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1. INTRODUCTION 

Exploring and understanding the geologic processes that have shaped the other planets in 

our solar system is a challenging feat. Our understanding of our own planet’s history and 

ongoing evolution is based on vast sets of data built up from detailed field work, observations of 

phenomena going back centuries, and archives of physical samples. The enormous technical 

challenges of space travel mean that we have only a fraction of the same data for our terrestrial 

neighbors. Only a single trained geologist has stood on the Moon, and while Mars has been host 

to many capable robotic landers, they are still limited to small areas and constrained by their 

scientific instrumentation. 

 The case is yet worse for the icy moons and planets of our outer solar system. The 

challenge and expense of a dedicated orbiter for one of these bodies, much less a lander, has so 

far left them in the realm of fly-bys or shared observation during missions dedicated to their gas 

giant hosts. On top of this, the icy shells of these bodies resist our usual abilities of geologic 

inference, showing us surface compositions and landforms that are unique to their class and 

between each other. Lacking the ability to create detailed geologic maps and histories, we must 

instead make the most of our limited data sets to determine the history of these far-off bodies. 

 Of the methods used to analyze icy planetary bodies, geophysical modeling has been one 

of the most consistently useful. By considering the body as a system defined by mathematically 

related principles- the transfer of heat, the force of gravity, and the conservation of mass and 

energy- we can build simplified models of these interactions within the observable or inferable 

constraints of the body. These models may be as simple as a force-balance model and as 

sophisticated as a coupled series of non-linear equations simulated over a broad parameter space, 

but they share the basic functionality of attempting to constrain the possible expressions of a 
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complicated set of observable phenomena. In other words, to the extent that it is possible, they 

must couple a comprehensive understanding of what we do know (correct material parameters, 

prior assumptions, and geologic and geophysical inference) with effective methods (analytical or 

numerical simulation) to reach a conclusion (a result that can reasonably explain the phenomena 

under study).  

 I present the results of three studies that utilize numerical methods to explore the link 

between the internal geophysical state of icy solar system bodies and their exteriors. While each 

study is concerned with a different planetary body and utilizes different geophysical approaches, 

they are linked by the philosophy of geophysical modeling outlined above: the observation of an 

unusual planetary feature uniquely related to its status as an icy body; the use of a numerical 

simulation to solve the equations describing a simplified model of the system; and the evaluation 

of the model results to find a set of solutions that could realistically constrain the formation of 

the features of interest. 

  The first study explores the emplacement of the chaotic mountain block ranges found 

along the eastern rim of Pluto’s Sputnik Planitia basin. These mountainous blocks, partly 

immersed in the giant nitrogen glacier that fills the basin, have a jumbled appearance that does 

not appear consistent with formation by tectonic activity. I create a force-balance model testing 

the hypothesis that the chaotic arrangement of these mountains was caused by downhill transport 

of coherent mountain blocks by basally lubricated sliding along a shallow incline. Conceptually 

this mechanism is similar to the “sliding stones” of Racetrack Playa (e.g., Lorenz, 2011), except 

gravitationally driven instead of by wind, and with the lubricating agent being solid or liquid 

nitrogen instead of water. I also account for the force of convecting nitrogen on the face of the 

block as it descends into the basin. I find that, depending on the lubrication regime, even the 
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largest mountain blocks can travel over the very shallow slopes of the basin in geologically short 

periods of time, after which they will be naturally halted by the loss of slope and the viscous 

resisting force of the solid nitrogen.  

 The second study is focused on the enigmatic “cantaloupe terrain” of Neptune’s moon 

Triton. Schenk and Jackson (1993) hypothesized that this terrain, defined by a wide region of 

interfering curvilinear ridges and depressions, was the surface expression of a compositional 

diapir canopy composed of solid CO2 or ammonia dihydrate overlying a water ice crust. 

However, the method used did not account for the temperature-dependent material response or 

the thermally insulating properties of the materials, which were poorly known at the time. To 

provide a more robust test of the compositional diapir hypothesis, I design numerical convection 

simulations that incorporated more recent understanding of Triton’s internal heat state and the 

material properties of the putative diapir-forming layers. I do not find any parameter space in 

which diapir formation occurred. The insulating nature of the surface ices creates high 

geothermal gradients in the near surface, which due to the significantly different material 

properties results in viscosity contrasts that prevent upward flow of ice. However, for certain 

model setups, I do observe high stress localization that may be consistent with a fracture-induced 

sublimation formation mechanism. I consider these results to be suggestive of a possible 

formation mechanism, but constraining the time scales and brittle rheological behavior of the 

overlying layers will require additional studies beyond the scope of this work.  

 The third study develops a method for understanding the interior structure of a planetary 

body from observations of its spatially variable gravitational field. Typically in the planetary 

sciences, this task is done by an inverse modeling method, but in situations where the gravity 

field is difficult to measure fully, certain assumptions about a planet’s geophysical state must be 
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assumed for inverse modeling to function. I present an alternate, forward-modeling path of 

determining a planet’s spheroidal density structure by utilizing genetic algorithms and a 

simplified potential field generation model to sort efficiently through the model space in a way 

that bypasses the assumptions required for the traditional inverse modeling approach. I foresee 

this code as a community tool for hypothesis testing purposes, allowing researchers to test the 

feasibility of various density structures and predict the resulting gravity potential fields of the 

body. The code is currently in a preliminary state and requires additional bug testing and features 

to be a useful community tool, but I present two benchmark cases: one for Jupiter’s moon 

Europa and one for the dwarf planet Ceres. These models attempt to replicate the reverse-

modeling predictions of Anderson et al. (1998) for Europa and of Park et al. (2016) for Ceres. 
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2. DOWNHILL SLEDDING AT 40 AU: MOBILIZING PLUTO’S CHAOTIC 

MOUNTAIN BLOCKS 

 

2.1 Abstract 

We present a force-balance analysis of the mobilization and emplacement of the large 

mountain block chains observed on the western rim of Pluto’s Sputnik Planitia basin. These 

mountain blocks are likely disrupted pieces of Pluto’s water ice crust. After fracturing from the 

basin rim, they slid downslope into the basin under their own weight on timescales as short as 

hundreds to thousands of years, collecting into the observed ranges when the basin slope 

shallows below a critical value. Solid nitrogen ice played an important role in promoting the 

fragmentation and lubrication of the blocks as they moved, but buoyant movement and lateral 

convective forces within the nitrogen did not play a significant role in the mobilization of all but 

the smallest of the observed blocks. 

 

2.2  Introduction 

The western rim of Pluto’s informally named Sputnik Planitia, a large (~900,000 km2) 

basin near the dwarf planet’s equator, is dominated by a north-south trending series of mountain 

block chains (Fig. 2.1). Each chain in the series is a cluster of blocks of fragmental appearance, 

with larger blocks oriented or tilted in a chaotic manner and often embedded in what appears to 

be a matrix of smaller blocks. Individual blocks reach a mode height of ~1 km above the 

surrounding plains and have a maximum height of ~4 km, while block widths have a mode 

diameter of 5-10 km and a maximum diameter of ~40 km (Schenk et al., 2018). The size and 

high relief of the blocks indicate that they are likely composed of water ice, which comprises the  
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Figure 2.1. New Horizons LORRI image at a resolution of 386 m/pixel of the northern margin of 
the al-Idrisi Montes, showing the geologic terrains described in this paper. North is at top of 
image. Area A: The main body of mountain blocks. Block relief is on average 1-2 km. Area B: 
Disrupted water ice uplands. The detachment point for the mountain blocks is marked by the 
dotted line. Area C: Hummocky terrain dividing the mountain blocks from the uplands. Arrows 
indicate proposed direction of ice block transport. Area D: The nitrogen ice sheet of Sputnik 
Planitia. Image modified from NASA Photojournal image PIA19934, courtesy NASA/Johns 
Hopkins University Applied Physics Laboratory/Southwest Research Institute. 
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majority of Pluto’s crust and is very rigid at the average surface temperature of 44 K (Stern et al., 

2015). It is thus likely that the mountain blocks represent disrupted pieces of Pluto’s crust (area 

A in Fig. 2.1). 

White et al. (2017) suggested that the mountain blocks are transported material, formed 

from large mass wasting or buoyant rafting of basin rim crustal material. The authors identified a 

region to the north of the al-Idrisi Montes that may be undergoing disruption, fragmentation, and 

subsidence due to nitrogen ice exploiting regional tectonic faults (area B in Fig. 2.1). To the 

south of these faults, the landscape has a hummocky appearance similar to the inter-block 

material that embays the mountain blocks (area C in Fig. 2.1). Schenk et al. (2018) additionally 

identified a north-south trending fault system to the west of Sputnik Planitia (southwest of the 

area imaged by Fig. 2.1), which is separated from the mountain blocks by inter-block material 

and a series of ridges mantled by dark material. If the mountains are transported material and 

these faults are detachment points from which the mountain blocks were separated from the crust 

and subsequently transported to their current location, then the mantled ridges and hummocky 

terrains are presumably lag deposits from the transport, possibly analogous to terrestrial landslide 

deposits.  

 The basin that encompasses Sputnik Planitia is likely the surface expression of an ancient 

giant impact crater (Nimmo et al., 2016). The basin serves as a cold trap for nitrogen, which has 

condensed to fill the basin with a convecting nitrogen ice sheet (area D in Fig. 2.1; McKinnon et 

al., 2016). The bedrock water ice in the region is likely heavily fractured, both from the impact 

itself and from subsequent extensional tectonics as Pluto’s ice shell freezes (Nimmo et al., 2016). 

The basin also would possess a regional inward slope near the basin rim, although the nitrogen 

ice sheet obscures it.  
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Nitrogen ice is denser (~1000 kg m-3) than water ice (~920 kg m-3) and flows readily at 

plutonian surface temperatures of ~40 K. Nitrogen ice can efficiently exploit preexisting 

fractures in the crust, pressurizing and possibly lubricating fault systems. Failure along these 

faults would create debris that could then be transported to its current location, either by 

downslope mass movement or buoyantly, if the nitrogen is deep enough. Based on crater scaling 

relationships and the melting point of solid nitrogen, the maximum likely depth of Sputnik 

Planitia is ~6 km, and the rim where the mountain block ranges are found will be considerably 

shallower, grading toward zero at the edge of the ice sheet. Buoyant transport of the larger 

observed blocks would take a significantly deeper amount of nitrogen than is currently present or 

likely, even given evidence of past glacial extent and climate change (White et al., 2017; 

Bertrand and Forget, 2016). We thus focus our investigation on how these grounded blocks may 

be moved downslope under their own weight. Because the blocks are at least partially submerged 

in convecting nitrogen (White et al., 2017), we additionally consider the lateral forces applied to 

the block by neighboring convection cells. 

 

2.3  Methodology 

 We begin by creating a simplified force-balance model of a cylindrical mountain block 

sitting on a shallow slope and partially immersed in convecting nitrogen. Figure 2.2 summarizes 

the forces considered. The weight of the block (FW) is separated into two components: the slope-

normal force (FN) and the force oriented downslope (FD). FD is opposed by the basal friction 

force (FF) and modified by any net lateral forces from convection in the nitrogen ice that fills the 

basin (FC). If there is a net downhill force (FD - FF > 0), it will be balanced by the viscous drag 

force of the low viscosity nitrogen ice (FV), effectively a geometrical modified Stokes flow (e.g.,  
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Figure 2.2. Force balance diagram of a cylindrical mountain block with water ice density ρI, 
sitting on a slope of angle θ and partially immersed in nitrogen with density ρN. The radius, R, 
and the height above and below nitrogen, H and T, respectively, represent the dimensions of the 
block. Directions of the normal force FN, the force directed downslope FD, the friction force FF, 
the convective force FC, and the viscous resistance FV are indicated by arrows. The lengths of the 
respective arrows are not representative of the relative magnitude of the forces. 
 
 
 
 
 
Turcotte and Schubert, 2014). To calculate these forces, we require estimates of the coefficient 

of friction µ and its contribution to the basal friction force FF; the net lateral forces of convection 

acting on a block FC; the contribution of partial buoyancy to the weight of the block FW; and a 

Stokes flow derivation of the viscous drag forces FV. 

2.3.1 Modeling convection 

 To estimate the convective forces FC, we implement a material model for solid nitrogen 

in the finite element code ASPECT (Advanced Solver for Problems in Earth’s ConvecTion 

[Kronblicher et al., 2012]). Modeling convection requires an estimate of the dynamic viscosity of 

the material (η), which depends on its material properties and the deformation mechanism active 

at a given temperature and strain rate. The material properties of solid nitrogen are not well 
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understood - see the discussions in McKinnon et al. (2016) and Umurhan et al. (2017). For our 

purposes, we utilize a Newtonian, linear viscosity based on work by Eluszkiewicz and Stevenson 

(1990) and expanded in Umurhan et al. (2017): 

,    (2.1) 

where k is the Boltzmann constant, T is temperature in Kelvin, d is the ice grain size, D0V is the 

empirically assessed self-diffusion rate through N2 grains (1.6 x 10-7e-Tv/T m2/s, where Tv is the 

activation temperature ≈1030 K), and Ω is the volume of a single molecule of N2 (4.9 x 10-29 m3). 

Note that the only non-constant values in this equation are the temperature and the grain size, 

which we set as 1 mm. The actual N2 ice grain size is not well constrained, but this size is 

consistent with grain sizes reported for convecting mantle rock and glacial ice (McKinnon et al., 

2016). This model assumes that grain-boundary sliding (GBS) is the dominant creep mechanism, 

which is dominant at low stresses near the melting point. Material parameters used in the 

simulation are given in Table I. 

Nitrogen convection is modeled in a wide (~1:20 aspect ratio) 2D box, bounded by 

immobile water ice, with nitrogen depths varying from 500 m to 2 km. The surface temperature 

is fixed at 37 K, and the bottom temperature is adjusted until it provides a convective heat flux 

equal to Pluto’s estimated radiogenic production (~3 mW m-2) (Robuchon and Nimmo, 2011). 

No-slip boundary conditions are applied to the base, representing nitrogen in contact with 

bedrock ice. The side boundary corresponding to the ice block is also set to no-slip conditions, 

with a temperature profile fixed to that of thermally conductive water ice.  

Convection simulation results 

Convective systems within the nitrogen are observed to develop and exhibit traction on 

the side boundary representing the mountain block. The convection cells have wide aspect ratios,  

ηN2 (i ) =
kTd 2

42D0VΩ
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TABLE I: NITROGEN MATERIAL PARAMETERS 

     

Parameter     Value Source 

Reference temperature  45 K Yamashita et al. (2010) 
Density at reference 
temperaturea r0  980 kg m-3 McKinnon et al. (2016) 

Viscosity at reference temperatureb h0 2 x 1010 Pa s 
Elusciewicz and Stevenson 

(1990) 

Thermal conductivity k  0.2 W m-1 K-1 McKinnon et al. (2016) 
Thermal expansion 
coefficient a  2 x 10-3 K-1 McKinnon et al. (2016) 

Activation energyc EA  3.5 kJ mol-1 McKinnon et al. (2016) 

Specific heat Cp   1606 J kg-1 K-1 Scott (1976) 

Surface gravity g  0.617 m s-2 Stern et al. (2015) 

     

   a Based on the formula ρ0 = 1000 - 2.14(T - 36K) kg m-3.  
   b See equation 1.    
   c For power law exponent n = 2.2.   

 
 
 
 
 
surface velocities of approximately tens of centimeters per year, and surface heat fluxes of ~3 

mW m-2. In these respects, they closely resembled the sluggish-lid convection found by 

McKinnon et al. (2016) for convection within Sputnik Planitia; we thus consider our simulation 

to be well representative of the current understanding of nitrogen convection on Pluto. 

Integrated deviatoric stresses experienced on the no-slip side boundary are determined 

over a range of nitrogen depths, from 500 m to 2 km, and for a range of block radii (and 

corresponding block weight FW) varying from 1 km to 20 km. In all cases, the magnitude of FC is 

3-4 orders of magnitude less than that of FW or of the other lateral forces considered here. We 

thus conclude that lateral convective forces are not an important component in the transport of 

large, grounded mountain blocks, and do not incorporate FC into subsequent force-balance 

equations. 
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In the limit of a buoyantly floating block, Fw approaches zero. In these cases, convective 

forces would be an effective transport mechanism, and can explain the presence of small isolated 

hills found in the middle of Sputnik Planitia, particularly in the boundaries between convective 

cells (White et al., 2017). However, lateral convective forces cannot explain the transport of the 

majority of the mountain block ranges. 

2.3.2 Modeling force balance 

 To model the downhill force on a partially submerged mountain block, we consider a 

cylindrical block with height above nitrogen H, depth below nitrogen T, and radius R (see Fig. 

2). Because the blocks are sitting on the slope of the basin, their basinward edge will be sitting in 

deeper nitrogen than their uphill edge, which may provide additional buoyant support. However 

for the shallow (< 3°) slopes expected, we neglect downhill variances in H and T. The total 

weight of the grounded block is thus 

,   (2.2) 

where ρI is the water ice density (920 kg m-3), ∆ρ is the density difference between water ice and 

solid nitrogen (~80 kg m-3), and g is Pluto’s gravity (0.617 m s-2).  

From elementary analysis of forces acting on a slope, the total lateral force FT is the 

difference between the downslope and frictional forces (FD – FF): 

,   (2.3) 

where θ is the angle of slope of the basin. We can estimate the coefficient of friction µ required 

for a given slope by noting that for FT to be positive, 

,     (2.4) 

since FW is positive by definition.  

FW = (ρIgH  - ΔρT )gπR 2

FT = FW (sin θ  - µ  cos θ )

µ < tanθ
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We can infer a likely value of θ from rims of other large impact basins in the Solar 

System. South Polar Aitken on the Moon and the Hellas basin on Mars both have slopes of ~2° 

near their rims (Rosenburg et al., 2011; Tanaka et al., 2002). Substituting this value into Eq. (2.4) 

results in a maximum µ for movement of ≈ 0.04. Such values are achieved in full-film regimes 

(see below). 

