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SUMMARY 

“Heat waves can be deadly. Extreme heat was the leading cause of weather-related deaths 

in the United States from 2000 through 2009.” (CDC 2016). The latest data from the National 

Weather Service Office of Climate, Water, and Weather service reveals that Heat was the leading 

cause of weather fatalities from 2006 – 2015 and from 1986 – 2015 (NOAA 2015). The U.S. 

Natural Hazard Statistics provide statistical information on fatalities, injuries and damages 

caused by weather related hazards. (Figure 1, Appendix A) These statistics are compiled by the 

Office of Services and the National Climatic Data Center from information contained in Storm 

Data, a report comprising data from NWS forecast offices in the 50 states, Puerto Rico, Guam 

and the Virgin Islands (NOAA 2015). 

We argue and demonstrate that there is a need to assess the performance of indices used 

to identify vulnerable segments of the population to the adverse effects of extreme heat.  The 

current research establishes a methodology to validate the performance of these indices.  In 

addition, the various variables describing land cover are introduced and with the proposed 

assessment methodology it becomes feasible to assess their contribution in developing reliable 

indices. Our research and analysis propose to determine the extent to which extreme heat has 

affected and will affect the population in Georgia, USA.  

The newly created extreme heat variable will be analyzed along with newly developed 

land cover variables, the commonly accepted socioeconomic variables and the heat related 

morbidity rates in GA from 2000 to 2014. These variables will be analyzed via newly developed 

approaches to determine whether the addition of the land cover variables is significant and 

provide more accurate identification of vulnerable populations in Georgia, USA.
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1. INTRODUCTION AND PROBLEM STATEMENT 

Extreme heat (EH) causes the most disaster related deaths annually when compared to 

other extreme weather events (i.e. floods and earthquakes). As with other natural disasters, 

research shows that the impact of the heat waves affects some people disproportionally, with 

some geographical areas reporting more heat-related mortality (Ghiasi 2011). Moreover, 

vulnerability to EH is different than other natural disasters because there are unique vulnerability 

factors specific to EH such as age; medical conditions; living conditions; social isolation and 

type of employment. (Cooley 2010). Different factors such as health and environmental factors, 

have been linked to increased susceptibility to adverse effects from excessive heat. To help 

identify vulnerable population to natural disasters, researchers have used a social vulnerability 

index (SVI) (Cutter et.al. 2003). Vulnerability modeling intends to assist public health officials 

by identifying areas where there are spatial clusters of vulnerable people and justify the 

involvement of stakeholders in preventive and mitigation plans. Georgia was chosen in part 

because, Georgia is of one the most EH vulnerable states due to its large population and the 

number of heat wave days per year (SA 2017). In addition, the state has not conducting a 

detailed vulnerability assessment and not implementing adaptation strategies to improve extreme 

heat resilience (SA 2017). 

Resilience is a community’s ability to return to normal after a natural disaster and is also 

information vital to a public health official’s ability to identify population areas that are most 

susceptible to the negative effects of Extreme Heat Events (EHEs). According to Bene 2013, 

there is a need to better understand resilience at all societal levels (individual, households, 

communities and societies). One necessary step in this process is to better measure resilience. 

Without the ability to measure and/or to monitor resilience, policy makers and societies more 
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broadly will not be in position to identify and support interventions that have more effect on 

people’s ability to respond and to accommodate adverse events. Putting this resilience 

measurement into practice is therefore a priority, but it is not an easy task and many challenges 

lie ahead (Bene 2013). To the best of our knowledge, determining the interrelation of resilience 

and vulnerability has not been readily explored.  

The state of Georgia has had several EHEs in the past. The hottest summer on record in 

Atlanta, Georgia was in 1980, with an average daily temperature of 82.6oF. Sixteen daily high 

temperature records were broken in 1980 (GATE 2016). The second hottest summer on record in 

Atlanta, Georgia was 2016, with an average daily temperature of 82.4oF. There were 71 days 

with maximum temperature days above 90oF (NWS 2016). The rate of increase of more frequent 

and longer heat waves has been higher than the national average in Atlanta, Ga from 1962 to 

2010 (Winquit et. al. 2015). 

An evaluation of the usefulness of the land cover variables will be completed. To the best 

of our knowledge, our newly created land cover variables are used for the first time as input 

variables for determining the accuracy of extreme heat vulnerability. There is a lack of 

methodology to validate the readily used social vulnerability indices. (Sambanis 2016).  We will 

complete our analysis with an age-adjusted representative population of Georgia within a readily 

identified segment of the widely accepted vulnerable population to determine which counties in 

Georgia are the most vulnerable to EH.  
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2. BACKGROUND 

A. Effects of Excessive Heat on the Human Body 

Heat waves are one of the natural disasters that cause major health impacts without 

prominent destruction and property loss similar to other disasters. The human body has the 

ability to adjust to different situations, including increased heat, but during an EHE, the body’s 

thermoregulatory mechanism can get overwhelmed resulting in a quick rise in the body’s 

temperature reaching dangerous levels (Pooler 2009). Heat illness can result from exposure to a 

hot, humid environment for a prolonged period of time (non-exertional) and often happens to the 

elderly and people with chronic illnesses, or from intense strenuous physical activity in hot 

weather (exertional), such as with school athletes and outdoor workers. (Mayo Clinic 2014) 

Certain psychiatric medications such as Lithium, Haldol and Thorazine can cause dehydration, 

lower blood pressure and cause sun sensitivity (GDHS 2007).  

Heat directly influences the body by interfering with the cellular processes. Blood flow is 

redistributed to the periphery. With the loss of fluids and electrolytes in sweat and the 

redistribution of blood volume to the periphery, a tremendous burden is placed on the 

heart, which ultimately may fail to maintain an adequate cardiac output, resulting in 

cardiovascular collapse, multiorgan failure, and ultimately death. (Helman,2014) 

Levels of Heat Illness: Heat stress and heat cramps happen after exposure to excessive 

heat during a heat wave in the summertime or after exercising in a warm environment. Initially 

the person will feel discomfort and physiologic strain and will have decreased exercise 

performance. When the body’s core temperature rises, heat stress will turn into heat exhaustion 

or stroke (Jardine 2007). Heat cramps are muscle pains and spasms due to heavy exertion and 

can be a first signal that the body is having trouble with the heat (EPA 2016).  
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Heat exhaustion is characterized by an elevated core body temperature between 100.4°F 

and 104°F, and mild dehydration (Jardine 2007). Symptoms include profuse sweating, intense 

discomfort, confusion, thirst, nausea, and vomiting and the person suffering from heat exhaustion 

will feel faint and might collapse. Once cooled and rehydrated, patients with heat exhaustion 

usually make a full recovery (Jardine 2007) (Becker et. al. 2014). The main difference between 

heat exhaustion and heat stroke is the absence of neurological symptoms in heat exhaustion cases 

(Jardine 2007).  

On the other hand, heat stroke, the most severe heat-related illness, occurs with severe 

dehydration, and is identified when a body’s core temperature is greater than 104°F with 

exposure to heat, and neurological symptoms including delirium and confusion that can progress 

rapidly to coma, and seizure with poor outcome (Jardine 2007) (Becker et. al. 2011). Classic heat 

stroke develops slowly over days usually in older persons and the chronically ill (Bauchana et.al. 

2002). Exertional heat stroke however happens more rapidly and usually occurs in young healthy 

persons (Howe et. al. 2007).  

Heat stroke can cause hypotension, irreversible myocardial impairment, liver 

abnormalities, and renal failure (Jardine 2007). The outcome of heat stroke varies; mild heat 

stroke patients usually recover fully but moderate-to-severe heat stroke patients might sustain 

some sequels (Jardine 2007). From the heat illness classification, only heat stroke is considered a 

medical emergency (Bauchana et.al. 2002). Recognition of the early signs of heat illness is 

important to prevent heat stroke and its potential consequences. Some health conditions are 

worsened by heat stress, including neuropsychiatric disorders (Kim et.al. 2007). Hemorrhagic 

shock and encephalopathy syndrome is a serious consequence of heat strokes that affects infants 

and can cause a severe neurological outcome (Jardine 2007). 
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Hyperthermia mortality risk increases from sustained periods of high temperature (heat 

waves) rather than from individual days (Hajat et. al. 2006). When a heat wave occurs at an 

unexpected time, for example, early in the summer months, the impact is usually greater due to 

lack of preparedness. The longer the duration of the heat wave, the more the detrimental impact 

on the population is likely due to possible power outages leaving health/emergency systems 

overwhelmed (Atkins 2013). EHEs are silent killers compared to other weather hazards because 

of the lack of physical property destruction associated with other disasters such as hurricanes and 

tornadoes. Although extreme heat is the leading killer among all natural disasters, there is usually 

no permanent reminder for people to be proactive about possible future events (Changnon, S. A 

et. al. 1996) (NWS 2016).  

One example of the effects of an EHE was the July 1995 heat wave in Chicago, Illinois, 

where heat caused more than 700 deaths (Klinenberg 2001). Heat persisted for a week and the 

temperature at night was in the low-to-mid 80s and did not allow for any relief. The city suffered 

power outages, transportation slowed, and thousands of people developed heat-related illnesses 

that caused the hospitals to be overwhelmed. The city had to provide refrigerated trucks to store 

bodies after the morgue at the Cook County Medical Examiner’s Office reached its capacity 

(UCP Press. 2002). Other more recent events that caused high heat-related mortality rates 

happened in 2003 in Europe affecting France, England, the Netherlands, Portugal, and Spain, 

among others; (Robine et. al. 2007) (Kovats et. al. 2006) (Garssen et. al. 2005) (Simón 2005) in 

Melbourne in 2009; (Atkins 2013) and Moscow in 2010 (Wolf et. al. 2013) (Revich et. al. 2012) 

(Shaposhnikov 2014). The summer of 2015 was one of the deadliest summers in the recent years 

where more than 1,100 people died in Pakistan when the heat reached 112.6°F (deadliest on 

record for the country), and more than 2,200 people died in India due to heat waves (Rice 2015). 
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Some, like certain officials who wanted to downgrade the heat event that happened in Chicago in 

1995, might argue that people who die during heat waves are very sick and might probably have 

died without the added stress of extreme heat (UCP Press. 2002). Studies that reviewed the 

literature of health outcomes during EHEs after the 2003 heat waves found there was excess 

mortality that was not explained by the forward shift (harvesting) effect with no significant 

decrease in mortality in the following weeks after the heat wave (Robine et. al. 2003) (Martiello 

et. al.  2010). 

In the United States, in 2005, there were about 6,200 hospitalization cases related to heat 

with an average stay of 3.2 days and an average cost-of-stay of $6,200 per case (Merrill et. al. 

2008). Wu et al. 2014 examined data from the 2009 and 2010 Nationwide Emergency 

Department Sample and concluded that approximately 4,100 emergency department visits 

annually can be the result of heat stroke, with the majority happening in the summer time. Heat 

illness is preventable and with proper planning the magnitude of mortality, morbidity, and 

monetary loss can be dramatically reduced. 

Chen et. al (2016) recently completed a time-series analysis of heat-waves and 

emergency department visits in Atlanta, GA. They assessed the increase in the risk of emergency 

department visits during heat wave days compared to non-heat wave days for the months of May 

through September from 1993 to 2012. They complied the ICD-9 data for emergency room visits 

for the following health outcomes from 1993 to 2012: Fluid and electrolyte imbalance; Acute 

renal failure; Hypertension; Ischemic heart disease; Dysrhythmia; Congestive heart failure; 

Ischemic stroke; Pneumonia; Chronic obstructive pulmonary disease; Asthma/wheeze; Diabetes 

mellitus; and Intestinal infection. They found the strongest evidence of significant heat related 

morbidity with acute renal failure, ischemic strokes, and intestinal infections. They state that in 
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Atlanta, GA “prolonged heat exposure can confer added adverse health impacts beyond the risk 

due to higher daily temperature, particularly for renal diseases, cardiovascular diseases and 

intestinal infection.” (Chen et. al. 2017). 

B. Climate Change 

There is no doubt that the earth’s temperature is rising. Climate change experts agree that 

the earth’s temperature has risen 1oC in the last 100 years. One of the effects of this temperature 

increase is more extreme weather including heat waves (EPA CC 2016). There has been an 

increase in the number of hot days in the U.S since 1948. (Figure 2, Appendix A) According to 

the U.S. EPA, “Climate models project that if global emissions of greenhouse gases continue to 

grow, summertime temperatures in the United States that ranked among the hottest 5% in 1950-

1979 will occur at least 70% of the time by 2035-2064.” (Melillo et. al. 2014). The increase in 

extreme heat events is a result of climate change. 

C. Urban Heat Island 

The Atlanta metropolitan area is at more risk to extreme heat conditions due to the heat 

island effect. According to the U.S. EPA, “many urban and suburban areas experience elevated 

temperatures compared to their outlying rural surroundings; this difference in temperature is 

what constitutes an urban heat island. The annual mean air temperature of a city with one million 

or more people can be 1.8 to 5.4°F (1 to 3°C) warmer than its surroundings.” (EPA 2008).  

Elevated temperatures from heat islands increases the rate of compromised health, 

especially in sensitive and more vulnerable populations, such as children, older adults, and those 

with existing health conditions (EPA 2008). According to Climate Central, the Atlanta 

metropolitan area is an urban heat island and will have a significant increase in the number of 

days with a heat index above 105oF in the near future (CCUS 2016). Rural areas usually have 
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lower surface temperatures due to the trees, vegetation and open land that dominate its 

landscape. Urban areas usually have more impervious and paved surfaces as well as significantly 

less green cover (EPA 2008). The lack of green cover in the urban Atlanta metropolitan area will 

be an additional vulnerability measure in this thesis. 

D. Extreme Heat Event Vulnerability 

At an empirical level the relevant literature corroborates our major supposition that the 

Extreme Heat Event Vulnerability (EHEV) indices have a categorical nature. Most of the 

research in this field aims to generate the spatial distribution of regions classified in terms of 

vulnerability potential (Cutter and Finch, 2008); e.g., 5 levels with the “most vulnerable” 

counties being those that have a standard deviation score above 1 (Cutter et al., 2003).  Most 

published studies used Geographic Information Systems (GIS) packages, such as ESRI ArcGIS, 

that have a standard feature known as class ranges and breaks (Bunting et al., 2014).  These 

features define the amount of data that falls into each class and the appearance of the map. There 

are two main components in a GIS classification scheme: the number of classes into which the 

data is to be organized and the method by which classes are constituted. The number of classes is 

dependent on the objective of the analysis.  The main rules by which the data are assigned to a 

class, are: Manual, Equal Interval, Quantile, Natural Breaks (Jenks), standard deviations, and 

geometric intervals (De Smith et al., 2007).  A common theme of all these rules is the 

establishment of classes with distinct characteristics in terms of vulnerability (e.g., high, 

medium, low). 

Binta et. al. published an article titled Climate change vulnerability assessment in 

Georgia (Binta et. al 2015). Their research resulted in well substantiated information regarding 

climate change and vulnerable populations in Georgia. They built on existing assessment 



9 
 

 
 

techniques to develop a climate change vulnerability assessment which combined climate, social, 

land cover, and hydroclimatic events in the state of Georgia (IPCC 2007).  

According to Binta et. al. (2015), “vulnerability to climate change is the degree to which 

a system is adversely affected by climate related stimuli and its inability to cope with them”. 

(IPCC 2007) It is typically characterized as some function of exposure, sensitivity, and adaptive 

capacity. The Intergovernmental Panel on Climate Change (IPCC) states that climatic variations 

measure exposure of the system; sensitivity is the effect of variations on the system; and adaptive 

capacity is the ability of a system to adjust to climate related stimuli. The physical causes, that is, 

exposure and their effects are explicitly defined, and the social context is captured in terms of 

sensitivity and adaptive capacity.” (Binta et. al 2015). According to Binta, Shepherd and 

Johnson, their study “quantifies vulnerability to climate change through a holistic approach by 

integrating biophysical and social vulnerability with geographic vulnerability” (Binta et. al 

2015). 

Binta et. al. (2015) performed a Principal Component analysis (PCA) of their variables 

similar to the Social Vulnerability Index (SVI) method specified by Cutter et al. (2003). Binta et. 

al. (2015) combined climatic, social, land cover, and hydrological components together into a 

unified vulnerability assessment. Climate change vulnerability was measured as a departure of 

decadal mean temperature and precipitation from baseline temperature and precipitation and 

extreme hydroclimatic hazards indicated by flood, heat wave and drought events. Sensitivity and 

adaptive capacity were also measured by conceptualizations and methods derived from 

socioeconomic variables. The location of vulnerable populations also accounted for impervious 

surface and flood susceptibility areas (Binta et. al. 2015). 
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According to Binta et. al. (2015), “the variables were standardized into percentage values. 

Principle component analysis (PCA) was performed with Varimax rotation to identify the 

variables that provide maximum loading for each of the principal components. The dominant 

variables in PCA determine the directionality of each principal component. Each principal 

component score was weighted by its percentage variance such that the components with higher 

variance contribute more towards overall sensitivity. Each of the weighted principal component 

scores was summed to construct the overall social vulnerability score. High social vulnerability 

score indicates high sensitivity and low adaptive capacity and vice versa. The social vulnerability 

scores are rescaled to 0-4 scale.” (Jolliffe 2014).  

According to Sambanis (2016): “Principal Component Analysis (PCA) is a multivariate 

statistical technique that uses an orthogonal transformation to convert a set of observations of 

possibly correlated variables into a set of values of linearly uncorrelated variables called 

principal components (Jolliffe, 2014) (Fekete 2012). The number of principal components is less 

than or equal to the number of original variables. This transformation is defined in such a way 

that the first principal component has the largest possible variance (that is, accounts for as much 

of the variability in the data as possible), and each succeeding component in turn has the highest 

variance possible under the constraint that it is orthogonal to (i.e., uncorrelated with) the 

preceding components.  The principal components are orthogonal because they are the 

eigenvectors of the covariance (or correlation) matrix, which is symmetric (Fukunaga, 2013).  In 

addition, expert judgment, is currently a critical element in the subjective interpretation of the 

components generated by these prevailing social vulnerability index methodologies (Fekete, 

2012). (Sambanis 2016) The goal of using principal component analysis is to aggregate the 

original Census variables (e.g., nxp matrix) into a few groups, the principle components (i.e., the 
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characteristic p vectors).” (Logan 2012). In the social vulnerability research field, the scores of 

the principle components are used to derive the composite index; these scores are the coordinates 

of the input individually observations expressed in the new orthogonal system of axes defined by 

the observations of possibly correlated variables characteristic vectors or eigenvectors. If all the 

PCs are retained then the scores, represent the original input observations in the new 

uncorrelated dimensionality. As we pointed above, deriving a composite index by aggregating 

the scores of the selected PCs is likely to pose questions since each uncorrelated component 

encapsulates unique characteristics of the original space.  Summing up these unique 

characteristics implies that each component is an alternative generalized expression of the same 

ultimate entity, which in this case could be the vulnerability potential. This supposition is correct 

only if all the selected correlated variable PCs are contributing to vulnerability in an “equal” 

manner (Cutter et al., 2003). The relationship of the selected PCs to vulnerability is based on the 

subjective interpretation and labelling of the components (Fekete, 2012).  This subjectivity is 

evident as well from the introduction of various multipliers (+/- 1) and the use of absolute score 

values when the sign was ambiguous in terms of contribution to vulnerability (Cutter et al., 

2003) The composite social vulnerability indices derived from PCs scores are likely to have 

better distributional properties since they are the results of linear combinations of the original 

variables. In addition, many statistical packages (e.g., SPSS or SAS) yield standardized scores 

having zero mean and a unit variance; standardization of the original input dataset is not required 

if the correlation matrix is used for PC derivation. 
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3. MAJOR OBJECTIVES AND RESEARCH FOCI 

The overall objective of this thesis is to determine a reliable methodology for identifying 

the geographic areas that are at a higher risk to extreme heat events within the state of Georgia.  

