links. Now, let us take a closer look at the FIFO states. The OFF state occurs

if for some k ∈ K = {1, . . . ,K} we have H = k and Ck = OFF . Let zk be the state that H = k

and Ck = OFF . We denote the probability of zk as P [zk] = P [H = k, Ck = OFF ]. Also, let z0

be the state that FIFO queue is at ON state for some HoL packet. The state z0 happens precisely when

the channel corresponding to the HoL packet is in the ON state. Therefore, the probability of z0 is

P [z0] = P [CH = ON ].

Having defined the queue state probabilities, we can observe that the packets from the FIFO queue

could be served only at state z0. It is also clear that the necessary condition that the arrival rates are in

the support region is that the sum of the arrival rates to the queueQ should be less than the service rate,

which is P [z0]. Noting that we assumed Rk = 1, we conclude that
∑

k∈K λk ≤ P [z0].

Let us now calculate P [z0] and P [zk], k ∈ K using a Markov chain with states; z0 and zk, k ∈ K.

We first show that the state transition probability from z0 to zk is P0,k , αkpk, where αk = λk∑
k∈K λk

.

Since we consider only one FIFO queue, when the queue is at state z0, the HoL packet is always

transmitted. Suppose there are always packets in the queue, the new HoL packet in the next state will

belong to the kth flow with probability αk, and Ck = OFF with probability pk. Therefore, the state

transition probability from z0 to zk is P0,k = αkpk, as claimed.
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Figure 24. Markov chain for the single-FIFO queue system shown in Figure 23(a).

The probability of moving from state zk to z0 is Pk,0 , p̄k as we can move to the unblocking state

z0 from the blocking state zk if the channel is ON (with probability p̄k.). On the other hand, staying

in the blocking state zk is the OFF probability of the channel Ck. Thus, Pk,k , pk. Note that the

expressions for Pk,0 and Pk,k do not involve the quantity αk. The reason is that zk is the blocking state,

so when we move from zk to another state (or staying at state zk), the HoL packet is not transmitted and

does not change (because Ck = OFF at state zk).

For any given k, l ∈ K with k 6= l, the state transition probability from zk to zl is Pk,l , 0.

This follows since it is not possible to move from a blocking state to another (the HoL packet cannot

be transmitted.). Finally, the probability of staying at state z0 is P0,0 , 1 −
∑

k∈K αkpk as the con-

dition
∑K

k=0 P0,k = 1 should be satisfied thanks to the law of total probability. The state transition

probabilities are as shown in Figure 24.

Now that we know the state transition probabilities of our Markov chain, we can calculate the

balance equations, and these yield P [z0] =
∑
k∈K λk∑

k∈K λk/p̄k
. The calculations are provided in the following.
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Let P [z] =

[
P [z0] P [z1] . . . P [zK ]

]T
. In the steady the state, the following set of equations

are satisfied for the Markov Chain shown in Figure 24.

P [z]T



1−
∑

k∈K αkpk α1p1 . . . αKpK

p̄1 p1 . . . 0

p̄2 0 . . . 0

...
...

. . .
...

p̄k 0 . . . pK


= P [z] (3.3)

If we combine the (k + 1)th equation in Equation 3.3, which is P [zk] = P [z0]αkpkp̄k
, and the fact that

P [z0] +
∑

k∈K P [zk] = 1, we have

P [z0] =

∑
k∈K λk∑

k∈K λk/p̄k
(3.4)

We can then obtain
∑

k∈K λk ≤ P [z0] =
∑
k∈K λk∑

k∈K λk/p̄k
which is equivalent to Equation 3.2. This

concludes the proof. �

Example 5. Now suppose that single-FIFO queue Q is shared by two flows with rates λ1 and λ2.

According to Theorem 3, the arrival rates should satisfy λ1/p̄1 + λ2/p̄2 ≤ 1 for stability. This support

region is shown in Figure 23(b). In the same figure, we also show the support region of per-flow queues,

[55]. As seen, the FIFO support region is smaller as compared to per-flow capacity region. Yet, we

still need flow control and scheduling algorithms to achieve the optimal operating point in this support

region. This issue will be discussed later in Section 3.5. �
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3.4.2 Arbitrary Number of Queues and Flows

We now consider a wireless network with arbitrary number of FIFO queues and flows as shown

in Figure 22. The main challenge in this setup is that packet scheduling decisions affect the support

region. For example, if both Q1 and Qn in Figure 22 are at ON state, a decision about which queue

to be served should be made. This decision affects future transmission opportunities from the queues,

hence the support region.

In this thesis, we consider a scheduling policy where the packet transmission probability of each

queue depends only on the queue states. In other words, if the state of the FIFO queues is S ∈ S , a

packet from queue Qn is transmitted with probability τn(S). We call this scheduling policy the queue-

state policy. Note that as τn(S) is the transmission probability from queue Qn, we have the obvious

constraint

∑
n∈N

τn(S) ≤ 1, ∀S ∈ S. (3.5)

Our main result is then the following theorem.
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Theorem 4. For a wireless network with N FIFO queues, if a queue-state policy τn is employed, then

the support region consists of the flow rates that satisfy

λn,k ≤
∑
S∈S

{
λn,k1[Sn]∑

k∈Kn λn,k/p̄n,k∏
m∈N−{n}

(∑
k∈Km λm,kρm,k(Sm)∑
k∈Km λm,k/p̄m,k

)
τn(S)

}
,

∀n ∈ N , k ∈ Kn, (3.6)

where

1[Sn] =


1, Sn = ON

0, Sn = OFF

,

ρm,k(Sm) =


1, Sm = ON

pm,k/p̄m,k, Sm = OFF

.

Proof: In order for the arrival rates λn,k to be supported by the system, we have

λn,k ≤
∑
S∈S

P [S, Hn = k]1[Sn]τn(S),∀n ∈ N , k ∈ Kn. (3.7)

where S = {S1 · · ·SN} is the vector of the states of all the FIFO queues, and P [S, Hn = k] is the

probability that the states of the queues are S and Hn = k, which is required as we can transmit a

packet from the kth flow only when the HoL packet belongs to the kth flow.
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For a given index set I ⊂ {1, . . . , N}, and a sequence of variables x1, . . . , xN , we use the notation

xA to represent the |A|-tuple of xis whose indices satisfy i ∈ A. Let In , {1, . . . , N} − {n}, and

Kn , K1 × · · · × Kn−1 × Kn+1 × · · · × KN , where × denotes the Cartesian product. We can then

calculate the probability P [S, Hn = k] in Equation 3.7 as

P [S, Hn = k]

=
∑

lIn∈Kn

P [S, Hn = k,HIn = lIn ]

=
∑

lIn∈Kn

P [S|Hn = k,HIn = lIn ]P [Hn = k,HIn = lIn ]

=
∑

lIn∈Kn

P [Sn|Hn = k]
∏
i∈In

P [Si|Hi = li]

P [Hn=k,HIn = lIn ]. (3.8)

We now calculate P [Hn = k,HIn = lIn ]. We claim that

P [Hn = k,HIn = lIn ] = P [Hn = k]
∏
i∈In

P [Hi = li]. (3.9)
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To prove this claim, we show that the following conditions hold.

C1: P [Hn = k|HIn = lIn ] = P [Hn = k]

C2: P [Hn = k|HIn−{N} = lIn−{N}] = P [Hn = k]

...

CN: P [Hn = k|H1 = l1] = P [Hn = k] (3.10)

We can calculate the conditional probabilities in the left hand side of the conditions; C1, C2, . . ., CN in

Equation 3.10 by using a Markov chain. For C1, we can write a state transition probability of going from

state Hn = k to Hn = m as P [Hn = k → Hn = m|HIn = lIn ], which is equal to p̄n,kπnαn,m, where

πn is the probability of Qn is selected to transmit packets. Similarly, if we write the state transition

probabilities for the other conditions C2, . . ., CN, we have

P [Hn = k → Hn = m|HIn = lIn ]

= P [Hn = k → Hn = m|HIn = lIn−{N}]

...

= P [Hn = k → Hn = m|Hl = l1]

= P [Hn = k → Hn = m]

= p̄n,kπnαn,m (3.11)
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Therefore, in all Markov chains we can create for C1, C2, . . ., CN, we have the same transition

probabilities, so we have

P [Hn = k|HIn = lIn ]

= P [Hn = k|HIn = lIn−{N}]

...

= P [Hn = k|H1 = l1]

= P [Hn = k] (3.12)

This proves our claim in Equation 3.9.

Now that we have shown that Equation 3.9 holds, Equation 3.8 is expressed as

P [S, Hn = k]

=
∑

lIn∈Kn

P [Sn|Hn = k]P [Hn = k]

∏
i∈In

P [Si|Hi = li]P [Hi = li] (3.13)
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Hm = 1

pm,1πmαm,k 

1-pm,kπm+pm,kπmαm,k
- -

Hm = 2 Hm = k Hm = Km

-

pm,2πmαm,k 
-

pm,Kmπmαm,Km 
-

Figure 25. The state transition diagram for the states Hm = k, ∀k ∈ Km and for the mth queue. Note

that this state transition diagram only shows a subset of state transitions for clarity.

Let ξn,k(Sn) , P [Sn|Hn = k], Equation 3.13 further yields

P [S, Hn = k] = ξn,k(Sn)P [Hn = k]

∏
m∈N−{n}

 ∑
k∈Km

ξm,k(Sm)P [Hm = k]

 . (3.14)

Now, we should calculate P [Hm = k] in Equation 3.14. The state transition diagram for the states

Hm = k, ∀k ∈ Km and for the mth queue is shown in Figure 25. We can write the global balance

equations for the state Hm = k as

P [Hm = 1]p̄m,1πmαm,k + . . .+ P [Hm = k][1− p̄m,kπm

+ p̄m,kπmαm,k] + . . .+ P [Hm = Km]p̄m,Kmπmαm,k =

P [Hm = k], (3.15)

which is expressed as
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αm,k
∑
i∈Km

p̄m,iP [Hm = i] = P [Hm = k]p̄m,k. (3.16)

Similarly, the global balance equations for state Hm = l leads to

αm,l
∑
i∈Km

p̄m,iP [Hm = i] = P [Hm = l]p̄m,l. (3.17)

From Equation 3.16 and Equation 3.17, we have

αm,k
αm,l

=
P [Hm = k]p̄m,k
P [Hm = l]p̄m,l

. (3.18)

Thus, we have

P [Hm = l] =
αm,l
p̄m,l

P [Hm = k]

αm,k
p̄m,k. (3.19)

By law of total probability,
∑

l∈Km P [Hm = l] = 1 should be satisfied, thus we have

P [Hm = k] =
λm,k/p̄m,k∑
l∈Km λm,l/p̄m,l

. (3.20)
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When Equation 3.20 is substituted in Equation 3.14, we have

P [S, Hn = k] = ξn,k(Sn)
λn,k/p̄n,k∑
l∈Kn λn,l/p̄n,l∏

m∈N−{n}

∑
k∈Km ξm,k(Sm)λm,k/p̄m,k∑

k∈Km λm,k/p̄m,k
. (3.21)

Since ρm,k(Sm) =
ξm,k(Sm)
p̄m,k

, we have

P [S, Hn = k] = ξn,k(Sn)
λn,k/p̄n,k∑
l∈Km λn,l/p̄n,l∏

m∈N−{n}

∑
k∈Km ρm,k(Sm)λm,k∑
k∈Km λm,k/p̄m,k

. (3.22)

When we substitute Equation 3.22 into Equation 3.7, we have Equation 3.6. This concludes the proof.

�

The support region of a FIFO queuing system with N FIFO queues served by a wireless medium

is characterized by Λ = {{λn,k}∀n∈N ,k∈Kn | Equation 3.6, Equation 3.5, λn,k ≥ 0, n ∈ N , k ∈ Kn,

τn(S) ≥ 0, ∀ n ∈ N ,S ∈ S}.

Example 6. Now let us consider two FIFO queues Qn and Qm which are shared by three flows with

rates; λn,1, λn,2, and λm,1 (Figure 26(a)). According to Theorem 4, the support region Λ should include

arrival rates satisfying inequalities in ( Equation 3.6 and Equation 3.5. In this example, with two queues

and three flows, these inequalities are equivalent to

λn,1 + λn,2 + λm,1 ≤
( pm,1(λn,1 + λn,2)

λn,1/p̄n,1 + λn,2/p̄n,2

)
+p̄m,1 (3.23)
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Qm

λm,1

11 2

Qn

λn,1 λn,2

(a) Two FIFO Queues (b) Support Region

Figure 26. (a) Two FIFO queues; Qn and Qm are shared by two and one flows, respectively. (b) Three

dimensional support region with λn,1, λn,2 and λm,1 for the two-FIFO queues scenario shown in (a).

with λn,1/p̄n,1 + λn,2/p̄n,2 ≤ 1, and λm,1/p̄m,1 ≤ 1. The support region corresponding to these

inequalities is the region below the surface in Figure 26(b). 1 �

In general, we wish to find the optimal operating points on the boundary of the support region Λ.

However, the support region may not be convex for arbitrary number of queues and flows. Develop-

ing a convex inner bound on the support region is crucial for developing efficient resource allocation

algorithms for wireless networks with FIFO queues. We thus next propose a convex inner bound on the

support region.

1Note that the time sharing argument to convexify the support region does not apply to this scenario, because
the non-convexity comes from the relationship among the arrival rates instead of the service rates from the FIFO
queues. Thus, the centralized time-sharing for the arrival rates is not practical.
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3.4.3 A Convex Inner Bound on the Support Region:

Let us consider a flow with arrival rate λn,k to the FIFO queue Qn. If there are no other flows and

queues in the network, then the arrival rate should satisfy λn,k/p̄n,k ≤ 1 according to Theorem 4. In

this formulation, λn,k/p̄n,k is the total amount of wireless resources that should be allocated to transmit

the flow with rate λn,k. For multiple-flow, single-FIFO case, the support region is
∑

k∈Kn λn,k/p̄n,k ≤

1. Similar to the single-flow case, λn,k/p̄n,k term is the amount of wireless resources that should be

allocated to the kth flow. Finally, for the general support region for arbitrary number of queues and

flows, let us consider Equation 3.6 again. Assuming ψm(Sm) =
∑
k∈Km λm,kρm,k(Sm)∑
k∈Km λm,k/p̄m,k

, we can write∑
k∈Kn λn,k from Equation 3.6 as;

∑
k∈Kn

λn,k ≤
∑
S∈S

{∑
k∈Kn λn,k1[Sn]∑
k∈Kn λn,k/p̄n,k∏

m∈N−{n}

ψm(Sm)τn(S)

}
, ∀n ∈ N , k ∈ Kn (3.24)

which, assuming that
∑

k∈Kn λn,k > 0, is equivalent to

∑
k∈Kn

λn,k/p̄n,k ≤
∑
S∈S

1[Sn]

∏
m∈N−{n}

ψm(Sm)

τn(S), ∀n ∈ N , k ∈ Kn (3.25)

Intuitively speaking, the right hand side of Equation 3.25 corresponds to the amount of wireless re-

sources that are allocated to the nth queueQn. Thus, similar to the single-FIFO queue, we can consider
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that λn,k/p̄n,k term corresponds to the amount of wireless resources that should be allocated to the kth

flow.

Our key point while developing an inner bound on the support region is to provide rate fairness

across competing flows in each FIFO queue. Since each flow requires λn,k/p̄n,k amount of wireless

resources; it is intuitive to have the following equality λn,k/p̄n,k = λn,l/p̄n,l, k 6= l to fairly allocate

wireless resources across flows. More generally, we define a function an = λn,k/(p̄n,k)
β , ∀k ∈ Kn

where β ≥ 1, and we develop a support region for an instead of λn,k. The role of the exponent β is to

provide flexibility to the targeted fairness. For example, if we want to allocate more resources to flows

with better channels, then β should be larger.

Now, by the definition of an, we have the equivalent form

an ≤
∑
S∈S

1[Sn]∑
k∈Kn(p̄n,k)β−1

∏
m∈N−{n}

ωm(Sm)

τn(S),∀n ∈ N (3.26)

of Equation 3.6, where ωm(Sm) =
∑
k∈Km (p̄m,k)βρm,k(Sm)∑

k∈Km (p̄m,k)β−1 . As seen, Equation 3.26 is a convex function

of an. Thus, we can define the region Λ̃ = {{an}n∈N | Equation 3.26, Equation 3.5, an ≥ 0, τn(S) ≥

0,∀n ∈ N ,S ∈ S}, which is clearly an inner bound on the actual support region Λ. Despite the fact

that Λ̃ is only an inner bound on Λ, for some operating points, i.e., at the intersection of λn,k/p̄n,k =

λn,l/p̄n,l, k 6= l lines, the two support regions (Λ̃ and Λ) coincide. Thus, for some utility functions,

optimal operating points in both Λ̃ and Λ coincide. In the next section, we develop resource allocation

schemes; dFC and qFC that achieve utility optimal operating points in Λ̃.
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3.5 Flow Control and Scheduling

In this section, we develop resource allocation schemes; deterministic FIFO-Control (dFC), and a

queue-based FIFO control (qFC).

In general, our goal is to solve the optimization problem

max
λ

∑
n∈N

∑
k∈Kn

Un,k(λn,k)

s.t. λn,k ∈ Λ, n ∈ N , k ∈ Kn (3.27)

and to find the corresponding optimal rates, where Un,k is a concave utility function assigned to flow

with rate λn,k. Although the objective function
∑

n∈N
∑

k∈Kn Un,k(λn,k) in Equation 3.27 is concave,

the optimization domain Λ (i.e., the support region) may not be convex. Thus, we convert this problem

to a convex optimization problem based on the structure of the inner bound we have developed in

Section 3.4.3. In particular, setting an = λn,k/(p̄n,k)
β , the problem in Equation 3.27 reduces to maxa∑

n∈N
∑

k∈Kn Un(an(p̄n,k)
β), an ∈ Λ̃, n ∈ N . This is our deterministic FIFO-control scheme; dFC

and expressed explicitly as;
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Deterministic FIFO-Control (dFC):

max
a,τ

∑
n∈N

∑
k∈Kn

Un,k(an(p̄n,k)
β)

s.t. an ≤
∑
S∈S

1[Sn]∑
k∈Kn(p̄n,k)β−1

∏
m∈N−{n}

ωm(Sm)τn(S), ∀n ∈ N

∑
n∈N

τn(S) ≤ 1,∀S ∈ S

an ≥ 0, ∀n ∈ N ,S ∈ S

τn(S) ≥ 0, ∀n ∈ N ,S ∈ S (3.28)

Note that dFC optimizes an and τn(S). After the optimal values are determined, packets are inserted

into the FIFO queueQn depending on λn,k = an(p̄n,k)
β and served from the FIFO queueQn depending

on τn(S).

Although dFC gives us optimal operating points in the support region; Λ̃, it is a centralized solution,

and its adaptation to varying wireless channel conditions is limited. Thus, we also develop a more

practical and queue-based FIFO-control scheme qFC, next.

Queue-Based FIFO-Control (qFC):
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• Flow Control: At every slot t, the flow controller attached to the FIFO queueQn determines an(t)

according to;

max
a

M
[∑
k∈Kn

Un,k(an(t)(p̄n,k)
β)
]
−Qn(t)an(t)

s.t. an(t) ≤ Rmaxn , an(t) ≥ 0 (3.29)

where M is a large positive number, Qn(t) is the queue size of Qn at time slot t and Rmaxn is a

positive value larger than the maximum outgoing rate from FIFO queue Qn (which is Rmaxn > 1

as we assume that the maximum outgoing rate from a queue is 1 packet per slot). After an(t) is

determined according to Equation 3.29, λn,k(t) is set as λn,k(t) = an(t) (p̄n,k)
β . Then, λn,k(t)

packets from the kth flow are inserted in Qn.

• Scheduling: At slot t, the scheduling algorithm determines the FIFO queue from which a packet

is transmitted according to;

max
τ

∑
n∈N

Qn(t)
1[Sn(t)]∑

k∈Kn(p̄n,k)β
τn(S(t))

s.t.
∑
n∈N

τn(S(t)) ≤ 1,

τn(S(t)) ≥ 0 (3.30)

After τn(S(t)) is determined, the outgoing traffic rate from queueQn is set to gn(t) = τn(S(t))1[Sn(t)],

and gn(t) packets (which is 1 or 0 in our case) are transmitted from Qn.
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Thus, the queue dynamics change according to Equation 3.1 and based on Equation 3.29 and Equa-

tion 3.30. Such queue dynamics lead to the following result.

