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SUMMARY

0.1 Rational Points and Integral Points by Height

Let X ⊂ Pn be a smooth projective variety over a number field F . If X(F ) is infinite,

one can try to measure its size by a height function. For example, given P ∈ Pn(Q), one can

write P = (a0 : ... : an) with ai ∈ Z and gcd(a0, ..., an) = 1, and define the height of P as

H(P ) = max|ai|. Then, for X ⊆ PnQ, one defines

N(X,B) = #{x ∈ X(F ) : H(x) ≤ B}.

For certain varieties X, the Batyrev-Manin conjecture and its refinements predict precise

asymptotic formulas for N(X◦, B) as B → ∞, where X◦ ⊂ X is an appropriate Zariski open

subset of X. A very accessible survey on counting integer and rational points on varieties

is (1). When the variety is a bi-equivariant compactification, approaches from dynamics and

harmonic analysis on adele groups can be used. For example, the papers (2) and (3) prove

Manin’s conjecture for wonderful compactifications of semisimple groups. In this paper, we

study (D,S)-integral points on the wonderful compactification of a semisimple adjoint group

by extending the techniques used to prove cases of the Batyrev-Manin conjecture.

Let X be a smooth projective variety over a number field F , and let D ⊂ X be a divisor.

To discuss integral points, we choose models X ,D of X,D over the ring of integers OF of F .

Let U = X\D. We denote by U(OF ) the OF -valued points in U . For example, if D = ∅ and

one chooses a proper model X over OF , then since OF is a Dedekind domain, the valuative
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SUMMARY (Continued)

criterion of properness implies that X (OF ) = X(F ). So rational points on projective varieties

over number fields are in this sense a special case of integral points.

To state our result, let G be a semisimple adjoint group of rank at least 2 and let X be the

wonderful compactification of G. Assume that S and D are such that the set of (D,S)-integral

points is Zariski dense. Let

b = rk Pic(X\D) +
∑

v∈S dv

Here dv is the dimension of a certain simplicial complex defined in (4).

Theorem 1 With the notation above, the number of (S,D)-integral points of bounded height

on X with respect to −(KX +D) is asymptotic to

cB log(B)b−1(1 + o(1)), B →∞,

for some positive constant c.

0.2 Outline of paper and method of proof.

The proof relies on a strategy developed in the earlier papers on rational points and integral

points for split groups. We introduce the height zeta function Z(s) =
∑

x∈G(F )∩U(OF,S)H(x)−s

for a complex parameter s. By a Tauberian theorem, it is sufficient to establish certain analytic

properties of the function Z(s). In particular, we prove its convergence for Re(s) > a(λ) and

then establish its meromorphic continuation in some half-plane Re(s) > a(λ) − δ. This is

achieved by rewriting the expression in terms of the spectral decomposition of L2(G(F )\G(A)).

vi



SUMMARY (Continued)

One of the terms in the spectral expansion is a sum, over a finite set of automorphic characters,

of products of local v-adic integrals and adelic integrals. For the semisimple case, unlike the

case of commutative groups, automorphic forms like Eisenstein series have to be considered.

As in the case of rational points, uniform estimates need to be established.

The rest of the paper is organized as follows. In section 2, we review some background and

set up notation. In section 3 we write out a spectral expansion for the height zeta function and

establish the required analytic properties.

vii



CHAPTER 1

BACKGROUND AND NOTATION

Let F be a number field. Let Val(F ) be the set of normalized absolute values of F . For

v ∈Val(F ), we let Fv be the v-adic completion of F . Its absolute value is denoted by |.|v. For

finite places v of F , denote by Ov the ring of v-adic integers and by mv its unique maximal

ideal. The residue field Ov/mv is denoted by kv, and we write qv for its cardinality. We fix a

uniformizing element $; one has |$|v = q−1
v . We fix an algebraic closure F of F . and denote

the absolute Galois group of F by ΓF . We denote by A the adele ring of F .

1.1 Algebraic groups.

We will need to use various results from the structure theory of reductive groups over fields

of characteristic zero. A good reference for the theory of algebraic groups is (5). Although

we will mostly be concerned with semisimple groups with trivial center, the facts recalled here

apply to any connected reductive group G over F . There exists a maximal torus T in G, and

T remains maximal over every field extension of F . There exists a finite Galois extension E of

F such that T splits over E - we fix this extension and let Γ denote Gal(E/F ). For each place

v of F , TFv is a maximal torus in GFv . There is a unique maximal split subtorus of TFv in GFv ;

denote it by Sv. Let X∗(Sv) denote the set of characters of Sv, and let Φ(GFv , Sv) denote the

subset of X∗(Sv) consisting of the roots of Sv in GFv . A choice of minimal parabolic in GFv

determines a set X+(Sv) of positive characters, a set Φ(GFv , Sv) of positive roots in X∗(Sv), and
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a set ∆(GFv , Sv) of simple roots. Choose a Borel subgroup in GE and denote by ∆(GE , TE)

the corresponding set of simple roots. We define constants κα for α ∈ ∆(GE , TE) by

∑
α>0,α∈Φ(GE ,TE) α =

∑
α∈∆(GE ,TE) καα.

There is a perfect pairing 〈, 〉 : X∗(Sv) × X∗(Sv) → Z. For a simple root θ ∈ ∆(GFv , Sv),

define a cocharacter
∨
θ by 〈α,

∨
θ〉 = −δαθ, where δαθ is 1 if and only if α = θ.

1.2 Cartan decomposition

Our computations require the Cartan decomposition. If v is archimedean we set F 0
v = {x ∈

R : x ≥ 0} and F̂v = {x ∈ R : x ≥ 1}. If v is non-archimedean, we fix a uniformizer $v of

Fv, and set F̂v = {$−n : n ∈ N}, F 0
v = {$n : n ∈ Z}, and Sv(Fv)

+ = {a ∈ Sv(Fv) : α(a) ∈

F̂v for each α ∈ Φ+(Sv)}. Then for each place v, there is a maximal compact subgroup Kv

of G(Fv) and a finite set Ωv ⊂ G(Fv) such that G(Fv) = KvSv(Fv)
+ΩvKv. That is, for each

g ∈ G(Fv), there exist unique elements a ∈ Sv(Fv)+ and d ∈ Ωv such that g ∈ KvadKv. If Fv

is archimedean, or if G is unramified (i.e., quasisplit, and splits over an unramified extension),

then G(Fv) = KvSv(Fv)
+Kv.