To accomplish this overall objective a performance assessment (PA) approach and a benchmark 

of performance was developed and applied.   Owing to this PA approach, the introduction of land 

cover as an exploratory variable for deriving better EHEV indices is assessed. The proposed PA 

provides the tools to develop reliable indices which can be used by public health professionals to 

prepare and implement effective EH mitigation plans. This dissertation is organized into three 

major research foci, which aim to answer the following questions: 

Focus-1: Is extreme heat adversely affecting the people in the state of Georgia? 

Focus-2: What is the reliability of the existing Extreme Heat Event Vulnerability (EHEV) 

indices derivation approaches which are readily used in EHE vulnerability literature. 

Focus-3: Is there a more accurate approach for identifying vulnerable populations in GA that can 

lead to lower morbidity and mortality rates during future extreme heat conditions? 

To address these foci, the following research approach will be applied: 

Focus-1: Georgia has been undergoing rapid growth and landscape change during the 

2000-2014 research timeframe. According to the U.S. Census, the population of Georgia 

increased from approximately 8.1 million (8,186,453) in 2000 (US Census 2000) to nearly 10 

million (9,687,653) in 2010 (US Census 2010).  The largest metropolitan area in Georgia is the 

Atlanta-metropolitan area. The 2016-2017 Census revealed that the Atlanta-metro area had the 

third largest population increase in the nation (US Census 2017). I will include changes in land 
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cover to determine the role it has in the health effects of extreme heat to the population of 

Georgia. 

Focus-2: The focus of the research analysis is to determine if there is a more accurate 

approach for identifying vulnerable populations in GA that could be applied to lower morbidity 

and mortality rates during future extreme heat conditions.  I will assess the commonly used 

methodologies for deriving vulnerability and identify a framework that can be used by public 

health officials to predict the geographic areas in Georgia are more vulnerable to extreme heat 

conditions. This will be done by applying and comparing the principle component, ranking and 

decision tree methods to demographic variables, historical heat, morbidity/mortality and changes 

in land cover. This first half of the data will be compared to the second half of the data to 

identify and validate a better approach to analyzing for vulnerability. 

Focus-3: We built upon the methodology developed in the Climate change vulnerability 

assessment in Georgia (Binta et. al 2015) article and introduce alternate modeling and 

assessment techniques which will result in a more reliable approach to identify portions of the 

population that are more vulnerable to extreme heat in Georgia. This premise is essential to 

establish a validation methodology, which can be applied to all social vulnerability indices 

regardless of the derivation approach and assess the relevance of the index in terms of 

manifested events. I will review the existing methods that are used to identify vulnerable 

populations and compare them to my newly developed method by completing a vulnerability 

analysis for the state of Georgia, USA. I will also be performing a retrospective analysis of the 

heat related hospital visits and deaths in the state of Georgia from 2000 – 2014 to determine the 

population who experience the highest level of vulnerability to determine the population with the 

highest future vulnerability to extreme heat. I will analyze the morbidity and mortality rates by 
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county and compare the results to the corresponding daily air temperature, humidity and heat 

indexes for the same timeframe.  

The climate information was obtained from the Center for Disease Control and 

Prevention’s North America Land Assimilation System (NLDAS) (NLADS 2017) and the 

National Weather Service (NWS 2017). The morbidity and mortality data were obtained from 

the Georgia Department of Public Health. This information can also be used to identify potential 

areas for intervention and further research. 

  



15 
 

 
 

4. LITERATURE REVIEW 

A. Evaluation of Georgia, USA 

Most of the related literature applied a variation of the methodology developed by Reid 

(2009).  Reid mapped 10 vulnerability factors for heat -related morbidity/mortality in the US in 

geographic space and identify potential areas for intervention and further research. The ten 

factors that Reid uses are: 

- Percent of the population below the poverty line 

- Percent of the population with less than a high school diploma 

- Percent of the population of a race other than white 

- Percent of the population living alone 

- Percent of the population greater than 65 years of age 

- Percent of the population greater than 65 years of age living alone 

- Percent of the census tract area not covered in vegetation 

- Percent of the population ever diagnosed with diabetes 

- Percent households without central AC 

- Percent households without any AC 

The methodologies used to determine extreme heat social vulnerability id highlighted further in Table 

XXV, Appendix B. 

The variation in Reid’s methodology had to be modified at the local level in Georgia 

because the state has no info on the percentage of households with air conditioning.  Maier 

(2003) used a Reid modified heat vulnerability index to perform their research. This article could 

not account for AC in the state of Georgia, so they substituted this variable with the percent 

greenspace.  Maier and Reid also did not use greenspace as a primary indicator of vulnerability. 
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Socio-economic status (SES) and demographic variable were used as primary drivers to 

determine social vulnerability. Binta (2015) also used a Reid modified heat vulnerability index 

without AC info. The vulnerability factors used in the article included socioeconomic and social 

vulnerability.   

The state of Georgia was chosen because it is located in the more temperate southern 

region of the United States; the urban and suburban population in GA is increasing rapidly; the 

number of extreme heat days is increasing annually; and there is a large population that is 

vulnerable to extreme heat. Georgia’s population has increased from nearly 8.3 million in 2000 

to nearly 10.4 million in 2017 (US Census-GA 2017). According to the State of Georgia, 

Georgia’s population is expected to grow to approximately 14.7 million by 2030 (SOG 2017). 

“Georgia currently averages about 20 dangerous heat days a year. By 2050, it is projected to see 

more than 90 such days per year.” (SA 2017). According to the state report card, Georgia is of 

one the most vulnerable states due to its large vulnerable population and the number of heat 

wave days per year (SA 2017). The state report card gave the state of Georgia a “C-“ grade due 

in part to the state not conducting a detailed vulnerability assessment and not implementing 

adaptation strategies to improve extreme heat resilience (SA 2017). 

Georgia contains several rapidly growing major metropolitan areas: Albany, Atlanta, 

Macon and Savannah. (Figure-3, Appendix A;) The most populous of these metropolitan areas is 

the city of Atlanta (Metro Atlanta) which had a population of 4.1 million in 2000 and a 

population increase to 5.8 million in 2016 (AFF 2017). Metropolitan areas at more risk to 

extreme heat conditions due to the heat island effect. According to the U.S. EPA, “The term heat 

island describes built up area that are hotter than nearby rural areas. The annual mean air 

temperature of a city with 1 million people or more can be 1.8 – 5.4oF (1 – 3oF) warmer than its 
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surroundings. In the evening, the difference can be as high as 22oF (12oC).” (EPA 2017). 

According to Climate Central, these four metropolitan areas will have a significant increase in 

the number of days with a heat index above 105oF (Figures 4-7, Appendix A;).  

The metropolitan statistical area of Atlanta, GA has a population of approximately 5.8 

million and consists of 29 counties (Figure-8, Appendix-A). The overwhelming racial majority in 

the state of Georgia is comprised of Whites and African-American. Georgia’s population 

increased in all the demographic categories between 2010 and 2017, except person < 18 years. 

Because race is always a social vulnerability determining variable, it important to note the 

significant increase in Georgia’s African-American population. According to the 2010 US 

Census data, African-Americans were approximately 30% of GA’s population. Hispanics were 

counted along with African-Americans in this 30% in the 2010 US Census. The African-

American population grew to be 34% of GA’s population, not including Hispanics, in 2017. The 

nearly 2-million-person population growth in GA is largely due to people from the northern part 

of the United States migrating to the southern part of the United States. The increase in GA’s 

urban population and landscape can also be greatly attributed to this migration. An increase in 

urban landscape and urban population results in more intense urban heat islands during extreme 

heat events and aids to the needs to include changes in land cover when analyzing extreme heat 

vulnerability. The demographic characteristics of GA are further highlighted in Table I and Table 

II, Appendix B) 

B. Vulnerability 

According to Binta, et.al. 2015, “vulnerability to climate change is the degree to which a 

system is adversely affected by climate related stimuli and its inability to cope with them” 

(IPCC, 2007). It is typically characterized as some function of exposure, sensitivity, and adaptive 
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capacity (equation listed below). Climatic variations measure exposure of the system; sensitivity 

is the effect of variations on the system; and adaptive capacity is the ability of a system to adjust 

to climate related stimuli (IPCC, 2007). The physical causes, that is, exposure and their effects 

are explicitly defined, and the social context is captured in terms of sensitivity and adaptive 

capacity (IPCC, 2007). The Intergovernmental Panel on Climate Change (IPCC) Special Report 

on Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation 

(SREX) report (IPCC, 2012) provides a slightly different approach to vulnerability such that 

exposure (referred to as the location of people, livelihoods and assets) and vulnerability are 

determinants of disaster likelihood. (Binta et. al 2015) 

Vulnerability = f(Exposure, Sensitivity, and Adaptive Capacity) 

According to Sigh 2014, “Social vulnerability is determined by various factors such as 

physical, social, economic, and environmental factors or processes, which increase the 

susceptibility of a community to the impact of hazards. Poverty, occupation, caste, ethnicity, 

exclusion, marginalization and inequities in material consumption of a society or community 

also enhance social vulnerability.” (Singh 2014)  

The four themes used to create the Center for Disease Control and Prevention (CDC) 

Agency for Toxic Substances and Disease Registry (ATSDR) social vulnerability index are 

socioeconomic, household composition, minority status/language and housing/transportation 

(CDC/ATSDR 2011). The CDC is not the only Federal Agency tool that investigates social 

vulnerability. According to the United States Environmental Protection Agency (U.S. EPA), 

certain demographic groups, such as those with lower educational attainment, children, the 

elderly and those with low socio-economic status (SES), appear to be more susceptible to a given 

exposure to particulate matter (U.S. EPA, 2009b).  
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The U.S. EPA has created the EJSCREEN environmental justice mapping and screening 

tool. This interactive mapping tool includes six demographic indicators, twelve environmental 

justice indicators and a method to combine environmental and demographic indicators into EJ 

indexes.  The demographic indicators are minority population; low income population; 

linguistically isolated population; population with less than a high school education; 

population under 5 years of age and population over 64 years of age.  

According to the EPA, “One reason for EJSCREEN to focus on potentially susceptible 

demographic groups is that a large body of research has documented health disparities between 

demographic groups in the United States, such as differences in mortality and morbidity 

associated with factors that include race/ethnicity, income and educational attainment.” (EPA 

2015). The EPA also states, “A growing body of research has shown that demographic factors 

are associated with susceptibility – certain groups are more impacted by a given level of 

exposure to certain pollutants. Various groups have shown increased susceptibility to certain 

pollutants, but further evidence is still emerging in this area and data are limited.  

Bakhish (2015) divides the social vulnerability indicators into three categories: 

sensitivity, the built environment and heat exposure variables. The socio-demographic 

vulnerability indicators Binta et. al. (2015) focus on are age groups greater than 65 and less than 

5; poverty; racial/ethnic minorities; occupation; urban/rural population; female head of 

household; inmate population; non-English speaking; unemployment; renter population; and 

dwelling in mobile homes. They also include the physician to population ratio; education level; 

per capita income; and irrigated land. (Binta et. al. 2015) Binta et. al. (2015) found climate 

vulnerability to be the highest in some metropolitan Atlanta counties. Binta et. al. (2015) also 

found the rural Black belt region of Georgia to be especially vulnerable to extreme heat. The 
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rural Black belt region of Georgia consists of counties with poverty greater than 20%. The Black 

Belt counties stretch from southern Virginia down through the Carolinas, Georgia, Alabama, 

Mississippi, and over to east Texas (Figure-9, Appendix A;). These counties have higher than 

average percentages of African-American residents (McDaniel et. al. 2003).  

While there is significant overlap in the vulnerability indicators used by government 

agencies such as the CDC and the U.S. EPA, as well as readily accepted vulnerability indicators 

used in research, they are all highly based on socio-demographics. These socio-demographic 

variables can be justified to exemplify those studied within those socio-economic groups as 

being more vulnerable to every natural disaster, including extreme heat events. For example, the 

economic wealth of the African-American population GA has historically been low enough that 

researchers have determined that their wealth is a factor that contribute to their higher morbidity 

and mortality rates. If these groups are always used to determine vulnerability, then why 

complete any further social vulnerability analysis? There is a need to update these analyses with 

the inclusion of a neutral variable that equally affects all the socio-demographic variables. We 

will introduce land cover as a significant neutral variable that can be used to more accurately 

identify vulnerable populations in the state of Georgia. 

C. Vulnerability vs. Social Vulnerability 

Disaster vulnerability is more related to the structural aspects of a population. For 

instance, people who live on the coast are more vulnerable to flooding, versus people who live 

inland; while social vulnerability is how the level of vulnerability is affected by socioeconomic 

factors. For instance, inner-city populations usually have higher asthma rates than rural areas, 

due to socioeconomic factors such as population density and higher pollution rates. According to 

Jungman et. al. (2015) “Vulnerability is dynamic and varying across temporal and spatial scales, 
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and may depend on economic, social, geographic, demographic, cultural, institutional, 

governance, and environmental factors.” According to Cutter et.al. (2009) “Social vulnerability 

is partially the product of social inequalities—those social factors that influence or shape the 

susceptibility of various groups to harm and that also govern their ability to respond. However, it 

also includes place inequalities—those characteristics of communities and the built environment, 

such as the level of urbanization, growth rates, and economic vitality, that contribute to the social 

vulnerability of places.”  The Commonly used extreme heat social vulnerability index factors are 

further discussed in Table XVI Appendix B. 

While considering the commonly used extreme heat social vulnerability variables, our 

analysis includes socioeconomic variables, heat exposure, and newly developed land cover 

variables. The socioeconomic variables used to derive the EH indicators for this research are: 

• median income;  

• percent of the population below the poverty level;  

• percent of the population 65 years and above in age;  

• percent of the population 5 years and below in age;  

• percent female head of household with children;  

• percent unemployed age 16 years and over;  

• percent African-American; percent Non-White;  

• percent no vehicle;  

• percent no high school education;  

• median home value and percent on public assistance;  

• percent living in mobile homes.  
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The social vulnerability indicators chosen for this research are based on the aforementioned 

sources. 

D. Resilience 

The World Conference on Disaster Reduction adopted the Framework for Action 2000-

2015: Building Resilience of Nations and Communities to Disasters to which highlighted the 

need for building the resilience of nations and communities to disasters (WCDR 2005). This 

conference came to a consensus that resilience is “The capacity of a system, community or 

society potentially exposed to hazards to adapt, by resisting or changing in order to reach and 

maintain an acceptable level of functioning and structure. This is determined by the degree to 

which the social system is capable of organizing itself to increase this capacity for learning from 

past disasters for better future protection and to improve risk reduction measures.”  UNISDR. 

Geneva 2004 (WCDR 2005). There are several definitions of resilience. The United Nations 

International Strategy for Disaster Reduction (UNISDR) defines resilience as “The ability of a 

system, community or society exposed to hazards to resist, absorb, accommodate to and recover 

from the effects of a hazard in a timely and efficient manner” (UNISDR, 2009, p. 24) The 

Intergovernmental Panel on Climate Change (IPCC) defines resilience as “The ability of a social 

or ecological system to absorb disturbances while retaining the same basic structure and ways of 

functioning, the capacity for self-organization, and the capacity to adapt to stress and change” 

(IPCC 2018). Resilience is a community ability to return to its normal activities after a disaster. 

Resilience is a multi-dimensional measure. Human / social resilience refers to the (i) absorptive, 

(ii) adaptive, and (iii) transformative capacities that individuals, households, groups, 

communities and societies develop to reduce the risk of long-term detrimental impacts induced 

by specific advert events (shock/stress) (Béné et al. 2012). For the purpose of this research, 
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resilience is defined as a peoples’ (individuals, households and communities) ability to adapt, 

handle and recover from adverse climate changes in a timely and efficient manner. 

There are also several definitions of disaster resilience. Disaster resilience was defined at 

the World Conference on Disaster Reduction as the ability of countries, communities and 

households to manage change, by maintaining or transforming living standards in the face of 

shocks or stresses - such as earthquakes, drought or violent conflict - without compromising their 

long-term prospects (DID 2018). 

Disaster resilience is also defined as the ability of individuals, communities, 

organizations and states to adapt to and recover from hazards, shocks or stresses without 

compromising long-term prospects for development. According to the Hyogo Framework for 

Action (UNISDR, 2005), disaster resilience is determined by the degree to which individuals, 

communities and public and private organizations are capable of organizing themselves to learn 

from past disasters and reduce their risks to future ones, at international, regional, national and 

local levels (GSDRC 2018). The Organisation for Economic Co-operation and Development 

(OECD) determined that disaster resilience is part of the broader concept of resilience – ‘the 

ability of individuals, communities and states and their institutions to absorb and recover from 

shocks, whilst positively adapting and transforming their structures and means for living in the 

face of long-term changes and uncertainty.” (OECD 2013). 

According to Bene, there is a need to better understand resilience at all societal levels 

(individual, households, communities, societies). One necessary step in this process is to better 

measure resilience. Without being able to measure and/or to monitor resilience, policy makers 

and societies more broadly will not be in position to identify and support interventions that have 

http://www.gsdrc.org/topic-guides/disaster-resilience/concepts/what-is-disaster-resilience/#unisdr-2005b
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more effect on people’s ability to respond and to accommodate adverse events. Putting this 

resilience measurement into practice is therefore a priority (Bene 2013).  

Extreme heat is a natural disaster, but resilience to extreme is difficult to measure. Heat 

cramps, heat exhaustion, and heat stroke are all sudden conditions. The effects of extreme heat 

are normally acute, unless the extreme heat is sustained for a concentrated period of time, 

resulting in a disaster.  

Table XVII, Appendix B, summarizes information from several studies, covering a span of 

more than ten years, in terms of the major social vulnerability (SoV) index derivation techniques and 

the eventual and practical usage of the derived indices (Sambanis 2016). These studies are just a small 

sample since many of the quoted authors published other, similar, studies that are not listed in Table 

XVII to avoid repetition (e.g., Cutter et. al., 1996, 2000, 2007, etc.).  As seen in Table XVII, use of the 

derived SoV index as an implicit classification tool to visualize vulnerability is noticeable, providing, 

thus, sufficient empirical evidence to substantiate the major supposition postulated in this study.  This 

supposition is further substantiated if SoV published reports from national and international agencies 

and organizations are considered (e.g., McCarthy, 2001; Briguglio, 2003; and Parry et al., 2007). 

Measurement is the foundation of any scientific inquiry and, to the best of our knowledge, in the field 

of SoV research; the underlying measurement scale of SoV indices has not been discussed. This 

examination is required since, as this research will reveal, SoV indices are not always in the same scale 

due to differences in the derivation approaches. Ultimately, regardless of the apparent scale of 

measurement, the indices are converted into a cartographic scale of a few only ordered and discreet 

classes to represent the levels of vulnerability in a conceptually understandable manner (see Table 

XVII).  
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5. EXTREME HEAT DATA AND METHODS 

According to the U.S. EPA, there are two viable methods of analyzing extreme heat event 

(EHE) related morbidity. The more conservative method counts only outcomes on EHE days 

where the attribution information (e.g., primary diagnosis, cause of death) lists excessive 

weather-related heat exposure or a condition unequivocally associated with excessive heat 

exposure, such as heat stroke. (EPA 2006) The second method is based on increases in outcomes 

during EHE periods being compared to long-term averages (EPA 2006). 

We have also chosen the most conservative quantification method of using the outcome 

counts on EHE days where the ICD-10 Codes list excessive heat-related exposure as the cause 

for death for morbidity analysis for the state of Georgia from 2000 – 2014. 

The heat-related ER visits for 2000 – 2014 for Georgia residents were queried and 

supplied by the Georgia Department of Public Health (GDPH) (GDPH 2017). The query was 

compiled based on the ICD-9 Codes in Table III of Appendix-B (ICD 2018):  

The diagnosis code list is for any occurrence of extreme heat related adverse health 

effects (not just principal diagnosis). The GDPH searched the diagnosis code list for any 

occurrence of codes. The heat-related death data for Georgia residents was compiled based on 

the ICD-9 Diagnosis Codes in Table IV of Appendix B (ICD 2018). 