Theorem 5. If the channel states are i.i.d. over time slots, the traffic arrival rates are controlled by the

rate control algorithm in Equation 3.29, and the FIFO queues are served by the scheduling algorithm in

Equation 3.30, then the admitted flow rates converge to the utility optimal operating point in the support

region Λ̃ with increasing M .

Proof: Let us define a Lyapunov function as; L(Q(t)) =
∑

n∈N Qn(t)2, and the Lyapunov drift as;

∆(Q(t)) = E[L(Q(t+ 1))−L(Q(t))|Q(t)], where Q(t) = {Q1(t), . . . QN (t)}. Then, the Lyapunov

drift is expressed as;

∆(Q(t)) = E[
∑
n∈N

Qn(t+ 1)2 −
∑
n∈N

Qn(t)2|Q(t)] (3.31)

Note that we have, from Equation 3.1 and the assumption an(t) = λn,k(t)/(p̄n,k)
β that,

Qn(t+ 1) ≤ max[Qn(t)− gn(t), 0] + an(t)
∑
k∈Kn

(p̄n,k)
β (3.32)

Using Equation 3.32 in Equation 3.31, and using the fact that (max(Q− b, 0) +A)2 ≤ Q2 +A2 + b2 +

2Q(A− b), we have

∆(Q(t)) ≤ E
[∑
n∈N

{
Qn(t)2 + (an(t)

∑
k∈Kn

(p̄n,k)
β)2 + (gn(t))2

+ 2Qn(t)(an(t)
∑
k∈Kn

(p̄n,k)
β − gn(t))

}
−
∑
n∈N

Qn(t)2|Q(t)
]

(3.33)
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which is expressed as

∆(Q(t))

2
∑

k∈Kn(p̄n,k)β
≤ E

[∑
n∈N

{(an(t))2

2

∑
k∈Kn

(p̄n,k)
β+

(gn(t))2

2
∑

k∈Kn(p̄n,k)β
+Qn(t)an(t)− Qn(t)gn(t)∑

k∈Kn(p̄n,k)β
}
|Q(t)

]
(3.34)

There always exist a finite and positiveB satisfying;B ≥ E
[∑

n∈N
{ (an(t))2

2

∑
k∈Kn(p̄n,k)

β+ (gn(t))2

2
∑
k∈Kn (p̄n,k)β

}]
.

Thus, Equation 3.34 is expressed as;

∆(Q(t))

2
∑

k∈Kn(p̄n,k)β
≤ B + E

[∑
n∈N

Qn(t)
(
an(t)−

gn(t)∑
k∈Kn(p̄n,k)β

)
|Q(t)

]
(3.35)

Note that if the flow arrival rates λn,k(t) = an(t)(p̄n,k)
β are inside the support region Λ̃, then the

minimizing the right hand side of the drift inequality in Equation 3.35 corresponds to the scheduling

part of qFC in Equation 3.30.

Now, let us consider again the support region constraint in Equation 3.7, which is λn,k ≤
∑

S∈S P [S, Hn =

k]1[Sn]τn(S), ∀n ∈ N , k ∈ Kn, and expressed as;

∑
k∈Kn

λn,k ≤
∑
S∈S

(∑
k∈Kn

P [S, Hn = k]
)
1[Sn]τn(S) (3.36)
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which is equal to

∑
k∈Kn

λn,k ≤
∑
S∈S

P [S]1[Sn]τn(S) (3.37)

Since λn,k = an(p̄n,k)
β , we have

∑
k∈Kn

an(p̄n,k)
β ≤

∑
(S1...SN )∈S

P [S]1[Sn]τn(S) (3.38)

an
∑
k∈Kn

(p̄n,k)
β ≤

∑
(S1...SN )∈S

P [S]1[Sn]τn(S) (3.39)

an ≤
∑

(S1...SN )∈S

P [S]
1[Sn]τn(S)∑
k∈Kn(p̄n,k)β

(3.40)

Let gn = 1[Sn]τn(S). Then, Equation 3.40 is expressed as;

an ≤
∑
S∈S

P [S]
gn∑

k∈Kn(p̄n,k)β
(3.41)

There exists a small positive value ε satisfying

an + ε ≤
∑
S∈S

P [S]
gn∑

k∈Kn(p̄n,k)β
(3.42)
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Thus, we can find a randomized policy satisfying

E
[∗
an(t)−

∗
gn(t)∑

k∈Kn(p̄n,k)β
]
≤ −ε (3.43)

Now, let us consider Equation 3.35 again, which is expressed as;

∆(Q(t))

2
∑

k∈Kn(p̄n,k)β
≤ B +

∑
n∈N

Qn(t)E
[
an(t)−

gn(t)∑
k∈Kn(p̄n,k)β

|Q(t)
]

(3.44)

We minimize the right hand side of Equation 3.35, so the following inequality satisfies;

E
[
an(t)− gn(t)∑

k∈Kn(p̄n,k)β
|Q(t)

]
≤ E

[∗
an(t)−

∗
gn(t)∑

k∈Kn(p̄n,k)β

|Q(t)
]

(3.45)

where
∗
an(t) and

∗
gn(t) are the solutions of a randomized policy. Incorporating Equation 3.43 and Equa-

tion 3.45 into Equation 3.44, we have

∆(Q(t))

2
∑

k∈Kn(p̄n,k)β
≤ B − ε

∑
n∈N

Qn(t) (3.46)
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The time average of Equation 3.46 leads to

lim sup
t→∞

1

t

t−1∑
τ=0

∆(Q(τ))

2
∑

k∈Kn(p̄n,k)β
≤ lim sup

t→∞

1

t

t−1∑
τ=0

[
B−

ε
∑
n∈N

Qn(τ)
]

(3.47)

By law of telescoping sum and iterated expectations, we can obtain

lim sup
t→∞

1

t

t−1∑
τ=0

(∑
n∈N

E[Qn(τ)]
)
≤ B

ε
(3.48)

This concludes that the time average of the queues are bounded if the arrival rates are inside the capacity

region Λ̃.

Now, let us focus on the original claim of Theorem 5. Let us consider a drift+penalty function as;

∆(Q(t))

2
∑

k∈Kn(p̄n,k)β
−
∑
n∈N

∑
k∈Kn

ME[Un,k(λn,k(t))|Q(t)] ≤

B + E
[∑
n∈N

Qn(t)
(
an(t)− gn(t)∑

k∈Kn(p̄n,k)β
)
|Q(t)

]
−

∑
n∈N

∑
k∈Kn

ME[Un,k(λn,k(t))|Q(t)] (3.49)
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Since we set λn,k(t) = an(t)(p̄n,k)
β , we have

∆(Q(t))

2
∑

k∈Kn(p̄n,k)β
−
∑
n∈N

∑
k∈Kn

ME[Un,k(an(t)(p̄n,k)
β)|Q(t)]

≤ B +
∑
n∈N

E
[
Qn(t)

(
an(t)− gn(t)∑

k∈Kn(p̄n,k)β
)
|Q(t)

]
−

∑
n∈N

∑
k∈Kn

ME[Un,k(an(t)(p̄n,k)
β)|Q(t)] (3.50)

Note that minimizing the right hand side of Equation 3.50 corresponds to the flow control and scheduling

algorithms of qFC in Equation 3.29 and Equation 3.30, respectively. Since there exists a randomized

policy satisfying Equation 3.43, Equation 3.50 is expressed as

∆(Q(t))

2
∑

k∈Kn(p̄n,k)β
−
∑
n∈N

∑
k∈Kn

ME[Un,k(an(t)(p̄n,k)
β)|Q(t)]

≤ B − ε
∑
n∈N

Qn(t)−
∑
n∈N

∑
k∈Kn

MUn,k(An(p̄n,k)
β + δ) (3.51)
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where
∑

n∈N
∑

k∈Kn Un,k(An(p̄n,k)
β+δ) is the maximum time average of the sum utility function that

can be achieved by any control policy that stabilizes the system. Then, the time average of Equation 3.51

becomes

lim sup
t→∞

1

t

t−1∑
τ=0

{
∆(Q(τ))

2
∑

k∈Kn(p̄n,k)β
−

∑
n∈N

∑
k∈Kn

ME[Un,k(an(τ)(p̄n,k)
β)|Q(t)]

}
≤

lim sup
t→∞

1

t

t−1∑
τ=0

{
B − ε

∑
n∈N

Qn(τ)−

∑
n∈N

∑
k∈Kn

MUn,k(An(p̄n,k)
β + δ)

}
(3.52)

Now, let us first consider the stability of the queues. If both sides of Equation 3.52 are divided by ε and

the terms are rearranged, we have

lim sup
t→∞

1

t

t−1∑
τ=0

{∑
n∈N

Qn(τ)
}
≤ B

ε
+

lim sup
t→∞

1

t

t−1∑
τ=0

{∑
n∈N

∑
k∈Kn

M

ε
E[Un,k(an(τ)(p̄n,k)

β)]
}
−

∑
k∈N

∑
k∈Kn

M

ε
Un,k(An(p̄n,k)

β + δ) (3.53)

Since the right hand side is a positive finite value, this concludes that the time averages of the total queue

sizes are bounded.
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Now, let us consider the optimality. If both sides of Equation 3.52 are divided by M , we have

− lim sup
t→∞

1

t

t−1∑
τ=0

∑
n∈N

∑
k∈Kn

E[Un,k(an(τ)(p̄n,k)
β)] ≤

lim sup
t→∞

1

t

t−1∑
τ=0

{ B
M
− ε

M

∑
n∈N

Qn(τ)−

∑
n∈N

∑
k∈Kn

Un,k(An(p̄n,k)
β + δ)

}
(3.54)

By arranging the terms, we have

lim sup
t→∞

1

t

t−1∑
τ=0

∑
n∈N

∑
k∈Kn

E[Un,k(an(τ)(p̄n,k)
β)] ≥

lim sup
t→∞

1

t

t−1∑
τ=0

{∑
n∈N

∑
k∈Kn

Un,k(An(p̄n,k)
β + δ)− B

M

+
ε

M

∑
n∈N

Qn(τ)
}

(3.55)

Since ε
M

∑
n∈N Qn(τ) is positive for any τ , we have

lim sup
t→∞

1

t

t−1∑
τ=0

∑
n∈N

∑
k∈Kn

E[Un,k(an(τ)(p̄n,k)
β)] ≥

lim sup
t→∞

1

t

t−1∑
τ=0

{∑
n∈N

∑
k∈Kn

Un,k(An(p̄n,k)
β + δ)− B

M

}
(3.56)
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which leads to

lim sup
t→∞

1

t

t−1∑
τ=0

∑
n∈N

∑
k∈Kn

E[Un,k(an(τ)(p̄n,k)
β)] ≥

∑
n∈N

∑
k∈Kn

Un,k(An(p̄n,k)
β + δ)− B

M
(3.57)

This proves that the admitted flow rates converge to the utility optimal operating point with increasing

M . This concludes the proof. �

3.6 Performance Evaluation

In this section, we evaluate our dFC and qFC algorithms as compared to the baselines; (i) optimal

solution, and (ii) max-weight algorithm for different number of FIFO queues and flows. Next, we briefly

explain our baselines.

3.6.1 Baselines

The optimal solution is a solution to Equation 3.27, and we compared dFC and qFC with the

optimal solution for some scenarios where the support region Λ is convex. On the other hand, max-

weight algorithm is a queue-based flow control and max-weight scheduling scheme. Our baseline max-

weight algorithm mimics the structure of the solution provided in [15], and it is summarized briefly in

the following.

Max-weight for FIFO:
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• Flow Control: At every time slot t, the flow controller attached to the FIFO queueQn determines

λn,k(t) according to;

max
λ

M
[∑
k∈Kn

Un,k(λn,k(t))
]
−Qn,k(t)λn,k(t)

s.t. λn,k(t) ≤ Rmaxn,k ,∀k ∈ Kn (3.58)

where M and Rmaxn,k are positive large constants similar to Equation 3.29, and Qn,k(t) is the

number of packets that belong to the kth flow in queue Qn.

• Scheduling: At slot t, the scheduling algorithm determines the FIFO queue from which a packet

is transmitted according to;

max
τ

∑
n∈N

Qn(t)1[Sn(t)]τn(S(t))

s.t.
∑
n∈N

τn(S(t)) ≤ 1

τn(S(t)) ≥ 0 (3.59)

After τn (S(t)) is determined, a packet from the queue Qn is transmitted if τn (S(t)) = 1; no

packet is transmitted, otherwise.

Next, we present our simulation results for single and multiple FIFO queues.
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3.6.2 Single-FIFO Queue

In this section, we consider a single FIFO queue Q1. Similar to Section 3.4.1, we drop the queue

index n = 1 from the notation for brevity. In other words, we write λk instead of λ1,k, pk instead of

p1,k, and so on.

Figure 27 presents simulation results for a single queue and two flows for p1 = 0.1, β = 1, and

Uk(λk) = log(λk). In this setup, the channel associated with the first flow will be OFF with probability

p1 = 0.1 and the utility function is a logarithm function. Figure 27(a) shows per-flow rates; λ1 and λ2

when the channel OFF probability for the second user p2 is increasing. As seen, λ1 is the same for all

algorithms; optimal, dFC, and qFC. This also holds for λ2. These results show that our algorithms

dFC and qFC are as good as the optimal solution, and achieve the optimal operating points in Λ in this

scenario. The simulations results also show that our algorithms reduce the second flow rate λ2 when p2

increases while λ1 and p1 do not change. This means that our algorithms do not penalize a flow (flow

1) when the channel of another competing flow (flow 2) deteriorates, which shows the effectiveness of

our algorithms to provide fairness.

Figure 27(b) shows the total rate λ1 + λ2 versus p2 for the same setup. As seen, our algorithms

improves throughput over max-weight significantly. This is expected as our algorithms are designed to

reduce the HoL blocking and to allocate wireless resources fairly among multiple flows.

Figure 28 shows simulation results for a single queue shared by multiple flows. In this setup, each

channel’s OFF probability pk is selected randomly between [0, 1], β = 1, Uk(λk) = log(λk). The

simulations are repeated for 1000 different seeds, and the average values are reported. Figure 28(a)

shows average flow rate versus number of flows for our algorithms as well as max-weight. As seen,
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Figure 27. Single-FIFO queue shared by two flows when p1 = 0.1, β = 1, and Uk(λk) = log(λk). (a)

Per-flow rates vs. p2. (b) Total flow rate vs. p2.

dFC and qFC are as good as the optimal solution, and they improve over max-weight significantly.

Figure 28(b) shows the same simulation results, but reports the improvement of qFC over max-weight.

This figure shows that the improvement of our algorithms increases with increasing number of flows.

Indeed, the improvement is up to 100% when K = 10, which is significant. The improvement is higher

for large number of flows, because our algorithm allocates resources to the flows based on the quality

of their channels and reduces the flow rate for the flows with bad channel conditions. However, max-

weight does not have such a mechanism, and when there are more flows in the system, the probability

of having a flow with bad channel condition increases, which reduces the overall throughput.

3.6.3 Two-FIFO Queues

In this section, we consider two FIFO queues Qm and Qn. There are four flows in the system and

each queue carries two flows, i.e.,Qn carries flows with rates λn,1, λn,2 andQm carries flows with rates

λm,1, λm,2.
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Figure 28. Single-FIFO queue shared by multiple flows. pk is selected randomly between [0, 1], β = 1,

and Uk(λk) = log(λk). (a) Average flow rate versus number of flows. (b) Percentage of throughput

improvement of qFC over max-weight.

Figure 29(a) shows the total flow rate versus β for the scenario of two-FIFO queues with four flows

when channel OFF probabilities are pn,1 = 0.1, pn,2 = 0.5, pm,1 = 0.1, pm,2 = 0.5, and log utility

is employed, i.e., Un,k(λn,k) = log(λn,k). (We do not present the results of the optimal solution as the

support region Λ is not convex in this scenario.) As seen, dFC and qFC have the same performance

and improve over max-weight. The improvement increases with increasing β as dFC and qFC penalize

flows with bad channel conditions more when β increases, which increases the total throughput.

Figure 29(b) shows the total rate versus pn,2 = pm,2 for two-FIFO queues with four flows when

pn,1 = pm,1 = 0.1 and β = 2. As seen, dFC and qFC improve significantly over max-weight.

Furthermore, they achieve almost maximum achievable rate 1 all the time. The reason is that dFC and

qFC penalizes the queues with bad channels. For example, when pn,2 = pm,2 = 1, the total rate is 1,

because they allocate all the resources to λn,1 and λm,1 as there is no point to allocate those resources to

λn,2 and λm,2 since their channels are always OFF . On the other hand, max-weight does not arrange
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Figure 29. Two FIFO queues with four flows. (a) Total flow rate versus β when pn,1 = 0.1, pn,1 = 0.5,

pm,1 = 0.1, pm,2 = 0.5, and log utility is employed, i.e., Un,k(λn,k) = log(λn,k). (b) Total rate versus

pn,2 = pm,2 when pn,1 = pm,1 = 0.1 and β = 2.

the flow and queue service rates based on the channel conditions, so the total rate reduces to 0 when

pn,2 = pm,2 = 1, i.e., it is not possible to transmit any packets when max-weight is employed in this

scenario.

Figure 30 further demonstrates how our algorithms treat flows with bad channel conditions. In

particular, Figure 30 presents per-flow rate versus pm,2 for the scenario of two-FIFO queues with four

flows when pn,1 = pn,2 = pm,1 = 0 and β = 2 for (a) dFC and qFC and (b) max-weight. As

seen, when pm,2 increases, λm,2 decreases in Figure 30(a) since its channel is getting worse. Yet, this

does not affect the other flows. In fact, λm,1 even increases as more resources are allocated to it when

pm,2 increases. On the other hand, both λm,1 and λm,2 decrease with increasing pm,2 in max-weight

(Figure 30(b)). This is not fair, because λm,1 decreases with increasing pm,2 although its channel is

always ON as pm,1 = 0. In the same scenario (Figure 30(b)), the rates of the nth queue (λn,1 and λn,2)

increase with increasing pm,2 as they use available resource opportunistically. This makes the total rate
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Figure 30. Per-flow rates versus pm,2 for the scenario of two-FIFO queues with four flows when

pn,1 = pn,2 = pm,1 = 0 and β = 2. (a) dFC and qFC. (b) Max-weight.

the same for dFC, qFC, and max-weight. Yet, as we discussed, max-weight is not fair to flow λm,1 in

this scenario.

3.7 Conclusion

We investigated the performance of heterogeneous (per-flow and FIFO) queues over wireless net-

works and characterized the support region of this system for arbitrary number of queues and flows.

We developed inner bound on the support region, and developed resource allocation schemes; dFC and

qFC, which achieve optimal operating point in the convex inner bound. Simulation results show that

our algorithms significantly improve throughput in a wireless network with per-flow and FIFO queues

as compared to the well-known queue-based flow control and max-weight scheduling schemes.



CHAPTER 4

MANAGING HETEROGENEOUS TRAFFIC FOR INTERNET OF THINGS OVER

CELLULAR NETWORKS

The contents of this chapters are based on our work that is published in the proceedings of 2019

IEEE LANMAN Conference [4]. ©2019 IEEE. Reprinted, with permission, from [4].

We consider a cellular network consisting of multiple IoT devices such as smart phones, tablets,

connected vehicles, etc. A large number of applications run on those devices and have heterogeneous

priority for data transmission. For example, a video streaming flow on the smart phone should have

higher priority than background software updating flow on the conected vehicle because it is more

sensitive to delay and throughput. In this context, we would like to design and implement a traffic

management scheme for data transmission over cellular network, which should support heterogeneous

traffic including high volumes of low-priority background traffic as well as high priority foreground

traffic. In this part of the thesis, we develop (i) Sneaker, which is a in-network controller that yields to

time-sensitive foreground traffic during periods of congestion and enables time insensitive background

traffic to efficiently utilize any spare capacity, and (ii) Legilimens, which is low priority transport proto-

col for background traffic that only transmits data when there is sparse capacity and backs off when the

network is congested by foreground traffic.
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4.1 Sneaker: Managing Background Traffic in Cellular Networks

4.1.1 Background

In this era of ubiquitous cellular network connectivity, management of the scarce cellular bandwidth

is important. A number of new applications (e.g., software updates, cloud sync) are starting to compete

with existing applications (e.g., web browsing, video streaming) for cellular bandwidth. Therefore, it is

critical to develop traffic management mechanisms that can handle large volumes of traffic with diverse

characteristics.

