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SUMMARY 

 

The study of mechanical metamaterials has showcased unusual mechanical properties that have never been 

realized in conventional materials. These unusual properties lead to fascinating characteristics of the structure 

or material which could serve as a basis for engineering advanced materials. Mechanical metamaterials 

formulated from periodic lattice structures derive their distinct properties from the geometry of their unit cells 

or substructures. Negative Poisson’s ratio, negative or zero stiffness, vanishing shear modulus and negative 

compressibility are some of the interesting mechanical metamaterial properties that have been realized. 

Engineered or architected materials and structures with such unusual properties could demonstrate significant 

peculiar deformation and strain energy behaviors and if controlled could be critical features in designs of smart 

materials, advanced space structures, seismic risk mitigation systems and intelligent and autonomous structures. 

Therefore, this research work presents a detailed study on the anomalous deformation and strain energy 

behaviors in bistable and nonlocal periodic lattice mechanical metamaterials. The objective was to develop 

systematic analytical and computational tools for designing and analyzing unusual deformation and strain energy 

behaviors in these metamaterials.  

Bistable systems with internal degrees of freedom have been studied to possess the negative compressibility 

metamaterial behavior and so contracts opposite to the direction of the applied force. To study this interesting 

unexpected deformation behavior in elastic structures, a systematic methodology for designing bistable elastic 

structures using stability diagrams and phase diagrams is presented. These diagrams are developed using 

knowledge of bifurcation and cusp curves of geometric singularity from the catastrophe theory and become 

great tools for understanding the stability behaviors in geometrically nonlinear structures.  For a single external 

degree of freedom elastic truss structure with Green’s strain approximation only a single cusp singularity exists, 

and stability behaviors could be monostability when only one stable state exist and bistability when two stable 

states exist. However, bistability is found to exist in two forms: superelasticity which is the usual transition 

between two stable states with no residual deformation after load removal and superplasticity when residual 

deformation exist after load removal and a reversal force is required for full recovery.  
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The analytical approach discussed in the bistability studies helped to present a detailed discussion of the negative 

extensibility metamaterial behavior in simple elastic structure made up of bars and springs with two external 

vertical degrees of freedom and an internal rotational degree freedom. It is shown that even for simple 

structures possessing negative extensibility, their stability behaviors could be complex possessing two cusp 

points or a cusp point of beak forming bifurcation curves.  These unusual stability diagram characteristics lead 

to a pinch hysteresis initiating the negative extensibility behavior and a secondary hysteresis. The phase diagram 

of the structure studied described five stability behaviors as follows: monostability, superelasticity, 

superplasticity, negative extensibility superelasticity and negative extensibility superplasticity. 

The study of nonlocal mechanical materials like the x-braced periodic lattice has demonstrated that when unit-

cell structure stiffness properties are well programmed they could lead to the reverse Saint Venant edge 

metamaterial behavior. This metamaterial behavior is showcased by the reversal in decay rate of Raleigh modes 

such that lower wave numbers (coarse) decay faster while higher wave numbers (even) decay slower due to the 

presence of bandgaps in the deformation decay spectrum of the x-braced lattice. A further study of the 

metamaterial in a 2D nonlocal periodic lattice structure is introduced which includes building solution forms 

for a Raleigh mode and for arbitrary natural and essential boundary conditions. A bandgap design is also 

discussed using the concept of phase diagram to limits for attaining deformation blockage. Repeated zero 

eigenvalues in 2D nonlocal periodic lattice will be shown to possess a unique capacity to polarize any arbitrary 

polarization vector of the Raleigh mode associated with the wave number and therefore classified as polarizing 

lattice structures.  Since the nonlocal periodic lattice could possess anomalous strain energy behavior due to 

complexities in its deformation spectrum, the strain energy spectral density and strain energy spectral entropy 

measures are developed using analogies to the Parseval’s theorem and Shannon’s entropy and approaches for 

both continuum material and lattice materials are detailed.  The 450 maximal strain energy rerouting and the 

channeling of low energy pockets in the 2D periodic nonlocal x-braced lattice material were identified as 

anomalous strain energy behaviors far from the behavior in an L-periodic continuum material. Complexities in 

the spectral energy distribution of a nonlocal periodic lattice could lead to its strain energy spectral entropy 

having a local maximum compared to a monotonic continuum behavior.  
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1 INTRODUCTION 
 

 

1.1 Mechanical Metamaterials 

Metamaterials is a term that classify modern engineered materials possessing extreme functionalities that are 

driven by their preconceived unusual properties. Veselago in 1967 [1], proved the concept of metamaterials to 

exist when he theoretically showed that materials identified to show both negative permeability and negative 

permittivity could lead to an exotic property known as negative refractive index. Pendry and Smith [2-4] proved 

the validity of the negative refractive index metamaterial in their experimental studies and that ignited the field 

of photonic metamaterials showcasing studies on advanced resolution imaging and wave guiding technology 

[5-9].  The concept of negative refractive index is also seen in wave mechanics when materials are tuned to have 

both negative bulk modulus and negative mass density and as such are classified under acoustic or phononic 

metamaterials.  These metamaterials allow sound waves to be manipulated to serve interesting applications such 

as shielding and reflection of seismic waves when bandgaps exist in their dispersion curves [10-13].  

The field of mechanical metamaterials is an emerging addition to the strive in the past decades to produce 

materials with unforeseen properties and functionalities. In the theory of mechanical metamaterials, the success 

in optics and acoustics, where negative refractive index is achieved by programming the geometry of individual 

unit-cells, has been a guiding approach. Therefore, when the uniqueness in the geometry of the unit-cells or 

components of a material provides an opportunity to manipulate mechanical properties such as deformation, 

stress, stiffness and energy in unforeseen ways than is likely then such a material is termed a mechanical 

metamaterial. A look at different reviews [14-15] on mechanical metamaterials have shown that these unusual 

behaviors are a result of adverse material elastic parameters like the Young’s modulus, bulk modulus and shear 

modulus and the Poisson’s ratio. Meaning the right unit-cell structure geometry and overall global configuration 

can lead to unexpected elastic properties with performance which exceeds that of ordinary materials.   

The earliest record of a mechanical metamaterial was seen in a paper by Kolpakov in 1985 [16] that showcased 

an example of an elastic framed network with negative Poisson’s ratio and so the network must expand laterally 
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when a longitudinal tensile force is applied (See Fig. 1.1) due to their bulk to shear modulus ratio approaching 

zero. Later in 1987, Lakes [17-18] introduced a re-entrant polyform foam structure which possessed this exotic 

behavior and that has led research into field of mechanical metamaterials termed auxetics. An auxetic behavior 

is said to be a property of a non-convex microstructure [19] and could see potential applications in aerospace 

and marine structures due to their shock absorption and low-density properties [20].  

 

Figure 1.1 Different Poisson’s ratio measures: (left) Positive Poisson’s ratio exhibited in a rubber sheet when 

axially applied tensile force causes lateral contraction (deformed state in blue). (middle)Zero Poisson’s ratio in 

a patterned or cellular material such that there is no lateral contraction under tensile axial force even when 

individual pores contract. (right) Negative Poisson’s ratio is seen in an auxetic lattice so that there is lateral 

expansion under a tensile axial force. [15] 

It is well known [21-22] in the field of mechanics that vibration transmission in mechanical components calls 

for an ideally zero stiffness of a supporting structure. The high dampening efficiency of materials possessing 

negative stiffness [23-24] has defined like materials as metamaterials. Bistable substructures exhibiting snap-

through can characterize designs of these mechanical metamaterials [25].  The topology transformation feature 

associated with bistable structures can be seen in reprogrammable actuators [26] and reconfigurable origami 

structures [27-29] with extreme functionalities (See Fig. 1.2). Bistability as a feature of negative stiffness can 

also lead to some rare metamaterial behavior in engineered structures like negative compressibility [30-33], 

where a structure contracts under a tensile load in the direction of the load. Structures with multiple degrees of 
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freedom and an internal degree of freedom could be modelled with this metamaterial ability and they would 

have the capacity to serve as super dampers for isolation of earthquake and explosion impact.    

 

Figure 1.2 Origami waterbomb base bistability: (a) first stable configuration after folding and (b) second 

stable configuration when vertex is pushed beyond a its base plane. [28] 

Taking advantage of such advanced material behaviors the scope and applicability of engineered smart 

materials, composites and structures could bring worthy innovation in fields like architecture, manufacturing, 

transportation and medicine. In the ongoing studies on mechanical metamaterials, there is always the need for 

further discourse to broaden the field of knowledge. If we take for instance negative compressibility (See Fig. 

1.3), a bulk property where material contracts under tensile load in the direction of a force, published studies 

[30-33] have looked at destabilization of stable states of an idealized atomic structure of a material. They 

analyzed structures having multiple degrees of freedom which included an internal of freedom which showcased 

an advanced bistability behavior evidenced by a pinched hysteresis leading to negative compressibility. 
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Therefore, negative compressibility could be harnessed in elastic structures by developing tools that predict 

efficiently predict multistability responses in these structures. Previous studies [34-38] on multistability have 

studied structures from dielectric elastomer actuators to three dimensional trusses and have been successful in 

describing equilibrium state transitions but have been limited in describing a comprehensive design map where 

the stability of multi-stable systems could be predictive. Developing such a design map means if a negative 

compressibility behavior is realized in a multi-stable system, we would be confident in predicting such a unique 

metamaterial property as well. Ability to build units of such peculiar behavior subsequently poses the question 

of how periodic lattice models could be built to attain a similar collective metamaterial behavior. This 

achievement would be a notable step at controlling deformation behavior in periodic lattice structures as is seen 

in acoustic metamaterials where altering bandgap characteristics by tuning individual substructures can lead to 

sound controlling capabilities like noise control and vibration isolation [10-13].  

 

Figure 1.3 Negative compressibility: (a) Four-particle constituent structure showing initial stable state (red) and 

contracted second stable state (blue) after application of tensile force making it a negative compressible 

structure. (b) A material made up of the constituent particles in (a) exhibiting negative compressibility 

metamaterial after applying an isotropic tensile force (see middle of edges). [30] 

Deformation in materials is an important area of study in mechanics with the aim of understanding stress and 

strain distribution to be able to improve resilience and eliminate mechanical failures like crack.  Structures with 

potential for deformation reprogramming would therefore be termed smart possessing hyper functionalities 

like stress alleviation, deformation recognition etc.  Studies on reprogramming mechanical deformation in 
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periodic lattice network can be seen in the study of pentamode metamaterials [39-41] (See Fig. 1.4), an 

interesting example where a material can be programmed to block a single mode of deformation. A related field 

is the study of topological metamaterials, a kind of isostatic lattices which are programmed to have zero-

frequency modes when the topological index of its unit-cell structure is tunable [15,42-43]. In another studies 

[44] on isostatic lattice network, we have seen controlled arbitrary global deformation when unit-cells are 

periodically actuated.  

 

Figure 1.4 Pentamode mechanical metamaterial: (left) hypothetical pentamode lattice and (middle) electron 

micrograph view of directed ink printed pentamode lattice structure. (right) Pentamode lattice being very stiff 

under uniform compression and very soft under a shear force due to shear to bulk ratio approaching zero. [15] 

 

Studies recently presented by Karpov [45] on the anomalous behavior of nonlocal x-braced lattics termed as 

the reverse Saint-Venant edge effect (RSV) is a metamaterial behavior which creates avenue for unique 

deformation programming functionalities like static deformation blockage and deformation propagation rate 

reversal in periodic lattices. The is achieved by the existence of exotic features termed bandgaps in materials 

deformation spectrum analogous to the dispersion curve in acoustic mechanics. The study [45] while 

constrained to 1D periodic lattices is a state of the art in lattice mechanics which provides an essential 

understanding for programming applied static deformation patterns lattice structures. Broadening such a 

knowledge to 2D lattice structures and deepening understanding on how deformation and strain energy 

transforms in a lattice media could lead to identifying anomalous lattice material behaviors.  
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1.2 Thesis Organization 

The subject of this thesis would be to discuss bistable and nonlocal lattice networks with the potential for 

metamaterial behaviors like negative extensibility and the reverse Saint-Venant Edge Effect (RSV) respectively, 

but the overall aim is to identify anomalies in deformation and strain energy behaviors in such structures. 

Having given an overview of mechanical metamaterials in the ongoing chapter, the rest of the thesis is presented 

as follows: 

The second chapter will be dedicated to the design of bistability behavior in elastic systems and how they could 

be systematically analyzed in systems with geometrical nonlinearity. The mathematical concept of the 

catastrophe theory will be introduced as a way of developing stability diagrams and cusp curve phase diagrams 

that predict bistability behavior and their designability limits.  

In the third chapter, we discuss the negative extensibility mechanical metamaterial property as a by-product of 

bistable systems with multiple degrees of freedom including an internal degree of freedom. The discussion will 

proceed by developing similar stability diagrams and cusp curve phase diagrams as done in the second chapter 

to serve as a guide for programming such a rare metamaterial behavior in elastic structural systems and units. 

In chapter four, the Parseval’s energy theorem as a borrowed concept from signal analysis is presented as a 

novelty in continuum mechanics. The mechanics analogue of the Parseval’s theorem helps to introduce the 

strain energy spectral density in a continuum media which leads into the discussion of spectral energy 

transformation against spatial energy transformation in a continuum media. Entropy of mechanical deformation 

as a parameter to study information, disorder, inhomogeneities introduced by surface loads is also formulated. 

Such novel theories will be used to develop a numerical strain measurement method, an approach that would 

be an efficient tool for analyzing anomalies in strain energy in continuum material as well as periodic lattices.         

Chapter five starts with a detailed background on static analysis of periodic lattice networks. The method of 

discrete field analysis as a means of writing a compact governing equilibrium equation is introduced with its 

comparable operator form that allows for an efficient Discrete Fourier Transform analysis. The transfer matrix 

and the solution form of the associate substructure of a nonlocal periodic lattice is written as a precursor to 



7 
 

demonstrating the reverse Saint-Venant Edge effect behavior as shown in the study by Karpov. A 

comprehensive 2D static Raleigh mode solution is presented here and after expanded to solution methods for 

analyzing arbitrary essential and forced boundary conditions. System design maps for predicting Raleigh mode 

blockage and the RSV effect in an x-braced lattice and polarizing periodic lattice structures (the scenario of 

repeated-zero eigenvalues) are also discussed. To end the chapter, the concepts of the Parseval’s theorem and 

entropy in numerical strain energy measurement introduced in Chapter 4 will be used to study anomalous strain 

energy behavior in 2D x-braced nonlocal lattices by comparing behaviors to continuum strain energy behavior. 

The last chapter would summarize major conclusions of this thesis and provide suggestions for future work to 

advance this field of study. 
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2 DESIGN OF BISTABILITY BEHAVIOR IN ELASTIC 

STRUCTURES 
  

(This chapter is based on a material previously published as Danso, L. A.; Karpov, E.G. Cusp Singularity-Based Bistability 

Criterion for Geometrically Nonlinear Structures. Extreme Mechanics Letters. 2016, 13, 135-140.)  

 

2.1 Introduction 

Bistability is a property where a mechanical system exhibits two stable states of equilibrium. This mechanical 

behavior is seen in metastable systems or systems that undergo a snap-through action in their force-

displacement curves. This snap-through behavior is comparable to the temperature induced elastic hysteresis 

showcased by ferroelastic solids and other shape memory alloys (SMA) [1-2].  

The large deformations accompanying the snap-through action in elastic structures means assumptions of small 

deformations and rotations would not be enough to analyze the nonlinear behavior and therefore geometrical 

nonlinearity of the structure should be included in analysis [3]. Geometrical nonlinearity is captured in analysis 

when the equilibrium of the deformed state of the elastic structure is used to determine the response of the 

structure under a load.  

The equilibrium of the deformed state of conservative elastic structural systems could be described by 

employing the principle of equilibrium potential energy and for bistable systems have been shown to be of the 

quartic order [3]. This principle implies by minimizing or maximizing the total potential energy of a conservative 

system with admissible kinematic deformations the state of equilibrium either stable, unstable or neutral could 

be determined. 

 In the case of bistable systems, the force-displacement curve plotted from the equilibrium potential shows two 

states of stable equilibrium as seen in Fig. 2.1.  In a forced-controlled system, at a certain critical force 𝑓𝐶 at 

point O corresponding to a neutral equilibrium state (inflection point) there is a transition from stable state A 

to stable state B which signifies a snap-through action. This snap-through action exists because at the critical 
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point O, a small change in force would cause a change in displacement that follows a negative stiffness slope 

which is an unstable and hence the jump to the adjacent stable state.  

 

 

 

Figure 2.1 Snap-through Action  

 

Due to the high energy storage potential and the multiple stable states of deformation that could be achieved, 

bistable elastic structures could be beneficial in designing large scale advanced structures as seen in the civil and 

aerospace industries. Snap-through based reconfigurability has led to significant studies on deployable and 

shape morphing structures [4-7]. Other authors [8-10], have also studied shell, space truss and frames that have 

exhibited a snap-through with foreseeable future in smart materials and structures. Mechanical components 

and electromechanical units as well as small scale MEM devices have comfortably been modelled using truss 

systems with multi-stability [11-13]. These smart applications have sometimes utilized the snapping effect 

associated with the buckling instability of these systems [14].  

Studies on the Crisfield circular arch truss and other space trusses with repeated truss structures [8-9] have 

shown multiple snap-through actions which gives confidence for identifying multi-stability behavior in periodic 
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lattice models. Materials developed from periodic lattice controlled by truss unit-cell structure [15-16] designed 

with the feature of multiple stable states could see enviable applications in composite materials where stability 

control is an overarching quality. 

Bistable elastic structures are also great candidates for a negative stiffness (NS) metamaterial behavior: the case 

when a structure’s deformation direction opposes the direction of the applied force and initiates a negative 

restoring force or an assisting force (acts in direction of deformation). This NS behavior is achieved only under 

an unstable state of equilibrium and can only be harnessed under a displacement-controlled regime or when 

structure or material is embedded in a system with positive stiffness which stabilizes the system [3, 17-19]. 

Structures designed with NS are functional mechanical metamaterials with vibration isolation and seismic 

protection properties [20-21]. 

 In previous studies on geometrically nonlinear structures [9, 22-24], numerical methods like the arc-length and 

intrinsic finite element methods have been used to analyze the stability of trusses and some have exhibited the 

snap-through behavior. Similarly, the history of optimization of structural response and design which are critical 

to minimizing design costs by producing high strength and light weight structures have been founded on 

numerical methods [25-28]. These optimization methods involve a huge computational cost due to the amount 

of structural analysis even for linear response approximation and therefore geometrical nonlinear analysis is 

expected to impose undue computational burden [29].  

Studies by [29] have suggested a numerical predictive tool like an adaptive neuro-fuzzy inference to be much 

efficient for optimizing structural response of geometrically nonlinear truss structures. However, the need to 

provide a universal framework to be able to fully-understand systems with high geometrical nonlinearity as well 

as those that present multi-stability behavior could mean the use of a full analytical or semi-analytical method 

[30-33] notwithstanding the success of the available computational methods. The efforts made by these 

analytical studies in capturing the nonlinear bistable response is commendable, but they do not present a fully 

analytical path for predictive design.  
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Hence, the aim of this chapter is to provide a mathematical model for analyzing and controlling the equilibrium 

stability response in geometrically nonlinear elastic structures and more importantly a systematic framework for 

predictive design. The approach would be to use a special case of the catastrophe theory [3, 34-39] in geometric 

singularity studies known as the cusp employed to develop optimization tools termed stability diagrams and a 

phase diagram. A systematic analytical procedure will be illustrated using simple 2D and 3D elastic truss 

systems. 

 

2.2 Design Using Stability Diagrams 

2.2.1 Catastrophe Theory 

The catastrophe theory is a theory developed by Rene Thom [34] in the 1960’s with great contributions from 

Zeemann, Arnold and Gilmore [35-37]. It is classified as a branch of the bifurcation theory which studies the 

changes in qualitative behavior in the topology of dynamical systems. Catastrophe theory by Gilmore is the 

study of the relationships that could be drawn between qualitative nature of solution space of an equation and 

the parameters represented in the equation. The ability to develop relationships between parameters 

underpinning a system’s response known as stability diagrams is the importance of the catastrophe theory in 

the design process. Such parameters are deemed as system parameters describing inherent properties (stiffness, 

skewness, density) or control parameters when they control the qualitative behavior of the solution space. The 

variables forming such an equation are termed state variables (deformation, strain) since they account for the 

state of a system. Catastrophes are characterized by the nonlinear system behavior which is shown by a sudden 

or large change in qualitative behavior of the state of a system and a jump like that of the snap-through action 

seen in bistable systems.  Rene Thom identified seven elementary catastrophes [34] as given in TABLE I. The 

topology (See the f y-plane of Fig. 2.1) of the cusp castastrophe corresponds with the snap-through behavior 

and therefore elastic structures having a total potential of the quartic form as the cusp generating function 

would possess the bistability behavior. 
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 2.2.2 Drawing the Stability Diagram 

For example, let’s assume the first derivative of a generating function to have the form  𝑦3 − 𝑎𝑦2 + 𝑏𝑦 − 𝑓 = 0. 

This function could be said to have two (2) system parameters (a, b) and one (1) control parameter (f) and 

referring to TABLE I, has the cusp catastrophe form. Fixing system parameter, a, to a constant value and 

plotting the three-dimensional space (3D) topology we obtain the plot in Fig. 2.2  

Table I Form of the seven elementary catastrophes 

Type of 

 Catastrophe 

Control/System  

parameters 

State 

 variables 

Generating function First derivative 

(response) 

Fold 𝑎 𝑥 1

3
𝑥3 − 𝑎𝑥 

𝑥2 − 𝑎 = 0 

Cusp 𝑎, 𝑏 𝑥 1

4
𝑥4 − 𝑎𝑥 −

1

2
𝑏𝑥2 

𝑥3 − 𝑎 − 𝑏𝑥 = 0 

Swallowtail 𝑎, 𝑏, 𝑐 𝑥 1

5
𝑥5 − 𝑎𝑥 −

1

2
𝑏𝑥2 −

1

3
𝑐𝑥3 

𝑥4 − 𝑎 − 𝑏𝑥 − 𝑐𝑥2 = 0 

Butterfly 𝑎, 𝑏, 𝑐, 𝑑 𝑥 1

6
𝑥6 − 𝑎𝑥 −

1

2
𝑏𝑥2 −

1

3
𝑐𝑥3 +

1

4
𝑑𝑥4 

𝑥5 − 𝑎 − 𝑏𝑥 − 𝑐𝑥2 − 𝑑𝑥3 = 0 

Hyperbolic 

umbilic 

𝑎, 𝑏, 𝑐 𝑥, 𝑦 𝑥3 + 𝑦3 + 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑥𝑦 3𝑥2 + 𝑎 + 𝑐𝑦 = 0 

3𝑦2 + 𝑏 + 𝑐𝑥 = 0 

 

Elliptic 

umbilic 

𝑎, 𝑏, 𝑐 𝑥, 𝑦 𝑥3 − 𝑥𝑦2 + 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑥2 + 𝑐𝑦2 3𝑥2 − 𝑦2 + 𝑎 + 2𝑐𝑥 = 0 

−2𝑥𝑦 + 𝑏 + 2𝑐𝑦 = 0 

 

Parabolic 

umbilic 

𝑎, 𝑏, 𝑐, 𝑑 𝑥, 𝑦 𝑥𝑦2 + 𝑦4 + 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑥2 + 𝑑𝑦2 2𝑥𝑦 + 𝑎 + 2𝑐𝑥 = 0 

𝑥2 + 4𝑦3 + 𝑏 + 2𝑑𝑦 = 0 
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Figure 2.2 A 3D topological view of a cusp catastrophe: The generating function has a first derivative,  y3 −

ay2 + by − f = 0.  Where system parameter a has been fixed to a constant value.  The stability diagram is 

described by the projection of the topology onto the fb-plane: the locus of all existing (ab-parameterized) 

bifurcation points (CP – the cusp point; BC – bifurcation curves). (1) – monostability; (2) – bistability 

(superelasticity/superelasticity). 

A projection of this topology unto the  (𝑓, 𝑦)  describes the hysteresis which is typical of a snap-through 

behavior as shown in Fig. 2.1.  Projecting the 3D solution space unto the (𝑓, 𝑏) plane, we obtain points when 

the transitions between two stable equilibriums and what is termed a stability diagram [38]. The stability diagram 

is basically a plot of all bifurcation points (BC) in the system’s generating function is governed by the degenerate 

point condition, 
𝑑2∏

𝑑𝑣2
= 0 and could be defined as the plot of all inflection points in a system when a system is 

neither stable or unstable. Ability to develop the stability diagram is of great significance since it gives a full 

view of all types of stability response behaviors in a generating system function and their ranges by varying the 

control parameter and a system design parameter. On the stability diagram, we see the extent of the bistability 

(snap-through) with its onset being the cusp point (CP). The cusp point is unique for a stability because it is a 
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2N-bifurcation point which means tuning two system parameters to achieve bifurcation. On the stability 

diagram we can also observe bistability to be comprised of two types: superelasticity and superplastictiy. 

Superelasticity being the usual behavior in bistable systems where the system recovers initial state and all 

deformations during unloading at  𝑓 = 0 and superelasticity is when at  𝑓 = 0 , initial state is not fully recovered 

during unloading. Hence, the need for load reversal for full initial state recovery.  All regions besides the 

bistability behavior are termed monostability regions since they exhibit only one stability state.  