1.3 The ∗-action

In this subsection, let k be an arbitrary field of characteristic 0. Let G be a connected

reductive group over k. Let S be a maximal split torus in G and T a maximal torus containing

S. Then Gks is split, and so Tks is contained in a Borel subgroup B of Gks . Let (X,Φ,Φ∨,∆)

be the based root datum of (Gks , B, Tks). As the action of Γ =Gal(ks/k) preserves Tks , Γ

acts naturally on X = X∗(T ) and X∨ = X∗(T ). These actions preserve Φ and Φ∨. We recall
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the ∗-action. If σ is an element of Γ, then there is a unique element wσ in the Weyl group

W (Gks , Tks) such that wσ(σ(∆)) = ∆. The ∗-action of Γ on ∆ is defined by σ ∗ α = wσ(σα),

for α ∈ ∆. We refer to Γ acting by the ∗-action as Γ∗. If G is split, then the ∗-action is trivial.

If G is quasi-split, then the ∗-action is the restriction to ∆ of the natural action of Γ on X∗(T ).

If k′ is a field extension of k over which T splits, then we identify X∗(Tks) with X∗(Tk′), etc.

Restriction from Tk′ to Sk′ defines a surjective homomorphism res: X∗(Tk′) → X∗(Sk′). Let

Φ(Gk′ , Tk′) be the associated root system and Φ(Gk, S) := res(Φ) − {0} be the restricted root

system (in general not reduced). The set of simple roots ∆(Gk′ , Tk′) ⊆ Φ(Gk′ , Tk′) determines a

set of simple restricted roots ∆k = res(∆)\{0}. Here 0 denotes the trivial character on S. The

restriction map ∆→ ∆k∪{0} is surjective. Let ∆0 denote the set of elements of ∆ that restrict

to the trivial character on S. The fibers of the restriction map ∆ − ∆0 → ∆k are precisely

the orbits of the ∗-action on ∆−∆0. Furthermore, G is quasi-split over k if and only if ∆0 is

trivial, in which case the number of Γ∗-orbits is precisely the cardinality of ∆k. For all this, see

(5), Prop. 25.28. We will apply these considerations when k = Fv and k′ = Ew, where F and

E are number fields, and v and w are places of F and E, respectively, such that w|v.

1.4 The Wonderful Compactification

Let G be a semisimple adjoint group and let X be its wonderful compactification. For the

construction, a useful reference is chapter 6 of (6).

Here are some of the properties of the wonderful compactification that we need, working

initially over an algebraically closed field. Let B be a Borel subgroup of G and let T be a

maximal split torus of G contained in B. Let r denote the rank of G, and denote the simple
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roots by α1, ..., αr. The compactification X is smooth, and the boundary X\G is the union of

r nonsingular prime divisors with normal crossings. Via the isomorphism defined in (6) (Prop.

6.1.11), the Picard group Pic(X) of X is identified with the Picard group of the flag variety

G/B, which is isomorphic to the weight lattice of G, and so Pic(X) is a free abelian group

of rank r, generated by the fundamental weights. This isomorphism identifies the boundary

divisors with the simple roots. We shall write Dα1 , ..., Dαr for the corresponding boundary

divisors. Since the simple roots span the root lattice, we see that the Z-span of the boundary

divisors is a sublattice of Pic(X) with index the order of the center of the simply connected

cover of G.

Now we consider the case over number fields. LetG be semisimple adjoint over a number field

F , and let X be the corresponding wonderful compactification. The Galois group Γ = Gal(F/F )

acts on Pic(XF ). The bijection between the set of simple roots and the boundary divisors if Γ-

equivariant (see, for instance, the proof of Theorem 8.1 in (7)), and so Pic(X) is freely generated

by the line bundles corresponding to the orbits of the simple roots under the ∗-action. The

F -irreducible boundary components of X are the divisors of the form DJ =
∑

α∈J Dα for Γ∗-

stable subsets J ⊂ ∆(GF , TF ). We denote the set of boundary divisors of X by A. The closed

cone Eff(X) ⊂ Pic(X)R of effective divisors on X is generated by the boundary components of

X, i.e., Eff(X) =
⊕

α∈AR≥0Dα.

A dominant weight λ is called regular if λ =
∑

α∈∆mαωα with all mα > 0 where {ωα : α ∈

∆} is the set of fundamental weights. The globally generated line bundles correspond to the

dominant weights, and the ample line bundles correspond to the regular dominant weights. An
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anticanonical divisor for X is given by −KX =
∑

α(κα + 1)Dα. Here κα is defined by setting

the sum of positive roots to be
∑

α∈∆ καα.

1.5 Height functions

For the theory of height functions, see sections B.6. and B.8. of (8) and the paper (4).

Let X be the wonderful compactification of G. We fix an integral models X and D over OS ,

for each boundary divisor D. This defines, for all places v /∈ S, local height functions HL,v

for all line bundles L. For places v ∈ S, we fix a v-adic metric on each line bundle L of X.

As explained in (4), we have then defined an adelic metrization on each line bundle L. Define

H : Pic(X)C ×G(A)→ C by H(s, (gv)v) =
∏
vHv(s, gv).

1.5.1 Reducing to the simple case.

The adjoint group G decomposes into simple factors, G = G1 × ... × Gm. Each Gi is also

adjoint, and the wonderful compactification of G is X = X1 × ...×Xm, where Xi denotes the

wonderful compactification of Gi. By the Bruhat decomposition, Gi is geometrically rational

(see, for instance, (9), Prop. 5.1.3), and hence so is Xi. Therefore ((9), Prop. 5.1.2) Pic((X1)F×

...×(Xm)F ) =
⊕m

i=1 Pic((Xi)F ). The height functions on the product are expressed as products

of height functions ((8), exercise F. 15). Therefore, we will assume that G is simple.