One way to tackle the problem of managing such diverse traffic is to partition flows into two classes:

foreground and background flows (although it is straightforward to extend the approach to more than two

classes). In this chapter, we broadly consider regular mobile traffic like human communication or even

some time-sensitive machine-to-machine (M2M) flows (e.g., alarms, health monitoring) as foreground

traffic, while treating large volume, time insensitive flows (e.g., software downloads) as background

traffic. Flow classification can be independent of applications running on- or off-screen at user devices,

and it can be performed by either end hosts, network or content providers. Our goal then is to design

a traffic management approach for cellular networks that prioritizes foreground traffic during periods

of congestion while scheduling background traffic to effectively utilize any spare capacity. Further,

because most large volume traffic flows on the downlink, our solution focuses only on the downlink.

There are existing in-network and end-to-end approaches to manage foreground and background

traffic. Today’s cellular networks provide support for prioritization using QoS Class Identifier (QCI).

However, QCI suffers from several limitations: (1) identifies only at the granularity of devices or radio
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bearers, (2) offers only a handful traffic classes, many of which are reserved for operator-provided ser-

vices like voice and VoLTE, and (3) uses static weights for the classes independent of network load. As

an alternative, end-to-end, low-priority transport protocols (e.g., TCP-LP [75]) perform well in wired

and Wi-Fi networks but suffer in cellular networks due to per-device queues and schedulers as demon-

strated in the following Section. To summarize, existing in-network approaches do not prioritize at flow

granularity and existing end-to-end approaches are not effective in cellular networks.

To address the challenge of managing large-volume background traffic, we propose Sneaker, which

achieves high network utilization and high throughput for background flows, without affecting fore-

ground flows. The actual classification of traffic into foreground and background classes is beyond the

scope of our work. Sneaker ensures that background flows quickly yield to foreground flows when the

network is congested and quickly recapture spare capacity when the network becomes lightly loaded.

Further, Sneaker seamlessly co-exists with existing schedulers and end-to-end protocols. Our key in-

sight is that we can achieve the appropriate prioritization by randomly dropping background flow pack-

ets based on network load. Although our design is inspired by Random Early Detection (RED) [76], our

goals and mechanisms are different from those of RED; Sneaker drops packets from queues, not based

on overall congestion, but the load of foreground flows.

Our key design goals are to co-exist with end-to-end protocols (i.e., TCP), without requiring changes

to existing schedulers. To achieve these goals, we first study the interaction of TCP with common cel-

lular schedulers. Then, we formulate the problem as a Network Utility Maximization (NUM) problem

to determine the optimal transmission rate of background flows. Using this optimal transmission rate,

we derive an optimal dropping rate for background flows. Because the optimal dropping rate is hard to
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realize in practice, we identify a close approximation to the optimal rate, which is easy to implement

and works in harmony with end-to-end protocols. We show that our practical dropping rate avoids TCP

timeouts for background flows and achieves the intended prioritization of foreground flows. Exten-

sive ns-3 simulations confirm our analysis and show that Sneaker outperforms an aggressive baseline

that gives strict priority to foreground traffic. Further, we also show that Sneaker performs better than

existing low priority transport protocols. In summary, we make the following contributions:

• We analyze the complex interaction between TCP and cellular schedulers and characterize the

average throughput of TCP for common cellular schedulers.

• We derive a dropping rate that satisfies our network objective of maximizing the performance of

foreground traffic and prove that the rate is optimal.

• We develop a practical dropping rate that achieves prioritization and fairness among flows.

• We design Sneaker using the practical dropping rate and evaluate it via simulations in ns-3. We

show that Sneaker significantly improves over in-network and end-to-end baselines in terms of

prioritizing foreground flows over background flows and efficiently utilizing any spare capacity

for background flows.

4.1.2 Related Work

Our work is closely related to the ideas from active queue management (AQM), interaction of TCP

with cellular network and low priority data transmission.

Active queue management (AQM): AQM is a common approach to control data transmission rate

in order to avoid congestion and improve network performance. One of the best known AQM schemes
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is Random Early Detection (RED) [77], which controls congestion by randomly dropping packets in

the queue based on the average queue size information. This idea generated tremendous interest in

congestion control and a lot of work has been done to improve the performance of RED based on local

information such as queue dynamics and packet loss [78–81]. While our approach seems similar to

RED, there are important differences. While the goal of RED is to manage congestion across all flows,

ours is to achieve prioritization. We seek to design a scheduler that randomly drops packets based on

the amount of foreground traffic.

Interaction of TCP with cellular network: TCP is not designed to work in cellular networks [82].

Thus the interaction of TCP with cellular network needs to be explored to better understand the per-

formance of TCP flows. Due to highly variable delays on wireless links, spurious timeouts also occur

in cellular network, which causes unnecessary re-transmissions and decreases throughput [83–86]. The

scheduling algorithm in the base station also affects performance of TCP [87]. Compared to these

works, our focus is to characterize the data rate of TCP by taking into account the specific factors in

cellular networks and formulate the desired dropping rate at the base station based on the desired TCP

data rate.

Low priority transport protocols: Researchers have studied several low priority transport proto-

cols such as LEDBAT [88], TCP-LP [75] and TCP-Nice [89]. LEDBAT [88] and TCP-LP [75] use

one-way delay as the congestion indicator and adjust congestion control accordingly. TCP-Nice uses

RTT-threshold-based mechanism to indicate congestion [89]. The key idea of the current low-priority

protocols is to detect congestion earlier than regular TCP. Compared to these works, the focus of our
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Figure 31. The service architecture in LTE network

work is not to design an end-to-end low priority transport protocol, but to design a packet dropping

policy in queues to enable per-flow differentiation.

4.1.3 System Model

System Overview. We consider the general architecture of LTE cellular networks as shown in Fig-

ure 31, with two parts; evolved packet core (EPC) and radio access networks (RAN). The evolved packet

core is a high-speed wired network that comprises the Mobility Management Entity (MME), the Serving

Gateway (SGW), and the Packet Data Network Gateway (PGW). The LTE RAN includes the eNobeB

(base station) and User Equipment (UE), which could be cellphones, tablets, connected vehicles, etc.

Traffic from remote hosts in the Internet traverses through the packet core, arrives at the base station

and eventually reaches the end users through wireless channels. In this setup, we develop Sneaker at

base stations that works with existing TCP and cellular scheduling protocols and prioritizes foreground

traffic over background.

Flows. We consider a system model depicted in Figure Figure 32, which represents the RAN from

Figure Figure 31. There are N flows destined to K users within the same radio cell. M of these flows
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Figure 32. Example cellular system setup with Sneaker

are foreground, while L of them are background flows (i.e., N = M + L). The set of all flows is

S = {S1, . . . , SN}.

Queuing Model. At the base station, packets are queued in per-flow queues; {Q1, . . . , QN}. Packets

from flow Sn are stored in queue Qn. These queues operate according to the First-Come First-Serve

(FCFS) rule.

Channel Model. We consider that base station back-haul links are high speed and lossless. The

bottleneck of the system is the last hop radio channel; a radio frequency carrier shared by a set of

cellular devices. We consider that cn(t) denotes the downlink channel capacity of device n at time t,

which is the maximum achievable data rate based on the channel characteristics, as determined by the

base station.

Scheduler. At the base station, time is divided into Transmission Time Intervals (TTIs), and each TTI

is usually 1 ms in LTE [90]. The traffic scheduler determines which packets should be transmitted from

the base station at a given TTI. Proportional Fair scheduler (PFS) is one of the widely used schedulers
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in today’s cellular systems [91]. The other popular schedulers are Maximum Throughput (MT), Round

Robin (RR), Blind Equal Throughput (BET), Throughput to Average (TTA), etc [92].

Problem Statement. Our goal is to develop a method that works with existing transport layer pro-

tocols and scheduling algorithms to prioritize foreground traffic over background. Our approach is to

achieve the desired goal by randomly dropping packets coming into the base station, based on traffic

type – foreground or background. In this context, the fundamental problem is to determine the optimal

dropping rate. In this chapter, we determine the optimal dropping rate that forces background traffic

to quickly yield to foreground traffic when the network is congested, but allows it to quickly recapture

spare capacity when network load subsides.

4.1.4 Interaction of TCP with Cellular Networks

In this section, we characterize the average TCP sending rate in cellular networks.

Let the congestion window size of flow destined to user n at time slot t be Wn(t). We assume that

round-trip time (RTT) of each packet is constant, and equals to Tn. This is a common assumption in

classical TCP analysis [93, 94]. Let qn(t) be the probability that packets from flow n are dropped from

buffers due to overflow in the core network as well as the base station. Let ρn(t) be the probability that

packets from flow n are scheduled to be transmitted from the base station according to the underlying

scheduling algorithm.

In this analysis, we ignore the slow start and time-out phases and only focus on the congestion

avoidance phase of TCP, since the duration of congestion avoidance phase takes most of the TCP flow’s

lifetime. In congestion avoidance phase, at time t − Tn , Wn(t − Tn) packets are transmitted from

the source of TCP flow n. The ACKs corresponding to these packets, received between t and t + Tn,
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determine the window size update. In particular, for each transmitted and ACKed packet, window size

is increased by 1/Wn. For each packet dropped due to buffer overflow or delayed at the base station due

to congestion, window size is reduced by Wn(t)β, where 0 < β < 1. Thus, the window size evolves as

follows: Wn(t+ Tn) = Wn(t) + In(t)−Dn(t), where In(t) = Wn(t− Tn) 1
Wn(t)(1− qn(t))ρn(t) is

the increase in window size, and Dn(t) = Wn(t− Tn)βWn(t)(1− (1− qn(t))ρn(t)) is the decrease in

window size.

The differential of the window size at time slot t is Ẇn(t) = (Wn(t+ Tn)−Wn(t))/Tn. The

steady-state window size that satisfies Ẇn = 0 becomes Wn =
√

(1−qn)ρn
β(1−(1−qn)ρn) . Thus, the steady-state

TCP rate is formulated as

xTCPn =
WnB

Tn
=

B

Tn

√
(1− qn)ρn

β(1− (1− qn)ρn)
, (4.1)

where B is the typical TCP packet size. TCP rate xTCPn depends on RTT, the scheduling probability at

the base station, and the packet dropping probability in end-to-end path. As the bottleneck is usually the

radio interface, we assume that packet drops (with probability qn) only happen at the base station.

Our goal in this work is to determine the dropping rate qn and actively drop packets from the queues

(according to qn) to prioritize foreground traffic over background. We characterize the optimal value of

qn in the next section.
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4.1.4.1 Design of Sneaker

In this section, we derive the dropping probability for background traffic so that in the case of

congestion, it does not compete with foreground traffic while keeping the TCP connection alive from

avoiding costly timeouts, which hurt throughput.

4.1.4.2 NUM Formulation When Foreground and Background Flows Coexist

First, we formulate a network utility maximization (NUM) problem when foreground and back-

ground flows coexist. Let L andM denote the sets of background and foreground flows, respectively.

We assume there are L and M background and foreground flows in the network. Let xl and xm denote

the rate of the background and foreground flows, respectively. And let cl, cm denote the channel capac-

ity of background flow user l and foreground flow user m, respectively. We can formulate the following

NUM problem,

max
[x1,...,xL]

L∑
l=1

Ul(xl)

s.t.
∑
m∈M

xm
cm

+
∑
l∈L

xl
cl
≤ 1

xl ≥ 0,∀l ∈ L (4.2)

where Ul(·) is the utility function associated with background flow l. The NUM formulation in Equa-

tion 4.2 optimizes the total utility of background flows assuming that there exist foreground flows. The

first constraint is the time sharing constraint across foreground and background traffic flows. In this

problem, we do not control the data rate xm of regular flows. That is to say, xm is given (i.e., not an
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optimization parameter), which is controlled by end-to-end TCP congestion control mechanism. Note

that we assume that
∑

m∈M
xm
cm
≤ 1 since the data rate controlled by TCP will not exceed the capacity

on average.

Theorem 6. Assuming that we use log-based utility function (i.e., Ul(xl) = log(xl)), which is widely

used to provide proportional rate fairness, the optimal solution to the NUM problem Equation 4.2 is

expressed as

xOPTl =
cl
L

[1−
∑
m∈M

xm
cm

],∀l ∈ L (4.3)

where xOPTl depends on its channel capacity cl, the number of background flows L, and the occupancy

of the air interface by foreground traffic
∑

m∈M(xm/cm).

Proof: The optimization problem can be equivalently expressed as

min
[x1,...,xL]

L∑
l=1

− log(xl)

s.t. τF +

L∑
l=1

xl
cl
≤ 1

xl ≥ 0,∀l ∈ L (4.4)

where τF =
∑

m∈M
xm
cm

.

It is notable that in Equation 4.4, the objective function and constraints are convex functions of xl,

thus this is a convex optimization problem. By KKT condition [95], we have
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C1 : ∇

(
L∑
l=1

− log(xl)

)
+ λ∇

(
τF +

L∑
l=1

xl
cl
− 1

)
= 0

C2 : λ

(
τF +

L∑
l=1

xl
cl
− 1

)
= 0

C3 : xl ≥ 0,∀l ∈ L

C4 : λ ≥ 0 (4.5)

where λ is the multiplier variable and C2 is the complimentary condition.

By C1, we can obtain

− 1

xl
+ λ

1

cl
= 0,∀l ∈ L (4.6)

That is,

λ =
cl
xl
, ∀l ∈ L (4.7)

Substituting λ into the C2 of Equation 4.5 yields

τF +
L∑
l=1

1

λ
− 1 = 0 (4.8)

That is,

τF +
L

λ
− 1 = 0 (4.9)

Thus, we have

λ =
L

1− τF
≥ 0 (4.10)
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Substituting this λ back to Equation 4.7 yields

xl =
cl
λ

=
cl
L

(1− τF ),∀l ∈ L (4.11)

This completes the proof. �

4.1.4.3 Optimal Dropping Rate

Now that we characterized the optimal and TCP rates of background flows (i.e., xOPTl in Equa-

tion 4.3 and xTCPn Equation 4.1), we can design Sneaker by pushing the TCP rate to the optimal rate.

The optimal dropping probability qOPTl that satisfies xTCPl = xOPTl is expressed as

qOPTl = 1− γ(clTl(1− τF ))2

ρl(1 + γ(clTl(1− τF ))2)
, ∀l ∈ L, (4.12)

where τF =
∑

m∈M(xm/cm), and γ = β/(L2B2). Therefore, qOPTl depends on channel capacity cl,

RTT Tl, the amount of foreground traffic τF =
∑

m∈M xm/cm, and the number of background flows

L. Equation 4.12 also depends on ρl, the packet scheduling probability at the base station.

When foreground traffic congests the network, i.e., τF approaches 1, and qOPTl approaches 1. This

means that every packet from background flows would be dropped at the base station, which would cause

TCP timeouts, and eventually stop the transmission. This is too harsh for background flows in practice.

Therefore, we develop a practical dropping probability in the next section, which allows transmitting

foreground traffic with higher priority yields to foreground traffic, yet allocates enough resources to

keep prevents background flows from timing out.
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4.1.4.4 Practical Dropping Rate

We develop a practical background flow rate based on the structure of the optimal rate in Equa-

tion 4.3 as xPRl = cl
L max{1− τF , ε}, where ε (0 < ε < 1) is the minimum rate that should be allocated

to background flows to keep them alive.

Similar to the optimal packet dropping rate, we set xTCPl = xPRl and determine the practical drop

rate qPRl as

qPRl = 1− γ(clTl max{1− τF , ε})2

ρl(1 + γ(clTl max{1− τF , ε})2)
,∀l ∈ L (4.13)

From Equation 4.13, the largest dropping rate for background flow l is qPRl = 1− γ(clTlε)
2

ρl(1+γ(clTlε)2)
≤ 1,

which happens when 1 − τF ≤ ε. Thus, even when foreground traffic is high, the background flows

still get some resources for transmitting their packets. By tuning ε, we can adjust how much resources

should be allocated to background traffic, hence aggressiveness of the background flows.

4.1.5 Implementation of Sneaker

4.1.5.1 Design Parameters and Signalling for Sneaker

4.1.5.1.1 Scheduling Probability

The packet dropping probability in Equation 4.13 is a function of ρl, which is the packet scheduling

probability at the base station and depends on the scheduling algorithm. The packet scheduling prob-

ability can be measured by the scheduler and passed to Sneaker to calculate the packet dropping prob-

ability. In this section, we characterize the long term scheduling probability of Maximum Throughput

(MT) scheduler and Proportional Fair (PF) scheduler. In this setup, we consider there are N users in the
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system. Let Rj be the instantaneous data rate of user j and µj be its throughput. Let fRj (.) and FRj (.)

be the PDF and CDF of random variable Rj , respectively. For each user j, we assume its instanta-

neous data rate is an independently distributed and stationary random variable with mean E[Rj ], and its

throughput µj is first-order wide sense stationary (WSS) with mean E[µj ]. We consider time is slotted,

at each time slot t, user j’s instantaneous data rate is denoted as Rj(t) and its throughput up to time t

is denoted as µj(t). We denote Sj(t) as the random variable indicating whether user j is scheduled or

not at time slot t. Sj(t) = 1 if user j is scheduled and Sj(t) = 0 otherwise. And we denote PSj as the

steady state probability of user j being scheduled to transmit data.

Theorem 7. The steady-state packet scheduling probability of PFS for each flow approaches to 1/N ,

where N is the number of users served by PFS.

Proof:PF scheduler selects the user j∗ to transmit data at each time slot t according to

j∗ = arg max
j

Rj(t)

µj(t)
(4.14)

AT time slot t, given user j’s instantaneous rate x, the probability that user j being scheduled is

Pr[Sj(t) = 1|Rj(t) = x] = Pr[
x

µj(t)
>
Ri(t)

µi(t)
],∀i 6= j (4.15)

It is shown in [96] that

lim
t→∞

Pr[Sj(t) = 1|Rj(t) = x] =
∏
i 6=j

FRi(
xE(µi)

E(µj)
) (4.16)
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Thus, the steady state scheduling of user j is

PSj = lim
t→∞

∫ +∞

0
Pr[Sj(t)|Rj(t) = x]fRj (x)dx

=

∫ ∞
0

N∏
i=1,i 6=j

FRi(
xE(µi)

E(µj)
)fRj (x)dx (4.17)

Furthermore, it is shown in [97] that in steady state, PF scheduler achieves

Ri
E[µi]

=
Rj
E[µj ]

∀i ∈ {1, 2, · · · , N} (4.18)

Therefore

FRi(
xE(µi)

E(µj)
) = Pr[Ri ≤

xE(µi)

E(µj)
]

= Pr[
Ri
E[µi]

≤ x

E[µj ]
]

= Pr[
Rj
E[µj ]

≤ x

E[µj ]
]∀i ∈ {1, 2, · · · , N}

= Pr[Rj ≤ x]∀i ∈ {1, 2, · · · , N}

= FRj (x),∀i ∈ {1, 2, · · · , N} (4.19)
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Thus, Equation 4.17 can be further expressed as

PSj =

∫ +∞

0

N∏
i=1,i 6=j

FRj (x)fRj (x)dx

=

∫ +∞

0
FN−1
Rj

(x)fRj (x)dx

=

∫ +∞

0
FN−1
Rj

(x)dFRj (x)

=
FNRj (x)

N
|+∞0

=
1

N
(4.20)

This concludes the proof. �

Theorem 8. The steady-state packet scheduling probability of MT scheduler for each flow j is

PSj =

∫ +∞

0

N∏
i=1,i 6=j

FRi(x)fRj (x)dx (4.21)

Proof: Maximum throughput (MT) scheduler selects the user with the largest instantaneous data

rate in current TTI to transmit data. Given the data rate of user j at time slot t, the probability of user j

being scheduled is

Pr[Sj(t) = 1|Rj(t) = x] = Pr[x > max
i 6=j,i∈{1,2,··· ,N}

{Ri(t)}] (4.22)
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Therefore, the long term scheduling probability of user j is

PSj = lim
t→∞

∫ +∞

0
Pr[Sj(t) = 1|Rj(t) = x]fRj (x)dx

= lim
t→∞

∫ +∞

0
Pr[x > max

i 6=j,i∈{1,2,··· ,N}
{Ri(t)}]fRj (x)dx

=

∫ +∞

0

N∏
i=1,i 6=j

Pr[x > Ri]fRj (x)dx

=

∫ +∞

0

N∏
i=1,i 6=j

FRi(x)fRj (x)dx (4.23)

This concludes the proof. �

Corollary 9. For a two-user system with Rj (j = 1, 2) following Rayleigh distribution, the scheduling

probability of user j is

PSj =
σ2
j

σ2
1 + σ2

2

, j = 1, 2 (4.24)

Proof: Let σ1 and σ2 denote the mode of R1 and R2, respectively. Thus, we have

fRj (x) =
x

σ2
j

e
− x2

2σ2
j , j = 1, 2 (4.25)

and

FRj (x) = 1− e
− x2

2σ2
j , j = 1, 2 (4.26)
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According to Equation 4.23, the steady state scheduling probability of user 1 is

PS1 =

∫ +∞

0
FR2(x)fR1(x)dx

=

∫ +∞

0
(1− e

− x2

2σ22 )
x

σ2
1

e
− x2

2σ21 dx

=

∫ +∞

0

x

σ2
1

e
− x2

2σ21 dx−
∫ +∞

0

x

σ2
1

e
−x2( 1

2σ21
+ 1

2σ22
)
dx

= 1− 1
1
σ2
1

+ 1
σ2
2

1

σ2
1

∫ +∞

0
(

1

σ2
1

+
1

σ2
2

)xe
−x2( 1

2σ21
+ 1

2σ22
)
dx

= 1− 1
1
σ2
1

+ 1
σ2
2

1

σ2
1

=
σ2

1

σ2
1 + σ2

2

(4.27)

Similarly, we can obtain that

PS2 =
σ2

2

σ2
1 + σ2

2

(4.28)

This concludes the proof. �

4.1.5.1.2 Local Signalling

The packet dropping rate in Equation 4.13 depends on scheduling parameters such as the time share of

foreground traffic τF , capacity of background user cl, and the number of background flows L.