According to some projection models, EHEs are estimated to become longer, more 

frequent, and more severe (Karl et. al. 2009) (NRC 2010). As a result of this shift, experts expect 

a dramatic increase in health problems and mortality due to EHEs over time (CDC 2013). 

Extreme heat has an adverse effect on the human body and can cause heat stress, worsen the 

symptoms of an existing illness, and in extreme cases can cause permanent health effects and 
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even death (Anderson et. al. 2011) (Helman et. al. 2014). In the United States alone, extreme 

heat was the cause of more than 7,800 deaths in the period between 1999 and 2009 (CDC 2013). 

EH was the leading cause of weather-related mortality between 2000 and 2009 (Kochanek et. al. 

2012) (CEC 2013). Extreme heat is also likely to affect infrastructure and services causing, for 

example, power outages and breakdown in public transportation and support services, thus, 

increasing the frequency of detrimental effects on the community (Atkins 2013). It is estimated 

that the death toll in the United States would increase by an additional 1,907 cases if the average 

temperatures increased by 5°F (Bobb et. al. 2014). Using data collected at weather stations as 

well as global climate models, researchers from Georgia State University projected that most of 

the Southeastern USA region will have apparent temperatures similar to that of present-day 

southern Florida, which has a tropical climate. Apparent temperature (AT) in the summer is often 

referred to as the heat index, what humans perceive the temperature to be based on a 

combination of humidity and the actual air temperature. Higher apparent temperatures and more 

extreme heat days could lend themselves to more heat-related illnesses, and potentially more 

deaths. The research suggests the summer atmosphere may also be more conducive to extremely 

high ozone concentrations, a hazard to individuals with lung diseases such as asthma, as well as 

the elderly. Higher summer temperatures are favorable for the growth of mosquitos capable of 

transmitting viruses, such as dengue, resulting in the potential for transmitting vector related 

illnesses at rates similar to tropical areas (Diem 2017). 

The use of apparent temperate heat data is the optimal heat index to use because it 

accounts for humidity as well as temperature. The heat index data obtained for the state of 

Georgia was downloaded from the CDC Wonder website accounts for humidity and is given in 

apparent temperature (CDC 2017). 
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My analysis of the climate heat will be derived using the “Average Daily Maximum Air 

Temperature” from the Center for Disease Control’s North America Land Data Assimilation 

System (NLDAS) Daily Air Temperature and Heat Index (1979-2011) Request. The “Average 

Daily Maximum Air Temperature” accounts for humidity and the recorded heat temperatures 

throughout each day (CDC 2017) (Wonder 2019). The heat index temperature set is also referred 

to as the Apparent Temperature (AT). “Assessing the Performance of a Vulnerability Index 

During Oppressive Heat Across Georgia, United States” by Grundstien et.al (2003) accounted 

for the environmental factor of heat by using the maximum and minimum daily apparent 

temperature (AT) from the National Climatic Data Center. AT is an assessment of what exposed 

body surfaces feel like in cold, windy, warm and humid conditions (NCEI 2019). According to 

the National Centers for Environmental Information, apparent temperature is calculated using the 

following regression equation: 

AT = -2.7 + 1.04*T + 2.0*e -0.65*v 

Where AT and T (air temperature) are °C; e is vapor pressure in kPa; and v is 10-meter wind 

speed in m/sec (NCEI 2019). 

The data used to determine Apparent Temperature for the counties in the Atlanta 

Metropolitan area from 2012 to 2014 was obtained from the University of Georgia’s College of 

Agricultural and Environmental Science; University of Georgia Network (CAES 2019). The 

weather stations used to obtain the AT are listed in Table VI, Appendix B. The Maximum Air 

Temperature and the Average Daily Humidity for each weather station for each county that 

comprises the Atlanta Metropolitan area was used to calculate the AT from 2012 to 2014. 

According to the National Oceanic and Atmospheric Administration (NOAA) the reported Heat 

Index is the AT is temperate temperatures. “Heat index combines the effects of heat and 
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humidity. When heat and humidity combine to reduce the amount of evaporation of sweat from 

the body, outdoor exercise become dangerous even for those in good shape.” (NCEI 2019).” The 

Heat Index, also referred to as apparent temperature, is an estimate of the temperature (in °F) that 

would similarly affect the body at normal humidity (about 20 percent). For example, if the actual 

temperature is 100°F with 40 percent relative humidity, the heat index is 110°F meaning the 

apparent temperature feels like 110°F to the body.” (IAState 2019). Heat Index was calculated 

for the Atlanta Metropolitan Area from 2012 to 2014 using the following NOAA equation (NWS 

2019): 

HI = -42.379 + 2.04901523*T + 10.14333127*RH - .22475541*T*RH - .00683783*T*T 

- .05481717*RH*RH + .00122874*T*T*RH + .00085282*T*RH*RH - .00000199*T*T*RH*RH 

 

Where: 

 RH = Relative Humidity (%) and 

 T = Temperature (°F). 

These are the corresponding counties that encompass the Atlanta metropolitan area: Barrow, 

Bartow, Butts, Carroll, Cherokee, Clayton, Cobb, Coweta, Dawson, DeKalb, Douglas, Fayette, 

Forsyth, Fulton, Gwinnett, Haralson, Heard, Henry, Jasper, Lamar, Meriwether, Morgan, 

Newton, Paulding Pickens, Pike, Rockdale, Spalding, and Walton. 

SoV indices are likely to be at measurement scale that entails classification. The obvious 

case are indices based on the percentile rank transformation of the original correlated variables. 

The individual transformed variables as well as their sum (i.e., composite index) are at an ordinal 

scale of measurement which, by definition, is a classification scale of points from lowest to 

highest (Abramson and Abramson, 2008; see also Velleman and Wilkinson, 1993 for issues with 



29 
 

 
 

the traditional scales).  This scale provides ordering information regarding where the nth point of 

interest lies in relation to the others; however, it does not provide information regarding the 

magnitude of the difference between points. In the context of SoV studies, this is likely to be the 

preferable scale to express vulnerability since ordering is the only meaningful property of a 

construct that signifies a potential state (e.g., one county is much more vulnerable than another 

is).  Quantitative statements of differences and comparisons, such as “one county is 3 times more 

vulnerable than another is”, are rendered meaningless in the context of a construct that signifies a 

potential.  The SoV indices derived by rescaling of the original correlated variables (e.g., Z-

scores) and summation has all the characteristics of an interval scale, however, this approach 

poses interesting challenges since rescaling, which is a linear transformation, will not change the 

underlying distribution of the original variables.   

Performing a principle component analysis (PCA) provides new data composite variables 

(i.e. principle components) that can be used to determine a population’s vulnerability. However, 

PCA does not capture the qualitatively differentiating nature of vulnerability of communities in 

geographic areas and do not provide a practical and reliable planning tool. My research considers 

social vulnerability to extreme heat as a classification issue. I will follow the classification 

modeling and performance assessment techniques introduced by Sambanis (2016), which are 

likely to provide a more accurate analysis of the attributes influencing vulnerability as well as 

establish a more reliable approach to identify potentially high-risk areas. Georgia, USA decadal 

data from 2000 and 2010 was used to perform this analysis. The 2000 and 2010 Georgia, US 

Census variables that we selected in this thesis are listed in Table XVIII, Appendix B. 

The data was analyzed in the same manner as Sambanis (2016), “with the use of 

Microsoft Excel, the Census variables were filtered to utilize only compatible variables available 
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between the two sets of Censuses.  In addition, since the Census data is from different time 

periods, the Census tract relationships were joined in Microsoft Access by selecting the 

appropriate crosswalk files for a specific Census year from the Longitudinal Tract Data Base 

(Logan et al., 2012) (Sambanis 2016). Then, by exporting the common Federal Information 

Processing Standard (FIPS) Census tract codes and aggregating the data by weight, a common 

set of records was derived for the two periods.” (Sambanis 2016).  

I used the decision tree (DT) approach introduced by Sambanis (2016). for exploring the 

potentials of analyzing social vulnerability within a classification framework. According to 

Sambanis (2016), “Decision tree induction is a well-known and effective classification technique 

extensively used in several domains. Its major field of application is the data mining and 

analytics fields where it is used to explore data structures and induce the tree and its rules that 

will be used to make predictions.  In the context of SV studies, the prediction from a 

classification model could be a vulnerability category (i.e., severity class) based on actual 

instances of losses which are placed in categories or classes.” (Larose 2014) Also, in accordance 

with Sambanis (2016), “the percentile rank (PR), PCA, and DT approaches will be implemented 

with the use of the computer program known as IBM® SPSS® Modeler 16.0.” (Larose, 2014) 

(Sambanis 2016). 

A widely performed method in the social vulnerability analysis is to subjectively label 

each one of the derived principle components based on the magnitude of the coefficients of each 

component vector (e.g., the coefficients of each characteristic vector).  Another common practice 

is to change the sign of the coefficients (e.g., by multiplying with -1) to accommodate the 

interpretation of the component vector in terms of its contribution to social vulnerability, which 

is a simple additive model of the principle component scores. Sambanis (2016) introduced a 
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predictive performance matrix (PPM) technique that I will use to optimize the selection of the 

number of principle components as well as their direction (i.e., sign). According to Sambanis 

(2016). “the performance comparison is achieved by using a matrix x matrix confusion (or error) 

matrix. For a given geographic scale, which defines the area of interest, in this case tract, we 

define the following classification performance metrics: The numbers of correctly classified 

areas which occur when their instance class (i.e., Target classification of losses) matches the 

predicted class (i.e., the diagonal elements of the confusion matrix) provide an overall 

classification (i.e., the diagonal elements of the confusion matrix) provide an overall 

classification performance measure.  The sum of these matching classes divided by the total 

number of areas, N, yields the Overall Classification Performance (OCP) rate.” (Sambanis 2016).  
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6. LAND COVER 

Land cover/green spaces are a key part of the standard formulation to determine a 

population’s vulnerability to adverse health effects due to extreme heat. According to my 

research, there has been limited research on the effect of land cover change and its effects on 

extreme heat vulnerability and resilience as a primary indicator.  

Binta et. al. (2015) state: “vulnerability to climate change is the degree to which a system 

is adversely affected by climate related stimuli and its inability to cope with them” (IPCC, 2007). 

It is typically characterized as some function of exposure, sensitivity, and adaptive capacity. 

Climatic variations measure exposure of the system; sensitivity is the effect of variations on the 

system; and adaptive capacity is the ability of a system to adjust to climate related stimuli 

(IPCC,2007). According to Sigh 2014, “Social vulnerability is determined by various factors 

such as physical, social, economic, and environmental factors or processes, which increase the 

susceptibility of a community to the impact of hazards. Poverty, occupation, caste, ethnicity, 

exclusion, marginalization and inequities in material consumption of a society or community 

also enhance social vulnerability.” (Singh 2014). 

Reid et.al. (2009) used land cover as a variable in her larger equation when mapping the 

determinants of heat vulnerability in the U.S. Reid used widely accepted demographic variables 

to determine vulnerability (% population below poverty line; % population with less than high 

school diploma; % population of race other than white; % population living alone; % population 

> 65 year of age; and % population > 65 living alone.), land cover (% census tract are not 

covered by vegetation), diabetes prevalence and % households without air conditioning. (Reid et. 

al. 2009) They created a cumulative heat vulnerability index, which included all of these 

variables and performed a factor analysis of the vulnerability variables.  
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Nayak (2017) also used land cover (% land with high building intensity areas and % land 

that consist of open undeveloped areas) along with other widely used social demographic 

variable to develop a heat vulnerability index (HVI) for New York City. The results of the HVI 

were then mapped across NYC to show its special vulnerability (Nyak et. al. 2017).  

Weber (2015) created a vulnerability indicator by using Moderate Resolution Imaging 

Spectroradiometer (MODIS) land surface temperature data (LST) to map the exposure, social 

sensitivity, and vulnerability of urban populations in Philadelphia. Weber defined vulnerability 

as: Exposure + Sensitivity – Adaptive Capacity. Weber determined exposure to be “the extent to 

which the population of Philadelphia is being exposed to heat events and how the frequency and 

intensity of these events are changing over time were evaluated using air temperature data from 

air weather stations in the study area and satellite-derived LST. Normalized Difference 

Vegetation Index (NVDI) was also examined both for its potential link to shade-providing trees, 

both of which can create localized cooler temperatures.” (Weber et. al. 2015). 

Reid et. al. (2009) also states: “The published literature on mapping heat vulnerability is 

scant. Vescovi et al. (2005) geographically overlaid climate variables with socioeconomic 

variables in southern Quebec to estimate current vulnerable populations and then estimated 

future population vulnerability using climate and population projections. Overall, that study 

projected that the population at risk will increase. Harlan et al. (2006) investigated physical 

attributes of the environment, socioeconomic characteristics, and an outdoor human thermal 

comfort index in Phoenix and found that neighborhoods with the highest temperatures and the 

least amount of open space and vegetation were also the most socioeconomically disadvantaged. 

A publication mapped many heat vulnerability variables by county for the state of California 

(Climate Change Public Health Impacts Assessment and Response Collaborative 2007). 
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However, they did not make an index or analyze the collocations of their vulnerability variables. 

All three studies attempted to situate vulnerability in space, but at different spatial scales and 

with different variables.” (Reid et. al. 2009). 

As a part of my research, I compared the change in land cover in the state of Georgia 

from 2001 to 2011. I used this comparison as a determinant for extreme heat vulnerability and 

resilience. The land cover data was retrieved from the National Land Cover Database (NLCD) 

and then analyzed via ESRI’s ArcGIS Pro Tabulation Area tool. The description of NLCD Class 

Descriptions that were used to perform a special analysis of the change in land cover in Georgia 

can be found in Appendix A (Land Cover: Table XIV). 

I used the variables 23 and 24 from Table XIV to map the change in land cover for urban 

land cover (ULC). I used the following variables from Table XIV to determine the total natural 

land cover (NLC): 11+41+42+43+52+71+81+82+90+95. My research has found that there is a 

direct correlation between land cover, vulnerability and resilience, notwithstanding the social or 

widely accepted vulnerability demographic variables.  

The difference in land cover was assessed by comparing the following NLCD Class 

Descriptions: 

• Urban land cover (ULC & P.T.ULC): variables 23+24 

• Low urban land cover (LULC): variables 21+22 

• Total Natural Land Cover (NLC): variables 11+41+42+43+52+71+81+82+90+95 

• Material land cover (MLC): variable 31  

Material land cover has been included because their areas have a high probability of 

being inhabited. The likelihood of someone experiencing extreme heat health effects are low. As 
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described above, variable-31 is “Barren Land (Rock/Sand/Clay) - Barren areas of bedrock, desert 

pavement, scarps, talus, slides, volcanic material, glacial debris, sand dunes, strip mines, gravel 

pits and other accumulations of earthen material. Generally, vegetation accounts for less than 

15% of total cover” (NLCD 2011). 

Figures 10 & 11, Appendix-A depicts the spatial distribution of the 2001 and 2011NLCD 

for the State of Georgia. The color hues represent NLCD classification. (Multi-Resolution Land 

Cover Character Consortium, 2016). 
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7. METHODS 

My research focused on May to September, because these months normally have the 

highest chance of excessive heat-related exposure for the state of Georgia. Most heat exposure 

analyses used the mean temperature to determine extreme heat exposure (Binta et. al. 2015) 

(EPA 2019). In this project we are proposing to use the monthly cumulative apparent 

temperature for the months of May to September from 2000 to 2014, this measure is likely to 

provide a more accurate representation of the exposure conditions due to extreme heat. This 

metric was calculated by introducing a threshold above which the temperatures are likely to pose 

a threat to the public.  This threshold was the mean of the Average Daily Max Heat Index 

(m.ADMHI) for each month.  The m.ADMHI estimate was subtracted from the daily values, 

which were above the threshold, and the extreme heat exposure exceedance (EHEE) was 

calculated.  For each year (i) during which the extreme heat event occurred we have the 

following daily (j) exceedances: 

EHEEimj = ADMHIimj  - m.ADMHIim 

For the current study, we are introducing the concept of the monthly cumulative EHEE 

indicator (EHEEI) which is the sum of the daily EHEE above the threshold:   

𝑐𝑐. 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖  = � 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖 
30

  𝑗𝑗=1

 

Where: 

i = Year, 2000, 2001, 

m = month, 1,2 ,3,4 5 (May to Sept) 

j = days 1 to 30 or 31 
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The c.EHEEI provides a measure of the heat exposure which is likely to cause the 

unwanted outcomes such as EH morbidity and mortality. This exposure metric is in accordance 

with the pathology of EH related health outcomes since most cases require an exposure duration 

to manifest themselves. A similar concept has been used in the IH and chemical exposure 

literature (EPA 2007) (Sexton et. al. 2007). According to Kim et. al. 2018: “we explored 

cumulative exposure, climate justice, and flood risk with specific reference to community 

resilience, vulnerability, and social justice characteristics at the county-level within the U.S. 

Mississippi River basin from 1990 to 2009. Using a basic conceptual model of spatial resilience 

to climate risks, temporal lag effect of community capacity, urban and rural spatial classification, 

integrative cumulative exposure, and spatial clustering of risk, they examined spatial climate risk 

outcomes and the role of community resilience in reducing such risks.” (Kim et. al. 2018). The 

U.S. EPA has established a “Framework for Cumulative Risk Assessment” which defines 

cumulative risk as “the combined risks from aggregate exposures to multiple agents or stressors, 

where agents or stressors may include chemicals, as well as biological or physical agents or the 

absence of a necessity such as habitat.  Cumulative risk assessment, then, is an analysis, 

characterization and possible quantification of the combined risks to health or the environment 

from multiple agents or stressors.” (EPA 2008). 

The mean of the morbidity for every county was adjusted for age and then separated into 

three age categories: Category I – less than 5 years in age; Category II – 5 to 65 years in age; 

Category III – greater than 65 years in age. We chose to analyze for the 65 and older segment of 

the vulnerable population in Georgia. This was done because the 65 and over population (CAT 

III) is a segment in every variable analyzed. For example, there is a 65 and over segment in the 

African-American, White and percent below poverty level population. The 65 and older 
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population is not only present within every variable, this age group usually has higher 

vulnerability to adverse health effects during extreme heat conditions. The 65 and older 

population who experience adverse effects to extreme heat is larger than the 5 and under 

population in most cases. It is for these reasons that the data morbidity analysis was age-

adjusted.  We calculated the mean of the morbidity for each county to assess the importance of 

the land cover derivatives. The mean of the morbidity was calculated in two periods over a five 

years span. The first period is 2000 – 2004. Period I was selected, 2000-2004 in order to have a 

better representation (less missing values per month and counties) within each age category and 

especially, Category III (>65). 

The calibration period of 5 years 2000 to 2004 (Period 1) was selected to minimize 

missing values and secure a spatial distribution of morbidity, which will include the majority of 

counties. For validation purposes, 2007 to 2011 data was used for the same reasons. 

Two basic structures are being used: 

Population adjusted morbidity (P.A.Morb) data and age adjusted Morbidity (A.A.Morb); both 

rates are reported per 100,000. 

13061 Clay and 13239 Quitman counties do not have morbidity data for period 1. We will 

assume that morbidity for these counties from 2007 to 2011 is also zero. 

To identify counties that are likely to have the highest risk for Extreme Heat Event 

Vulnerability (EHEV) based on the input variables and the additive rank model, a basic 

prerequisite is the use of easily accessible databases and statistical techniques which will not 

require the involvement of experts. 
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A concomitant objective is to assess the use of the proposed Predictive Performance 

Matrix (PPM) as an approach for identifying an optimum EHEV index, which is not readily used 

in EHE vulnerability analysis literature. 

A third objective is to evaluate the usefulness of the three land cover variables (MLC, 

NLC, and T.ULC) and the c.EHEE that, to the best of our knowledge, are used for the first time 

as input variables for EHEVI derivation purpose.  