1.5.2 Maximal compact subgroups.

For each nonarchimedean place v of F , there exists a compact open subgroup Kv ⊂ G(Fv)

such that for all L, HL,v is bi-Kv-invariant. Moreover, one may take Kv = G(Ov) for all but

finitely many v ((2), Prop. 6.3.). Let K =
∏
vKv, and let K0 =

∏
v<∞Kv.
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1.5.3 Measures.

For each v ∈ Val(F ), let dgv denote the Haar measure on G(Fv) such that Kv has volume

1 whenever v < ∞. Then the collection {dgv : v ∈ Val(F )} defines a Haar measure, say µ, on

G(A). Since G is semisimple, then G(F ) is a lattice in G(A). Thus, by replacing dgv, v ∈ F∞,

with a suitable multiple of it, we may assume that µ(G(F )\G(A)) = 1.

1.5.4 Domains of convergence.

Let TG be the subset of Cr consisting of vectors (s1, ..., sr) such that si = sj whenever αi

and αj are in the same Galois orbit. For ε ∈ R, let Tε denote the set of s = (sα)α ∈ TG such

that Re(sα) > κα + 1 + ε, for all α. For each subset R of C, we set T (R) to be the collection

of s = (sα)α with sα ∈ R for all α. We set T Dε = {s : Re(sα) > κα + 1 + ε, for all α /∈ AD}.

1.5.5 Integral points.

Let S be a finite set of places of F containing the archimedean places. Fix a model U over

the ring oF,S of S-integers in F . The S-integral points of U are the elements of U(oF,S), in other

words, those rational points of U(F ) which extend to a section of the structure morphism from

U to Spec(oF,S). For v /∈ S, let uv = U(oF,v), and let δv be the characteristic function of the

subset uv ⊂ X(Fv). A point x ∈ X(F ) is an S-integral point of U if and only if x ∈ uv for every

place v of F such that v /∈ S. This condition is equivalent to the condition that
∏
v/∈S δv(x) = 1.

For v ∈ S we set δv ≡ 1. For g ∈ G(A), we define δD,S(g) =
∏
v/∈S δv(gv). For v /∈ S, δv(gv) is 1

if and only if the local height with respect to D is 1.
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1.6 Eisenstein series

As a function of G(A), the height zeta function Z(s, .) is a function in L2(G(F )\G(A)).

Writing down its spectral expansion requires a great deal of notation. A useful reference is (10)

1. Let G be a reductive group over F . If v is finite, define Kv to be G(Ov) if this latter

group is a special maximal compact subgroup of G(Fv). This takes care of almost all v. For

the remaining finite v, we let Kv be any fixed special maximal compact subgroup of G(Fv).

We also fix a minimal parabolic subgroup P0, defined over F , and a Levi component M0 of

P0. Let A0 be the maximal split torus in the center of M0. For each archimedean place v of

F , we choose a maximal compact subgroup Kv ⊂ G(Fv) such that G(Fv) = KvA0(Fv)Kv. We

set K =
∏
Kv. It is a maximal compact subgroup of G(A). We also set K0 =

∏
v<∞Kv and

K∞ =
∏
v|∞Kv.

2. Fix a parabolic subgroup P defined over F that contains P0. Let N = NP be the

unipotent radical of P . Let MP be the unique Levi component of P that contains M0. Then

the split component, AP , of the center of MP is contained in A0. Let X∗(MP )F be the group

of characters of MP defined over F , and define aMP
=Hom(X∗(MP )F ,R). For λ ∈ X∗(MP )F ,

we have a map

HMP
: MP (A)→ aMP

, exp〈HM (m), χ〉 =
∏
v |χ(mv)|v.

Let MP (A)1 be the kernel of the homomorphism HMP
. Using the Iwasawa decomposition

G(A) = NP (A)MP (A)K, we define a morphism

HP : G(A)→ aMP
, nmk 7→ HMP

(m) ((n,m, k) ∈ N(A)×MP (A)×K)
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3. Let W be the restricted Weyl group of (G,A0). Then W acts on the dual space of a0.

For a pair of standard parabolic subgroups P, P1, let W (aP , aP1) be the set of distinct linear

isomorphisms from aP onto aP1 obtained by restricting elements in W to aP . Two parabolic

subgroups P and P1 are said to be associated if W (aP , aP1) is not empty. This defines an

equivalence relation on the set of parabolic subgroups in G. If P and P1 are associate, then

M = M1. Moreover, w preserves M = M1, where w ∈ W (aP , aP1). In view of this fact, it is

therefore natural to expect a relationship between representations of G induced from P and

those induced from P ′. Suppose that P is a parabolic subgroup. There is a finite number of

disjoint open subsets of aP , called the chambers of aP . We shall write n(AP ) for the number

of chambers.

4. Let M be the Levi factor of some standard parabolic P of G. Let L2
cusp(M(F )\M(AF )1)

be the space of functions φ in L2(M(F )\M(AF )1) such that for every parabolic Q ⊆ P we have∫
NQ(F )∩M(F )\NQ(A)∩M(A) φ(nm) dn = 0 for almost all m. There is a G(A)-invariant orthog-

onal decomposition L2
cusp(M(F )\M(A)1) =

⊕
σ L

2
cusp,σ(M(F )\M(A)1), where σ ranges over

irreducible unitary representations of M(A)1, and L2
cusp,σ(M(F )\M(A)) is M(A)-isomorphic

to a finite number of copies of σ. An irreducible unitary representation of M(A)1 is said to be

cuspidal if L2
cusp,σ(M(F )\M(A)) 6= 0.

5. We define an equivalence relation on the set of pairs (M,ρ) with M a Levi factor

of some standard parabolic subgroup of G and ρ is an irreducible unitary representation of

M(A)1 occurring in L2
cusp(M(F )\M(A)1). A cuspidal automorphic datum is defined to be an

equivalence class of pairs (P, σ), where P ⊂ G is a standard parabolic subgroup of G, and
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σ is an irreducible representation of MP (A)1 such that the space L2
cusp,σ(MP (F )\MP (A)1) is

nonzero.