We approximate the time share of foreground traffic as τF ≈
∑

m∈M(Qm(t)/Rm(t)), whereQm(t)

is the queue size of foreground user m in the base station at TTI t, and Rm(t) is the maximum number

of packets that can be transmitted from foreground flow user m at TTI t. The main idea behind this

approximation is that both xm/cm and Qm(t)/Rm(t) are time shares, and we conjecture that the time
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average of Qm(t)/Rm(t) approaches xm/cm. Qm(t) and Rm(t) are collected by existing scheduling

algorithms (such as PFS) and passed to Sneaker. Similarly, the scheduler passes Rl(t) information to

Sneaker, and we make cl ≈ Rl(t) approximation.

4.1.5.1.3 End-to-end Signalling

As for the access of other parameters, in our implementation, sender adds one bit as a tag in its TCP

header to mark its classification (foreground or background). Sender also piggybacks the RTT informa-

tion into its TCP header. At the base station, Sneaker extracts TCP header to obtain RTT and classifi-

cation of the flow. In this way, Sneaker obtains Tl and learns if a flow is a background flow (hence the

total number of background flows L).

4.1.5.2 Implementation of Sneaker on ns-3

We implemented and evaluated Sneaker using the ns-3 simulator [98]. We build on top of existing

LTE protocol stack shown in Figure 33, where data packets are buffered in Radio Link Control (RLC)

layer after passing through Packet Data Convergence Protocol (PDCP) layer. MAC layer reads packets

in RLC buffers depending on the scheduling algorithm used. Sneaker, implemented at eNodeB as a

slim layer on top of PDCP, inspects every incoming packet, and extracts end-to-end information. It also

gets local signalling data from RLC and MAC layers to calculate the packet dropping probability using

Equation 4.13. Packets are dropped by Sneaker according to the calculated packet drop probability

before arriving to PDCP. Note that we also make minimal updates to TCP so that packets carry end-to-

end information.
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Figure 33. LTE protocol stack

4.1.6 Evaluation of Sneaker

We evaluate the performance of Sneaker through ns-3 simulations. Our simulation topology is

shown in Figure 31. It consists of multi-hop wired links that connect remote servers to Packet Gateway

using 1 Gbps, 10 ms delay links. The link speed between the base station and packet and service

gateways is 300 Mbps. The base station is configured with 751 MHz downlink band with 10 MHz

bandwidth and 50 resource blocks, MIMO transmission, transmission power of 47.78 dBm, and RLC

buffer size is 512 KB. The path loss model is log distance propagation model with loss exponential

parameter of 3.52.

Prioritization. In this experiment, we verify if Sneaker achieves the correct prioritization between

background and foreground flows. We use two remote senders to send traffic to two different end

users. While the first sender continuously sends background traffic to a user, the second sender sends

foreground traffic in an on-off pattern every 10 seconds. All senders share a cellular link with 70 Mbps

and use TCP Reno. We compare Sneaker with the following baselines; PFS only, RED, Strict

Priority. All these mechanisms (including Sneaker) use TCP-Reno and Proportional Fair Scheduler

(PFS). Sneaker drops packets according to Equation 4.13, PFS only does not drop packets actively,
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Figure 34. Comparison of different approaches to prioritization

RED drops packets according to the policy in [99], and Strict Priority drops every packet from

background flow if there exists foreground traffic.

Figure 34 shows the throughput achieved by both foreground and background flows. Sneaker and

Strict Priority work as expected, i.e., yield to foreground traffic, and serve background traffic

if there is no foreground traffic. On the other hand, PFS only and RED do not provide such ability.

We prefer Sneaker over Strict Priority as Strict Priority completely blocks background

traffic until foreground traffic finishes and causes timeouts and connection disconnects, which is not

ideal.

We also study the impact of increasing number of background flows on foreground traffic rate. In

this experiment, we send a foreground flow to one user. Simultaneously, we have a different number of

background flows to another user connected to the same base station. We show the average throughput

achieved by the foreground flow with PFS only and Sneaker in Figure 35. As shown, the throughput
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Figure 35. Foreground flows benefit from Sneaker

of foreground flows degrades as the number of background flows increases, as expected. However, the

degradation is significantly smaller with Sneaker than it is with PFS only, which shows that Sneaker

is able to better isolate foreground flows. With Sneaker, the foreground flow achieves 1.8 times higher

throughput than with PFS only; with five-fold throughput gain as the number of background flows

increases to 8.

Fairness. We want to verify: fair sharing of spare bandwidth among background flows, and fair

sharing of available bandwidth among foreground flows. We consider two scenarios: (i) five background

flows without any foreground flow, and (ii) five foreground flows with one background flow. In both

scenarios, the new flows join every 20 seconds. Figure Figure 36(a) shows the throughput achieved

by background flows using Sneaker in the first scenario. We see that the background flows quickly

converge to their fair-share throughput as new flows are added. Figure Figure 36(b) shows that rate is

fairly shared by foreground flows in the second scenario using Sneaker.

Large-scale simulations.We consider realistic workloads and create a large topology with 100 users

that connect to a base station. We generate a mixed traffic with short (64 KB), medium (1 MB), and long

flows (32 MB). Short flows generate 10% of the overall foreground traffic, whereas medium flows gen-
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(a) Fairness among background flows

(b) Fairness among foreground flows

Figure 36. Fairness among background and foreground flows

erate 40% of the load; the rest (i.e., 50% of load) comes from long flows. While we generate foreground

traffic mix, we send a continuous background (long) flow. We compare Sneaker (with background flow

using TCP-Reno) with TCP-LP and LEDBAT, the known end-to-end congestion control mechanisms

designed to yield to foreground traffic. We simulate traffic for 120 seconds and compare the throughput

achieved by foreground and background flows in all the schemes, with PFS as the default scheduler.
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Figure 37. Large-scale results at moderate load (50%)

We first evaluate the performance of the three schemes under moderate load of 50%. For this study,

we set the overall network load due to foreground flows to 50%. Figure 37 shows the throughput

of foreground and background flows. We observe the bursty nature of foreground traffic under all

schemes, as expected. For foreground flows, TCP-LP achieves better throughput than LEDBAT, and

Sneaker achieves the best throughput. On the other hand, the throughputs achieved by background flows

drastically differ between the three schemes. LEDBAT and TCP-LP does not yield to foreground flows,

which is not desirable. In contrast, Sneaker modulates its throughput to allow foreground traffic to use

most of the available capacity while effectively utilizing the spare capacity.

We consider the same experiment under low load (20%). Figure 38 shows that all the schemes

achieve similar throughput for foreground flows, as expected. However, their background flow rates

differ significantly. While TCP-LP and LEDBAT are unable to fully utilize the spare capacity at low
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Figure 38. Large-scale results at low load (20%)

loads (i.e., they achieve lower throughput), Sneaker efficiently utilizes the spare capacity and achieves

much higher throughput.

4.1.7 Conclusion

Existing in-network and end-to-end mechanisms for per-flow prioritization do not work well over

scheduled links in cellular networks. We presented Sneaker, an in-network arbiter that provides both

high-performance and fairness among (within) foreground and background flows.differentiation be-

tween foreground and background flows, while enabling high performance and maintaining fairness

within each traffic class. We have formulated the problem of per-flow prioritization using NUM frame-

work and shown that Sneaker achieves the desired optimality. Further, we have extensively evaluated

our design using both targeted small-scale simulations and realistic large-scale simulations.
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4.2 Legilimens: An Agile Transport for Background Traffic in Cellular Networks

Large data transfers can result in significant congestion and performance degradation for users of

typical applications such as web browsing, streaming, and other interactive applications. While there

are existing TCP congestion control algorithms for delivery of large volume data (e.g., LEDBAT, TCP-

LP), our results show that these protocols are not effective in cellular networks due to variability in

radio channel conditions and the use of proportional fair (PF) schedulers in cellular base stations. We

propose Legilimens, an agile TCP variant for cellular downlink transfers, which has the properties of

existing approaches, but addresses the challenges of cellular networks by identifying novel mechanisms

that exploit the properties of the PF scheduler to estimate load and capacity. As a result, Legilimens is

able to deliver traffic using only the spare capacity on the downlink. We conduct extensive evaluations

of Legilimens in multiple settings — in a large cellular network for real-world performance, on the

PhantomNet emulator for controlled experiments, and ns-3 simulator for scaled experiments — all of

which demonstrate that Legilimens is superior to other protocols in transferring large volumes of data

without interfering with regular user traffic. Compared to CUBIC, Legilimens improves the throughput

of competing long flows by up to 117%, and flow completion time of short flows by up to 48%.

4.2.1 Background

Cellular networks are increasingly used not just for popular end-user applications like web browsing,

chat, social networks and video streaming, but also to transfer large volumes of data, e.g., through cloud

data sync and software updates [100] (e.g., cloud data sync and software updates [100]). Large data

transfers can negatively impact interactive user applications by saturating downlink capacity, in both

the congested and neighboring cells. Cellular links from base stations to client devices are usually
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the bottleneck [101], making techniques that allow for efficient delivery of large data transfers without

impacting users’ experience a necessity.

There exist several possible approaches to alleviate the issue. Some services, applications and mo-

bile operating systems allow users to restrict or schedule transfers. Unfortunately, these approaches

have limited impact because the approaches are agnostic of prevailing network conditions and users

may prefer the convenience of up-to-date data. Rate-limiting specific flows is also possible. But naive

rate-limiting can cause under-utilization at low loads and overwhelm the network at high loads, while

more sophisticated versions tend to be complex and expensive to realize. Existing traffic management

for cellular networks, in a form of QoS class identifier (QCI), is not sufficient due to the need for tight

integration between network and each application, must be provisioned a priori by operators, cannot

dynamically change weights for flows based on load, and has minimal flexibility to move flows between

classes.

Transport-layer approaches, exemplified by protocols like LEDBAT and TCP-LP, introduce the con-

cept of two-class service prioritization. The key idea is to have a “low-priority” mechanism for deliver-

ing large volume or time-insensitive data. This allows for typical user interactive applications (consid-

ered foreground flows) to have fast response times using a fair-share TCP variant like RENO or CUBIC,

while simultaneously making progress on large volume transfers (considered background flows) using

the lower priority TCP variant. Our experiments with such Low Priority Transport (LPT) protocols

show that they are not effective in cellular networks. We conjecture that this is due to the nature of

cellular links, in particular highly variable delays, and the use of proportional fair (PF) schedulers and

per-device queues for downlink transmissions.
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Drawing inspiration from LPT protocols, we propose Legilimens, an agile LPT variant for cellular

networks that delivers background traffic without adversely affecting foreground traffic. Legilimens has

the main properties of other LPT protocols — to use all available bandwidth when no other traffic is

present, and to yield quickly to standard TCP flows that share the same bottleneck link — but includes

novel features that make it effective in cellular networks. Specifically, a well-designed LPT protocol for

cellular networks must operate with minimal queuing, so that its packets do not compete with those of

foreground flows at the scheduler.

We focus on optimizing Legilimens for cellular downlink traffic in this chapter. To that end, we

design a novel algorithm that quickly estimates capacity and load based on packet inter-arrival times,

not RTT or OWD. Our central idea lies in leveraging the downlink PF scheduler’s unique strength

of providing fairness at short time scales to counteract its weakness of interfering with the operation

of traditional LPT protocols. Based on the estimated capacity and load, Legilimens strives to deliver

background traffic using only spare capacity. Legilimens operates in one of two modes: normal mode

and probing mode. If the load is low and spare capacity is available, Legilimens operates in normal

mode and quickly captures available bandwidth. If the load is substantial, Legilimens enters the probing

mode, in which it yields all scheduling opportunities to other traffic most of the time while periodically

sensing the network until spare capacity becomes available.

We implement Legilimens in Linux as a sender-only modification to the network stack, enabling

simpler and incremental deployment, without changes to the cellular infrastructure. We first sketch a

practical deployment model and then we extensively evaluate Legilimens in realistic (uncontrolled) and
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controlled settings, including a large U.S. cellular network, using a PhantomNet emulator and ns-3

simulator.

In summary, we make the following contributions:

• We design a novel capacity and load inference algorithm for senders in cellular networks, which

overcomes and leverages PF scheduling properties that impede traditional LPT protocols and we

show that our algorithm is robust to sender- and receiver-side optimizations (e.g., batching, de-

layed ACKs).

• We design and implement Legilimens, a sender-side LPT protocol for cellular networks, which

allows the network to balance the conflicting goals of foreground and background traffic while

achieving high utilization and low congestion.

• We demonstrate that Legilimens achieves better overall performance than existing fair-share and

LPT protocols. For example, in a real network, compared to CUBIC, Legilimens improves the

throughput of foreground long flows by up to 117%, and flow completion time of short flows by

up to 48%. We summarize our quantitative results in Table II.

4.2.2 Related Work

Legilimens is broadly related to fair-share protocols and low priority protocols. Our capacity es-

timation algorithm is somewhat related to existing work on bandwidth estimation but our algorithm

estimates busyness as well.

Fair-share protocols fall into two categories: loss-based and delay-based. RENO [102], NEWRENO [103],

TAHOE [104]), and CUBIC [105] are some of the well-known loss-based TCP variants. Most of the



136

conventional, loss-based TCP variants, incur high queuing delays due to “buffer bloat” in cellular net-

works [106]. Being less aggressive than loss-based protocols, delay-based protocols (e.g., VEGAS [107])

do not suffer as much due to buffer bloat in cellular networks. Nevertheless, fair-share protocols do not

distinguish foreground flows from background flows, and therefore, foreground performance degrades

at high loads.

We have extensively discussed the shortcomings of low priority TCP variants, including TCP-

LP [108], LEDBAT [109], and NICE [110]. Although the low priority protocols perform well in wired and

Wi-Fi networks, they do not perform well in cellular networks due to the nature of cellular links [82–86]

and due to the presence of the cellular scheduler.

Recent proposals address the time-varying capacity of cellular links. Sprout [111] and Verus [112]

build a model for accurately predicting the “best” congestion window by observing packet arrivals.

BBR [113] uses both bandwidth estimation and round trip times to find an operating point that maximizes

throughput. PropRate [114] uses one-way delay to achieve a desired trade-off between latency and

throughput. While these newer protocols improve performance in cellular networks, their underlying

goal is to achieve fair share of bottleneck capacity. In contrast, our work focuses on efficiently utilizing

spare capacity without affecting foreground flows. Our evaluations show that BBR [113], when used for

background flows, suffers in foreground performance, when compared to Legilimens. Loadsense [115]

schedules background traffic based on passive estimation of cellular load by observing the power of

channel and pilot signal. However, passive estimation requires support at clients. In contrast, Legilimens

performs active measurements and does not require support at clients.
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There is a large body of work on capacity estimation. While several of these ideas [116–120] are

applicable to a broader class of networks, our algorithm optimizes for the specific case of PF schedulers

in cellular networks, which enables us to be simple and efficient (e.g., we use data packets for probing,

so there is no overhead). QProbe [121] leverages the scheduler to estimate congestion at the base

station, somewhat similar to Legilimens. However, QProbe uses the estimation to identify bottleneck

links, whereas Legilimens uses the estimation to schedule background traffic. ExLL’s [122] capacity

estimation bears some similarity to our estimation. But, ExLL is a fair-share protocol. To the best of

our knowledge, none of the existing papers estimate busyness, which is central to Legilimens’s goal of

prioritizing foreground flows over background flows.

4.2.3 Challenges

4.2.3.1 The Proportional Fair (PF) Scheduler

Figure 39 depicts the key infrastructural differences between wired/Wi-Fi networks and cellular

networks. While the actual scheduler implementations in today’s cellular networks are vendor specific

and some parameters might be different, we present a generalized version of the PF scheduler [111,123].

Consider a particular radio cell in a typical cellular network as shown in Figure 39(a). There are N

clients connected to this cell, with a queue constructed for each client. Time is divided into 1 ms

intervals, referred to as Transmission Time Intervals (TTI), each consisting of 2 slots. The system

bandwidth is split into many sub-carriers in the frequency domain. A bundle of sub-carriers plus a TTI

is referred to as a Physical Resource Block (PRB). At each TTI, the base station assigns all or part of

resource blocks to a client.
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(a) Cellular network with per-device queues

Internet

(b) Wired or Wi-Fi network with shared queues

Figure 39. Cellular vs. wired or Wi-Fi networks

The base station selects the client n∗ to transmit data according to

n∗ = arg max
n∈{1,··· ,N}

cn(t)

µn(t)
(4.29)
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where cn(t) is the maximum transmission rate to client n at time slot t, a function of Signal to Interfer-

ence+Noise Ratio (SINR), and µn(t) is the average throughput between the base station and client n up

to TTI t [123]. The average throughput of user n is updated according to

µn(t+ 1) = (1− 1

α
)µn(t) +

1

α
rn(t) (4.30)

where α is a small constant and rn(t) is the data transmission rate of user n at time slot t.

The base station allocates all resource blocks for the transmission of client n∗ packets. However, if

there are not enough packets in the base station for client n∗, the resource blocks are shared, i.e., other

clients are scheduled using the same rule by giving preference to clients with larger cn(t)
µn(t) . Finally, the

base station updates the average throughput µn(t) using exponential moving average.

4.2.3.2 LEDBAT and TCP-LP in Cellular

LEDBAT [88] and TCP-LP [75] are two popular LPT protocols. The key idea of these background

transport protocols is to detect congestion earlier than regular TCP using use one-way packet delays [88,

124]. We performed a simple experiment to study the performance of LEDBAT and TCP-LP in Wi-Fi

and cellular networks.

We use a simple Wi-Fi test-bed, where two clients connect to an access point. The access point is

connected to a server using a high speed wired connection. There are two flows in the network; one

for each client. The first flow is a persistent long flow that uses LEDBAT, representing the background

flow; the second flow uses CUBIC, representing the foreground flow. The foreground traffic is an on-off

traffic; the flow joins the system at every 1 minute mark, transmits for 30 seconds and sleeps for 30
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(a) LEDBAT

(b) TCP-LP

Figure 40. Behavior of existing protocols

seconds. We repeat the experiment for a cellular network, in which the two clients connect to a base

station, instead of a Wi-Fi access point.

Figure 40(a) shows the throughput of foreground flow (using CUBIC) and background flow (using

LEDBAT) for Wi-Fi (Figure 40(a)(left)) and cellular (Figure 40(a)(right)) test-beds. While LEDBAT shows

expected performance in Wi-Fi, it performs poorly in cellular (i.e., the background flow does not use
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spare capacity when foreground flow is not present). Figure 40(a) shows the results when we use TCP-

LP for the background flow. While TCP-LP also performs well in Wi-Fi, it competes with and take

away significant capacity from the foreground flow in the cellular network. Therefore, we conclude that

existing LPT protocols achieve sub-optimal performance in cellular networks.