2.3.3 Modeling viscous drag 

 If there is a net positive force (FT > 0), then the block will slide downslope into the 

nitrogen glacier. Its downslope velocity will be controlled by the viscous drag of the nitrogen 

around the block, which balances FT. We can thus solve for the velocity to find the emplacement 

time of a block. Stokes flow defines the drag force felt by a sphere descending into a viscous 

fluid as 

,     (2.5) 

where η is the viscosity and ν is the sphere’s descent velocity into the fluid (e.g., Turcotte and 

Schubert, 2014). While this law does not technically apply to a cylinder, we can use Oseen’s 

approximation (Proudman and Pearson, 1957) to argue that the solution only differs by a 

geometric correction factor of order unity for a low Reynolds number Re. For the slow, laminar 

flow we are modeling, Re ≈ 10-9, so Oseen’s approximation is valid. Thus, equating FT to FV, we 

can rearrange the equation to estimate the block’s downhill velocity v: 

. (2.6) 

Figure 2.3 presents a diagram of emplacement velocity as a function of basin slope for a 

range of plausible coefficients of friction µ. We also scale this velocity to a generalized 

“emplacement time,” the time it would take a block moving at this constant velocity to travel 100 

km. The curves truncate with endcaps where slopes become so shallow that the net downhill  

FV = 6πηRv

v = (ρ IH −∆ρT )gR
6η

*(sinθ −µcosθ )
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Figure 2.3. Emplacement velocity as a function of basin slope for representative coefficients of 
friction µ. Curves are scaled to a notional emplacement time, representing the time it would take 
a block moving at constant velocity to travel 100 km. For a particular value of µ, there is a 
critical value of slope (indicated by circles) below which friction exceeds the downslope weight 
of the block and velocity drops to zero. Large (R = 20 km) blocks show higher velocities and 
shorter emplacement times than modal (R = 10 km) blocks owing to their greater resistance to 
viscous drag. 
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force no longer is positive. We observe that in the most favorable case for mobilization (µ = 

0.04, slope < 5°, nitrogen viscosity η = 1012 [as determined from our convection calculations]), a 

large block could be emplaced on a timescale of hundreds of years. Note that while the viscosity 

of the nitrogen is an imprecisely known parameter, it is a linear factor in the velocity equation. 

Higher estimates of the viscosity would change these timescales by the same order of magnitude 

as the viscosity and would still result in geologically short emplacement times. 

 

2.4  Discussion 

We find that there is a critical value of slope for a given µ value. Below this value, the 

friction from the weight of the block will be sufficient to overcome the net downslope force, 

resulting in no mobilization. For a µ of 0.04, a slope of ~2.5° is required to mobilize a block. 

Increasing the µ value to 0.1 requires a slope of 6° or more for mobilization. It is geologically 

unlikely that the rim of the Sputnik Planitia basin can support a slope of 6° or more over the 

observed emplacement distance (cf. Rosenburg et al., 2011; Tanaka et al., 2002). This 

observation has two important implications. 

 First, for the mountain blocks to be moving under their own weight, they must be 

relatively well lubricated. Water ice-on-water ice has a coefficient of friction between 0.29 to 

0.76 below 100 K (Schulson and Fortt, 2012). These values are in the boundary or mixed 

regimes, where the boundary surfaces are supported at least partially by the asperities on their 

contact surfaces, and do not allow for mobility in our model. A µ value of 0.04 requires the 

blocks to be in the full-film or hydrodynamic regime, where the boundary surfaces are 

completely supported by the lubricant (Schipper and Maathuis, 1995). The most likely lubricant 

on Pluto is solid or semisolid nitrogen, infiltrated along fractures in the same process that 
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initially separated the blocks (Palasantzas and De Hosson, 2004). Wetted terrestrial glacial beds 

show a µ between 0.05 and 0.08 (Cohen et al., 2005), suggesting our critical value is plausible 

for this mechanism.  

 Second, the strong dependence on slope provides a natural limiting mechanism on 

movement. As the basin shallows inward, the slope will eventually drop below the critical value 

required for movement at a particular value of µ (see Fig. 2.3). Once a block reaches this point, it 

cannot be moved farther inward unless the lubrication regime changes, the nitrogen surrounding 

it increases in depth, or it is pushed by a sufficiently large force (such as more blocks descending 

downslope behind it). Thus, while the emplacement times are geologically short, we cannot say 

that the emplacement was necessarily a recent event. 

 We further note that the viscous drag force FV scales with the radius of the block. Larger 

blocks resist the drag more than smaller blocks, creating a size-filtering effect where larger 

blocks have higher emplacement velocities than smaller blocks. This is a common finding of 

Stokes flow (e.g., Turcotte and Schubert, 2014) and can be observed in the way that gravel will 

settle out of a water column faster than sand. We illustrate this in Fig. 2.3 with a curve calculated 

for a modal block (R=10 km) with intermediate coefficient of friction µ. This finding may play a 

role in the radial distribution of mountain blocks. Qualitatively, the largest mountain blocks 

appear to be located radially inward of the basin, compared to the smallest fragments that are 

either located radially outward or interstitially to larger blocks (see Fig. 2.1). This finding may be 

a result of the size-filtering effect imposed on the blocks by the nitrogen during their 

emplacement. 
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2.4.1 Planetary analogues 

 The emplacement mechanism we describe here is not without precedent in the Solar 

System. One terrestrial analogue is in the “sailing stones” of Racetrack Playa. These boulder-

sized rocks have been observed to slide along their base during winter, when the playa is 

inundated with water. In this case, the driving force is provided by the fetch of wind along the 

thin layer of ice that encases the boulders. Buoyant force provided by the ice and lubrication 

along the boulders’ bases allow them to slide, leaving their famous tracks in the mud after the 

water evaporates (Lorenz et al., 2011). 

 Other analogues are apparent in large, base-lubricated, shallow slope mass movements 

seen throughout the Solar System, such as the Heart Mountain slide in Wyoming (Malone et al., 

2017) or the large runout landslides along the walls of Mars’s Valles Marineris (Watkins et al., 

2015). Figure 2.4 shows the collapse of the Larsen B ice shelf in Antarctica, which exhibits a 

remarkably similar block size distribution to Pluto’s mountain blocks (cf. Fig. 2.1). We posit that 

this is due to the viscous resistance that the seawater imposes on the icebergs, resulting in a 

similar size-filtering effect. Comparative analysis between these features and Pluto’s mountain 

blocks should proceed with caution, however, as they occurred in different dynamical regimes 

(e.g., long runout landslides are inherently inertial).  

 

2.5  Conclusions 

 Figure 2.5 presents a schematic cross-section across the chaotic mountain blocks that 

illustrates our suggested formation mechanism. Condensed nitrogen plays an important role in 

the formation of the ranges, first by promoting fracture of chunks of uplands crust, and then by 

providing basal lubrication that allows large, grounded blocks to slide down the shallow regional 
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slope over hundreds of kilometers. Blocks small enough to become buoyant can be carried 

deeper into the basin by convective forces. Larger blocks can travel until the basin slope 

shallows sufficiently for friction to arrest their movement but are too heavy to be mobilized by 

the buoyant or convective forces of nitrogen acting on them. Emplacement times are controlled 

by the viscous resistance of the nitrogen, which is a function of block size, and range from 

hundreds to tens of thousands of years. 
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Figure 2.4. Terra MISR image of the northern section of Antarctica’s Larsen B ice shelf during 
its collapse in March 2002. Note the size filtering of the blocks, with larger blocks located more 
distal to the broad region of smaller blocks between the collapse front and the detachment. Image 
modified from NASA Photojournal image PIA03702, courtesy of NAA/GSFC/LaRC/JPL, MISR 
Team. 
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Figure 2.5. Schematic cross-section across Pluto’s chaotic mountain blocks. Nitrogen condensing 
and pooling in the uplands (4a) sinks into the water-ice bedrock, promoting fracture along pre-
existing faults (arrows). Calved blocks (4b), lubricated by nitrogen, slide downslope into the 
basin. Larger blocks (4c) resist the viscous drag of the nitrogen present in the basin, allowing 
them to slide until the slope descends below a critical value. Smaller blocks and debris (4d) are 
fully buoyant and can be transported by convection within the nitrogen glacier. Diagram is not to 
scale. 
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3. SIMULATING FORMATION OF TRITON’S CANTALOUPE TERRAIN BY 

COMPOSITIONAL DIAPIRS 

 

3.1 Abstract 

We present results from numerical simulations designed to test the compositional diapir 

formation hypothesis for Triton’s cantaloupe terrain as originally formulated by Schenk and 

Jackson (1993). These simulations utilize an updated understanding of Triton’s internal heat state 

from Nimmo and Spencer (2014), as well as more realistic material rheologies, to determine the 

spatial and temporal extent of deformation within a dense, insulating layer of ice (ammonia 

dihydrate or CO2) overlying a water ice crust. We find that density-driven diapiric overturn as 

suggested by Schenk and Jackson (1993) is inhibited by strong viscosity contrasts in the near 

surface caused by a high geothermal gradient and temperature-dependent material rheologies. 

Because the denser ices are markedly weaker than water ice at the same temperature, any model 

configuration where the water ice was upwardly mobile resulted in a collapse and thinning of the 

upper layer. We conclude that cantaloupe terrain could not have been formed by compositional 

diapirs given our current understanding of the likely materials involved.  

For a small parameter space (~10 km thick upper layer of CO2), localized downwelling 

“sinks” of CO2 were observed to concentrate stresses within the upper rigid parts of the layer on 

a similar scale to cantaloupe terrain cavi. These stress localizations may result in surface fracture 

and enhanced sublimation of volatile ices intermingled with the substrate, forming cavi by a 

process of scarp retreat.   

The presence of an insulating layer of non-water ice on its surface has a strong effect on 

the convection regime within the mantle, resulting in more organized convection cells and 
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localized high temperatures. Time-varying convection results in movement of the cores of 

individual cells, resurfacing a larger surface area as individual regions are pushed above or 

below the critical temperature for CO2 downwellings to form. 

 

3.2 Introduction 

 3.2.1 Geologic context 

Triton is the only large moon of Neptune and stands as a unique member of the solar 

system’s icy satellites. Its orbit is retrograde and highly inclined, which combined with a distinct 

lack of other large satellites in the system suggest that it is a captured Kuiper Belt Object 

(McKinnon and Kirk, 2007). It thus likely shares a formation environment with its slightly 

smaller cousin Pluto, although the two bodies have experienced very different dynamical 

environments. The 1989 encounter by Voyager 2 imaged approximately 40% of Triton’s surface 

and identified many features consistent with a young, geologically active body, including smooth 

plains deposits associated with cryovolcanism; active plumes in the south polar cap; and a large 

extent of enigmatic terrain dubbed “cantaloupe terrain” after its dimpled appearance (Fig. 3.1; 

Croft et al., 1995). 

Cantaloupe terrain is characterized by regularly-spaced, semi-circular depressions 

separated by irregular sub-parallel ridges. The terrain covers ~40% of the imaged surface of the 

satellite and appears to extend into the far hemisphere not visible to the Voyager 2 spacecraft 

(Fig. 3.2). Individual depressions, or cavi, average between 25 and 35 km in length and appear to 

have a complex interior morphology consisting of a rough center, a smooth inner annulus, and 

pitted ridges surrounding the depression (Croft et al., 1995). While detailed elevation data is 

difficult to interpret due to image quality and the complex (Kay et al., 2019), the ridges appear to  
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Figure 3.1. Voyager 2 global color mosaic of Triton. Cantaloupe terrain is the dark, pitted region 
in the northwest of the imaged hemisphere. The difference in terrain morphology between 
cantaloupe terrain and the potentially cryovolcanic smooth plains deposits in the northeast is 
distinct. The bright southern cap is likely nitrogen ice and shows the dark blotches of plume 
activity. Global fracture features known as sulci crosscut through all imaged terrains. At this 
scale Triton’s lack of impact craters, and thus young surface, is apparent. Image courtesy 
NASA/JPL. 
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Figure 3.2. Voyager 2 image of cantaloupe terrain at closest approach. The image was taken 
from a distance of 40,000 km and is approximately 220 km across. North is to the right of the 
frame. Effective resolution of surface features is 750 m. The oval features in the bottom right of 
the image are cavi. Each is approximately 25-35 km in diameter. Note the interfering 
relationships between the pitted ridges separating out individual cavi. Image courtesy 
NASA/JPL. 
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be of the order of a kilometer in elevation. Cantaloupe terrain is crossed by large extensional 

faults named sulci and is flooded to the east by potentially cryovolcanic smooth plains deposits, 

indicating that it is the stratigraphically oldest known terrain on Triton. Despite its relative age, 

almost no confirmed craters have been identified within the terrain, suggesting a youthful 

absolute age. 

Schenk and Jackson (1993) interpreted the complex interior morphology and interfering 

(rather than cross-cutting) relationship of the cavi as similar to the surface expression of 

terrestrial salt diapirs. Terrestrial diapirs form when a layer of salt (which is relatively 

incompressible and flows readily under low strain rates) becomes buried under higher density 

sedimentary rock. This configuration is gravitationally unstable, and a Raleigh-Taylor instability 

can develop if the layer is perturbed by differential loading (Turcotte and Schubert, 2014). The 

underlying material will rise in an ascending plume, characteristically (although not always) 

forming a thin stalk with a large, pancake-shaped plume head that displaces the overlying 

material. When several diapirs form in close proximity, the plume heads form a composite diapir 

canopy, which expresses on the surface as a series of interfering elliptical features with internal 

cellular structure related to the original stratigraphy (Jackson, 1990). The spacing of the plumes 

within a canopy is related to the original thickness h of the layer by (Turcotte and Schubert, 

2014):  

!	 ≈ 2.6	ℎ    (3.1) 

For the hypothesized diapir canopies on Triton, Schenk and Jackson (1993) estimated a 

plume separation wavelength of 54 km and a corresponding overlying layer thickness of ~20 km. 

The first-order structure and evolution model implied by these estimates is of a layered structure 

with the less dense material (presumably water ice, the major component of Triton’s ice shell) on 
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the bottom, overlain by a ~20 km thick overburden of two distinct, denser ice phases (see Fig. 

3.3).  

The compositions of the dense ice phases participating in the hypothesized diapiric 

overturn are uncertain, but the most likely components (and the ones investigated by Schenk and 

Jackson [1993]) are water ice (H2O), carbon dioxide (CO2), and ammonia dihydrate (NH3-2H2O; 

hereafter abbreviated as ADH). These ices have either been telescopically identified on Triton’s 

surface (e.g., Quirico et al., 1999) or inferred from geochemical modeling (e.g., Shock et al., 

1993), and maintain enough rheological strength at Triton surface conditions to participate in 

geologic activity. The other ices identified on Triton - methane (CH4), nitrogen (N2), and carbon 

monoxide (CO) - are relatively volatile at Triton pressure/temperature conditions. They are also 

weak Van der Waals bonded solids that would not be able to support the observed topography 

over geologic time (Yamashita et al., 2010).  

Based on an inferred surface age of ~500 Myr, Schenk and Jackson (1993) estimated a 

conservative ascent time for these putative diapirs as ~1 Gyr. Depending on the materials 

involved, this ascent time gives a mean viscosity of the overturning layers between 1021-1022 Pa 

s, down to as low as 1020 Pa s if the formation time is as low as 10 Myr. 

Thermal convection is one method of potentially enhancing diapirism (Talbot, 1978). 

While Schenk and Jackson (1993) did consider the possible effects of thermal convection in 

enhancing diapir formation, they concluded that density contrasts from the differing materials 

would be the dominating force in a Triton diapir due to the low (<10 K/km) geothermal gradient. 

This conclusion was based on the assumption at the time that Triton’s interior was frozen and 

warmed only by relict radiogenic heat flux.  
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Figure 3.3. ASPECT simulation output for a model re-creating the compositional diapir model as 
formulated by Schenk and Jackson (1993).[1] A dense (∆ρ = 640 kg/m3) overlying layer, 
originally 20 km thick, sinks, and the less dense underlying material rises in a diapir. Material 
rheologies are uniform and have a viscosity of 3x1022 Pa *s, equivalent to an overturn time of ~1 
Gyr. 

 

 

3.2.2 Challenges to the diapir hypothesis  

More recent observations and modeling have raised challenges with the diapir hypothesis 

outlined above. Updated material data for the ices involved show that their temperature-

dependent rheologies may not be effectively captured by such a simple Rayleigh-Taylor 

instability analysis (e.g. Yamashita 1997; Durham et al., 2010; Durham et al., 1999; Cross et al., 

2019). Recent studies (Nimmo and Spencer, 2014; Ruiz, 2003) show that Triton’s subsurface 

heat flow may have considerable non-radiogenic components, and the thermal conductivities of 

CO2 and ADH are significantly lower than that of water ice, potentially increasing the effective 

subsurface temperature (e.g., Schurmeier and Dombard, 2018). The surface age of Triton has 
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also been revised downward, to as low as 10 Myr, challenging the relative age of formation for 

the putative diapirs (Schenk and Zahnle, 2007). 

While advantageous in that it simplifies the considerable uncertainties involved, 

Rayleigh-Taylor instability analysis is a parametric method that specifies a constant bulk 

viscosity between the components and across the model space. In reality, the effective viscosity 

of the ices involved is highly temperature dependent and variable between the components (e.g. 

Durham et al. 2010; Durham et al., 1993; Cross et al., 2019). For these materials to participate in 

near-surface viscous flow (as implied if cantaloupe terrain is the surface expressions of diapirs), 

the subsurface temperature must be warm enough to lower the viscosity sufficiently to permit 

movement. If one component becomes too stiff to move viscously in the near surface, then it is 

difficult to imagine a scenario where subsurface diapirs are exposed at the planetary scale of the 

cantaloupe terrain.  

Raising the internal heat flow of Triton sufficiently to permit near-surface deformation is 

a challenge in the absence of tidal heating. Depending on estimates of its chondritic composition, 

Triton’s present-day heating rate varies between 1 and 6 mW m-2, not nearly enough to power 

geologic activity (Robuchon and Nimmo 2011; Gaeman et al., 2012; Brown et al., 1990). Triton 

is likely to be a thermally processed body due to the circularization of its orbit after capture by 

Neptune, which produced enough heat to melt completely the satellite (Ross and Schubert, 

1990). However, Triton’s small size means that it is unlikely to have retained this heat over the 

age of the Solar System (Nimmo and Spencer, 2014). 

Triton has a negligible eccentricity, so eccentricity tidal heating is not an effective 

heating mechanism. However, recent analysis by Nimmo and Spencer (2014) showed that 

ongoing heat from ocean tidal dissipation of Triton’s orbital obliquity may be sufficient to 
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maintain an internal ocean of ~240 K, assuming the presence of ammonia to serve as an 

antifreeze. They show that the resulting surface heat flux of between 7 and 18 mW m-2 would be 

sufficient to drive convective motion in the ice shell, and consequently bring lower viscosity ices 

closer to the surface. This effect could be enhanced by the insulating effect of the surface ices. 

ADH has a thermal conductivity of 1.5 W m-1 K-1 at Triton surface conditions, half that of water 

ice, while CO2 is a full order of magnitude lower (Ross and Kargel, 1998). These lower 

conductivities would reduce the amount of heat required to mobilize the diapir components.  