The restricted Weyl group W of (G,A0) acts naturally on aP0 and a∗P0
. For any s ∈ W ,

fix a representative ws in the intersection of G(F ) with the normalizer of A0. The equivalence

relation is defined as follows: (P ′, σ′) is equivalent to (P, σ) if there is an element s ∈W (aP , aP ′)

such that the representation s−1σ′ : m 7→ σ′(wsmw
−1
s ), for m ∈MP (A)1, of MP (A)1 is unitarily

equivalent to σ. We write X of the set of cuspidal automorphic data χ = {(P, σ)}. For any

χ ∈ X let Pχ denote the class of associated parabolic subgroups consisting of those parabolic

subgroups P with a Levi subgroup M and a representation ρ such that (M,ρ) ∈ χ.

If M is the Levi factor of some parabolic subgroup and χ ∈ X, set L2
cusp(M(F )\M(A)1)χ =⊕

(ρ:(M,ρ)∈χ) Vρ. This is a closed subspace of L2
cusp(M(F )\M(A)1). It is zero if P /∈ Pχ for every

parabolic subgroup P that has M as a Levi factor. Then we have

L2
cusp(M(F )\M(A)1) =

⊕
χ∈X L

2
cusp(M(F )\M(A)1)χ.

6. Any class χ = {(P, σ)} in X determines an associated class of standard parabolic sub-

groups. For any P , let Π(MP ) denote the set of equivalence classes of irreducible unitary

representations of MP (A). If ζ ∈ a∗C and π ∈ Π(MP ), let πζ be the product of π with the

quasi-character x 7→ eζ(HP (x)), for x ∈ G(A).

If ζ belongs to ia∗P , then πζ is unitary, and so we obtain a free action of the group ia∗P on

Π(MP ). Then Π(MP ) becomes a differentiable manifold whose connected components are the

orbits of ia∗P . We can transfer our Haar measure on ia∗P to each of the orbits in Π(MP ). This

allows one to define a measure dπ on Π(MP ).
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7. Let π ∈ Π(MP ). We will define certain representations of G(A) induced from π. First

we describe the space of the representation. Let H0
P (π) be the space of smooth functions

φ : NP (A)MP (F )\G(A)→ C which satisfy the following conditions:

(i) φ is right K-finite, i.e., the span of the set of functions φk : x 7→ φ(xk), x ∈ G(A), indexed

by k ∈ K, is finite dimensional.

(ii) For every x ∈ G(A), the function m 7→ φ(mx),m ∈MP (A) is a matrix coefficient of π.

(iii) If we define ||φ||2 by the equation ||φ||2 =
∫
K

∫
MP (F )\MP (A)1 |φ(mk)|2 dm dk, then

||φ||2 <∞.

Let HP (π) be the Hilbert space completion of H0
P (π). Now we describe the action of G(A)

on this space. More precisely, we will define representations IP (πζ) of G(A), one for each

ζ ∈ a∗P,C, as follows. For each y ∈ G(A), IP (πζ)(y) maps a function φ of HP (π) to the function

given by (IP (πζ)(y)φ)(x) = φ(xy)e(ζ+ρP )(HP (xy))e−(λ+ρP )(HP (x)).

For φ ∈ HP (π) and ζ ∈ a∗C, define φζ(x) = φ(x)eζ(HP (x)), x ∈ G(A). Recall that the function

eρP (HP (.)) is the square root of the modular function of the group P (A). It is included in the

definition so that the representation IP (πζ) is unitary whenever the inducing representation is

unitary, which is to say, whenever ζ belongs to the subset ia∗P of a∗P,C. The above equation

can be rewritten as (IP (πζ)(y))(φ)(x) = φζ(xy)δP (xy)1/2δP (x)−1/2. We have put the twist by

ζ into the operator IP (πζ)(y) rather than the underlying Hilbert space HP (π), so that HP (π)

is independent of ζ. We remark that HP (π) = {0} unless there is a subrepresentation of the

regular representation of M(A)1 on L2(M(F )\M(A)1) which is equivalent to the restriction of

π to M(A)1.
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8. Note that IP (πζ) is a representation of G(A) on a space of functions on G(A), but the

functions in the representation space HP (π) are not left invariant under G(F ). The functions

in the space are left invariant under P (F ), however. We will average the functions to make

them invariant under G(F ). We are now ready to define Eisenstein series. They provide an

intertwining map from IP (πζ) to the regular action of G(A) on functions on G(A).

Suppose that π ∈ Π(M). For φ ∈ H0
P (π) and ζ ∈ (a∗P )C, we formally define E(x, φ, ζ) =∑

γ∈P (F )\G(F ) φζ(γx)δP (γx)1/2. This expression is defined by a sum over a noncompact space.

In general, such an expression does not converge. For any P , we can form the chamber (a∗P )+ =

{Λ ∈ a∗P : Λ(α∨) > 0 for all α ∈ ∆P } in a∗P . Here ∆P is the set of roots of (P,AP ), where AP

is the split component of the center of MP . As before, suppose that π ∈ Π(M), φ ∈ H0
P (π),

and ζ ∈ a∗P,C. It is a theorem of Langlands that if ζ lies in the open subset of a∗P,C with

Re(ζ) ∈ ρP + (a∗P )+, then the sum that defines E(x, φ, ζ) converges absolutely to an analytic

function of ζ.

The set of points ζ for which IP (ζ) is unitary, i.e. such that ζ belongs to the real subspace

ia∗P of a∗P,C, is never inside the domain of absolute convergence of the Eisenstein series. It is a

theorem of Langlands that the series E(x, φ, ζ) have analytic continuations to this space. More

precisely, if φ ∈ H0
P (π), then E(x, φ, ζ) can be analytically continued to a meromorphic function

of ζ ∈ a∗P,C. If ζ ∈ ia∗P , then E(x, φ, ζ) is analytic. We denote the value of this analytically

continued function at ζ = 0 by E(x, φ).
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9. We need more notation to write down a spectral decomposition of the height zeta function.