In wired and Wi-Fi networks, delay-based background transport protocols perform well as all traffic

passes through the same bottleneck queues and the delay includes the aggregate congestion (queuing)

on the path. However, cellular networks use per-device queues and the scheduler provides opportunity

for all flows during each scheduling interval. Therefore, the delay would not increase as steeply as it

would in wired and Wi-Fi networks during congestion. Further, because the PF scheduler determines

which queue to serve based on signal quality and recent throughput history, the delay includes the

effect of additional factors. Lastly, the propagation delay in cellular networks is highly variable, which

further perturbs the delay and compromises the accuracy of delay-based congestion estimation in these

protocols [111, 112]. Therefore, the measured delay in LEDBAT and TCP-LP does not fully capture the

overall congestion of the radio cell, and offers limited insight into the cell capacity.

4.2.4 Legilimens

4.2.4.1 High-level Overview

We propose Legilimens for background applications to utilize spare capacity without significantly

affecting other foreground traffic. We provide a high-level overview of Legilimens in Figure 41. Legili-

mens estimates capacity and cell load and sends the background traffic to fill the spare channel capacity.

This is the normal operation mode. Legilimens uses AIMD-style congestion control during normal mode.
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Figure 41. High-level overview

On the other hand, if the load estimate indicates that there is increased competition, Legilimens

enters a dormant mode (i.e., GAP mode in Figure 41) during which the flow waits and yields to the

foreground traffic. While waiting, Legilimens intermittently sends short bursts of packets to probe for

spare capacity. Because we use regular data packets during probing, there is no bandwidth overhead.

Choosing the correct burst size for probing is non-trivial – while large bursts provide more accurate esti-

mates, they degrade the performance of foreground flows at high loads. Therefore, instead of employing

a single burst size, we start with the small burst and gradually increase it upon detecting lower load, as

opposed to sending one large burst. We call this the gradually aggressive probing (GAP) mode. The

GAP mode prevents spurious oscillations to normal mode and back, and serves as hysteresis between the

modes.

We require three key mechanisms to realize the design from Figure 41. First, we need to estimate

capacity, so we can provide room for transient bursts of foreground traffic and to establish a bound on

sending rate. Second, we need an agile mechanism to detect the load level (i.e., there is other traffic).
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Finally, we need a robust and efficient congestion control scheme to achieve both high performance for

all applications and fairness among background applications.

The cellular network uses different scheduling mechanisms for downlink vs. uplink. As a result,

we need different techniques to estimate capacity and busyness in the two scenarios. In this chapter, we

focus only on techniques for downlink and leave the identification of techniques for uplink as part of

our future work. Also, we constrain our design to not require network- or receiver-side changes to be

deployment friendly.

4.2.4.2 Estimating Capacity and Busyness

4.2.4.2.1 Intuition: Optimal Low Priority Data Rate

Let us consider that every low priority user regards itself as the only low priority user in the system and

considers all other users as regular users. To obtain the optimal data rate for low priority user l, we can

formulate a network utility maximization problem as following,

max
xl

Ul(xl)

s.t.
∑
n∈N

xn
cn

+
∑

j∈L,j 6=l

xj
cj

+
xl
cl
≤ 1

xl ≥ 0 (4.31)

where the objective function is the utility of low priority flow l,N and L are the set of regular users and

low priority users, respectively, and x and c is the user rate and channel capacity. The first constraint is



144

the time sharing constraint across regular and low priority users. We note that only the data rate xl is a

variable here.

Assuming that we use log utility function (i.e., Ul(xl) = log(xl)), which is widely used to provide

proportional rate fairness, by KKT condition, we can obtain the compact solution to the NUM problem

as

xl = cl(1−
∑
n∈N

xn
cn
−

∑
j∈L,j 6=l

xj
cj

) (4.32)

Not that the term
∑

n∈N
xn
cn

+
∑

j∈L,j 6=l
xj
cj

in Equation 4.32 represents the time fraction taken by all

other flows except flow l in one TTI on the average sense. That is, (
∑

n∈N
xn
cn

+
∑

j∈L,j 6=l
xj
cj

) ∗ TTI

represents the total time base station has to spend to transmit other flows in one TTI on average. Thus

this value actually corresponds to the received packets interarrival time of user l on the average sense

denoted as ∆tl. Therefore,

(
∑
n∈N

xn
cn

+
∑

j∈L,j 6=l

xj
cj

) =
∆tl
TTI

(4.33)

Combining Equation 4.32 and Equation 4.33 yields

xl
cl

= max(0, 1− ∆tl
TTI

) (4.34)

This gives us insight that the optimal low priority user rate xl is closely related to the packet inter-arrival

time ∆tl and the channel capacity cl

Quickly and accurately estimating capacity and the presence of other competing traffic is hard in

wired and Wi-Fi networks due to shared FIFO queues. Our key insight is that the PF scheduler in
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Figure 42. Scheduler and timestamps

cellular networks enables us to accurately detect capacity and competition in only a handful of TTIs. For

each TTI, the scheduler selects a receiver based on its signal strength and long-term throughput; hence

the scheduler is likely to service those receivers that it has not recently serviced. Also, the scheduler is

likely to allocate all resource blocks to a single receiver in a given TTI, provided the receiver’s queue has

enough data (i.e., if a sender sends a sufficiently large burst of data, it is likely to receive full capacity

for at least one TTI). Therefore, we estimate capacity by observing the maximum number of packets

that were serviced in each TTI and we detect competing traffic by analyzing packet inter-arrivals at the

receiver. We avoid making changes to client-side software by utilizing TCP timestamp option [125] so
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that the received timestamps of data packets can be observed via ACKs at the sender. TCP timestamp

option is commonly enabled in clients [126, 127].

We use Figure 42 to explain how we can detect gaps in the schedule — this indicates competition or

busyness — by observing timestamps. In this simple example, two senders share the base station (e.g.,

same LTE band) and send data to two cellular clients; sender 1 sends to client 1 and sender 2 to client 2;

we show only sender 1 and client 1. Sender 1 sends a stream of packets, which are queued in the base

station before they are scheduled to be sent to client 1. Assuming the two clients have similar signal

qualities, the PF scheduler would pick one of the two senders in each TTI, provided there is enough data

in queues. Therefore, client 1 is likely to receive a series of back-to-back packets until the scheduler

switches to sender 2. Sender 1 observes the TCP options fields TSecr and TSval of ACKs: TSecr

indicates the timestamp at sender 1 when the packet was sent; TSval indicates the timestamp at client 1

when the packet was received. If there is a “gap” in the schedule, then packets that were sent together

(i.e., packets that have continuous or same TSecr values) will have a discontinuity in TSval values.

4.2.4.2.2 Practical Issues

While simply observing received timestamps allows us to detect competition, delayed ACKs [128] and

packet batching optimization at the receivers significantly complicate the detection logic. When the

receiver combines and generates a cumulative ACK for multiple contiguous packets, the sender would

infer an inflated capacity and spuriously detect gaps in the received stream. Figure 43 shows the effect

of batching in the received packet stream. Without any batching or delayed ACKs, we clearly see gaps

in the received packet stream in Figure 43(b) for the case of 2 senders, whereas there is no gap in
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Figure 43. Scheduler with batching

Figure 43(a) when there is only one sender. In Figure 43(c), although there is only one sender (to

client 1), the client 1 combines two TTIs worth of data in layer-2 before processing in higher layers, and,

therefore, there is a gap in the observed timestamps. However, there is no contention and we should

not throttle the sender. But, if we look for gaps in the received timestamps to identify competition, we

would not distinguish between the cases of two senders without batching (Figure 43(b)), one sender

with batching (Figure 43(c)) and two senders with batching (Figure 43(d)). It is hard to guess the

batching behavior of receivers. Therefore, we further refine our detection logic in algorithm 1. Instead

of only looking for gaps in the received stream, we reconstruct the schedule at the sender by observing
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the timestamps. The algorithm considers both the data volume and packet inter-arrival times to infer

capacity and competition.

4.2.4.2.3 Capacity and Busyness Estimation Algorithm

Algorithm 1 compares the recently received sequence number and timestamp (i.e., when the corre-

sponding data packet was received at the client) to the previous ACK. If the timestamps match, then we

accumulate the number of acknowledged segments for the previous slot (line 22). If the timestamps do

not match, first we see if there is a gap (i.e., the current timestamp differs from the previous timestamp

by more than 1 TTI), as in line 8. If there is no gap, we infer that the ACKs are back-to-back and that

the base station is not busy. If the ACKs are not back-to-back, then we compute the amount of data

sent per TTI (i.e., the instantaneous rate in terms of packets per TTI) for the previous slot (line 7). Since

the scheduler is expected to allocate full capacity for at least one TTI, we infer capacity by looking at

the amount of data sent per TTI and by taking the maximum value (line 15). If there is no gap, we up-

date capacity unconditionally so that the capacity can increase or decrease based on channel conditions

(line 19). We detect busyness using a simple heuristic: if the instantaneous rate is more than the capacity

by a factor λ, then we infer that the base station is not busy. Intuitively, if there is no other traffic, we

expect instantaneous rate to be very close to capacity. If there are other senders or if there are not enough

packets at the base station to consume all the resource blocks for one TTI, the instantaneous rate would

be less than capacity. Therefore, λ lies between 0 and 1. Setting λ = 0 would always allow Legilimens

senders to send in the normal mode (i.e., Legilimens would never yield). While λ = 1 would allow

Legilimens senders to send traffic in the normal mode only when there are no other senders, it would
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Algorithm 1 Estimate capacity and busyness
Input: ACK sequence number (s), timestamp (t)

Output: Capacity (capacity), IsBusy (busy)

1: function ESTIMATE(s, t)

2: if t ¿ t0 then

3: i ← i + 1

4: slot[i].t ← t

5: slot[i].n ← (s − s0)

6: duration ← (t − slot[i− 1].t) / TTI

7: rate ← slot[i− 1].n / duration

8: if (duration > 1) then . If there is a gap

9: if (rate ≥ λ ∗ capacity) then

10: busy ←FALSE

11: else

12: busy ←TRUE

13: end if

14: if (rate > capacity) then

15: capacity ← 4
5 ∗ capacity + 1

5 ∗ rate

16: end if

17: else

18: busy ←FALSE

19: capacity ← 4
5 ∗ capacity + 1

5 ∗ rate

20: end if

21: else

22: slot[i].n ← slot[i].n + (s − s0)

23: end if

24: t0 ← t, s0 ← s

25: end function
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Figure 44. Legilimens congestion control

be sub-optimal if there are other senders but they do not have enough data to saturate the capacity; we

would want Legilimens to use spare capacity in this case. Therefore, we chose λ = 0.5 ( Table Table I)

in our experiments, which achieves a good trade-off between foreground and background performance.

Finally, we use exponential averaging with a weight of 1
5 to the newly inferred capacity (line 15 and

line 19).

4.2.4.3 Congestion Control

4.2.4.3.1 Congestion Window (cwnd ) Adaptation

We show Legilimens’s complete state machine in Figure 44. Legilimens relies on estimated capacity

and busy signals to switch between sending (i.e., normal mode) and probing (i.e., GAP mode). Because
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normal mode aggressively sends data, a series of three probe modes is used (i.e., GAP modes I, II, and

III), each with a larger burst than the previous, to increase the confidence in our capacity estimates

before entering normal mode. During each GAP mode, we send a burst of multiples of M packets and

wait for T milliseconds to estimate capacity and busyness by observing ACKs using algorithm 1.

If the base station is not busy, we enter the next GAP mode, in which we increase the burst size and wait

for ACKs. After the third GAP mode (i.e., GAP III), we enter normal mode if no busyness is detected.

If, at any point, we sense the presence of other senders , we revert back to the GAP mode I. If busyness

is sensed in GAP mode I, then exponential random back-off is applied in multiples of T.

During normal mode, Legilimens employs AIMD-style congestion control. While Legilimens can

be implemented on top of any cwnd adaptation algorithm, we implemented Legilimens on top of TCP

RENO.

Figure 45 shows the evolution of cwnd over time as Legilimens transitions through operation modes

during one of our experiments. While we explain our methodology later, here we point to GAP modes,

a key aspect of our design, which allows scheduling opportunities to other traffic. During GAP mode,

we probe for spare capacity using bursts of packets and wait. Based on estimates of link capacity and

busyness, we switch to normal mode with a RENO-like slow start and continue in congestion avoidance

(also shown in Figure 45).

4.2.4.3.2 Fairness

Legilimens’s primary objective is to satisfy demands of foreground applications and provide fairness

between competing background flows. To this end, if any Legilimens sender estimates that there are
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TABLE I

PARAMETER VALUES

Parameters Description Value

λ Busy threshold 0.5

M Probe burst size 50 KB

T Time between GAP modes 250 ms

other competing senders, background or foreground, the sender exponentially backs off (i.e., doubles the

waiting interval, T). This back-off can happen anytime during the probing burst as the sender estimates

busyness on each ACK. Our mechanism is somewhat similar to CSMA in IEEE 802.11, and, therefore,

we achieve fairness between background traffic in a similar way. We study fairness in our evaluation

in the following Section. Table Table I lists our design parameters along with their default values; we

analyze their sensitivity later.

4.2.4.3.3 Summary and Discussion

In cellular networks, packet delay can increase either due to (1) degradation in signal quality or (2)

contention at the base station. Existing LPT protocols do not correctly identify the root cause for delay

increase but respond by either completely backing off or not at all in both cases (see Figure 40). Legili-

mens’s capacity and busyness estimation algorithm, leveraging the nature of PF schedulers, deconstructs

the schedule by observing timestamps and isolates the two cases. For (1), Legilimens correctly reduces

the rate but does not completely back off. For (2), Legilimens backs off, enters GAP mode and waits
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for the base station to become free. Thus, differentiating between the two cases is key to Legilimens’s

performance gains over existing LPT protocols.

4.2.4.4 Deployment Model

Legilimens, in its current form, only accounts for how the PF scheduler handles downlink traffic.

Given this explicit optimization for cellular downlink traffic, it only makes sense to deploy Legilimens

on servers providing data to cellular devices. While we do not foresee significant technical challenges

in deploying Legilimens on such servers (since it is just another variant of TCP), we recognize that

adoption may be slow for non-technical reasons. That said, a potential path for adoption could be

deploying Legilimens on cellular proxy servers and TCP splitters that most cellular operators employ

today [129] or on CDN edge servers that specifically serve traffic to mobile devices over cellular links.

Further, network and CDN operator would utilize existing traffic classification techniques to identify

background traffic and direct its delivery via servers that run Legilimens. This would significantly reduce

the number of servers that need to support Legilimens, while still allowing cellular networks to enjoy its

benefits.

4.2.5 Evaluation Using a Real Implementation

We evaluate Legilimens using three avenues: (1) real implementation on a real network, (2) real

implementation on PhantomNet [130], and (3) simulations using ns-3. We use real implementation to

analyze the performance of background flows with respect to foreground traffic, to show a proof-of-

concept, and to evaluate the performance when clients are mobile.
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Figure 45. Legilimens congestion window evolution

4.2.5.1 Methodology

4.2.5.1.1 Real-network Test-bed

Although we cannot control user traffic in real cellular network, the test-bed offers a realistic setting

to analyze Legilimens. Our test-bed consists of 4 Samsung Galaxy smartphones – 3 J7 models for

foreground and 1 S6 model for background traffic, all with Android 7.0. The devices are band-locked to

use the same LTE carrier (i.e., they share the same bottleneck radio link). For the stationary experiments,

test devices are located on the second story of a 3-story concrete building with wall-to-wall windows.

The test devices are connected to the standard macro cell using a 10 MHz carrier. The devices register

Reference Signal Received Power (RSRP) between -92 and -95 dBm and Reference Signal Received

Quality (RSRQ) between -10 to -13 dB.
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4.2.5.1.2 PhantomNet Test-bed

Unlike the real network, which is not isolated from outside traffic, PhantomNet enables us to analyze

Legilimens in a more isolated setting. Thus, we rely on PhantomNet to validate our real runs and to show

proof-of-concept with real implementations on clients and servers, fully controlled load, but emulated

cellular network and limited control of the radio signal. Our PhantomNet test-bed emulates a cellular

network using a server running open air interface (OAI) inside the LTE packet core and eNodeBs (base

stations). eNodeB is based on Software-Defined Radio (SDR) running OAI (Intel NUC + USRP B210).

PhantomNet provides Nexus 5 phones accessible via Android Debug Bridge (ADB), target server and a

GUI interface. Log-distance path loss model is used to produce realistic varying Signal to Noise Ratio

(SNR). We use 4 Nexus-5 phones, similar to our real-network scenario, with remotely connected servers

generating test traffic.

4.2.5.1.3 Workload and Relevant Metrics

We evaluate Legilimens using two types of workloads: (1) one-on-one workload to show proof-of-

concept that Legilimens utilizes spare capacity and backs off when there is foreground traffic; (2) mixed

workload to evaluate performance of protocols used for background flows and their effect on foreground

traffic.

One-on-one workload generates 1 background and 1 foreground flow. The background flow is an

always-on, long flow that uses Legilimens. The foreground flow uses CUBIC (our baseline) and sends

data in an on-off pattern. We study the per-second throughput of foreground and background flows over

time to see whether Legilimens (background) yields to foreground flows.
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Mixed workload consists of a varying number of foreground flows and background flows. While the

foreground flows use CUBIC, background flows use different schemes, including Legilimens. We model

our mixed workload as heavy tailed with a small number of large flows generating the vast majority of

bytes [131]. Specifically, we model foreground traffic as a mix of short, medium, and long flows: (1) 64

KB short flows represent web objects and mobile app communication, (2) 1 MB medium flows represent

transfers such as video chunk size in adaptive streaming, and (3) 32 MB long flows are representative

of app updates and data backups. The short, medium and long contribute to 10%, 30%, and 60%,

respectively, to overall (foreground) load. The background flows remain always on.

We use three traffic load levels for mixed workload, intended to represent different resource load

levels of an LTE cell, which is typically measured by PRB utilization, UPRB . The load levels are: (1)

low load, representing average UPRB = 30%, (2) moderate load, representing average UPRB = 60%,

and (3) high load, with average UPRB = 80%. We achieve the desired UPRB by generating foreground

traffic data rates relative to the maximum achievable throughput, and measuring the resulting UPRB at

each level.

We evaluate the protocols on our mixed workload based on the following metrics:

• Median and tail (e.g., 99th percentile) flow completion times (FCT) of short flows

• Throughput of medium (Tmed ) and long flows (Tlong )

• Throughput of background flows (Tbg )

• Overall link utilization (in simulations).
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4.2.5.1.4 Protocol Implementations

We deployed Legilimens and competing protocols, CUBIC, VEGAS, TCP-LP, and LEDBAT, on a Linux

4.4 server, with TCP timestamps enabled [125].

4.2.5.2 Results from the Real Network

We use real network to study performance and robustness of our design across various settings (idle,

busy, stationary, mobile, etc). Because real network conditions are dynamic (especially during busy

hours), we run our experiments multiple times to get sufficient confidence. Each experiment typically

lasts for 4–8 hours and transfers about 100 GB of data.

We compare Legilimens against CUBIC, TCP-LP, LEDBAT and VEGAS. We implemented two vari-

ants of Legilimens. While L-passive looks for a gap of 2 or more TTI to identify busyness (see algo-

rithm 1, line 8), L-active looks for a gap of 3 or more TTI. Thus, L-passive is a conservative (passive)

variant, whereas L-active is an aggressive (active) variant.

4.2.5.2.1 Mixed Workload During Idle Hours

We measure the maximum achievable throughput during idle periods using large downloads and gener-

ate 30%, 60%, and 80% of the measured throughput as foreground traffic. We run our mixed workload

for 15 minutes. Using standard reports from the cellular infrastructure, we show the actual UPRB level

for our base station as 15-minute averages in Figure 46. The figure indicates that typical quiet hours

(UPRB < 10%) are between midnight and 6 AM; as a result we run our experiments during these quiet

hours to minimize the impact of other regular traffic. With our workload added, the resulting UPRB is

plotted for corresponding times, indicating that we are able to translate the traffic load into our desired
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Figure 46. Typical UPRB and workload impact

Figure 47. FCT for short flows in the real network

radio channel utilization with reasonable accuracy. In particular, the measured UPRB levels are 30.1%

for low, 55.3% for moderate, and 84% for high load.

We examine the impact of different protocols (CUBIC, TCP-LP, LEDBAT, VEGAS, L-passive, and

L-active) on short foreground flows using their median and tail (i.e., 99th and 99.9th percentiles) FCT

in Figure 47. Because the FCT of foreground traffic would be unaffected by the traffic generated by an

ideal background protocol, we also show “No-bg” case, which does not have any background flows, as

a proxy for ideal. L-passive ensures the least impact on foreground short flows across loads, with no
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impact at low load and the lowest impact at other loads, even compared to other low priority protocols.