2.3 Bistability Analysis in Elastic Structures 

Taking advantage of the geometrical nonlinearity characteristic of structures that show multistability, a linearly 

elastic structure is assumed to undergo small to moderate axial strains less than 0.05 but nodal displacements 

are large. Buckling instability is eliminated from bar elements of the structure by also assuming a very high 

Euler load [3, 40]. The total potential energy of the system is first sought and then the first derivative is applied 

with respect to the available system to obtain the minimum equilibrium potential equation or equations in case 

of multiple system variables. The derived total potential, Π , has the form: 

Π = 𝑈 − 𝑉                (2-1) 

Where 𝑈 is the stored strain energy in the bars and 𝑉 is the potential energy calculated for the applied external 

load. In an elastic bar or link the stored strain energy could be written in terms of the E - Young’s modulus, A 

-cross-sectional area, L – initial length of bar and  𝑙  – deformed length as 

𝑈 =
𝐸𝐴(𝑙−𝐿)2

2𝐿
                (2-2) 

If the expression 𝑘  describes the stiffness 
𝐸𝐴

𝐿
 in a bar and the Cauchy or engineering strain is defined as 𝜀𝑐 =

(𝑙 − 𝐿)/𝐿, (2-2) can be rewritten as  

𝑈 =
1

2
𝑘𝐿2𝜀𝑐

2               (2-3) 

For purposes of simplification by eliminating square roots when analyzing inclined bars, we replace the Cauchy 

strain 𝜀𝑐 with the Green’s strain 𝜀𝐺 : 

𝜀𝐺 =
𝑙2−𝐿2

2𝐿2
               (2-4) 
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The relationship between 𝜀𝑐 and 𝜀𝐺 can be obtained as  𝜀𝐺 = 𝜀𝑐 +
1

2
𝜀𝑐
2 [41] and for very small to moderate 

axial strains as mentioned earlier, the offset in value is approximately less than 0.3%.The strain energy in the 

bars sustains an external potential that is expressed in terms of the applied load F and nodal displacement v as 

𝑉 = 𝐹𝑣.  

Formulating all the terms for the total potential energy in (1-2) which serves as the generating function in 

catastrophe theory. The equilibrium minimum potential energy and the degenerate point condition can then be 

used to find the system response curves and the stability diagrams as shown above. If the equilibrium potential 

function is a cubic order polynomial with a minimum one system design parameter and a control parameter 

(See TABLE I), then the cusp or stability diagrams can be generated to predict the behavior of a system 

response curve whether monostability or bistability (superelasticity/superelasticity). 

 

2.3.1 2D Four Bar Truss Example 

In this section, we analyze the four-bar truss in Figure 2.3 which is far from the ideal von Mises trusses whose 

stability has been studied by several authors [ 3, 42-43]. The top bars and bottom bars have stiffnesses 𝑘1 and 

𝑘2 respectively.  

 

 

Figure 2.3 A four bar plane truss 

The bars 1-4 in Figure 2.3 would there have their Green’s strains calculated from (2-4) as  

𝜀1,3 =
𝑣2−2𝐻1𝑣

2(𝐿2+𝐻1
2)

                           (2-5)                                                     

𝜀2,4 =
𝑣2−2𝐻2𝑣

2(𝐿2+𝐻2
2)

                           (2-6)   
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We then derive the stored strain energies in the bars from (2-3) in the equations below. 

𝑈1,3 =
1

8

𝑘1

(𝐿2+𝐻1
2)
[𝑣2 − 2𝐻1𝑣]

2                         (2-7)                                                        

𝑈2,4 =
1

8

𝑘2

(𝐿2+𝐻2
2)
[𝑣2 − 2𝐻2𝑣]

2                         (2-8)          

Substituting equations (2-5 - 2-8) into Equation (2-1), the total potential equation has the form:         

∏ =
𝑘1

4(𝐿2+𝐻1
2)
[𝑣2 − 2𝐻𝑣]2 +

𝑘2

4(𝐿2+𝐻2
2)
[𝑣2 − 4𝐻𝑣]2 − 𝐹𝑣         (2-9)          

Hence, the first derivative 
𝒅∏

𝒅𝑣
 satisfying the state of equilibrium of the structure is                                                                                                      

𝒅∏

𝒅𝑣
=

𝑘1

(𝐿2+𝐻1
2)
(𝑣2 − 2𝐻1𝑣)(𝑣 − 𝐻1) +

𝑘2

(𝐿2+𝐻2
2)
(𝑣2 − 2𝐻2𝑣)(𝑣 − 𝐻2) − 𝐹 = 0     (2-10)      

By introducing the dimensionless parameters: g – applied force, 𝛾 – stiffness, ℎ – truss height and 𝑦 – 

deformation, (2-10) becomes      

𝑔 = (𝑦3 − 3𝑦2 + 2𝑦) + 𝛾(𝑦3 − 3ℎ𝑦2 + 2ℎ2𝑦)                     (2-11)       

𝑔 =
𝐹(𝐿2+𝐻1

2)

𝑘1𝐻1
3       𝛾 =

𝑘2(𝐿
2+𝐻1

2)

𝑘1(𝐿
2+𝐻2

2)
     ℎ =

𝐻2

𝐻1
       𝑦 =

𝑣

𝐻1
                    (2-12) 

We further obtain a much simpler form of Equation (2-11) by expanding, grouping and dividing terms with the 

coefficient of the highest order term. This gives the final equilibrium equation to be analyzed for stability as  

𝑓 = 𝑦3 − 𝑎𝑦2 + 𝑏𝑦         (2-13a)                                                               

 𝑓 =
𝑔

1+𝛾
 ,  𝑎 =

3(1+ℎ𝛾)

1+𝛾
,  𝑏 =

2(1+ℎ2)

1+𝛾
       (2-13b) 

 

2.3.2 Simple Truss Stability Diagrams 

The equilibrium equation in 2-13a now becomes a great tool for understanding the stability behavior inherent 

in the truss system shown in Fig. 2.3. Using the stability diagrams approach mentioned earlier, it is possible to 

draw up relationships existing between parameters within the structure’s equilibrium function (2-13a). In 2-13a, 

y is the state variable, f serves as the control parameter and a, b are the system or design parameters. The stability 

diagram as seen prior comprises bifurcation curves made up of bifurcation points of a system. These bifurcation 
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points are points of inflection of the system equilibrium function and so these can be plotted directly without 

the graphical projection of the solution topology used in Fig. 2.2 by applying the degenerate/ inflection point 

condition 
𝑑2∏

𝑑𝑣2
= 0. Taking derivative of (2-13a) and solving for y we obtain the expression: 

𝑦 =
𝑎±√𝑎2−3𝑏

3
          (2-14)        

Substituting the above equation back into (2-13a) and fixing either a or b we obtain expressions (f, a) and (f, b) 

which describes the bifurcation curves that plots the stability diagram. For example, by designing the truss 

structure in Fig. 2.3 to have the following design parameters: 𝐻1 = 0.05 𝑚, 𝐻2 = 0.01 𝑚, 𝐿 = 0.1 𝑚, 𝑘1 =

105 𝑁/𝑚 and 𝑘2 = 10
6 𝑁/𝑚 , we  calculate the design parameters as 𝑎 = 0.78 and  𝑏 = 0.16. So, for the 

stability plot of f against b we fix a at 0.78 and for the relationship between f and a, b is fixed to a constant value 

of 0.16 as observed in Fig. 2.4. Therefore, using Fig. 2.4 we can predict that the four-bar truss will undergo a 

superelastic forward transition at a critical dimensionless load at 0.0098 (131 N) and a superelastic reverse 

transition at 0.003 (40 N).  
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Figure 2.4 Four bar truss stability diagrams: top - (f, b) and bottom - (f, a) by fixing a = 0.78 and parameter 

𝑏 = 0.16 respectively. The region of structural superelasticity signifies a reversible transition between two 

stable states of a loading and an unloading regime but the region of superplasticity when bistability exists, 

however at f = 0, truss is not at initial undeformed state and to achieve that force reversal must be applied. 

Monostable elasticity region characterizes a single stability state response of the truss.    
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Figure 2.5 Typical system response curves of the truss in Fig.2.3 by fixing the parameter a and varying the 

parameter b: SE – structural superelasticity, SP – structural superplasticity and ME – monostable elasticity. The 

unstable equilibrium state of the truss is shown by dash lines. These system equilibrium behaviors are 

predictable from the stability diagrams in Fig. 2.4.   

 

The force - displacement behavior for the three (3) regions specified on the stability diagrams in Fig. 2.4 can be 

observed in Fig. 2.5 where the value of a is fixed at 0.78 and we plot the force-displacement response for 

different values of b.  In Fig. 2.5, the hysteretic behavior of the superelastic (b = 0.18) and superplastic (b = 

0.14) regions could be compared to monotonic nonlinear of the monostable elastic region (b = 0.22). Since 

design of the four-bar truss solely depends on the system design parameters a and b, it would be very important 

to obtain a design map or phase diagram showing the three stability behaviors (superelastic, superplastic, 

monostable) which depends on only the system or design parameters giving a designer the flexibility and the 

design tool for predicting the system stability response for a combination of design parameters. 
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2.4 Cusp Curve and the Phase Diagram 

In theory, the plotted bifurcation curves in Fig. 2.4 represent saddle-node bifurcation. However, the point 

where two bifurcation curves meet, called the cusp point is a point of higher order singularity where bifurcation 

curves are tangent to each other and is/are unique to a stability diagram. The uniqueness makes it a 2N-

bifurcation point which requires tunning two design parameters. The cusp point also serves as the onset of 

bistability below or above we observe bistability (superelasticity/superplasticit) or monostability as is 

represented in Fig. 2.4. The ability to plot all the cusp points in a system would demarcate the regions of 

monostability and bistability in a system. By imposing the conditions of the third derivative 
𝑑3∏

𝑑𝑣3
= 0 , second 

derivative  
𝑑2∏

𝑑𝑣2
= 0 and the first derivative 

𝒅∏

𝒅𝑣
 , we obtain a curve comprising all the cusp points as variation 

of the design parameters called the cusp curve and  hence, a clear separation of bistability region from 

monostability region. Since the bistability region is composed of superelastic and superplatic regions, it is also 

pertinent for design purposes to plot a curve to show the extent of each of these regions and this is achieved 

by applying the conditions of the force 𝑓 = 0 and the second derivative 
𝑑2∏

𝑑𝑣2
= 0. These conditions give the 

onset of superplasticity for the pair of design parameters. For the four-bar truss, functions for the two (2) 

curves explained above are obtained as 

𝑏 =
𝑎2

3
           (2-15)       

𝑏 =
𝑎2

4
           (2-16)       

A phase diagram for designing the four-bar truss (See Fig. 2.3) for the various stability responses using onset 

of bistability condition in (2-15) and onset of superplasticity condition in (2-16) is shown in Fig. 2.6.   
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Figure 2.6 Cusp curve phase diagram of elastic structures having equilibrium potential function of the form    

𝑓 = 𝑦3 − 𝑎𝑦2 + 𝑏𝑦. The cusp curve in Eqn. 2-15 represents both the limit of monostabilty and the onset of 

bistabilty while the cusp curve in Eqn. 2-16 represents both the limit of structural superelasticity and the onset 

of structural superplasticity.   

 

To showcase the predictive power of the cusp curve phase diagram (Fig. 2.6), we plot values for the system 

design parameters 𝑎 = 0.78 and  𝑏 = 0.16   for the example discussed above on the phase diagram in Fig. 

2.6, the system lies within the structural susperelasticity and that corresponds with the expected behavior seen 

in the stability diagrams. Therefore, the desired system equilibrium response is achieved by tuning the design 

parameters.  The narrow band of the of the structural superelasticity region shows the importance of the phase 

diagram or cusp curve map in bistability studies and without such a phase map the designer might be lost to 

rareness of such a phenomenon. 
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2.5 Periodic lattice Models 

In Fig. 2.7, a material having a stiff core structure of hexagonal bar elements and a soft surrounding matrix is 

shown. The unit-cell of this periodic material in Fig. 2.7 is made up of the interactions between the core 

structure and the soft matrix forming a triangular truss that can analyzed for bistabilty. The unique behavior of 

the unit-cell structure if bistable could lead to a reconfigurable material that could be programmed to resist 

compliance in certain directions.  

 

 

Figure 2.7 A composite material composed of a stiff hexagonal periodic lattice structure embedded in a soft 

continuum matrix. The existence of elastic interactions between the nodal points of the core and soft 

continuum forms a hypothetical tetrahedral truss.    

 

The study of bistability in plane periodic lattices is easily extended to 3D lattices and frameworks by analyzing 

the unit-cell structure. In Fig. 2.8, is a lattice made up of tetrahedron-shaped substructures and for the purpose 

of studying its states of stability, the unit-cell is idealized with internal bars as shown on the right. Structural 

applications of such a lattice with bistability could be evident in shell and plate structures or engineered lattices 

materials fabricated by additive manufacturing.  
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Figure 2.8 Design example of a periodic space truss using the bistable tetrahedral unit cell (internal bars of the 

individual tetrahedrons are not shown on the left image). 

 

2.5.1 Stability of the 3D Unit cell Tetrahedral Truss 

The tetrahedral unit cell will have the stiffness properties as shown in Fig. 2.9. The vertical central bar is assumed 

to be rigid (𝑘4 ≫ 𝑘1−3) so it undergoes no deformation and therefore no strain energy is stored. Hence, only 

nine bars contribute to the stored strain energy. The external load is applied at the apex which could form an 

analytical generalization for a periodic lattice under a distributed load [44]. Before analysis, we made these 

assumptions: the base triangle is equilateral, exterior bars have same length and inclined interior bars are equal 

in length. For a simplified analysis, the top node was constrained vertically while the bottom nodes were 

constrained to move in the base plane of the tetrahedral. Therefore, the strain energies stored in the bars are 

𝑈1 =
𝑘1
24𝐵2

(𝑢2 + 2𝐵𝑢 + 𝑣2 − 2√2𝐵𝑣)
2
 

𝑈2 =
𝑘2

8(𝐻2+𝐵2)
(𝑢2 + 2𝐵𝑢 + 𝑣2 − 2𝐻𝑣)2            (2-17) 

𝑈3 =
𝑘3
8𝐵2

(𝑢2 + 2𝐵𝑢)2 
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Figure 2.9 Tetrahedral truss unit-cell: (Left) 3D view showing stiffness and interior core structure having a 

rigid vertical bar. (Right) side view showing base length B and inclined length 𝑆 = √3𝐵.    

 

The total strain energy ∏ expression is formulated from (2-1) as 

∏ =
𝑘1

8𝐵2
(𝑢2 + 2𝐵𝑢 + 𝑣2 − 2√2𝐵𝑣)

2
+

3𝑘2

8(𝐻2+𝐵2)
(𝑢2 + 2𝐵𝑢 + 𝑣2 − 2𝐻𝑣)2 +

9𝑘3

8(𝐵2)
(𝑢2 + 2𝐵𝑢)2 – 𝐹𝑣    (2-18)  

Since there are two (2) state variables 𝑢  and 𝑣,  the two equilibrium equations for the total potential energy 

above are  

0 =
𝑑∏

𝑑𝑣
=

𝑘1

2𝐵2
(𝑢2 + 2𝐵𝑢 + 𝑣2 − 2√2𝐵𝑣)(𝑣 − √2𝐵) +

3𝑘2

2(𝐻2+𝐵2)
(𝑢2 + 2𝐵𝑢 + 𝑣2 − 2𝐻𝑣)(𝑣 − 𝐻) − 𝐹    (2-19) 

0 =
𝑑∏

𝑑𝑢
=

𝑘1

2𝐵2
(𝑢2 + 2𝐵𝑢 + 𝑣2 − 2√2𝐵𝑣) +

3𝑘2

2(𝐻2+𝐵2)
(𝑢2 + 2𝐵𝑢 + 𝑣2 − 2𝐻𝑣) +

9𝑘3

2(𝐵2)
(𝑢2 + 2𝐵𝑢)    (2-20)                                                                                                                                       

The equilibrium equations are written in dimensionless forms below.  

𝑔 = (𝑥2 + 2𝑥 + 𝑦2 − 2√2𝑦)(𝑦 − √2) + 𝛼(𝑥2 + 2𝑥 + 𝑦2 − 2ℎ𝑦)(𝑦 − ℎ)                               (2-21)                                                                          

0 = (𝑥2 + 2𝑥 + 𝑦2 − 2√2𝑦) + 𝛼(𝑥2 + 2𝑥 + 𝑦2 − 2ℎ𝑦) + 𝛽(𝑥2 + 2𝑥)                  (2-22)  

𝑔 =
𝐹

𝑘1𝐵
,    𝛼 =

3𝑘2

𝑘1(ℎ
2+1)

, 𝛽 =
9𝑘3

𝑘1
,     𝑦 =

𝑣

𝐵
,   𝑥 =

𝑢

𝐵
                    (2-23)    
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By rearranging (2-22), we obtain (2-24) and to obtain (2-25) with a single dimensionless state variable 𝑦, the 

results of (2-24) is substituted into (2-21):            

(𝑥2 + 2𝑥) = −𝛾(𝑦2 − 2√2𝑦) − 𝛼𝛾(𝑦2 − 2ℎ𝑦)                              (2-24)                                                                                                                                                                                             

 𝛾 =
1

𝛼+𝛽+1
            (2-25)                                                                                   

𝑔 = [(1 − 𝛾)(𝑦2 − 2√2𝑦) − 𝛼𝛾(𝑦2 − 2ℎ𝑦)](𝑦 − √2) + 𝛼[(1 − 𝛼𝛾)(𝑦2 − 2ℎ𝑦) − 𝛾(𝑦2 − 2√2𝑦)](𝑦 − ℎ)                    (2-26)

                      

Equation (2-26) is simplified to a similar form for the four-bar truss in (2-13) as:         

𝑓 = 𝑦3 − 𝑎𝑦2 + 𝑏𝑦             (2-27)       

𝑓 =
𝑔

1+𝛼−𝛾−2αγ−𝛼2𝛾
 ,   𝑎 = −

3√2(𝛾+αγ−1)+3ℎ(αγ−𝛼+𝛼2𝛾)

1+𝛼−𝛾−2αγ−𝛼2𝛾
 ,   𝑏 =

4(1−𝛾)−4√2𝛼𝛾ℎ+2ℎ2(𝛼−𝛼2𝛾)

1+𝛼−𝛾−2αγ−𝛼2𝛾
                   (2-28)         

 

At this point, the foregoing analysis will follow that of the four-bar truss by reference to stability diagrams (Fig. 

2.4) and phase diagram (Fig. 2.6) since the only difference between equations (2-13) and (2-27) are the 

definitions of the terms  (𝑓, 𝑎, 𝑏, 𝑦).  

We specify  the following stiffness values for the tetrahedral truss shown in Fig. 2.9: 𝐵 = 0.1𝑚, 𝐻 = 0.05𝑚, 

𝑘1 = 10
4 𝑁/𝑚, 𝑘2 = 3 ∙ 10

4 𝑁/𝑚 and 𝑘3 = 2 ∙ 10
4 𝑁/𝑚 and calculate the system parameters 𝑎 = 1.83 

and 𝑏 = 1.01. As shown in Fig. 2.5, this pair of system parameters yields a superelastic structural response. 

The forward and reverse transition critical loads are 0.175 (986 N) and 0.149 (839 N) respectively for the 

tetrahedral truss and are obtained by plotting new stability diagrams using similar methods shown earlier.  

 

2.6 Conclusions 

In this chapter, it was shown how to design bistability behavior in elastic structures by generating stability and 

phase diagrams. These plots of cusp point singularity representations serve as great tools for predicting 

bistability behavior which was illustrated using simple 2D and 3D truss systems.  Employing the Green’s strain 
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by assuming moderately small strains it has been possible to develop basic forms of the equilibrium governing 

equation which could be termed canonical equilibrium equations for generalizing solutions to several range of 

simple truss and periodic lattice systems under an external load application. In this study, we showed the rarity 

of the superelastic bistability response region in the analyzed trusses using the phase diagram which could be 

applied to solving the issue of uncertainty when designing complex truss structures for bistability. The approach 

outlined in this chapter, gives a systematic analytical procedure for the analysis and optimization of the design 

of elastic truss unit cell that could be used in understanding bistability behavior in periodic lattices.  

It reasonable to say that sensitivity of critical control parameters of the uncertainty in the design space could 

be high in an essentially nonlinear system, depending on its performance mode and the mathematical structure 

of the potential energy formulation. These aspects require separate studies.  

Even though this chapter has studied elastic structures with only external degrees of freedom. The success of 

this study provides a pathway for analyzing multi-stable elastic structures having multiple degree of freedom 

including internal degree of freedoms and also provides the recipe for creating a negatively compressible 

metamaterial [44, 45] which has been shown to exist in structures with this complexity. 
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3 NEGATIVE EXTENSIBILITY MECHANICAL 

METAMATERIAL 
 

 

(This chapter is based on a material previously published as Karpov, E. G.; Danso, L. A.; Klein J.T. Negative Extensibility 

Metamaterials: Occurrence and Design Space Topology. Physical Review E. 2017, 96(2), [023002].) 

 

3.1 Introduction 

When a structure contracts or is drawn back on reaching a certain critical load point in the direction of the 

applied load it is said to have experienced a negative extensibility (Fig. 3.2) analogous to negative compressibility 

when a material decreases in volume after a decrease in hydrostatic pressure which is totally a different effect 

compared to the negative Poisson’s ratio metamaterial behavior. In comparison, negative compressibility is a 

bulk material property [1] associated with force applied in all directions of a material (See Fig. 3.1) while negative 

extensibility is a negative longitudinal or linear compressibility experienced along the direction of the applied 

force (See Figure 3.2). 

 

Figure 3.1 Different material responses (red) under uniform tensile force (white): (a) positive compressibility 

(b) negative compressibility. [1] 

 As Early as 1999, Baughman [2] presented an exciting study on the possibility of anisotropic systems and 

materials possessing negative linear or area compressibility due to variation in applied hydrostatic pressure. For 

example, anisotropy of a truss system based on differing length and material compressibility may allow for 
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negative linear incompressibility in certain admissible directions and negative area compressibility even though 

negative volumetric compressibility is not achieved [3-7]. The case of trusses could be compared to the concept 

of triangular shortening in the study of negative thermal expansion [8-10].  

 

Figure 3.2 Negative extensibility in an elastic bar.  

 

Over decades, studies on negative compressibility was inhibited by the idea of stability being a result of positive 

compressibility in classical thermodynamics. However, Lakes and Wojcienhowski [11] addressed some of the 

contradictory works [12-14] of negative compressibility in their profound study titled “Negative compressibility, 

negative Poisson’s ratio, and stability”. In their study [11], there was an overview of several constraints limiting 

the study of negative compressibility like assuming systems with no internal degrees of freedom and external 

fields and specifying positive definiteness as a required condition for stability for free surfaces which is already 

affirmed in elasticity theory [15]. They however proposed negative compressibility as an instability that is 

manifested as a phase transformation leading to a qualitative (shape) or quantitative (volume) change in a 

material’s formation structure.  

Henceforth, Nicolau and Motter [16] have been able to showcase this phenomenon of instability based negative 

compressibility by using an applied force to destabilize a metastable equilibrium of idealized constituents of a 
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material having both internal and external degrees of freedom. This concept has been subsequently applied by 

other authors [17-19], where negative compressibility behavior is essentially a by-product of bistability and 

occurs abruptly mimicking the polyphormic phase transformation. The bistability exhibited by the engineered 

material is comparable to the behavior studied in Chapter 2 which is essentially a superelastic phase transition 

that produces a hysteretic response at a critical load. 

However, a structural unit or unit cell identified to show a negative extensibility behavior formulates a total 

potential energy function that possess unique characteristics. Even though this uniqueness is elusive and has 

no background study, in this study we provide an approach of developing a negative extensibility material by 

building a periodic lattice composed of bistable unit cells or substructures made up of linearly elastic bars and 

springs. The design could promise exciting applications in adaptive civil structures, mechanical actuators, 

explosion impact and earthquake super-dampers [2-3] and can even lead to other metamaterial behaviors like 

negative Poisson’s ratio and negative thermal expansion [1,3,20,21].   

In this chapter, we seek to develop a mathematical criterion for understanding in negative extensibility in simple 

structural units like that outlined for the study of bistability in Chapter 2 that would be beneficial in modelling 

the behavior in materials even at the atomic scale.  The assumption of geometrical nonlinearity as seen in 

Chapter 2 would be helpful in generating a total potential energy function of a metastable structure with features 

that may suggest a negative extensibility behavior in a system. For practical applications this metastable structure 

should be able to damp out the high kinetic energy produced after a phase transition [17]. Since our study on 

bistability in chapter 2 based on only external degrees of freedom did not showcase any negative extensibility 

behavior, this chapter shows the need for a complex bistable system which must possess multiple degrees of 

freedom with at least an internal degree of freedom [16-17].   

Therefore, our study of negative extensibility would follow an analytical format similar to that presented in 

Chapter 2 including a numerical regime for solving the complex nonlinear algebraic solutions. The concept of 

stability diagrams and phase diagrams are adopted from Chapter 2 to better explain this interesting 
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phenomenon and show that the behavior could be identified in simple structural systems comprising only elastic 

bars and springs. 

 

Figure 3.3 Elastic bar-spring metastable (states A and B) structure with one (1) internal degree of freedom due 

to the rotation of the middle bar and two (2) external degrees of freedom to vertical displacements (u, v) of the 

springs. Forced - induced structure destabilization creates a large rotation of middle that causes linear 

contraction termed negative extensibility.  
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3.2 Analysis of Truss Model with An Internal Degree of Freedom  

To study negative extensibility, we identify a simple structural system (Fig. 3.3) composed of only elastic springs 

and bars. The middle bar 𝑘1 and exterior bars  𝑘2 are assumed to undergo very moderate strains to take 

advantage of Green’s strain which helps to derive a simplified analytical form of the total potential function. 