Suppose that P is fixed and that χ ∈ X. Suppose first of all that there is a group P1 in P which

is contained in P . Let ψ be a smooth function on NP1(A)MP1(F )\G(A) such that

Ψa(m, k) := ψ(amk), k ∈ K,m ∈MP1(F )\MP1(A)1, a ∈ AP1(F )\AP1(A)

vanishes for a outside a compact subset of AP1(F )\AP1(A), transforms under K∞ according

to an irreducible representationW , and, as a function of m, belongs to L2
cusp(MP1(F )\MP1(A)1).

The function ψ̂M (m) :=
∑

δ∈P1(F )∩MP (F )\MP (F ) ψ(δm), for m ∈ MP (F )\MP (A)1, is square

integrable on MP (F )\MP (A)1. We define L2(MP (F )\MP (A)1)χ to be the closed span of all

functions of the form ψ̂M , where P1 runs through those groups in P which are contained in P ,

and W is allowed to vary over all irreducible representations of K∞. If there does not exist a

group P1 ∈ P which is contained in P , define L2(MP (F )\MP (A)1)χ to be {0}. Then we have

an orthogonal direct sum decomposition L2(MP (F )\MP (A)1) =
⊕

χ∈X L
2(MP (F )\MP (A)1)χ.

Given χ ∈ X, let HP (π)χ be the closed subspace of HP (π) consisting of those φ such that for

all x the function m 7→ φ(mx),m ∈ MP (F )\MP (A)1 belongs to L2(MP (F )\MP (A)1)χ. Then

HP (π) =
⊕

χ∈XHP (π)χ. Suppose that W is an equivalence class of irreducible representations

of K∞. Let HP (π)χ,K0 be the subspace of functions in HP (π)χ which are invariant under

K0 ∩K, and let HP (π)χ,K0,W be the space of functions in HP (π)χ,K0 which transform under

K∞ according to W . Each of the spaces HP (π)χ,K0,W is finite-dimensional. We shall need

orthonormal bases of the spaces HP (π)χ. We fix such a basis, BP (π)χ, for each π and χ, in

such a way that for every ζ ∈ ia∗, BP (πζ)χ = {φζ : φ ∈ BP (π)χ}, and that every φ ∈ BP (π)χ

belongs to one of the spaces HP (π)χ,K0,W .



CHAPTER 2

HEIGHTS ON THE WONDERFUL COMPACTIFICATION

2.1 Spectral expansion.

To study the distribution properties of (D,S)-integral points we will establish analytic

properties of the height zeta function ZS,D : TG ×G(A)→ C, which is defined by

ZD,S(s, g) =
∑

γ∈G(F ) δD,S(g)H(s, γg)−1.

Proposition 1 Given g ∈ G(A), the series defining ZD,S(., g) converges absolutely to a holo-

morphic function for s ∈ T�0. For all s in the region of convergence, ZS,D(s, .) ∈ C∞(G(F )\G(A)),

and for all integers n ≥ 1 and all ∂ ∈ U(g), ∂nZS,D(s.) ∈ L2. Moreover, in this domain, we

have an equality

ZS,D(s, g) =
∑
χ∈X

∑
P

1

n(AP )

∫
Π(MP )

∫
G(A)

δS,D(g′)H(s, g′)−1(
∑

φ∈BP (π)χ

E(g, φ)E(g′, φ))dg′dπ.

(2.1)

Identical to the proof of (2), Proposition 8.2; it suffices to observe that ZS,D is a subsum of

the series defining the height zeta function for rational points considered in (2).

Let X be the set of unramified automorphic characters of G, i.e., continuous G(F )-invariant

homomorphisms G(A) → S1 which are invariant under K0 on both sides. Only these charac-

13
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ters can contribute to the rightmost pole. By (3) Lemma 4.7(2), the number of automorphic

characters that are invariant under this compact open subgroup is finite.

When we set g = e, the identity in G(A), we obtain

Z(s, e) =
∑
χ∈X

∏
v

∫
G(Fv)

δv(gv)Hv(s, gv)
−1χv(gv) dgv + S[(s), (2.2)

where S[(s) denotes the subsum corresponding to infinite dimensional representations (re-

stricted to g = e). The innermost sum in the definition of S[(s) is uniformly convergent for

g in compact sets (see the first half of the proof of Lemma 4.4 of (2)). Therefore, we may

interchange the innermost summation with the integral over G(A) and find that S[(s) equals

[∑
χ∈X

∑
P

1

n(AP )

∫
Π(MP )

(
∑

φ∈BP (π)χ

E(e, φ)

∫
G(A)

δS,D(g)H(s, g)−1E(g, φ) dg) dπP .

2.2 Complexified Height Function.

When G is split, the local height functions can be described in terms of roots. Since E is

a splitting field of T , the group GE is split. Given a boundary divisor Dα of the wonderful

compactification of GE , the local heights are given at all places w by HDα,w(g) = |α(t)|w, where

g = k1tk2 for k1 and k2 in G(OEw) ((2) Proposition 6.3).

In general, HD,v(P ) = (
∏
w|vHD,w(P )[Ew:Fv ])

1
[E:F ] (see (8) Remark B.8.3). For unramified

places the equation becomes HD,v(P ) = HD,w(P ). For almost all places v, gv ∈ G(Fv) can be

written as kvtvk
′
v with tv ∈ Sv(Fv)+ and kv, k

′
v ∈ Kv, and HDα,v(gv) = HDα,v(tv) = |α(tv)|v.