At the most common (moderate) load levels in cellular networks, L-passive has a distinct advantage

to CUBIC, with median FCT 16% lower (376 vs. 446 ms), and the tail (99.9th %-ile) 48% lower. At

high network loads, while comparable at the median, L-passive has 31% lower tail FCT than CUBIC,

with similar advantage over other LPT protocols. If higher link utilization is desired, L-active has

minimal impact at low loads, is comparable to TCP-LP and VEGAS at moderate loads, and has superior

performance at high loads, where it performs close to L-passive.

Next, we analyze the throughput of medium (Tmed ) and long (Tlong ) foreground flows, and the

throughput of background flows (Tbg ). An ideal protocol would utilize spare capacity to send back-

ground traffic without affecting foreground flows. For medium flows, all background protocols perform

within 10% of the ”No-bg” case and there was no clear winner (figure omitted). We examine Tlong

performance in Figure 48(a). As expected, the throughput of all the protocols decreases with increasing

load. CUBIC, as a representative of aggressive loss-based protocols, clearly affects foreground through-

put and degrades by up to 40% (e.g., the throughput drops from 16.4 to 9.7 Mbps for low load). L-

passive achieves the highest average throughput across loads, with 38% to 54% higher throughput over

CUBIC. At 60% load, we see that L-passive is better than“No-bg” for Tlong . This is an experimental

artifact as we cannot fully control the load in a real network. So, in this case, it is likely that the load

decreased slightly when we ran L-passive.

Finally, we show how effectively the background flows capture spare capacity in Figure 48(b). While

LEDBAT and VEGAS conservatively yield to long foreground flows and allow them to achieve higher

throughput, they do not capture spare capacity and also slow down short flows. TCP-LP performs well
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(a) Tlong

(b) Tbg

Figure 48. Throughput in the real network

in moderate and high loads but suffers under low loads, when the benefit would be the highest. We see

a relation to TCP-LP’s impact on tail FCT of short flows in Figure 47. At low load, it has little impact

on FCT as it is quite conservative. However, it has detrimental impact at higher loads.

Comparing Figure 48(a) and Figure 48(b), we see that other protocols lie in the two extremes:

delay-based variants (i.e., TCP-LP, LEDBAT and VEGAS) are conservative, consistent with our simple
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experiment in the previous section. They achieve high throughput for foreground flows but provide low

throughput for background flows (especially at low loads when there is opportunity). CUBIC provides

high throughput for background flows but this advantage comes at the cost of reduced throughput for

foreground flows. In contrast, both L-passive and L-active achieve high throughput for both foreground

and background flows. Finally, L-passive achieves high efficiency at low load, while it behaves close

to VEGAS under moderate and high loads. We can also see that Legilimens can be effectively tuned to

perform more aggressively if desired. L-active can capture nearly as much capacity as CUBIC across all

loads. The cost of using L-active can be summarized as 18% (24%) penalty on median (tail) FCT only

under moderate load and 14%–25% penalty on Tlong across load levels, for the 35%–60% benefit of

more efficient capacity utilization across load levels.

4.2.5.2.2 Mixed Workload During Busy Hours

To validate the behavior of Legilimens during busy hours, we conduct test runs over 3 days between

13:00 and 17:00 hours, when regular network (Base) load is present, over which we have no control.

We supply foreground traffic in lower volume, at an overall rate of about 5 Mbps , consisting of a mixed

workload. We record the total downlink data volume and UPRB measurements from the network. In

each hour, we have four 15-minute timebins, each containing one of these loads: (1) Base load only, (2)

foreground traffic is added, (3) background flow using CUBIC is additionally added, and (4) L-passive

is used for a background flow. The first two cases are merely to confirm the volume of Base load

and foreground traffic, while we study the cases with background traffic in Figure 49. We select 15-

minute bins with similar Base load to compare the total data volume of CUBIC (C) and Legilimens (L) to
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Figure 49. Cell load and utilization during busy hours

their respective UPRB . We discard the timebins with Base load outliers because the load fluctuation was

significant in those bins. Figure 49 shows the pairs of CUBIC/Legilimens timebins and their data volumes

as stacked bars, sorted by increasing Base load (bottom bar sections). We can see that Legilimens

generates less traffic (top bar sections) and results in lower UPRB than CUBIC, across the range of Base

loads. On average, Legilimens results in 13.8% lower UPRB than CUBIC, which is desirable during busy

hours. We observe that CUBIC generates the same amount of background load regardless of the Base

load, while Legilimens modulates its background throughput favorably depending on base load.
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(a) L-passive vs. CUBIC

(b) L-active vs. CUBIC

Figure 50. One-on-one workload in real network

4.2.5.2.3 One-on-one Workload While Stationary

Our one-on-one workload allows us to carefully analyze and contrast Legilimens’s behavior to those

of LEDBAT and TCP-LP. (Figure 40). Figure 50 shows how Legilimens shares the cellular link with
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Figure 51. Throughput of L-passive (background) vs. CUBIC (foreground) while moving

CUBIC. Unlike LEDBAT and TCP-LP (Figure 40), L-passive yields to CUBIC, backs off completely in

GAP mode (to allow scheduling opportunity to other flows), and efficiently recaptures spare capacity

when available. This results in the pattern seen in Figure 50(a), in which L-passive measured 8.9 Mbps

vs. CUBIC’s 19.5 Mbps .

L-active shows a more aggressive capture of spare capacity in Figure 50(b), both with and without

persistent foreground CUBIC flow. The measured throughputs are 10.6 Mbps for L-active vs. 18.6 Mbps

for CUBIC.

4.2.5.2.4 One-on-one Workload While Moving

To evaluate Legilimens in a mobile scenario, where changing radio signal and different cell loads can

be frequently encountered, we conduct a mobile test. The test lasts for about 37 minutes, starting with

walking for about 8 minutes, then driving at moderate speed (30-70 km/h) for about 3 minutes, followed

by freeway speed (70-110 km/h) for 10 minutes, and completing the remainder of the test at moderate

driving speed. The total distance is about 24 km on freeway and residential area roads. For clarity, we

show the first 14 minutes of the test. Two J7 phones are used, placed in a laptop bag, which is carried and
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Figure 52. Throughput in PhantomNet

then placed on the vehicle seat. One phone runs a continuous L-passive background flow, and another

phone runs a foreground CUBIC flow with 1-minute ON/OFF pattern.

Figure 51 shows the results and the mobility profile of this test. Signal strengths, measured as

RSRP, varied from -111 dBm to -68 dBm. A total of 13 hand-offs were performed. While the two

devices sometimes perform a hand-off a few seconds apart, their signal strength is almost the same ,

with small but expected deviation.

Performance-wise, we do not expect to see a clear pattern of yielding by L-passive, simply because

we only see two flows among a large volume of regular traffic in the network. However, as expected,

we see that L-passive performs significantly more conservative than CUBIC, which competes with other

traffic. L-passive also does not appear to suffer major disruption by changing signal strength, especially

in the second half of the time series, where driving causes frequent hand-offs.
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4.2.5.3 Results from PhantomNet

We discuss relevant PhantomNet results as a proof-of-concept to further validate and clarify per-

formance at different workloads, using representative protocols. Due to the limitation on number of

devices supported at high network loads in PhantomNet, we are limited to 70% for high load.

Mixed workload: We only run L-passive, which provides better foreground performance than L-

active. The short flow FCT is consistent with real network results, both in the trend over varying loads

and relative performance (not shown). Figure 52 shows a combined plot of Tlong and Tbg for mixed

workload in PhantomNet test-bed. Our throughput performance is also generally consistent with real

network. Tlong is most positively impacted by L-passive, similar to real network, while Tbg of L-passive

is by far superior to LEDBAT and VEGAS at low load, and still better at moderate load.

One-on-one workload: One-on-one performance results in Phantomnet are similar to those in real

network, and, therefore, we omit them for brevity.

4.2.6 Evaluation Using Simulations

We rely on simulations to analyze Legilimens at scale (i.e., with 100 devices), to study its fairness,

sensitivity to parameter settings, and its queuing behavior. We also compare Legilimens to a larger set

of protocols, including BBR [113], for background flows. We use the open source ns-3 implementation

of BBR [132, 133].

4.2.6.1 Methodology

We use ns-3 v3.27 simulator with log-distance propagation model for the radio signal. The radio

channel is configured with a single carrier with 10 MHz bandwidth and closed-loop MIMO. Network
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topology consists of multi-hop wired links that connect remote servers to Packet Data Network Gate-

way (PGW) using 1 Gbps with 10 ms delay links. The link speed between the base station and the

SGW/PGW is also 1 Gbps. The cellular uplink and downlink are bottlenecks in our topology.

Our ns-3 workloads are also based on one-on-one and mixed workloads. For mixed workloads we

generate traffic load in the same way as mentioned above, and measure average UPRB of 28.8%, 63.6%,

and 88.1%, for low, moderate, and high loads, respectively. We ran our experiments with and without

carrier aggregation, and we achieved similar results.

4.2.6.2 Results from Simulation

4.2.6.2.1 Scale

To generate mixed workload, we simulate a substantially larger client base with 100 devices, to exercise

the impact of the PF scheduler behavior under variety of RF signal characteristics, and the resulting

performance of Legilimens and other protocols. The key difference between the real test-bed and sim-

ulations is the scale (i.e., the scheduler in our simulated network must serve flows from 100 queues as

opposed to 4 in our real test-bed). The 100 devices are randomly placed in a cell and they generate a

mix of foreground and background flows. We run each 15-minute test 3 times with different random

seeds for client selection.

For foreground short flows, we observe that L-passive outperforms CUBIC and BBR, and L-passive

performs similar to TCP-LP, LEDBAT, and VEGAS (plot not shown). We show a combined plot of

Tlong and Tbg in Figure 53. In this plot, we also show a system with no background flows (“No BG”),

which serves as ideal. We see a clear pattern: at 30% load, all protocols except CUBIC achieve good

foreground throughput but TCP-LP, LEDBAT, and VEGAS suffer in background throughput; at higher
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Figure 53. Throughput in a simulated network

60% and 80% loads, CUBIC and BBR suffer in foreground throughput, whereas TCP-LP, LEDBAT, and

VEGAS suffer in background throughput. Across all loads, L-passive is able to achieve close to ideal

foreground throughput (i.e., closer to “No BG”), while maximizing background throughput.

We also analyzed the overall link utilization of CUBIC, VEGAS, and L-passive. At low and moderate

loads, when capturing spare capacity is highly desired, other protocols lag behind CUBIC allowing only

63%–85% of throughput achieved with CUBIC, while L-passive is able to fill 95%–100% of link capacity

that CUBIC does. At high loads, all the protocols show similar overall utilization. However, L-passive

provides a higher fraction of capacity to foreground flows.

4.2.6.2.2 Fairness

Mutual fairness is examined by starting 4 Legilimens flows in a staggered manner every 20 seconds

(Figure 54). Since these are typically long flows, we are interested primarily in their long-term fairness,

while short term oscillations are expected and acceptable. Since any single Legilimens flow considers
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Figure 54. Fairness analysis among Legilimens flows

all other traffic as foreground, even if other background flows are present, it has to transition between

operation modes. Figure 54 shows that Legilimens flows adapt their sending rate with increasing com-

petition and converge to fair shares. The Jain’s Fairness Index for the periods of 2, 3, and 4 concurrent

flows are 0.999, 0.993, and 0.996, respectively, indicating high fairness. We have also tested fairness of

8 and 24 concurrent Legilimens flows, and they resulted in JFI of 0.992 and 0.999, respectively.

4.2.6.2.3 Sensitivity

We varied both probe interval and probe size to better understand how the performance of foreground

and background flows varies with these parameters. Table Table I lists the default values for probe

interval (T) and probe size (M).
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We vary the interval from 100 ms to 350 ms in 50 ms steps. We found Tbg to be more sensitive than

Tlong and Tbg decreases slightly with increased probe interval. Overall, we found stable performance

between 100 ms and 350 ms. We chose 250 ms, which gave good performance to foreground flows

without sacrificing on background flows. Similarly, we vary probe size. We found that even small

probes result in accurate estimates of capacity and busyness, and that we can tune the sending rate of

probes across the wide range. We select the 50 KB probe size, which gives the best performance for

medium and long flows. We omit sensitivity plots due to space constraints.

4.2.6.2.4 Queuing Behavior

Finally, we analyze the queue lengths of CUBIC, LEDBAT, and Legilimens at the base station to under-

stand the effectiveness of Legilimens in yielding to other traffic. Figure 55 shows the queue lengths of

CUBIC, LEDBAT, VEGAS, and Legilimens, along y axis versus time along x axis. Each background flow

starts alone, having a foreground CUBIC flow joining at 5 second mark, indicated by vertical lines.

While CUBIC, LEDBAT, and VEGAS exhibit non-trivial queue lengths and compete with foreground

flows for scheduling opportunity, Legilimens keeps nearly empty queues for long periods, which pro-

vides opportunity for other traffic. As such, Legilimens has a significantly lower average queue length

than other protocols. Legilimens’s algorithm detects busyness quickly and backs off, which is key to its

performance gains.
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Figure 55. Queuing behavior of protocols

4.2.7 Summary and Discussion

We summarize the results of our evaluation (only L-passive) in Table II. The table shows our per-

formance for foreground long flows (i.e., Tlong ) and background flows (i.e., Tbg ), relative to CUBIC and

the best performing LPT protocol in each test.
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On the one hand, prevalent existing protocols (e.g., CUBIC) are agnostic of network objectives and

perform poorly for foreground traffic, especially at moderate and high loads (FCT and Tlong in Table II).

On the other hand, existing LPT protocols do not work well in cellular networks, are overly conservative,

and perform poorly for background traffic, especially at low loads when there is spare capacity (Tbg in

Table II). Legilimens outperforms CUBIC in foreground performance (especially at moderate and high

loads) and outperforms LPT in background performance (especially at low loads). There is limited

opportunity to improve foreground performance at low loads as there is less contention for resources.

Similarly, there is limited opportunity to improve background performance at high loads as there is less

spare capacity.

TABLE II

SUMMARY OF RESULTS (L-passive)

FCT T long T bg FCT T long T bg
Low 46% 55% -44% -4% -9% 97%

Moderate 48% 117% -66% 6% 6% -44%
High 29% 62% -63% 29% 9% -48%
Low -9% 44% -45% 25% 22% 209%

Moderate -16% 43% -57% 35% 13% 34%
High -2% 44% -57% 11% 12% 27%
Low 31% 29% 0% -5% -12% 642%

Moderate 18% 75% -34% -6% 3% 427%
High 11% 63% -14% -13% -21% 53%

Test-bed Load

Real

Emu

Sim

vs. CUBIC vs. LPT
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4.2.8 Conclusion

We proposed Legilimens, an agile transport protocol for background applications in cellular net-

works. Legilimens quickly and accurately estimates capacity and busyness, and uses the estimates to

achieve two conflicting objectives — quickly yield to foreground traffic and efficiently capture spare

capacity. Using a novel algorithm to estimate capacity and load, Legilimens achieves the two objectives

and outperforms known protocols, which achieve either one of the objectives but not both. As back-

ground applications become more reliant on cellular networks, schemes such as Legilimens are needed

to enforce high-level objectives that accommodate the needs of users (foreground applications), content

providers (background applications), and network operators (resource utilization). We plan to explore

techniques to optimize Legilimens for uplink cellular traffic and evaluate its performance in wired and

WiFi networks in the future.



CHAPTER 5

OPTIMAL CODED COMPUTATIONS WITH HARD DEADLINES

Coded distributed computation provides promises for conducting large scale machine learning algo-

rithms while preserving system robustness against stragglers, which are the devices significantly slower

than average due to the heterogeneous nature of them. However, the optimal coding strategies remains

unclear when given a hard deadline. In this chapter, we consider a distributed computation system,

where a master device divides computationally intensive tasks into sub-tasks and offloads them to a

group of helper devices. We consider heterogeneous computation capabilities of helper devices and

assume random processing time on each device. Accordingly, we characterize the performance of un-

coded and (n, k) MDS (Maximum Distance Separable) coded computation. Furthermore, by taking into

account the deadline, we develop optimal k for (n, k) MDS coded computation to maximize the prob-

ability of meeting the deadline. Obtaining the optimal k requires integer programming which could be

time consuming, thus, we develop approximated solution k with much less time complexity to obtain.

Simulation results confirm our analysis and show that our approximated solution achieves very close

performance to the optimal one, and outperforms the baseline.

5.1 Background

The increasing number of machine learning algorithms require computationally intensive calcula-

tions, which could be challenging to be carried out by a single device. In recent years, distributed

174
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computation frameworks such as Spark [18] and MapReduce [19] provides promises to address this

challenge, where a master device can divide computation intensive tasks into small sub-tasks and allo-

cate sub-tasks to a group of helper devices. Furthermore, coding strategies have been applied in dis-

tributed computation systems to provide resiliency against the stragglers effect that could speed up the

whole computation process. However, when there is a hard deadline set for the computation tasks, arbi-

trary coding strategies could delay the process and result in missing the deadline, which cause the whole

computation tasks to fail. Therefore, it is crucial to develop optimal coding strategies for a distributed

computation system with hard deadline. In this chapter, we consider a (n, k) MDS-coded distributed

computation system with hard deadline, and our goal is to develop optimal k∗ so that the probability of

meeting the deadline is maximized.

Given k symbols, a (n, k) MDS code introduces redundancy into the symbols and encodes them into

n encoded symbols using some encoding function. Upon receiving any k out of n encoded symbols,

one can recover the original k symbols. In distributed computing system, we can use (n, k) MDS code

to introduce redundancy into sub-tasks and thus increase the system’s resiliency against stragglers. In

order to better explain the problem, let us consider an example shown in Figure 56. In this setup, there

is one master device and four helper devices. Master device divides the whole task D into sub-tasks

and allocates them to the helpers. Helper device i (i = 1, 2, 3, 4) calculates the assigned sub-tasks,

which takes a random Ri time to finish, and returns the results to the master device when it is done.

When the process starts at time t0, there is a hard deadline set at time T , and everything received

after the deadline will be discarded. In Figure 56(a), master device uses uncoded computation scheme.

It divides the whole task D into four equal-sized sub-tasks (each wth size D/4) and allocates Di to
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(c) (4,2) MDS coded computation

Figure 56. An canonical example of a distributed computing system consisting of one master device

and four helper devices. There is a hard deadline T set for the whole task and master device applies (a)

uncoded computation, (b) coded computation using (4,3) MDS codes and (c) coded computation using

(4,2) MDS codes.

helper i (i = 1, 2, 3, 4), respectively. Since the master device uses uncoded computation scheme, it

has to wait for all four helpers’ results in order to complete the whole task D. However, if there is a

straggler in the system, say the third helper as shown in Figure 56(a), its result cannot be received by the

master device by the deadline T , thus, the whole task fails. With coding, the computation could speed

up. However, arbitrary coding strategies may also result in task failure. For instance, in Figure 56(b),
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master device uses (4,3) MDS coded computation scheme. It divides the whole task D into three equal-

sized sub-tasks (each with size D/3) and encode them to obtain four equal-sized coded sub-tasks Dc
i ,

(each with size D/3, i = 1, 2, 3, 4). It then allocates Dc
i to helper i respectively, and wait for their

returned results. In this scenario, since master device applies (4,3) MDS codes, although it only needs

any three out of four helpers’ results in order to complete the whole task, each sub-task Dc
i has a

increased size from D/4 to D/3 as compared to the uncoded case. Therefore, helpers are likely to

spend more time processing sub-tasks. Thus, as shown in Figure 56(b), the whole task may still fail.

In Figure 56(c), master device uses (4, 2) MDS codes. Thus, helper i receives encoded sub-task Dc
i of

size D/2 (i = 1, 2). Although each helper’s computation burden has been increased as compared to

the previous two cases, the master device only needs to wait for any two out of four helpers’ results in

order to complete the whole task. And if it successfully receives them by the deadline T , the whole task

succeeds, as shown in Figure 56(c).

As shown from the example in Figure 56, coding introduces redundancy into the sub-tasks to in-

crease resiliency against stragglers, yet increases the computation burden for each helper as compared to

the uncoded case. As a result, this may increase the task processing time on each helper and decrease the

probability of meeting the deadline. Therefore, there is a trade-off between system robustness and task

success probability. In this chapter, we consider a distributed computation system using (n, k) MDS

codes, whose task is to solve one of the most important calculations in machine learning algorithms:

matrix multiplication, by a given deadline T . Assuming random task processing time on each device,

our goal is to develop the optimal k∗ so that the probability of meeting the deadline is maximized. The

following are the key contributions of this work:
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• We first consider matrix-vector multiplication problem and characterize the probability of meeting

the deadline using uncoded and (n, k) MDS coded computation. We further characterize the

optimal k∗ for (n, k) MDS coded computation so that the probability of meeting the deadline is

maximized.