The variables are: 

• BASIC:   

o KEY_FIPS, MONTH, YEAR, AGECAT (for CAT modeling), Geography 

• ENVIRONMENTAL:  

o c.EHEE, P.LULC, P.ULC, P.MLC, P.NLC, P.T.ULC 

• SOCIO-ECONOMIC:   

o Total population, 01_MEDIAN_INCOME, 03_PCT_NO_VEHICLE; 

04_PCT_PUB_ASSIST; 05_PCT_FEMALEHOUSE_CHILDREN; 

06_PCT_5_UNDER; 07_PCT_65_OVER; 09_PCT_AA; 10_PCT_NO_HSEDU; 

11_P_BELOW_POVERTY; 12_PCT_UNEMPLOYED_16_OVER; 

13_PCT_MOB_HOME; 16_PCT_TOT_POP_WHITE; 

02_MEDIAN_HOME_VALUE 

Target:  Population adjusted morbidity, per year, per month for period 1 (P.A. 

MORBIDITY_P1); and age-adjusted morbidity rates (A.A. MORBIDITY) to assess prediction 

of specific categories.  
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For the calibration data set, i.e., Period 1, we will apply the performance metrics 

developed by Sambanis (2016) described in the Data and Methods section.  In the current 

project, the major advantage of these metrics will be fully exploited by using them as an 

“optimization” process to select a rank-based additive model with the best predictive 

performance in terms of identifying areas at risk for high levels of morbidity due EHE. The 

following terms are being utilized in accordance with Sambinas (2016): 

• FC: Failure Class 

• CF: Classification Failure 

• OCP: Overall Classification Performance 

• OOR: Overall Overestimation Rate 

• OUR: Overall Underestimation Rate 
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8. RESULTS 

The trend line in Figure 12 Appendix A, shows that the Average Daily Max Heat Index 

(ADMHI) have an upward path for the entire state of Georgia. This historical evidence provides 

justification to believe that heat levels will continue to rise and that the upward trend will 

continue. Figure 12 also shows an upward trend in the heat levels for the entire state of Georgia 

from 2000 to 2011. According to Figure 13 Appendix A, the mean of the Average Daily Max 

Heat Index for the Atlanta Metropolitan Area indicated that the average apparent temperature is 

above 90 degrees for the summer months. Figure 12 Appendix A shows that the ADMHI from 

May to September, from 2000 to 2011, has been above the average apparent temperature of 90 

degrees. The ADMHI has also been above that 90-degree threshold more than 50% of the years 

analyzed for the month of September. 

Figure 13 Appendix A shows that the mean of the Average Daily Max Heat Index 

indicates that the average apparent temperature is above 90 degrees more during the summer 

months for the all of Georgia. There is also a significant amount of days of extreme heat 

exposure exceedance (EHEE) well above 95 degrees. Table VII, Appendix-B shows that the 

mean c.EHEE May to September, from 2000 to 2011, has had an increase in higher than normal 

extreme heat occurances. The increase in the mean c.EHEE are likely due to climate change. 

The mean mortality rate for each category for Period I is displayed in the Table VIII, 

Appendix-B. The mean morbidity rate for Category I (five and under) and Category III (65 and 

older) are significantly higher than the morbidity of Category II (Between 5 and 65). The higher 

morbidity rates are further highlighted in Figures 15 &16, Appendix-A. Figure 22 shows a 

positive correlation between the morbidity for each age category and the cumulative EHEE from 
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2000 to 2004. The morbidity rates for all of the categories increases with c.EHEE, however, the 

morbidity rates for Category I & III increases more with c.EHEE than Category II. 

Age-adjusted morbidity increased as the median income of this population decreases. The 

highest counts of morbidity exist when the population’s median income is less than $50K 

annually and the most prevalent when their income is less than $35K per year (Figure 17, 

Appendix A). Age-adjusted morbidity is more prevalent in populations with a median income of 

less than $35K when urban land cover becomes a factor. Adjusting for urban land cover also 

increased the morbidity of the population across the entire socio-economic spectrum. 

Figure 10, Appendix A; shows the land cover of Georgia in 2001. The Atlanta-metro area 

is the most heavily developed along with Augusta, LaGrange, Columbus, Macon, Savannah and 

Albany. A comparison of the urban developed landscape from 2001 (Figure 10, Appendix A) to 

2011 (Figure-11, Appendix A) shows that there has been an increase in the special distribution of 

the developed land cover in these same areas. A comparison of the population’s land cover 

related EH vulnerability and resilience for the same period results in a direct correlation to the 

increase in developed urban land cover. As the developed land cover increases, the vulnerability 

to adverse health effects due to extreme heat of the population of Georgia, especially in the more 

developed areas, increases. The heat resilience of the same population decreases at the same 

time. By using LC as a surrogate variable, we can state that the vulnerability of population in 

Georgia is increasing and the resilience of the population to extreme heat is decreasing as the 

landscape becomes more developed. The counties with the highest land cover related social 

vulnerability (LCSV) and lowest land cover resilience are listed in Table XIII, Appendix B. 
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The selected land cover characteristic is the change in land cover between 2001 and 2011 

(percent defLSV and percent LSR are used). The difference from in the total urban land cover 

from 2001 to 2011 was calculated for each county as follows: 

D.LSV = LSV2011 - LSV2001 (for each county) 

D.LSR = LSR2011 - LSR2001 (for each county) 

As previously stated, according to the U.S. EPA, “many urban and suburban areas 

experience elevated temperatures compared to their outlying rural surroundings; this difference 

in temperature is what constitutes an urban heat island. The annual mean air temperature of a city 

with one million or more people can be 1.8 to 5.4°F (1 to 3°C) warmer than its surroundings.”   

(EPA 2008). 

The change is likely due to signify potential structural changes in EHE 

Vulnerability/Resilience since land cover (or land use) is closely related to the “heat island” 

phenomenon in heavily urbanized areas (i.e., increase in impervious surfaces such as asphalt 

cover and cement). A significant property of D.LSV and D.LSR is that these variables are 

closely related to infrastructure changes, which subsequently are closely related to EHE events 

(e.g., reduction or increase of green space). 

There is a direct correlation between heat LC vulnerability and LC resilience in Georgia. 

The resilience of the population decreases as the vulnerability of the same population increases. 

The statistical analysis of the LCV and the LCR is displayed in Figures 18-20, Appendix-A. 

LCV and LCR have a significant reciprocal correlation to further support the evidence that as 

vulnerability increases, resilience decreases. For land cover, in essence: R=1/V. Further 

graphical evidence is provided below to clarify the reciprocal relationship between resilience and 

vulnerability (Figures 20 & 21, Appendix A;). For example, when vulnerability is 3 the 
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resilience is -6. Figures 23 & 24, Appendix A are graphical representations of Georgia’s 

population adjusted morbidity by year and by month, by period, from 2000 – 2004, respectively. 

These graphs show an increasing morbidity trend from 2000 – 2004. The monthly graph shows 

an increasing morbidity trend for the population of GA between May and September (2000 – 

2004), with the largest increase coming in July. Table XIX shows GA’s population adjusted 

morbidity (2000 – 2004) by demographic variable.  

Table XX, Appendix B summarizes the optimization process and the selection of an additive 

model based on ranks that is likely to identify and classify regions (counties) susceptible to EHE. 

Table XX and the metrics (FC, CF, etc..) provide the means to tailor the additive model selection 

process in terms of operational objectives, for example, optimize the model in terms of the 

classification failure (CF) metric to avoid underestimation. 

A. Principle Component Analysis (PCA) Analysis 

A detailed picture of performance is achieved with the used of the predictive assessment matrix 

(PAM) and performance assessment optimization (PAO) which was first introduced by Sambanis 

(2016) in an emergency management context and for the first time, herein, in an EHEV context. An 

example will be resented in the final section comparing the optimum solutions for the three basic 

methodologies (i.e., Rank, PCA, and DT).  From Table XX, we can state that in most cases the 

addition of the land cover variables improves performance especially in terms of CF. Table XX 

presents the PCA model selection process based on the proposed metrics and the identification of an 

optimum solution for the areas that are likely to exhibit detrimental EHE outcomes.  Based on similar 

projects (e.g., Heba, 2015) the above solution with an 41% overall classification performance (OCP) is 

likely to be in line with the predictive performance of the PCA methodology which, in most cases, 
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outperforms the methodology which is based on ranks.  The proposed PA and optimization approach 

(based on the proposed metrics) provides the empirical evidence to substantiate this statement. 

A further improvement is to perform an orthogonal VARIMAX rotation of the PCs (Jolliffe 

(2002). Detailed results are presented in the Appendix; an overall assessment of the PCA solution is 

the extraction column, which indicates the proportion of each variable’s variance that can be explained 

by the derived principal components; this column indicates that all the variables are well represented in 

the new space (before rotation). The component matrix provides the loadings, which are the 

correlations between the variable and the PC and the VARIMAX rotation, in some cases, improves the 

interpretability of the resulting PCs. 

The new orientation signifies the importance of the land cover variables since in the new 

dimensional representation (after rotation) they have significant loadings on the second PC. The 1st 

components is likely to represent the S/E status and race variables whereas the 3rd provides a clear 

representation of the “sensitivity” variables related to age and exposure (i.e., c.EHEE). 

The results and discussion offer the opportunity to clarify the major constituent that achieves 

the objective of the proposed approach; specifically, the derivation of an EHEV predictive model with 

an optimum classification capacity in terms of identifying regions with a high EHE morbidity risk. In 

this context, the component scores (and dimensionality reduction) are the major constituents of this 

approach (and not the identification of latent continua). The proposed metrics enhance the ability to 

accomplish this objective. 

B. Decision Tree (DT) Analysis 

The DT approach for identifying counties that are likely to have the highest risk for 

EHEV. 

According to Sambinas (2016): 
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“Decision tree (DT) algorithms are supervised learning algorithms which recursively 

partition the input data based on its attributes, until some stopping limit is reached 

(Larose, 2014). This recursive partitioning gives rise to a tree-like formation.  DT are 

popular tools for classification and prediction that are gaining popularity in many 

fields.” A basic premise that makes the DT approach attractive is that “DT methods are 

exploratory (not inferential) and non-parametric since they do not require assumptions 

about the data distribution, scale, and model” (Sambanis 2016). 

In addition, these methods can easily deal with missing data which is a common 

characteristic of real-world data sets values as well as categorical attributes.  

A decision tree starts from the root node and contains internal nodes and leaf (terminal) 

nodes, all internal nodes have two or more child nodes. The root and internal nodes contain 

splits, which are the building blocks of the tree formation.  The split at each node is described by 

a decision that depends on one selected feature of an attribute A (e.g., Income > $40,000). The 

feature for A is selected among all possible ones, and the split is selected among all possible 

splits, with the objective to minimizing the heterogeneity of the resulting subsamples forwarded 

to the child nodes.  The aim is that the final partitions (terminal leaves of the tree) are 

homogeneous with respect to the classes.” (Sambanis 2016). The C5.0 algorithm was used to 

derive the index: “The C5.0 algorithm which is the most recent version of the ID3.0/C4.5 

algorithms developed by Quinlan (1986 and 1993); the improvements are documented by Pang 

and Gong (2009).  This algorithm will be used to explore the predictive performance of this 

approach for classifying vulnerability.” (Sambinas, 2016). 

Table XXII, Appendix B presents the results from DT (C5.0 algorithm) modeling of the P.A. 

Morbidity as a target variable with 4 and 5 classes. The low classification failure (CF) rates, confirm 
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the superior performance of this approach for identifying high risk EHE regions; these results are in 

line with all the previous applications of this DT approach developed by the Sambinas (2016). 

(Sambanis 2016). 

The DT (C5.0 algorithm) in combination with the proposed PAO (performance assessment and 

optimization) approach provide the means to identify high EHE areas with an improved predictive 

performance (OCP above 70%). In the previous sections, it is evident that OCP for the commonly 

applied methods based on ranks and PCA is, in most cases, within a 30% to 40% range.  Given that 

both the DT modeling and PAO approach are not explored in the EHE vulnerability literature (to the 

best of our knowledge the present project is the only application), the current findings signify the 

potentials that this approach has in this field. 

Focusing on Cat III morbidity for Period 1, encapsulates the DT modeling performance 

difference and clearly delineates the superiority of this classifier especially in terms of classification 

failure (CF). From a public health point of view, the CF is a critical metric since a high rate is likely to 

result in misclassifying areas, i.e., high EHE morbidity risk areas that are classified as low, and 

preparedness measures to protect the public during EHE public health underserved areas.  

The two PA matrices (see Figure 28, Appendix A) further corroborate the superiority of 

the DT classifier for deriving EHEVI and identifying many GA counties at risk based on the 

Period 1 EHE since the two critical metrics (OUR and CF), from a public health point of view, 

are at a very low range. The following graph demarcates the input variables and their importance 

for the derived DT classification that yields an 88.1% OCP.    
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9. DISCUSSION 

Based on the results of the analysis the top counties in GA with highest land cover urban 

growth from 2001 to 2011 are listed in Table IX, Appendix B. The Counties in GA with zero or 

negative urban growth from 2001 to 2011 is also listed in Table XX Appendix B. 

The GA Counties with the highest morbidity rates for the 65 years of age and older 

population (CAT III) with low urban land cover was analyzed. The results are located in Table 

XI, Appendix B. According to the analysis, Webster county has had the highest morbidity rate 

for any single month between 2000 and 2004. The highest reported morbidity rate for Webster 

county was 283 per 100,000 people. Webster county is a small county of approximately 2300 

people that covers 210 square miles. Agriculture and forestry are the main industries in Webster 

County (AFF 2000-1). According to the 2000 US Censes, Webster county was approximately 

50% White, 47% African-American and 3% other races. The population of 65 and older was 

14%. The median household income was $27,992 and approximately 19% of the population 

lived below the poverty line (Binta et. al. 2015).  

When comparing cumulative extreme heat events in rural counties between 2000 and 

2004, there are some counties that frequently have historically had the highest morbidity rates for 

the 65 and older population: 

• Jenkins County, GA (2000 to 2004) 

• Atkinson County, GA (2002 & 2003) 

• Wilcox County, GA (2000 & 2002) 

• Stewart County, GA (2003 & 2004) 

• Talbot County, GA (2001, 2003 and 2004) 
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Jenkins and Johnson counties were also identified as counties with negative urban growth 

between 2000 and 2010 (Table – X: Counties in GA with zero or negative urban growth). 

As previously covered, the rural Black belt region of Georgia consists of counties with 

poverty greater than 20% and these counties have higher than average percentages of African-

American residents (AFF 2000-1). The Black Belt account for 60% of the rural counties with the 

highest morbidity for this period: These counites are: Webster; Atkinson; Marion; Lanier; 

Clinch; Talbot; Stewart; Berrien and Screven counties. The non-Black Belt rural counites with 

the highest morbidity rates during extreme heat months are Jenkins; Schley; Long; Miller; 

Monroe and Wilcox counites.  

The demographics and urban landscape of theses counties did not change much 

throughout the 2000 to 2004 analysis period. The lack of development and population changes 

yields similar morbidity results and a repeat of the same counties with higher morbidity results in 

rural the rural areas of Georgia. For instance, there is no official cooling center in Webster 

County, GA. My analysis has determined that the residents in these counties, especially those 

who are 65 and older, are more vulnerable to higher morbidity rates during extreme heat events. 

The GA counties with the lowest morbidity rates for the 65 years of age and older 

population (CAT III) with high urban land cover was analyzed. The results are located in Table 

XII, Appendix B. When comparing cumulative extreme heat events in urban counties between 

2000 and 2004, there are some counties that frequently have lower morbidity rates for the 65 and 

older population: 

• Bibb County, GA (2000 – 2004) 

• Clayton County, GA (2001 – 2004) 
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• Muscogee County, GA (2002 – 2004) 

• Gwinnett County, GA (2002 -2003) 

• Fulton County, GA (2000 and 2004) 

Clayton, Fulton, Gwinnett and Cobb counties are part of the Atlanta-metropolitan area. 

Richmond county is part of the Augusta metropolitan area. Bibb county is part of the Macon 

metropolitan area. Muscogee county is part of the Columbus metropolitan area.  

As previously discussed, most of the vulnerability analysis include demographic values 

such as race in their analysis. Race is an important factor, but it is not always an accurate 

predictor of vulnerability. Richmond County had one of the lowest morbidity rates for the 65 and 

older population in all the counties in Georgia in 2003. According to the 2000 US. Census, 

Richmond County was 49.8% African-American and 45.6% White. 21.1% of the households in 

Richmond County are occupied by someone 65 and older (AFF 2000-3). The median household 

income was $33,086 and 19.6% of the population lives below the poverty level (CAMO 2015). 

The development of these urban areas results in lower morbidity rates. The urbanization 

of these metropolitan areas includes the development of new housing units (i.e. condos and 

apartments) with central AC. New homes are also being built and rehabilitated with central air 

conditioning units. The urban landscape is also being developed in a manner that will reduce the 

existing urban heat island effects of these metropolitan areas. For example, the city of Atlanta 

has prioritized 10 impact areas which includes developing land use policies and programs 

designed to protect greenscapes and their current tree canopy (Binta et. al 2015). 
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10. VALIDATION 

In this dissertation, validation of a SoV index is an activity verifying at what extend the 

members in a derived vulnerability class are members as well of classes that sustained the hazard 

realization at a comparable scale.  A member in this case is the community/location of interest 

(i.e., geographic unit), subsequently, validation is the activity to verify whether the vulnerability 

ranking of the community has a relevance to a past or simulated reality in which the hazard is 

manifested. In Figure 33, Appendix A, this validation approach is presented in a simplified 

schematic. 

The SoV indices that assign a vulnerability status to loactions, are formulated in the first 

contextual sphere.  This elusive status becomes a reality, (described by a quantitative scale of 

damages, e.g., property damages in dollars), only if the hazard is materialied and the EHEV 

classification is verified by a comperable DL classification.  Otherwise, it is likely that the 

resulting comparison will be problematic since the measurement scale of the SoV index, 

seemingly an interval scale, pertains more to categorical characteristics.  Associating categorical, 

in nature, variables to ratio scale loss variables (e.g., number of displaced households) will likely 

yield problematic results. This issue has been identified in previous studies, e.g.,  “The results 

showed that both in 2000 and 2010, there were not discernible correlations between 

vulnerability (including socioeconomic, built-environmental and social vulnerability) and 

disaster losses at the 5 % level of significance.”  (Zhou et al., 2014; see also Cutter et al., 2003, 

and Flanagan 2011). Having this issue in mind, the authors are proposing practical characteristics 

of a disaster vulnerability index. The qualitative characteristics of a vulnerability index have 

been identified in the disaster reduction literature (de León, 2006) as well as in the climate 
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change literature (Wolf et al., 2011). A modified version of these characteristics in the context of 

the proposed validation methodology is as follows: 

1. Relevance, reliability, and validity: the index needs to identify and rank vulnerable 

locations that realized in a comparable ranking scale, harm, losses, and damages. Ranking 

must be, as much as possible, equivalent. This characteristic will be used to define 

performance criteria.  

2. Stability: the index needs to be able to identify and rank vulnerable locations that “are 

stable for some time (or show repeating patterns in dynamics) in order to allow 

vulnerability reducing measures” (Wolf et al., 2011). 

3. Feasibility: the input data sets used to derive the index “need to be cheap, reliable, 

recent, routine and at a sufficient spatial resolution” (Wolf et al., 2011). 

4. Transferability: the index derivation methodology should be applicable to other regions 

regardless of the geographic unit. 