In addition, Schenk and Zahnle (2007) reexamined the cratering record of Triton and 

concluded that the majority of its craters were from planetocentric debris, not heliocentric 

impactors. Accordingly, they estimated the average surface age as ~10 Myr old. Such a young 

surface age presents challenges for the diapir hypothesis as stated because diapirism is not a 

recurring process. If we assume that the Schenk and Jackson (1993) model is correct and the 

diapirs took ~1 Gyr to form, then it would be fortuitous that they were exposed in the last 10 

Myr. Conversely, if the viscosities of the ices are radically different from those specified in 

Schenk and Jackson (1993) and they formed faster, then what process is responsible for creating 

the required density inversion within the last 10 Myrs, and has it been active previously in 

Triton’s history?  

Emplacement of ADH layers on the surface via effusive cryovolcanism is one potential 

way for multiple generations of diapirs to form. Regenerating layers of CO2 is a less 

straightforward process, as its most likely source in recent geologic time is from atmospheric 

photochemical production (Krasnopolsky, 2012; Shock and McKinnon, 1993). In either case, it 

is not clear how the timescales of these processes line up with the formation time of the 
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hypothesized diapirs. Better constraints on the likely formation time of the diapirs would help 

determine to what extent we need to appeal to these resurfacing mechanisms. 

The goal of this work is to re-address the diapir formation hypothesis for cantaloupe 

terrain accounting for these new developments in our understanding of Triton. To do so, we go 

beyond the Rayleigh-Taylor scaling arguments of Schenk and Jackson (1993) and utilize 

numerical simulations to model the interior heat of Triton throughout its ice shell. We then use 

those boundary conditions to create a compositional model replicating the first order stratigraphy 

of the Schenk and Jackson (1993) diapir hypothesis, updated with the temperature-dependent 

rheologies of the materials involved.  

 

3.3 Methodology 

To model numerically the flow of material within Triton’s near-surface, we implement a 

material model for ice in the finite element code ASPECT (Advanced Solver for Problems in 

Earth’s ConvecTion; Kronbichler et al., 2012). ASPECT solves the Navier-Stokes equations 

describing thermally driven convection using the Boussinesq (incompressible) approximation 

and accounting for the conservation of mass and energy. ASPECT utilizes modern numerical 

methods such as adaptive mesh refinement, nonlinear solvers, and the advection of 

compositional fields with differing physical properties from the background material.   

We model the effective viscosity of the ices under consideration as that of Newtonian 

(non-stress dependent), temperature-dependent fluids using a formulation based on that of 

Nimmo and Spencer (2014): 

η = 	 *+,-. 	∗ (12 	−	
1
2+
),  (3.2) 
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where η5 is the viscosity at the reference temperature T5, E8 is the activation temperature, and R 

is the gas constant. This relationship utilizes the fact that the various creep mechanisms are 

dominated by thermally activated processes at the low stresses of icy planetary crusts (Durham et 

al., 2010; Tobie et al., 2003). We neglect the effects of partial melting on viscosity; see below for 

a discussion on possible melting behavior. Table II contains the relevant material parameters for 

the ices used in this study. 

To incorporate our updated understanding of Triton’s internal heat flow, we model the 

entirety of Triton’s ice shell based on the work of Nimmo and Spencer (2014): a 300 km thick 

convecting ice shell underlain by an ammonia-water ocean at a temperature of 240 K. Above this 

ice shell we model a thin layer of insulating, putatively diapir-forming ice (ADH or CO2), as 

described in Schenk and Jackson (1993). The convecting ice mantle will transfer heat to this thin 

insulating layer, affecting its viscosity and possibly causing diapir formation or other 

deformation.  

A problem with simulating this domain is the small scale of the expected diapirs versus 

that of the ice shell itself. To resolve small scale temperature and material changes in the upper 

layers of the ice shell, we would require a very fine mesh that would significantly increase 

simulation time. To avoid this problem, we run two suites of simulations: one “regional” (on the 

scale of cantaloupe terrain’s global extent) and one “local” (on the scale of individual diapir 

fields).  The regional simulation then serves to set temperature boundary conditions for the local 

simulation. The outputs of interest in the regional simulations are the horizontal scale of the 

upwellings and the resulting temperature structure in the upper 50 km (equivalent to the bottom 

of the local simulation) of the ice shell. The local simulation is used to investigate the effects of 

local scale deformation or diapir formation.   
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TABLE II. MATERIAL PARAMETERS FOR ICES RELEVANT TO TRITON 

Parameter     H2O(s) NH3*H2O(s) CO2(s) Sources 
Reference 
temperature T0 (K)  273 180 176 

Nimmo and Spencer (2014); Kargel 
(1991); Yamashita and Kato (1997) 

Density at reference 
temperature r0 (kg m-3) 930 965 1560 

Barr and Pappalardo (2004); Croft et al. 
(1988); Shenck and Jackson (1993) 

Viscosity at reference 
temperature h0 (Pa s)a 1x1014 1x1016 7x109b 

Nimmo and Spencer (2014); Durham et 
al. (1998); Yamashita and Kato (1997) 

Thermal conductivity k 
(W m K-1) 3 1.2 0.3 

Klinger (1980); Desch et al. (2009); 
Ross and Kargel (1998) 

Thermal expansion 
coefficient a (K-1) 

5.5x10-

5 2.81x10-5 2x10-5 
Butkovich (1959); Fortes et al. (2003); 

Jinjin et al. (2015) 
Activation energy 
EA (kJ mol-1)  60 107.5 80 

Nimmo and Spencer (2014); Durham et 
al. (1998); Durham et al. (1998) 

Specific heat Cp    
(J kg-1 K-1)  2110 1971 1240 

Desch et al. (2009); Durham et al. 
(1998); Giaque and Egan (1937) 

       
a See equation 3.2.      
b For numerical stability purposes, the lowest effective viscosity was limited to 1x1014 Pa s. 
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3.3.1 Regional simulations  

The regional-scale simulation domain is a Cartesian box model 300 km deep by 1500 km 

wide (effective cell resolution 5 km x 20 km). Following the work of Nimmo and Spencer 

(2014), we assume that heating from obliquity tides is sufficient to maintain an ammonia-rich 

ocean at this depth. The bottom boundary is set to 240 K, the average temperature of the 

proposed ocean, and the top to Triton’s average surface temperature of 40 K.  

We assume that the majority of Triton’s crust is relatively pure water ice, and that the 

bulk of its ammonia has been either concentrated in the ocean or in layers or pockets of near-

surface ADH. This inference is supported by modeling from Hammond et al. (2019), who 

suggested that while ammonia rich ice pockets may become trapped in the upper 5-10 km of 

Triton’s crust, the majority of the ammonia will concentrate in the ocean and leave the rest of the 

crust as pure water ice. Nimmo and Spencer (2014) also suggested that Triton’s crust thickness 

will be self-regulated by concentration of ammonia as the ocean freezes or melts. Because of 

these inferences and simulation results that the temperature never materially exceeds 240 K, we 

neglect the effect of partial melting or thinning of the ice shell. 

To model the warming effect of the surface layers of ADH or CO2, we implement a thin, 

thermally insulating compositional field at the top of the domain. This field differs in material 

parameters from the mantle ice only in its thermal conductivity. We choose this simplification 

because the resolution of the regional model is not sufficient to observe the small-scale 

deformation of cantaloupe terrain; at this scale, we are only interested in its effect on the 

temperature boundary conditions.  Comparison with subsequent local simulation results show 

that deformation does not occur on a larger scale than the cell resolution of the regional 
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simulations, supporting the rationale for this simplification. Thus, the main free parameter for the 

regional simulations is the composition and thickness of this upper insulating layer.  

Several simulations were also conducted to examine the effects of a thinner ice shell (as 

thin as 100 km). The wavelength and temperature gradient of the resulting convection cells 

varied as expected by changes in the thickness of a convective layer (Solomatov, 1995). 

However, the absolute variation was relatively small compared to the uncertainties of the model. 

We conclude that the ice shell thickness is not a major contributor to the formation of cantaloupe 

terrain.  

3.3.2 Local simulations 

 We conduct the local scale simulations in a Cartesian box model domain 50 km deep by 

250 km wide (effective cell resolution 2 km x 4 km). The upper portion of the domain is 

designated a compositional field of variable thickness with the full rheologic properties of the 

material composing the dense upper layer (Table II). The bottom boundary of the domain is set 

to a range of average temperatures observed from the regional simulations. To promote the 

formation of a Rayleigh-Taylor instability, we perturb the boundary between the two materials 

by periodically varying its elevation according to a sine function. Variations in the amplitude and 

wavelength of the layer boundary function (to enhance the effect of differential loading) did not 

noticeably affect the wavelength of any resulting instabilities and was neglected in further study. 

The free parameters in each simulation are thus the upper layer composition, its thickness, and 

the basal temperature. 

Two cases are tested: ADH overlying water ice (Schenk and Jackson [1993] case 1); and 

CO2 overlying water ice (Schenk and Jackson [1993] case 2). Preliminary results show that more 

complicated stratigraphies that combined CO2 and ADH were largely unstable, as the presence of 
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even a thin layer of CO2 insulated the system sufficiently to exceed the 176 K melting point of 

ADH.   

 

3.4 Results 

3.4.1 Regional simulation results 

 We observe significant variations in the vigor and relative organization of convection 

related to the thickness and thermal conductivity of the overlying volatile ice layer. To 

summarize, the presence of even a thin insulating layer results in more organized convection 

cells, with high temperatures concentrated at the center of the cells. Layers of 10 km thickness 

and thinner show time-varying convection, with the center of individual cells migrating over ten 

million-year timescales. Thicker layers showed more pronounced and stable convection cells. 

With no insulating layers, the convection is disorganized (Fig. 3.4). Subsurface 

temperatures are consistent and relatively high (~230 K at 50 km depth). The rigid lithosphere is 

approximately 20 km thick, and high convective stresses (in the MPa range) are concentrated at 

its base. This model setup is consistent with the calculations of the brittle-ductile transition depth 

of Triton by Ruiz (2003), and also of Nimmo and Spencer’s (2014) model for mobile lid 

convection. Our model thus successfully reproduces two previous model predictions, with the 

caveat that neither of these prior works was addressing cantaloupe terrain or the diapir 

hypothesis specifically. 

Applying a 20 km layer of pure ADH ice (thermal conductivity of 1.5 W m-1 K-1; 

thickness equivalent to the Schenk and Jackson (1993) diapir hypothesis) to the crust results in a 

considerably more organized convection regime than the baseline non-insulated case (Fig. 3.5). 

Rather than a disorganized system under a rigid lid, the convection occurs in broad (~500
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Figure 3.4. ASPECT regional simulation of Triton’s crust with no insulating surface layers present. Temperature at the bottom of the 
domain is 240 K. Convection is disorganized and time-varying. The mechanical lithosphere is approximately 20 km thick.  
 

 
Figure 3.5. ASPECT regional simulation of Triton’s crust. The top 20 km of the domain is a compositional field with the thermal 
conductivity of ammonia dihydrate (NH3*H2O, abbreviated ADH). The increased insulation results in a change in the convective 
regime, leading to more organized convection and lower temperatures in the top ~100 km of the crust. 
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km width) upwellings and downwellings. The temperature observed in the cores of upwellings at 

a depth of 50 km is ~160 K. At the same depth in the downwellings, the temperature is 150 K. 

This finding implies that the addition of the insulating layer changes the convection from a 

relatively inefficient regime to a more organized regime that is more efficient at passing heat 

through the ice shell, resulting in lower absolute temperatures despite the presence of an 

insulating layer.  

 At the same depth, 20 km of CO2 ice (thermal conductivity of 0.3 W m-1 K-1) allows 

temperatures to reach a maximum of ~230 K in the cores of upwellings and a minimum of 180 K 

in downwellings (Fig. 3.6). As in the ADH case, the convection cells are well organized and 

broad (~700 km width). Note that this minimum temperature is above the eutectic melting point 

for ADH, and the maximum potentially crosses the phase space of liquid CO2, indicating that 

cryovolcanic processes may be active if the crust is this warm. 

Progressively thinner insulating layers reduce the vigor and organization of the 

convection cells. Below ~15 km thickness, the convection becomes time-varying, and the center 

of the cells begin to oscillate around a central point, varying by ~100 km every 10 Myr (Fig 3.7). 

This variation, and the corresponding spatial movement of the maximum temperature 

distribution, has important implications for our hypothesis of the formation of cantaloupe terrain.
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Figure 3.6. ASPECT regional simulation of Triton’s crust. The initial conditions are the same as for Figure 3.5 (20 km thick insulating 

layer), but the compositional field has the thermal conductivity of CO2. The greater insulating properties results in a similar change in 

convective regime but higher subsurface temperatures.  

 



 

 

39 

 
Figure 3.7. Time series of an ASPECT regional simulation with a surface layer compositional field 10 km in thickness and the thermal 

conductivity of CO2. Variations in the vigor of convection result in movement of the center of convective upwellings and 

downwellings, shifting the relative position of the maximum temperatures at depth by ~100 km over 10 Myr. 
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3.4.2 Local simulation results  

Three major regimes of deformation are observed to develop, depending on the 

relationship between the bottom temperature, the composition of the upper layer, and its 

thickness.  

In the first regime, the boundary between the upper and lower layer is stable over the age 

of the solar system. This regime occurs when the basal temperature is relatively low (< 180 K), 

the upper, thermally insulating layer is thin (< 5 km), or both. Based on the results of the regional 

simulation, no model setup involving ADH exceed basal temperatures of 180 K. Accordingly, all 

simulations involving ADH as the overlying layer fall into this regime, and so we conclude that a 

layer of pure ADH is unlikely to overturn or deform within the assumptions of our model (Fig. 

3.8). 

In the second regime, the boundary between the layers diffuses. Fine-scale downwellings 

of denser, overlying material begin to develop, but no diapiric upwellings or signs of overturn 

occur. Downwelling material concentrates into narrow (~25 km width) sinks, below which 

material is slowly mixed with the underlying layer (Fig. 3.9). Vertically oriented stresses above 

these sinks average ~1 MPa and can exceed 3-4 MPa. Once formed, a sink is stable over the age 

of the solar system. This regime occurs when the bottom temperature exceeds 180 K, and when 

the overlying layer is composed of CO2 between 5 and 15 km in thickness. 

In the third regime, the bottom portion of the overlying layer rapidly delaminates, sinks, 

and mixes with the material below on a timescale of 10-100 kyr. The top 5-10 km of the thinned 

layer remains rigid, and no stable diapirs develop. This regime develops only when bottom 

temperatures are high (> 200 K) and the overlying CO2 layer is thick (20 km or more). It is 

important to note here that, with the range of temperatures observed from the regional 
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Figure 3.8. ASPECT local scale simulation of a two-layer density model. The top, blue layer is 20 km of ADH; the lower yellow layer 
is water ice. The bottom temperature of the simulation is 180 K, the maximum temperature observed at this depth and surface 
composition in the regional simulations. Despite a small amount of diffusion, the simulation’s initial conditions remain largely static 
over the age of the solar system. 
 

 
Figure 3.9. ASPECT local scale simulation of a two-layer density model, where the upper layer is 10 km of CO2. The bottom 
temperature is 210 K. Two downwellings of CO2 have developed, and the initial boundary conditions have diffused. There is, 
however, no upward motion of water ice that would result in diapir formation. This configuration is stable over the age of the solar 
system.



 

 

42 

simulations, 20 km of CO2 will always exhibit this delamination behavior (Fig. 3.10). This 

finding indicates that the 20 km layer thickness required for a Rayleigh-Taylor instability to 

reproduce the observed feature wavelength is not compatible with the stable formation of a 

diapir, as the layer will collapse and thin on a very short timescale compared to that of the 

hypothesized diapir formation. 

Examining the temperature and related viscosity structure of each of these regimes shows 

that their behavior is controlled by large viscosity contrasts along the layer boundaries. Fig. 3.11 

is a representative example. The geothermal gradient below ~15 km is approximately 5 K/km. 

The ice below this depth is low viscosity and deformable (viscosities between 1017 and 1020 Pa 

s). Water ice along the layer boundary, however, quickly increases in viscosity as temperatures 

drop below 160 K, up to 1024 Pa s - effectively rendering it undeformable. The CO2 ice at the 

same depth is deformable, but the increasing slope of the geothermal gradient renders the top 5 

km as rigid as the water ice.  

 

3.5 Discussion 

None of the model setups successfully recreate diapiric upwellings on the scale of 

cantaloupe terrain as predicted by Schenk and Jackson (1993). Despite the relatively high 

temperatures produced by mantle convection and thermally insulating upper layers, Triton’s 

extremely cold surface temperature (~40 K) creates a strong geothermal gradient. The effective 

viscosities within the upper 20 km of lithosphere varied by as many as 5 orders of magnitude due 

to these thermal effects. In such an environment, the isoviscous flow required by a true Rayleigh-

Taylor instability cannot function because upward-flowing material becomes too rigid to move. 

The compositional differences in rheology effectively prevent the two layers from deforming in a 
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Figure 3.10. Time series of an ASPECT local scale simulation with a two-layer density model. The original top layer is 20 km of CO2; 

the bottom temperature is 210 K, the minimum temperature observed at this depth and surface composition in the regional 

simulations. Within approximately 1 Myr, the surface layer overturns, mixes with the water ice below, and thins. Water ice does not 

rise buoyantly beyond a depth of 10 km.  
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Figure 3.11. Viscosity output for an ASPECT local scale simulation with 10 km of CO2 and a bottom temperature of 210 K. The 

periodic low-viscosity zones in the upper 10 km of the domain indicate the bottom of the CO2 layer. The downwelling “sink” apparent 

in the density structure of Figure 12 appears here as the somewhat angular low-viscosity zone in the middle of the domain. Water ice 

above a depth of 15 km is too viscous to deform at the same rate as the very soft CO2 immediately above it.
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co-equal fashion; if the stronger layer is weak enough to deform, the weaker layer is so weak as 

to collapse and mix with the material below.  

We note that although no diapirs breached the surface, the formation of incipient 

downwellings on the material boundaries is associated with concentrated stresses on the surface 

of up to ~3-4 MPa (Fig. 3.12). This is well in excess of the yield strength of these ices, implying 

that even incomplete overturn may substantially fracture the surface at periodic intervals. These 

fracture zones may subsequently be prone to increased sublimation of volatile ices (CH4, CO, 

and N2) within the substrate, as suggested by Croft et al. (1995) The depressions and ridges of 

the cavi thus may have formed from advanced sublimation and associated scarp retreat.  

 

 

 
Figure 3.12: Schematic diagram of the stress field overlying the downwelling “sink” from 
Figures 3.9 and 3.11. Shear stresses up to 4 MPa are concentrated in the mechanically strong 
portion of the upper CO2 layer. The lateral area of the stress field (~23 km) is comparable to that 
of individual cavi (25-35 km).  
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The most favorable case for this formation mechanism is a ~10 km-thick layer of CO2, which 

provides the best fit of subsurface temperatures (200-220 K at 50 km depth over a horizontal 

scale of ~300 km) and rapid localization of stress without total delamination of the layer. A layer 

of this thickness would also result in time-varying convection deeper in the ice shell, allowing 

the center of the convection cells to migrate over time and potentially resurface a larger surface 

area.  