The strain in the vertical springs 𝑘3 is calculated using the usual engineering strain. The stored strain energies 

in these bars and springs are derived in the following equations: 

𝜋1 =
2𝑘1

𝐿2+(𝐻−ℎ)2
𝑣2(𝑣 − 𝐻 − ℎ)2                                                                                                 (3-1) 

𝜋2 =
2𝑘1

8(𝐿2+ℎ2)
(𝑢 + 𝑣)2(𝑢 + 𝑣 + 2ℎ)2                                                                                        (3-2) 

𝜋3 =
𝑘3

2
(𝑢 − 𝑣)2                                                                                                                         (3-3) 

The total potential energy for the entire structure in Fig. 3.3 takes the form 

Π = 𝜋1 + 2(𝜋2 + 𝜋3 − 𝐹𝑢)                                                                                                        (3-4)         

By introducing dimensionless parameters (𝑈, 𝑓, 𝑥, 𝑦, 𝑎, 𝑠), we write a simplified form of the total potential 

energy (3-4) as  

𝑈 = 𝑎(𝑥 + 𝑦)2(𝑥 + 𝑦 + 2𝑠)2 + 𝑏𝑦2(𝑦 − 1 + 𝑠)2 + (𝑥 − 𝑦)2 − 2𝑓𝑥                                      (3-5)                                                                   

𝑈 =
Π

𝑘3𝐻
2 ,        𝑓 =

𝐹

𝑘3 𝐻
,   𝑥 =

𝑢

𝐻
      𝑦 =

𝑣

𝐻
,       𝑎 =

𝑘2

4𝑘3

𝐻2

𝐿2+(𝐻−ℎ)2
, 𝑏 =

2𝑘1

4𝑘3

𝐻2

𝐿2+(𝐻−ℎ)2
,    𝑠 =

ℎ

𝐻
             (3-6)    

Where 𝑓 denotes the force control, (𝑥, 𝑦) are the state parameters and (𝑏, 𝑠)  represent the system design 

parameters. 

 At this point, (3-5) can be analyzed for the sought negative extensibility behavior by employing the gradient 

method of numerical minimization. Setting 𝑎 = 0.0665, 𝑏 = 5.21,  𝑠 = 0, and  𝑓 ranging from 0.0 to 1.7  

with  a step size of ±0.001 and using trial solution 𝑥0 = 𝑦0 = 0.001, a large contraction accompanying the 

state transition (𝐴 → 𝐵) is realized as seen on Fig. 3.3 at a critical load 𝑓𝑐 = 1.33. Further analysis showed that 

the structure in Fig. 3.3 will produce a negligible negative extensibility effect for the skewness parameter 𝑠 

ranging between -0.5 to 0.5. Therefore, for the discussion to follow we use 𝑠 = 0 (ℎ = 0) which typifies a 

rectangular formed unit-cell structure to gain a better outlook of the negative extensibility behavior in simple 

structural systems. The new expression in (3-5) after setting 𝑠 = 0 is 
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𝑈 = 𝑎(𝑥 + 𝑦)4 + 𝑏(𝑦2 − 𝑦)2 + (𝑥 − 𝑦)2 − 2𝑓𝑥 ,     𝑎 =
𝑘2

4𝑘3

𝐻2

𝐿2
, 𝑏 =

2𝑘1

𝑘3

𝐻2

𝐿2+𝐻2
                      (3-7)               

 It is obvious from Fig. 3.3 that the negative extensibility behavior in the structural system seen in Fig. 3.2 even 

though qualitatively similar to negative compressibility of the complex potential of the representative atomic 

structures formerly studied [16-17], possess a secondary superelastic behavior which will be seen later to be a 

unique trait of a negative extensibility behavior. Hence the stable state transitions are observed along the path 

𝐴 → 𝐵 → 𝐴 → 𝐵 → 𝐴. In the subsequent sections, with the help of stability diagrams and phase diagrams we 

will be able to present pictorial views showing entire range of system parameters such that the structure in Fig. 

3.2 exhibits this interesting metamaterial behavior.              

3.3 Stability Diagrams 

A stability diagram is a plot that outlines the extent of stability responses of a system equilibrium potential and 

provides the critical control parameter required for destabilization or transition to another stable state. The 

curves in the stability diagrams as seen in Chapter 2 describe points of bifurcation in a system’s equilibrium 

potential and these points describe the equilibrium state of the structure when it is neither stable nor unstable. 

Such a point can be defined as inflection point and therefore satisfies a second-order derivative condition. A 

bifurcation point is also a point of destabilization at which a critical value of external load 𝑓𝑐 causes a transition 

(snap-through action) from one equilibrium state to another (𝐴 → 𝐵). In the case of a potential with two state 

variables 𝑥, 𝑦  like in (3-7), two equilibrium potentials corresponding to each state variable are expected as 

shown below: 

𝑈𝑥
′ = 0:          𝑔1(𝑥, 𝑦, 𝑓, 𝑎, 𝑏) = 𝑥 − 𝑦 + 2𝑎(𝑥 + 𝑦)

3 − 𝑓 = 0                                                                (3-8) 

𝑈𝑦
′ = 0:          𝑔2(𝑥, 𝑦, 𝑓, 𝑎, 𝑏) = 𝑦 − 𝑥 + 2𝑎(𝑥 + 𝑦)

3 + 𝑏𝑦(𝑦 − 1)(2𝑦 − 1) = 0                                  (3-9) 
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Figure 3.4 A force-strain curve of the potential in (3-7) under a loading and unloading regime exhibiting 

negative extensibility due a negative superelastic strain, 𝜀𝑆𝐸 = −2∆𝑢 (𝐻 + ℎ)⁄ = −0.063 at a critical force 

𝑓𝑐 = 1.33 realized by the pinched hysteresis. The structure experiences two (2) forward transitions and two (2) 

backward transitions due to secondary hysteresis (𝐴 → 𝐵 → 𝐴 → 𝐵 → 𝐴). 

 

Since we have two equilibrium potentials the inflection point condition for bifurcation is met by the determinant 

of the Hessian matrix of second-order derivatives of these equilibrium potentials, 

det𝐻 = |
𝑈𝑥𝑥
′′ 𝑈𝑥𝑦

′′

𝑈𝑦𝑥
′′ 𝑈𝑦𝑦

′′ | = 𝑈𝑥𝑥
′′ 𝑈𝑦𝑦

′′ − 𝑈𝑥𝑦
′′ 𝑈𝑦𝑥

′′ = 0                                                                                                                                                                    

 𝑔3(𝑥, 𝑦, 𝑎, 𝑏) = 24𝑎(𝑥 + 𝑦)
2 + 𝑏(6𝑦2 − 6𝑦 + 1)(1 + 6𝑎(𝑥 + 𝑦)2) = 0                               (3-10)                         
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Therefore solving Eqns. (3-8 - 3-10), we obtain the values of control and state parameters ф(𝑓𝐶 , 𝑎, 𝑏) that 

describe the bifurcation set. Hence, for finding bifurcation points the following condition must be satisfied: 

ф(𝑓𝐶 , 𝑎, 𝑏):                 𝑔1(𝑥, 𝑦, 𝑓, 𝑎, 𝑏) = 𝑔2(𝑥, 𝑦, 𝑎, 𝑏) = 𝑔3(𝑥, 𝑦, 𝑎, 𝑏) = 0                                            (3-11) 

In comparison to stability diagrams plotted in Chapter 2, stability plots from the locus of points in (3-11) can 

be complicated and would sometimes require a numerical procedure. In other to obtain the stability plot 

𝛤𝑏(𝑓, 𝑎) describing the relationship between the control parameter 𝑓 and system parameter 𝑎 with system 

parameter 𝑏 fixed, we manipulated (3-11) by algebraic substitution to obtain the following parametric functions: 

𝑓(𝑎, 𝑏) =
𝑏(4−6𝑦+𝑏𝑃2)

2𝑃1
                                                                                                                  (3-12)                                           

 𝑎(𝑦, 𝑏) = −
8𝑏(1−6𝑦+6𝑦2)𝑃1

2

27𝑦2(2+𝑏−3𝑏𝑦+2𝑏𝑦2)2(1+𝑃1)
3                                                                                    (3-13)                          

𝑥(𝑦, 𝑏) = −
𝑦(12+2𝑏(7−24𝑦+18𝑦2)+3𝑏2𝑃2

4𝑃1
                                                                                      (3-14)                  

𝑃1 = 3 + 𝑏 − 6𝑏𝑦 + 6𝑏𝑦
2,       𝑃2 = 1 − 9𝑦 + 26𝑦

2 − 30𝑦3 + 12𝑦4                                                  (3-15) 

Stability diagrams in Fig. 3.5a and Fig. 3.5b are plotted from the parametric curves (3-12 – 3-13) by varying the 

variable 𝑦 for fixed values of 𝑏 = 3.8 and 𝑏 = 5.21. In Fig. 3.5b, we see a beak-forming stability plot which 

means in a stability space, onset of bistability could occur before the cusp point. This feature was not evident 

in our bistability study which was restricted to a single external degree of freedom. However, developing the 

other stability diagram 𝛤𝑎(𝑓, 𝑏)  for the relationship between 𝑓 and 𝑏  for fixed values 𝑎 was obtained only by 

implementing a Newton Raphson algorithm for solving (3-11) by running 𝑦 within the 0.22 to 0.78 and a step 

size of 0.002.  On Fig. 3.5c and Fig. 3.5d, we show stability plots obtained when 𝑎 = 0.22 and 𝑏 = 0.78. These 

plots are proof of the observed characteristics of a negative extensibility effect in Fig. 3.4, on these plots we see 

two stable state transitions (𝐴 → 𝐵 → 𝐴 → 𝐵 → 𝐴) for both the loading and unloading cycles which exist due 

to the presence of the two cusp points. They also explain the pinched hysteresis effect accompanying a negative 

extensibility behavior. 
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Figure 3.5 Stability diagrams obtained from the potential in (3-7) showing the three (3) typical system 

equilibrium behaviors seen in Chapter 2 (monostability, superelasticity (SE) and superplasticity (SP)). The 

double transition bifurcation curves explain the double transition observed in Fig. 3.4 and the beak – shaped 

bifurcation curve (bottom left) is a unique feature meaning bistabity may be achieved before the cusp point. 

 

3.4 Phase Diagrams 

The phase diagram presented in the study of bistability was a plot of relationship between the system parameters 

and mainly a plot of all cusp points in a system based on the third-order derivative condition of the total 

potential energy 
𝑑3𝜋

𝑑𝑥3
  with respect to the single external degree of freedom 𝑥 which is the reference direction 

of destabilization. For the structure in Fig. 3.3, a critical load causing bistability induces rotation 
∆𝑣

𝐿
 of the middle 
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and destabilizes the entire structure. Therefore, the third-order derivative for the structure in Fig.3.3 will be 

with respect to internal degree of freedom (rotation) which could be satisfied by the nondimensional external 

degree of freedom 𝑦, 𝑈𝑦𝑦𝑦
′′′ : 

𝑈𝑦𝑦𝑦
′′′ = 0:           𝑔4(𝑥, 𝑦, 𝑎, 𝑏) = 24𝑎(𝑥 + 𝑦) + 12𝑏(12𝑦 − 1) = 0                                                      (3-16) 

Applying (3-16), the condition to solve for all cusp points describing the onset of bistability in the structure in 

Fig. 3.2, is stated as 

𝛤𝑠(𝑎, 𝑏) = 0:   𝑔1(𝑥, 𝑦, 𝑓, 𝑎, 𝑏) = 𝑔1(𝑥, 𝑦, 𝑓, 𝑎, 𝑏) = 𝑔2(𝑥, 𝑦, 𝑓, 𝑎, 𝑏) = 𝑔3(𝑥, 𝑦, 𝑎, 𝑏) = 0                    (3-17)                  

The locus of  𝛤𝑆(𝑎, 𝑏) = 0 will therefore plot all supercritical pitchfork bifurcations in the structure but contrary 

to was realized in the previous section, this curve will not fully represent the onset of bistability as was the case 

in Chapter 2. Utilizing the Newton Raphson algorithm, we can solve (3-17) for 𝛤𝑠(𝑎, 𝑏) = 0 by varying 𝑏 from 

0 to 6.5 using a step size of 0.02. Fig. 3.6 shows a plot solution generated from this procedure. Having noticed 

from the stability diagrams in Fig. 3.5 that for the structure being analyzed, the locus of 𝛤𝑠(𝑎, 𝑏) = 0 does not 

fully represent the onset of bistability, we will proceed by finding the missing curves that complete the onset of 

bistability on Fig. 3.5. We can see in Fig. 3.5b two branches of bifurcation curves forming a beak shape and by 

choosing a system design parameter 𝑎  below the upper branch, bistability might exist since we transition two 

destabilization points. Onset of this assumed bistability 𝛤𝑁  is plotted as in Fig. 3.6 by searching for points 

associate with the local maximum of the upper branch. By plotting force-displacement relationships (𝑓, 𝑥) and  

(𝑓, 𝑦) for regions (1), (2) and (3) above and below 𝛤𝑁 on Fig. 3.6,  we see in (1) the usual monotonic which 

defines regions above the upper branch in Fig. 3.4 but for  (2) and (3) we notice two stable states exist  (𝑓, 𝑥)but 

with no transition points or hysteric behavior to depict bistability in the equilibrium structure. This means the 

second stable state is unreachable by the loading conditions in Fig. 3.3.  On the (𝑓, 𝑦) plot, we see a nucleation 

of the stable state B with the unstable state forming a loop which widens and moves closer to state A as we 

decrease the parameter 𝑎 moving from (2) to (3). On the (𝑓, 𝑦) plot for point (4) in Fig. 3.6, we finally see a 

coalescence of the loop with stable state A and a channel making the stable state B reachable. It’s (𝑓, 𝑥) plot 



43 
 

shows the expected pinched hysteresis for the transition from state A to state B. The onset of the coalescence 

corresponds with the local maximum of the lower branch of such a stability diagram in Fig. 3.5b and those 

points are plotted in Fig. 3.6 as curve 𝛤𝑂.   At vertical position 4 of the system parameter 𝑏, the curve 𝛤𝑂   

connects with the curve 𝛤𝑆 and forms a continuous curve for the onset of bistability. The other section of 𝛤𝑆  

plotted as a dashed line below the curve 𝛤𝑂 explains the change in behavior  in Fig. 3.5b from a two stable state 

transitions (𝐴 → 𝐵 → 𝐴 → 𝐵 → 𝐴) for both loading and unloading cycles seen for the negative extensibility 

effect to a single stable state transition (𝐴 → 𝐵 → 𝐴)  for the usual bistabilty when we decrease  the system 

parameter 𝑎 below the cusp point.  

Like in Chapter 2, it will be beneficial to demarcate the region of structural superplasticity in Fig. 3.6 and again 

show the region of negative extensibility which is understood to be below the 𝛤𝑂 but would be limited to the 

point of a cusp as seen in Fig. 3.5b. The onset of structural susperplasticity 𝛤𝐸 corresponding with the behavior 

when structure does not resume initial state at 𝑓 = 0 is plotted using the same condition in Chapter 2 that 

during an unloading cycle when a point of destabilization is reached the critical force must be zero (𝑓𝐶 = 0): 

𝛤𝐸(𝑎, 𝑏) = 0:           𝑔1(𝑥, 𝑦, 0, 𝑎, 𝑏) = 𝑔2(𝑥, 𝑦, 𝑎, 𝑏) = 𝑔3(𝑥, 𝑦, 𝑎, 𝑏) = 0                                              (3-18)                                                                                    

The curve 𝛤𝐸(𝑎, 𝑏) = 0 in Fig. 3.7 prescribes the onset of structural superplasticity which was obtained by 

using a Newton Raphson algorithm to solve (3-18) by varying 𝑏 from 0 to 5.21 and utilizing a step size of 0.01. 

Having noticed in Fig. 3.5 that the usual bistability is possible after a double transition negative extensibility 

effect, the onset of negative extensibility 𝛤𝑀  can be highlighted on Fig. 3.7 using the condition that there can 

be destabilization and subsequent transition from stable state A to stable state B while the overall height of the 

structure does not change. Modifying (3-11) we obtain this condition: 

𝛤𝑀(𝑎, 𝑏) = 0:    𝑔1(𝑥𝐴, 𝑦𝐴, 𝑓, 𝑎, 𝑏) = 𝑔2(𝑥𝐴, 𝑦𝐴, 𝑎, 𝑏) = 𝑔3(𝑥𝐴, 𝑦𝐴, 𝑎, 𝑏) = 0         ∧        

𝑔1(𝑥𝐵 = 𝑥𝐴, 𝑦𝐵 , 𝑓, 𝑎, 𝑏) = 𝑔2(𝑥𝐵 = 𝑥𝐴, 𝑦𝐵, 𝑎, 𝑏) = 0                                                                             (3-19) 
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Figure 3.6 A phase diagram governed by the potential in (3-7) showing mechanically admissible regions of 

bistability (refer to beak shaped bifurcation curves-bottom left in Fig. 3.5) using lines of demarcation (𝛤𝑆 − 

locus of cusp points, 𝛤𝑁 − locus of nucleation points, 𝛤𝑂 − locus of coalescence points): (1) structure exhibits 

monostabilty (2) bistability cannot be achieved since second stable is inaccessible (3) first stable state approaches 

second stable state (4) first state coalesces with second stable state and bistability is observed with a pinched 

hysteresis. 
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The locus of  𝛤𝑀(𝑎, 𝑏) = 0 plotted in Fig. 3.7 was found by employing a Newton Raphson algorithm to solve 

for 𝑥𝐴, 𝑦𝐴, 𝑦𝐵   𝑎, 𝑓  while varying 𝑏 from 4.5 to 7.5 and utilizing a step size of 0.01.The shown regions of  

negative extensibility superelasticity (NESE) and negative extensibility superplasticity (NESP) on Fig. 3.7 

separated by the onset of superplasticity boundary 𝛤𝐸 are regions of negative extensibility with superelastic 

behavior and negative extensibility of the superplastic type respectively. The phase diagram in Fig. 3.7 can be 

said to be a full representation of all the structural stability behaviors of the structure in Fig. 3.3. 

The band of the negative extensibility region can be further divided to show how the metamaterial behavior 

varies across the band and most importantly the region for maximal effect.  We thereby introduce the negative 

extensibility relative intensity factor 𝐼𝑁𝐸𝑆𝐸: 

𝐼𝑁𝐸𝑆𝐸 =
𝜀𝑆𝐸

𝜀𝐶
                                                                                                                                  (3-20)                                    

While the terms 𝜀𝐶 and 𝜀𝑆𝐸 as shown in Fig. 3.4 represent the critical elastic strain and negative superelastic 

strain respectively. Using the factor 𝐼𝑁𝐸𝑆𝐸, we can plot contours showing the intensity of the negative 

extensibility effect from the onset of negative extensibility boundary 𝛤𝑀 to the onset of nucleation 𝛤𝑂. The 

condition for plotting boundary 𝛤𝑀 when 𝐼𝑁𝐸𝑆𝐸 = 0  is  modified with the factor 𝐼𝑁𝐸𝑆𝐸 to account for the 

contraction resulting in change in height of the structure above this boundary (Fig. 3.3) in the following: 

𝑥𝐵 = 𝑥𝐴(1 + 𝐼𝑁𝐸𝑆𝐸)                                                                                                                    (3-21)                           

The points of the contour lines shown on Fig. 3.8 associated with the relative intensity of the negative 

extensibility effect 𝐼𝑁𝐸𝑆𝐸 are then found by applying a similar Newton Raphson algorithm. On Fig. 3.8 it is 

obvious now that the highest intensity should be achieved using system design parameters (𝑎, 𝑏) to the left of 

the vicinity where the boundary 𝛤𝐸 coincides with the boundary 𝛤𝑂. 
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3.5 Small Strain Approximation Error Analysis 

Since in our study of bistability in Chapter 2 and in the current study of negative extensibility, the Green’s strain 

was a nice approximation for small strains in bars and resulted in a much compact total potential function with 

reduced number of system design parameters. 

 

Figure 3.7 A phase diagram showing regions of the usual system equilibrium behaviors (monostabilty, 

superelascity, superplasticity and the negative extensibility metamaterial behaviors (superelastic (NESE) or 

superplastic (NESP)) demarcated by the boundaries 𝛤𝑀 − locus of the onset of negative extensibility points 

and 𝛤𝐸  , 𝛤𝑠 ,  𝛤𝑜. 
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In this section, our aim is to account for the error introduced by this approximation by analyzing the same 

structure in Fig. 3.3 using the usual engineering strain. In doing so the total potential energy in (3-7) takes the 

form, 

Π = 𝜋1 + 2(𝜋2 + 𝜋3 − 𝐹𝑢)                                                                                                        (3-22) 

𝜋1 =
𝑘1

2
(√𝐿2 + (𝐻 − 2𝑣)2 − √𝐿2 +𝐻2)2    𝜋2 =

𝑘2

2
(√𝐿2 + (𝑢 − 𝑣)2 − 𝐿)

2
     𝜋3 =

𝑘3

2
(𝑢 − 𝑣)2  

 

 

Figure 3.8 Negative extensibility intensity (a) A zoom into the negative extensibility region seen on the phase 

diagram in Fig. 3.7 and marked by contour lines delineated by the negative extensibility intensity factor (𝐼𝑁𝐸𝑆𝐸). 

The maximal negative extensibility effect is expected around the intersection of the loci 𝛤𝐸 and 𝛤𝑜 where 

𝐼𝑁𝐸𝑆𝐸  is 2.64%. The point of intersection of 𝛤𝐸 and 𝛤𝑜 also corresponds with that of a similar phase diagram 

governed by (3-22) when the aspect ratio  𝑟 → 0 and therefore by increasing 𝑟, drifts in position of the 

intersection 𝛤𝐸 and 𝛤𝑜 are plotted. (b) and (c) Show how increase 𝑟 shifts the force-strain plot governed by 3-7 

or 3-22 when 𝑟 → 0 .  
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However, it will be realized that the dimensionless form of (3-22) will include a new system design parameter, 

the aspect ratio of the structure,  𝑟 =
𝐻

𝐿
 , in addition to the rest of the parameters in (3-4) and therefore changes 

complexity of the potential. Now a 3D phase diagram will be required in terms of three system design 

parameters.  Plotting a plane cross-section of such a 3D phase diagram similar to Fig. 3.7 for different values 

of the aspect ratio 𝑟 was sufficient for our analysis. Fig. 3.8 shows that when 𝑟 → 0, the approximation of small 

strain suffices and the point where boundary 𝛤𝐸 coincides with the boundary 𝛤𝑂 is exactly as in Fig. 3.7. 

Increasing the value 𝑟 results in a shift of this point as shown in Fig. 3.8 and the effect of high negative 

extensibility effect was assured up to 0.30. On Fig. 3.8, we also show how this shift produces a significant shift 

in the locations of the critical forces 𝑓𝐶  on the force-strain plot.                                                                             

 

3.6 Conclusions 

In this study we were able to study the effect of multiple degrees of freedom including an internal degree of 

freedom on bistability behavior in simple structural systems. The stability diagrams of the studied structure in 

Fig. 3.3 depicted a double cusp and a beak forming stability plot which explained the double transition seen in 

a negative extensibility behavior. We have been able to show a comprehensive phase diagram (design space) of 

the various stability states in a simple structure with the potential for negative extensibility but the complexities 

in the observed stability diagrams obligated a significant amount of numerical procedure. However, it is worthy 

to note that even though this interesting metamaterial corresponds to a narrow band in the phase diagram 

(design space) it is achievable in simple structural systems like that analyzed in this study. Analysis of the 

identified negative extensibility structure using the small strain approximation was justified for very small aspect 

ratios and therefore the Green’s stain would be a good basis for preliminary studies of the negative extensibility 

effect. A model of the structural system in Fig. 3.3 with design parameters within the vicinity of the high relative 

negative extensibility effect contours can serve as seismic super dampers and vibration isolators.  

Having identified this metamaterial behavior in a simple structure that can form a unit-cell of a periodic 

structure, it would be interesting in the future to study how the negative extensibility behavior affects the overall 
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response of a periodic structure and our hope is to observe properties like switch in wave propagation speed 

and topology reconfiguration. 
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4 A NUMERICAL STRAIN ENERGY ANALYSIS USING 

SPECTRAL AND INFORMATION CONTENT OF 

MATERIALS 
 

(This chapter is on a material previously published as Karpov, E. G.; Danso, L. A. Strain Energy Spectral Density and 

Information Content of Materials Deformation. International Journal of Mechanical Sciences. 2018, 148, 676-683.) 

 

4.1 Introduction 

Strain and stress analysis is fundamental in the study of continuum mechanics and therefore earlier methods 

such as image correlation or photoelasticity have been the choice when the capacity of mathematical or 

numerical methods have been limited in terms of geometry and boundary conditions [1-2]. An optical 

monitoring technique like photoelasticity has been useful in applications of detecting critical stresses, qualitative 

and quantitative measures of distribution of stress and strains around inclusions, discontinuities, farer regions 

of large domains and in materials with irregular geometry [3-5]. In solid mechanics, lattice-structures have been 

used over the decades to approximate continuum behavior of materials. Early as 1941, Hrennikoff [6] showed 

that a plane stress problem was solvable using a lattice framework methodology and proved the method to be 

efficient compared to the existing mathematical and photoelasticity approaches. The approach has since 

developed discrete mechanics models [7-9] to answer some important solid mechanics questions in the field of 

fracture and failure analysis. However, inspired by the successful outcomes of signal characterization methods 

in signal analysis and information theory, we believe similar methods could be used to understand the spectral 

characteristics of static deformation and can lead to a comprehensive numerical tool comparable to previously 

mentioned methods that would define the stress and strain behavior of a continuum body. More importantly 

the method will provide a cost-effective solution for detecting stress and strain anomalies critical to the integrity 

of a continuum material.  