The above characteristics address practical qualities of SoV indices, at a more fundamental level 

the authors believe that methodological simplicity must be, as well, a paramount characteristic of 

EHEV indices since "We may assume the superiority ceteris paribus [other things being equal] 

of the demonstration which derives from fewer postulates or hypotheses." (Aristotle 1960). The 

lack of the above characteristics as well as “A myriad of detailed theoretical definitions of 

concepts have been proposed but have not helped to clarify the confusion. In fact, by adding 

more trees to the proverbial forest, these definitions enhance confusion.” (Wolf, 2011) implies 

the application of these indices as a decision support component for hazard mitigation planning, 

although, vulnerability is a sought-after quality in the risk assessment phase of these plans. 
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Implicitly, validation can only be performed in the realization sphere where vulnerability 

ceases to exist as a potential state of a community and harm, losses, and damages become an 

unwanted reality (see Figure 33 Appendix A).  For extreme heat events, a basic prerequisite for 

validating the index is the existance of a realization which will define a comperable scale of 

harm and damages.  Such a realization are the morbidity and mortality rates (Bakhsh, 2015).  

A. Proposed Validation Methodology and Metrics 

For a specific geographic target area, having n locations of interest, i = 1, 2, …, n, the 

SoV index can be regarded as a classifier of unrealized instances. The variable(s) quantifying a 

hazard realization (HR) event (e.g., morbidity and mortility), are easily converted to comperable 

classes of realized instances with a data analytic technique known as discritization, or binning. 

For practical and theoretical reasons, the n locations will be classified into comperable, 

qualitatively, categories for both instances; c = 1, 2, …, m.  By comparing the locations falling 

within each category we can derive the so called m × m confusion (contigency, error, or 

coincidence) matrix (Lewis and Brown, 2001, Chen et al., 1996, and Bhardwaj and Pal, 2012). 

For this study we will use the term perfomance assessment (PA) matrix.  A major advantage of 

this approach is that this matrix can be used to define specific classification performance metrics 

appropriate for Extreme Heat Event Vulnearbility (EHEV) research and hazard mitigation 

planning. An example of the error confusion matrix that we will use can be located in Figure 34, 

Appendix A. 

We are proposing that the total number of correctly classified members are correctly classified 

members are those that occur when the predicted (i.e., C(SoV)ij) vulnerability class matches the hazard 

realization (i.e., C(HR)ij) class.  For example, 5 counties are classified to belong to the lowest SoV 

group (i = 1). Based on the HR classification of a past disaster in terms of property damages, the same 
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counties are classified to belong to the hardest hit group (j = 1).  Computationally, the sum of the 

diagonal cells will provide a metric in terms of overall performance. The sum of these matching 

classes divided by the total number of areas, n, yields the Overall Classification Performance (OCP) 

rate.  This metric is similar to the overall classification accuracy in the remote sensing field of research 

which has many conceptual similarities with the SoV field in terms of location importance (Lewis and 

Brown, 2001, Foody, 2002).  

If the index is used to allocate extreme heat mitigation resources, misclassification can cause 

overestimation or underestimation allocation problems.  The off diagonal elements of the PA matrix 

provide valuable metrics to assess quantitatively these misclassifications.  For this purpose, the 

following two metrics are introduced: 

1. Underestimation Error (UE).  A EHEV index misclassification of an actual highly vulnerable 

location (j = 1) into a non-vulnerable class (i = 3) is likely to have serious consequences for 

hazard mitigation planning leading to a max classification failure (i.e., CF, c1m element in 

Figure 35). There is a number of ways to quantify this, in the final analysis risk, 

underestimation error (REF), within the context of hazard mitigation planning, we are 

proposing an overall underestimation error rate based on the sum of all the lower diagonal 

elements divided by n.  

2. Overestimation Error (OE).  A EHEV index misclassification of a non-vulnerable 

location (j = 1) into a highly vulnerable class (i = max) is likely to result in a waste of 

valuable recourses similar to the consequences of a false alarm or classification (i.e., FC, 

c1m element in Figure 35). To quantify this overestimation error, we are proposing an 

overall overestimation error rate based on the sum of all the upper off diagonal elements 

in Table II Appendix B divided by n.  
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The progression of the EHEV index validation to a categorical level, for example, with 

the conversion of the predicted and reference variables into categories and the application of 

confusion matrices (Figure 35), provides a detailed information framework within which various 

aspects of a classifier (i.e. EHEV or SoVP index) are assessed. For this dissertation, we will 

explore the use of these metrics for EHEV index validation as well as an optimization tool (e.g., 

selecting input variables to derive the index). Application of other PA metrics such as the 

Positive Predictive Value, Negative Predictive Value, or exploring levels of categorical 

agreement with the use of the Kappa coefficient (Cohen, 1960, Warrens, 2015) is a topic of a 

forthcoming publication by the authors. 

a. Heat Disaster Realization Data 

Heat related morbidity and mortality data was used because these records are strictly 

diagnosed and coded using the ICD-9 and ICD-10 diagnosis codes (Tables III and IV Appendix 

B). These records are also readily available via the Georgia Department of Publc Health. The 

morbidity variable was transformed to Percentage Fractional Ranks (i.e., each rank is divided by 

the number of records with valid values and multiplied by 100). For this application, a classifier, 

c, such as the one resulting from rescaling of the original variables (e.g., z-scores) could have 

been used as well. To simplify the notation all losses and harms will be terms and symbolized as 

disaster loss index (based on morbidity) for a location, i, of interest takes the form:   

Eq. 1:  DLIi  = ci (Morbi) 

b. Disaster Loss index: Performance Threshold 

The first application of the proposed PA methodology will be to assess the use of a 

“previous” disaster as an indicator of Disaster loss (DL). For this purpose, the morbidity data of 

period I will be used to assess the association with the DL period II. To be consistent with the 
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proposed PA methodology, we will be using both realized event with the un/realized dichotomy, 

though, in reality, both events were realized. The first event defines a new vulnerability status 

(i.e., locations are thus classified) which need to be validated in terms of a second event (i.e., to 

confirm the classification). Communities hard hit by EHE or other natural disasters undergo 

major changes that very likely alters their vulnerability (e.g. installation of AC units). 

This DL indicator is probably better defined than the EHEV index and although centering 

on the loss (i.e., morbidity or mortality) it implicitly contains EHEV features.  This simple 

application of the proposed PA methodology will manifest the usefulness as well of past hazard 

realizations to identify high-risk areas. In addition, it establishes a real-world performance 

threshold for EHEV indices. This benchmark is seriously needed for establishing the credibility 

of EHEV indices as a decision support tool for mitigation and preparedness planning “On 

average, every euro spent for reduction and preparedness activities saves between four and 

seven euros that would have been spent in response to the aftermath of disasters.” (European 

Civil Protection and Humanitarian and Operations 2019) 

At a practical level, such a performance threshold is a reasonable expectation for any 

EHEV index with real-world aspirations. A vulnerability indicator based on numerous input 

variables and in some cases, a relatively, sophisticated derivation approach is expected to 

perform as good as a naïve DL index based on a previous realization event and a handful of 

variables. 

The two DL indices (DLI.PI and DLI.PII) were derived by taking the Percentage 

Fractional Ranks of the highly skewed original loss variables (i.e., morbidity). Discretization was 

performed with an equal-depth (frequency) partitioning algorithm, containing approximately the 

same number of locations (IBM-SPSS Modeler).  The number of partitions (i.e., bins) is a 
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characteristic of the PA methodology that merits further examination. A PA matrix needs to 

validate indices the way they will be used in practice; subsequently the selected categories must 

correspond to the classification they will illustrate (i.e., maps).  Many published maps related to 

vulnerability studies use 3 to 7 partitions, a practice which, essentially, adopts and uses the index 

as a categorical variable with a few only classes.  For this demonstration case study, we will be 

using 4 partitions/categories. The population adjusted morbidity as well as category III (above 

65) will be used for each period.  

The OCP metric in Figure 35 of Appendix A, establishes a 44.0% threshold of 

performance for the population adjusted morbidity (43.1% for Category III), implying that for 

each location a simple model based on the period I disaster loss (morbidity) can identify 

correctly 44.0% of the comparable DL classes during a “future” event. As DLI occurring within 

one year could have been used, however, for this case study a five year (i.e., Period II) is used to 

assure representation for most counties.  In addition, the DLI data can also be adjusted for the 

morbidity trend. This naïve indicator, and its validation with the proposed PA methodology, 

establishes a source of information that can be used to improve the indices.   

B. Performance of EHEV based on Percentage Fractional Ranks. 

For this dissertation, the Percentage Fractional Ranks (PFR) approach for deriving an 

EHEV index will be used (Flannigan 2011; Yoon 2012) and it will be based on the 2000 census 

data.  The assessment of the PFR derivation approach is likely to be valid for several rescaling 

methodologies as well since the derived indices are highly correlated (Yoon, 2012).  The 

EHEV(PFR) index will be validated with the use of the DL.PI index and the proposed PA 

methodology.  Table XXIII, Appendix B presents the validation results of the EHEV(PFR) index 

always in the context of our selected target location and realizations. As seen, the OCP is 
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relatively low compared to the performance threshold (PT) for the comparable timeframe case 

(i.e., 2000). From Table XIII in Appendix B, we can see that the performance of this derivation 

approach is under the threshold (i.e., PT); in two cases (R1 and R3) the performance is 

numerically the same, however, a closer look at the PA matrix reveals that the performance is not 

the same. The stability characteristic of the index is validated by using the best EHEV(PFR) and 

the period II DL realization (i.e., PFR(00) → DLI.PII). As seen, the performance of the index 

remains at a low level. One approach to enhance the performance of the EHEV(PFR) index is to 

add the information conveyed by the DLI.PI and use the composite index to assess its 

coincidence performance in terms of the DLI.PII.  In Table XXIII this modified approach is 

presented as well and, as seen, the classification is improved; however, it remains at a low level 

compared to the threshold (PT in Table XXIII).   For this case study, timeframe, and realizations 

the PFR approach for deriving a EHEV index does not satisfy the proposed characteristics of 

reliability and stability. By using the proposed PA methodology, the performance of this index 

can be further explored, for example, by adding or removing variables.  Similar performances are 

achieved for morbidity suffered by the Category III population (see Table XXIV, Appendix B). 

C. Performance of EHEV based on the PCA derivation 

For this dissertation, the PCA derivation approach will be applied. Based on the number 

of selects principle components (PCs), rotation of the characteristic vectors, and multipliers, 

several EHEV(PCA) indices will be derived. Beyond the performance characteristics mentioned 

above (i.e., reliability, stability, etc.), another major objective of the current study is to 

demonstrate the use of the proposed PA metrics as an optimization tool. With the use of these 

metrics (e.g., OCP, UE, etc.) the PCA solution can be optimized in terms of its ability to classify 
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the region as close as possible to the classification resulting from the period I and period II 

disaster loss realizations (i.e., morbidity).   

In this study, PCA analysis has been performed with the use of IBM-SPSS Modeler 

Version 18.1.  The principle components and the corresponding scores have been derived with 

the use of the correlation matrix of the original input variables since their measurement scale are 

in different units.  For this application, we will focus on the OCP and the underestimation 

metrics due to their significance for public health.  The selected PC scores used to derive the 

EHEV indices are standardized (i.e., mean zero and variance of one).  In many cases the sign of 

the PC is changes (i.e., scores are multiplied by -1); this practice does not alter the variance of 

the corresponding scores to the PC nor its orthogonality with the other eigenvectors (Jolliffe, 

2002).  

Selection of, k, PCs, to represent the original input variable space, is initially performed 

by selecting the PCs with corresponding eigenvalues larger than one (i.e., Kaiser criterion; 

Kaiser, 1960).  As we will see, the reduced dimensionality seems to be a major optimization 

parameter for deriving a reliable and stable EHEV index.   

Table XXII, Appendix A; summarizes the performance of the various EHEV(PCA) 

derived indices. The overall conclusion, for this configuration (i.e., input variables and 

realizations), is that with the application of the PA methodology an optimum solution is 

identified exceeding the performance threshold. The common use of the PCA method for 

deriving EHEV indices is presented as application cases 1 and 2 (AC in Table XXX); 12 input 

variables are used (the greater than 65 demographic is excluded in most cases). Three PCs are 

retained having eigenvalues above 1 and explaining more than 75% of the overall variability.  In 

many cases an orthogonal rotation is used as well to derive a simple structure which, in some 
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cases, yields PCs that are easier to interpret; the most well-known is the VARIMAX rotation 

introduced by Kaiser (Kaiser 1958 and 1959). The VARIMAX rotation of the PCs improves 

classification performance.   

The criterion for PCs selection (i.e., stopping rule) based on eigenvalues above one and 

the SCREE plot establish two of the many benchmarks for this task (Jackson, 2003).  It seems 

that for EHEV applications these benchmarks have to be carefully examined since more PCs 

(having eigenvalues less than one) are likely to improve the performance metrics.  Conceptually, 

the only link connecting the p dimensional space defined by the PCs and the corresponding 

hazard realization is the location. The inductive approach for PC selection does not imply a 

classification based on space characteristics that will be associated with the comparable hazard 

realization classification.  

The PCA methodology, to a certain extent, has the potential to accomplish the task of 

establishing an appropriate data structure since the derived PC components represent generalized 

characteristics of the original data space and it is much easier to add and remove components as 

opposed to individual variables.  Nevertheless, for the objectives of this case study we will 

remove input variables to explore further improvements of performance. To this end (i.e., Table-

XXXII application case 10) the proposed PA methodology achieved an “optimum” solution with 

10 input variables (with AA, FEMALEHOUSEHOLD, and > 65 were excluded); this data 

structure exceeds the performance threshold. It is worth noting is that these results, are much 

better than those obtained with the percentage fractional ranks derivation approach (see Table 

XXXII Appendix B).  The best performance, does not exhaust the exploration options for an 

“optimum” since this is not the focus of this study.  
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D. Stability 

Application case 11, in Figure 36 explores the stability characteristic of the “optimum” 

solution by using the DLI.PI (adjusted morbidity for category III during period I). As seen, the 

performance of the PCA based index is close to the threshold and the metrics are better than 

those achieved by the PFR derivation approach.  The scores of each selected PCA are 

standardized, thus under the normality assumption, the mean and variance of the PCA based 

index will be equal to their corresponding sums (i.e., in this case zero and 5).  The DL variable 

can easily be converted to standardized scores to derive the z-scores of period II adjusted 

morbidity (CAT III). The composite index based on the EHEV and DLI.PI is validated in 

application case 12. (Table XXV, Appendix B) As seen, this performance has been improved 

and exceeds the threshold.   

E. Proposed methodology for predicting vulnerability classification 

In the previous sections, the EHEV indices derived by the PFR and PCA approaches 

were validated with the proposed performance assessment (PA) methodology and the 

introduction of a performance threshold (PT).  The PCA approach is likely to be the only one 

capable of surpassing the PT by 4 percentage points. The purpose of the PT is not to sanction a 

vulnerability model; the PT aims to provide a minimum acceptable level of performance without 

qualifying if this performance is adequate, for example, in terms of public health protection 

goals.  The adequacy answer is extracted by examining closer the PA matrix. The lower left side 

triangle of the PA matrix establishes a metric of public health concern since ideally classification 

at this critical level should not be underestimated. For the PCA “optimum” solution, this critical 

underestimation is at a 6.7% level (CF at 0.7%).  We term this level as critical underestimation 
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error, CUE, and together with the CF provide metrics to assess the performance related to public 

health concerns.  

Given the critical nature of this classification, the above results are not satisfactory. This 

was the main reason research was conducted at predicting classification with Decision (or 

classification) Trees (DT). DT are considered to be a popular approach for deriving classification 

models and in this study their applicability in the EH vulnerability field of research will be 

demonstrated assisted by the proposed PA methodology and the threshold performance.  To the 

best of our knowledge, only the research by Bakhsh (2015) and Sambanis (2016) applied this 

classification methodology to SoV research; however, the issue of performance optimization was 

not addressed.  Decision tree induction is a well-known and effective classification technique 

extensively used in the business sector (i.e., decision support, customer relationship 

management, and credit scoring tool), e-commerce, image processing, and medicine.  Its major 

field of application is the data mining and analytics fields where it is used to explore data 

structures and induce the tree and its rules that will be used to make predictions (Cailas, 2014).  

In the context of SoV studies the prediction from a classification model such as a DT could be 

vulnerability category (i.e., severity class) based on actual instances of disaster losses which are 

placed in categories or classes (Hastie 2009). As stated in the previous sections, this dissertation 

considers vulnerability as a classification issue and, consequently, the use of these techniques 

should be expected to provide valuable information on variables influencing vulnerability as well 

as a reliable mechanism to identify potentially high-risk areas. 

Decision tree (DT) algorithms are supervised learning algorithms which recursively 

partition the input data based on its attributes, until some stopping limit is reached (Hastie, et al., 

2009, and Larose, 2014).  As shown in Figure 43, this recursive partitioning gives rise to a tree-
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like formation.  DT are popular tools for classification and prediction that are gaining popularity 

in many fields.   In this section, we will cover and discuss the modifications and methodological 

additions that were introduced in order to apply DT classification to the EHEV research field. A 

basic premise that makes the DT approach attractive is that “DT methods are exploratory (not 

inferential) and non-parametric since they do not require assumptions about the data 

distribution, scale, and model”; in addition, these methods can easily deal with missing data 

which is a common characteristic of real-world data sets values as well as categorical attributes 

(Cailas, 2014).  

A decision tree starts from the root node and contains internal nodes and leaf (terminal) 

nodes, all internal nodes have two or more child nodes. The root and internal nodes contain 

splits, which are the building blocks of the tree formation.  The split at each node is described by 

a decision that depends on one selected feature of an attribute (e.g., Median Household Income > 

$40,000). The specific feature is selected among all possible ones, and the split is selected among 

all possible splits, with the objective to minimizing the heterogeneity of the resulting subsamples 

forwarded to the child nodes.  The aim is that the final partitions (terminal leaves of the tree) are 

homogeneous with respect to the classes. The schematics of a simple decision tree is in Figure 

37, Appendix A (Cailas, M.D. 2014).  

The criterion for choosing the best splitting rule varies from algorithm to algorithm and 

the optimization measures they apply.  For this study, the C5.0 algorithm will be used which 

performs splits that yield the maximum information gain (Quinlan 1986 and 1993).  The C5.0 is 

a current version of the ID3.0/C4.5 algorithms developed by Quinlan (1986 and 1993). The C5.0 

is a current version of the ID3.0/C4.5 algorithms developed by Quinlan (1986 and 1993); the 

improvements are documented by Pang and Gong (2009).  This algorithm will be used to explore 
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the predictive performance of DT as a classifier of EHE vulnerability of Georgia with morbidity 

as a target variable. 

To explore the applicability of DT in the vulnerability research field and identify 

practical advantages and limitations, the C5.0 algorithm will be applied at a basic level without 

the implementation of algorithm improvement modifications (e.g., boosting, pruning, twoing, 

etc.) in order to obtain reproducible results.  For this purpose, the proposed performance 

threshold and the PA methodology will be used to: 

• validate the DT derived classification in comparison to the performance threshold (PT),  

• optimize the resulting DT classification model in terms of the proposed PA metrics 

critical to public health (i.e., CF and UE), and  

• explore the use of a DT classifier for identifying an input variable set which bears a direct 

association to the target variable (i.e., morbidity).    

The latter application is a main feature of the DT classifiers, which is not feasible from 

the other approaches used in the SoV field (i.e., PCA and Percentage Fractional Ranks). In this 

study, the use of the DT variable selection feature will be explored for deriving a EHEV index.  

In the SoV research field a rational variable selection approach which accounts for the target 

variable, as opposed to the intercorrelations among the input variables, is a much-needed option, 

e.g., “Originally, more than 250 variables were collected, but after testing for multicollinearity 

among the variables, a subset of 85 raw and computed variables was derived.” (Cutter, 2003).  

This algorithm will be used to explore the predictive performance of DT as a classifier of EHE 

vulnerability of Georgia with morbidity as a target variable.  

The PA metrics of the DT application for deriving an EHEV classification are presented 

in Table XXXI, Appendix B.  As seen, the DT approach based on the C5.0 algorithm achieves a 
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high level of classification performance with respect to all the proposed performance metrics.  