• We then expand the same analysis and characterization to a more general matrix-matrix multipli-

cation scenario.

• Obtaining the optimal k∗ for (n, k) MDS codes requires integer programming, which could be

time consuming. Thus, we develop an approximated solution k̂ that has much less computation

complexity.

• Simulation results confirm our analysis and show that our approximated solution achieves very

close performance to the optimal one, and outperforms the baseline.

5.2 Related Work

Distributed computing system provides possibilities to process computation intensive tasks that can

be too large to be done by a single device. However, it is adversely affected by anomalous system

behavior and bottlenecks [134], such as unpredictable latency of stragglers in the system. It is pointed

out in [135] that the causes for stragglers include run-time contention resources, disk failures, varying

bandwidth and congestion in network and, imbalance in task workload.

The popular approach to address the straggler problem is coded computation [136–141]. More re-

cently, some coding schemes are proposed for appropriate matrix multiplication. Dutta et al. [142]

propose ”Short-Dot”, which introduces additional sparsity to encoded matrices to speed up the compu-
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tation of linear transforms of long vectors. Tandon et al. [143] proposes Gradient coding mechanism

to mitigate stragglers and increase tolerance to failure for synchronous gradient descent (SGD) calcu-

lation. Lee et al. [144] propose a product code for large matrix multiplication, Yu et al. [145] propose

polynomial codes which is shown to achieve the optimum recovery threshold, defined as the minimum

number of helpers needed in order to fully recover the whole task. Later Dutta et al. [146] develop

”MatDot” and ”PolyDot” codes which further decrease the recovery threshold at the cost of increased

communication cost. As compared to this line of work, we focus on choosing the optimal k∗ in existing

(n, k) MDS codes to maximize the probability of success in distributed computing system with a hard

deadline.

Another line of work focuses on the latency analysis of coded distributed computing system. Lee

et al. [147] study the latency improvement of coded computation over uncoded ones in matrix multipli-

cation and data shuffling. Lee et al. [148] show that erasure codes achieve better latency performance

for distributed storage systems. Joshi et al. [149] show that coding in distributed storage reduces ex-

pected download time, in addition to providing reliability against disk failures. Kadhe et al. [150] study

the performance of availability codes in reducing the download time in distributed storage system. As

compared to this line of work, we consider there is a hard deadline for the computation and focus on the

probability of meeting the deadline using coded computation scheme.

The problem of incorporating hard deadline into distributed computing system has been studied

recently. Xing et al. [151] focus on distributed edge computing and develop a predictive edge computing

framework with hard deadlines by taking into account heterogeneity in helper devices. Dutta et al. [152]

study the convolution of two long vectors and show that coding can dramatically improve the probability
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of finishing the computation within a target deadline. Ostovari et al. [153] study the problem of efficient

broadcasting with deadline constraints and propose a deadline-aware heuristic to solve this problem with

linear coding. As compared to this line of work, we focus on (n, k) MDS codes and develop optimal k∗

to maximize the probability of meeting deadlines.

5.3 System Model

Topology and coding schemes We consider a distributed computing framework illustrated in Fig-

ure 56 with one master device and n helper devices. The master device could use uncoded and coded

schemes to process the distributed computing problem. In particular, if the master device uses uncoded

scheme, it divides the whole computing task into n equal-sized sub-tasks and allocates each sub-task

to each of the helper device. The master device waits for all the helpers’ results in order to recover the

whole task result. As for the coded scheme, we focus on (n, k) MDS codes, where master device first

divides the whole task into k equal-sized sub-tasks and encodes them into n coded sub-tasks. Master

device allocates each encoded sub-task to each of the helper and waits for the first k our of n helpers’

result in order to recover the whole task result.

Computation tasks. In this chapter, we focus on one of the most fundamental computation tasks in

machine learning: matrix multiplication, and develop our analysis for that. In particular, we first look at

matrix-vector multiplication where the master device would like to calculate y = Ax with A ∈ Rn×m,

x ∈ Rm×1 and y ∈ Rn×1. Then we generalize the calculation to matrix-matrix multiplication where

the master device would like to calculate y = ATB where A ∈ Rq×k, B ∈ Rq×m and y ∈ Rk×m. In

the computation, we define 1 unit of task as the computation of a vector-vector dot product.
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Task processing time. We assume there exists a mother run-time distribution FXi(t) = Pr[Xi ≤ t]

where the random variable Xi denotes the task processing time of 1 unit of task on helper i, ∀i ∈

{1, 2, · · · , n}. When j units of tasks are assigned on helper i, we assume the distribution of the pro-

cessing time is a scaled distribution of the mother run-time distribution. In particular, we denote random

variable Xi,j as the processing time and the CDF of Xi,j is FXi,j (t) = FXi(
t
j ). In our setup, we as-

sume the mother run-time distribution FXi(t) of each helper i is independent and identically distributed

(i.i.d.), thus, we neglect the notation of i and denote the processing time distribution for 1 and j units of

tasks on any helper as FX(t) and FXj (t) = FX( tj ), respectively.

Deadline and probability of success. We consider there is a hard deadline T for the master device.

Only when it finishes the whole task before the deadline, the whole calculation process is regarded as

success. We assume the data transmission time between the master and helper devices and the results

recover time at the master device are negligible. Given deadline T , we define the probability of success

Ps as the probability that master receives all the required results from helpers and recovers the whole

calculation results before T .

The goal of this chapter is to characterize the probability of success Ps for uncoded and (n, k) MDS

coded computation and develop optimal k∗ for the MDS codes to maximize probability of success.

5.4 Matrix-vector Multiplication with Hard Deadlines

We first consider the problem of matrix-vector multiplication where the master device would like

to calculate matrix-vector multiplication y = Ax with A ∈ Rn×m, x ∈ Rm×1 and y ∈ Rn×1. We

characterize the probability of success Ps when master device uses uncoded and (n, k) MDS coded
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computation schemes, respectively. We further develop the optimal value of k for (n, k) MDS codes in

order to maximize Ps.

5.4.1 Uncoded Computation

In the case of uncoded computation, the master device dividesA into n row vectors with each vector

Ai ∈ R1×m. Each sub-task consists of Ai and x for some i and is sent to each helper i. Thus, each

helper receives exactly one unit of task.

Lemma 10. Given deadline T , the probability of success for uncoded computation is

Psuc = [FX(T )]n (5.1)

Proof. In uncoded computation, since each helper i receives exactly 1 unit of task, the probability that

helper i finishes its sub-task before deadline T is

Pr[Xi ≤ T ] = FXi(T ) = FX(T ), ∀i (5.2)

The master device has to wait for all n helpers to finish their sub-task by the deadline in order to finish

the whole task. Since we assume the task processing time on each helper is i.i.d. random variable, the

probability of success is

Psuc =
n∏
i=1

Pr[Xi ≤ T ] = [FX(T )]n (5.3)

This concludes the proof.
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5.4.2 MDS Coded Computation

In the scenario of (n, k) MDS coded computation, The master device first divides matrix A into

k equal-sized sub-matrices with Ai ∈ Rp×m (p < n, i = 1, 2, · · · , k). In this chapter, we assume p

divides n so that the number of sub-matrices k = n
p is a valid integer. Then, the master device applies

an (n, k) MDS code to each element of the sub-matrices to obtain n encoded sub-matrices, denoted as

[Ac1, A
c
2, · · · , Acn]. Note that if Aci = Ai for 1 ≤ i ≤ k, the master device uses a systematic MDS code.

The master device then combines Aci and x as the sub-task and sends them to each helper i and waits

for the calculated results.

Lemma 11. Given deadline T , the probability of success Psc for MDS coded computation is

Psc =
n∑
i=k

(
n

i

)[
FX

(
k

n
T

)]i [
1− FX

(
k

n
T

)]n−i
(5.4)

Proof. In MDS coded computation, since the whole task is divided into k equal-sized sub-tasks, each

helper i receives n/k units of tasks. The processing time on each helper i is therefore a random variable

Xi,n/k. According to assumption illustrated in Task processing time in Section 5.3, the probability that

each helper i finishes its sub-task before the deadline T is

Pr[Xi,n
k
≤ T ] = FXi, n

k
(T ) = FX(

k

n
T ), ∀i (5.5)
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Upon receiving any k helpers’ calculation results, the master device can use the decoding algorithm

to recover the whole calculation result. Thus, the probability of success is,

Psc = Pr[at least k helpers finish before T]

=
n∑
i=k

(
n

i

)[
Pr[Xi,n

k
≤ T ]

]i [
1− Pr[Xi,n

k
≤ T ]

]n−i
=

n∑
i=k

(
n

i

)[
FX

(
k

n
T

)]i [
1− FX

(
k

n
T

)]n−i
(5.6)

This concludes the proof.

Now that we have obtained the expression for probability of success for both uncoded and (n, k)

MDS coded scenarios, we can observe that Psuc solely depends the nature of helper devices such as

the task processing time, number of helpers, and the deadline T . However, Psc not only depends

on the factors Psuc does, but also depends on k. In the next section, we derive the optimal value of

the hyperparamter k for (n, k) MDS coded computation such that the probability of success Psc is

maximized.

5.4.3 Optimal Coded Computation for Matrix-vector Multiplication and Its Approximation

The optimization problem is the following,

max
k

n∑
i=k

(
n

i

)[
FX

(
k

n
T

)]i [
1− FX

(
k

n
T

)]n−i
s.t. k ∈ {1, 2, · · · , n} (5.7)
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It can be observed that this is an integer optimization problem and the optimal solution can be

obtained through brute force method. That is, we iterating over all possible values of k and choose the

optimal k∗ that maximizes the objective function in Equation 5.7. This is a time consuming method to

obtain the optimal solution.

Alternatively, we can bound the objective function in Equation 5.7 and use the solution that maxi-

mizes the bound to approximate the optimal solution to the original problem.

In this problem, let the Bernoulli random variable Yi denote if helper i finishes the sub-tasks before

deadline T , that is, 
Yi = 1, if helper i meets the deadline

Yi = 0, if helper i misses the deadline

(5.8)

Thus, Pr[Yi = 1] = p and Pr[Yi = 0] = 1− p, where p = FX
(
k
nT
)
. We assume Yi is i.i.d. among all

the users.

Therefore, the optimization problem in Equation 5.7 can be equivalently expressed as

max
k

Pr(H ≥ k)

s.t. k ∈ {1, 2, · · · , n} (5.9)

where H =
∑n

i=1 Yi is the binomial random variable that denotes the number of helpers that meet the

deadline T . It can be observed that Pr(H = k) =
(
n
k

)
(p)k(1− p)n−k where p = FX( knT ).
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In the objective function of this problem, sinceH =
∑n

i=1 Yi, and Yi is i.i.d. and bounded (0 ≤ Yi ≤

1), we could apply Hoeffding inequality [154] to the objective function which provides an upper bound

on the probability that the sum of bounded independent random variables deviates from its expected

value by more than a certain amount.

Proposition 12. Applying Hoeffding inequality on the objective function in the optimization problem

stated in Equation 5.9, the approximated optimal solution is

k̂ = bD−1
p (

1

n
) + 0.5c (5.10)

where p = FX( knT ),Dp(x) is the first order derivative of function pwith respect to x, i.e., y = Dp(x) =

∂p
∂x . And D−1

p (y) is the inverse function of Dp(x), i.e., if y = Dp(x), then x = D−1
p (y).

Proof. Applying Hoeffding inequality to the special case of binomial distribution random variable H

with Probability Mass Function (PMF) Pr(H = k) =
(
n
k

)
(p)k(1 − p)n−k [155], where p = FX( knT ),

we have

i) when k > np,

Pr(H ≥ k) ≤ e−2( k
n
−p)2n (5.11)

and ii) when k < np,

Pr(H ≤ k) ≤ e−2(p− k
n

)2n (5.12)

that is,

Pr(H ≥ k) = 1− Pr(H ≤ k) ≥ 1− e−2(p− k
n

)2n (5.13)
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Equation 5.11 and Equation 5.13 provide bounds on Pr(H ≥ k) depends on the value of k. In our

approximation process, we maximize the upper bound of Pr(H ≥ k). In particular,

i) when k > np, we

max
k

e−2( k
n
−p)2n

s.t. k ∈ 1, 2, · · · , n (5.14)

which is equivalently expressed as,

min
k

(
k

n
− p)2

s.t. k ∈ 1, 2, · · · , n (5.15)

And ii) when k < np, we

max
k

1− e−2(p− k
n

)2n

s.t. k ∈ 1, 2, · · · , n (5.16)

which is equivalently expressed as,

max
k

(p− k

n
)2

s.t. k ∈ 1, 2, · · · , n (5.17)
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In order to solve problem Equation 5.15 and Equation 5.17, We further first approximate k as real

number k′ and try to solve the optimization problems in Equation 5.15 and Equation 5.17 with compact

solutions and then round the solution of k′ to its nearest integer to get an approximated solution k̂ to the

original problem. Note that p = FX(k
′

n T ) in these problems and we assume p is continuous and first

order differentiable on k′.

In particular,

i) when k′ > np, the optimization problem is

min
k′

(
k′

n
− p)2

s.t. 1 ≤ k′ ≤ n (5.18)

and the optimal solution can be obtained according to

∂(k
′

n − p)
2

∂k′
= 0 (5.19)

2(
k′

n
− p)( 1

n
− ∂p

∂k′
) = 0 (5.20)

Since k′ has to satisfy k′ > np, the optimal solution is

k′ = D−1
p (

1

n
) (5.21)
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where Dp(x) is the first order derivative of function p with respect to x, i.e., Dp(x) = ∂p
∂x . And D−1

p (x)

is the inverse function of Dp(x).

ii) When k′ < np, the optimization problem is

max
k′

(p− k′

n
)2

s.t. 1 ≤ k′ ≤ n (5.22)

and the optimal solution can be obtained according to

∂(p− k′

n )2

∂k′
= 0 (5.23)

2(p− k′

n
)(
∂p

∂k′
− 1

n
) = 0 (5.24)

Since k′ has to satisfy k′ < np, the optimal solution is

k′ = D−1
p (

1

n
) (5.25)

Taking into account both of the cases when i) k > np and ii) k < np, by Equation 5.21 and

Equation 5.25, the optimal solution that maximizes the upper bound of Pr(H ≥ k) is

k′ = D−1
p (

1

n
) (5.26)
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Finally, we round k′ to its nearest integer k̂ to obtain the integer approximated solution to our original

problem in Equation 5.9. That is,

k̂ = bk′ + 0.5c = bD−1
p (

1

n
) + 0.5c (5.27)

This concludes the proof.

By Proposition 12, when the task processing time follows exponential distribution with p = 1 −

e−
k′
n
λT the approximated optimal k̂ is

k̂ = bn ln(λT )

λT
+ 0.5c (5.28)

where λ is a constant.

And when the task processing time follows shifted exponential distribution with p = 1−e−λ( k
′
n
T−s),

the approximated optimal k̂ is

k̂ = bn
T

(
ln(λT )

λ
+ s) + 0.5c (5.29)

where λ and s are constants.

5.5 Matrix-matrix Multiplication with Hard Deadlines

In this section, we consider a more general form of matrix multiplication, that is, matrix-matrix

multiplication where the master device would like to calculate y = ATB with A ∈ Rq×r, B ∈ Rq×m

and y ∈ Rr×m. Let us denote the ith column of matrix A and B by ai ∈ Rq×1 and bi ∈ Rq×1,
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respectively. Thus, we can rewrite matrix A and B as A = [a1, a2, · · · , ar] and B = [b1, b2, · · · , bm],

respectively. The matrix multiplication is then expressed as

ATB =



aT1

aT2

...

aTr


[
b1 b2 · · · bm

]

=



aT1 b1 aT1 b2 · · · aT1 bm

aT2 b1 aT2 b2 · · · aT2 bm

...
...

...
...

aTr b1 aTr b2 · · · aTr bm


(5.30)

Note that since computing ATB requires rm dot products of aTi bj , the total units of tasks are

therefore rm. For the ease of explanation, we assume the total number of helpers n = rm.

5.5.1 Uncoded Computation

In the case of uncoded computation, master device divides matrixA andB into r andm equal-sized

parts, respectively. Each part is Ai = ai, i = 1, 2, · · · , r and Bj = bj , j = 1, 2, · · · ,m. Master device

then assigns one dot product of aTi bj as the sub-task to each of the helper respectively. Thus, each helper

receives exactly 1 unit of task.
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Lemma 13. Given deadline T , the probability of success for uncoded computation is

Psuc = [FX(T )]rm (5.31)

Proof. The proof follows exactly the same logic as the proof for Lemma 10 with n = rm in this

case.

5.5.2 One-dimensional MDS Coded Computation

In one-dimensional MDS coded computation, master device uses MDS codes to encode matrix A

only. More specifically, master device considers the multiplicationATB asm instances of small matrix-

vector multiplications, that is,

ATB = [AT b1, A
T b2, · · · , AT bm] (5.32)

In this setup, rm helpers are divided into m groups of size r. The number of groups m is fixed and

r helpers in each of the m group are assigned to compute AT bj for some j ∈ {1, 2, · · · ,m}. Within

each group, it can be observed that r helpers are performing matrix-vector multiplication tasks. Thus,

according to Section 5.4, we can apply (r, k) MDS codes in each group to compute AT bj . For example,

suppose the first group is assigned to compute AT b1. The master device would divide matrix A into k

equal-sized sub-matrices [A1, A2, · · · , Ak]. Then it applies (r, k) MDS codes to each of Ai to obtain r

encoded sub-matrices [Ac1, Ac2, · · · , Acr]. Lastly, master device assigns computation of sub-task Aci
T b1



193

Figure 57. Illustration of one-dimensional MDS coded computation for matrix-matrix multiplication

ATB.

to the ith helper in this group. Similarly, the r helpers in the jth group are assigned to jointly compute

AT bj . In this setup, we assume master device applies same (r, k) MDS codes to every group and the

goal is to obtain the optimal k∗ so that the probability of success is maximized. The one-dimensional

MDS coded scheme is illustrated in Figure 57.

Lemma 14. Let master device apply same (r, k) MDS codes to each of the m groups to compute ATB,

given deadline T , the probability of success Psc using one-dimensional MDS coded computation is

Psc =

[
r∑
i=k

(
r

i

)[
FX

(
k

r
T

)]i [
1− FX

(
k

r
T

)]r−i]m
(5.33)
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Proof. The probability of success of the whole calculation depends on the probability of success of

sub-tasks in each of the m groups. By Lemma 11, the probability of success within each group g ∈

{1, 2, · · · ,m} is

Pscg =
r∑
i=k

(
r

i

)[
FX

(
k

r
T

)]i [
1− FX

(
k

r
T

)]r−i
(5.34)

Thus, the probability of success of the whole calculation task is

Psc = Pr[All m groups finish sub-tasks before T ]

=

m∏
g=1

Pscg (5.35)

This concludes the proof.

5.5.3 Two-dimensional MDS Coded Computation

In two-dimensional MDS coded computation, we apply MDS codes to encode both of matrix A

and B Recall that ATB = [AT b1, A
T b2, · · · , AT bm]. To perform two-dimensional MDS coded com-

putation, master device first applies (M,m) (M ≥ m) MDS codes to each column of matrix B to

obtain Bc = [bc1, b
c
2, · · · , bcM ]. Then, it considers the multiplication of ATBc as M instances of small

matrix-vector multiplications, that is,

ATBc = [AT bc1, A
T bc2, · · · , AT bcm, · · · , AT bcM ] (5.36)

Note that in order to recover the results for ATB, master device only needs any m out of M elements

of AT bcj (j = 1, 2, · · · ,M ).
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Thus, to carry out the two-dimensional MDS coded computation, master device divides rm helpers

into M ≥ m groups of size n′ = b rmM c ≤ r. Each group is assigned to compute AT bcj for some

j ∈ {1, 2, · · · ,M}. Within each group, it can be observed that n′ helpers are performing matrix-vector

multiplication. Thus, similar to what we have done in one-dimensional MDS coded computation, master

device applies (n′, k) MDS codes in each group to computeAT bcj . It can observed from the construction

of two-dimensional MDS coded computation. Master device only needs anym out ofM groups’ results

to recover the whole computation task. And within each group, master device only needs any k out of

n′ helpers’ results to recover the group’s sub-task AT bcj .