The two concepts critical to the proposed procedure is the Parseval’s theorem and Shannon’s entropy. The 

Parseval’s theorem [10-12] found in digital signal analysis stating that the amount of energy contained in both 

time and frequency domains must be the same will be employed to develop a strain energy spectral density 
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(SESD) measure which will be a Fourier domain form of the elastic strain energy density in a material or 

structure.  Hence, the SESD becomes an important parameter that produces a spectrum of how mechanically 

induced stresses are transformed in a material and shows the contribution of the inherent Fourier wave numbers 

which provides opportunity for energy distribution modification. The SESD will also serve as a variable to 

calculate a variation of the Shannon’s entropy, the strain energy spectral entropy (SESE) which will be defined 

as a measure of the amount of information obtained from mechanical deformation of the analyzed system. 

Entropy was proposed by Clausius in the 18th century as a thermodynamics measure of system chaos or 

disorganization but was later developed by Shannon [13-16] as a qualitative measure of the amount of 

information. It is therefore considered as a measure for efficiently storing and communicating information. 

Spectral entropy analysis in mechanics proposes similar benefits as a measure of the smoothness of the SESD 

spectrum and as a tool for predicting defects in a system’s strain energy distribution.   

The numerical methods presented in this chapter could be extended to discrete mechanics to monitor and 

manipulate stress and strain behavior of mechanical metamaterial like the negative Poisson’s ratio, reverse Saint 

Venant edge effect (RSV), basic symmetry breaking, negative elastic modulus [17-26].  For example, the RSV 

effect in nonlocal lattices by Karpov [24] have shown lattices with unusual spectral features which have potential 

for anomalous strain distribution behavior.   

The formulation of SESD and the spectral entropy will be developed studying a gaussian pressure load acting 

against a plane solid and for a general solid mechanics problem solution a discrete numerical method is 

discussed. Illustrative examples will demonstrate how mechanical deformation evolution in space describes 

information about surface loads in an elastic continuum.  

4.2 Developing the Strain Energy Spectral Density (SESD) 

The strain energy spectral density (SESD) as mentioned earlier can be formulated as a mechanics analogue of 

the Parseval’s theorem [10-12] in signal processing (see Appendix 4-A.1). This implies writing a Fourier domain 

form of the spatial domain strain energy density formulation from mechanics. For a plane stress problem, the 

strain energy density in solid mechanics takes the quadratic form: 
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 𝑊(𝑥, 𝑦) =
1

2
𝛆∗(𝑥, 𝑦)𝐄𝛆(𝑥, 𝑦)                         (4-1) 

𝛆(𝑥, 𝑦) = {

𝜀𝑥(𝑥, 𝑦)

𝜀𝑦(𝑥, 𝑦)

𝛾𝑥𝑦(𝑥, 𝑦)
}                          (4-2) 

where 𝐄 is the stress-strain matrix or constitutive matrix (See in Appendix 4-A.15) and 𝛆 and 𝛆∗ are vector 

column matrices of the strains and its conjugate transpose respectively. Taking an integral of (4-1) over the y 

spatial coordinate gives 

Π(𝑥) = ∫ 𝑊(𝑥, 𝑦)𝑑𝑦
∞

−∞
                          (4-3) 

The strains vector in (4-2) can be expressed as the inverse Fourier transform (4-A.3) of its Fourier image (4-

A.2) as 

𝛆(𝑥, 𝑦) = ∫ 𝛆̃(𝑥, 𝑞)𝑒−𝑖𝑞𝑦𝑑𝑞
∞

−∞
                                                                                                      (4-4)                         

and substituted into (4-3) above 

Π(𝑥) =
1

8𝜋2
∫ (∫ 𝛆̃∗(𝑥, 𝑞′)𝑒𝑖𝑞′𝑦𝑑𝑞′

∞

−∞
)𝐄(∫ 𝛆̃(𝑥, 𝑞)𝑒−𝑖𝑞𝑦𝑑𝑞

∞

−∞
)𝑑𝑦

∞

−∞
                    (4-5) 

Equation (4-5) above can be reconstructed to satisfy integration rules as   

Π(𝑥) =
1

8𝜋2
∫ ∫ (∫ 𝑒𝑖𝑞

′𝑦𝑒−𝑖𝑞𝑦𝑑𝑦
∞

−∞
)𝛆̃∗(𝑥, 𝑞′)𝐄𝛆̃(𝑥, 𝑞)𝑑𝑞𝑑𝑞′

∞

−∞

∞

−∞
  

=
1

4𝜋
∫ ∫ 𝛿(𝑞 − 𝑞′)𝛆̃∗(𝑥, 𝑞′)𝐄𝛆̃(𝑥, 𝑞)𝑑𝑞𝑑𝑞′

∞

−∞

∞

−∞
        (4-6) 

Where δ represents the Dirac’s delta function (4-A.8 – 4-A.9) and hence the elimination of the integral over 

the Fourier domain variable 𝑞′. So (4-6) when rewritten becomes  

Π(𝑥) =
1

2𝜋
∫ (

1

2
𝛆̃∗(𝑥, 𝑞)𝐄𝛆̃(𝑥, 𝑞))𝑑𝑞

∞

−∞
                        (4-7) 

The equation in (4-7) therefore expresses the Fourier domain form of the space integral of the spatial strain 

energy density expression in (4-3). Therefore, we have been successful in obtaining a mechanics analogue of 

the Parseval’s theorem which can be stated as 
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∫ 𝑊(𝑥, 𝑦)𝑑𝑦
∞

−∞
=

1

2𝜋
∫ 𝑊̃(𝑥, 𝑞)𝑑𝑞
∞

−∞
                                    (4-8)  

𝑊(𝑥, 𝑦) =
1

2
𝛆∗(𝑥, 𝑦)𝐄𝛆(𝑥, 𝑦)                          (4-9) 

𝑊̃(𝑥, 𝑞) =
1

2
𝛆̃∗(𝑥, 𝑞)𝐄𝛆̃(𝑥, 𝑞)                       (4-10)   

Here, 𝑊(𝑥, 𝑦) is the spatial or volumetric strain energy density and 𝑊̃(𝑥, 𝑞) is the strain energy spectral density 

(SESD).  The expression (4-8) also states that an integral over strain components vector in quadratic form is 

quantitatively equal to the integral over the Fourier transform of the strain component vector in quadratic form. 

The quantity 𝑊̃(𝑥, 𝑞) calculated for a deformed body would give the amount of strain energy contained in the 

wave number interval from 𝑞 to 𝑞 + 𝑑𝑞.   The evolution of 𝑊̃(𝑥, 𝑞) in space is described by its dependence 

on the spatial coordinate 𝑥.  

It is possible also to develop the strain energy spectral density for a three-dimensional (3D) space problem like 

(4-3) by applying integrals corresponding to the number of the required dimensionality or number of Fourier 

variables. Following, the procedure above the strain energy spectral density quantities 𝑊̃(𝑥, 𝑦, 𝑞), 𝑊̃(𝑥, 𝑞1, 𝑞2) 

and 𝑊̂(𝑞1, 𝑞2, 𝑞3) under a single, double and triple integral  are found (See Appendix A.10-12). However, we 

restrict the ongoing study to strain energy spectral density 𝑊̃(𝑥, 𝑞) of a single Fourier variable in 2D space (4-

10) which is the most interesting when studying how material respond to surface loads. Thus, the quantity 

𝑊̃(𝑥, 𝑞) will give a comprehensive view of how spectral component 𝑞 affects material’s response having seen 

how deformation in a material is dependent on spectral composition of a surface load. This study will help 

study further metamaterials behaviors such as the reverse Saint Venant’s Edge effect and deformation blockage. 

The 𝑊̃(𝑥, 𝑞) formulation as stated earlier will be an important quantity for deriving the spectral entropy of 

deformation measure which is illustrated in the next section. 
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4.3 Developing the Strain Energy Spectral Entropy (SESE) 

The strain energy spectral entropy measure is written following Shannon’s differential entropy [11,12] definition 

as 

𝑆(𝑥) = −∫ 𝑤̃(𝑥, 𝑞) ln 𝑤̃(𝑥, 𝑞)𝑑𝑞
∞

−∞
                      (4-11) 

𝑤(𝑥, 𝑦) =
𝑊(𝑥,𝑦)

Π(𝑥)
                          (4-12) 

𝑤̃(𝑥, 𝑞) =
1

2𝜋

𝑊̃(𝑥,𝑞)

Π(𝑥)
                        (4-13)   

∫ 𝑤(𝑥, 𝑦)𝑑𝑦
∞

−∞
= ∫ 𝑤̃(𝑥, 𝑞)𝑑𝑞

∞

−∞
= 1                                 (4-14) 

Where 𝑤(𝑥, 𝑦) and 𝑤̃(𝑥, 𝑞) represents the normalized strain energy density and normalized strain energy 

spectral density respectively. 𝑆(𝑥) in our study would be a measure of the smoothness of the strain energy 

along the spatial coordinate  𝑥 within a plane solid due to surface loads. Therefore, the study of entropy 

proposed in mechanics becomes a great tool for fracture and failure assessment in mechanical systems and 

components. 

Similar to how entropy in information theory is high for surprises or uncertainties in stored information, the 

strain energy spectral entropy (SESD) would be high in regions with stress concentration, cracks, physical 

inhomogeneities and close to localized surface loads. To illustrate this spectral entropy measure in (4-11), a 

Fourier transform of Gaussian function is considered: 

 𝑤̃𝐺(𝑞) =
1

2𝜋
∫ 𝑒−

𝑎2𝑦2

2 𝑒−𝑖𝑞𝑦𝑑𝑦
∞

−∞
=

1

𝑎√2𝜋
 𝑒
−
𝑞2

2𝑎2                     (4-15) 

It is worth noting that 𝑤̃𝐺(𝑞) is similarly a Gaussian function but with an inverse width 𝑎 which means that a 

narrow function in spatial domain would be equivalent to a wide function in Fourier domain. Using (4-15), a 

differential spectral entropy of the stated Gaussian function has the form: 

𝑆𝐺 = −∫ 𝑤̃𝐺(𝑞) ln 𝑤̃𝐺(𝑞)𝑑𝑞
∞

−∞
= ln(𝑎√2𝜋𝑒)                     (4-16) 

From (4-16), the width of the Gaussian function 𝑎 can be varied from 0 to ∞ corresponding to a differential 

spectral entropy range of -∞ to ∞.  
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It is important to note that the normalized strain energy spectral entropy 𝑤̃(𝑥, 𝑞) expression in (4-13) would 

have a unit of length since the 𝑦 spatial coordinate was not nondimensionalized. Making 𝑦 dimensionless with 

a factor such as 
1

𝛬
  introduces a shift in the strain energy spectral entropy (4-11) by In 𝛬 which should be 

expected according to (4-14).  Hence the range of an absolute strain energy spectral entropy (SESE) would be 

dependent on the measure of the factor 𝛬 applied.  

4.4 Numerical Calculation of Spectral Entropy (SESE) 

The Shannon’s differential entropy employed in (4-11) and demonstrated in (4-16) may only serve as a 

theoretical measure with no practical significance with regards to the present study of strain energy 

transformation in a plane solid in which a usual material assumes a constant decay between two boundary 

surfaces.  The intention of this section is to outline a numerical procedure that results in a spectral entropy 

measure that has a limited range being positive from boundary to boundary and characterizing the decay in 

entropy as the strain energy spectral density (SESD) evolves in the continuum material.  

The numerical procedure adopted would require discretizing the 𝑦 spatial coordinate into discrete points 

(𝑥, 𝑦𝑚), 𝑚 = 0,±1,… ,±𝑀/2 with equal spacing along a substantially large length of the plane solid. The 

strain energy components in (4-2) are calculated using the generated points and then their corresponding 

spectral components obtained by applying the Discrete Fourier Transform (DFT). For example, the DFT for 

the strain component in the 𝑥 coordinate direction 𝜀𝑥 gives: 

𝜀𝑥̃(𝑥, 𝑞𝜇) = ∑ 𝜀𝑥(𝑥, 𝑦𝑚)𝑒
−𝑖2𝜋𝜇𝑦𝑚/𝐿𝑀/2−1

𝑚=−𝑀/2 ,   𝑞𝜇 =
2𝜋𝜇

𝐿
,   𝜇 = 0,±1,… ,±𝑀/2                 (4-17) 

The quadratic form of spectral strain vectors in (4-10) is written as 

𝑊̃(𝑥, 𝑞𝜇) =
1

2
𝛆̃∗(𝑥, 𝑞𝜇)𝐄𝛆̃(𝑥, 𝑞𝜇)                                  (4-18) 

Also considering the differential entropy (4-11) for a small discrete interval would give 

𝑆(𝑥) = −∫ 𝑤̃(𝑥, 𝑞) ln 𝑤̃(𝑥, 𝑞) 𝑑𝑞
𝑞𝜇+∆𝑞

𝑞𝜇
≈ ∆𝑞 . 𝑤̃(𝑥, 𝑞) ln 𝑤̃(𝑥, 𝑞)                     (4-19) 

𝑤̃(𝑥, 𝑞𝜇) =
𝑊̃(𝑥,𝑞𝜇)

∑𝑊̃(𝑥,𝑞𝜇)
                                                                                                                    (4-20) 
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∆𝑞 = 𝑞𝜇+1 − 𝑞𝜇 =
2𝜋

𝐿
                                                                                                                 (4-21)                                                       

From the expression in (4-19), the numerical version of the differential spectral entropy measure (4-11) for an  

𝐿- periodic domain is written below: 

𝑆(𝑥) ≈ −∑ 𝑝𝜇(𝑥) ln
𝑝𝜇(𝑥)

∆𝑞
,

𝑀/2−1
𝜇=−𝑀/2                       (4-22) 

𝑝𝜇(𝑥) = ∆𝑞 ∙ 𝑤̃(𝑥, 𝑞𝜇)                                                                            (4-23) 

Employing the property ∑𝑝𝜇(𝑥) = 1, a correlation can be made between a discrete spectral entropy measure 

𝐻(𝑥) and the continuous spectral entropy 𝑆(𝑥): 

𝑆(𝑥) ≈ 𝐻(𝑥) + ln
2𝜋

𝐿
                        (4-24) 

𝐻(𝑥) = −∑ 𝑝𝜇(𝑥) ln 𝑝𝜇(𝑥)
𝑀/2−1
𝜇=−𝑀/2                       (4-25) 

Considering a bell shaped or normal distribution function of discrete points, each discrete point would be 

unique such that  𝑝𝜇  = 1/𝑀 and so 𝐻 = ln𝑀. Also, assuming a Kronecker delta function (4-A.19) 

distribution where 𝑝𝜇 = 𝛿𝜇0 then the entropy 𝐻 = 0 and therefore 𝐻(𝑥) is said to lie within the closed interval 

[0, ln𝑀]. Even though the bounds of 𝐻(𝑥) can be useful for practical purpose, it becomes more appealing 

when it is normalized as below: 

ℎ(𝑥) =
1

ln𝑀
𝐻(𝑥) = −

1

ln𝑀
∑ 𝑝𝜇(𝑥) ln 𝑝𝜇(𝑥)
𝑀/2−1
𝜇=−𝑀/2                     (4-26) 

The above expression ℎ(𝑥) would be a meaningful bounded strain energy spectral entropy of continuum 

material and its values would satisfy the interval [0,1]. From (4-26), it is obvious that a continuum body loaded 

at one surface with a high concentrated stress such as a Gaussian or a point load would have spectral entropy 

ℎ → 1 and as it propagates through the material to the other surface ℎ → 0. It also important to note from (4-

23) that 𝑝𝜇(𝑥) is dimensionless quantity and so our discrete spectral entropy measure ℎ is an absolute measure 
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invariant to the scaling of the strain energy spectral as it is in the case of the differential strain energy spectral 

in entropy in (4-11). To correlate the performance of the discrete entropy measure of a numerical procedure, a 

calculated differential entropy measure 𝑆(𝑥) can be modified by normalization to serve as the control variable 

in the following expression: 

𝑠(𝑥) =
1

ln𝑀
(𝑆(𝑥) − ln

2𝜋

𝐿
) ≈ ℎ(𝑥)                       (4-27) 

 

 

Figure 4.1 Normal stress 𝜎𝑥 (4-39) transformation in a plane solid when a Gauss-type (4-40) load component is 

applied at boundary ( 𝑥 = 0). 

 

4.5 Communication in Mechanics 

The spectral entropy expression developed in (4-25) is analogous to the entropy measure attributed to 

Shannon’s work of information theory in communication [13-16]. The mathematical inference of the spectral 

entropy can be explained as a mean measure of information per an observed event in an assumed random 

process such that 𝑝𝜇 represents all probable outcomes. The entropy measure following its usage in data and 

signal processing, is basically the amount of information that can be stored or efficiently communicated and to 

some degree a measure of information compression [15]. 

The spectral entropy in (4-25) therefore generates a value of how the strain energy spectral densities (SESD) at 

a position 𝑥 account for information about surface loads. This is a process of the strain energy spectral densities 
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(SESD) capturing the spectral components strain energy contribution due to the surface loads and then 

calculating the probability 𝑝𝜇 of these SESD’s for the entire range of  𝑞𝜇 . So, the expression in (4-25) applied 

to 𝑝𝜇 denotes the amount of quality information about deformation from surface loads that can be stored or 

communicated. In signal processing, entropy has been useful in distinguishing and a speech from a background 

noise. The background noise will produce a very high entropy due to presence of several Fourier harmonics 

with relatively equal probabilities compared to a speech with a signal that is more organized and uniform with 

the least possible number of Fourier harmonics prevailing [27]. The spectrum of the noise could be defined as 

a system in chaos or disorder which underlines the earlier definition of entropy in thermodynamics [16].  

In mechanics, the spectral entropy will be great tool to measure the amount of information that mechanical 

forces can introduce into a system. So, on the static deformation inside a continuum material due to surface 

loads such as a Gaussian, the Saint Venant principle of deformation will be affirmed by (4-25, 4-26) with a high 

spectral entropy at the initial boundary which decays till it vanishes at the farthest boundary. At the farthest 

boundary, the deformation is almost uniform such that its strain energy spectral distribution at that point can 

be represented with a Kronecker delta function and therefore, the zero spectral entropy. The potential use of 

entropy in mechanics is forecasted for deformation pattern recognition, inverse solution methods in mechanics 

and stress alleviation in mechanical systems. 

4.6 Illustrative Example: Gauss-Type Load On A Plane Solid 

In this section, a plane solid body under a plane stress assumption is studied with the aim of deriving 

formulations for its the strain energy spectral density (4-10,4-13) and spectral entropy (4-11) when acted upon 

by a Gaussian load at 𝑥 = 0 as shown in Fig. 1.  The governing homogenous Navier’s equations [28] for this 

problem over 𝑥 > 0 are 

2𝑢𝑥𝑥
′′ (𝑥, 𝑦) + (1 + 𝜈)𝑣𝑥𝑦

′′ (𝑥, 𝑦) + (1 − 𝜈)𝑢𝑦𝑦
′′ (𝑥, 𝑦) = 0

(1 − 𝜈)𝑣𝑥𝑥
′′ (𝑥, 𝑦) + (1 + 𝜈)𝑢𝑥𝑦

′′ (𝑥, 𝑦) + 2𝑣𝑦𝑦
′′ (𝑥, 𝑦) = 0

                    (4-28) 

A fundamental solution satisfying the above differential equations in (4-25) can be stated as a decaying static 

Raleigh wave [24] of the form, 
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𝐶(𝑞)𝑒−𝜂𝑥𝑒𝑖𝑞𝑦                                      (4-29) 

The general displacement solution for a material that decays at a rate 𝜂 can be written as a superposition of the 

fundamental solution in (4-29): 

𝑢(𝑥, 𝑦) =
1

2𝜋
∫ 𝐶1(𝑞)𝑒

−𝜂𝑥𝑒𝑖𝑞𝑦𝑑𝑞
∞

−∞

𝑣(𝑥, 𝑦) =
1

2𝜋
∫ 𝐶2(𝑞)𝑒

−𝜂𝑥𝑒𝑖𝑞𝑦𝑑𝑞
∞

−∞

                      (4-30) 

The equations in (4-28) are satisfied under the following conditions, 

 𝐶2 = −𝑖 sgn(𝑞)𝐶1        𝜂 = |𝑞|                                                                                                  (4-31) 

 Where sgn(𝑞) is the signum function (4-A.13) and using (4-31), the equations in (4-30) are modified as  

𝑢(𝑥, 𝑦) =
1

2𝜋
∫ 𝐶(𝑞)𝑒−|𝑞|𝑥𝑒𝑖𝑞𝑦𝑑𝑞
∞

−∞
                 

𝑣(𝑥, 𝑦) = −
𝑖

2𝜋
∫ sgn(𝑞)𝐶(𝑞)𝑒−|𝑞|𝑥𝑒𝑖𝑞𝑦𝑑𝑞
∞

−∞

                     (4-32) 

 𝐶(𝑞) is a complex-valued function that is characteristic of the boundary conditions 𝑢(0, 𝑦) and 𝑣(0, 𝑦) and 

equation (4-32) is in complex form whose real and imaginary components are all possible solutions to the 

governing differential equations in (4-28). 

 

Figure 4.2 Strain energy spectral density (solid line) versus the spatial strain energy density (dashed line) for 

Fig.4.1 problem. Inverse transformation relationship of widening (spatial, (4-44)) and narrowing (spectral, (4-

45)) is observed.  
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Employing the Fourier inverse definition (4-A.3), the Fourier transforms of the displacement solution in (4-32) 

are 

𝑢̃(𝑥, 𝑞) = 𝐶(𝑞)𝑒−|𝑞|𝑥                   

𝑣̃(𝑥, 𝑞) = −𝑖 sgn(𝑞)𝐶(𝑞)𝑒−|𝑞|𝑥
                       (4-33) 

The above equations must also satisfy Fourier images (4-A.4) of the governing Navier’s equations in (4-28), 

2𝑢̃𝑥𝑥
′′ (𝑥, 𝑞) + 𝑖𝑞(1 + 𝜈)𝑣̃𝑥

′(𝑥, 𝑞) − 𝑞2(1 − 𝜈)𝑢̃(𝑥, 𝑞) = 0

(1 − 𝜈)𝑣̃𝑥𝑥
′′ (𝑥, 𝑞) + 𝑖𝑞(1 + 𝜈)𝑢̃𝑥

′ (𝑥, 𝑞) − 2𝑞2𝑣̃(𝑥, 𝑞) = 0
                   (4-34) 

For the Gaussian load acting on the plane solid, 𝐶(𝑞) is assumed to be of the form, 

 𝐶(𝑞) =
1

𝑎|𝑞|
𝑒
−
𝑞2

2𝑎2                                                                                                                         (4-35)            

Since a signum function has the property  |𝑞| = 𝑞 sgn(𝑞) , the Fourier transform solution in (4-33) can be 

written for the acting Gaussian load as 

𝑢̃(𝑥, 𝑞) =
1

𝑎|𝑞|
𝑒
−𝑥|𝑞|−

𝑞2

2𝑎2     

𝑣̃(𝑥, 𝑞) = −
𝑖

𝑎 𝑞
𝑒
−𝑥|𝑞|−

𝑞2

2𝑎2

                       (4-36) 

Here 𝑎 is a parameter representing deformation spectral width. The Fourier transforms of the strain components 

(4-2) are subsequently obtained form (4-36) according to (4-A.4) below, 

𝜀𝑥̃(𝑥, 𝑞) = −𝜀𝑦̃(𝑥, 𝑞) = −
1

𝑎
𝑒
−𝑥|𝑞|−

𝑞2

2𝑎2

𝛾̃𝑥𝑦(𝑥, 𝑞) =
2𝑖 sgn(𝑞)

𝑎
𝑒
−𝑥|𝑞|−

𝑞2

2𝑎2

                      (4-37) 

Applying the inverse Fourier transform (4-A.3) we obtain the exact strain components (4-2), 

𝜀𝑥(𝑥, 𝑦) = −𝜀𝑦(𝑥, 𝑦) = −
1

√8𝜋
(𝛽 + 𝛽∗)

𝛾𝑥𝑦(𝑥, 𝑦) =
𝑖

√2𝜋
(𝛽 − 𝛽∗)

𝛽 = 𝛽(𝑥, 𝑦) = 𝑒
𝑎2(𝑥+𝑖𝑦)2

2 erfc
𝑎(𝑥+𝑖𝑦)

√2

                      (4-38) 

Where erfc represents the complimentary error function (4-A.14). Having got the strain components, the stress 

components are calculated from 𝜎 = 𝐄𝜀 and they are invariant with respect to either a plane stress or plane 

strain assumption (4-A.15): 
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𝜎𝑥(𝑥, 𝑦) = −𝜎𝑦(𝑥, 𝑦) =
𝐸

1+𝜈
𝜀𝑥(𝑥, 𝑦)

𝜏𝑥𝑦(𝑥, 𝑦) =
𝐸

2+2𝜈
𝛾𝑥𝑦(𝑥, 𝑦)

                      (4-39) 

For application purposes, the Gauss-type load function can be denoted by the horizontal component of the 

traction force 𝐭 = −𝛔𝐧, given a unit normal {
1
0
}. The Gaussian at 𝑥 = 0  is 

𝑇𝑥(𝑦) = −𝜎𝑥(0, 𝑦) =
𝐸

√2𝜋(1+𝜈)
𝑒−

𝑎2𝑦2

2                       (4-40) 

It is interesting to note that the width of the Gaussian is 1/𝑎 (Fig. 4.1), which is inverse of the spectral width 

seen in (4-36).   