An interesting outcome, corroborating the variable selection potentials of DT, is the application 

cases 7 and 8 (Table XXXI).  As seen from these two cases, the same level of performance is 

achieved with one variable less.  For this specific classification setting (i.e., input and target 

variables), the percent no high school education variable (%NoHSE) does not have a significant 

contribution to the overall classification model. Discussion of the input variable importance and 

selection is given in the following section. 

This performance (i.e., AC 8) comes at a complexity cost since this level of performance 

requires 60 decision tree nodes (see Figure 43, Appendix A).  Overfitting is an issue with the 

C5.0 algorithm; however, there are modifications that can reduce this “complexity” which are far 

beyond the scope of this study (Pandya and Pandya, 2015).  As stated, the objective of this thesis 

is to use the standard options in order to to publish reproducible results.  A prominent finding is 

the comparison of the predictive performances between the traditional SoV approaches (i.e., 

PCA and PFR) and the classification performance of the DT C5.0 algorithm.  Conceptually, the 

DT approach is expected to have a better performance since the classification model aims to 

match the target variable (i.e., PI morbidity).  This approach bridges the two spheres by deriving 

a classification model (i.e., input variables defining the vulnerability potential, unrealized sphere) 

to describe the classification based on the realization event (i.e., PI morbidity).  The expected 

superior comparative performance is demonstrated in Figure 40, these results corroborate the 

findings of Sambanis (2016) and Bakhsh (2015).  The metrics with a public health significance 

(i.e., CF and CUE) are at low level.  By taking into account the results of this study and the 

results from studies performed by the UIC-SPH team using DT algorithms for classification of 

the vulnerability potential (Sambanis, 2016 and Bakhsh, 2015), we propose, for a 4-level 
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classification, optimum levels for the public health related metrics less than 5% for CF and less 

than 10% for CUE.  Closer examination of the PA matrix is highly recommended in order to 

verify that the classification abides with the practical objectives of the SoV study (e.g., low 

underestimation might be a desirable outcome as well). 

F. Optimization and variable selection 

The predictor importance estimate is used for input variable selection. The C 5.0 

algorithm (IBM-SPSS, 2018), this estimate is used to derive the EHEV classification model, 

providing an estimate of the weight of the input variables with a range of 0 to 1 (Cailas, 2014).  

In general, for decision tree algorithms the predictor importance is “a measure of the amount of 

output (target) variance that is removed when we learn the true value of the predictor.” (Larose 

2014). For the optimum EHEV classification model. The predictor importance graph is presented 

in Figure 41, Appendix A. 

A classification model containing less variables is in accord with the principle of 

parsimony, however, with DT models less variables does not imply a smaller number of splitting 

nodes and less rules in the rule set. This is seen with the overall decision tree structure of AC 8 in 

Figure 43, Appendix A, which contains 60 nodes.  For comparison, application case 2 with 13 + 

3 variables contains 48 nodes. The ten first predictor importance variables for deriving EHEV 

classification model C5.0 is shown in Figure 42 Appendix A. 

Predictor importance by itself will not suffice to identify an acceptable classification 

model for EHEV. As a minimum, the OCP metric needs to be at an acceptable level as well as 

the two PH related metrics.  In Table XXXII Appendix B the performance assessment metrics 

are used in combination with predictor importance (not shown) to identify an optimum 

classification model (i.e., application case, AC, 8). 
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G. Stability 

The “optimum” DT classification model (AC 8 in Table XXXII Appendix B) will be 

used to validate its performance in terms of predicting the corresponding classes of the period II 

disaster loss index.  The input variable set for this case (i.e., 2000 census data, 10 variables and 1 

land cover) is used to predict the DL.PII classification.  The results are presented in Table XXXII 

Appendix B as application case 11.  As seen in in Table XXXII Appendix B, the metrics for 

predicting the DLI.PII classification are above those of the other methods for assessing DLI.PI 

classification.  

The comparative performance of all the methods applied for this study are presented in 

Table XXXII. As expected, the DT approach surpasses all the other methods commonly applied 

for deriving EHEV indices. In addition, the DT approach fulfils the index characteristics 

especially in terms of the reliability and the PH related metrics.  The criterion that the input data 

set “need to be cheap, reliable, recent, routine, and at a sufficient spatial resolution” (Wolf et al., 

2013) is feasible as well with DT, though the PFR methodology is probably the best alternative. 

This criterion is critical for small-scale public health departments which are not able to perform 

the preliminary data collection and preparation tasks without the support of specialized experts. 

The decision tree algorithm can be built into a software application so public health departments 

can take morbidity target data and import local Census data of their area of evaluation; in 

addition, there is no large database limitations. 

A further application of the proposed DT analysis approach is the use of the rule sets that 

are generated.  These rule sets can be applied directly with a database access language (e.g., SQL 

or by using a simple queries) so that counties falling into a particular category (i.e., hotspot) may 

be identified without the use of complicated modeling techniques and expensive experts. The 



68 
 

 
 

EHEV decision tree classification can be easily duplicated by public health departments at a rule 

set level which will require morbidity, exposure (i.e., heat), and local Census data of their area of 

evaluation. In terms of software program requirements, a simple spreadsheet capable of handling 

tabular form data will suffice (e.g., Google Sheets, Microsoft Excel, Zoho Sheet, etc.). A 

comparative performance of DT, PCA and PFR approaches for deriving EHEV indices is located 

in Figure 45, Appendix A. 

H. Visualization 

The DT optimum solution is visualized in the maps presented in Figures 46 and 47 of 

Appendix A.  To assist visualization of performance, each map represents the classification 

difference for each county between the DT classes and those derived from the period I disaster 

loss (DLI.PI). The differences are mapped at five levels, with zero indicating that there is no 

difference, which implies that the model derived classification coincides with the DLI.PI 

classification (i.e., morbidity of period I). A visualize comparison of the two figures delineates 

the differences between the two methods and substantiates at a visual level the superior 

performance of the DT classification.   
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11. CONCLUSIONS 

We developed a new variable based on apparent temperature to more accurate assess the 

extent to which extreme heat poses a threat. This cumulative extreme heat exposure exceedance 

(cEHEE) matrix was calculated by introducing a threshold above which the temperatures are 

likely to pose a threat to the public. This new cEHEE calculation matrix resulted in the 

identification of significant amount of days of extreme heat exposure exceedance (EHEE) well 

above 95 degrees in GA. An evaluation of the usefulness of the land cover variables Urban land 

cover, Low urban land cover (LULC), Total Natural Land Cover (NLC) and Material land cover 

(MLC) was performed. To the best of our knowledge, these variables are used for the first time 

as input variables for EHEVI derivation purpose. We decided to complete our analysis with an 

age-adjusted representative population of Georgia within a readily identified segment of the 

widely accepted vulnerable population. 

Based on our research analysis, heat-related climate change is adversely affecting the 

people in the state of Georgia. Extreme heat conditions in Georgia are increasing the morbidity 

rates of the total population in GA. Analyzing the monthly cumulative apparent temperature for 

the months of May to September from 2000 to 2014 provides a more accurate representation of 

the exposure conditions due to extreme heat. The resulting threshold was the mean of the 

Average Daily Max Heat Index (m.ADMHI) for each month showed a un upwardly trend in the 

AT for the state of GA from 2000 to 2014. The newly created concept of the monthly cumulative 

EHEE indicator (EHEEI) showed an increasing trend in the daily EHEE above threshold. 

These indicators were compared to the age-adjusted morbidity rates per county from 

2000 to 2004. Both age-adjusted morbidity rates for Category I (< 5 years of age) and Category 

III (> 65 years old) show a similar increasing morbidity trend. The 65 and over population (CAT 
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III) is a segment in every variable analyzed. For example, there is a 65 and over segment in the 

African-American, White and percent below poverty level population. The 65 and older 

population is not only present within every variable, this age group usually has higher 

vulnerability to adverse health effects during extreme heat conditions. The 65 and older 

population who experience adverse effects to extreme heat is larger than the 5 and under 

population in most cases. It is for these reasons that the data morbidity analysis was age-

adjusted.   

The analyses were compare to the new c.EHEE variable, socio-economic variables and 

age-adjusted morbidity rates. In most cases the addition of the land cover variables improves 

performance especially in terms of Classification Failure (CF). Determining the extreme heat 

vulnerability of a population by utilizing the newly developed land cover and EHEE variables to 

the historically used socio-economic provides more accurate identification of groups that are 

currently vulnerable. The use of land cover also allows public health officials to more accurately 

predict future vulnerable populations. This method can be applied nationally. Thus, for EHEV 

index derivation applications, we can conclude that the PC selection rules establish minimum 

requirements and further exploration is needed for validation purposes with the proposed (or 

similar) PA methodologies.  Within this context, the objective then becomes to find a data 

structure (in the unrealized domain) which will have a geographic distribution of vulnerability 

categories that will coincide (i.e., coincidence matrix), as much as possible, with the comparable 

realized DL categories. 

We reviewed the existing methods that are used to identify vulnerable populations and 

compared them to a newly developed method. The principle component analysis, rank, and 

decision tree methods were applied to the same variables and compared to determine the best 
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method for determining Georgia’s most vulnerable population to extreme heat conditions. My 

research has proven that there are more accurate methods for identifying populations via 

Principle Component Analysis, Ranking and Decision Tree Methods. The DT modeling 

performance difference and clearly delineates the superiority of this classifier especially in terms 

of classification failure (CF). From a public health point of view, the CF is a critical metric since 

a high rate is likely to result in misclassifying areas, i.e., high EHE morbidity risk areas that are 

classified as low, and preparedness measures to protect the public during EHE public health 

underserved areas. Using Land Cover as a primary variable while performing a decision tree 

analysis is an optimum EHEV approach. We also performed a two-level validation was to ensure 

the accuracy of our results and validated the claim that the DT approach has the potential to 

identify classification models with superior performance.  

This is historical evidence provides justification to believe that morbidity rates will 

continue to rise as heat levels will continue to rise. Our research analysis has identified several 

counites that have been historically more vulnerable to extreme heat conditions and will more 

than likely continue to be more vulnerable in the future. Actions should be taken to provide more 

resources and prevention efforts to decrease the potential higher morbidity rates to these more 

vulnerable counties in the future. 
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12. LIMITATIONS 

A major feature of the proposed methodology to derive EHEV indices based on DT 

which requires further exploration is the number of classes used to validate the classification 

model. Complexity of the decision tree structure is another aspect, however, in the EHEV 

research field the focus is placed on identifying classes of vulnerable regions and not the 

interpretation of the structure.  An interesting aspect which merits further exploration is the 

potential to use the rule set to identify new variables based on the major split nodes.   
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APPENDIX A - FIGURES 

FIGURE – 1: Preliminary weather fatalities – 2015  
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FIGURE – 2: Change in Unusually Hot Temperatures in the Contiguous 48 States, 1948-
2014  
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FIGURE – 3: Metropolitan map of Georgia 
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FIGURE – 4:  More Danger Days: Heat Index Above 105o (Atlanta Metro) 

 

 

FIGURE – 5: More Danger Days: Heat Index Above 105o (Albany Metro) 
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FIGURE – 6: More Danger Days: Heat Index Above 105o (Macon Metro) 

 
 

FIGURE – 7: More Danger Days: Heat Index Above 105o (Savannah Metro) 
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FIGURE – 8: Atlanta metropolitan area counties 
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FIGURE – 9: GA black belt counties  
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FIGURE – 10: Spatial distribution of the 2001 NLCD 
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FIGURE – 11: Spatial distribution of the 2011 NLCD 
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FIGURE – 12: ADMHI for each year (all counties) 

 
 

FIGURE – 13: Histogram of the monthly mean ADMHI for the Atlanta-Metropolitan area 
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FIGURE – 14: Histogram of the cumulative EHEE (all counties) 

 

 

 

FIGURE – 15: Age-adjusted morbidity for period-I 
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FIGURE – 16: Boxplot per month of category III, age-adjusted morbidity 

 
FIGURE – 17: GA Age-adjusted social economic morbidity  

 
FIGURE – 18: Statistical analysis of 2001 and 2011 LCV 
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FIGURE – 19: Statistical analysis of 2001 and 2011 LCR 

 
 

FIGURE – 20: Statistical analysis of LCV and LCR 

 
 

FIGURE – 21: Reciprocal correlation between LC vulnerability and LC resilience 
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FIGURE – 22: Cumulative EHEE, land cover and morbidity per age-adjusted category 

 
 

FIGURE – 23: Population adjusted morbidity, by year, period 1 (2000 – 2004)   
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FIGURE – 24: P.A. Morbidity per month for period 1 (2000 – 2004) 

 

FIGURE – 25: Comparison of the two PAMs that resulted in an optimum solution for A.A. Morbidity 
CAT III 
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FIGURE – 26: Difference between actual and predicted morbidity for GA 

 

  



103 
 

 
 

FIGURE – 28: PA matrices for Cat III morbidity classification, period-1, GA 

 

 

 

 

 

 

 

FIGURE – 30:  Input S/E variables in terms of importance for the 88.1% OCP DT solution 
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FIGURE – 31: Visualizing Difference Between Actual and Predicted Morbidity for GA 
(PCA) 

 

 

 

 

 

 

 

 

 

 

 

Method: additive PCA model 
with 13 S/E Variables and 3 
Land Cover. Scores derived 
with VARIMAX rotation 
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FIGURE – 32: Visualizing Difference Between Actual and Predicted Morbidity for GA 
(DT) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Method: DT (C5.0) model 
with 8 S/E Variables and 1 
 Land Cover 



106 
 

 
 

FIGURE – 33: Schematic of contextual sheres defining SoVP indices and the proposed 
validation approach 
 

 

 

 

 

 

 

 

 

 

 

 

FIGURE – 34: Error or confusion matrix (or, in this study, performance assessment 
matrix)  
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FIGURE – 35: The 4 × 4 PA matrix for the two disaster realizations (morbidity) used in 
this study (Population adjusted (left) and Cat. III morbidity  

 

 

 
 
 
 
 

 

 

FIGURE – 36: The PA matrix for the Table-25: The 4 × 4 PA matrix for the EHEV derived 
with 10 input variables and 3 PCs. Adjacent is the performance threshold PA matrix 
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FIGURE – 37: Schematic of a simple decision tree 

 

FIGURE – 38: Age adjusted morbidity (Cat III) for Periods 1 and 2 
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FIGURE – 39: Distribution of paired differences (red curve is the normal distribution) 

 

 

 

 

 

 

 

 

 

 

 

FIGURE – 40: PA matrix for validation model (P2 data) and original (P1) 
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FIGURE – 41: Predictor importance for DT model 

 

FIGURE – 42:  Ten first predictor importance variables graph for deriving EHEV 
classification model C5.0 
 

 

 

 

 

 

 

 

FIGURE – 43: Decision tree structure for application case (AC) 8 yielding an optimum 
EHEV classification model 
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FIGURE – 44: PA matrix for application case (AC) 8 yielding an optimum EHEV 
classification model (CUE = 0.0%) 
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FIGURE – 45: Comparative performance of DT, PCA, and PFR approaches for deriving 
EHEV indices; Georgia, Period I (CAT III) 
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FIGURE – 46: Visualizing Difference Between Actual and Predicted Morbidity for GA 
(DT) 
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FIGURE – 47: Visualizing Difference Between Actual and Predicted Morbidity for GA 
(PCA) 
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APPENDIX B – TABLES 

TABLE-I: 2010 GA DEMOGRAPHICS 

2010 Demographic Population of Georgia, USA 

Demographic Percentage of the Population 

White American 59.7% 

Black or African American 

(including Hispanics) 

30.5% 

American Indian or Alaska 

Native 

0.5% 

Asian 3.2% 

Native Hawaiian or Pacific 

Islander 

0.1% 

Two or more Races 2.1% 

Persons under 18 years 25.7% 

Persons 65 years and over 10.7% 

Total population 9,687,653 
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TABLE II: 2017 GA DEMOGRAPHICS 

2017 Demographic Population of Georgia, USA 

Demographic Percentage of the Population 

White American 61.2% 

Black or African American  32% 

American Indian or Alaska 

Native 

0.5% 

Asian 4.1% 

Native Hawaiian or Pacific 

Islander 

0.1% 

Hispanic or Latino 9.4% 

Two or more Races 2.1% 

Persons under 18 years 24.4% 

Persons 65 years and over 13.1% 

Total population 10,429,379 
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TABLE III: HEAT RELATED ICD-9 CODES & DESCRIPTIONS 

Heat-related ER visits for 2000 – 2014 ICD-9 Codes 

ICD-9 Code Diagnosis 

705.1 Prickly Heat 

992.0 Effects of Heat and Light 

992.1 Heat syncope 

992.2 Heat cramps 

992.3 Heat exhaustion, anhidrotic 

992.4 Heat exhaustion due to salt 
depletion 

992.5 Heat exhaustion, unspecified 

992.6 Heat fatigue, transient 

992.7 Heat edema 

E900.0 Injury to carotid artery, 
unspecified 

 

TABLE IV: HEAT RELATED DIAGNOSIS CODES & DESCRIPTIONS 

Heat-related ER visits for 2000 – 2014 ICD-9 Codes 

Diagnosis Code Diagnosis 

T67.0 Effects of heat and light 

T67.1 Heat syncope 

T67.2 Heat cramp 

T67.3 Heat exhaustion, anhidrotic 
X30 Exposure to excessive natural 

heat 
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TABLE V: ATLANTA METROPOLITAN WEATHER STATIONS USED TO 
OBTAIN APPARENT TEMPERATURE DATA 

City County Zip Code Local Site Name 

Covington Newton 30014 The Georgia FFA-FCCLA Center 

Dallas Paulding 30132 Paulding County High School 

Dunwoody Fulton 30075 Cherokee Town and Country Club 

Griffin Spalding 30223 Griffin Campus 

Jonesboro Clayton 30236 The Beach at Clayton County 

International Park 

Roopville Carroll 30217 Plant Wansley 

Williamson Pike 30292 Bledsoe Research Farm 
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TABLE VI: MONTHLY MEAN AVERAGE DAILY MAX HEAT INDEX 

 

MONTH (ADMHI mean) 

YEAR 5 6 7 8 9 

2000 87.8 91.8 96.1 95.4 89.9 

2001 84.8 89.3 93.9 93.3 88.2 

2002 88.7 91.3 95.4 94.0 91.2 

2003 88.6 90.5 92.3 93.7 87.8 

2004 88.0 91.7 95.5 91.9 87.7 

2005 84.6 90.1 98.2 96.0 91.0 

2006 89.0 91.5 97.0 98.1 88.0 

2007 85.3 92.5 94.1 102.2 90.6 

2008 86.3 94.0 95.2 94.0 90.0 

2009 86.3 97.1 95.3 97.7 92.0 

2010 89.3 98.9 100.7 100.2 93.0 

2011 91.5 98.6 99.7 101.2 89.1 
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TABLE VII: MONTHLY MEAN EXTREME HEAT EXPOSURE 
EXCEEDANCE  
  

 MONTH (c.EHEE mean) 

YEAR 5 6 7 8 9 

2000 57.5 43.3 60.8 68.0 29.0 

2001 23.0 38.6 51.7 42.6 29.4 

2002 38.9 55.9 49.5 63.2 40.8 

2003 41.7 40.1 46.5 41.6 33.4 

2004 43.5 49.9 48.6 49.6 33.3 

2005 17.7 46.5 54.3 62.2 49.4 

2006 40.5 54.9 51.8 47.4 48.1 

2007 27.1 56.1 48.4 68.6 53.9 

2008 34.4 52.3 47.9 72.7 74.3 

2009 20.9 76.9 58.7 47.9 42.9 

2010 40.3 66.1 68.3 56.4 52.6 

2011 48.5 39.7 57.6 61.0 52.4 

 

  



121 
 

 
 

TABLE VIII: MEAN MORBIDIDTY RATE FROM 2000 – 2004 

 

 