We summarize the proposed formation mechanism as follows: 

• Solid CO2 collects on Triton’s surface, either condensing from the atmosphere or 

from endogenic production. This forms a deposit that is likely intermingled with volatiles 

(CH4, CO, and N2) in the form of “ground ice” (Croft, 1995).  

• The insulating nature of the ice results in a change in the convection regime 

deeper in the mantle, centering the core of a mantle convection cell under the deposit. 

High mantle temperatures become spatially focused beneath the deposit. 

• Once the deposit is ~10 km in thickness, temperatures at the bottom of the layer 

rise sufficiently to the basal viscosity below a critical point. A downwelling sink of CO2 

begins to seep into the deeper mantle, where it mixes with convecting water ice (Fig. 

3.9). 

• Stress concentration above the downwelling sink fractures the rigid upper layers 

of the deposit, exposing the intermingled volatile “ground ices” within the upper 1 km to 

sublimation. Sublimation of these ices results in slope failure and scarp retreat of the CO2 

deposit, forming cavi. 

• The core of the convection cell shifts away due to time-varying convection, and 

subsurface temperatures drop below the critical point for the downwelling sink to 
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operate. Cavi formation in the original location ceases, and new cavi form above the 

recentered core of the convection cell. 

This formation mechanism may provide an explanation for the youthful appearance of 

cantaloupe terrain. The formation of the downwelling “sinks” and associated stress that may lead 

to cavi formation is dependent on the focusing of high temperatures by mantle plumes. These 

plumes, in turn, become more organized due to the presence of the CO2. Both processes are 

dependent on the thickness of the CO2 layer, so the onset of cantaloupe terrain formation is 

linked to the time it takes for the requisite amount of CO2 to deposit. 

The existence of a 5-10 km thick layer of crystalline CO2 on Triton’s surface would 

clearly make it a unique body in the solar system and have major implications for its geology. 

While solid CO2 deposits likely exist at Mars’s polar caps and on Uranus’s moon Ariel, these are 

limited in areal extent and only stable seasonally or within cold traps (Kelly et al., 2006; Sori et 

al., 2017). Pluto, the only other well studied solar system body on which solid CO2 is stable, does 

not have significant deposits, suggesting that its significant (Quirico et al., 1999) presence on 

Triton is unique to the system.  

Recent work by Poppe et al. (2019) suggested that Neptune’s gravitational influence may 

increase the interplanetary dust particle flux into Triton’s atmosphere to as much as two orders of 

magnitude over Pluto’s. The oxygen-bearing species in this dust (mostly H2O) would ablate into 

the atmosphere and contribute to forming oxidized carbon species, which could hypothetically 

precipitate to form stable CO2 deposits. Estimating the time scales for this process, and whether 

they are compatible with these models, is a clear next step for this research. We intend to utilize 

the atmospheric mixing models of Wong et al. (2017), adapted to Triton, as a first step to 

estimate whether this is a realistic deposition mechanism. 
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While the local simulations showed high stress above the downwelling sinks, ASPECT is 

fundamentally a convection code and is unable to model the viscoelastic or brittle deformation 

that would result from this stress. Other finite element codes may be required to simulate 

properly the effects of this stress, and whether the resulting structures (possibly after 

modification by sublimation) would be consistent with the observed features of cantaloupe 

terrain.  

A consequence of the observation that downwelling sinks (and thus cavi) only form over 

the center of convection cells is that the age of the cavi is linked to the movement of the 

convection cells. As a cell moves, it should leave a track of older cavi in its wake, similar to the 

volcanic centers left by the movement of tectonic plates over a mantle hot spot on Earth. This 

age relation is not immediately obvious from the available data. Two hypotheses may explain 

this discrepancy. First, the only high-resolution images from Voyager 2 that captured cantaloupe 

terrain show an areal extent of about 240,000 km2 (Schenk and Jackson, 1993). This is 

approximately the area covered by the center of a mantle plume. The remainder of cantaloupe 

terrain is covered by lower resolution images in which the degradation state of individual cavi is 

difficult to assess. Without novel image processing or new data, we cannot assess the age 

relations of the cavi by this method. 

It is also possible that convection plumes may be interfering with one another, obscuring 

the track of individual plumes. The simulations here were conducted in a 2-dimensional space 

which did not account for this. In a 3-dimensional space, it is possible that time-varying 

convection plumes could interfere with one another and change the areal extent of the proposed 

resurfacing mechanism. ASPECT is a dimensionally agnostic code, making 3-dimensional 
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simulations a natural next step; however, the additional time and computing resources required 

were not available for this portion of the project. 

 

3.6 Conclusions 

Numerical simulations of the diapir model of cantaloupe terrain formation do not 

successfully recreate overturn as predicted by Schenk and Jackson (1993). A high geothermal 

gradient in the near-surface, differing material rheologies, and the boundary conditions imposed 

by convection within the ice shell result in large viscosity contrasts that prevent diapir formation. 

The presence of a dense, rheologically weak, and thermally insulating ice on the surface may, 

however, promote localized fracture of the surface. Extensive sublimation of surface materials 

resulting from this fracture may play a role in resurfacing cantaloupe terrain. Estimating the time 

scales and required extent for such a process is the next phase of this work. 
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4. GFGA: GRAVITY FROM GENETIC ALGORITHMS, A FORWARD 

MODELING TOOL FOR PLANETARY SCIENCE 

 

4.1 Abstract 

 I present Gravity from Genetic Algorithms (GFGA), a C++ code designed to forward 

model the gravitational potential field and related spherical harmonics of triaxial planetary 

bodies. The code uses genetic algorithms to sort efficiently through the large parameter space 

inherent to forward modeling, matching the solution to a set of user-defined constraints that can 

include either model data such as spherical harmonic coefficients of the potential or observations 

such as bulk mass, shape, or spacecraft acceleration data. The purpose of this code is to model 

the density structure of planetary interiors from their gravity while bypassing the assumptions 

required for more common inverse modeling techniques. The code is currently in a preliminary 

state, with additional bug fixes and features required to be usable by the scientific community. 

Two test cases for Europa and Ceres are presented that demonstrate the core functionality of the 

code. 

 

4.2 Introduction 

Measuring the gravitational potential field outside of a planetary body is a well-

understood method of probing its internal structure. Density variations within a body affect the 

gravitational acceleration of nearby objects, including spacecraft. This can be measured as 

minute changes in the Doppler shift of radio communications with the spacecraft, resulting in a 

model of a body’s gravitational potential field at a series of points above the body’s surface. 

Expanding these gravity models into spherical harmonic coefficients allows us to infer the 
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internal density distribution of the body, and thus constrain its orbital and geologic history (e.g., 

Turcotte and Schubert, 2014). 

The term that is most often dominant in the spherical harmonic expansion is known as the 

J2 term, which is a zonal (latitudinal) term that describes a body’s gravitational potential due to 

its oblate shape. For a tidally deformed body, determining the internal distribution of mass 

additionally requires the C22 coefficient. Ideally, these coefficients should be uniquely 

determined. This task requires a model of the variation in a body’s gravitational potential with 

both latitude and longitude, which in turn can only be constructed from data collected when the 

observing spacecraft is in a polar orbit.  Combining these data with other constraints such as the 

bulk mass, density, triaxial shape, and rotation of the object allows one to construct a model of 

the body’s internal density structure by a process of inverse modeling (Wieczorek, 2007). 

However, in situations where a polar orbit is not possible due to mission design or 

architecture, it is still possible to separate J2 and C22 (and thus analyze the density structure) by 

assuming that the internal shape of the body is in hydrostatic equilibrium. This assumption 

connects J2 and C22 by: 

!"
#""

= 	 &'
(

    (4.1) 

(Anderson et al., 1998). This assumption allows one to inverse model a density structure, but 

only by constraining the parameters of the model to the hydrostatic assumption. Any spherical 

harmonic solution for a particular potential field is not unique, so if a non-hydrostatic component 

is present or if the density structure is unusual, then the inferred interior structure may be 

inaccurate.  

An alternative approach would be to forward model the density structure. This procedure 

would generate a series of notional density structures, determine the gravitational potential and 
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spherical harmonic coefficients that each would produce, and find the model that best matches 

the observations (line-of-sight accelerations). This allows unique determination of the J2 and C22 

coefficients while bypassing the hydrostatic assumption. However, forward modeling presents a 

significant challenge due to the non-unique nature of gravity analysis. Many different interior 

structures may be reasonable fits for the data. There is thus demand for a tool that can efficiently 

sort through a large parameter space.  

One method of exploring a large parameter space is to approach it as an optimization 

problem. Optimization problems use iterative evaluations of a function, starting from an initial 

guess, in an attempt to minimize or maximize some value (usually the error) of the function 

relative to a particular set of criteria. The optimization algorithm proceeds stepwise, with the set 

of parameters that best approximate the search criteria forming the initial guess of the next step. 

Many different optimization schema are available, differing in their computational complexity, 

dimensionality, and response to local vs. global maxima/minima in the function. The choice of 

which schema to use is based on the relative complexity of the problem, as well as the 

probability of local minima in the error function (Gershenfeld, 1999). 

4.2.1 Scope of Project 

I have developed an open-source C++ code named GFGA (Gravity from Genetic 

Algorithms) that can forward model the internal density distribution of a planetary body. GFGA 

takes as its input a set of shape and gravity observations of the body, as well as a set of user-

defined physical parameters. It then generates a population of models with arbitrary density 

structures and calculates their resulting gravitational potential field and spherical harmonic 

coefficients. It then utilizes a genetic algorithm (henceforth, GA) to optimize the solution to find 

the bodies within the population that best match the available observations and defined 
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parameters. The final result is a set of hypothetical interior structures and related spherical 

harmonic coefficients that could, in principle, bypass an assumption of a hydrostatic internal 

structure. These results can be used to make predictions for the internal structure of planetary 

bodies where we lack complete observations of their gravitational potential, as described below 

in “Applications.”  

GFGA is currently in a preliminary state and functions as a proof of concept. It can currently 

reproduce the three-layer structure of Europa described in Anderson et al. (1998) based on the 

modeled degree-2 coefficients. It also efficiently generates a plausible internal structure and bulk 

mass for the dwarf planet Ceres based on calculations of its J2 spherical harmonic coefficient 

produced from the Dawn mission (Park et al., 2016). Both of these models are described in 

Preliminary Results. These proof-of-concept case studies utilize spherical harmonic models of 

Anderson et al. (1998) and Park et al. (2016) to constrain the GA; thus, they implicitly accept the 

assumptions made by these inverse modeling works. They are presented as preliminary results to 

showcase the potential of forward modeling by GAs. Future versions of this code will accept 

direct line-of-sight acceleration data, allowing it to compare forward-modeled potential fields 

directly to data without a priori models of the potential. 

 

4.3 Methodology 

The current version of GFGA is comprised of three major modules: a gravity potential 

module, which constructs notional planetary structures and calculates their gravity parameters; 

the evaluation module, which define the parameters of a successful gravity model; and the GA, 

which instantiates a population of gravity models, compares each to the results of the evaluation 
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function, and then evolves a new population based on the most fit members of the previous 

generation. The functioning of each module is described in detail below. 

4.3.1 Gravity potential module 

 The gravity potential module is comprised of three sub-modules that run in sequence: a 

plate model that constructs the notional planetary body, a gravity potential module that calculates 

the acceleration felt at a series of nodes around that body, and a harmonic function that integrates 

the potential and expresses the result in terms of its degree-2 spherical harmonic coefficients.  

The plate model module is based off the formulation of Kattoum and Dombard (2009). 

When calculating the gravity potential outside of a mostly spherical body with a radially varying 

density structure - a good approximation of a planetary body - the classical formulation is to treat 

each layer of differing density as a hollow shell of some thickness. While logical, these 

computations are difficult to code numerically. Kattoum and Dombard (2009) varied the method 

for a uniform body of constant density used by Cheng et al. (2002) by treating the body as a 

series of overlapping triaxial ellipsoids, each with radii that extend to the center of the body. The 

effective density of each successively inward body is the density contrast between the actual 

physical layers. While unphysical in real terms (multiple bodies occupy the same space), this 

approximation can be shown to produce the same result as the classical formulation. For a 

hypothetical three-layer body, the potential U at a vector position x outside the body can be 

given by: 
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where V1, V2, and V3 are the volumes of a series of 3 sequentially enclosed bodies, and r1, r2, 

and r3 represent the density contrast between each body and the preceding body that encloses it. 
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Note that in the case of V1, this is the contrast between it and the zero-density space outside of 

the body. 

The terms in this equation depend on the density contrast between each successively 

inward body, not the physical density of the material. I can thus use the triaxial ellipsoidal shape 

of each overlapping body, and its density contrast with the overlying layer, to calculate the 

gravitational potential around the entire body. The number of interior bodies can be any arbitrary 

number, allowing generation of a density gradient at various resolutions (albeit at an increase in 

computational resources required).  

Each ellipsoid is meshed according to a longitude/latitude grid of variable resolution 

(between 1 and 10 degrees depending on the desired balance of accuracy and solution time). This 

mesh is then tessellated into a series of triangular plates.  Following Cheng et al. (2002), gravity 

elements are calculated by treating these plates as prisms that extend to the center of the body 

and integrating along a vector running through the plate’s centroid to a point on the reference 

sphere outside the body. If a center of mass or center of figure offset is present in the body, it is 

applied as an offset to these vectors relative to the reference sphere. The result is a field 

representing the gravitational potential at a series of points on the reference sphere. Each point 

accounts for the gravitational pull on it from every plate-prism within the body.  

Mesh points within the polar latitudes (> 80°)  are excluded from the gravity integration 

because the small size of individual plates at these latitudes creates degeneracies in the solution 

over many iterations of the plate model. This is an acceptable approximation as the contribution 

of these areas to the total potential is small compared to the rest of the body. See the 

Benchmarking section below for details. 
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The module then calculates the degree-2 spherical harmonic coefficients based on the 

generated potential field. The procedure for this portion casts the problem according to 

Heiskanen and Moritz (1967). The general expression for a spherical harmonic function is: 

9(:, <) = 	∑ ∑ (>?@A?@(cos :) cosE< +	G?@A?@(cos :) sinE<)?
@J'

K
?J' ,  (4.3) 

where q is colatitude, j is longitude, l and m are the degree and order of the spherical harmonic 

function (indicating the wavelength and orientation on the sphere, respectively), Plm is the 

respective associated Legendre polynomial as a function of cos q, and Clm and Slm are the 

respective spherical harmonic coefficients. Because gravitational potential is a function that 

varies by colatitude and longitude, I can represent it by a combination of the Clm and Slm 

coefficients; they are effectively an expression of the density distribution within a body. 

In order to derive the Clm and Slm coefficients from my simulated plate model, I must 

fully normalize the spherical harmonics such that the integrals in their orthogonality relationships 

equal the area of a unit sphere. If I normalize them like so: 

LM?' = 	√2P + 1	L?R       (4.4) 

LM?@ = 	S2(2P + 1) (?7@)!(?U@)!
	L?@ ,     (4.5) 

where  

L?@ = 	A?@	(cos :) cosE<  or  A?@	(cos :) sinE<,   (4.6) 

then I can represent the orthogonality relationship as 

∬(LM?@)WXY = 4[,       (4.7) 

where integration is around the entire body and 

XY = sin :	X:	X<.       (4.8) 
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By setting F(q, j) equal to my calculated gravitational potential, I can then solve for the fully 

normalized coefficients like so: 

>, GMMMMM?@ = 	 &
\]∬9(:, <)	LM?@(:, <)	XY	.    (4.9) 

When dealing with rotationally flattened bodies such as planets and larger moons, the degree-2 

coefficients dominate the description of the mass and density distribution. Because I am working 

with triaxial ellipsoids, I only calculate coefficients up to degree-2, although it would be trivial to 

calculate higher degrees. 

 4.3.2 Evaluation function module  

The purpose of the evaluation function is to assign value to individual gravity models 

based on the constraints of their fixed and derived parameters. The basic standard for a model’s 

value is how close it approaches the observable parameters of the real body. For the full version 

of the code, this would be line-of-sight spacecraft accelerations, along with bulk mass, density, 

and shape. For this preliminary version of the code, the most important constraint is the spherical 

harmonic coefficients derived from previous work.  

The default evaluation function prevents the gravity models from assuming unphysical or 

degenerate configurations. The user can additionally set the model to favor hypothetical 

configurations, such as possible density inversions or layer configurations. Output from the 

evaluation function is in the form of a numerical value that is passed to the GA for ranking 

population members. 

There are three basic types of evaluation defined within the module: Boolean functions 

that add value if true and do not if false; “strict Boolean” functions that add value if true and 
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reset the value to zero if false (effectively removing the model from the viable population); and 

error functions that add a value defined by the difference between the calculated and true values. 

 The ellipsoidal parameter functions are all examples of “strict Boolean” evaluation 

functions. They ensure that each ellipsoid is: 

• Internal and wholly contained within the next largest ellipsoid 

• The major axis is larger than the minor axis 

• The minor axis is not less than 90% of the major axis. 

These constraints allow the latitude/longitude mesh to remain consistent and for the 

Kattoum and Dombard density contrast formulation to remain coherent. If an ellipsoid is larger 

than its enclosing body, the formulation breaks down, so no model in which this occurs is 

allowed to have a value greater than 0. 

Error function type evaluations are used for observable parameters for the body of 

interest, such as the degree-2 spherical harmonic coefficients and its bulk mass. These error 

functions take the form: 

^_P`a = 1 − |bc`a − d_Pd`P_baX|.     (4.10) 

This result is added to the total value of the model being evaluated. The error function type 

allows a high degree of discrimination between the value of individual genomes, as a viable 

solution that is closer to the true value will always be higher valued than solutions that meet the 

hypothesized criteria but fail to approach (for example) the true value of the mass of the body 

(Gershenfeld, 1999). 

The remainder of the evaluation functions are user-defined to help limit the solutions to 

those that can physically represent the body of interest. Changing the evaluation functions and 

the constraints that generate the genome are the two methods by which a user can test different 
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hypotheses of internal structure. For example, a user could define a Boolean evaluation function 

that adds value to solutions that have increasing density with depth below a defined point. If line-

of-sight gravity observations are available, an evaluation function could compare the predicted 

accelerations at each point to the observed potential. See “Applications,” below, for examples of 

some of the evaluations defined in my studies of Europa and Ceres. 

Definition of the evaluation function is currently only possible by modifying the code 

itself. Allowing the user to define or add custom evaluation functions is an important part of 

enabling hypothesis testing and is a high priority for further development of GFGA, as discussed 

below in “Future Directions.” 