Thus, for such places (which we denote by SF ) δv is given by δv(gv) =
∏
α∈AD |α(tv)|v.
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Considering arbitrary line bundles, we see that the local complexified height function on

G(Fv) has the following explicit form: Hv(s, gv) =
∏
α∈∆(GEw ,TEw ) |α(tv)|sαv . Right now the

height function is written in terms of roots of TEw . We will express the height function in

terms of roots of the maximal split Fv-torus Sv. Some of the roots of TEw , when restricted

to Sv, will have the same behavior. Given θv ∈ ∆(GFv , Sv), let lv(θv) denote the number of

β ∈ ∆(GEw , TEw) with ru(β) = θv. For each θv ∈ ∆(GFv , Sv), there is a simple root β in

∆(GE , TE) such that rv(ι
∗
u(β)) = θv. We define local parameters by requiring that sθv depend

only on the Galois orbit of β in ∆(GEw , TEw). Then, for s ∈ TG and gv ∈ G(Fv), we have

Hv(s, gv) =
∏

θv∈∆(GFv ,Sv)

|θv(tv)|
lv(θv)sθv
v . (2.3)

For v /∈ SF , δv(gv) = 1 if and only if, when gv is written as k1tvk2, we have θv(tv) = 1 for all

θv ∈ ∆(GFv , Sv) such that θv is the restriction of a root of TEw in a Galois orbit corresponding

to D.

2.3 Integrals from one dimensional representations.

2.3.1 An L-function

In this section we review some of the notation defined in section 2.8 of (2). Fix a simple root

α ∈ ∆(GE , TE) and let Γα be the stabilizer of α in Γ. Let Eα be the field of definition of α, i.e.,

the fixed field of Γα. We then have a morphism
∨
α : Gm → T defined over Eα, and consequently

a continuous homomorphism
∨
αA : Gm(AEα)→ T (AEα). Let N : T (AEα)→ T (AF ) be the norm

map, as defined in (2), section 1.6. Let φα be the composite
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φα = N ◦ ∨αA : Gm(AEα)→ T (AEα)→ T (AF ).

If χ is a character of T (AF )/T (F ), then ξα(χ) = χ ◦ φα is a Hecke character. For w ∈

Val(Eα), define ξα(χ)w by ξα(χ) =
∏
w∈Val(Eα) ξα(χ)w.

Let α ∈ ∆(GE , TE), and let O = Γ · α be the orbit of α. The Hecke L-function L(s, ξβ(χ))

depends only on the Galois orbit O, and not on the particular β. For this reason, we denote

the L-function L(s, ξβ(χ)) by L(s, ξO(χ)). Suppose (Eα)w/Fv is unramified and that ξα(χ)w

is unramified. Let Lw(s, ξα(χ)w) = (1 − ξα(χ)w($w)q−sw )−1, where $w is a prime element of

(Eα)w. Then with the above notations, Lw(s, ξα(χ)w) = (1− χv(θ∨v ($v))q
−lv(θv)s
v )−1.

2.3.2 Infinite product

Theorem 2 Let χ = ⊗′vχv be a one-dimensional unramified automorphic representation of

G(A). There exists a function fS,χ, which depends only on (sα)α/∈AD , is holomorphic in T D−1/2,

uniformly bounded in T D−1/2+ε, for any ε > 0, and such that

∫
G(ASD∪SF )

δD,S(g)HS(s, g)−1χ(g) dg =
∏

O/∈AD

LSO(sO − κO, ξO(χ)) · fS,χ(s).

Here, given an orbit O, there corresponds a subfield of E. We let SO be the finite set of

places such that if w /∈ SO, then w does not lie above any place v ∈ SF . Fix a place v of F

such that v /∈ SD ∪ SF . For each θv ∈ ∆(GFv , Sv), there is a simple root β in ∆(GE , TE) such

that rv(ι
∗
u(β)) = θv. We require that sθv depend only on the Galois orbit of β in ∆(GE , TE).
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Starting with an element s = (sα)α ∈ TG and v /∈ SF , we obtain a tuple sv = (svθ)

indexed by ∆(GFv , Sv) by setting svrv(ι∗(α)) = sα; this is well-defined. For s, t ∈ TG and v /∈

SF , we set 〈s, t〉v =
∑

θv∈∆(GFv ,Sv) s
v
θt
v
θ . For any vector a = (aα)α ∈ T (N), we set tv(a) =∏

θ∈∆(Gv ,Sv) θ
∨($v)

avθ . By the Cartan decomposition,

∫
G(ASD∪SF )

δD,S(g)HS(s, g)−1χ(g) dg =
∑

w∈Sv(Fv)+

δv(w)Hv(s, w)−1χv(w)vol(KvwKv).

The above sum is equal to

∑
a∈T (N)

δv(tv(a))q
−〈s,a〉v
v χv(tv(a))vol(Kvtv(a)Kv).

This can be rewritten as

∑
a∈T (N)

δv(tv(a))q
−〈s−2ρ,a〉v
v χv(tv(a)) + bv(s),

where

bv(s) =
∑

a∈T (N)

δv(tv(a))q
−〈s,a〉v
v χv(tv(a))(vol(Kvtv(a)Kv)− δBv(tv(a))).

First, we must bound the infinite product

∏
v/∈SD∪SF

∑
a∈T (N) δv(tv(a))q

−〈s−2ρ,a〉v
v χv(tv(a)).

This expression is equal to
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∏
v/∈SD∪SF

∏
θ∈Av−ADv

∞∑
avθ=0

χv(θ
∨($v)

aθ)q
−(svθ−κ

v
θ)avθ l(θ)

v

=
∏

v/∈SD∪SF

∏
θ∈Av−ADv

(1− χv(θ∨($v))q
−(sθ−κθ)l(θ)
v )−1.

By (2) Proposition 2.9, this infinite product is equal to

∏
O∈A−AD L

SO(sO − κO, ξO(χ)).

Now we turn to
∑

v/∈SD∪SF bv(s). Let σ = (Re(sα))α. Observe that in the definition of bv

we may assume that a 6= 0. Since for each v /∈ SF ∪ SD,

{a|a 6= 0} =
⋃
θ∈∆(GFv ,Sv){a : avθ 6= 0},

we have

∑
v/∈SD∪SF |bv(s)| ≤

∑
v/∈SD∪SF

∑
θ

∑
aα 6=0 δv(tv(a))q

−〈σ,a〉v
v |(vol(Kvtv(a)Kv)− δBv(tv(a)))|

�
∑

v/∈SD∪SF q
−1
v

∑
α/∈AD

∑
aα 6=0 q

−〈σ,a〉v
v δBv(tv(a))

=
∑

v/∈S q
−1
v

∑
θ/∈AD(

∑∞
aθ=1 q

−(σα−κθ)aθl(θ)
v )

∏
β 6=θ,β /∈AD(

∑∞
aβ=0 q

−(σβ−κβ)aβ l(β)
v )

=
∑

v/∈SD∪SF q
−1
v

∑
θ/∈AD

q
−(σθ−κθ)aθl(θ)
v∏

β/∈AD(1− q−(σβ−κβ)l(β)
v )

�
∑

θ/∈AD
∑

v/∈SD∪SF q
−3/2
v <∞.