TABLE IX: TOP COUNTIES IN GA WITH HIGHEST LAND COVER URBAN 
GROWTH FROM 2001 to 2011 
 

County FIPS 
Code 

Total 
Difference 
in the 
Urban 
Sum 

2010 
Median 
Family 
Income 

2010 
Percent 
Living 
in 
Poverty 

2010 
Percent 
African 
American 

2010 
Percent 
Population 
White 

2010 
Percent 
Population 
65 and 
over 

Gwinnett 13135 33.6 70767 13.6 23.6 53.3 6.9 
Forsyth 13117 26.5 96501 7.2 2.6 85.4 8.9 
Henry 13151 24.4 70972 10.2 36.9 55 8.4 
Clayton 13063 22.5 48064 22.6 66 18.9 6.6 
Fulton 13121 19.8 75579 17.7 44 44.5 9.1 
Cobb 13067 19.6 78920 14 25 62.2 8.7 
Douglas 13097 18.6 62977 12.7 39.5 52.5 8.5 
Barrow 13013 18.4 55415 12 11.4 78.8 9.3 
Paulding 13223 18.1 67117 8.8 17.1 77.7 7.2 
Cherokee 13057 15.2 77190 8.6 5.7 86.6 9.2 
Jackson 13157 13.5 58239 15.7 6.8 86.8 11.9 
Hall 13139 12.6 57774 17.8 7.4 74.1 11.1 
Fayette 13113 11.7 92976 6.7 20.1 71.1 12.7 
Houston 13153 11.6 67227 14 28.6 63.4 10.4 
DeKalb 13089 11.31 60718 19.4 54 33.3 9 
Clarke 13059 11.3 51687 33.3 26 61.9 8.5 
Muscogee 13125 10.6 46283 18.5 8.2 89.8 15 
Newton 13127 10.1 62445 18.8 26 67.6 15 
Columbia 13073 9.1 74426 8.8 14.9 76.5 10.2 

 

  

AGECAT 5 6 7 8 9
I 39.6 45.2 45.5 38.5 43.7
II 7.3 9.5 13.0 10.7 7.0
III 36.0 29.2 39.6 30.7 26.6

Month

Mean Morbidity rate by age cat and month
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TABLE X: COUNTIES IN GA WITH ZERO OR NEGATIVE URBAN 
GROWTH  
 

County FIPS 
Code 

Total 
Difference 
in the 
Urban 
Sum 

2010 
Median 
Family 
Income 

2010 
Percent 
Living 
in 
Poverty 

2010 
Percent 
African 
American 

2010 
Percent 
Population 
White 

2010 
Percent 
Population 
65 and 
over 

Clay 13061 0 31354 35.7 60.4 37.6 19.6 
Talbot 13263 0 43694 22 59.2 39 16.3 
Randolph 13243 0 29800 27.6 61.8 36.6 17.8 
Glascock 13125 0 46283 18.5 8.2 89.8 15.1 
Calhoun 13037 0 37309 36.8 61.3 34.8 11.9 
Jenkins 13165 Negative 56382 28.9 40.5 54.9 15 
Johnson 13167 Negative 35750 30.5 35 63.1 14 
Taliaferro 13265 Negative 29375 42 59.6 37.3 20.5 

 

  



123 
 

 
 

TABLE XI: GA COUNTIES WITH THE HIGHEST MORBIDIDTY RATES 
FOR THE 65 YEARS OF AGE AND OLDER POPULATION (CAT III) WITH 
LOW URBAN LAND COVER 
 

 

 

  

KEY_FIPS MONTH YEAR c.EHEE AGECAT Geography
MORBIDITY
_P_I_RATE

P.T.ULC

13307 5 2001 21.6 III Webster County, Georgia 283.29 2.64
13249 7 2003 51.6 III Schley County, Georgia 238.66 3.51
13165 7 2000 65.6 III Jenkins County, Georgia 171.97 4.98
13183 7 2004 45.9 III Long County, Georgia 168.35 4.77
13003 6 2002 67.9 III Atkinson County, Georgia 141.84 5.43
13003 8 2003 34.1 III Atkinson County, Georgia 141.84 5.43
13003 5 2003 72.8 III Atkinson County, Georgia 141.84 5.43
13197 7 2003 52.2 III Marion County, Georgia 132.98 2.88
13173 7 2004 41.9 III Lanier County, Georgia 129.70 5.45
13065 8 2004 51.3 III Clinch County, Georgia 122.85 4.85
13263 7 2001 53.1 III Talbot County, Georgia 106.72 3.79
13263 7 2004 51.2 III Talbot County, Georgia 106.72 3.79
13263 7 2003 47.8 III Talbot County, Georgia 106.72 3.79
13259 6 2003 54.4 III Stewart County, Georgia 102.78 2.13
13259 5 2004 46.6 III Stewart County, Georgia 102.78 2.13
13019 7 2003 52.6 III Berrien County, Georgia 98.67 4.9
13251 6 2002 80.3 III Screven County, Georgia 92.81 4.08
13201 5 2002 51.6 III Miller County, Georgia 91.58 4.78
13207 9 2002 44.0 III Monroe County, Georgia 88.85 5.45
13315 7 2002 47.8 III Wilcox County, Georgia 86.06 5.02
13315 7 2000 62.1 III Wilcox County, Georgia 86.06 5.02
13315 6 2000 48.8 III Wilcox County, Georgia 86.06 5.02
13165 6 2003 45.7 III Jenkins County, Georgia 85.99 4.98
13165 8 2001 43.9 III Jenkins County, Georgia 85.99 4.98
13165 5 2003 48.1 III Jenkins County, Georgia 85.99 4.98
13165 8 2002 66.5 III Jenkins County, Georgia 85.99 4.98
13165 8 2004 56.1 III Jenkins County, Georgia 85.99 4.98
13165 8 2003 37.1 III Jenkins County, Georgia 85.99 4.98

Hight morbidity (CAT III) and low ULC
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TABLE XII: GA COUNTIES WITH THE HIGHEST MORBIDIDTY RATES 
FOR THE 65 YEARS OF AGE AND OLDER POPULATION (CAT III) WITH 
HIGH URBAN LAND COVER 
 

 

TABLE XIII: COUNTIES WITH THE HIGHEST LAND COVER 
VULNERABILITY AND LOWEST LAND COVER RESILIENCE 

 

 

  

KEY_FIPS MONTH YEAR c.EHEE AGECAT Geography
MORBIDITY_

P_I_RATE
P.T.ULC

13245 7 2003 52.6 III Richmond County, Georgia 9.24 29.5
13215 6 2004 61.5 III Muscogee County, Georgia 9.17 30.8
13215 8 2003 47.8 III Muscogee County, Georgia 9.17 30.8
13215 8 2002 60.0 III Muscogee County, Georgia 9.17 30.8
13215 5 2002 42.1 III Muscogee County, Georgia 9.17 30.8
13121 7 2004 54.1 III Fulton County, Georgia 7.25 48.3
13063 6 2004 52.8 III Clayton County, Georgia 7.18 56.3
13063 8 2001 36.7 III Clayton County, Georgia 7.18 56.3
13063 8 2002 66.4 III Clayton County, Georgia 7.18 56.3
13067 6 2004 53.8 III Cobb County, Georgia 7.14 59.6
13135 6 2002 47.9 III Gwinnett County, Georgia 6.33 51.3
13135 8 2003 49.6 III Gwinnett County, Georgia 6.33 51.3
13121 7 2000 53.6 III Fulton County, Georgia 5.80 48.3
13089 8 2003 48.4 III DeKalb County, Georgia 5.64 63.0
13089 7 2002 43.1 III DeKalb County, Georgia 5.64 63.0
13021 5 2000 70.1 III Bibb County, Georgia 5.10 27.8
13021 5 2002 44.4 III Bibb County, Georgia 5.10 27.8
13021 7 2001 54.1 III Bibb County, Georgia 5.10 27.8
13021 7 2003 53.0 III Bibb County, Georgia 5.10 27.8
13021 8 2001 38.9 III Bibb County, Georgia 5.10 27.8

Counties with the lowest Morb. Rate (CAT III) and the highest ULC
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TABLE XIV: LAND COVER CODE CLASS VALUE 
 

Value Definition 

11 Open Water - All areas of open water, generally with less than 25% cover 
or vegetation or soil 

12 Perennial Ice/Snow - All areas characterized by a perennial cover of ice 
and/or snow, generally greater than 25% of total cover. 

21 Developed, Open Space - Includes areas with a mixture of some 
constructed materials, but mostly vegetation in the form of lawn grasses. 
Impervious surfaces account for less than 20 percent of total cover. These 
areas most commonly include large-lot single-family housing units, parks, 
golf courses, and vegetation planted in developed settings for recreation, 
erosion control, or aesthetic purposes. 

22 Developed, Low Intensity -Includes areas with a mixture of constructed 
materials and vegetation. Impervious surfaces account for 20-49 percent of 
total cover. These areas most commonly include single-family housing 
units. 

23 Developed, Medium Intensity - Includes areas with a mixture of 
constructed materials and vegetation. Impervious surfaces account for 50-
79 percent of the total cover. These areas most commonly include single-
family housing units. 

24 Developed High Intensity – Includes highly developed area where people 
reside or work in high numbers. Examples include apartment complexes, 
row houses and commercial/industrial. Impervious surfaces account fir 80 
to 100 percent of the total cover. 

31 Barren Land (Rock/Sand/Clay) - Barren areas of bedrock, desert 
pavement, scarps, talus, slides, volcanic material, glacial debris, sand 
dunes, strip mines, gravel pits and other accumulations of earthen material. 
Generally, vegetation accounts for less than 15% of total cover. 

41 Deciduous Forest – Areas dominated by trees generally greater than 5 
meters tall, and greater than 20% of total vegetation cover. More than 75 
percent of the tree species shed foliage simultaneously in response to 
seasonal change. 

42 Evergreen Forest – Areas dominated by tree generally greater than 5 
meters tall, and greater than 20% of total vegetation cover. More than 75 
percent of the tree species maintain their leaves all year. Canopy is never 
without green foliage. 
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TABLE XIV:  LAND COVER CODE CLASS VALUE (CONTINUED)  

Value Definition 

43 Mixed Forest – Areas dominated by trees generally greater than 5 meters 
tall, and greater than 20% of total vegetation cover. Neither deciduous nor 
evergreen species are greater than 75 percent of total tree cover. 

51 Dwarf Scrub - Alaska only areas dominated by shrubs less than 20 
centimeters tall with shrub canopy typically greater than 20% of total 
vegetation. This type is often co-associated with grasses, sedges, herbs, 
and non-vascular vegetation. 

52 Shrub/Scrub – Areas dominated by shrubs; less than 5 meters tall with 
shrub canopy typically greater than 20% of total vegetation. This class 
includes true shrubs, young trees in an early successional stage or trees 
stunted from environmental conditions. 

71 Grassland/Herbaceous – Areas dominated by grammanoid or herbaceous 
vegetation, generally greater than 80% of total vegetation. These areas are 
not subject to intensive management such as tilling, but can be utilized for 
grazing. 

72 Sedge/Herbaceous - Alaska only areas dominated by sedges and forbs, 
generally greater than 80% of total vegetation. This type can occur with 
significant other grasses or other grass like plants, and includes sedge 
tundra, and sedge tussock tundra. 

73 Lichens - Alaska only areas dominated by fruticose or foliose lichens 
generally greater than 80% of total vegetation. 

74 Moss - Alaska only areas dominated by mosses, generally greater than 
80% of total vegetation. 

81 Pasture/Hay – Areas of grasses, legumes, or grass-legume mixtures planted 
for livestock grazing or the production of seed or hay crops, typically on a 
perennial cycle. Pasture/hay vegetation accounts for greater than 20 
percent of total vegetation. 

 
 



127 
 

 
 

TABLE XIV: LAND COVER CODE CLASS VALUE (CONTINUED) 
 

Value 
Definition 

82 Cultivated Crops – Areas used for the production of annual crops, such as 
corn, soybeans, vegetables, tobacco, and cotton, and also perennial woody 
crops such as orchards and vineyards. Crop vegetation accounts for greater 
than 20 percent of total vegetation. This class also includes all land being 
actively tilled. 

90 Woody Wetlands – Areas where forest or shrub land vegetation accounts 
for greater than 20 percent of vegetation cover and the soil or substitute is 
periodically saturated with or covered with water. 

95 Emergent Herbaceous Wetlands – Areas where perennial herbaceous 
vegetation accounts for greater than 80 percent of vegetative cover and the 
soil or substrate is periodically saturated with or covered with water. 
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TABLE XV:  METHODOLOGIES USED TO DETERMINE EXTREME HEAT SOCIAL VULNERABILITY 

Title Author Purpose Methodology Verification 
Results 

Was Minority 
Heat Social 
Vulnerability 
(HSV) 
discussed 

Predictive Performance 
Verification 

Social 
Vulnerability to 
Environmental 
Hazards 

Susan L. Cutter; 
Bryan J. Boruff & 
W. Lynn Shirley 
(2003) 

Analyze county-
level SES and 
demographic data 
to construct a 
Social 
Vulnerability Index 
(SoVI) 

Factor 
analytical 
approach & 
additive model 
approach 

Principle 
Component 
Analysis (PCA) 

 
Correlation 
between 
presidential 
disaster 
declarations by 
county and the 
SoVI score  

Yes – race was 
considered as a 
contributor to 
social 
vulnerability 

No.  
 

The article states: the next step 
is to examine the overall 
vulnerability as measured by 
the SoVi has changed over time 
and space. (Cutter et. al. 2003) 

Assessing the 
Performance of a 
Vulnerability 
Index during 
Oppressive Heat 
across Georgia, 
United States 

Maier, Grundstein; 
Jang, Li;  Naeher 
& Shepherd (2003) 

To broaden the 
geographic context 
of earlier work and 
compute heat 
vulnerability across 
the state of Georgia 

Modified Heat 
Vulnerability 
Index 
developed by 
Reid is used to 
characterize 
vulnerability 
by county 

Prevalence 
 

Principle 
Component 
Analysis (PCA) 

 
Apparent 
Temperature (AT) 
- The warm season 
95th percentile 
max AT was used 
as a threshold 

 
Mortality data was 
compared to 
meteorological data 
(Poisson mixed 
effect model with 
natural splines) 

Yes- urban and 
rural areas 
were examined 
as well as 
nonwhite 
residents 
(looked at land 
use/land cover 
– Natural 
resource 
spatial analysis 
laboratory) 

No.  
 

The article states: the modified 
HVI can be tested in other 
regions of the country such as 
the Midwest, which has not yet 
been empirically examined. 
(Grunstein et. al. 2003) 
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TABLE XV:  METHODOLOGIES USED TO DETERMINE EXTREME HEAT SOCIAL VULNERABILITY 
(CONTINUED) 

Title Author Purpose Methodology Verification 
Results 

Was Minority 
Heat Social 
Vulnerability 
(HSV) 
discussed 

Predictive Performance 
Verification 

       
Climate change 
vulnerability 
assessment in 
Georgia 

Binta, KC; 
Shepherd, 
Marshall & 
Gaither, Cassandra 
(2015) 

This study focuses 
on climate change 
in Georgia, 
considering 
both biophysical 
and socio-
demographic 
indicators of 
vulnerability. 

Compared 
geographic 
vulnerability, 
historical 
climate data, 
climate change 
vulnerability, 
socioeconomic 
vulnerability 
and social 
vulnerability 

Anomalies in 
decadal 
temperature were 
compared to the 
30-yr climate 
normal. 
 
Social vulnerability 
was verified via 
reviewing other 
literature. 

Yes – The 
Black Belt of 
the South, 
Hispanics and 
Asian 
Immigrants 

No. 
 

The article states: Attribution 
studies are emerging as a 
challenging new field of study 
and beyond our scope. (Binta 
et. al. 2015) 

Mapping 
Community 
Determinants of 
Heat 
Vulnerability 

Reid, Colleen; 
O’Neill, Marie; 
Gronlund, Carina; 
Brines, Shannon; 
Brown, Daniel; 
Diez-Roux & 
Schwartz, Joel 
(2009) 

To create a 
cumulative heat 
vulnerability index 
for nationwide 
comparison.  

Mapped 10 
vulnerability 
factors for heat 
-related 
morbidity/mort
ality in the US 
in geographic 
space and 
identify 
potential areas 
for 
intervention 
and further 
research. 

Performed a factor 
analysis 

 
Spearman’s 
correlation 
coefficients were 
calculated between 
the 10 vulnerability 
variables 

 
A varimax rotation 
was used to 
minimize the 
number of the 
original variables 

 
Factor analysis was 
performed in SAS 

Yes – they 
combined 
education, 
poverty, race 
and green 
space in urban 
areas 

No.  
 

The article states: This study 
can be considered a first step 
toward tools that can help 
public health professionals 
prepare climate change 
adaptation plans for their 
communities. (Reid et. al. 
2009) 
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TABLE XV:  METHODOLOGIES USED TO DETERMINE EXTREME HEAT SOCIAL VULNERABILITY 
(CONTINUED) 

Title Author Purpose Methodology Verification 
Results 

Was Minority 
Heat Social 
Vulnerability 
(HSV) 
discussed 

Predictive Performance 
Verification 

       
Urban Form and 
Extreme Heat 
Events: Are 
Sprawling Cities 
More Vulnerable 
to Climate 
Change Than 
Compact Cities? 

Stone, Brian; Hess, 
Jeremy & 
Frumkin, Howard 
(2010) 

Examine the 
association 
between urban 
form at the level of 
the metropolitan 
region and the 
frequency of EHEs 
over five-decade 
period 

Reviewed 
previously 
published 
journals to 
measure the 
association 
between urban 
form in 2000 
and the mean 
annual rate of 
change in 
EHEs between 
1956 and 2005 

Based on previous 
index analyses.  
 
Performed a t-test 
to gauge the 
statistical 
significance of a 
linear association. 

No No 

Developing an 
applied extreme 
heat vulnerability 
index utilizing 
socioeconomic 
and 
environmental 
data 

Johnson, Daniel; 
Stanforth, Austin; 
Lulla, Vijay and 
Luber, George 
(2012) 

Create an extreme 
heat vulnerability 
index that could be 
utilized by city 
officials to assist in 
the migration of 
extreme heat 
events. 

Combine 25 
well-known 
indicators of 
extreme heat-
health risk into 
an applied 
index utilizing 
a PCA 

Principle 
component analysis 

 
A varimax rotation 

 

Yes – Black 
population is 
included, but 
there is more 
focus on the 
socioeconomic 
states 

No 

Warm season 
temperatures and 
emergency 
department visits 
in Atlanta, GA 

Winquist, Andrea; 
Grundstein, 
Andrew; Chang, 
Howard; Hess, 
Jeremy & Sarnat, 
Stefanie (2016) 

Assess the 
association 
between warm-
season ambient 
temperature and 
emergency 
department visits in 
Atlanta from 1993-
2012 

Examined 
daily counts of 
ED visits with 
primary 
diagnosis of 
heat illness, by 
age group in 
relation to 
daily TMX  

Poisson time series 
models. Estimated 
the relative risk and 
95% CI for TMX 
changes and 
conducted 
sensitivity 
analyses.  

No No 
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TABLE XV:  METHODOLOGIES USED TO DETERMINE EXTREME HEAT SOCIAL VULNERABILITY 
(CONTINUED) 

Title Author Purpose Methodology Verification 
Results 

Was Minority 
Heat Social 
Vulnerability 
(HSV) 
discussed 

Predictive Performance 
Verification 

       
Vulnerability to 
extreme heat and 
climate change: 
is ethnicity a 
factor? 

Hansen, Alana; Bi, 
Linda; Saniotis, 
Arthur & Nitschke, 
Monika (2013) 

To investigate the 
reasons why 
ethnicity may be 
associated with 
susceptibility to 
extreme heat in 
Australia 

Not really 
mentioned 

 
The article 
states “literary 
evidence was 
sourced from 
relevant peer-
reviewed and 
grey 
literature.” 