The strain components in (4-38) helps to precisely formulate the strain energy density (4-9) and strain energy 

spectral density (4-10) for the Gaussian as 

𝑊(𝑥, 𝑦) =
1

2
𝛆∗(𝑥, 𝑦)𝐄𝛆(𝑥, 𝑦) =

𝐸𝑒𝑎
2(𝑥2−𝑦2)

2𝜋(1+𝜈)
erfc

𝑎(𝑥+𝑖𝑦)

√2
erfc

𝑎(𝑥−𝑖𝑦)

√2
                  (4-41) 

𝑊̃(𝑥, 𝑞) =
1

2
𝛆̃∗(𝑥, 𝑞)𝐄𝛆̃(𝑥, 𝑞) =

2𝐸

𝑎2(1+𝜈)
𝑒
−2𝑥|𝑞|−

𝑞2

𝑎2                    (4-42) 

Taking spatial and Fourier integrals of the energy densities (4-41 – 4-42) as in (4-8), the Parseval’s theorem is 

proven: 

Π(𝑥) = ∫ 𝑊(𝑥, 𝑦)𝑑𝑦
∞

−∞
=

1

2𝜋
∫ 𝑊̃(𝑥, 𝑞)𝑑𝑞
∞

−∞
=

𝐸𝑒𝑎
2𝑥2

𝑎√𝜋(1+𝜈)
erfc 𝑎𝑥                   (4-43) 

The energy densities in (4-41 – 4-42) can then be normalized to get 

𝑤(𝑥, 𝑦) =
𝑊(𝑥,𝑦)

Π(𝑥)
=

𝑎𝑒−𝑎
2𝑦2 erfc 

𝑎(𝑥+𝑖𝑦)

√2
erfc 

𝑎(𝑥−𝑖𝑦)

√2

√4𝜋erfc𝑎𝑥
                     (4-44) 

𝑤̃(𝑥, 𝑞) =
1

2𝜋

𝑊̃(𝑥,𝑞)

Π(𝑥)
=

𝑒
−
𝑞2

𝑎2
−2𝑥|𝑞|−𝑎2𝑥2

𝑎√𝜋erfc𝑎𝑥
                      (4-45) 

 

In Fig. 4.2, we show profiles of the normalized densities (4-44 – 4-45) inside the plane solid material at different 

positions of the spatial coordinate 𝑥 scaled by 𝑎 . The inverse property that exists between the spatial and spectral 

variables is also seen in the transformation of the energy densities inside the material. The narrowing of the 
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strain energy spectral density as material dimension 𝑎𝑥 increases resembles a low-pass filter functionality where 

at each coordinate position 𝑎𝑥 certain high frequencies or Fourier harmonics are cut-off until at a point in the 

material that only the Fourier Harmonic 𝑞 ≈ 0 exists in the energy spectrum and deformation is said to be 

uniform. 

 

 

Figure 4.3 (top)Illustration of the strain energy inverse transformation relationship for the Gaussian problem 

in Fig.1 having spectral width, 𝑎 = 1 and (bottom) differential spectral entropy (4-46) curves as a function of 

the spectral width.   

 

Next, the differential entropy expression (4-11) is obtained analytically for the Gaussian from (4-44 – 4-45) as 

follows: 
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𝑆(𝑥) = −∫ 𝑤̃(𝑥, 𝑞) ln 𝑤̃(𝑥, 𝑞)𝑑𝑞
∞

−∞
=

𝑎𝑥 𝑒−𝑎
2𝑥2

√𝜋erfc𝑎𝑥
+ ln(𝑎√𝜋𝑒 erfc 𝑎𝑥)  (4-46) 

 

 

Figure 4.4 The modified analytical (4-27,4-46) versus numerical (4-26) spectral entropies as functions of the 

material coordinate for Fig.1 problem. When 𝐿𝑎 and 𝑀/𝐿𝑎 → ∞  there is better matching (bottom right). 

 

The plot in Fig. 4.3 describes how 𝑆(𝑥) decays within the material as a function of the material coordinate 𝑥 

which is the result of the normal distribution like form (Fig. 4.2) of the strain energy spectral density at the 

boundary where the Gaussian is applied and at this point probably all Fourier harmonics contribute. Increasing 
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the material coordinate 𝑥, the differential entropy decreases due to narrowing of the strain energy spectral 

density reducing the number of probable Fourier harmonics. Fig. 4.3 also shows a characteristic feature related 

to a Gaussian where we observe a logarithmic increase in the spectral entropy 𝑆(𝑥) as the spectral width 𝑎 

increases like that seen in (4-16). In equation (4-16), 𝑆𝐺 = ln(𝑎√2𝜋𝑒) represents spectral entropy for a 1D 

space which can be compared with the boundary value of the spectral entropy in (4-46), 𝑆(0) = ln 𝑎√𝜋𝑒. 
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Figure 4.5 The modified analytical (4-27,4-46) versus numerical spectral entropies (ANSYS) as functions of 

the material coordinate for Fig.1 problem. When 𝐿𝑎 and 𝑀/𝐿𝑎 → ∞  there is better matching (bottom right) 

 

4.7 Load And Boundary Approximations 

The load approximation is to consider the scenario when the spectral width 𝑎 is very large enough i.e.  𝑎 → ∞ 

such that 𝑥 ≫
1

𝑎
 . To satisfy this condition the limits of the normalized energy densities and spectral entropy 

expressions (4-44 – 4-46) are performed: 

𝑤0(𝑥, 𝑦) = lim
𝑎→∞

𝑤(𝑥, 𝑦) =
𝑥

𝜋(𝑥2+𝑦2)
                                      (4-47) 

𝑤̃0(𝑥, 𝑞) = lim
𝑎→∞

𝑤̃(𝑥, 𝑞) = 𝑥𝑒−2|𝑞|𝑥                                   (4-48) 

𝑆0(𝑥) = lim
𝑎→∞

𝑆(𝑥) = 1 − ln 𝑥                                                (4-49) 

By taking a limit of the strain energy approximation in (4-47), we obtain a Dirac delta function: 

lim
𝑥→0

𝑤0(𝑥, 𝑦) =
1

𝜋
lim
𝑥→0

𝑥

(𝑥2+𝑦2)
= 𝛿(𝑦)                                   (4-50) 

Therefore, the load approximation can also represent a point load approximation where the load is highly 

localized in the vicinity of 𝑦 = 0. It is interesting to also consider the case when several point loads are 

periodically arranged on the surface boundary along a length of 𝐿. This 𝐿-periodic forced boundary problem 

can be solved by decomposing the displacement field in (4-28) using Fourier series to get 

𝑤𝐿(𝑥, 𝑦) =
(𝑒4𝜋𝑥 𝐿⁄ −1) 𝐿⁄

1+𝑒4𝜋𝑥 𝐿⁄ −2𝑒4𝜋𝑥 𝐿⁄ cos2𝜋𝑥 𝐿⁄
                                   (4-51) 

𝑤̃𝐿(𝑥, 𝜇) =
(2−𝛿𝜇0)𝑥𝑒

−4𝜋|𝜇|𝑥 𝐿⁄

2coth2𝜋𝑥 𝐿⁄  −1
                                                (4-52) 

𝑆𝐿(𝑥) = −
4 ln 2

3+𝑒4𝜋𝑥 𝐿⁄ +  ln(2 coth2𝜋𝑥 𝐿⁄ − 1) +
8𝜋𝑥 𝐿⁄

1−cosh4𝜋𝑥 𝐿⁄ +2sinh4𝜋𝑥 𝐿⁄
                               (4-53) 

                   

Where 𝜇 is defined as in (4-17).  In the case when the 𝑦 coordinate is restricted to the domain {−𝐿 2⁄ , 𝐿 2⁄ }, 

the above equations still apply by having a single point load fixed at the position 𝑦 = 0 at the surface where 
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𝑥 = 0. Taking limit of such a domain condition when 𝐿 → ∞, results in the energy densities and spectral 

entropy expressions (4-47 - 4-49) for a point load limit case acting on an infinite boundary: 

lim
𝐿→∞

𝑤𝐿(𝑥, 𝑦) = 𝑤0(𝑥, 𝑦)                                                (4-54) 

lim
𝐿→∞

𝐿. 𝑤̃𝐿(𝑥, 𝑞𝐿 2𝜋⁄ ) = 2𝜋𝑤̃0(𝑥, 𝑞)                                   (4-55) 

lim
𝐿→∞

(𝑆𝐿(𝑥) + ln
2𝜋

𝐿
) = 𝑆0(𝑥)                                                (4-56) 

 

4.8 Numerical Entropy Versus Analytical Entropy 

Having developed a numerical procedure for calculating differential entropy (4-26) which is applicable when 

deformations or strains in a plane solid body are available from a finite element analysis program and the strain 

field solution is not readily know. It is worthwhile to compare this practical entropy solution (4-26) for a 

Gaussian acting on an infinite boundary to the exact analytical differential entropy expression obtained in (4-

46). First, the plane solid will be discretized where there will be a set of points (𝑥, 𝑦𝑚), 𝑦𝑚 = 𝑚𝐿/𝑀, 𝑚 =

0,±1,… ,±𝑀/2 defined in the plane of the material. The points in the 𝑥 coordinate direction is arbitrarily 

spaced for 24 points which could be varied to fit need.  The strain components 𝜀(𝑥, 𝑦𝑚) (4-2) would then be 

obtained by a FEA procedure but here they are calculated from their analytical expressions in (4-38). Using the 

strain components calculated, the discrete spectral strain components 𝜀𝑥̃(𝑥, 𝑞𝜇) and spectral strain energy 

density 𝑊̃(𝑥, 𝑞𝜇) in (4-17) and (4-18) are obtained respectively. Finally, the factored discrete spectral strain 

component set 𝑝𝜇(𝑥) (23) is used to calculate the normalized strain energy spectral entropy ℎ(𝑥) in (4-26). 

This numerical entropy value can then be compared with the modified analytical entropy value 𝑠(𝑥) in (27) 

(See Fig. 4-4). The numerical procedure detailed above can be performed easily using any commercial FEA 

program and results from such is shown in Fig. 4.5. 

In Fig. 4.4 and Fig. 4.5, we make four plots comparing the numerically calculated entropy measure ℎ(𝑥)  of the 

Gaussian to its analytical entropy measure 𝑠(𝑥) based on two parametric values 𝑀/𝐿𝑎 and 𝐿𝑎: ratio of 

Gaussian load width 1/𝑎 and the finite element or mesh size 𝐿/𝑀 and the ratio of the length 𝐿 to the load 
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width 1/𝑎 respectively. The parameter 𝑀/𝐿𝑎 defines an infinite surface boundary with respect to the load 

width 1/𝑎 and so when 
𝑀

𝐿𝑎
→ ∞, the 𝑠(𝑥) values serves as a good benchmark for ℎ(𝑥) at the onset of the 

deformation or near the surface boundary because the mesh size discretize the load width capturing any small 

feature at the surface. On the contrary for  
𝑀

𝐿𝑎
→ 0, the numerical entropy measure will fail to capture the 

uniqueness of the Gaussian at the surface since the mesh size is greater than load width and therefore ℎ(𝑥) ≈

1 is produced at the surface accounting for equal presence of each Fourier mode contained in the load. This 

unit value entropy error is eliminated by refining the mesh of the finite element solution or numerical procedure. 

The parameter 𝐿𝑎 rather defines an infinite boundary according to the plane solid length. For the case when 

𝐿𝑎 → ∞, the high amount of discretization in the plane solid material eliminates the effect of finite boundaries 

in a numerical procedure and results in accurate comparison of ℎ(𝑥) and 𝑠(𝑥) further along the material 

coordinate axis 𝑎𝑥 as shown in Fig. 4.4. The practical importance of numerical entropy measure is realized 

when entropy is calculated at the point of uniform deformation in a material when ℎ(𝑥) → 0 but 𝑠(𝑥) assumes 

negative values. In continuum mechanics, the numerical or discrete spectral entropy is the most interesting 

since it fully captures deformation behavior in a continuum body according to the Saint Venant’s principle. 

4.9 Conclusions 

In this chapter, the Parseval’s theorem in digital analysis has been shown to be a novel way of understanding 

the transformation of mechanical deformation in continuum mechanics. The spectral form of the strain energy 

density (SESD) obtained from the Parseval’s theorem has the same quadratic formulation as the volumetric or 

spatial strain energy and presents a spectrum that shows how strain energy evolves inside the material according 

to the Fourier harmonics available depending on a spatial coordinate in the case of a plane solid.   

The SESD was seen to be an important parameter for calculating the strain energy spectral entropy (SESE) 

which has a very useful purpose for deformation pattern recognition. The differential or spectral entropy 

expression developed has a similar definition to the Shannon’s entropy measure in information theory and is 

efficient in communicating information about surface loads at each point inside the continuum material. For 

practical use, a numerical or discrete spectral entropy (4-26) was also developed due to the unbound nature of 
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the differential or spectral entropy and the availability of sophisticated FEA programs to ease calculation of 

deformations and strains in a continuum body. Notwithstanding, a benchmark is provided to correlate results 

of the differential spectral and discrete or numerical. 

 In this study, an example of a Guass-type load is presented, in which analytical forms of the strain energy 

spectral density (SESD) and strain energy spectral entropy (SESE) measures are derived. The Saint Venant edge 

effect in a plane solid is demonstrated by the narrowing of SESD and the decay of SESE along material spatial 

coordinate. This means information about surface loads inside the plane-solid material is preserved at small 

distances from the boundary surface where the load is applied and at great distances away from the load 

information is lost. The spectral strain energy entropy at large distances approached the negative entropy zone 

but for the numerical or discrete entropy it approached zero and therefore a better measure for energy studies 

in mechanics. 

The discussion provided in this chapter enhances the field of transformation mechanics and can be proposed 

for energy and entropy studies for periodic lattices or architected materials, composite materials etc. [24,29,30] 

which have been shown to possess exotic properties such as the reverse Saint Venant edge effect and strain 

energy storing capabilities.  
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CHAPTER 4 APPENDIX 
 
A common form of the Parseval’s theorem with a scalar function,  

∫ |𝑓(𝑦)|2𝑑𝑦
∞

−∞
=

1

2𝜋
∫ |𝑓(𝑞)|

2
𝑑𝑞

∞

−∞
       (4-A.1) 

means that information is not lost in the Fourier transform of this function,  

𝑓(𝑞) = ∫ 𝑓(𝑦)𝑒−𝑖𝑞𝑦𝑑𝑦
∞

−∞
        (4-A.2) 

Fourier transform properties:  

𝑓(𝑦) =
1

2𝜋
∫ 𝑓(𝑞)𝑒𝑖𝑞𝑦𝑑𝑞
∞

−∞
         (4-A.3) 

∫ 𝜕𝑦𝑓(𝑦)𝑒
−𝑖𝑞𝑦𝑑𝑦

∞

−∞
= 𝑖𝑞𝑓(𝑞)        (4-A.4) 

Partial and full Fourier transforms of a function of several variables:  

𝑓(𝑥, 𝑞, 𝑧) = ∫ 𝑓(𝑥, 𝑦, 𝑧)𝑒−𝑖𝑞𝑦𝑑𝑦
∞

−∞
       (4-A.5) 

 ∫ 𝜕𝑥𝑓(𝑥, 𝑦, 𝑧)𝑒
−𝑖𝑞𝑦𝑑𝑦

∞

−∞
= 𝜕𝑥𝑓(𝑥, 𝑞, 𝑧)       (4-A.6) 

𝑓(𝑞1, 𝑞2, 𝑞3) = ∫ 𝑓(𝑥, 𝑦, 𝑧)𝑒−𝑖(𝑞1𝑥+𝑞2𝑦+𝑞3𝑧)𝑑𝑉
𝑉

     (4-A.7) 

Properties of the Dirac delta function 𝛿 (𝑦, 𝑞 and 𝑞0 are real): 

 ∫ 𝑒𝑖𝑞′𝑦𝑒−𝑖𝑞𝑦𝑑𝑦
∞

−∞
= 2𝜋𝛿(𝑞 − 𝑞′)       (4-A.8) 

 ∫ 𝛿(𝑞 − 𝑞′)𝑓(𝑞′)𝑑𝑞′
∞

−∞
= 𝑓(𝑞)        (4-A.9) 

Variants of the Parseval’s theorem of mechanics (4-8) with a general energy density 𝑊(𝑥, 𝑦, 𝑧) and multiple 

integrals:   

∫ 𝑊(𝑥, 𝑦, 𝑧)𝑑𝑦
∞

−∞
=

1

2𝜋
∫ 𝑊̃(𝑥, 𝑞, 𝑧)𝑑𝑞
∞

−∞
      (4-A.10) 

∫ ∫ 𝑊(𝑥, 𝑦, 𝑧)𝑑𝑦𝑑𝑧
∞

−∞

∞

−∞
=

1

4𝜋2
∫ ∫ 𝑊̃(𝑥, 𝑞1, 𝑞2)𝑑𝑞1𝑑𝑞2

∞

−∞

∞

−∞
    (4-A.11) 
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∫ 𝑊(𝑥, 𝑦, 𝑧)𝑑𝑉
𝑉

=
1

8𝜋3
∫ 𝑊̂(𝑞1, 𝑞2, 𝑞3)𝑑𝑄𝑄

      (4-A.12) 

Sign function: 

 sgn(𝑞) = {

1, 𝑞 > 0
0, 𝑞 = 0
−1, 𝑞 < 0

         (4-A.13) 

Complementary error function: 

erfc 𝑧 =
2

√𝜋
∫ 𝑒−𝛼

2
𝑑𝛼

∞

𝑧
         (4-A.14) 

Plane stress (σ) and plane strain (ε) constitutive matrices with Young’s modulus 𝐸 and Poison’s ratio 𝜈:  

𝐄σ =
𝐸

1−𝜈2
[

1 𝜈 0
𝜈 1 0

0 0
1

2
(1 − 𝜈)

]      𝐄ε =
𝐸

(1+𝜈)(1−2𝜈)
[

1 − 𝜈 𝜈 0
𝜈 1 − 𝜈 0

0 0
1

2
− 𝜈

]  (4-A.15) 

Discrete Fourier transform of a discrete periodic sequence 𝑔𝑚, such that 𝑔𝑚+𝑀 = 𝑔𝑚:    

𝑔̃𝜇 = ∑ 𝑔𝑚𝑒
−𝑖2𝜋𝜇𝑚/𝑀𝑀/2−1

𝑚=−𝑀/2 , 𝜇 = 0,±1,… ,±𝑀/2     (4-A.16) 

𝑔𝑚 =
1

𝑀
∑ 𝑔̃𝜇𝑒

𝑖2𝜋𝜇𝑚/𝑀𝑀/2−1
𝜇=−𝑀/2 , 𝑚 = 0,±1,… ,±𝑀/2     (4-A.17) 

Discrete Fourier transform of a Kronecker delta:    

∑ 𝛿𝑚0𝑒
−𝑖2𝜋𝜇𝑚/𝑀𝑀/2−1

𝑚=−𝑀/2 = 1        (4-A.18) 

where  

𝛿𝑚𝑚′ = {
1,    𝑚 = 𝑚′
0,    𝑚 ≠ 𝑚′

         (4-A.19) 
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5 NONLOCAL MECHANICAL METAMATERIAL  
 

(This chapter is based on a material previously published as Danso, L. A.; Karpov, E.G. Reprogramming Static Deformation 

Patterns in Mechanical Metamaterials. Materials. 2018, 11, 2050 and Karpov, E. G., Danso, L. A., Klein J.T. Anomalous 

Strain Energy Transformation Pathways in Mechanical Metamaterials. Proceedings of the Royal Society A. 2019, 2019004.) 

 

5.1 Introduction 

Mechanical Metamaterials are controlled materials with preconceived elastic properties that is not seen in 

natural materials. Earliest example of mechanical metamaterials was the auxetic material with negative 

Poisson’s ratio [1-5]. Other interesting examples are materials with negative stiffness [6-8], reconfigurable 

origami structures [9-11], negative compressibility materials [12-15], pentamode metamaterials [16-18], 

topological metamaterial [19-22] and reverse Saint-Venant edge effect lattice materials [23]. These 

mechanical metamaterials possess extreme functionalities with their performance generally defined by 

material’s response to deformation.  

Even though the theory of nonlocality [24] in continuum materials has been exploited in fracture and 

failure analysis, nonlocality is for the first time studied in lattices [23] to account for the unusual RSV 

metamaterial behavior and there is a vivid illustration of how material responses such as stress, strain, etc 

due to mechanical deformation could be reprogrammed in a (1D) degree of freedom non-local lattice 

material.  The presence of badgaps in the deformation decay spectrum of the non-local lattice ensures 

blockage of a static Raleigh mode of the coinciding wave number and coarse modes decaying faster inside 

a non-local material than even modes.  Expanding this study by Karpov [23] on the reverse Saint Venant 

edge effect in non-local lattice materials to multiple degrees of freedom and employing principles of the 

Parseval’s theorem [25-27] and entropy [28-31] that were developed fully in Chapter 4 for a mechanics 

problem, it is possible to fully understand strain energy behavior in these nonlocal materials. 

Our interest in non-local lattice material is driven by the potential to program them to exhibit exciting 

functionalities like static load induced deformation pattern recognition and localization and strain energy 

redistribution.  The geometrical periodicity of a non-local lattice material allows for efficient design and 
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analysis which is the case for engineered periodic structural systems and extremely reduces production 

cost and time.  

The solution of periodic or repetitive structures presented in earlier studies [32-33] involved using the 

discrete field analysis method to solve a system of governing equations made up of a set of finite difference 

equations. The governing system of equations was shown to be rewritable as a compact matrix [34] by 

applying a discrete convolution operator and using such a matrix form, the discrete Fourier transform 

(DFT) approach has been useful in developing Green’s function solution operators [35] for analyzing 

lattice structures under arbitrary force boundary conditions. An important application of the Green’s 

function operator solution method is seen in molecular dynamics where they are employed to build 

interfaces that minimize boundary reflection [36-39]. 

The transfer matrix method of analyzing the lattice system of governing equations and other approaches 

have been similarly used to derive lattice response under quasi-static loading [41-43]. On analyzing 1D 

beam-like structures under self-equilibrated end loads [43], an interesting observation was made that 

system’s solution could be composed of exponential decay of loads and polynomial mode terms that define 

a structure in tension and bending. On examination, the illustrated exponential decay solution exemplified 

material’s response to forces in continuum mechanics governed by the Saint-Venant principle and that for 

a discrete mechanics problem, the rate of decay was a function of the transfer matrix eigenvalues.   

 Lattice metamaterial research has over the past decade gained a great significance due to the advancements 

in additive manufacturing technology and hence drives the need for analytical and computational methods 

to effectively model 2D and 3D discrete materials or structures. In [23], a fundamental solution was 

presented for a discrete system based on a combined approach of the DFT and the transfer matrix 

methods. The solution typified a static or harmonic surface mode whose amplitude decayed exponential 

at a rate characteristic of the eigenvalue 𝜆 < 1 of the Fourier parameter 𝑞 ∈ (−𝜋, 𝜋) and the deformation 

inside the material with no mode variance: 

𝐝𝑛𝑚 = 𝐶(𝑞)𝐡(𝑞)𝑛(𝑞)𝑒𝑖𝑞𝑚                         (5-1) 
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The above fundamental solution also represents a Raleigh wave with material’s vertical edge discrete 

dimension 𝑚 and horizontal edge discrete dimension 𝑛 and an arbitrary constant amplitude 𝐶(𝑞). The 

terms h(q) and λ(q) are the polarization vector or half-eigenvector and decay rate or eigenvalue respectively 

obtained for the lattice for the representative Raleigh wave number or Fourier parameter q. Therefore, the 

solution 𝐝𝑛𝑚 would be composed of both real and imaginary parts of the displacement components that 

describe the Raleigh wave in the lattice material. The Saint-Venant principle is observed in a discrete elastic 

medium when the decay rate λ(q) has a constant or monotonous increase with increase in the Fourier 

parameter, q or as the evenness of the Raleigh mode increases. The value of the mean square deformation 

gradient of the Raleigh mode in the m discrete dimension is 𝑞2 and so equivalently modes of high 

parameter q are more even with smaller decay rate compared to modes of lower q values which are coarser. 

In the reverse Saint Venant study in [23], we see an anomalous behavior of the decay rate λ(q) for an x-

braced discrete nonlocal lattice where modes of high parameter q rather decay faster compared to coarser 

modes due to the presence of asymptotic bandgaps in the lattice deformation decay spectrum. The reversal 

in the decay rates as evenness or Fourier parameter q increases is a metamaterial behavior termed the Reverse Saint-Venant 

edge effect (RSV). The asymptotic bandgaps provide a way to detain any static Raleigh mode with the 

coincident q.  

The potential applications of the RSV metamaterial behavior are great if a structured analytical and 

numerical procedures are developed to understand deformation and strain energy patterns in discrete 

lattice materials for identifiable boundary conditions seen in practical mechanics problems.  This chapter 

will therefore present a detailed outlook on analyzing a 2D discrete lattice problem.  Method of 

constructing fundamental solutions for a 2D problem would be detailed: formulating a semi-analytical 

method for both applied essential and natural boundary conditions, a method of reprogramming static 

deformation and strain energy patterns using a bandgap design map and the case of polarizing structures 

in the case repeated zero-eigenvalues will be illustrated. Several examples will be presented for the non-

local x-braced lattice to explain the RSV effect in 2D discrete lattices including cases where principles of 
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the strain energy spectral density (SESD) and strain energy spectral entropy (SESE) from chapter 4 are 

applied to monitor anomalous strain energy behavior. 