We need to show the existence of a C > 0 such that |1 + av| ≥ C > 0 for all v. For this,
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|1 + av| ≥
∏
θ∈AD

1

1 + q
−σβ+κβ
v

≥
∏
θ/∈AD

1

2
≥ 1

2r
,

with r = |∆(GE , TE)\AD|. For s ∈ T D−1/2+ε the estimates are uniform, i.e. the quotient

∏
v/∈S Iv(χ)∏

v/∈SD∪SF (1 + av)

is holomorphic in T D−1/2+ε. This completes the proof.

2.3.3 Local integrals for places in SF .

We turn to places v ∈ SF . If v ∈ SF /∈ SD, then by Proposition 4.4 in (4) the rightmost pole

is at maxα/∈AD
κα
λα
. Such integrals will not contribute to the rightmost pole of the height zeta

function. If v ∈ SF ∩ SD, the analysis in (4) shows that the rightmost pole is at maxα∈A
κα
λα

and that the order of the pole is 1 + dim Can
Fv ,λ

(D). They also establish analytic continuation to

the left of the pole.

2.4 Integrals from infinite dimensional representations.

Lemma 3 (1) Let H be a connected reductive group over a number field F . Let v be a place

of F such that H(Fv) is not compact modulo center. Let π be an automorphic representation

of H(AF ). If πv is one-dimensional then π is one-dimensional.

(2) Let F be a non-archimedean local field. Let G be a connected reductive group over F .

If the F -simple factors of the derived group of G are F -isotropic, then any irreducible smooth

representation V of G(F ) is either one-dimensional or infinite-dimensional.

For (1), see Lemma 6.2 in (11). For (2), see (12), Proposition 3.9.

For the integrals
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∫
G(A) δS,D(g)H(s, g)−1E(g, φ) dg,

We will follow and briefly sketch the argument presented in section 4.5 of (13). At any

finite place v we let C∞c (G(Fv)) denote, as usual, the space of functions on G(Fv) that are

locally constant and of compact support. For archimedean v we require such functions to be

smooth and of compact support. The set C∞c (G(Fv)) forms a convolution algebra H(G(Fv))

with respect to the measure dgv. For each place v we define idempotents ξv as in section 4.5 of

(13). The global Hecke algebra H(G(A)) is the space of finite linear combinations of functions

⊗vϕv, where ϕv ∈ H(G(Fv)) and ϕv is ξv for almost all v.

Since δ ·H is invariant on the left and right under the compact open subgroup Kv for each

non-archimedean place v, there is an associated idempotent ξ0 = ⊗′vnon-arch.ξv in the Hecke

algebra ⊗′vnon-arch.H(G(kv)) such that ξ0 ∗ (δ · H) = (δ · H) ∗ ξ0. By a theorem of Harish-

Chandra,
∑

W∈K̂∞ ξW ∗H∞ converges in the topology of C∞(G∞) to H∞. Therefore, we may

rewrite the integral above as

∫
G(A)

(
∑

W∈K̂∞

ξW ⊗ ξ0)H(s, g)−1E(g, φ) dg =
∑

W∈K̂∞

∫
G(A)

(ξW ⊗ ξ0) ∗H(s, g))−1E(g, φ) dg

=
∑

W∈K̂∞

∫
G(A)

H(g, s)−1(ξW ⊗ ξ0) ∗ E(g, φ) dg.

We define Mξ(g, φ) = (ξ ∗ E)(g, φ). For groups of rank at least two we will use uniform

bounds on matrix coefficients obtained by Oh in (14). The same result is expected to hold in
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general by adapting the proof of Theorem 4.5 in (2). We shall use the following result - see

(13), Lemma 4.7. Suppose we are given a strongly orthogonal system Sv in G(kv) for each place

v. We continue to use the notation in section 4.5 of (13). Let ξ be a non-trivial idempotent in

the global Hecke algebra.

Lemma 4 There is a constant Cξ, depending only on the idempotent ξ, such that

|Mξ(g, φ)| ≤ Cξ
√

dimHP (π)χ,K0,W ·maxφ∈BP (π)χ∩HP (π)χ,K0,W
{|E(e, φ)|} ·

∏
v ξSv(gv).

Proposition 2 Let r denote the rank of G. Given ε > 0, there is a constant Cξ,ε, depending

only on ε and the idempotent ξ, such that

|Mξ(g, φ)| ≤ Cξ,ε
√

dimHP (π)χ,K0,W ·maxφ∈BP (π)χ∩HP (π)χ,K0,W
{|E(e, φ)|}

·
∏
v

∏
θv∈∆(GFv ,Sv) |θv(tv)|

−lv(θ)/(2r)+ε
v .

First, we fix a place v of F . Each root θ ∈ ∆(GFv , Sv) forms a strongly orthogonal system.

By Theorem 5.9(3) of (14), for every ε > 0, there is a constant Cε such that for every a ∈ S+
v ,

ξS(a) ≤ Cε|θ(a)|−1/2+rε
v . Multiplying these inequalities over all simple roots of G over E and

taking the rth root gives the result.

Let ϕ be an automorphic form of G(A) in the space of an automorphic representation π

which is right invariant under the maximal compact subgroup K. We must bound the infinite

product
∏
v Iv(s, ϕ), where

Iv(s, ϕ) =
∫
G(Fv) δS,D(gv)Hv(s, gv)

−1
∏
θv∈∆(GFv ,Sv) |θv(tv)|

−lv(θv)/(2r)+ε
v dgv
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2.4.1 Local integrals.