In this setup, we assume every group has the same number of helpers n′ and master device applies

the same (n′, k) MDS codes to each group. Therefore, given total number of rm helpers and matrix-

matrix multiplication task ATB, the goal is to obtain the optimal M and k so that the probability of

success is maximized.

The two-dimensional MDS coded scheme is illustrated in Figure 58.

Lemma 15. Let M denote the number of groups master device divides the rm helpers and let master

device apply the same (n′, k) (n′ = b rmM c) MDS codes to the helpers in each group, given deadline T ,

the probability of success Psc using two-dimensional MDS coded computation is

Psc =

M∑
i=m

(
M

i

)(
Pscg

)i (
1− Pscg

)M−i (5.37)
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Figure 58. Illustration of two-dimensional MDS coded computation for matrix-matrix multiplication

ATB.

where Pscg is the success probability of each group g ∈ {1, 2, · · · ,M}. That is,

Pscg =

n′∑
i=k

(
n′

i

)[
FX

(
k

r
T

)]i [
1− FX

(
k

r
T

)]n′−i
(5.38)

where n′ = rm
M .

Proof. By the construction of two-dimensional MDS coded computation, the probability of success of

the whole calculation depends on the probability that master device receives any m out of M groups’

calculation results by the deadline T . By Lemma 11, the probability of success within each group

g ∈ {1, 2, · · · ,m} is

Pscg =
n′∑
i=k

(
n′

i

)[
FX

(
k

r
T

)]i [
1− FX

(
k

r
T

)]n′−i
(5.39)
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Thus, the probability of success of the whole calculation task is

Psc = Pr[At least m groups finish sub-tasks before T ]

=

M∑
i=m

(
M

i

)(
Pscg

)i (
1− Pscg

)M−i (5.40)

This concludes the proof.

5.5.4 Optimal Coded Computation for Matrix-matrix Multiplication and Its Approximation

In this section, we focus on maximizing the probability of success of MDS coded computation and

develop i) optimal and approximated value of k for one-dimensional coded computation and ii) optimal

and approximated value for M and k for two-dimensional coded computation.

5.5.4.1 Optimal and Approximated k for One-dimensional Coded Computation

The optimization problem is

max
k

[
r∑
i=k

(
k

i

)[
FX

(
k

r
T

)]i [
1− FX

(
k

r
T

)]r−i]m

s.t. k ∈ {1, 2, · · · , r} (5.41)

This is an integer programming problem, the optimal solution can be found by iterating all the

possible value of k in each group.

As for the approximated solution, We can find out that in order to solve the problem, we only need

to maximize Pscg =
∑r

i=k

(
r
i

) [
FX
(
k
rT
)]i [

1− FX
(
k
rT
)]r−i

with respect to k. Pscg is nothing but the

probability of success within each group g that is performing matrix-vector multiplication using (r, k)
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MDS codes. Therefore, assuming p = FX(k
′

r T ) is continuous and first order differentiable on k′, by

Proposition 12, the approximated optimal solution is

k̂ = bD−1
p (

1

r
) + 0.5c (5.42)

where Dp(x) is the first order derivative of function p with respect to x, i.e., y = Dp(x) = ∂p
∂x . And

D−1
p (y) is the inverse function of Dp(x).

5.5.4.2 Optimal and Approximated M and k for Two-dimensional Coded Computation

The optimization problem is

max
k,M

M∑
i=m

(
M

i

)(
Pscg

)i (
1− Pscg

)M−i
s.t. k ∈ {1, 2, · · · , r},M ∈ {m, · · · , rm} (5.43)

where Pscg =
∑n′

i=k

(
n′

i

) [
FX
(
k
rT
)]i [

1− FX
(
k
rT
)]r−i

and n′ = rm
M .

This is again an integer programming problem, the optimal solution can be found by iterating all the

possible value of M and k.

As for the approximated solution, it can be noted that, given the number of groups M , the objective

function is maximized if Pscg is maximized. Again, by Proposition 12, under the same assumption of

continuity, the approximated optimal solution that maximizes Pscg is

k̂ = bD−1
p (

1

n′
) + 0.5c = bD−1

p (
M

rm
) + 0.5c (5.44)
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where p = FX(n
′

r T )

Therefore, once M is decided, the whole solution to the problem can be obtained. In order to obtain

the best (M, k̂) values, we could iterate over all the possible values of M and find the one (M, k̂) pair

that maximizes the objective function in Equation 5.43. The search space of M is O(rm).

5.6 Evaluation and Simulation

It can be observed from Section 5.4 and 5.5, the calculation of the optimal k∗ depends on the

distribution of processing time FX( knT ). In this section, we consider two special distributions that char-

acterize the processing time, namely, exponential distribution and shifted exponential distribution. And

we derive the optimal and approximated k for matrix-vector multiplication; optimal and approximated

M and k for matrix-matrix multiplication. We compare the performance of the approximated solution

to the optimal and uncoded solution.

Recently, MDS coded computation scheme in distributed computing system is discussed in [144,

147] for matrix-vector and matrix-matrix multiplication. However, the authors do not optimize k in the

(n, k) MDS codes. We consider the MDS coded scheme illustrated in [144, 147] as the baseline and

compare it to our approximated solution.

5.6.1 Matrix-vector Multiplication

Let us first consider the matrix-vector multiplication problem illustrated in Section 5.4. In this setup,

we consider the number of helpers is n = 10.
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5.6.1.1 Exponential Distribution

First, let us assume 1 unit of task’s processing time on each helper i follows exponential distribution

with mean 1
λ . In the evaluation, we consider λ = 1. The processing time random variable are i.i.d.

Thus, the CDF of 1 unit of task’s processing time on each helper i is

FXi(t) = FX(t) = 1− e−λt,∀i (5.45)

Given dealine T , by Lemma 10 and Lemma 11, the probability of success for uncoded and MDS

coded computation is

Psuc = (1− e−λT )n (5.46)

and

Psc =
n∑
i=k

(
n

i

)[
1− e−λ

k
n
T
]i [

e−λ
k
n
T
]n−i

(5.47)

Figure 59 presents the probability of success Ps using uncoded and MDS coded computation for

different deadlines T . It can be observed that, in this example, coded computation always achieves

higher probability of success as compared to the uncoded case for a given deadline. As for coded

computation, when the deadline is tight, smaller k achieves higher probability of success and when

deadline is large, some larger k achieves better performance.

Figure 60 presents the probability of success as k changes. The deadline is T = 1. In this specific

scenario, it can be observed that the performance of MDS coded computation decreases as k increases.

When k = n, coded computation becomes the uncoded case.
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Figure 59. Probability of success versus different deadlines for the case of uncoded and MDS coded

computation. The processing time on each helper follows exponential distribution with mean 1
λ = 1.
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Figure 60. Probability of success versus k in MDS coded computation. The processing time follows

exponential distribution with mean 1
λ = 1. The deadline is T = 1.
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Figure 61. Optimal and approximated k for coded computation. The processing time follows

exponential distribution with λ = 1.

As for k, by Proposition 12, with p = 1− e−
k′
n
λT the approximated k̂ for MDS coded computation

is

k̂ = bn ln(λT )

λT
+ 0.5c (5.48)

Figure 61 presents the optimal k∗ and approximated k̂ for coded computation when the deadline

T is changing. It can observed that our approximation calculation is the same as the optimal value for

T = 1, 2 and 3. For T > 3, the approximated value k̂ is smaller than the optimal value k∗.

Figure 62 presents the probability of success for different values of deadline T . We compare the

MDS coded computation with our approximated k̂ to the MDS coded computation with the optimal k∗,

baseline k = 8 and uncoded computation. It can be observed that coded computation achieve higher

probability of success than the uncoded case. Furthermore, the performance of coded computation using
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Figure 62. Probability of master device meeting the deadline using coded computation with optimal

k∗, approximated k̂ and uncoded schemes. The processing time follows exponential distribution with

λ = 1.

our approximated k̂ achieves almost the same performance as the optimal solution, and it outperforms

the baseline.

5.6.1.2 Shifted Exponential Distribution

Next, we consider another distribution that characterizes the processing time of 1 unit of task on

helper i, which is the shifted exponential distribution with CDF as follows

FX1
i
(t) = FX(t) = 1− e−λ(t−s), ∀t ≥ s, ∀i (5.49)

where λ > 0 and s > 0 are constant parameters. In the evaluation, we consider λ = 1 and s = 2.
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Figure 63. Probability of success versus different deadlines for the case of uncoded and coded

computation. The processing time follows shifted exponential distribution with λ = 1 and s = 2.

Given dealine T , by Lemma 10 and Lemma 11, the probability of success for uncoded and MDS

coded computation is

Psuc = (1− e−λ(T−s))n (5.50)

and

Psc =
n∑
i=k

(
n

i

)[
1− e−λ( k

n
T−s)

]i [
e−λ( k

n
T−s)

]n−i
(5.51)

Figure 63 presents the probability of success using uncoded and MDS coded computation for dif-

ferent deadlines. It can be observed that, when the deadline is tight (T is small), uncoded computation

performs better than coded computation with small k. As the deadline increases, coded computation

achieves higher probability of success as compared to the uncoded case. This result confirms with our

argument that arbitrary MDS coding strategy may not benefit the system.
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Figure 64. Probability of success versus k in coded computation. The processing time follows shifted

exponential distribution with λ = 1 and s = 2. The deadline is T = 5.

Figure 64 presents the probability of success as k changes. The deadline is T = 5. It can be

observed that the performance of coded computation fluctuates as k increases. In this specific example,

the probability of success using coded computation first increases as k increase, then achieves maximum

value of around 85% when k = 8, and decreases after that. On the other hand, the probability of success

using uncoded computation is always 60%. As seen, it is crucial to develop optimal k∗ to maximize the

probability of success.

By Proposition 12, with p = 1− e−λ( k
′
n
T−s) the approximated k̂ for MDS coded computation is

k̂ = bn
T

(
ln(λT )

λ
+ s) + 0.5c (5.52)

Figure 65 presents the optimal k∗ and approximated k̂ for coded computation when the deadline T

is changing. It can observed that our approximated solution mimics the optimal one when deadline is
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Figure 65. Optimal and approximated k for coded computation. The processing time follows shifted

exponential distribution with λ = 1 and s = 2.

tight and deviates from the optimal solution when deadline is large. However, this deviation is tolerable

because when deadline T is large, the probability of success at the master device is high for a large

range of k values.

Figure 66 presents the probability of success at the master device for different values of T . We

compare our approximated solution to the optimal solution, uncoded computation and the baseline with

k = 9. Similar to the results in Figure 62, it can be observed that coded computation achieves higher

probability of success than the uncoded case. Furthermore, the performance of coded computation using

our approximated k̂ achieves almost the same performance as the optimal solution, and it outperforms

the baseline.
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Figure 66. Probability of success using coded computation with optimal k∗, approximated k̂ and

uncoded schemes. The processing time follows shifted exponential distribution with λ = 1 and s = 2.

5.6.2 Matrix-matrix Multiplication

Now let us consider the matrix-matrix multiplication problem illustrated in Section 5.5. In this

setup, we consider number of columns of matrix A and B is r = 10 and m = 10, respectively. Thus,

the number of helpers is n = rm = 100.

5.6.2.1 Exponential Distribution

First, let us also assume 1 unit of task’s processing time on each helper i follows exponential distri-

bution with mean 1
λ = 1.

FXi(t) = FX(t) = 1− e−λt,∀i (5.53)

Given deadline T , for one-dimensional (n, k) MDS coded computation, the approximated optimal

k̂ is
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k̂ = bk ln(λT )

λT
+ 0.5c (5.54)

And as for two-dimensional MDS coded computation, given the number of groups M , the approxi-

mated k̂ in each group is

k̂ = bkm ln(λT )

MλT
+ 0.5c (5.55)

Figure 67 presents the probability of success using one-dimensional MDS, two-dimensional MDS

and uncoded computation schemes. In one-dimensional MDS coding, there are no redundancy group

wise, thus the number of groups is M = m = 10. As for two-dimensional MDS coding, the num-

ber of groups in this simulation is M = 11. It can be observed that coded computation outperforms

the uncoded one in general. When the deadline T is large, two-dimensional MDS coding with larger

k achieves the best performance and when the deadline is small, two-dimensional MDS coding with

smaller k achieves the best performance.

Figure 68 presents the probability of success for different number of groups M in two-dimensional

MDS coding. k = 2 for both one and two-dimensional MDS coding. It can be observed that two-

dimensional MDS outperforms the uncoded and one-dimensional MDS coded computation. Further-

more, the performance of two-dimensional MDS coding improves as the number of groupsM increases.

Figure 69 presents the optimal and approximated solution to k and M as illustrated in Section 5.5.4

in order to maximize the probability of success. It can be observed that as deadline T increases, for

two-dimensional MDS coded computation, our approximated solution is close to the optimal one. On



209

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Deadline T

P
ro

ba
bi

lit
y 

of
 s

uc
ce

ss

 

 

Uncoded
1d−MDS,k=2
1d−MDS,k=5
2d−MDS,k=2
2d−MDS,k=5

Figure 67. The probability of success using one-dimensional MDS, two-dimensional MDS and

uncoded computation schemes. In two-dimensional MDS coded computation, the number of groups is

M = 11. The processing time follows exponential distribution with λ = 1.

the other hand, in one-dimensional MDS coded computation, since there are no redundancy group wise,

the number of groups is always M = 10, and k varies accordingly.

Figure 70 shows the corresponding probability of success using the k andM shown in Figure 69. We

also add two-dimensional MDS coded computation with baseline k = 8 and the uncoded computation

in comparison. It can be observed that coded computation achieves higher probability of success than

the uncoded case. Furthermore, our approximated two-dimensional MDS coding achieves almost the

same performance as the optimal one and outperforms the one-dimensional MDS coding, which further

outperforms the baseline.
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Figure 68. The probability of success using one-dimensional, two-dimensional and uncoded

computation schemes. In both one-dimensional and two-dimensional MDS coded computation, k = 2.

The processing time follows exponential distribution with λ = 1.

5.6.2.2 Shifted Exponential Distribution

Now let us assume 1 unit of task’s processing time on each helper i follows shifted exponential

distribution expressed as

FX1
i
(t) = FX(t) = 1− e−λ(t−s), ∀t ≥ s, ∀i (5.56)

In the evaluation, we consider λ = 1 and s = 2.

Given deadline T , for one-dimensional (n, k) MDS coded computation, the approximated optimal

k̂ is
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Figure 69. The approximated solution of k and M using one-dimensional MDS coding and

two-dimensional MDS coding, and optimal solution of two-dimensional MDS coding.

k̂ = b k
T

(
ln(λT )

λ
+ s) + 0.5c (5.57)

And as for two-dimensional MDS coded computation, given the number of groups M , the corre-

sponding k̂ is

k̂ = b km
MT

(
ln(λT )

λ
+ s) + 0.5c (5.58)

Figure 71 presents the probability of success using one-dimensional MDS, two-dimensional MDS

and uncoded computation schemes. the number of groups in two-dimensional MDS coding is M = 11.

Similar to exponential distribution, it can be observed that coded computation outperforms the uncoded

one in general.
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Figure 70. Probability of success using approximated solution to one-dimensional MDS coding and

two-dimensional MDS coding, and optimal solution to two-dimensional MDS coding. The processing

time follows exponential distribution with λ = 1.

Figure 72 presents the probability of success for different number of groups M in two-dimensional

MDS coding. k = 5 for both one and two-dimensional MDS coding. Again, we observe similar result

to the exponential distribution case.

Figure 73 presents the optimal and approximated solution to k and M as illustrated in Section

5.5.4 in order to maximize the probability of success. It can be observed the approximated solution is

close the optimal one. Figure 74 shows the corresponding probability of success using the k and M

shown in Figure 73. We also add two-dimensional MDS coded computation with baseline k = 9 and

the uncoded computation in comparison. It can be observed that coded computation achieves higher

probability of success than the uncoded case in general. In addition, our approximated solution for

both one-dimensional and two-dimensional MDS coding achieve close performance to the optimal two-
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Figure 71. The probability of success using one-dimensional MDS, two-dimensional MDS and

uncoded computation schemes. In two-dimensional MDS coded computation, the number of groups is

M = 11. The processing time follows shifted exponential distribution with λ = 1 and s = 2.

dimensional MDS coded computation, with two-dimensional MDS coding slightly outperforming the

one-dimensional one. Meanwhile, both of our approximated solutions outperform the baseline.
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Figure 72. The probability of success using one-dimensional, two-dimensional and uncoded

computation schemes. In both one-dimensional and two-dimensional MDS coded computation, k = 5.

The processing time follows shifted exponential distribution with λ = 1 and s = 2.
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Figure 73. The approximated solution of k and M using one-dimensional MDS coding and

two-dimensional MDS coding, and optimal solution of two-dimensional MDS coding.
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Figure 74. Probability of success using approximated solution to one-dimensional MDS coding and

two-dimensional MDS coding, and optimal solution to two-dimensional MDS coding. The processing

time follows shifted exponential distribution with λ = 1 and s = 2.

5.7 Conclusion

In this chapter, we consider a distributed computing system with hard deadlines and study the per-

formance of (n, k) MDS codes in terms of the probability of master device meeting the deadline. We

focus on matrix multiplication calculation and develop optimal and approximated solution to k in order

to maximize the probability of success. Numerical results confirm our analysis and show that i) (n, k)

MDS coded computation outperforms the uncoded computation in general and ii) our approximated

solution of k in (n, k) MDS codes achieves near optimal performance while significantly reducing the

calculation complexity.



CHAPTER 6

CONCLUSION

In this thesis, we focus on design and optimization for heterogeneous networks with emphasis on

transportation, wireless and distributed computing networks. In particular,

1. We considered a transportation system of heterogeneously connected vehicles, where not all

vehicles are able to communicate. We developed a connectivity-aware max-weight scheduling

(CAMW) algorithm by taking into account the connectivity of vehicles. The crucial components

of CAMW are expectation and learning components, which determine the estimated number of

vehicles that can pass through the intersections by taking into account the heterogeneous com-

munications. The simulations results show that CAMW algorithm significantly improves the

intersection efficiency over max-weight.

2. We investigated the blocking problem which naturally arises in transportation networks, where

multiple vehicles with different itineraries share available resources. We characterized waiting

times at intersections of transportation systems by taking into account blocking probability as

well as the heterogeneous communication probability of vehicles. Then, by using average waiting

times at intersection, we developed a shortest delay algorithm that calculates the routes with

shortest delays between two points in a transportation network. Our simulation results show that

our shortest delay algorithm significantly improves over baselines that are unaware of the blocking

problem.
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3. We investigated the performance of heterogeneous (per-flow and FIFO) queues over wireless

networks and characterized the support region of this system for arbitrary number of per-flow

and FIFO queues and flows. We developed inner bound on the stability region, and developed

resource allocation schemes; dFC and qFC, which achieve optimal operating point in the convex

inner bound. Simulation results show that our algorithms significantly improve throughput in a

wireless network with FIFO queues as compared to the well-known queue-based flow control and

max-weight scheduling schemes.

4. We presented Sneaker, an in-network arbiter that provides differentiation between foreground and

background flows, while enabling high performance and maintaining fairness within each traffic

class. We have formulated the problem of per-flow prioritization using NUM framework and

shown that Sneaker achieves the desired optimality. Further, we have extensively evaluated our

design using both targeted small-scale simulations and realistic large-scale simulations.

5. We proposed Legilimens, an agile transport protocol for background applications in cellular net-

works. Legilimens quickly and accurately estimates capacity and busyness, and uses the estimates

to achieve two conflicting objectives — quickly yield to foreground traffic and efficiently capture

spare capacity. Using a novel algorithm to estimate capacity and load, Legilimens achieves the

two objectives and outperforms known protocols, which achieve either one of the objectives but

not both. As background applications become more reliant on cellular networks, schemes such

as Legilimens are needed to enforce high-level objectives that accommodate the needs of users

(foreground applications), content providers (background applications), and network operators

(resource utilization).
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6. We considered a distributed computing system with heterogeneous helper devices by taking into

accoutn hard deadlines. We studied the performance of (n, k) MDS coded matrix-matrix multi-

plication in terms of the probability of master device meeting the deadline and developed optimal

and approximated k in order to maximize this probability. Numerical results confirm our analysis

and show that i) (n, k) MDS coded computation outperforms the uncoded computation in general

and ii) our approximated solution of k in (n, k) MDS codes achieves near optimal performance

while significantly reducing the calculation complexity.
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