Verification not 
mentioned 

Yes No 

A social 
vulnerability 
index for disaster 
management 

Flanagan,  Barry 
E.; Edward, 
Gregory W.; 
Hallisey, Elaine J.; 
Haitgert, Janet L.; 
Lewis, Brian 
(2011) 

This paper, 
therefore, 
addresses an 
important 
subcomponent of 
the disaster 
management risk 
equation—social 
vulnerability—with 
the goal of 
improving all 
phases of the 
disaster cycle. 

An overall PR 
for each tract 
was 
calculated as 
the sum of the 
domain PRs 

 
SVI values and 
flag counts 
were 
calculated 
for each of the 
15 variables, 
for the four 
domains, and 
for the overall 
results. 

Yes.  
 

Verified by 
applying the 
methodology to 
previous extreme 
weather events 
(cases studies) 

Yes.  
 

Percent 
minority was 
considered 

Yes –  
 

A unique toolkit consisting of 
SVI data along with a simple 
mapping application was 
initially distributed to 24 state 
and local public health 
departments 
for review and feedback. 
(Flanagan et. al. 2011) 
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TABLE XVI: COMONLY USED EXTREME HEAT SOCIAL VULNERABILITY INDEX FACTORS 

Flanagan et. al. 2011 Reid et al. 2009 Maier et.al. 2014 
(Based on Reid) 

Binta et. al. 2015 Bahksh 2015 Cutter et. al. (2003) 

Socioeconomic Status: 
Income (per capita income) 
 
Poverty (% below poverty) 
 
Employment (% civilian 
unemployed) 
Education  (%w/o high school 
diploma) 

Percent Below 
Poverty Line 
 
Percent w/less than a 
high school diploma 

Percent Below 
Poverty Line 

 
Percent w/less than 
a high school 
diploma 

Poverty 
Occupation 

 
Unemployment 

Low education 
 

Unemployed 
 

Personal Wealth: 
Per capita income 

 
Median house values / 
median rents 

 
% of households earning 
< $75K per year 

Household Composition/Disability 
• Age (dependents <18 yrs 

old, 65 and older) 
• Single Parenting (% 

male/female w/o spouse & 
children under 18) 

• Disability (more than 5 yrs 
old w/disability) 

Percent Population 
Living Alone 
 
Percent Population > 
65 years of age 
 
Percent Population > 
65 living alone 

Percent Population 
Living Alone 

 
Percent Population 
> 65 years of age 
 
Percent Population 
> 65 living alone 

Age group > 65 
 

Age Group < 5 
 

Female Head of 
Household 

Age group > 65 
 

Age Group < 5 
 

Disabled over 65 
 

Living alone 

Age 
 
Children in the 
community  

 
% of the population > 65 

Minority Status/Language 
• Race (%minority) 
• Ethnicity 
• English-language 

proficiency  

Percent population 
other than white 

Percent population 
other than white 

Racial and ethnic 
minorities 

 
Non-English 
speaking  

Race other than 
White 

 
Low English skills 

Race, specifically 
African American 

Housing/Transportation 
• Housing Structure (quality/ 

high-rise) 
• % multi-unit 
• % mobile homes 
• Crowding 
• Vehicle Access 
• (% of persons in group 

quarters: inmates, nursing 
homes, dormitory) 

  Urban/Rural 
population 

 
Inmate population 

 
Renter population 

 
Dwelling in mobile 
homes 

High Population 
Density 
Lack of access to 
transit/car 
Housing Quality 
Top floor of high-
rise 
High Crime Area 
Outdoor 
Workers/athletes 

Density of the Built 
Environment 

 
Housing Stock and 
Tenancy 

 
Occupation 

    Heat Exposure  
    Urban Heat Islands  
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TABLE XVI: COMONLY USED EXTREME HEAT SOCIAL VULNERABILITY INDEX FACTORS 
(CONTINUED) 

Flanagan et. al. 2011 Reid et al. 2009 Maier et.al. 2014 
(Based on Reid) 

Binta et. al. 2015 Bahksh 2015 Cutter et. al. (2003) 

Environmental Variables  
None 

 
Looked at previous extreme weather 
events (i.e. Hurricane Katrina) 

Calculated the mean 
apparent temperature 
for MSAs from 1985 
to 2003 

Apparent 
Temperature (AT) - 
The warm season 
95th percentile max 
AT was used as a 
threshold 

 

Anomalies in decadal 
temperature were 
compared to the 30-
yr climate normal. 

 
The mean 
temperature was used 

Daily maximum 
temperature (Tmax) 
was used from the 
National Climate 
Data Center 

 
Summer season 
percentage of days 
when Tmax was 
above 35°C 

 
Summer season 
percentage of the 
days where Tmax 
was above the 95th 

percentile 
temperature for 
each station. 

 
A monthly 
percentile approach 
where the 
percentage of days 
above the 95th 
percentile was 
calculated for each 
month per station 

Infrastructure 
development 

 
Single-sector Economic 
Dependence 

Land cover - % 
census tract area not 
covered in vegetation 
(NLCD 2001) 

Land cover - % 
county with land 
use/ cover 
described as urban 
(NRSAL 2011) 

Diabetes prevalence 
- % pop 
 
Air conditioning  
 
% household w/o 
central AC 
 
% household w/o any 
AC 

 

Diabetes 
prevalence - % pop 

  
 

 

  Land Cover  
 
No AC 
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TABLE XVII: SAMPLE OF PREVIOUS STUDIES AND CLASSIFICATION 
OF SOV INDICES 

Author Derivation Methodology Map Number of 

Vulnerability Classes 

(and Type) 

 

Cutter et al. (2003) 

Principal Component 

Analysis 

Five (Standard Deviation) 

Chakraborty et al. 

(2005) 

Maximum value 

transformation (ratio of 

value) 

Five (Defined interval) 

Flanagan et al. (2011) Percentile Rank Three (Equal Interval) 

Ryder et al. (2006) Principal Component 

Analysis 

Five (Standard Deviation) 

Schmidtlein et al. 

(2008) 

Principal Component 

Analysis 

Five (Standard Deviation) 

Yoon (2012) 

 

Percentile Rank, rescaling, 

and Principal Component 

Analysis 

Five (Standard Deviation) 

Zhou et al. (2014) Principal Component 

Analysis 

Four (Standard Deviation) 
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TABLE XVIII: 2000 AND 2010 GEORGIA, USA CENSUS VARIABLES USED 

Category  Census Variables 

Housing Characteristics % Occupied Housing Units: Renter 
Occupied, % Housing Units: 5 or more,  

% Housing Units: Mobile home or trailer, 
etc. 

Children % Under 5 years 

Elderly % 65 years and over 
Race – African American % African American 

Race – White % White 
Female Head Household with 
children (under18 years old) 

% Households with one or more people 
under 18 years: Female householder, no 

husband present 
Institutionalized Persons % Population in group quarters: 

Institutionalized Population 
Education - Less than High School 

Degree 
% Population 25 years and over: Less 

Than High School 
Unemployed % Population in Labor Force 16 Years 

and Over: Unemployed 
Household Income Median household income in 1979/1999 

Dollars 
Below Poverty % Below Poverty  
Mobility  % No Vehicle Available 
Social Welfare Recipient % social welfare  
Housing Value Median value  
Occupation Type Bottom quantile occupation type (e.g. 

Manual material moving, etc.) 
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TABLE XIX: P.A. MORBIDIDTY PER MONTH FOR PERIOD 1 (2000 – 2004) 

 

  c.EHEE
MEDIAN_
INCOME

PCT_NO_
VEHICLE

PCT_PUB
_ASSIST

PCT_FEMA
LEHOUSE_
CHILDREN

PCT_5_U
NDER

PCT_65
_OVER

PCT_AA
PCT_NO
_HSEDU

PCT_BELO
W_POVER
TY

PCT_UNEM
PLOYED_16
_OVER

PCT_MOB
_HOME

PCT_RACE_
OTHER_TH
AN_WHITE

MEDIAN_H
OME_VALU
E

P.MLC P.NLC P.T.ULC
P.A.Morbi
d_P1

c.EHEE 1 -0.219 0.223 0.266 0.259 0.034 0.014 0.266 0.064 0.264 0.222 0.192 0.245 -0.29 -0.036 0.186 -0.187 0.201
MEDIAN_INCOME -0.219 1 -0.692 -0.715 -0.497 0.256 -0.647 -0.444 -0.571 -0.867 -0.56 -0.601 -0.392 0.88 0.404 -0.56 0.553 -0.403
PCT_NO_VEHICLE 0.223 -0.692 1 0.819 0.809 -0.138 0.466 0.785 0.345 0.801 0.724 0.223 0.748 -0.569 -0.166 0.203 -0.199 0.251
PCT_PUB_ASSIST 0.266 -0.715 0.819 1 0.733 -0.002 0.41 0.719 0.298 0.825 0.667 0.364 0.677 -0.674 -0.291 0.347 -0.341 0.326
PCT_FEMALEHOUSE
_CHILDREN 0.259 -0.497 0.809 0.733 1 0.025 0.12 0.921 0.011 0.691 0.747 -0.024 0.915 -0.416 -0.068 -0.087 0.091 0.072
PCT_5_UNDER 0.034 0.256 -0.138 -0.002 0.025 1 -0.568 -0.067 -0.088 -0.161 -0.103 -0.088 0.002 0.097 0.007 -0.146 0.148 -0.094
PCT_65_OVER 0.014 -0.647 0.466 0.41 0.12 -0.568 1 0.162 0.473 0.463 0.208 0.337 0.075 -0.519 -0.223 0.486 -0.484 0.315
PCT_AA 0.266 -0.444 0.785 0.719 0.921 -0.067 0.162 1 0.014 0.632 0.726 0.03 0.983 -0.395 0.066 -0.053 0.052 0.16
PCT_NO_HSEDU 0.064 -0.571 0.345 0.298 0.011 -0.088 0.473 0.014 1 0.366 0.127 0.477 -0.018 -0.616 -0.28 0.487 -0.483 0.32
PCT_BELOW_POVER
TY 0.264 -0.867 0.801 0.825 0.691 -0.161 0.463 0.632 0.366 1 0.707 0.48 0.602 -0.713 -0.373 0.382 -0.373 0.37
PCT_UNEMPLOYED_
16_OVER 0.222 -0.56 0.724 0.667 0.747 -0.103 0.208 0.726 0.127 0.707 1 0.138 0.715 -0.424 -0.145 0.082 -0.078 0.19
PCT_MOB_HOME 0.192 -0.601 0.223 0.364 -0.024 -0.088 0.337 0.03 0.477 0.48 0.138 1 -0.026 -0.625 -0.319 0.672 -0.669 0.47
PCT_RACE_OTHER_T
HAN_WHITE 0.245 -0.392 0.748 0.677 0.915 0.002 0.075 0.983 -0.018 0.602 0.715 -0.026 1 -0.334 0.087 -0.164 0.163 0.125
MEDIAN_HOME_VAL
UE -0.29 0.88 -0.569 -0.674 -0.416 0.097 -0.519 -0.395 -0.616 -0.713 -0.424 -0.625 -0.334 1 0.377 -0.636 0.63 -0.436
P.MLC -0.036 0.404 -0.166 -0.291 -0.068 0.007 -0.223 0.066 -0.28 -0.373 -0.145 -0.319 0.087 0.377 1 -0.367 0.335 -0.166
P.NLC 0.186 -0.56 0.203 0.347 -0.087 -0.146 0.486 -0.053 0.487 0.382 0.082 0.672 -0.164 -0.636 -0.367 1 -0.999 0.385
P.T.ULC -0.187 0.553 -0.199 -0.341 0.091 0.148 -0.484 0.052 -0.483 -0.373 -0.078 -0.669 0.163 0.63 0.335 -0.999 1 -0.384
P.A.Morbid_P1 0.201 -0.403 0.251 0.326 0.072 -0.094 0.315 0.16 0.32 0.37 0.19 0.47 0.125 -0.436 -0.166 0.385 -0.384 1
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TABLE XX: SUMMARY PA METRICS; PERIOD 1 P.A. MORB; 
OPTIMIZATION APPROACH FOR RANKS AND PCA 

 

TABLE XXI: TABLE REMOVED  

FC CF OCP OOR OUR Cum

Add. Ranks 13 Var NoLC 11.3% 10.1% 36.5% 29.6% 34.0% n/a

Add. Ranks 13 Var 3 LC 10.7% 9.4% 35.2% 30.2% 34.6% n/a

Add. Ranks 13 Var 2 LC 10.7% 9.4% 36.5% 29.6% 34.0% n/a

PCA 3 PC +++ 13 Var No LC 11.3% 11.3% 39.6% 29.6% 30.8% 79.7%

PCA 3 VARIM 13 Var No LC 12.6% 13.2% 35.8% 30.2% 34.0% 79.7%

PCA 3 PC +++ 13 Var 3 LC 14.5% 12.6% 34.6% 31.4% 34.0% 74.5%

PCA 3 PC +++ 13 Var 2 LC 14.5% 11.9% 35.8% 30.2% 34.0% 78.5%

PCA 2 PC +- 13 Var No LC 13.2% 13.8% 30.8% 32.7% 36.5% 68.5%

PCA 2 PC +- 13 Var 3 LC 13.8% 12.6% 38.4% 28.3% 33.3% 63.9%

PCA 2 PC VARIM 13 Var 3 LC 10.7% 10.1% 34.6% 30.2% 35.2% 63.9%

PCA 3pc +-+ 13 Var 2 LC 13.8% 10.1% 34.6% 28.9% 36.5% 78.5%

PCA 3pc VARIM 13 Var 2 LC 11.9% 8.8% 40.9% 27.0% 32.1% 78.5%

Period 1: P.A. Morbidity
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TABLE XXII: DT (5.0 ALGORITHM) MODELING OF PERFORMANCE 
ASSESSMENT MORBIDITY 

 

 

  
 FC CF OCP OOR OUR

DT C5.0 4 Bin 13 Var No LC 10.1% 1.9% 77.4% 16.4% 6.3%

DT C5.0 4 Bin 13 Var  3 LC 6.3% 3.8% 74.8% 10.1% 15.1%

DT C5.0 4 Bin 10 Var  2 LC 2.5% 1.9% 83.6% 5.0% 11.3%

DT C5.0 4 Bin 9 Var 2LC 7.5% 2.5% 80.5% 11.3% 8.2%

DT C5.0 4 Bin 10 Var  1LC 4.4% 1.9% 83.0% 10.7% 6.3%

DT C5.0 4 Bin 7 Var 1LC 4.4% 1.9% 84.3% 12.6% 3.1%

Period 1 P.A. Morb. 
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TABLE XXIII: VALIDATION METRICS FOR PERCENTAGE FRACTONAL 
RANKS DERIVAITON APPROACH, GEORGIA 

 Method  
(for population 
adj sted 

 

Var LC OCP UE CF 

PT DLI.PI → 
DLI.PII  1 n/a 44.0% 25.8% 1.9% 

R1 EHEV(PFR) → 
DLI.PI  13 no 36.5% 34.0% 0.6% 

R2 EHEV(PFR) → 
DLI.PI  13 3 33.3% 35.2% 0.6% 

R3 EHEV(PFR) → 
DLI.PI  13 2 36.5% 34.0% 0.6% 

R4 EHEV(PFR) → 
DLI.PII  13 2 38.4% 34.0% 0.6% 

R5 
EHEV(PFR) + 
DLI.PI  → 
DLI.PII  

13 2 40.3% 33.3% 0.6% 

Notes: 

DLLPI: Disaster Loss Period 1 
VARI: Input Variable 
EHEV: Extreme Heat Event Vulnerability 
PFR: Percentage Fractional Ranks 

 

TABLE XXIV: VALIDATION METRICS FOR PERCENTAGE FRACTONAL 
RANKS DERIVAITON APPROACH, GEORGIA 2.0 

 Method  
(Age adjusted 
M bidit  C t  III) 

Var LC OCP UE CF 

PT PT DLI.PI → DLI.PII  1 n/a 44.0% 25.8% 1.9% 

R6 EHEV(PFR(00)) → 
DLI.PI  13 no 35.8% 31.3% 2.2% 

R7 EHEV(PFR(00)) → 
DLI.PI  13 3 38.8% 30.6% 2.2% 

R8 EHEV(PFR(00)) → 
DLI.PI  13 2 35.8% 32.1% 2.2% 

R9 EHEV(PFR(00))  → 
DLI.PII  13 2 36.9% 33.8% 2.3% 

R10 EHEV(PFR(00)) + 
DLI.PI  → DLI.PII  13 2 40.0% 30.8% 1.5% 

Notes: 

DLLPI: Disaster Loss Period 1 
VARI: Input Variable: 
EHEV: Extreme Heat Event 

Vulnerability 
PFR: Percentage Fractional Ranks 
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TABLE XXV: METHOD AND VALIDATION METRICS FOR EHE INDICES 

DERIVED WITH PCA; GEORGIA  

Method Input 
Var 

PCs 
(rot) 

Var. 
Exp OCP UE CF 

A
C Perf. Threshold 1 n/a n/a   

44.0% 25.8% 1.9% 

1 PCA → DLI.PI 13 VARI 81.2% 36.6% 30.6% 1.5% 
2 PCA → DLI.PI 12 no 76.2% 40.3% 29.9% 2.2% 
3 PCA → DLI.PI 12 VARI 76.1% 45.5% 26.9% 1.5% 
4 PCA → DLI.PI 12 VARI 81.5% 41.8% 27.6% 1.5% 
5 PCA → DLI.PI 12 VARI 79.8% 44.0% 27.6% 1.5% 
6 PCA → DLI.PI 13 VARI 82.1% 41.0% 29.1% 0.7% 
7 PCA → DLI.PI 12 VARI 82.3% 36.6% 35.1% 2.2% 
8 PCA → DLI.PI 12 VARI 87.1% 32.8% 32.1% 2.2% 
9 PCA → DLI.PI 11 VARI 72.6% 47.8% 26.1% 0.7% 
10 PCA → DLI.PI 10 VARI 71.5% 48.5% 25.4% 0.7% 

11 PCA(10) → 
DLI.PII 10 VARI 71.5% 43.1% 24.6% 1.5% 

12 
PCA(10) + 
DLI.PI   → 
DLI.PII 

n/a n/a n/a 46.2% 24.6% 2.3% 

Notes: 
PCA: Principle Component Analysis 
DLLPI: Disaster Loss Period 1 
VARI: Input Variable 
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TABLE XXVI: CATEGORY III MEANS OF PERIOD 1 AND 2 

 

 

 

 

 

 

TABLE XXX: VARIABLES ARE INCLUDED FOR THE VALIDATION 
MODEL STRUCTURE 
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TABLE XXXI: DT APPROACH FOR DERIVING EHEV INDEX, GEORGIA 

Method In. Var. LC OCP UE CF CUE 38.7
% 

AC PT 1 n/a   44.0% 25.8% 1.9% 14.7
% 

1 DT → 
DLI.PI 

13 No LC 80.6% 9.0% 0.7% 8.8% 

2 DT → 
DLI.PI 

13 3 82.1% 12.7% 0.0% 8.8% 

3 DT → 
DLI.PI 

13 2 79.9% 11.9% 0.0% 5.9% 

4 DT → 
DLI.PI 

13 2 76.1% 11.9% 2.2% 11.8
% 

5 DT → 
DLI.PI 

13 2 83.6% 12.7% 0.0% 20.5
% 

6 DT → 
DLI.PI 

12 2 82.1% 9.0% 0.0% 8.6% 

7 DT → 
DLI.PI 

11 1 88.8% 6.0% 0.0% 8.6% 

8 DT → 
DLI.PI 

10 1 88.8% 6.0% 0.0% 9.4% 

9 DT → 
DLI.PI 

9 1 86.6% 8.2% 0.0% 9.1% 

10 DT → 
DLI.PI 

8 1 87.3% 7.5% 0.0% 33.3
% 
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TABLE XXXII: VARIABLE SELECTION AND PA METRICS 
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