Proposition 3 For all v /∈ S∞, the integral Iv(s, ϕ) is holomorphic for s ∈ T−1−1/(2r). More-

over, for all ε > 0 there is a constant Cv(ε) such that |Iv(s, ϕ)| ≤ Cv(ε) for all s ∈ T−1−1/(2r)+ε.

(2) For v ∈ S∞ and ∂ in the universal enveloping algebra the integral

Iv,∂(s, ϕ) =

∫
G(Fv)

∂(Hv(s, gv)
−1)

∏
θv∈∆(GFv ,Sv)

|θv(tv)|−lv(θv)/(2r)+ε
v dgv

is holomorphic for s ∈ T−1−1/(2r). Moreover, for all ε > 0 there is a constant Cv(∂, ε) such

that |Iv,∂(s, ϕπv)| ≤ Cv(∂, ε) for all s ∈ T−1−1/(2r)+ε.

We will only prove the first part; the second part is similar. Locally, every two local integral

structures give rise to essentially equivalent height functions; so, we replace the local integral

structure so that the resulting height function is invariant under Kv, a good maximal compact

subgroup. Let σ be the vector consisting of the real parts of the components of s. The local

height integral is majorized by

∏
θv∈∆(GFv ,Sv)

∞∑
l=0

δBv(θ
∨
v ($l

v))H(σ, θ∨v ($l
v))
−1q−(1/(2r)−ε)l

v

∏
θv∈∆(GFv ,Sv)

∞∑
l=0

q
−(σθv−κθv+1/(2r)−ε)llv(θv)
v .
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2.4.2 Infinite product.

Proposition 4 The infinite product IS,D(s, ϕ) =
∏
v/∈SF∪SD Iv(s, ϕ) is holomorphic for s ∈

T D−1/(2r). Moreover, for all ε > 0 and all compact subsets K ⊂ T D−1/(2r)+ε there exists a constant

C(ε,K), independent of π, such that for all s ∈ K, |IS,D(s, ϕ)| ≤ C(ε,K).

For each vector a = (aα)α ∈ T (N), we set tv(a) =
∏
θv∈∆(GFv ,Sv) θ

∨
v ($v)

aθv . Let ε > 0.

IS,D(s, ϕ) is bounded by

∏
v/∈SD∪SF

∑
a

δv(tv(a))δBv(tv(a))
∏

θv∈∆(GFv ,Sv)

(|θv(tv(a))|−lv(θ)/2r+ε−lv(θ)sθv
v ).

Therefore, to establish the convergence of the Euler product over places v /∈ SD ∪ SF it

suffices to bound

∑
v/∈SD∪SF

∑
(aα)∈NA\AD

q
−

∑
θ/∈ADv

aθv [(sθv−κθv+1/(2r))lv(θv)−ε]
v .

Corollary 4.1 IS,D(s, ϕ) has an analytic continuation to a function which is holomorphic on

T D−1/2 ∩ T−1−1/(2r). Suppose ϕ is an eigenfunction for ∆. Define Λ(ϕ) by ∆ϕ = Λ(ϕ)ϕ. Then

for each integer k > 0, all ε > 0, and every compact subset K ⊂ T D−1/(2r)+ε ∩T−1−1/(2r)+ε, there

exists a constant C = C(ε,K, k), independent of φ, such that for all s ∈ K,

|IS,D(s, ϕ)| ≤ CΛ(ϕ)−k|ϕ(e)|. (2.4)
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The following proposition shows that infinite-dimensional representations will never con-

tribute to the right-most pole of the height zeta function.

Proposition 5 The function S[ admits an analytic continuation to a function which is holo-

morphic on T D−1/2r ∩ T−1−1/2r, where r is the rank of G.

We need to show the convergence of∑[
χ∈X

∑
P n(AP )−1

∑
W∈K̂∞

∫
Π(MP )(

∑
φ∈BP (π)χ∩HP (π)χ,K0,W

Λ(φ)−r|E(e, φ)|
√

dimHP (π)χ,K0,W

×maxφ∈BP (π)χ∩HP (π)χ,K0,W
{|E(e, φ)|}) dπ

for r large. The proof of this is in the proof of Theorem 4.10 in (13)

2.4.3 The leading pole

We have shown that

ZS,D(sλ) =
∑

χ∈X (G)

∫
G(A) δS,D(g)H(sλ, g)−1χ(g) dg + f(s)

with f holomorphic for Re(s) > a(λ) − δ, for some δ > 0. For χ ∈ X (G) the integral∫
G(A) δS,D(g)HS(sλ, g)−1χ(g) dg admits a regularization of the shape

∏
α∈A(λ)−AD(λ)

LS(sλα − κα, ξα(χ)) · hχ(s) ·
∏

v∈SD\SD∩SF

∏
α∈AD(λ)

Lv(sλα − κα, ξα,v(χv)) · hχ,v(s),

with hχ and hχ,v holomorphic for Re(s) > a(λ) − δ, for some δ > 0. It follows that only

χ ∈ XS,D,λ(G) contribute to the leading term at s = a(λ). We can rewrite this contribution as

|XS,D,λ(G)|
∫
G(A)Kerλ δS,D(g)H(sλ, g)−1 dg,
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where G(A)Kerλ =
⋂
χ∈XS,D,λ(G) Ker(χ) is the intersection of the kernels of automorphic

characters, and where χS,D,λ(G) denotes the finite set of automorphic characters that contribute

to the main pole. Following the proof of Theorem 6.4 in (15), we conclude the following theorem:

Theorem 5 The number of (S,D)-integral points of bounded height on X with respect to λ is

asymptotic to

cBa(λ) log(B)b(λ)−1(1 + o(1)), B →∞.

In the case of the log-anticanonical line bundle, recall that D =
⋃
α∈AD Dα. Also, −KX =∑

α(κα + 1)Dα. Then maxα∈AD
κα
λα

= maxα/∈AD
κα + 1

λα
= 1. Thus the right-most pole for

−KX −D is at s = 1. In this case, each place v ∈ S contributes, to the pole at s = 1, a pole

of order 1 + dim CanFv (D). The order of the pole at s = 1 is

b = rank(Pic(X\D)) +
∑

v∈SD(1 + dim CanFv (D)).
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