5.2 Transfer Matrix and Polarization Vectors for A 2D Non-Local Lattices 

The displacement transfer matrix formulation would require first writing down the system of governing 

equations which for a non-local periodic lattice is written compactly using a convolution operator [23, 35] 

as 

 (𝐤 ∗ 𝐝)𝑛𝑚 = ∑ 𝐤𝑛−𝑛′𝑚−𝑚′𝐝𝑛′𝑚′𝑛′𝑚′ = 𝐟𝑛𝑚                     (5-2) 

Where the stiffness kernel 𝐤 for is a chosen repetitive part of a periodic lattice called the associate substructure 

or cell [See Fig. 5.1] that represents all the elastic interactions between the current node (n, m) and neighboring 

nodes (n’, m’). Periodicity of the lattice ensures 𝐤  is dependent only on the current and neighbor nodal 

differences (n-n’, m-m’) and not requiring separate dependencies in the case of non-periodic lattices.  The 

expression in (5-2) can evaluate the vector of displacements  𝐝𝑛𝑚 at any arbitrary node comprising the periodic 

lattice given the external force vector 𝐟𝑛𝑚  on the lattice. For the operator function in (5-2), summation along 

the n index is allowed for the limits of 𝑛 − 1 to 𝑛 + 1 but range for the m index can be arbitrary. 

Assuming a point in a periodic lattice where 𝑛 = 0, the boundary condition 𝐝0𝑚 or 𝐟0𝑚  is established then it 

is possible to determine the static deformation configuration inside the lattice material when 𝑛 > 0 by 

evaluating the displacement solution 𝐝𝑛𝑚 of lattice nodal points. When 𝑛 > 0, the governing equation in (5-2) 

is rewritten as 

∑ 𝐤𝑛−𝑛′𝑚−𝑚′𝐝𝑛′𝑚′𝑛′𝑚′ = 𝟎                                     (5-3) 

Performing the 𝑛′ index summation in (5-3) from −1 to 1: 

∑ 𝐤1 𝑚−𝑚′𝐝𝑛−1 𝑚′𝑚′ + 𝐤0 𝑚−𝑚′𝐝𝑛 𝑚′ + 𝐤−1 𝑚−𝑚′𝐝𝑛+1 𝑚′ = 𝟎                                               (5-4) 

A discrete Fourier transform (DFT) of each term in (5-4) over the index 𝑚  results in  

𝐊1 (𝑞)𝐝𝑛−1 (𝑞) + 𝐊0 (𝑞)𝐝𝑛 (𝑞) + 𝐊−1 (𝑞)𝐝𝑛+1 (𝑞) = 𝟎                                                          (5-5) 

𝐇(𝑞) {
𝐝𝑛−1 (𝑞)
𝐝𝑛 (𝑞)

} =  {
𝐝𝑛 (𝑞)
𝐝𝑛+1 (𝑞)

}     
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                                                        (5-6) 

𝐇(𝑞) =    [
𝟎 𝐈

−𝐊−1(𝑞)
−1𝐊1(𝑞) −𝐊−1(𝑞)

−1𝐊0(𝑞)
]        

 

The next step is to obtain the eigensystem of 𝐇(𝑞) which are needed to construct fundamental solution in (5-

1). Generally, the transfer matrix 𝐇(𝑞) will have the dimension 2Rx2R, R denoting the number of degrees of 

freedom at each nodal point in the periodic lattice and so the number of eigenvalues (𝑞) will be 2R. The 

transfer matrix 𝐇(𝑞) conforms to the nature of a symplectic matrix whose eigenvalues are sets of reciprocal 

pairs of (𝑞) and 1/(𝑞)  [44-46]. However, only eigenvalues where |(𝑞)| ≤ 1 are of interest assures solution 

(5-1) convergence. It is must be noted that eigenvalues could be real or complex valued depending on lattice 

stiffness properties and also complex eigenvalues are always obtained in conjugate pairs, (𝑞) = 𝜇 ± 𝜔𝑖 . 

 

Figure 5.1 A sample model of a periodic x-braced lattice, and its associate substructure 

There will be 2R corresponding number of eigenvectors and they will have a vector component form 

{
𝐡(𝑞)

(𝑞)𝐡(𝑞)
}. Meaning matrices of the form 𝐇(𝑞) have their bottom component of each eigenvector equal to 

the top component eigenvector multiplied by the corresponding eigenvalue  (𝑞)𝐡(𝑞) [23].  

For a 2D x-braced periodic nonlocal lattice the displacement transfer matrix 𝐇(𝑞) is a 4 x 4 matrix given in 

parametric form as  

    𝐇(𝑞) = [

0 0 1 0
0 0 0 1
𝛽1 𝛽3𝑖 𝛽4 𝛽6𝑖
𝛽2𝑖 𝛽1 𝛽5𝑖 𝛽7

]                                                                                                   (5-7)                            
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𝛽1 = −
(√2 cos 𝑞 + 𝑘 cos 2𝑞)

𝑘 + √2 cos 𝑞
,       𝛽2 =

2(√2 + 𝑘cos 𝑞) sin 𝑞

𝑘 + √2 cos 𝑞
 ,      𝛽3 =

 𝑘 sin 𝑞

𝑘 + √2 cos 𝑞
 ,       𝛽4 =

2(√2 + 𝑘) cos 𝑞

𝑘 + √2 cos 𝑞
 

𝛽5 = −
 2(√2 + 𝑘) sin 𝑞

𝑘 + √2 cos 𝑞
 , 𝛽6 = − 

2 (𝑘 − √2 (𝑘cos 𝑞 − 1)) sin 𝑞

𝑘 + √2 cos 𝑞
,    𝛽7 = 

(2 + 𝑘√2 − 2 cos 𝑞)(2 + √2 𝑘 cos 𝑞)

𝑘 + √2 cos 𝑞
     

Here, the relative stiffness parameter k is the ratio of the stiffness of a diagonal bar over the stiffness of a 

vertical or horizontal bar and q represents the Fourier parameter or Raleigh mode wave number. Applying the 

equation (𝐇(𝑞) − 𝐈(𝑞)) {
𝐡(𝑞)

(𝑞)𝐡(𝑞)
} = 𝟎 for an eigenvalue problem and solving, the non-zero eigenvector 

{
𝐡(𝑞)

(𝑞)𝐡(𝑞)
} is derived in (See in Appendix 5-A1- 5-A4 ): 

{
𝐡(𝑞)

(𝑞)𝐡(𝑞)
} = 𝐶(𝑞)

{
 

 
𝑖(𝛽3 + 𝛽6𝜆)

𝜆2 − 𝛽4𝜆 − 𝛽1
𝑖 𝜆(𝛽3 + 𝛽6𝜆)

𝜆(𝜆2 − 𝛽4𝜆 − 𝛽1)}
 

 

                         (5-8) 

Where the constant 𝐶(𝑞) is any arbitrary real or complex number that could be varied to achieve a certain 

boundary effect or polarization vector normalization |𝐡(𝑞)| = 1. Looking at the right-hand side of (5-8), the 

eigenvector component form {
𝐡(𝑞)

(𝑞)𝐡(𝑞)
}  of  𝐇(𝑞) is shown.  

Therefore, a standard polarization vector 𝐡(𝑞) of a given conjugate pair of complex eigenvalues (𝑞) = 𝜇 ±

𝜔𝑖  is evaluated by substituting into the top half-vector of (5-8) to get 

𝐡(𝑞) = {
𝑎 ± 𝑖𝑏
−𝑐 + 𝑖𝑑

}                                                                      (5-9) 

𝑎 = −𝛽6𝜔,     𝑏 = (𝛽3 + 𝛽6𝜇),     𝑐 = (−𝛽1 − 𝛽4𝜇 + 𝜇
2 −𝜔2),     𝑑 = (2𝜇𝜔 − 𝛽4𝜔)  

Likewise, for a given real eigenvalue (𝑞)  where 𝜔 = 0, we obtain the polarization vector from (5-9) as  

𝐡(𝑞) = {
𝑖𝑏
𝑐
}                                                                                                                                 (5-10) 

 

5.3 Constructing A 2D Problem Raleigh Wave Solution 

Periodic structures or lattices maintain symmetry of response characteristics about symmetry plane which 

for the ongoing studies is along the midpoint of index m and solution (5-1) will obey the symmetry rule: 

𝐝𝑛𝑚 = {
𝑈𝑛𝑚
𝑉𝑛𝑚

} = {
𝑈𝑛𝑚
−𝑉𝑛𝑚

}                                                 (5-11) 
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Hence, constructing a real-cyclic Raleigh wave solution should meet the conditions in (5-11). For example, to 

construct the Raleigh mode solution 𝐝𝑛𝑚, (𝑞) and h(q) are substituted into (5-1) that results in a complex 

valued solution where both real and imaginary parts are possible solutions. The part satisfying the symmetry 

test condition in (5-11) is considered the real-cyclic Raleigh mode solution. In case of a conjugate pair of 

complex eigenvalues (𝑞) = 𝜇 ± 𝜔i, their polar coordinate counterpart (𝑞) = 𝜌𝑒i𝜃  is used to simplify 

algebraic operations. Here we have a modulus 𝜌 = |𝜆(𝑞)| and an argument 𝜃 = Arg(𝜆(𝑞)). Four possible 

solutions (2 real and 2 imaginary components) are obtained after substituting the polar form of each eigenvalue 

into the conjugate pair and corresponding polarization vectors h(q), but none would satisfy the symmetry test. 

A real-cyclic solution (5-12) meeting the symmetry test is constructed by summing corresponding real 

components and imaginary components. The Raleigh mode solutions 𝐝𝑛𝑚 constructed for both complex and 

real eigenvalues are as follows (See in Appendix 5-A5 - 5-A12): 

Complex Eigenvalue: 

 𝐡(𝑞) = {
𝑎 ± 𝑖𝑏
−𝑐 + 𝑖𝑑

}:            𝐝𝑛𝑚 = {
𝐶1𝜌

𝑛(𝑞) {
𝑎 cos 𝑞𝑚
−𝑑 sin 𝑞𝑚}

𝐶1𝜌
𝑛(𝑞) {

𝑏 cos 𝑞𝑚
𝑐 sin 𝑞𝑚

}
                                                       (5-12)        

Real Eigenvalue: 

𝐡(𝑞) = {
i𝑏
𝑐
}:                      𝐝𝑛𝑚 = 𝐶2

𝑛(𝑞) {
𝑏 cos 𝑞𝑚
𝑐 sin 𝑞𝑚

}                                                               (5-13)     

Therefore, the coefficients 𝑎, 𝑏, 𝑐, 𝑑 in 𝐝𝑛𝑚 of equations (5-12) and (5-13) are the only components of a 

polarization vector 𝐡(𝑞) that constructs a real-cyclic Raleigh wave solution (5-1) 

 

5.4 Non-Raleigh Wave Solution: Essential Boundary Condition 

Since most deformations (impact, Gaussian, triangular etc.) sustained by materials or mechanical components 

are non-Raleigh wave modes, a semi-analytical approach is presented in this section to deal with such special 

boundary scenarios.  A general solution can be written for an arbitrary essential boundary solution as a 

summation operation of all possible Raleigh modes (5-1) of 𝑞: 
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𝐝𝑛𝑚 =
1

𝑀
∑ [𝐡1(𝑞) 𝐡2(𝑞)] [

1(𝑞) 0
0 2(𝑞)

]
𝑛

{
𝐶1(𝑞)

𝐶2(𝑞)
} 𝑒𝑖𝑞𝑚𝑀−1

𝑞=0                                              (5.14) 

The solution above is written in matrix form so that [𝐡1(𝑞) 𝐡2(𝑞)] is a matrix composed of components of 

column vectors. In (5-14), 𝐡(𝑞) and (𝑞) are known from the eigensystem of the lattice transfer matrix except 

for the Fourier coefficients 𝐶1(𝑞) and 𝐶2(𝑞)  which must be determined to analyze a lattice with an imposed 

arbitrary essential boundary condition 𝐝0𝑚. To do this, we first multiply through solution 𝐝0𝑚 from (5-14) at 

𝑛 = 0 with 𝐡1
∗(𝑞′), representing the normalized conjugate transpose of the polarization vector 𝐡1(𝑞) and a 

after a DFT operation on both sides of (5-14): 

1

𝑀
∑ 𝐡1

∗(𝑞′)𝐝0𝑚𝑒
−𝑖𝑞′𝑚𝑀−1

𝑚=0 =
1

𝑀2
∑ ∑ {𝐡1

∗(𝑞′)𝐡1(𝑞) 𝐡1
∗(𝑞′)𝐡2(𝑞)} {

𝐶1(𝑞)

𝐶2(𝑞)
} 𝑒𝑖𝑞𝑚𝑒−𝑖𝑞

′𝑚𝑀−1
𝑞=0

𝑀−1
𝑚=0     (5-15)      

Applying summation rules,      

∑ 𝐡1
∗(𝑞′)𝐝0𝑚𝑒

−𝑖𝑞′𝑚𝑀−1
𝑚=0 =

1

𝑀
∑ (∑ 𝑒−𝑖𝑞

′𝑚𝑒𝑖𝑞𝑚𝑀−1
𝑚=0 ){𝐡1

∗(𝑞′)𝐡1(𝑞) 𝐡1
∗(𝑞′)𝐡2(𝑞)} {

𝐶1(𝑞)

𝐶2(𝑞)
}𝑀−1

𝑞=0         (5-16)       

According to 

∑ 𝑒−𝑖𝑞
′𝑚𝑒𝑖𝑞𝑚𝑀−1

𝑚=0 = 𝑀𝛿𝑞𝑞′  and  𝐡1
∗(𝑞′)𝐡1(𝑞) = 1                   (5-17) 

Equation (5-16) is rewritten as        

∑ 𝐡1
∗(𝑞)𝐝0𝑚𝑒

−𝑖𝑞𝑚𝑀−1
𝑚=0 = {1 𝐡1

∗(𝑞)𝐡2(𝑞)} {
𝐶1(𝑞)

𝐶2(𝑞)
}                                                      (5-18)                      

Again, the procedure in (5-15 – 5-18) is repeated for 𝐡2
∗(𝑞′) to obtain a matrix expression for finding the 

Fourier coefficients 𝐶1(𝑞) and 𝐶2(𝑞) as 

 {
𝐶1(𝑞)

𝐶2(𝑞)
} = [

1 𝐡∗𝟐(𝑞)𝐡1(𝑞)  

𝐡∗1(𝑞)𝐡2(𝑞) 1
]
−1

[
𝐡1
∗(𝑞)

𝐡2
∗(𝑞)

] 𝐝0(𝑞)                                                  (5-19)                 

Here, 𝐝0(𝑞) is obtained from the DFT operation of the non-Raleigh boundary condition as  ∑ 𝐝0𝑚𝑒
−𝑖𝑞𝑚𝑀−1

𝑚=0 . 

Hence, a general solution for any static deformation of a periodic lattice under an arbitrary essential boundary 

condition is found by substituting 𝐶1(𝑞) and 𝐶2(𝑞) into Equation (5-14). 
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5.5 Non-Raleigh Wave Solution: Natural Boundary Condition 

In this section, we develop a semi-analytical methodology for analyzing periodic lattices with a natural or forced 

boundary condition which is the more ideal case in mechanics. For periodic lattice with a forced condition at 

𝑛 = 0, the equilibrium governing equation (5-2) is rewritten in Fourier form as 

1

2
𝐊0(𝑞)𝐝0(𝑞) + 𝐊−1(𝑞)𝐝1(𝑞) = 𝐟0(𝑞)                                           (5-20) 

𝐝0(𝑞) = {𝐶1(𝑞) 𝐶2(𝑞)} {
𝐡1(𝑞)

𝐡2(𝑞)
}        ,     𝐝1(𝑞) = {𝐶1(𝑞)1(𝑞) 𝐶2(𝑞)2(𝑞)} {

𝐡1(𝑞)

𝐡2(𝑞)
} 

Here, 𝐟0(𝑞) is obtained from the DFT operation of the natural boundary condition as ∑ 𝐟0𝑚𝑒
−𝑖𝑞𝑚𝑀−1

𝑚=0 . 

Equation (5-20) assumes that the nodal set to left of 𝑛 = 0  where force is applied is non-existent and the term 

1

2
𝐊0(𝑞)  eliminates stiffness interaction due to that set of nodes. Using the decomposed forms of  𝐝0(𝑞) and 

𝐝1(𝑞) into (5-20), we solve for the Fourier coefficients 𝐶1(𝑞) and 𝐶2(𝑞): 

{
𝐶1(𝑞)

𝐶2(𝑞)
} = [

1

2
𝐊0(𝑞) {

𝐡1(𝑞)

𝐡2(𝑞)
} + 𝐊−1(𝑞)[𝐡1(𝑞) 𝐡2(𝑞)] [

1(𝑞) 0

0 2(𝑞)
]]

−1

𝐟0(𝑞)                 (5-21) 

Hence, a general solution for any static deformation of a periodic lattice under an arbitrary natural boundary 

condition is found by substituting 𝐶1(𝑞) and 𝐶2(𝑞) into (5-14) and adding the term 𝐆(𝑛) = 𝑛 𝐊−1(0)
−1𝐟0(𝑞) 

that accounts for uniform deformation [43]: 

𝐝𝑛𝑚 =
1

𝑀
∑ [𝐡1(𝑞) 𝐡2(𝑞)] [

1(𝑞) 0
0 2(𝑞)

]
𝑛

{
𝐶1(𝑞)

𝐶2(𝑞)
} 𝑒𝑖𝑞𝑚𝑀−1

𝑞=0 +  𝐆(𝑛)                                 (5-22) 

 

5.6 Bandgap Design: Raleigh Wave Mode 

Since the transfer matrix 𝐇(𝑞) eigensystem of a periodic lattice is dependent on the Fourier parameter q, 

a relationship plot can be drawn between the q and a decay a parameter 𝜂(𝑞) = − log(𝑞) known as the 

deformation decay spectrum [23] that describes the relative rate of decay of static Raleigh mode deformation 

across all q ranging from −𝜋 to 𝜋. For a usual material the decay parameter 𝜂(𝑞) decreases with increase 

in q that corresponds with increase in fineness of a Raleigh mode. In the case of an RSV metamaterial, 

there exist asymptotic bandgaps (See Fig. 5.4) in the deformation decay spectrum when (𝑞) = 0  leading 

to the reversal in the decrease in 𝜂(𝑞) as q increases or growth in fineness of Raleigh mode. Therefore, a 
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Raleigh mode associated with the Fourier parameter q at the point of the bandgap would be localized 

when applied at a boundary of a metamaterial lattice because of it zero eigenvalue  (𝑞) = 0. 

So in this section we present system parametric design maps that would guide in formulating Raleigh mode 

solutions (5-1) for a Fourier parameter q and would be blocked when applied on the lattice boundary at 

𝑛 = 0 . In accordance with Vieta’s rule where det𝐇(𝑞) =  ∏ 𝜆𝑖(𝑞)
𝑛
𝑖=1 , a zero eigenvalue (𝑞) =0 exists 

when det𝐇(𝑞) = 0. Therefore, to develop system parametric relationship for occasions when bandgaps 

((𝑞) =0) exists for the 2D x-braced periodic lattice, we employ the condition det𝐇(𝑞) = 0  (A13-14): 

𝑘 + √2 cos𝑞 = 0                                                                                                                         (5-23) 

 

Figure 5.2 Occurrence of zero eigenvalues in the (q,k)-parameter space of Fig.1 lattice. Arrows represent 

orientation of their corresponding polarization vectors h(q).  

From (5-23), a plot of the relationship between the stiffness parameter k and Fourier q is presented in Fig. 5.2 

that gives those tenable q of a Raleigh mode and the k value of the x-braced lattice required to localize or block 
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the Raleigh mode at 𝑛 = 0. The direction of the polarization vectors h(q) to construct the Raleigh mode 

solution to be blocked are shown as the dark arrows in Fig. 5.2.   

Alternatively, we can introduce the x-braced unit cell aspect ratio 𝛼 into the displacement transfer matrix 𝐇(𝑞) 

as a system parameter and solve for the condition det𝐇(𝑞) = 0  as 

2𝑘𝛼3√1 + 𝛼2 + cos 𝑞 + 2𝛼2 cos 𝑞 + 𝛼4𝐻 cos 𝑞 = 0         𝛼 =
breadth

heigth
                                                (5-24) 

Considering (5-24) to be in equilibrium and using a degenerate point or inflection point condition approach 

(See Chapters 2 and 3) all the points when the equilibrium of the function in (5-24) is neither maximum or 

minimum is plotted as the bandgap phase diagram in Fig. 5.3 of the x-braced design parameters 𝛼 and k.  

 

Figure 5.3 A Phase Diagram of the lattice material of Fig. 5.1.  

 

From Fig. 5.3, the ranges and points of transition for the condition of an x-braced lattice when bandgaps exist 

to the condition of no bandgaps are deduced. For example, the ideal x-braced lattice with 𝛼 = 1 that was 
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analyzed in (5-23) had its k values for which a bandgap exists to be in the range 0-1.41 (See Fig. 5.2) which is 

true as seen in Fig. 5.3. Looking at Fig. 5.3, suggestions for bandgap design optimization would be to limit the 

aspect ratio 𝛼 within the range 0 - 0.5 and for such a case there is no limitation on the range stiffness parameter 

values since 𝑘 → ∞ for bandgaps exists for an x-braced lattice. 

5.7 Periodic Lattice with Repeated Zero Eigenvalues (𝟏& 𝟐 → 𝟎) 

In the discussions above, we were concerned with the feature of Raleigh mode blockage at 𝑛 = 0 due to a 

single zero-eigenvalue (𝑞) =0 solution (5-1) but there could be instances when a periodic lattice would have 

deformation decay spectrum with coincident bandgaps (1& 2 → 0)  at a Fourier parameter 𝑞 and that from 

initial studies according to our exponential decay Raleigh mode solution (5-1) suggests that any polarization 

vector would be localized at 𝑛 = 0. However, that is not the case for a repeated zero-eigenvalues but rather 

such periodic lattices behave as polarizing structures, converting an arbitrary polarization vector 𝐡̂(𝑞) at 𝑛 = 0 

into the required polarization vector 𝐡(𝑞)  and subsequently causing deformation block at 𝑛 = 1. Since with a 

robust numerical search, 2D polarizing structures instead of two produce only a single independent eigenvector 

{
𝐡(𝑞)

(𝑞)𝐡(𝑞)
}  and so the Jordan canonical form [32] of 𝐇(𝑞) is only written as 

𝐉 = [
0 1
0 0

]                                                                                                                    (5-25)                                            

The Jordan canonical structure in (5-25) possess two (2) solution modes which are stated below:    

𝐣𝑛
(1)
= 0𝑛𝐡                                                                                                                     (5-26)                                

𝐣𝑛
(2)
= 0𝑛𝐠 + 𝑛0𝑛−1𝐡                                                                                                   (5-27)        

In the above equations, 𝐡 and 𝐠 are the independent eigenvector and the generalized eigenvectors respectively 

for the displacement transfer matrix 𝐇(𝑞). From finite element simulations, we observed that when the 

appropriate polarization vector 𝐡(𝑞) obtained for the Fourier parameter 𝑞 at the point of the repeated zero-

eigenvalues was applied, the exponential deformation mode in (5-26) controlled static displacements in the 

periodic lattice and blockage is seen at 𝑛 = 0. For the case of an arbitrary polarization vector 𝐡̂(𝑞), a 
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combination of the exponential and polynomial mode as in (5-27) controlled static deformation pattern while 

deformation is localized at 𝑛 = 1. The case of the arbitrary polarization vector 𝐡̂(𝑞), is explained when we 

consider the second mode in (5-27) at 𝑛 = 1 and 𝑛 = 2:  

At 𝑛 = 1, 

𝐣1
(2)
= 0 𝐠 + 𝐡 = 𝐡                                                                    (5-28) 

At 𝑛 = 2, 

𝐣2
(2)
= 0 𝐠 + 2 × 0 𝐡 = 𝟎                                                                                              (5-29)  

Hence, polarizing structures can transform an arbitrary polarization vector at 𝑛 = 0 into the desired 

polarization vector at 𝑛 = 1(5-28) which localizes the static deformation at this point and that curtails 

deformation propagation inside the lattice (5-29).   