4.3.3 Genetic algorithm module 

The purpose of the GA is to generate and evolve a population of gravity model objects. 

The members of the population with the highest score from the evaluation function are allowed 

to continue to the next generation, where portions of their parameter set (henceforth “genome”) 

are crossed, mutated, and added to a set of newly generated models. The fittest genomes of this 

new generation are then evaluated, and the process continues until the end conditions are 

satisfied (usually a certain number of generations; Wall, 1999).  

Each genome is a set of parameters unique to that particular gravity model. Each ellipsoid 

within a body is defined by its major, intermediate, and minor axis, as well as its density 

(contrast). These four parameters are repeated for each overlapping ellipsoid within the body, the 

full set of which represents its genome. Each genome within the population has a randomly 

determined value for these parameters, within limits set by the evaluation function and by its 

inheritance from previous generations in the run. The derived parameters of interest (e.g., 

spherical harmonic coefficients, bulk mass and density) are calculated for each individual body 
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and can affect its fitness, but only the dimensions and layer densities are passed on or altered 

directly by the GA. 

When the GA generates a new population, the values of each genome are selected 

randomly from a set of values within defined ranges. For each planetary body under study, it is 

necessary to first define the number of ellipsoids (effectively, the number of structural “layers” 

within the body) and the range of radii and density that each can select from. In the current 

version, these values are set within the code itself; future versions will be selectable as input 

parameters. 

Because the user must define a conceptual model for the planetary body, the resulting 

model does not completely bypass a priori assumptions. Such a priori assumptions are also part 

of the standard inverse modeling approach. However, preliminary tests have indicated that it is 

not feasible to attempt to generate a realistic solution in a tractable amount of time without 

putting limits on the genome parameters themselves. If a population entirely composed of 

unphysical genomes is generated, the evaluation function would effectively be choosing 

randomly, and errors would propagate without any improvement in the solution over many 

generations. Model selection thus plays an important role in evaluating the results of GFGA; the 

user must design a set of parameters that encompasses the physically possible structures of the 

planetary body while also confining the results so that a solution can be generated in a reasonable 

amount of simulation time. I discuss my choices for my Europa and Ceres models in 

“Preliminary Results” below. 

The software for this work utilizes the GAlib genetic algorithm package (Wall, 1999). 

GAlib is a freely available source code that provides the C++ framework for the construction and 

evaluation of genetic algorithm codes. GAlib supports overlapping (steady-state) and non-
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overlapping (simple) populations, multiple replacement or selection methods, and fully 

customizable initialization, mutation, and crossover functions, as well as evaluation functions 

with either population or individual-based evaluation. It forms the basis for both the GA and the 

evaluation function modules within GFGA. 

4.3.4 Benchmarking 

 To verify the core functionality of the gravity potential and spherical harmonic modules, 

I implement a series of benchmark functions that may be activated to test model output.  

The plate model test generates a unit sphere and sets the notional gravity potential to 1. 

The resulting spherical harmonic functions, integrated over the unit sphere, should be equal to 4p 

if the plate model is correctly meshing. I find that the accuracy of the resulting solution is 

dependent on the latitude/longitude mesh resolution. A doubling of resolution from 10x10 

degrees to 5x5 degrees resulted in a 10% increase in solution accuracy. I also find that including 

the polar node points resulted in a decrease in solution accuracy due to degenerate rounding 

errors due to small plate area. This observation led to my decision to remove the polar node 

points from the full gravity integration. 

The second test investigates the orthogonality relationships of the spherical harmonics 

(Eq. 4.7). I square the normalized spherical harmonics and integrate around the body based on 

the area of the unit sphere, ideally equaling 4p. I observe a similar mesh resolution and solution 

accuracy dependence as in the first test function. 

The third test explores the spherical harmonic module’s ability to calculate correctly a 

potential field. This test function takes as its input a synthetic potential field. I define a specific 

spherical harmonic and invert for the resulting potential field. I then input a file containing the 

data points from this field, replacing the regular output of the gravity potential module. The 
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spherical harmonic module then integrates this field and outputs the same harmonic that I 

originally specified. 

The fourth test looks at the gravity potential module by setting a specific density for the 

body. The resulting potential field is then output, along with the coordinates of a series of 

arbitrary plate centroids within the body. From these data, it is possible to calculate the potential 

of that plate as a point mass and compare the result to that of the calculated potential field. This 

test successfully reproduced the synthetic field input and the associated calculated spherical 

harmonic coefficient. However, this test was designed to test a single-layer, constant density 

body. As of the writing, a bug has been discovered related to multi-layer bodies. The significance 

of this bug is discussed in detail in “Preliminary Results,” below. 

 

4.4 Applications 

 The primary purpose of GFGA is to forward model the internal density structure of a 

planetary body based on its degree-2 shape and gravity. While currently comparing to spherical 

harmonic coefficients of the potential model, the approach can be extended to compare directly 

to the line-of-sight acceleration observations. It can also be utilized to determine if a particular 

unusual structure such as a density inversion may be present, or to test other hypotheses about its 

internal degree-2 shape or density structure.  

 For the first case, the hydrostatic assumption is typically made when gravity observations 

are unable to separate uniquely the J2 (zonal) and C22 components of its spherical harmonic 

coefficients, which are required for the inverse modeling approach. This is often the case when a 

mission is composed of flyby orbits and where a polar orbit of the body is unachievable due to 

mission architecture. Notably, I too use these gravity coefficients separated by the hydrostatic 
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assumption here, but future versions of the code can bypass this assumption by comparing the 

predicted gravity models directly to the line-of-sight acceleration observations. 

The hydrostatic assumption is required to inverse model the structure of the Galilean 

satellites of Jupiter, due to the high gravity and challenging radiation environment which has 

thus far precluded a polar orbit mission architecture (Buffington, 2014). The most interesting of 

these satellites from a biological perspective is Europa, which has both an ocean underneath its 

ice shell and a source of tidal heating, thus making it a prime target for astrobiological 

exploration.   

 4.4.1 Europa: context and previous work  

The presence of a subsurface liquid ocean on Europa is attested to by several lines of 

evidence, including surface features, its bulk density, geochemical modeling, the presence of an 

induced magnetic field, and its tidal response (Kivelson et al., 2000; Pappalardo et al., 1999; 

Head et al., 1999; Kargel et al., 2000; Moore and Schubert, 2000). However, the relative 

thickness of the ice crust to the ocean depth, and the size and composition of Europa’s core, can 

only be weakly constrained by these observations.  

 Anderson et al. (1998) analyzed Doppler radar measurements from four Galileo flybys of 

Europa to observe its degree-2 gravitational field, again using the hydrostatic assumption to 

separate the coefficients. From these coefficients, they estimated that it had a moment of inertia 

of 0.346 ± 0.005, which combined with its average density and the assumption that its degree 2 

gravitational field was dominated by the rotational and tidal forces of its orbit around Jupiter, 

allowed them to infer its internal density structure. They concluded that Europa was centrally 

condensed and composed of a shell of ice and/or liquid water 100-200 km thick, a silicate 

mantle, and a metallic core. Their models were not able to distinguish between solid and liquid 
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water on the basis of density, and the core radius and density was strongly dependent on the 

composition of the silicate mantle.  

 In the years since the Galileo encounter, Europa has only increased as a target of 

scientific interest. The growth in importance of astrobiological research and planetary 

habitability have led to studies of the interactions between its subsurface ocean, its surface 

tectonics, its silicate mantle (e.g., Zolotov and Shock, 2003, 2004; Vance et al. 2016; Hand et al., 

2007) that may lead to habitable conditions within its ocean.  

Key among the remaining questions regarding Europa is the thickness of its ice shell. 

Transfer of materials between the surface of the ice shell (where surface materials are oxidized 

by Jupiter’s radiation) and its interior (where the processed material could support biochemistry) 

is a critical parameter in its habitability. If the ice shell is thick, the feasibility of this transfer 

supporting life may be low. 

NASA’s planned Europa Clipper mission will dramatically improve the quality of data 

available to us, including multiple flybys for gravitational observations. However, its planned 

elliptical encounter profile (Buffington, 2014) will still force analyses to rely on the hydrostatic 

assumption to calculate Europa’s degree-2 gravity coefficients. In addition, the recent descoping 

of the planned ICEMAG (Interior Characterization of Europa Using Magnetometry) instrument 

jeopardizes the mission’s ability to characterize Europa’s internal ocean and thus the thickness of 

the ice shell (Pappalardo, 2019). 

To provide an alternate method of addressing Europa’s internal density structure and ice 

shell thickness, I create a set of model constraints for GFGA and allow it to evolve towards a 

solution. As a preliminary effort, I attempt to recreate the three-layer model of Anderson et al. 

(1998), to see if my code is able to recreate their internal structure. My approach can also be 
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extended with the possibility of discriminating between solid and liquid water (and thus ice shell 

thickness), exploring the existence of a silicate crust on top of a silicate mantle, or the 

relationship between the core and mantle compositions; however, for this initial work, I focus on 

simply recreating the previous model.  

The constraints applied were the J2 and C22 coefficients modeled by Anderson et al. 

(1998), Europa’s bulk density and mass, and the radius of its major and minor axes (Nimmo et 

al., 2007). The outer shell and first internal ellipsoid are allowed to have a density between 900-

1100 kg m-3, representing various compositions of water ice with a maximum depth of 300 km. 

The next ellipsoid had a density equivalent to silicate rock (2000-3800 kg m-3) and could extend 

from 100 km to 1000 km in depth. The third layer varied between dense silicate and a pure iron 

core (3800-8000 kg m-3) and could extend as far out as 1000 km (.65 REuropa, the hypothetical 

maximum suggested by Anderson et al. [1998]). The simulation is allowed to run for 1000 

generations, with a population of 500 individuals within each generation, for a total of 5 x 105 

model evaluations.    

 4.4.2 Ceres: context and previous work 

The dwarf planet Ceres is the largest body in the asteroid belt. Prior to its exploration via 

NASA’s Dawn spacecraft, it was known that Ceres was a low-density icy and rocky body that 

was likely differentiated, with the ice covered by a layer of likely hydrated silicates (McCord and 

Sotin, 2005), but the relative proportion of ice to silicates was not well constrained. The 

relatively high average surface temperature of Ceres (150-160 K at the equator) leaves pure 

water ice very soft and not capable of supporting topography. This factor led Bland (2013) to 

predict that if Ceres’ crust was primarily ice, it would show evidence of extensive viscous crater 

relaxation. This relaxation would be most effective at the equator, where craters less than 4 km in 
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diameter could be totally erased. Mid-latitude craters older than 10 Myr or larger than ~16 km in 

diameter would also be almost totally relaxed (Bland, 2013).  

 By contrast, Ceres’ surface appears heavily cratered. Several large (> 80 km diameter) 

craters do not appear to be significantly relaxed. In addition, no latitudinal dependence on 

relaxation was observed; craters in the polar regions had the same relative amount of relaxation 

as equatorial craters. Bland et al. (2016) estimated that for Ceres to maintain its observed crater 

topography, the upper ~10 km of the surface would need to be composed of ~60% non-ice 

material (silicate rock, clays, or carbonates). Conversely, the global-scale shape of Ceres 

approaches hydrostatic equilibrium, suggesting a decrease of viscosity with depth that preserves 

the crater topography but permits the long-wavelength shape to relax (Fu et al., 2017). 

 However, there is abundant evidence that ice is prevalent in Ceres’ near subsurface. 

Bland et al. (2016) did note the appearance of several anomalously relaxed craters that they 

related to lateral variations in subsurface ice content. Schmidt et al. (2017) noted that the craters 

show similar scaling relationships to those on icy instead of terrestrial planets, and that there was 

abundant spectral evidence for hydrated phases and morphological evidence of ice-rich surface 

flows. They estimated that between 10-50% of Ceres’ surface material was ice by volume, and 

that the distribution of surface flows followed a latitudinal pattern consistent with greater ice 

volumes at high latitudes.  

 The Dawn gravity investigation provided high resolution observations of Ceres’ 

gravitational field, up to spherical harmonic degree 10. Park et al. (2016) used these data to 

construct a two-layer model of Ceres’ interior consisting of a chondritic core density (2500-2900 

kg m-3) and an outer shell 70-190 km thick composed of mixed volatiles, silicates, and salts 

(1680-1950 kg m-3).  
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 A major outstanding question for understanding Ceres’ evolution is how water ice can 

remain in its upper layers. Detection of exposed water ice in Occator crater (Buczkowski et al., 

2016), along with the evidence for ice rich flows from Schmidt et al. (2017), shows that ice is 

certainly present in Ceres’ subsurface, but ice is thermodynamically unstable on Ceres’ surface. 

Sublimation of surface ice would result in a decrease in relative ice to silicate content within the 

outer crust. In this model, the ice-rich or putative cryovolcanic landforms identified in Schmidt et 

al. (2017) and Buczkowski et al. (2016) would be localized sources of water ice recharge to the 

surface, not a global crustal component. Ceres’ outer crust would then be a higher density than 

the underlying water-rich layers, providing the crustal strength to preserve the observed crater 

topography of Bland et al. (2016) but allowing the decrease in viscosity with depth (Fu et al., 

2017). 

 Because of the high quality of Ceres’ gravity data and the unresolved scientific questions 

of its density structure, I consider it an excellent benchmark case for testing my code. I construct 

a notional test model for Ceres using the two-layer model of Park et al. (2016). The model 

constraints are Ceres’ ellipsoidal shape (major and minor axes), its bulk density, and its degree-2 

gravity coefficients as measured by Dawn (Park et al., 2018). I allow the internal layers to vary 

between pure ice and pure silicate (900-3000 kg m-3) above 200 km depth, and between mixed 

silicate and chondritic density (up to 4000 kg m-3) deeper than that. To test the hypothesis that 

the upper layers of Ceres are dehydrated and thus denser than the ice-rich mantle, I have made an 

additional model run in an additional layer was added. The evaluation function for this model run 

is set to value the outer shell as having a higher density than the layer immediately below it. 
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4.5 Preliminary results 

 Initial testing of my models for Europa and Ceres show results that are broadly consistent 

with the results of Anderson et al. (1998) and Park et al. (2016), respectively. This demonstrates 

that the core functionality of GFGA is sound: given the same inputs and sets of assumptions as 

two previously published inverse modeling studies, it is able to reproduce results that are within 

the same parameter space using a forward modeling technique. Some persistent glitches prevent 

me from lending a broad interpretation to these results, so the following is not intended to 

advance any particular hypothesis about the internal state of Europa or Ceres. Rather, they are 

presented as evidence that GFGA can be used to replicate more common inverse modeling 

results, while also maintaining the future capability of bypassing the assumption of hydrostatic 

equilibrium that constrains inverse modeling of Europa. 

 4.5.1 Europa: results 

 The GFGA modeled output for Europa, compared to the previously observed or modeled 

constraints, is presented in Table III. The broad structure of the body is an ice shell with a 

thickness of ~30 km overlying a liquid water layer that extends to a depth of ~300 km. Below 

this is a layer of silicates ~250 km thick, followed by a large and dense iron core of REuropa = 

0.63. 

 This structure is within the parameter space described by Anderson et al. (1998). The 

authors considered it an outlier example, more consistent with their most extreme modeled value 

for C22. They note that such a large iron core would mean that Europa’s formation was more 

relatively enriched in iron than Io’s, which would be counterintuitive to models of Galilean 

moon formation. However, given the paucity of data, it is a plausible alternative.  
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TABLE III: EUROPA RESULTS 
 

Parameter   GFGA Anderson et al. (1998)a   
Average radius (km)  1561 1561  
Layer 1 thickness (km)  319 ~300  
Layer 2 thickness (km)  244 ~250  
Layer 3 thickness (km)  998 ~1015  

     
Outer shell density (kg m-3)  940 N/Ab  
Layer 1 density (kg m-3)  1025 ~1100  
Layer 2 density (kg m-3)  2505 ~3000  
Layer 3 density (kg m-3)  7915 8000  
     
J2 c   -155 x 10-3 435.5 ± 8.2 x 10-6  
C22 c  55.1 x 10-3 131.0 ± 2.5 x 10-6  
Bulk mass (kg)  4.77 x 1022 4.79 x 1022 ± 6.2 x 10-4  
Bulk density (kg m-3)  3003 2989 ± 46  
     
a If core radius = 0.65 REuropa     
b Anderson et al. (1998) calculated the density of the outer shell and first layer together. 
c See text for discussion of errors in the spherical harmonic calculations.  

 
 

 Of concern to me, and the reason I hesitate to extend my analysis based on this result, is 

the significant variance of the C20 (equivalent to -J2) and C22 coefficients from the Anderson et 

al. (1998) model. Attempts at bug fixing reveal that the value of the potential field and related 

spherical harmonics seem to be very sensitive to changes in unit input format (e.g., km vs. m) or 

mesh resolution parameters when applied to multi-layer models such as Europa. These bugs are 

not apparent in the benchmarking functions, which mostly deal with single-layer or constant 

density bodies with verifiable analytical solutions. This suggests that there is a bug in the plate 

model formulation module when multiple layers are applied.  
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 Nevertheless, the GA and evaluation module are able to reach a solution that is within the 

possible parameter space for Europa. It is likely that this solution is based on the constraints that 

are not determined by the plate model: the body’s total mass, triaxial shape, and other limits 

specified in the evaluation function such as density increase with depth. This demonstrates that, 

with a properly defined system, the GA and evaluation function working together are able to 

evolve towards a viable solution even in the presence of poor constraint inputs.  

 4.5.2 Ceres: results 

The GFGA modeled output for Ceres is presented in Table IV. Both models are within 

the parameter space defined by Park et al. (2016), with a core approximately 400 km in radius 

with mean density slightly under CI chondrite (2460 kg m-3), overlain by a shell of mixed ice and 

silicates with mean density ~1500 kg m-3. Comparing the two models (increasing density vs. a 

density inversion in the top layer) shows that the GA did not strongly favor a large density 

inversion, maintaining an upper shell of only ~1 km thickness with a ~9 kg m-3 density 

differential. 