5.8 Strain Energy Density of Periodic Lattices 

A study of the anomalous strain energy behavior in a periodic lattice metamaterial using principles of the 

strain energy spectral density (SESD) and strain energy spectral entropy (SESE) seen in Chapter 4, would 

require a formulation of the strain energy 𝑊𝑛,𝑚 at a point in the lattice material. This is done by considering 

the total strain energy in an associate substructure (See Fig. 5.1) of the periodic lattice which from finite 

element analysis of a truss system is represented as 

𝑊 =
1

2
∑ 𝒅𝑖

𝑻 𝑲𝒊 𝒅𝑖𝑖                                                                                              (5-30)    

𝑲 = [
𝐤𝑛𝑚 −𝐤𝑛𝑚
−𝐤𝑛𝑚 𝐤𝑛𝑚

]                      𝒅 = (
𝐮𝑛𝑚
𝐮𝑛′𝑚′

)                      

𝐤𝑛𝑚 = [𝐶
2 𝐶𝑆
𝐶𝑆 𝑆2

]          𝐶 = 𝐶𝑜𝑠 𝜃           𝑆 = 𝑆𝑖𝑛 𝜃 
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Where i is the i th bar in the associate substructure and 𝑲 and 𝒅 are the i th bar’s stiffness matrix and nodal 

displacements respectively. For an associate substructure, the discrete convolution operator is employed like 

that used in (5-2) to rewrite and simplify (5-30) resulting in      

𝑊𝑛𝑚 =
1

2
∑ (𝐮𝑛′𝑚′

∗ − 𝐮𝑛𝑚
∗ )𝑛′𝑚′ 𝐤𝑛−𝑛′𝑚−𝑚′(𝐮𝑛′𝑚′ − 𝐮𝑛𝑚)                                                      (5-31) 

Expanding the expression in (5-31) and simplifying further we obtain the final strain energy form at a point in 

a lattice as 

𝑊𝑛𝑚 =
1

2
∑ 𝐮𝑛′𝑚′

∗
𝑛′𝑚′ 𝐤𝑛−𝑛′ 𝑚−𝑚′𝐮𝑛′𝑚′                                                                                    (5-32) 

The strain energy density formulation obtained in equation (5-32) therefore defines the strain energy contained 

in the associate substructure of any nonlocal lattice. The sum of these localized strain energies across the spatial 

index 𝑚 is the internal strain energy or volumetric strain energy at the spatial index 𝑛 : 

∑ 𝑊𝑛𝑚𝑚 =
1

2
∑ ∑ 𝐮𝑛′𝑚′

∗
𝑛′𝑚′ 𝐤𝑛−𝑛′ 𝑚−𝑚′𝐮𝑛′𝑚′𝑚                                                                         (5-33) 

Having developed an expression for the volumetric strain energy at the index 𝑛, we can proceed to find the 

relationship between the strain energy and the spectral strain energy at a point in a lattice termed the mechanics 

analogue of the Parseval theorem (See Chapter 4). Rewriting (5-33) in an alternative form we obtain 

∑ 𝑊𝑛𝑚𝑚 =
1

2
∑ ∑ 𝐮𝑛−𝑛′ 𝑚−𝑚′

∗  𝐤𝑛′𝑚′𝐮𝑛−𝑛′ 𝑚−𝑚′𝑛′𝑚′𝑚                                                 (5-34)                                                                                                         

Expressing  𝐮𝑛−𝑛′ 𝑚−𝑚′ and 𝐮𝑛−𝑛′ 𝑚−𝑚′
∗  in (5-34) using inverse discrete Fourier transform (IDFT) of their 

Fourier forms and substituting back into (5-34): 

∑ 𝑊𝑛𝑚𝑚 =
1

2
∑ ∑ (

1

𝑀
∑ 𝑢̃(𝑞)𝑛−𝑛′

∗ 𝑒−𝑖𝑞1𝑚−𝑚
′
)𝑘𝑛′𝑚′(

1

𝑀
∑ 𝑢̃(𝑞)𝑛−𝑛′𝑞2𝑞1𝑛′𝑚′𝑚 𝑒−𝑖𝑞2𝑚𝑚

′
)           (5-35)        

𝑚 = 0,±1,… ,±𝑀/2          𝑞𝜇 =
2𝜋𝜇

𝑀
,   𝜇 = 0,±1,… ,±𝑀/2 

Equation (5-35) above can be reconstructed to satisfy summation rules as   

∑ 𝑊𝑛𝑚𝑚 =
1

2𝑀2
∑ ∑ ∑ (∑ 𝑒−𝑖𝑞1𝑚𝑒𝑖𝑞2𝑚𝑚 )𝑢̃(𝑞)𝑛−𝑛′

∗ 𝑒𝑖𝑞1𝑚
′
𝑘𝑛′𝑚′ 𝑢̃(𝑞)𝑛−𝑛′𝑒

−𝑖𝑞2𝑚
′

𝑞2𝑞1𝑛′𝑚′      (5-36)          
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Since ∑ 𝑒−𝑖𝑞1𝑚𝑒𝑖𝑞2𝑚 =𝑚 𝑀𝛿𝑞1𝑞2 , equation (5-36) simplifies to 

∑ 𝑊𝑛𝑚𝑚 =
1

2𝑀
∑ ∑ ∑ 𝛿𝑞1𝑞2  𝑢̃(𝑞)𝑛−𝑛′

∗ 𝑒𝑖𝑞1𝑚
′
𝑘𝑛′𝑚′  𝑢̃(𝑞)𝑛−𝑛′𝑒

−𝑖𝑞2𝑚
′

𝑞2𝑞1𝑛′𝑚′                            (5-37)                 

The Kronecker delta function 𝛿𝑞1𝑞2 then reduces (5-37) into                         

∑ 𝑊𝑛𝑚𝑚 =
1

2𝑀
∑ ∑ 𝑢̃(𝑞)𝑛−𝑛′

∗ (∑ 𝑘𝑛′𝑚′𝑚′ )𝑛′𝑞 𝑢̃(𝑞)𝑛−𝑛′                                                              (5-38)                                                         

However, ∑ 𝑘𝑛′𝑚′𝑚′  represents the DFT of 𝑘𝑛′,𝑚′ when 𝑞 = 0  (𝑘̃(0)𝑛−𝑛′) therefore the total strain energy 

at index 𝑛 (5-32) can be completely written in spectral form as   

∑ 𝑊𝑛𝑚𝑚 =
1

2𝑀
∑ ∑ 𝑢̃(𝑞)𝑛−𝑛′

∗ 𝑘̃(0)𝑛′𝑛′𝑞 𝑢̃(𝑞)𝑛−𝑛′                                                                       (5-39)                                

An alternative form of (5-39) is written by redefining summation indices: 

∑ 𝑊𝑛𝑚𝑚 =
1

𝑀
∑

1

2
∑ 𝑢̃(𝑞)𝑛−𝑛′

∗ 𝑘̃(0)𝑛−𝑛′𝑛′𝑞 𝑢̃(𝑞)𝑛′                                                                      (5-40)                            

The expression in (5-40) is significant in the sense that it justifies the Parseval’s theorem for periodic lattice 

systems where summation of strain energy in spatial domain, ∑ 𝑊𝑛𝑚𝑚   is equal to summation of strain energy 

in Fourier domain, 
1

𝑀
∑ 𝑊̃𝑛𝑞𝑞 : 

∑ 𝑊𝑛𝑚𝑚 =
1

𝑀
∑ 𝑊̃𝑛𝑞𝑞                                                                                                                   (5-41)                     

𝑊𝑛𝑚 =
1

2
∑ 𝐮𝑛′𝑚′

∗

𝑛′𝑚′

𝐤𝑛−𝑛′ 𝑚−𝑚′𝐮𝑛′𝑚′ 

𝑊̃𝑛𝑞 =
1

2
∑ 𝑢̃(𝑞)𝑛−𝑛′

∗ . 𝑘̃(0)𝑛−𝑛′𝑛′ . 𝑢̃(𝑞)𝑛′  

Where 𝑊𝑛𝑞 represents the spectral strain energy at a point in a periodic lattice analogous to the strain energy 

spectral density (SESD) term seen in Chapter 4. The spectral strain energy 𝑊̃𝑛𝑞 would help us to monitor strain 

energy transformation in a periodic lattice as well as calculate the spectral entropy of deformation, approaches 

as seen for continuum materials are necessary to fully understand the behavior and potential of mechanical 

metamaterials. Therefore, using the spectral strain energy at a point in a periodic lattice 𝑊̃𝑛𝑞, the spectral 

entropy of deformation for a periodic lattice can be calculated from the discrete or numerical strain energy 

spectral entropy ℎ(𝑥) expressions developed in Chapter 4 after replacing the 𝑥 variable with the spatial index 

𝑛 as follows: 
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ℎ(𝑛) = −
1

ln𝑀
∑ 𝑝𝜇(𝑛) ln 𝑝𝜇(𝑛)
𝑀/2−1
𝜇=−𝑀/2                                   (5-42)                    

𝑤̃(𝑛, 𝑞𝜇) =
𝑊̃𝑛𝑞

∑ 𝑊̃𝑛𝑞𝑞
                   𝑝𝜇(𝑛) = 𝑤̃(𝑛, 𝑞𝜇)                                                                  

5.9 Illustrative Examples 

We start by constructing a Raleigh mode solution for both real and complex eigenvalues for a 2D periodic x-

braced lattice with a stiffness parameter 𝑘 = 0.93 and Raleigh mode decay rates defined the deformation decay 

spectrum shown in Fig. 5.4. Considering a Fourier parameter 𝑞 =
4

5
𝜋, the displacement transfer matrix 𝐇(𝑞) 

generates the real eigenvalues,  𝜆1 = 0.10 and 𝜆2 = −0.06 and their associated eigenvectors are 𝐡1 =

{
0.9335
−0.3442𝑖

} and 𝐡2 = {
0.4870𝑖
0.8710

} that constructs real-valued cyclic solutions (5-13) as follows: 

𝐝𝑛𝑚
(1)

= 𝐶2𝜆1
𝑛(𝑞) {

𝑏 cos 𝑞𝑚
−𝑐 sin𝑞𝑚

} = 0.10𝑛 {
0.9335 cos

4

5
𝜋𝑚

0.3442 sin
4

5
𝜋𝑚

}                                                       (5-43)                                                         

𝐝𝑛𝑚
(2)

= 𝐶2𝜆2
𝑛(𝑞) {

𝑏 cos 𝑞𝑚
𝑐 sin 𝑞𝑚

} = (−0.06)𝑛 {
0.4870 cos

4

5
𝜋𝑚

0.8710 sin
4

5
𝜋𝑚

}                                                 (5-44)                         

The solutions in (43-44) are presented in Fig. 5.5 for an x-braced lattice with spatial lengths of M = 10 for the 

index m and N = 4 along index n. Next, we assume a Fourier parameter 𝑞 =
1

5
𝜋 for the stiffness parameter 

𝑘 = 0.93 and so obtain a conjugate pair of complex eigenvalues 𝜆 = 0.5439 ± 0.1425𝑖  and their conjugate 

eigenvectors 𝐡 = {
0.7537 ± 0.4554𝑖
−0.8903 − 0.6572𝑖

}  to construct the featured real-cyclic solution (5-12) in the following: 

𝐝𝑛𝑚
(1)

= 𝐶𝜌𝑛(𝑞) {
𝑎 cos 𝑞𝑚
−𝑑 sin𝑞𝑚} = 0.32

𝑛 {
0.7537 cos

1

5
𝜋𝑚

0.6572 sin
1

5
𝜋𝑚

}                                                                   (5-45)                                                                         

𝐝𝑛𝑚
(2)

= 𝐶𝜌𝑛(𝑞) {
𝑏 cos 𝑞𝑚
𝑐 sin𝑞𝑚

} = 0.32𝑛 {
0.4554 cos

1

5
𝜋𝑚

−0.8903 sin
1

5
𝜋𝑚

}                                                                   (5-46)                          
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Figure 5.4 Deformation decay spectrum for an x-braced lattice (Fig.1) at 𝑘 = 0.93           

 

 

Figure 5.5 Deformation configuration (scaled) of 2DoF x-braced lattice (𝑘 = 0.93, 𝑞 =
4

5
𝜋, 𝑚 = 0 → 10, 

𝑛 = 0 → 4) given by the analytical solutions (5-43) and (5-44) in (a) and (b) respectively. 
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Figure 5.6 Deformation configuration (scaled) of 2DoF x-braced lattice (𝑘 = 0.93, 𝑞 =
1

5
𝜋, 𝑚 = 0 → 10, 

𝑛 = 0 → 4) given by the analytical solutions (5-45) and (5-46) in (a) and (b) respectively. 

The solutions in (5-45 – 5-46) are presented in Fig. 5.6 for the x-braced lattice spatial lengths of M = 10 for the 

index m and N = 4 along index n. 

Now we will demonstrate the Raleigh mode blockage or localization and the RSV effect in a periodic x-braced 

lattice by considering the deformation decay spectrum in Fig. 5.4 when the Fourier parameter 𝑞 =
8𝜋

11
≈ 0.73 

coincides with the bandgap and the Fourier parameters 𝑞 =
9𝜋

11
 and 𝑞 =

10𝜋

11
 are represented on the reverse 

decay branches after the bandgap. The Raleigh mode solutions of the three cases are as follows: 

𝑞 =
8𝜋

11
:           𝐝𝑛𝑚 = 0.0015𝑛 {

0.6609 cos
8

11
𝜋𝑚

0.7504 sin
8

11
𝜋𝑚

}                                                                 (5-47) 

𝑞 =
9𝜋

11
:           𝐝𝑛𝑚 = −0.0756𝑛 {

0.4495 cos
9

11
𝜋𝑚

0.8901 sin
9

11
𝜋𝑚

}                                                              (5-48) 

𝑞 =
10𝜋

11
:         𝐝𝑛𝑚 = 0.1039𝑛 {

0.9823 cos
10

11
𝜋𝑚

0.1524 sin
10

11
𝜋𝑚

}                                                                 (5-49) 
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Figure 5.7 Deformation configuration (scaled) of the analytical solutions (5-47), (5-48) and (5-49) respectively 

for half-cyclic domain of an x-braced lattice (𝑘 = 0.93,  𝑚 = 0 → 11, 𝑛 = 0 → 4). 

 

The solutions in (5-47 – 5-49) are presented in Fig. 5.7 for the x-braced lattice spatial length of M = 22 for the 

index m and N = 4 along the index n. Fig. 5.7 confirms that blockage of the Raleigh mode due to the zero-

eigenvalue at 𝑞 =
8𝜋

11
 and the RSV effect in the Raleigh mode solutions corresponding to the Fourier parameters 

𝑞 =
9𝜋

11
 and 𝑞 =

10𝜋

11
. For a coarser mode at 𝑞 =

9𝜋

11
 , we see in Fig. 5.7 a faster decay due to a decline in the 

𝜂(𝑞) values (See Fig. 5.4) and for a finer mode at 𝑞 =
10𝜋

11
 we observe a slower decay and so these reverse 

mode effects establish the x-braced lattice as a RSV metamaterial. 
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Figure 5.8 Deformation configurations (scaled) of different stiffness parameters under a Raleigh mode solution 

for 𝑞 =
8𝜋

11
 in a half-cyclic domain of the x-braced lattice (𝑚 = 0 → 11, 𝑛 = 0 → 4).] 

 

 An example of the Raleigh mode deformation programming is also presented in Fig. 5.8 by considering 

different stiffness parameters 𝑘 and applying the same Raleigh mode at 𝑞 =
8𝜋

11
. On tuning 𝑘 from 0.15 −

0.93, we see a gradual decrease in the decay rate of the Raleigh mode till the complete blockage when 𝑘 = 0.93 

which the relative stiffness required for bandgap to exist at 𝑞 =
8𝜋

11
.  

In Fig. 5.9, we show a plot of the volumetric strain energy ∑ 𝑊𝑛𝑚𝑚  (5-33) along the lattice index 𝑛 for the 

example seen in Fig. 5.7.  
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Figure 5.9 Strain Energy along index n in an x-braced lattice with k = 0.93: The fastest total strain energy decay 

occurs at 𝑞 =
8

11
𝜋, followed by 𝑞 =

9

11
𝜋 and then 𝑞 =

10

11
𝜋 due to the RSV. 

 

Since the strain energy (5-32) is dependent on the amount of static deformation, Fig. 5.9 shows a decay in 

volumetric strain energy corresponding to that shown in Fig. 5.7 where the high drop in energy of Raleigh 

mode of 𝑞 =
8𝜋

11
 is related to its fast decay because of the associated zero-eigenvalue (  =0 )and the slow decay 

in Raleigh mode of 𝑞 =
10𝜋

11
  sustaining the highest strain energy due to the reversal in the decay rate pattern 

(RSV). To give a comprehensive illustration of the RSV and how it impacts strain energy decay, a plot of 

volumetric strain energies along index 𝑛 is normalized with the volumetric strain at 𝑛 = 1  for an x-braced 

lattice dimensioned as those in Fig. 5.7 for all possible Raleigh modes is shown in Fig. 5.10. The figure shows 

that as we increase the Fourier parameter 𝑞 of the Raleigh mode there is increase in the rate of decay of relative 
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strain energy, depicted by the increase in slope of curves for each index 𝑛 until the Raleigh for 𝑞 =
8𝜋

11
  which 

manifests the lowest values in relative strain energies due to the associated zero-eigenvalue (  =0 ).  The 

presence of the bandgap at 𝑞 =
8𝜋

11
 reverses the order of decay rate such that we begin to see an increase in 

values of the relative strain energies and that explains RSV behavior in the x-braced lattice. 

 

Figure 5.10 Relative Strain Energy against Fourier parameter q. A plot of strain energy at n relative to strain 

energy at n =1 against the Fourier parameter q.  

 

To conclude the examples on 2D x-braced lattices under static Raleigh modes, we illustrate the behavior of 

polarizing lattice structures detailed in Section 5.7. Two x-braced lattices of equal spatial length of M = 20 for 

the index m and N = 4 along the index n having different stiffness parameters of k = 0.4714 and k = 1.0834 

are analyzed. The deformation decay spectrum for the two lattices are presented in Fig. 5.11 which shows that 
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at the Fourier parameter 𝑞 =
7

9
𝜋  there exist no zero-eigenvalue (1 > 0 and 2 < 0) for k = 0.4714 while we 

find repeated zero-eigenvalues (1 ≈ 0 and 2 ≈ 0)  for k = 1.0834. At this instance, if we desired to build a 

Raleigh mode solution (5-1) that would be arrested at 𝑛 = 0 for k = 1.0834, the required polarization vector 

𝐡 = {
0.7677
0.6408

} corresponding to the repeated zero-eigenvalues must apply but we rather apply an arbitrary 

vector  𝐡̂ = {
0.5139
0.8579

} to the two x-braced lattices. In Fig. 5.12, we see deformation propagating in the 

deformation for the case of k = 0.4714 since its eigenvalues are not zero and localization of deformation at 

𝑛 = 1 for the case k = 1.0834 which distinguishes it as a polarizing periodic lattice structure just as detailed 

earlier. Further analysis of displacements in the polarizing lattice 𝑛 = 1 juxtaposed with the Raleigh mode 

solution in (5-1) reveal the true polarization vector 𝐡 concurring with the definition in Section 5.7. 

 

Figure 5.11 Deformation decay spectrum for k = 0.4714 and k = 1.0834 respectively 

 

To complete the set of examples, we study the distribution of volumetric strain energy, spectral strain energy 

and strain energy spectral entropy in a periodic lattice compared to an L-periodic approximation of a continuum 

material under a Gaussian load by applying a point load 𝐟0𝑚 = {
1
0
} 𝛿𝑚0  at the midpoint of an x-braced lattice. 

Three x-braced lattices 𝑘 = 0.5, 𝑘 = 1.1 and 𝑘 = 9 are analyzed having spatial lengths of M = 144 in the index 
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m direction and N = M along index n direction. The deformation decay spectrums for the three x-braced designs 

and the continuum are presented in Fig. 5.13.  

 

 

Figure 5.12 Deformation configurations (scaled) for a half-cyclic domain of the x-braced lattice (𝑚 = 0 → 9, 

𝑛 = 0 → 4) at k = 0.4714 (a), and k = 1.0834 (b).   

 The displacement solutions for the described natural boundary condition for the x-braced lattices are obtained 

from equations (5-20 – 5-22) and their normalized strain energy 𝑤𝑛𝑚 = 𝑊𝑛𝑚/∑ 𝑊𝑛𝑚𝑚  distribution (See Fig. 

5.14b - d), normalized spectral strain energy 𝑤𝑛𝑚 = 𝑊𝑛𝑞/
1

𝑀
∑ 𝑊𝑛𝑞𝑞  distribution (See Fig. 15b-d) and the strain 

energy spectral entropy ℎ(𝑛) are calculated from equations (5-41 – 5-42) (See Fig. 5.16). In case of the 

continuum, the normalized volumetric and spectral energy density distributions (See Fig. 5.14a - 5.15a) and 

spectral entropy (See Fig. 5.16) are calculated from the L-periodic forced boundary approximations below 

derived in Chapter 4: 
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𝑤𝐿(𝑥, 𝑦) =
(𝑒4𝜋𝑥 𝐿⁄ −1) 𝐿⁄

1+𝑒4𝜋𝑥 𝐿⁄ −2𝑒4𝜋𝑥 𝐿⁄ cos2𝜋𝑥 𝐿⁄
                                   (5-50) 

𝑤̃𝐿(𝑥, 𝜇) =
(2−𝛿𝜇0)𝑥𝑒

−2|𝑞|𝑥

2coth2𝜋𝑥 𝐿⁄  −1
                                                (5-51) 

𝑆𝐿(𝑥) = −
4 ln 2

3+𝑒4𝜋𝑥 𝐿⁄ +  ln(2 coth2𝜋𝑥 𝐿⁄ − 1) +
8𝜋𝑥 𝐿⁄

1−cosh4𝜋𝑥 𝐿⁄ +2sinh4𝜋𝑥 𝐿⁄
                               (5-52)  

From Fig. 5.13 and Fig. 5.14, we observe that the spectral strain energy distributions are controlled by the 

deformation decay spectrum and therefore determine the contribution of each Raleigh wave in the distribution 

of volumetric strain energies in a material. The continuum material having the decay relationship 𝑅𝑒 𝜂(𝑞) =

|𝑞| (Fig. 5.13a) ensure the Saint Venant effect in its spectral energy distribution (Fig. 5.14a) decay pattern since 

the contribution of the higher Raleigh wave numbers diminish faster compared to lower wave numbers as you 

move inside the material. The x-braced lattice with 𝑘 = 0.5 has its spectral energy distribution decay pattern 

following the lower branch of its decay spectrum (Fig. 5.13b) without a bandgap and so we also see the Saint-

Venant effect in the spectral distribution (Fig. 5.14b) but the decay rate is significantly lower for each Raleigh 

wave number compared to the continuum case since the decay parameters 𝑅𝑒 𝜂(𝑞) of the lower branch are 

comparatively low. However, the deformation decay spectrum (Fig. 5.13c) for  𝑘 = 1.1 shows a band gap in 

both branches at approximately 𝑞 = ±1.93 with the decay pattern controlled by the lower branch. The 

continuum behavior is observed in the spectral distribution (Fig. 5.14c) for the Raleigh wave numbers to the 

point of the Raleigh wave number 𝑞 = ±1.93 associated with the bandgap, after which the spectral strain 

energy contribution of the immediate wave numbers decay faster while the farer wave numbers decay slower 

corresponding to the RSV effect. The last x-braced lattice having 𝑘 = 9.0 shows both branches coinciding into 

a single decay branch (Fig. 5.13d) like the wedge-shaped decay branch (Fig. 5.13a) of the continuum. Its spectral 

strain energy distribution follows a similar decay pattern but shows a slower decay rate across the wave numbers 

since the decay parameters 𝑅𝑒 𝜂(𝑞) are relatively low.  

In Fig. 5.15(a-c), the normalized spatial strain energy spectrums show energies decaying faster inside the 

continuum material in a concentric curves pattern compared to the two x-braced lattices (𝑘 = 0.5 & 𝑘 = 1.1) 

as a result of the faster decaying wave numbers in the continuum material. The spatial energies in x-braced 
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lattice 𝑘 = 1.1 decay faster since an entire wave number 𝑞 = ±2.5 has no contribution in the energy 

formulation and its decay parameters 𝑅𝑒 𝜂(𝑞) values are higher than that of 𝑘 = 0.5. However, the last x-

braced lattice with 𝑘 = 9.0  even though its decay spectrum and spectral strain distribution is wedge shaped 

like the continuum material (Fig. 5.13d-5.14d) shows a rather anomalous strain energy distribution behavior by 

bifurcating the high strain energies at the neighborhood of the applied load along a 450 direction and localizing 

at the edges halfway into the lattice material (Fig. 5.15d). This behavior is attributed to the distribution of the 

imaginary part of the decay parameters 𝐼𝑚 𝜂(𝑞) = −𝐴𝑟𝑔(𝑞) which accounts for phase shifts in elastic 

deformation at point in the lattice material. In the continuum material, 𝐼𝑚 𝜂(𝑞) = 0 (Fig. 5.13a) and therefore 

no shift in strain energies can be expected. For the x-braced lattice with 𝑘 = 9.0, the imaginary part of the 

decay parameter has a distribution where  𝐼𝑚 𝜂(𝑞) = 𝐴𝑟𝑔2(𝑞) = −𝐴𝑟𝑔1(𝑞) (Fig. 5.13d) since all its 

eigenvalues are complex conjugates pairs and therefore ensures a symmetric shifting of maximal strain energies 

along the lattice vertical axis. The energy shifting behavior allows for a safe zone region close to the middle of 

the lattice to be created with very low spatial strain energies. The unusual energy distribution behavior 

introduces an interesting metamaterial behavior of an x-braced lattice significant for shielding and structure 

integrity applications.  

Another minor feature noticeable by comparing spatial strain energy distribution of the x-braced lattices to the 

continuum are the bursts of very low energies (blue tones) along symmetric contour sleeves within the range 

of 0 – 0.25 n.a/L.  

The exponential decaying spectral entropy curve (dark color) in Fig. 5.16 confirm the fast decaying spatial strain 

energy in the continuum material which drifts away from the entropy of the x-braced lattices that have slower 

decaying strain energies due to the characteristic behaviors of their decay spectrums. We also observe in Fig. 

5.16 that entropy behavior of x-braced lattices may be non-monotonic such as a decreasing entropy may show 

local maxima along the material axis which is clearly seen in the entropy of the x-braced lattice (𝑘 = 9.0) with 

energy deflection or rerouting metamaterial.  
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Figure 5.13 Deformation decay spectrums: (a) Continuum (b) x-braced lattice - k = 0.5 (c) x-braced lattice - k 

= 1.1 (d) x-braced lattice - k = 9.0.   
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Figure 5.14 Spectral strain energy distribution contour maps: (a) Continuum (b) x-braced lattice - k = 0.5 (c) 

x-braced lattice - k = 1.1 (d) x-braced lattice - k = 9.0. Material lengths are normalized with a lattice unit-cell 

length a.    

It is possible to simulate the examples performed in this chapter with any FEA commercial software and such 

an exercise has been performed using a continuous periodic unit where the horizontal boundaries or edges were 

assumed to have only horizontal displacements to ensure model is cyclic. The semi-analytical methods 

presented in this chapter are deemed robust for practical application since the ANSYS verification results 

differed by an order of 10-6. 
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Figure 5.15 Volumetric strain energy distribution contour maps: (a) Continuum (b) x-braced lattice - k = 0.5 

(c) x-braced lattice - k = 1.1 (d) x-braced lattice - k = 9.0.  Material lengths are normalized with a lattice unit-

cell length a.    
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Figure 5.16 Strain energy spectral entropy plots. Material lengths are normalized with a lattice unit-cell length 
a. 