 While the simulated C20 of these models is significantly closer to the value modeled by 

Park et al. (2016) compared to that of the Europa simulations, the C22 error remains high. I thus 

reiterate my previous caveats regarding the interpretation of these results except to note that they 

are broadly consistent with the parameter space established by Park et al. (2016), and thus verify 

that the core functionality of the code is valid despite the glitches apparent in the plate model and 

related potential functions.  
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TABLE IV: CERES RESULTS 

Parameter   

GFGA: 
increasing 

density 

GFGA: 
density 

inversion 

Park et al. 
(2016) 

Average radius (km)  484 484 484 
Layer 1 thickness (km)  8 1 N/Aa 
Layer 2 thickness (km)  76 33 70-190 
Layer 3 thickness (km)  400 450 294-414 

     
Outer shell density (kg m-3)  943 1133 N/Aa 
Layer 1 density (kg m-3)  1105 1124 N/Aa 
Layer 2 density (kg m-3)  1568 1132 1680-1950 
Layer 3 density (kg m-3)  2335 2250 2500-2900 

     
J2 c  11.9 x 10-3 18.5 x 10-3 11.8 x 10-3 
C22 c  12.3 x 10-2 14.2 x 10-2 1.59 x 10-4 
Bulk mass (kg)  9.39 x 1020 9.38 x 1020 9.39 x 1020 
Bulk density (kg m-3)  2163 2161 2162 ± 8 

     
a Park et al. (2016) calculated the density of the outer shell and first layer together. 
c See text for discussion of errors in the spherical harmonic calculations. 

 

 

4.6 Future directions 

At the time of writing, the recently determined, major glitch in the plate model layering 

function has yet to be resolved. Continued bug fixing and verification efforts will continue 

between now and the final submission of this thesis for consideration. 

For the code to be a useful tool to the planetary science community, the following functions 

remain to be implemented: 

• Ability to accept as input parameters either spherical harmonic coefficients or line-of-

sight gravity acceleration residuals. Currently, the code only accepts spherical harmonic 
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coefficients as input. This will allow the code to function in its intended purpose of 

bypassing the hydrostatic assumption required for inverse modeling in situations such as 

planned missions such as Europa Clipper. 

• Enable the user to set initial condition or evaluation function physical parameters (such as 

plausible density limits) to limit the solution and test hypotheses. Currently, these limits 

are set within the code itself. 

• Implement a robust series of test and benchmarking functions with set inputs and outputs 

so that users can be confident in the products of the code.  

• Host the project on an open source repository such as GitHub, with a plan of 

management, so that users can modify or improve the code. 
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5. SUMMARY 

 

I summarize the major findings of the three chapters of this thesis below. The first 

chapter is considered complete and is in preparation for publishing. The second chapter has 

resulted in a reevaluation of the primary hypothesis for the formation of cantaloupe terrain on 

Triton and suggested an alternative method. However, additional research is required to validate 

this new formation mechanism. The third chapter presents preliminary results that validate the 

core functionality of the designed code, however, significant work remains to be done to remove 

bugs and render the code usable to the public. 

 

5.1 Chaotic mountain blocks of Pluto 

 The chaotic mountain block ranges of Pluto’s Sputnik Planitia were interpreted by White 

et al. (2017) as transported blocks of fractured water ice crust, but the mechanism of their 

transport was unclear. I present research that shows that lubricated basal sliding is a plausible 

emplacement mechanism. The presence of large nitrogen ice glaciers would serve to enhance the 

crustal fracture and calving of large blocks of water ice. Once fractured, the nitrogen would serve 

to basally lubricate these blocks. They would then slide down the low (~2°) regional slope of the 

Sputnik Planitia basin under their own weight. Their emplacement velocity would be rate-limited 

by the viscosity of the nitrogen and the amount of basal lubrication, but emplacement times as 

low as hundreds to thousands of years are plausible. The current position of the blocks is likely 

determined by the decrease of the regional slope below a critical value, and to a second order 

may also be controlled by the resistance to viscous drag exhibited by larger blocks. 
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5.2 The formation of cantaloupe terrain 

 I set out to test the diapir formation hypothesis for cantaloupe terrain originally 

formulated by Schenk and Jackson (1993). I incorporated modern numerical simulation 

techniques, models of Triton’s internal heat budget, and temperature-dependent rheologies to 

expand on the simplified Rayleigh-Taylor analysis presented in that paper.  

I find that diapir formation is inhibited by a combination of factors. The insulating 

properties of the surface ice have a marked effect on the convection regime of Triton’s water ice 

mantle, changing it from a disordered and high-temperature convection regime to a more 

efficient regime where high temperatures are focused in mantle upwellings. This lower average 

subsurface temperature prevents ammonia dihydrate (NH3*H2O, abbreviated ADH), one of the 

suggested diapir components, from deforming readily at the surface.  

By contrast, the higher relative insulation and weak rheology of surface CO2 layers 

permitted deformation, but the co-viscous behavior expected for diapir formation by Rayleigh-

Taylor instability did not occur. Instead, CO2 that was warm enough to deform was confined by 

the rigid behavior of water ice at the same temperature. Layer thicknesses of 20 km (consistent 

with Schenk and Jackson [1993]) resulted in delamination and thinning of the CO2 layer.  

A parameter space was observed for CO2 layer thicknesses ~10 km where downwelling 

“sinks” of CO2 began to seep into the water ice mantle below. These sinks concentrated stresses 

in the rigid material above them in excess of their yield strength, indicating substantial surface 

fracture on a similar scale to the cavi that form cantaloupe terrain. The conditions for optimal 

downwelling sink formation were coincident with the center of mantle convection cells. These 

cells were observed to migrate laterally over time, suggesting a continuing resurfacing 

mechanism. Since the timing and plausibility of this mechanism is reliant on several factors 
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outside the scope of this study (e.g. viscoelastic behavior of surface ice, rates of sublimation 

terrain formation, and rates of CO2 ice deposition), I plan to expand this work further in the 

future. 

 

5.3 GFGA: Gravity from Genetic Algorithms 

 I present a preliminary version of a C++ code designed to forward model the interior 

density structure of planetary bodies by the use of genetic algorithms. The purpose of this code is 

to provide an alternative way to model the gravity potential, spherical harmonics, and resulting 

structure of a planet in a similar way to more common inverse modeling techniques but which 

bypasses assumptions of hydrostatic shape that are required by those models. This is especially 

useful in situations such as Europa, where the full latitudinal and longitudinal variation of its 

gravity field (and thus the ability to determine higher order spherical harmonic coefficients 

without making the hydrostatic assumption) is not currently available.  The full version of this 

code will be able to compare line-of-sight accelerations of a spacecraft directly to a series of 

models, and then utilize a genetic algorithm to find the best fit to the data directly. 

 The core functionality of this code is demonstrated: its ability to generate a degree-2 

model of a planetary body, to calculate the gravity potential and resulting spherical harmonics of 

the body, and then to compare a population of these simulated objects against a standard and 

evolve towards the best fit. I present test cases where we attempt to recreate the three-layer 

model of Europa presented in Anderson et al. (1998) and the two-layer model of Ceres presented 

in Park et al. (2016), based on available degree-2 spherical harmonic models and bulk 

parameters. 
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 As of the time of this writing, a major bug has been identified that prevents the code from 

correctly calculating the gravity potential (and thus spherical harmonics) of a multi-layered body.  

This prevents me from making any meaningful statements on the accuracy of the test case 

models presented here. However, even with this drawback, GFGA was able to evolve forward 

models that were within the parameter spaces presented by Anderson et al. (1998) and Park et al. 

(2016), based on the bulk parameters (mass and shape) and basic physical constraints of the 

body. Benchmark tests are also presented that demonstrate that the fundamentals of how GFGA 

calculates gravity potential and spherical harmonics are sound despite the current error. 

 The future work for this project will be focused on fixing the current bugs in the 

calculations, as well as adding features that will make it a useful open-source tool for the 

planetary science community.
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APPENDICES 

 

APPENDIX A: ASPECT MATERIAL MODEL: VOLATILE ICES 

/* 
  Copyright (C) 2011 - 2017 by the authors of the ASPECT code. 
 
  This file is part of ASPECT. 
 
  ASPECT is free software; you can redistribute it and/or modify 
  it under the terms of the GNU General Public License as published by 
  the Free Software Foundation; either version 2, or (at your option) 
  any later version. 
 
  ASPECT is distributed in the hope that it will be useful, 
  but WITHOUT ANY WARRANTY; without even the implied warranty of 
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 
  GNU General Public License for more details. 
 
  You should have received a copy of the GNU General Public License 
  along with ASPECT; see the file LICENSE.  If not see 
  <http://www.gnu.org/licenses/>. 
*/ 
 
/* 
 This is a material model for temperature-dependent ices using a 
volatile ice rheology as defined in Umurhan et al. (2017). It was 
designed by Sean O'Hara as a plugin for ASPECT. It is a modification 
of the "compositional field" material model included as a cookbook 
with the distribution of ASPECT. 
 */ 
 
#include <aspect/material_model/ice_volatile.h> 
 
 
namespace aspect 
{ 
  namespace MaterialModel 
  { 
    template <int dim> 
    void 
    ice_volatile<dim>:: 
    evaluate(const MaterialModel::MaterialModelInputs<dim> &in, 
             MaterialModel::MaterialModelOutputs<dim> &out) const 
    { 
      for (unsigned int i=0; i < in.position.size(); ++i) 
        { 
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  const double c = (in.composition[i].size()>0) 
        ? 
        std::max(0.0, in.composition[i][0]) 
        : 
        0.0; 
 
           
        //additions to hook in additional dependencies based on the 
compositional fields. 
        const double T0 = (reference_T + (compositional_delta_T * c)); 
        const double Ea = (activation_energy + (compositional_delta_Ea 
* c)); 
             
        double temperature_dependence = 
std::exp(Ea/(0.008314*in.temperature[i])); 
             
            //calculating the viscosity assuming a Newtonian rheology 
and a grain size of 1mm, as per Umurhan et al. (2017) eq. 7. 
            out.viscosities[i] = 
1.84e16*pow(.001,2)*(in.temperature[i]/45)*exp((1030/in.temperature[i]
)-(1030/45)); 
             
         
          out.densities[i] = reference_rho * (1 - thermal_alpha * 
(in.temperature[i] - T0)) + compositional_delta_rho * c; 
          out.thermal_expansion_coefficients[i] = thermal_alpha + 
(compositional_delta_alpha * c); 
          out.specific_heat[i] = reference_specific_heat + 
(compositional_delta_cp); 
          out.thermal_conductivities[i] = k_value + 
(compositional_delta_k); 
          out.compressibilities[i] = 0.0; 
          // Pressure derivative of entropy at the given positions. 
          out.entropy_derivative_pressure[i] = 0.0; 
          // Temperature derivative of entropy at the given positions. 
          out.entropy_derivative_temperature[i] = 0.0; 
          // Change in composition due to chemical reactions at the 
          // given positions. The term reaction_terms[i][c] is the 
          // change in compositional field c at point i. 
          for (unsigned int c=0; c<in.composition[i].size(); ++c) 
            out.reaction_terms[i][c] = 0.0; 
        } 
    } 
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    template <int dim> 
    double 
 
 ice_volatile<dim>:: 
    reference_viscosity () const 
    { 
      return eta; 
    } 
 
 
 
    template <int dim> 
    bool 
    ice_volatile<dim>:: 
    is_compressible () const 
    { 
      return false; 
    } 
 
 
 
    template <int dim> 
    void 
    ice_volatile<dim>::declare_parameters (ParameterHandler &prm) 
    { 
      prm.enter_subsection("Material model"); 
      { 
        prm.enter_subsection("Ice model"); 
        { 
          prm.declare_entry ("Reference density", "3300", 
                             Patterns::Double (0)); 
          prm.declare_entry ("Reference temperature", "293", 
                             Patterns::Double (0)); 
          prm.declare_entry ("Reference Viscosity", "5e24", 
                             Patterns::Double (0)); 
          prm.declare_entry ("Composition viscosity prefactor", "1.0", 
                             Patterns::Double (0)); 
          prm.declare_entry ("Thermal viscosity exponent", "0.0", 
                             Patterns::Double (0)); 
          prm.declare_entry("Maximum thermal prefactor","1.0e2", 
                            Patterns::Double (0)); 
          prm.declare_entry("Minimum thermal prefactor","1.0e-2", 
                            Patterns::Double (0)):; 
          prm.declare_entry ("Thermal conductivity", "4.7", 
                             Patterns::Double (0)); 
          prm.declare_entry ("Reference specific heat", "1250", 
                             Patterns::Double (0)); 
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          prm.declare_entry ("Thermal expansion coefficient", "2e-5", 
                             Patterns::Double (0)); 
          prm.declare_entry ("Density differential for compositional 
field 1", "0", 
                             Patterns::Double()); 
 
            ///entries below express other dependencies of material 
properties based on the compositional field. 
             
            prm.declare_entry ("Power-law exponent", "1.0", 
                               Patterns::Double (0), 
                               "The power law exponent n in the 
Arrhenius viscosity formulation. Varies with the compositional field 
and the deformation mechanism."); 
             
            prm.declare_entry ("Activation energy", "0", 
                               Patterns::Double(0), 
                               "The activation energy of the 
background material. Varies with the deformation mechanism."); 
             
            prm.declare_entry ("Reference viscosity differential for 
compositional field 1", "0", 
                               Patterns::Double(0), 
                               "The dependence of the reference 
viscosity of a material on the compositional field, expressed as a 
differential."); 
             
            prm.declare_entry ("Reference temperature differential for 
compositional field 1", "0", 
                               Patterns::Double(0), 
                               "The dependence of the reference 
temperature of a material on the compositional field, expressed as a 
differential."); 
           prm.declare_entry ("Activation energy differential for 
compositional field 1", "0", 
                              Patterns::Double(0), 
                              "The dependence of the activation energy 
of a material on the compositional field, expressed as a 
differential."); 
           prm.declare_entry ("Specific heat differential for 
compositional field 1", "0", 
                              Patterns::Double(0), 
                              "The dependence of the specific heat of 
a material on the compositional field, expressed as a differential."); 
           prm.declare_entry ("Thermal conductivity differential for 
compositional field 1", "0", 
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                              Patterns::Double(0), 
                              "The dependence of the thermal 
conductivity of a material on the compositional field, expressed as a 
differential."); 
           prm.declare_entry ("Thermal expansion coefficient 
differential for compositional field 1", "0", 
                              Patterns::Double(0), 
                              "The dependence of the thermal expansion 
coefficient of a material on the compositional field, expressed as a 
differential."); 
        } 
        prm.leave_subsection(); 
      } 
      prm.leave_subsection(); 
    } 
 
 
 
    template <int dim> 
    void 
    ice_volatile<dim>::parse_parameters (ParameterHandler &prm) 
    { 
      prm.enter_subsection("Material model"); 
      { 
        prm.enter_subsection("Ice model"); 
        { 
          reference_rho = prm.get_double ("Reference density"); 
          reference_T = prm.get_double ("Reference temperature"); 
          eta   = prm.get_double ("Reference Viscosity"); 
          composition_viscosity_prefactor = prm.get_double 
("Composition viscosity prefactor"); 
          thermal_viscosity_exponent = prm.get_double ("Thermal 
viscosity exponent"); 
          maximum_thermal_prefactor = prm.get_double ("Maximum thermal 
prefactor"); 
          minimum_thermal_prefactor = prm.get_double ("Minimum thermal 
prefactor"); 
          if ( maximum_thermal_prefactor == 0.0 ) 
maximum_thermal_prefactor = std::numeric_limits<double>::max(); 
          if ( minimum_thermal_prefactor == 0.0 ) 
minimum_thermal_prefactor = std::numeric_limits<double>::min(); 
 
          k_value = prm.get_double ("Thermal conductivity"); 
          reference_specific_heat = prm.get_double ("Reference 
specific heat"); 
  



 

 

87 

APPENDIX A (CONTINUED) 
 
 
          thermal_alpha = prm.get_double ("Thermal expansion 
coefficient"); 
          compositional_delta_rho = prm.get_double ("Density 
differential for compositional field 1"); 
             
//new parameters 
            exponent = prm.get_double ("Power-law exponent"); 
            activation_energy = prm.get_double ("Activation energy"); 
            compositional_delta_eta  = prm.get_double ("Reference 
viscosity differential for compositional field 1"); 
            compositional_delta_T = prm.get_double ("Reference 
temperature differential for compositional field 1"); 
            compositional_delta_Ea = prm.get_double ("Activation 
energy differential for compositional field 1"); 
            compositional_delta_k = prm.get_double ("Thermal 
conductivity differential for compositional field 1"); 
            compositional_delta_cp = prm.get_double ("Specific heat 
differential for compositional field 1"); 
            compositional_delta_alpha = prm.get_double ("Thermal 
expansion coefficient differential for compositional field 1"); 
          if (thermal_viscosity_exponent!=0.0 && reference_T == 0.0) 
            AssertThrow(false, ExcMessage("Error: Material model 
simple with Thermal viscosity exponent can not have reference_T=0.")); 
        } 
        prm.leave_subsection(); 
      } 
      prm.leave_subsection(); 
 
      // Declare dependencies on solution variables 
      this->model_dependence.compressibility = 
NonlinearDependence::none; 
      this->model_dependence.specific_heat = 
NonlinearDependence::compositional_fields; 
      this->model_dependence.thermal_conductivity = 
NonlinearDependence::compositional_fields; 
         
        //added nonlinear dependence on T and composition. -S 
     
        this->model_dependence.viscosity = 
NonlinearDependence::compositional_fields | 
NonlinearDependence::temperature; 
      this->model_dependence.density = 
NonlinearDependence::compositional_fields | 
NonlinearDependence::temperature; 
 
      if (thermal_viscosity_exponent != 0) 
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        this->model_dependence.viscosity |= 
NonlinearDependence::temperature; 
      if (composition_viscosity_prefactor != 1.0) 
        this->model_dependence.viscosity |= 
NonlinearDependence::compositional_fields; 
 
      if (thermal_alpha != 0) 
        this->model_dependence.density 
|=NonlinearDependence::temperature | 
NonlinearDependence::compositional_fields; 
      if (compositional_delta_rho != 0) 
        this->model_dependence.density 
|=NonlinearDependence::compositional_fields; 
    } 
  } 
} 
 
// explicit instantiations 
namespace aspect 
{ 
  namespace MaterialModel 
  { 
    ASPECT_REGISTER_MATERIAL_MODEL(ice_volatile, 
                                   "ice_volatile", 
                                   " 
                                   This is a material model for 
temperature-dependent ices using a volatile ice rheology as defined in 
Umurhan et al. (2017). It was designed by Sean O'Hara as a plugin for 
ASPECT. It is a modification of the "compositional field" material 
model included as a cookbook with the distribution of ASPECT. 
                                   ") 
  } 
} 
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APPENDIX B: ASPECT MATERIAL MODEL: ARRHENIUS RELATIONSHIP 

VISCOSITIES 

 

/* 
  Copyright (C) 2011 - 2017 by the authors of the ASPECT code. 
 
  This file is part of ASPECT. 
 
  ASPECT is free software; you can redistribute it and/or modify 
  it under the terms of the GNU General Public License as published by 
  the Free Software Foundation; either version 2, or (at your option) 
  any later version. 
 
  ASPECT is distributed in the hope that it will be useful, 
  but WITHOUT ANY WARRANTY; without even the implied warranty of 
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 
  GNU General Public License for more details. 
 
  You should have received a copy of the GNU General Public License 
  along with ASPECT; see the file LICENSE.  If not see 
  <http://www.gnu.org/licenses/>. 
*/ 
 
/* 
 This is a material model for temperature-dependent ices using an 
Arrenhius type viscosity. It was designed by Sean O'Hara as a plugin 
for ASPECT. It is a modification of the "compositional field" material 
model included as a cookbook with the distribution of ASPECT. 
 */ 
 
 
#include <aspect/material_model/ice_arrhenius.h> 
 
 
namespace aspect 
{ 
  namespace MaterialModel 
  { 
    template <int dim> 
    void 
    ice_arrhenius<dim>:: 
    evaluate(const MaterialModel::MaterialModelInputs<dim> &in, 
             MaterialModel::MaterialModelOutputs<dim> &out) const 
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    { 
      for (unsigned int i=0; i < in.position.size(); ++i) 
        { 
 
 const double c = (in.composition[i].size()>0) 
        ? 
        std::max(0.0, in.composition[i][0]) 
        : 
        0.0; 
 
           
        //additions to hook in additional dependencies based on the 
compositional fields. 
        const double T0 = (reference_T + (-1 * compositional_delta_T * 
c)); 
        const double Ea = (activation_energy + (-1 * 
compositional_delta_Ea * c)); 
             
            double temperature_dependence = 
std::min(std::exp((Ea/0.008314)*((1/in.temperature[i])-
(1/reference_T))),1e10); 
             
             
            //calculating the viscosity as per Nimmo et al. (2014) eq. 
3. 
            out.viscosities[i] = eta * temperature_dependence; 
             
         
          out.densities[i] = reference_rho * (1 - thermal_alpha * 
(in.temperature[i] - T0)) + compositional_delta_rho * c; 
          out.thermal_expansion_coefficients[i] = thermal_alpha + (-1 
* compositional_delta_alpha * c); 
          out.specific_heat[i] = reference_specific_heat + 
(compositional_delta_cp * c); 
          out.thermal_conductivities[i] = k_value + ( (-1 * 
compositional_delta_k) * c); 
            //The -1 factor here is a kludge around Aspect not easily 
letting you input a negative double value. 
          out.compressibilities[i] = 0.0; 
          // Pressure derivative of entropy at the given positions. 
          out.entropy_derivative_pressure[i] = 0.0; 
          // Temperature derivative of entropy at the given positions. 
          out.entropy_derivative_temperature[i] = 0.0; 
          // Change in composition due to chemical reactions at the 
          // given positions. The term reaction_terms[i][c] is the 
          // change in compositional field c at point i.  
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         for (unsigned int c=0; c<in.composition[i].size(); ++c) 
            out.reaction_terms[i][c] = 0.0; 
        } 
    } 
 
 
    template <int dim> 
    double 
    ice_arrhenius<dim>:: 
    reference_viscosity () const 
    { 
      return eta; 
    } 
 
 
 
    template <int dim> 
    bool 
    ice_arrhenius<dim>:: 
    is_compressible () const 
    { 
      return false; 
    } 
 
 
 
    template <int dim> 
    void 
    ice_arrhenius<dim>::declare_parameters (ParameterHandler &prm) 
    { 
      prm.enter_subsection("Material model"); 
      { 
        prm.enter_subsection("Ice model"); 
        { 
          prm.declare_entry ("Reference density", "3300", 
                             Patterns::Double (0)); 
          prm.declare_entry ("Reference temperature", "293", 
                             Patterns::Double (0)); 
          prm.declare_entry ("Reference viscosity", "5e24", 
                             Patterns::Double (0)); 
          prm.declare_entry ("Composition viscosity prefactor", "1.0", 
                             Patterns::Double (0)); 
          prm.declare_entry ("Thermal viscosity exponent", "0.0", 
                             Patterns::Double (0)); 
          prm.declare_entry("Maximum thermal prefactor","1.0e2", 
                            Patterns::Double (0));  
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       prm.declare_entry("Minimum thermal prefactor","1.0e-2", 
                            Patterns::Double (0)); 
          prm.declare_entry ("Thermal conductivity", "4.7", 
                             Patterns::Double (0)); 
          prm.declare_entry ("Reference specific heat", "1250", 
                             Patterns::Double (0)); 
          prm.declare_entry ("Thermal expansion coefficient", "2e-5", 
                             Patterns::Double (0)); 
          prm.declare_entry ("Density differential for compositional 
field 1", "0", 
                             Patterns::Double()); 
 
            ///new entries that express other dependencies of material 
properties based on the compositional field. 
             
            prm.declare_entry ("Power-law exponent", "1.0", 
                               Patterns::Double (), 
                               "The power law exponent n in the 
Arrhenius viscosity formulation. Varies with the compositional field 
and the deformation mechanism."); 
             
            prm.declare_entry ("Activation energy", "0", 
                               Patterns::Double(), 
                               "The activation energy of the 
background material. Varies with the deformation mechanism."); 
             
            prm.declare_entry ("Reference viscosity differential for 
compositional field 1", "0", 
                               Patterns::Double(), 
                               "The dependence of the reference 
viscosity of a material on the compositional field, expressed as a 
differential."); 
             
            prm.declare_entry ("Reference temperature differential for 
compositional field 1", "0", 
                               Patterns::Double(), 
                               "The dependence of the reference 
temperature of a material on the compositional field, expressed as a 
differential."); 
           prm.declare_entry ("Activation energy differential for 
compositional field 1", "0", 
                              Patterns::Double(), 
                              "The dependence of the activation energy 
of a material on the compositional field, expressed as a 
differential."); 
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           prm.declare_entry ("Specific heat differential for 
compositional field 1", "0", 
                              Patterns::Double(), 
                              "The dependence of the specific heat of 
a material on the compositional field, expressed as a differential."); 
           prm.declare_entry ("Thermal conductivity differential for 
compositional field 1", "0", 
                              Patterns::Double(), 
                              "The dependence of the thermal 
conductivity of a material on the compositional field, expressed as a 
differential."); 
           prm.declare_entry ("Thermal expansion coefficient 
differential for compositional field 1", "0", 
                              Patterns::Double(), 
                              "The dependence of the thermal expansion 
coefficient of a material on the compositional field, expressed as a 
differential."); 
        } 
        prm.leave_subsection(); 
      } 
      prm.leave_subsection(); 
    } 
 
 
 
    template <int dim> 
    void 
    ice_arrhenius<dim>::parse_parameters (ParameterHandler &prm) 
    { 
      prm.enter_subsection("Material model"); 
      { 
        prm.enter_subsection("Ice model"); 
        { 
          reference_rho = prm.get_double ("Reference density"); 
          reference_T = prm.get_double ("Reference temperature"); 
          eta = prm.get_double ("Reference viscosity"); 
          composition_viscosity_prefactor = prm.get_double 
("Composition viscosity prefactor"); 
          thermal_viscosity_exponent = prm.get_double ("Thermal 
viscosity exponent"); 
          maximum_thermal_prefactor = prm.get_double ("Maximum thermal 
prefactor"); 
          minimum_thermal_prefactor = prm.get_double ("Minimum thermal 
prefactor"); 
          if ( maximum_thermal_prefactor == 0.0 ) 
maximum_thermal_prefactor = std::numeric_limits<double>::max(); 
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          if ( minimum_thermal_prefactor == 0.0 ) 
minimum_thermal_prefactor = std::numeric_limits<double>::min(); 
 
          k_value = prm.get_double ("Thermal conductivity"); 
          reference_specific_heat = prm.get_double ("Reference 
specific heat"); 
          thermal_alpha = prm.get_double ("Thermal expansion 
coefficient"); 
          compositional_delta_rho = prm.get_double ("Density 
differential for compositional field 1"); 
             
//new parameters 
 
            activation_energy = prm.get_double ("Activation energy"); 
            compositional_delta_eta  = prm.get_double ("Reference 
viscosity differential for compositional field 1"); 
            compositional_delta_T = prm.get_double ("Reference 
temperature differential for compositional field 1"); 
            compositional_delta_Ea = prm.get_double ("Activation 
energy differential for compositional field 1"); 
            compositional_delta_k = prm.get_double ("Thermal 
conductivity differential for compositional field 1"); 
            compositional_delta_cp   = prm.get_double ("Specific heat 
differential for compositional field 1"); 
            compositional_delta_alpha = prm.get_double ("Thermal 
expansion coefficient differential for compositional field 1"); 
 
          if (thermal_viscosity_exponent!=0.0 && reference_T == 0.0) 
            AssertThrow(false, ExcMessage("Error: Material model 
simple with Thermal viscosity exponent can not have reference_T=0.")); 
        } 
        prm.leave_subsection(); 
      } 
      prm.leave_subsection(); 
 
      // Declare dependencies on solution variables 
      this->model_dependence.compressibility = 
NonlinearDependence::none; 
      this->model_dependence.specific_heat = 
NonlinearDependence::compositional_fields; 
      this->model_dependence.thermal_conductivity = 
NonlinearDependence::compositional_fields; 
         
        //added nonlinear dependence on T and composition. -S 
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        this->model_dependence.viscosity = 
NonlinearDependence::compositional_fields | 
NonlinearDependence::temperature; 
      this->model_dependence.density = 
NonlinearDependence::compositional_fields | 
NonlinearDependence::temperature; 
 
      if (thermal_viscosity_exponent != 0) 
        this->model_dependence.viscosity |= 
NonlinearDependence::temperature; 
      if (composition_viscosity_prefactor != 1.0) 
        this->model_dependence.viscosity |= 
NonlinearDependence::compositional_fields; 
 
      if (thermal_alpha != 0) 
        this->model_dependence.density 
|=NonlinearDependence::temperature | 
NonlinearDependence::compositional_fields; 
      if (compositional_delta_rho != 0) 
        this->model_dependence.density 
|=NonlinearDependence::compositional_fields; 
    } 
  } 
} 
 
// explicit instantiations 
namespace aspect 
{ 
  namespace MaterialModel 
  { 
    ASPECT_REGISTER_MATERIAL_MODEL(ice_arrhenius, 
                                   "ice_arrhenius", 
                                   " This is a material model for 
temperature-dependent ices using an Arrenhius type viscosity. It was 
designed by Sean O'Hara as a plugin for ASPECT. It is a modification 
of the "compositional field" material model included as a cookbook 
with the distribution of ASPECT.") 
  } 
} 
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// 
//  GFGA (Gravity from Genetic Algorithms) 
//   
// 
//  Begun by Sean O'Hara on 7/2016. Last update 6/2019. 
// 
// 
 
#include <stdio.h> 
#include <cmath> 
#include <math.h> 
#include <ga/ga.h> 
#include <ga/gaconfig.h> 
#include <ga/std_stream.h> 
#include <ga/GARealGenome.h> 
#include <ga/GARealGenome.C> 
#include <ga/GAAllele.h> 
 
#define INSTANTIATE_REAL_GENOME 
#define GALIB_USE_STREAMS 
 
 
using namespace std; 
 
int Parameters(int layers, double a, double b, double c, double 
trueMass, double trueC20, double trueC21, double trueC22, double 
trueS21, double trueS22); 
 
 
double Platemodel(double a, double b, double c, int v, int offset); 
double PotentialCalc(GAGenome &); 
double SphericalHarmonics(int a, GARealAlleleSetArray &); 
     
     
float ShapeObjective(GAGenome &); 
 
double factorial (double); 
 
int spacing; 
double majr; 
double inter; 
double minr; 
double density; 
double R0;  
//Reference radius for Europa = 1565 km (Anderson et al., 1998) 
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int spacing_lat=5; 
int spacing_long=5;                     
//spacing is currently set in the code definition despite ideally 
being a settable parameter.  
 
int N_lat = (180/spacing_lat) + 1; 
int N_long = (360/spacing_long) + 1; 
int N_nodes = N_lat * N_long; 
int N_plates = 2 * (N_long - 1) * (N_lat - 2); 
 
int i; 
int s; 
int v; 
int p; 
int layers; 
const double pi = acos(-1); 
double trueMass; 
double trueC20; 
double trueC21; 
double trueC22; 
double trueS21; 
double trueS22; 
double offsetX; 
double offsetY; 
double offsetZ; 
double TestValue; 
 
double V; 
double Rn; 
 
double C2[3] = {0.0,0.0,0.0}; 
double S2[2] = {0.0,0.0};               
//spherical harmonic coefficients 
 
double Yc[3] = {0.0}; 
double Ys[2] = {0.0}; 
double Ybar[3] = {0.0};              
//Terms for calculating associated Legendre polynomials 
 
double Vsurf[65341][3];  
//plate model vertices in Cartesian coordinates. See Cheng 2002 
Appendix. 
 
double Potential[128880]; 
double Cen[20][128880][3]; 
double Cen_position[20][128880][3];           
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//Enough array slots for a 1x1 degree spacing plate model. 
double Ref_Cen[128880][3]; 
double Ref_Cen_position[128880][3]; 
double Ref_area[128880]; 
double N[20][128880][3]; 
double Plate_area[20][128880]; 
double Unit_area[128880]; 
 
double ShellMass; 
double PointMass; 
double BodyMass; 
 
double Xcm[20][3]; 
 
 
 
double factorial (double number) 
{ 
    int temp = 0; 
    if (number <= 1.0) return 1.0; 
     
    temp = number * factorial(number-1.0); 
    return temp; 
} 
 
 
int Parameters() 
{ 
    //The code reads in a parameter file and gives an error if not 
found. It looks for a .txt file with the following data, in order, 
separated by hard returns: The latitude/longitude grid spacing in 
degrees; the major, intermediate, and minor axes of the body in km; 
the reference radius of the body in km; the number of internal 
ellipsoids to generate; the calculated C20, C21, C22, S21, and S22 
coefficients for the body; and the center of mass/center of figure 
offset of the body in kilometers. 
     
    ifstream 
in("/Users/seanohara/Dropbox/Research/GA/Input/europa_parameter_test.t
xt"); 
     
    if (in.is_open()) 
        { 
            cout << "Parameter file opened successfully." << endl; 
        } 
    Else      
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   { 
            cout << "Could not find parameter file. Make sure it is in 
the Input directory." << endl; 
            throw std::exception(); 
        } 
     
    in >> spacing >> majr >> inter >> minr >> R0  >> layers >> 
trueMass >> trueC20 >> trueC21 >> trueC22 >> trueS21 >> trueS22 >> 
offsetX >> offsetY >> offsetZ >> TestValue; 
     
    if (TestValue == 0) 
        { 
            cout << "Seed parameters:" << "\n" ; 
            cout << "Generating a " << spacing << "x" << spacing << " 
degree plate model grid." << "\n"; 
            cout << "Body major axis a: " << majr << "\n" ; 
            cout << "Body intermediate axis b: " << inter << "\n" ; 
            cout << "Body minor axis c: " << minr << "\n" ; 
            cout << "Reference radius: " << R0 << "\n"; 
            cout << "COM/COF offset in x (km): " << offsetX << "\n"; 
            cout << "COM/COF offset in y (km): " << offsetY << "\n"; 
            cout << "COM/COF offset in z (km): " << offsetZ << "\n"; 
            cout << "Generating shell + " << layers-1 << " internal 
layers. \n"; 
        } 
    else 
        { 
            cout << "Error: Test function not currently enabled." << 
"\n" ; 
            throw std::exception(); 
        } 
     
    return(0); 
     
} 
 
//  Plate model function by Sean O'Hara on 7/5/16. Modification of 
triangular plate model code from Kattoum and Dombard 2009. 
 
 
double Platemodel(double a, double b, double c, int v, int offset) 
{ 
    double J1 = 0.0; 
    double J2 = 0.0; 
    double R1 = 0.0; 
    double R2 = 0.0;  



 

 

100 

APPENDIX C (CONTINUED) 
 
 
 double R3 = 0.0; 
     
    int spacing_lat = spacing; 
    int spacing_long = spacing; 
     
    int latitude = -90; 
    int longitude = 0; 
     
    int lat[N_lat*N_long]; 
    int lon[N_lat*N_long]; 
    int colat[N_lat*N_long]; 
     
    double Vsurf[N_nodes][3];  
//plate model vertices in Cartesian coordinates. See Cheng 2002 
Appendix. 
     
    double Node_position[N_nodes][3];   
//Spherical coordinates of each vertex. 
     
    for (int s = 0; s < N_nodes; s++) 
    { 
     
    if (longitude < 360) 
            { 
    longitude = longitude + spacing_long; 
            } 
     
    else if (latitude < 180) 
            { 
    longitude = 0; 
    latitude = latitude + spacing_lat; 
            } 
    else if (longitude == 360 && latitude == 180) 
            { 
    longitude = 0; 
    latitude = -90; 
            } 
         
         
     
    lat[s] = latitude; 
    lon[s] = longitude; 
 
    colat[s] = (90-lat[s]); 
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    J1 = lon[s] * pi/180.0; 
    J2 = colat[s] * pi/180.0;  
//convert latitude to colatitude, and both lon and colat to radians 
     
     
    double* R = new double[N_nodes]; 
         
    R1 = ((1.0 + cos(2 * J1)) * (1.0 - cos(2 * J2))) / (2.0 * (a * a) 
); 
    R2 = ((1.0 - cos(2 * J1)) * (1.0 - cos(2 * J2))) / (2.0 * (b * b) 
); 
    R3 = (1.0 + cos(2 * J2)) / (2.0 * (c * c) ); 
         
    R[s] = sqrt(1.0/(R1+R2+R3));  
//calculates radius of ellipsoid at each mesh point in spherical polar 
coordinates. 
         
        if (offset == 0)             
//parameter switch to indicate whether to include the COM/COF offset 
in calculations. Set to 0 in the reference sphere or unit sphere 
calculations and 1 otherwise. 
    { 
    Vsurf[s][0] = a * sin(J2) * cos(J1); 
    Vsurf[s][1] = b * sin(J2) * sin(J1);  
    Vsurf[s][2] = c * cos(J2); 
    } 
//calculates Cartesian position of each individual vertex of the plate 
model. 
           
         
    else if (offset != 0) 
    { 
        Vsurf[s][0] = a * sin(J2) * cos(J1) + offsetX; 
        Vsurf[s][1] = b * sin(J2) * sin(J1) + offsetY ;  
        Vsurf[s][2] = c * cos(J2) + offsetZ; 
    } 
//calculates Cartesian position of each individual vertex of the plate 
model. 
         