 

5.10  Conclusions 

In this chapter, we have provided a comprehensive outlook on the methods of constructing general 2D Raleigh 

mode solutions for a periodic nonlocal lattice under either an essential or natural boundary condition. 

Since the RSV effect in nonlocal lattices present opportunities for deformation blockage ( =0), bandgap 

design maps showing a relationships between the lattice unit-cell aspect ratio and stiffness parameter and also 

a relationship between the stiffness parameter and Raleigh wave numbers are developed for effectively 

designing a 2D lattice to arrest a Raleigh wave modes of interest or filter out specific Raleigh modes if an applied 

boundary condition is a composition of Raleigh wave modes. 

The possibility of repeated eigenvalues (1& 2 → 0) in nonlocal lattice was demonstrated to possess a unique 

material behavior identifying it as a polarizing lattice such that it has the functionality of polarizing any arbitrary 

applied boundary Raleigh wave mode (𝑛 = 1)for blockage at 𝑛 = 1. 
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The concept of lattice spectral strain energy and spectral entropy developed in Chapter 4 for a continuum 

material were shown to be applicable and beneficial in the study of lattice materials. Including continuum 

comparisons, we have illustrated in detail how the characteristics of spectral components in a spectral strain 

energy conforming to the materials decay spectrum could be used in defining or programming strain energy 

transformation in a lattice. This energy study helped in identifying the anomalous behavior of 45 0 strain energy 

diversion or rerouting in an x-braced lattice.  

The spectral entropy in lattices could be non-monotonic which could be predictive of an anomality inherent in 

the energy distribution of a lattice. Lattice energy transformation was seen to be close to continuum behavior 

but showed slower decay rates due to complex features of spectral components, but a noticeable difference was 

the channeling of low energy pockets close to the boundary of lattice materials. 

 All rigid pin-joined periodic lattices are statically indeterminate, i.e. structurally redundant, and therefore axial 

forces in members determine their overall performance. A statically indeterminate structures do not translate 

external forces to any significant bending moments at nodes and as such lattices could be classified as stretch 

dominated. Therefore, replacement of link elements with axial bar elements will not amend the stress energy 

distributions qualitatively.  

The methodologies and metamaterial behaviors described in this chapter could be a guide for studying much 

desired controllable materials applicable in smart materials, advanced structures and robotics with static 

deformation blockage or filtering, strain and stress alleviation and load pattern detection functionalities. 

 

CHAPTER 5 REFERENCES 

[1] Kolpakov, A.G. On the determination of the averaged moduli of elastic gridworks. Prikl. Mat. Mekh.  1985, 

59, 969–977. 

[2] Lakes, R.S. Foam structures with a negative Poisson’s ratio. Science. 1987, 235, 1038–1040.  

[3] Lakes, R.S. Negative Poisson’s ratio materials. Science. 1987, 238, 551. 



104 
 

[4] Kaminakis, N. T.; Stavroulakis, G. E. Topology optimization for compliant mechanisms, using evolutionary-

hybrid algorithms and application to the design of auxetic materials. Composites Part B: Engineering. 2012, 43 (6): 

2655–2668. 

[5] Stavroulakis, G.E. Auxetic behaviour: Appearance and engineering applications. Physica Status Solidi 

B. 2005, 242(3), 710–720.  

[6] Dong, L.; Lakes, R. Advanced damper with high stiffness and high hysteresis damping based on negative 

structural stiffness. Int. J. Solids Struct. 2013, 50, 2416–2423. 

[7] Spitas, V.; Spitas, C.; Michelis, P. Modeling of the elastic damping response of a carbon nanotube–polymer 

nanocomposite in the stress–strain domain using an elastic energy release approach based on stick–slip. Mech. 

Adv. Mater. Struct. 2013, 20, 791–800. 

[8] Chronopoulos, D.; Antoniadis, I.; Collet, M.; Ichchou, M. Enhancement of wave damping within 

metamaterials having embedded negative stiffness inclusions. Wave Motion. 2015, 58, 165–179. 

[9] Waitukaitis, S.; Menaut, R.; Chen, B. G-g.; van Hecke, M. Origami multistability: From single vertices to 

metasheets. Phys. Rev. Lett. 2015, 114, 055503. 

[10] Hanna, B. H.; Lund, J. M.; Lang, R. J.; Magleby, S. P.; Howell, L. L. Waterbomb base: A symmetric single-

vertex bistable origami mechanism. Smart Mater. Struct. 2014, 23, 094009. 

[11] Silverberg, J. L. et al. Origami structures with a critical transition to bistability arising from hidden degrees 

of freedom. Nature Mater. 2015, 14, 389–393. 

[12] Nicolaou, Z. G.; Motter, A. E. Mechanical metamaterials with negative compressibility transitions. 

NatureMater. 2012, 11, 608. 

[13] Nicolaou, Z. G.; Motter, A. E. Longitudinal inverted compressibility in super-strained metamaterials. J. 

Stat. Phys. 2013, 151,1162. 

[14] Chen, M. L.; Karpov, E. G. Bistability and thermal coupling in elastic metamaterials with negative 

compressibility. Phys.Rev. E. 2014, 90, 033201. 

[15] Imre, A.R.; Metamaterials with negative compressibility – a novel concept with a long history. Materials 

Science‐Poland. 2014, 32, 126–129. 

[16] Milton, G. W.; Cherkaev, A. V. Which Elasticity Tensors are Realizable? Journal of Engineering Materials and 

Technology. 1995, 117 (4), 483. 

[17] Kadic, M.; Bückmann, T.; Stenger, N.; Thiel, M.; Wegener, M. On the practicability of pentamode 

mechanical metamaterials. Appl. Phys. Lett. 2012, 100(19), 191901. 

[18] Fraternali, F.; Amendola, A. Mechanical modeling of innovative metamaterials alternating pentamode 

lattices and confinement plates. J. Mech. Phys. Solids. 2017, 99, 259 

[19] Kane, C. L.; Lubensky, T. C. Topological boundary modes in isostatic lattices. Nat. Phys. 2014, 10, 39–45. 
 
[20] Rocklin, D. Z; Zhou, S.; Sun, K.; Mao, X. Transformable topological mechanical metamaterials. Nature 
Comm. 2017, 8, p.14201.  



105 
 

 
[21] Bertoldi, K.; Vitelli, V.; Christensen, J.; van Hecke, M. Flexible mechanical metamaterials. Nature Reviews 
Materials. 2017, 2 (17066), pp. 1-11. 
 
[22] Donev, A.; Torquato, S. Energy-efficient actuation in infinite lattice structures. J Mech Phys Solids. 2003, 
51(8), 1459. 
 
[23] Karpov, E.G. Structural metamaterials with Saint-Venant edge reversal, Acta Materialia. 2017, 123, 245-

254. 

[24] Erigen, A.C. Nonlocal Continuum Field Theories. Springer-Verlag, 2002. 
 
[25] Rade, L.; Westergren, B. Mathematics Handbook for Science and Engineering. 5th ed, Springer. 2004. 

[26] Gradshteyn, I. S.; Ryzhik, I. M. Tables of Integrals, Series and Products, 6th ed, Academic Press. 2000. 

[27] Tolstov, G. P. Fourier Series. Prentice-Hall, Inc. 1962. 

[28] Shannon, C. E. A mathematical theory of communication. Bell System Technical Journal. 1948, 27, 379-423.  

[29] Hankerson, D. R.; Harris, G. A. Johnson PD. Introduction to Information Theory and Data Compression. 

2003, 2nd edition, CRC Press. 

[30] Vajapeyam, S. Understanding Shannon’s Entropy metric for Information. arXiv preprint arXiv. 2014, 

1405.2061. 

[31] Robinson, D. W. Entropy and uncertainty. Entropy, 2008, 10(4), 493–506 

[32] Dean, D.L. Discrete field analysis of structural systems. New York: Springer. 1976. 

[33] Dean, D.L.; Tauber, S. Solutions for one-dimensional structural lattices. Journal of the Engineering Mechanics 

Division, ASCE. 1959, 85, 31-41. 

[34] Avent, R. R.; Issa, R. R. A.; Chow, M. L. Discrete field stability analysis of planar trusses. Journal of Structural 
Engineering, ASCE. 1991, 117 (2), 423–439. 
 
[35] Karpov, E.G.; Stephen, N.G.; Dorofeev, D.L. On static analysis of finite repetitive structures by discrete 

Fourier transform. Int. J. Solids Struct. 2002, 39 (16), 4291-4310. 

[36] Nilsson, J.; Castro Neto, A. H.; Guinea, F.; Peres, N. M. R. Electronic properties of bilayer and multilayer 
graphene, Phys. Rev. B. 2008, 78, 045405. 
 
[37] Karpov, E.G.; Wagner, G. J.; Liu, W. K. A Green's function approach to deriving non-reflecting boundary 
conditions in molecular dynamics simulations. Int. J. Numer. Methods Eng. 2005, 62 (9), 1250-1262. 
 
[38] Medyanik, S. N.; Karpov, E. G.; Liu, W. K. Domain reduction approach to molecular mechanics 
simulations of carbon nanostructures. J. Comput. Phys. 2006, 218 (2),836-859.  
 



106 
 

[39] Qian, D.; Phadke, M.; Karpov, E. G. A domain-reduction approach to bridging scale simulation of one-
dimensional nanostructures, Comput. Mech. 2011, 47 (1), 31-47. 
 
[40] Zok, F. N.; Latture, R. M.; Begley, M. R. Periodic truss structures. Journal of the Mechanics and Physics of Solids. 
2016, 96, 184-203. 
 
[41] Norris, A. N. Mechanics of elastic networks. Proceeding of the Royal Society A. 2014, 470, 20140522. 
 
[42] Cabras, L.; Brun, M. A Class of Auxetic three-dimensional lattices. Journal of the Mechanics and Physics of Solids. 
2016, 91, 56-72. 
 
[43] Karpov, E. G.; Dorofev, D. L.; Stephen, N. G. Characteristic solutions for the statics of repetitive beam-

like trusses. Int. J. Mech. Sci. 2002, 44 (7), 1363-1379. 

[44] Pease, M. C. Methods of matrix algebra. New York: Academic Press. 1965. 

[45] Meyer, K. R.; Hall, G. R. 1991 Introduction to Hamiltonian dynamic systems and the N-body problem. 
Applied Mathematical Sciences, Berlin: Springer. 1991, vol. 90. 
 
[46] Stephen, N.G. Transfer matrix analysis of the elastostatics of one-dimensional repetitive, structures. Proc. 
R. Soc. A. 2006, 462, 2245–2270. 
 
 

 

CHAPTER 5 APPENDIX 

Finding eigenvectors of the transfer matrix 𝐇(𝑞) of 2DoF x-braced lattice:   

 𝐇(𝑞) = [

0 0 1 0
0 0 0 1
𝛽1 𝛽3i 𝛽4 𝛽6i
𝛽2i 𝛽1 𝛽5i 𝛽7

]                                                                                                (5-A1)                       

     𝛽1 = −
(√2 cos𝑞+𝑘 cos2𝑞)

𝑘+√2cos𝑞
,         𝛽2 =

2(√2 +𝑘cos𝑞) sin𝑞

𝑘+√2cos𝑞
 ,          𝛽3 =

 𝑘 sin𝑞

𝑘+√2cos𝑞
 ,           𝛽4 =

2(√2 +𝑘)cos𝑞

𝑘+√2cos𝑞
 

𝛽5 = −
 2(√2 + 𝑘) sin𝑞

𝑘 + √2 cos 𝑞
 ,

𝛽6 = − 
2 (𝑘 − √2 (𝑘cos 𝑞 − 1)) sin 𝑞

𝑘 + √2 cos𝑞
,    𝛽7 = 

(2 + 𝑘√2 − 2 cos 𝑞)(2 + √2 𝑘 cos𝑞)

𝑘 + √2 cos 𝑞
     

    To find eigenvectors {
𝐡(𝑞)

𝐡(𝑞)
} = {

𝑥
𝑦
𝑤
𝑧

} of H(q) we use the row reduction echelon method to solve 

(𝐇(𝑞) − 𝐈)𝐡(𝑞) = 𝟎  and get the equation 
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[
 
 
 
 
 
 
 1 0

1

−
0

0 1 0
1

−

0 0 1
𝛽6𝑖+𝛽3𝑖

1



(𝛽4−)+𝛽1
1



0 0 0 (𝛽7 + 𝛽1
1


) − (𝛽5𝑖 + 𝛽2𝑖

1


)

𝛽6𝑖+𝛽3𝑖
1



(𝛽4−)+𝛽1
1

]
 
 
 
 
 
 
 

{

𝑥
𝑦
𝑤
𝑧

} = {

0
0
0
0

}                                       (5-A2) 

Writing down equations, z is 0 which makes the eigenvector zero but since an eigenvector cannot be zero we 

take z as any real or complex number. However, taking z = 1 and solving for (x, y, w, z) we get 

 {
𝐡(𝑞)

(𝑞)𝐡(𝑞)
} = 𝐶

{
 
 

 
 

𝑖(𝛽3+𝛽6𝜆)

𝜆(𝜆2−𝛽4𝜆−𝛽1)

1

𝜆
𝑖(𝛽3+𝛽6𝜆)

𝜆2−𝛽4𝜆−𝛽1

1 }
 
 

 
 

                                                                                             (5-A3)                                          

The above expression can be rewritten as 

  {
𝐡(𝑞)

(𝑞)𝐡(𝑞)
} = 𝐶

{
 

 
𝑖(𝛽3 + 𝛽6𝜆)

𝜆2 − 𝛽4𝜆 − 𝛽1
𝑖 𝜆(𝛽3 + 𝛽6𝜆)

𝜆(𝜆2 − 𝛽4𝜆 − 𝛽1)}
 

 

                                                                                   (5-A4)                              

Constructing real-valued cyclic Raleigh wave solutions: 

Complex Eigenvalues: 

𝐡(𝑞) = {
𝑎 ± 𝑖𝑏
−𝑐 + 𝑖𝑑

}: 

𝐝𝑛𝑚
(1)

= 𝐶1𝜌
𝑛(𝑞) {{

𝑎 cos (𝜃𝑛 + 𝑞𝑚) − 𝑏 sin (𝜃𝑛 + 𝑞𝑚)

𝑐 cos(𝜃𝑛 + 𝑞𝑚) − 𝑑 sin (𝜃𝑛 + 𝑞𝑚)
} + 𝑖 {

𝑎 sin (𝜃𝑛 + 𝑞𝑚) + 𝑏 cos (𝜃𝑛 + 𝑞𝑚)

𝑐 sin (𝜃𝑛 + 𝑞𝑚) + 𝑑 cos (𝜃𝑛 + 𝑞𝑚)
}}                           (5-A5) 

 𝐝𝑛𝑚
(2)

= 𝐶1𝜌
𝑛(𝑞) {{

𝑎 cos (−𝜃𝑛 + 𝑞𝑚) + 𝑏  sin (−𝜃𝑛 + 𝑞𝑚)

−𝑐 cos (−𝜃𝑛 + 𝑞𝑚) − 𝑑  sin (−𝜃𝑛 + 𝑞𝑚)
} + 𝑖 {

𝑎  sin (−𝜃𝑛 + 𝑞𝑚) − 𝑏 cos (−𝜃𝑛 + 𝑞𝑚)

−𝑐  sin (−𝜃𝑛 + 𝑞𝑚) + 𝑑  cos (−𝜃𝑛 + 𝑞𝑚)
}}                           (5-A6)    

Possible cyclic harmonic solutions are obtained by summing and subtracting the corresponding real and 

imaginary parts of the above equations as shown below: 

𝐝𝑛𝑚 = Re 𝐝𝑛𝑚
(1)

+ Re 𝐝𝑛𝑚
(2)

= 𝐶𝜌𝑛(𝑞) {
𝑎 cos 𝑞𝑚
−𝑑 sin 𝑞𝑚}                                                                  (5-A7)                                                                                

  𝐝𝑛𝑚 = Im 𝐝𝑛𝑚
(1)

− Im 𝐝𝑛𝑚
(2) = 𝐶𝜌𝑛(𝑞) {

𝑏 cos 𝑞𝑚
𝑐 sin 𝑞𝑚

}                                                                     (5-A8)           

Real Eigenvalues:       

Case 1: 𝐡(𝑞) = {
i𝑏
𝑐
}                    
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𝐝𝑛𝑚 = 𝐶2
𝑛(𝑞) {{

−𝑏 sin 𝑞𝑚
𝑐 cos 𝑞𝑚

} + 𝑖 {
𝑏 cos 𝑞𝑚
𝑐 sin 𝑞𝑚

}}                                                          (5-A9) 

The real-cyclic solution is the imaginary part of the solution above: 

𝐝𝑛𝑚 = 𝐶2
𝑛(𝑞) {

𝑏 cos 𝑞𝑚
𝑐 sin 𝑞𝑚

}                                                           (5-A10) 

 

 Case 2: 𝐡(𝑞) = {
𝑏
i𝑐
}: 

𝐝𝑛𝑚 = 𝐶2
𝑛 {{

𝑏 cos 𝑞𝑚
−𝑐 sin 𝑞𝑚

} + 𝑖 {
𝑏 sin 𝑞𝑚
𝑐 cos 𝑞𝑚

}}                                                                 (5-A11) 

The real-cyclic solution is the real part of the solution above 

𝐝𝑛𝑚 = 𝐶2
𝑛(𝑞) {

𝑏 cos 𝑞𝑚
−𝑐 sin 𝑞𝑚

}                                                                    (5-A12) 

Finding the zero-eigenvalue relationship for a 2DoF x-braced lattice: 

det 𝐇(𝑞) = ∏ 𝜆𝑖
𝑛
𝑖=1 (𝑞) =

𝑘(𝑘+√2cos𝑞)
2

𝑘(𝑘+√2cos𝑞)
2                                                                                (5-A13) 

Since (𝑞) =0 when det 𝐇(𝑞) = 0, we write the zero-eigenvalue relationship as 

𝑘 + √2 cos𝑞 = 0                                                                                                                    (5-A14) 

The transfer matrix 𝐇(𝑞) when we introduce aspect ratio 𝛼: 

𝐇(𝑞) = [

0 0 1 0
0 0 0 1
𝛾1 𝛾3i 𝛾4 𝛾6i
𝛾2i 𝛾1 𝛾5i 𝛾7

]                                                                                                (5-A15) 

𝛾1 = −
(1 + 𝛼2)2 cos 𝑞 + 2𝑘𝛼3√1 + 𝛼2 cos 2𝑞

2𝑘𝛼3√1 + 𝛼2 + (1 + 𝛼2)2 cos 𝑞
,                   𝛾2 =

2𝛼((1 + 𝛼2)2 + 2𝑘𝛼3√1 + 𝛼2 cos 𝑞) sin 𝑞

2𝑘𝛼3√1 + 𝛼2 + (1 + 𝛼2)2 cos 𝑞
       

 𝛾3 =
4𝑘𝛼2√1+𝛼2 cos𝑞 sin𝑞

2𝑘𝛼3√1+𝛼2+(1+𝛼2)2 cos𝑞
 ,                               𝛾4 =

2(1+𝛼2(2+𝛼2+2𝑘𝛼√1+𝛼2)) cos𝑞

2𝑘𝛼3√1+𝛼2+(1+𝛼2)2 cos𝑞
 

   𝛾5 = −
2𝛼(1+𝛼2(2+𝛼2+2𝑘𝛼√1+𝛼2)) sin𝑞

2𝑘𝛼3√1+𝛼2+(1+𝛼2)2 cos𝑞
 ,                   𝛾6 = 

2𝛼2(−2𝑘√1+𝛼2−(1+𝛼2)2+(1+𝛼2)2 cos𝑞) sin𝑞

2𝑘𝛼3√1+𝛼2+(1+𝛼2)2 cos𝑞
 

𝛾7 = −
√1 + 𝛼2((1 + 𝛼2)3 2⁄ + 2𝑘𝛼3 cos 𝑞)(−2𝑘 − (1 + 𝛼2)3 2⁄ + (1 + 𝛼2)3 2⁄ cos 𝑞)

𝑘(2𝑘𝛼3√1 + 𝛼2 + (1 + 𝛼2)2 cos 𝑞)
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6 CONCLUSIONS AND FUTURE WORK 
 

Mechanical metamaterials are materials with preconceived elastic properties like negative Poisson’s ratio, 

negative compressibility, negative stiffness, etc. that cannot be achieved by natural materials. In recent times, 

this class of metamaterials have garnered significant research interest due to the enormous functionalities and 

applications attainable when such materials are used in composites, intelligent structures and resilient systems. 

The unusual elastic properties of these artificial materials mean their deformation mechanisms could be 

programmed to possess functionalities such as stress and strain alleviation, vibration control, strain energy 

storage that are far reaching in natural materials.  

The aim of the thesis was to understand the deformation and strain energy anomalies in bistable and nonlocal 

mechanical metamaterials. Bistable structures and materials are those that possess multiple states of stability 

where there exist two states of stable equilibrium and a single unstable equilibrium state. During loading and 

unloading cycles, at certain critical loads a bistable structure or material transitions from one stable state to 

another. The unstable state features a negative stiffness which can only be harnessed under a displacement-

controlled scheme. Even though several authors have studied the topic, a fully analytical procedure for 

designing bistability behavior in elastic structures was presented in Chapter 2 by employing stability and phase 

diagrams that serve as great stability predicting tools. For the analyzed truss, the stability and phase diagrams 

gave all the regions of the possible states of stability namely monostability, superelasticity and superplasticity 

based on only truss system design parameters. The present study could lead to efficient designs of advanced 

space truss structures used in the civil and aerospace industry where structures still maintain stability by adapting 

to critical forces. The concept of autonomous systems that base structure’s response on natural external 

actuation or stimulation of active materials could depend on this approach of designing bistable actuators to 

maximize structure’s response to the required limit.  

The property where a structure contracts or pulls back under a tensile load in the direction of the load is termed 

negative extensibility. The already available study on the subject of linear negative compressibility does not 

address the negative behavior in the direction aligned to the direction of the applied load but a result of a 
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hydrostatic pressure which was aim of this chapter. This mechanical behavior is analogous to negative 

compressibility which is a bulk material property. Since negative compressibility studies have shown bistable 

systems with multiple degrees of freedom and at least a single internal degree of freedom to have such a 

potential, this chapter was directed to study a truss structure having similar features with the aim of achieving 

a longitudinal negative extensibility behavior. We showed with the help of stability and phase diagrams studied 

in Chapter 2 that negative extensibility is typical of a system that undergoes two forward transitions and two 

reverse transitions and so the unique characteristic of a beak-shaped bifurcation set or a double cusp. The phase 

diagram for a negative extensible truss showed five regions of interest namely monostabilty, superelasticity, 

superplasicity, negative extensibility superelasticity and negative extensibility superplasicity. The negative 

extensibility has been shown to be attainable in simple structural systems and that is an encouraging attribute 

for future studies into vibration control mechanisms and super-dampers. 

To aid in the identification and analysis of anomalous strain energy distribution in periodic lattice materials, this 

chapter is used to present an efficient numerical method of strain energy analysis by developing an analogy to 

the Parseval’s theorem in digital analysis for continuum applications. In so doing, the spectral strain energy 

density (SESD) term was derived with an equal quantitative measure to the usual spatial or volumetric strain 

energy density but possesses rich qualitative difference due its description of harmonic presence and 

contribution to the continuum strain energy behavior. The strain energy spectral density (SESD) became an 

important parameter for quantifying the strain energy spectral entropy (SESE) of elastic deformation, a concept 

from Shannon’s entropy of information studies which measures the amount of disorder or disruption as in a 

thermodynamic system. The spectral entropy (SESE) study was convincingly used to explain the transformation 

of strain energy in a plane solid continuum material and as such was seen as a powerful numerical tool capable 

of addressing issues of high stress and strain localization and non-uniform strain energy distribution that could 

be present in periodic lattice mechanical metamaterials.    

Analogous to how in acoustic mechanics, sound waves could be blocked by tuning bandgap characteristics of 

a material’s dispersion curves, static Raleigh deformation can be blocked when there exist bandgaps in the 

deformation decay spectrum of a lattice by tuning system design parameters. The existence of bandgaps 
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however reverses the rate of Raleigh mode decay such that Raleigh modes corresponding to lower wave 

numbers (coarse) decay faster compared to that of higher wave number (even). This chapter was used to 

develop the studies to cover multiple degrees of freedom systems as well as solution to arbitrary (Gaussian, 

impact e.t.c) non-Raleigh mode natural boundary conditions. 2D periodic nonlocal lattice structures provide an 

incentive of repeated eigenvalues (1& 2 → 0), a study of this feature was shown to classify those special 

nonlocal lattice polarizing structures. The chapter also looked at strain energy distribution in periodic lattices 

using the spectral strain energy density and strain energy spectral entropy concepts seen in Chapter 4, as there 

exist potential for anomalous strain energy storage in these periodic nonlocal lattices. The 450 maximal strain 

energy rerouting and the channeling of low energy pockets in the 2D periodic nonlocal x-braced lattice material 

were identified as anomalous strain energy behaviors far from a continuum behavior. Strain energy spectral 

entropy also showed that lattice materials could showcase a non-montonic behavior explaining complexities in 

their spectral energy distributions.   The tools presented in this chapter could be expanded to the study of other 

unit-cell geometries and other periodic lattice systems that have been studied to have metamaterial behaviors 

like negative Possion’s ratio and negative compressibility.  Future studies could also be directed in the area 

designing composite materials which will depend on anomalous deformation and strain energy behaviors of an 

RSV lattice material to build high resilience lattice material.   
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