    Node_position[s][0] = R[s]; 
    Node_position[s][1] = J1 * (180.0/pi); 
    Node_position[s][2] = J2 * (180.0/pi); 
         
    delete[] R; 
         
    }  
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            //NOTE SIGN CONVENTION FOR VECTOR ARRAYS: [0] = r/x, [1] = 
lon/y, [2] = colat/z 
     
     
    int p[N_plates][3]; 
 
 
        for (int i=0; i < (N_long - 2) + 1; i++)      //Defines node 
points for generating the triangular plate model. 
    { 
            int j = N_plates - N_long + 1; 
            p[i][0] = i; 
            p[i][1] = i + N_long + 1; 
            p[i][2] = i + N_long; 
            p[i+j][0] = i + N_nodes - 2 * N_long; 
            p[i+j][1] = i + N_nodes - 2 * N_long + 1; 
            p[i+j][2] = i + N_nodes - N_long + 1; 
    } 
     
        for (int i=1; i < (N_lat - 3) + 1; i++) 
    { 
            int j = (N_long - 1) * (2 * i - 1); 
            for (int k = 0; k < (N_long - 2) + 1; k++) 
            { 
                p[j+k][0] = i * N_long + k; 
                p[j+k][1] = i * N_long + k + 1; 
                p[j+k][2] = i * N_long + k + 1 + N_long; 
                p[j+k + N_long - 1][0] = i * N_long + k; 
                p[j+k + N_long - 1][1] = i * N_long + k + N_long + 1; 
                p[j+k + N_long - 1][2] = i * N_long + k + N_long; 
            } 
    } 
     
    int k; 
    int l; 
    int m; 
    double Plate_normal[layers][N_plates]; 
     
    for (int i=0; i<N_plates; i++) 
    { 
         
        k = p[i][0]; 
        l = p[i][1]; 
        m = p[i][2]; 
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   //Definition of outward normal vector of plates - see Cheng 2002 
appendix. Represented as x,y,z [j] coordinates of endpoint. 
         
        double U1; 
        double U2; 
        double U3; 
        double V1; 
        double V2; 
        double V3; 
         
        U1 = Vsurf[l][0] - Vsurf[k][0]; 
        U2 = Vsurf[l][1] - Vsurf[k][1]; 
        U3 = Vsurf[l][2] - Vsurf[k][2]; 
        V1 = Vsurf[m][0] - Vsurf[k][0]; 
        V2 = Vsurf[m][1] - Vsurf[k][1]; 
        V3 = Vsurf[m][2] - Vsurf[k][2]; 
         
        N[v][i][0] = (U2 * V3) - (U3 * V2); 
        N[v][i][1] = (U3 * V1) - (U1 * V3); 
        N[v][i][2] = (U1 * V2) - (U2 * V1); 
             
        Plate_normal[v][i] = sqrt((N[v][i][0] * N[v][i][0]) + 
(N[v][i][1] * N[v][i][1]) + (N[v][i][2] * N[v][i][2])); 
             
        Plate_area[v][i] = Plate_normal[v][i]/2.0; 
         
    //Plate centroid definition for each plate [i] of layer [v]. 
         
        Cen[v][i][0] = (Vsurf[k][0] + Vsurf[l][0] + Vsurf[m][0])/3.0; 
        Cen[v][i][1] = (Vsurf[k][1] + Vsurf[l][1] + Vsurf[m][1])/3.0; 
        Cen[v][i][2] = (Vsurf[k][2] + Vsurf[l][2] + Vsurf[m][2])/3.0; 
         
    //We find the spherical coordinates of the plate centroid in 
radians, for use in calculating spherical harmonics. 
         
        Cen_position[v][i][0] = sqrt( ( Cen[v][i][0] * Cen[v][i][0] ) 
+ ( Cen[v][i][1] * Cen[v][i][1] ) + ( Cen[v][i][2] * Cen[v][i][2] ) ); 
        Cen_position[v][i][1] = atan2( Cen[v][i][1], Cen[v][i][0] ); 
        Cen_position[v][i][2] = acos( Cen[v][i][2] / 
Cen_position[v][i][0] ); 
 
    } 
     
    //Volume of shell and center of mass coordinates, for use in 
testing. Formulas from Cheng et al. 
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   V = 0; 
     
    for (i = 0; i < N_plates; i++) 
    { 
        V = V + ((Cen[v][i][0] * N[v][i][0]) + (Cen[v][i][1] * 
N[v][i][1]) + (Cen[v][i][2] * N[v][i][2]))/6.0; 
         
        Xcm[v][0] = (N[v][i][0] * (Cen[v][i][0] * Cen[v][i][0])) + 
Xcm[v][0]; 
        Xcm[v][1] = (N[v][i][1] * (Cen[v][i][1] * Cen[v][i][1])) + 
Xcm[v][1]; 
        Xcm[v][2] = (N[v][i][2] * (Cen[v][i][2] * Cen[v][i][2])) + 
Xcm[v][2]; 
    } 
     
 
    Xcm[v][0] = Xcm[v][0] / (4*V); 
    Xcm[v][1] = Xcm[v][1] / (4*V); 
    Xcm[v][2] = Xcm[v][2] / (4*V); 
 
     
  //  cout << sqrt( ( Xcm[v][0] * Xcm[v][0] ) + ( Xcm[v][1] * 
Xcm[v][1] ) + ( Xcm[v][2] * Xcm[v][2] ) ) <<  "\n"; 
     
return (0); 
 
} 
 
 
 
double PotentialCalc(int test, GAGenome&d) 
{ 
 
    GARealGenome& ShapeGenome = (GARealGenome&)d; 
     
    double U[N_plates]; //Gravitational potential 
    double A[3] = {0}; 
    double B = 0; 
    double G = (6.67e-11)/4; //Gravitational constant (why divide by 
4? - see Cheng appendix) 
    double Density[layers]; 
 
//We now calculate the gravitational potential at each centroid of the 
reference sphere plate model (x) in relation to each plate centroid of 
the internal layers. This is set up such that it runs all the   
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calculations at one point on the reference sphere for all layers and 
points, records it as U[plate], and then continues to the next 
reference centroid and repeats. 
     
for (v=0; v<layers; v++) 
{ 
     
    if (test == 0) 
    { 
        Density[0] = ShapeGenome.gene(2);               //If 
intermediate axis is included, should be ShapeGenome.gene(3). 
         
        if (v > 0) 
        { 
        Density[v] = (ShapeGenome.gene(((v+1)*3)-1)) - 
(ShapeGenome.gene((v*3)-1));         //If intermediate axis is 
included, step factor should be 4, not 3. 
        } 
    } 
     
    //note that Density[v] is calculated as a contrast between layers. 
     
    if (test == 1) 
    { 
        Density[0] = 1000;           
        Density[v+1] = 100; 
    } 
//test function for arbitrary increasing density. 
 
     
    if (test == 2) 
    { 
        Density[v] = 2161;           
    } 
//test function for uniform bulk density. 
 
 
     
} 
     
 
for (i = 0; i < N_plates; i++) 
{ 
    Potential[i] = 0; 
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   for (v=0; v<layers; v++) 
    { 
        U[i] = 0; 
 
        for (s = 0; s < N_plates; s++) 
        { 
            A[0] = (Ref_Cen[i][0] - Cen[v][s][0]); 
            A[1] = (Ref_Cen[i][1] - Cen[v][s][1]); 
            A[2] = (Ref_Cen[i][2] - Cen[v][s][2]); 
             
            B = sqrt( (A[0] * A[0]) + (A[1] * A[1]) + (A[2] * A[2]) ); 
             
            double X, Y, Z; 
         
            X = (A[0] * N[v][s][0]); 
            Y = (A[1] * N[v][s][1]); 
            Z = (A[2] * N[v][s][2]); 
             
            U[i] = U[i] + (( X + Y + Z ) / B);  
//sums up gravitational potential contribution of the plate. Sqrt is 
to get absolute value of A. 
 
        } 
 
    Potential[i] = Potential[i] + (U[i] * G * Density[v]); 
//Gravitational potential of individual plate 
         
    Potential[i] = Potential[i]*-1; 
         
    } 
 
} 
     
  /*  double Om = 952.1532; // Om^2 used to calculate centrifugal 
potential - Park et al 2016 
    double rot; 
    double q; 
    double GM; 
    double J2; 
    double f; 
     
    Om = Om / 86164; 
    Om = Om * (pi/180);     //converting Om from Park et al 2016 from 
degree/day to rad/sec 
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 rot = Om*Om*(483.1*481.0*445.9); 
     
    GM = (6.67e-11 * V * 2161);      //GM of Ceres 
     
    q = rot/GM;     //see Murray and Dermott eq. 4-102                          
//J2 from the rotational parameters. 
     
    J2 = -q/2; 
     
    cout << "Analytical J2 (homogenous body): " << J2 << "\n"; 
 */ 
     
    return(0); 
} 
 
 
        //This section calculates the spherical harmonic coefficients 
from the gravitational potential. Problems are cast according to 
calculations from Heiskanen and Moritz (1967)section 1-14, adapted by 
Dombard. Coefficients are calculated up to degree 2. 
     
double SphericalHarmonics(int test) 
{ 
 
    C2[0] = 0; 
    C2[1] = 0; 
    C2[2] = 0; 
    S2[0] = 0; 
    S2[1] = 0; 
     
    double P2[3]; 
     
    if (test == 3)              
 
    { 
        int position = 0; 
        ifstream in("/Users/seanohara/Desktop/J2test.txt"); 
         
        while (!in.eof() && position < N_plates) 
        { 
            in >> Potential[position]; 
            position++; 
        } 
    } 
// test function - input generated from a synthetic potential field.  
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for (int i=71; i<N_plates-143; i++) 
  //  Excludes polar node points due to degeneracy issues. 
    { 
 
// Calculate associated Legendre polynomials for each degree and 
order. This hard-codes for degree 2 only. 
         
        P2[0] = 0.5 * ( 3.0 * pow( cos( Ref_Cen_position[i][2] ) ,2 ) 
- 1 ); 
        P2[1] = -3.0 * sin( Ref_Cen_position[i][2] ) * cos( 
Ref_Cen_position[i][2] ); 
        P2[2] = 3.0 * pow( sin( Ref_Cen_position[i][2] ) ,2 ) ; 
         
        Yc[0] = P2[0]; 
        Yc[1] = P2[1] * cos( Ref_Cen_position[i][1] ); 
        Yc[2] = P2[2] * cos ( 2.0 * Ref_Cen_position[i][1] ); 
             
        Ys[0] = P2[1] * sin ( Ref_Cen_position[i][1] ); 
        Ys[1] = P2[2] * sin ( 2.0 * Ref_Cen_position[i][1] ); 
         
    if (test == 0 || test == 3 ) 
        { 
        C2[0] = C2[0] + Potential[i] * (Ybar[0] * Yc[0]) * 
Unit_area[i]; 
        C2[1] = C2[1] + Potential[i] * (Ybar[1] * Yc[1]) * 
Unit_area[i]; 
        C2[2] = C2[2] + Potential[i] * (Ybar[2] * Yc[2]) * 
Unit_area[i];        
        S2[0] = S2[0] + Potential[i] * (Ybar[1] * Ys[0]) * 
Unit_area[i]; 
        S2[1] = S2[1] + Potential[i] * (Ybar[2] * Ys[1]) * 
Unit_area[i]; 
        } 
 
    if (test == 1) 
        { 
         Potential[i] = 1;   // test function 
         C2[0] = C2[0] + Potential[i] * Unit_area[i]; 
         C2[1] = C2[1] + Potential[i] * Unit_area[i]; 
         C2[2] = C2[2] + Potential[i] * Unit_area[i];     
         S2[0] = S2[0] + Potential[i] * Unit_area[i]; 
         S2[1] = S2[1] + Potential[i] * Unit_area[i]; 
        } 
//test functions for unit sphere -- total when Potential = 1 is 4pi. 
  



 

 

109 

        APPENDIX C (CONTINUED) 
 
         
    if (test == 2) 
        { 
        C2[0] = C2[0] + ((Ybar[0] * Yc[0]) * (Ybar[0] * Yc[0])) * 
Unit_area[i]; 
        C2[1] = C2[1] + ((Ybar[1] * Yc[1]) * (Ybar[1] * Yc[1])) * 
Unit_area[i]; 
        C2[2] = C2[2] + (((Ybar[2] * Yc[2]) * (Ybar[2] * Yc[2])) * 
Unit_area[i]);        
        S2[0] = S2[0] + ((Ybar[1] * Ys[0]) * (Ybar[1] * Ys[0])) * 
Unit_area[i]; 
        S2[1] = S2[1] + ((Ybar[2] * Ys[1]) * (Ybar[2] * Ys[1])) * 
Unit_area[i]; 
        } 
//test functions for Yc/Ys terms -- should equal 4pi. 
    } 
 
     
    if (test == 0 || test==3) 
    { 
        C2[0] = C2[0] * 0.25 * pi; 
        C2[1] = C2[1] * 0.25 * pi;               
        C2[2] = C2[2] * 0.25 * pi; 
         
        S2[0] = S2[0] * 0.25 * pi; 
        S2[1] = S2[1] * 0.25 * pi; 
    } 
//once coefficients have been integrated for every plate, multiply the 
result by 1/4pi. 
 
     
for (i=0; i<N_plates; i++) 
    { 
    Potential[i] = 0;  
    } 
//resets the gravity potential for the next plate model run. 
 
 
    return (0); 
} 
 
 
int main(int argc, char** argv) 
{ 
    // Here we define a random seed value for the GA, for testing 
purposes. Inputting a defined seed value is not supported as of this 
time (1/2019). 
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    cout.precision(8); 
    int n = 0; 
 
     
    unsigned int seed = 0; 
    for(int ii=1; ii<argc; ii++) 
    { 
        if(strcmp(argv[ii++],"seed") == 0) 
        { 
            seed = atoi(argv[ii]); 
        } 
    } 
         
    Parameters(); 
    GARandomSeed(seed); 
 
        //Here we calculate various important constants and fix them 
in memory. Future calls of PotentialCalc() and SphericalHarmonics() 
will use these values. 
         
    Platemodel(1.0, 1.0, 1.0, 1, 0);    
//Generates the unit sphere for normalizing the spherical harmonics. 
         
    for (int i=0; i<N_plates; i++) 
        { 
            Unit_area[i] = Plate_area[1][i];         
        } 
// Calculates unit sphere plate area. 
 
     
    Platemodel(R0, R0, R0, 1, 0);       
// Generates the reference sphere. 
 
    for (int i=0; i<N_plates; i++) 
        { 
            Ref_Cen[i][0] = Cen[1][i][0]; 
            Ref_Cen[i][1] = Cen[1][i][1]; 
            Ref_Cen[i][2] = Cen[1][i][2]; 
            Ref_Cen_position[i][0] = Cen_position[1][i][0]; 
            Ref_Cen_position[i][1] = Cen_position[1][i][1]; 
            Ref_Cen_position[i][2] = Cen_position[1][i][2]; 
            Ref_area[i] = Plate_area[1][i]; 
        } 
         
    Ybar[0] = sqrt( (4.0 + 1.0) ); 
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    Ybar[1] = sqrt(( 2.0 * (4.0 + 1.0) * (factorial(1.0) / 
factorial(3.0))));        
    Ybar[2] = sqrt(( 2.0 * (4.0 + 1.0) * (factorial(0.0) / 
factorial(4.0)))); 
 
// Normalizes the associated Legendre polynomials. 
     
 
    //Test(TestValue);       //Input a command line value here to run 
a test of the calculation modules. If no input, skips to main body of 
function. Not implemented as of 1/2019. 
         
         
        // Here we define the parameters of the shape model that the 
genetic algorithm will vary. The alleles are part of an array that 
will populate the genome and then be varied accordingly during the 
algorithm's evolution. See GAlib documentation for more information on 
the relationship between alleles, the genome, and the genetic 
algorithm. 
         
        // The first step is to define the alleles. The first four are 
the axes of the body in km and a possible range of bulk densities in 
kg/m3. 
 
GARealAlleleSetArray ShapeAlleles; 
         
    ShapeAlleles.add(1561e3, 1561e3); 
 //   ShapeAlleles.add(inter, inter);      //  Random determination of 
intermediate axis removed from the current J2 version of the code. 
Still required input due to plate model, but needs to be same as major 
axis in parameter file to work. 
    ShapeAlleles.add(1557e3, 1557e3); 
    ShapeAlleles.add(900, 1100, 10); 
         
        // Outer shell parameters. Each internal layer must be within 
the overall body axes. The size varies in increments of a kilometer 
from a minimum of 10 km. 
     
     
    ShapeAlleles.add(1200e3, 1560e3, 1e3); 
   ShapeAlleles.add(1200e3, 1556e3, 1e3); 
    ShapeAlleles.add(900, 1100, 10);     //first internal volume 
(minimum water thickness; water only for 3 layer model) 
     
    ShapeAlleles.add(500e3, 1500e3, 1e3); 
    ShapeAlleles.add(500e3, 1500e3, 1e3);  
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  ShapeAlleles.add(2500, 4000, 10);     //second internal volume  
         
    ShapeAlleles.add(150e3, 1000e3, 1e3); 
    ShapeAlleles.add(150e3, 1000e3, 1e3); 
    ShapeAlleles.add(3800, 8000, 10);     //third internal volume  
     
     
        //Here we set the parameters for the genome (which fleshes out 
the population). See GAlib documentation for description of these and 
the following section's parameters. 
         
GARealGenome ShapeGenome(ShapeAlleles, ShapeObjective); 
    GAParameterList ShapeParams; 
    GASteadyStateGA::registerDefaultParameters(ShapeParams); 
    ShapeParams.set(gaNnGenerations, 1000); 
    ShapeParams.set(gaNpopulationSize, 1); 
    ShapeParams.set(gaNscoreFrequency, 10); 
    ShapeParams.set(gaNflushFrequency, 50); 
    ShapeParams.set(gaNselectScores, (int)GAStatistics::AllScores); 
    ShapeParams.parse(argc, argv, gaFalse); 
     
        //Here we set the parameters for the genetic algorithm that 
will evolve the system. We use a steady state algorithm with 
overlapping populations. 
         
GASteadyStateGA shape(ShapeGenome); 
    GAGenome::SexualCrossover sexual; 
    shape.parameters(ShapeParams); 
    shape.scaling(GANoScaling()); 
    shape.pReplacement(0.5); 
    shape.pCrossover(0.9); 
    shape.pMutation(0.2); 
  //  shape.terminator(GADCrowdingGA::TerminateUponConvergence); 
     
        //Here we manually step the GA through the evolution process 
using the initialize() and step() functions. We do this stepwise 
(rather than using the evolve() function) so that at each step the 
best member of the shape model population is re-run through the plate 
model, gravity potential, and spherical harmonic modules and 
displayed. This is to help the user verify that the evolution is 
occurring. Once the code is in a more secure state, consider re-
writing this section using the evolve() function and then doing the 
module calculations at the end before flushScores() in order to save 
memory/processing time. 
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        //The fitness assessment of each population member and its 
associated gravity and spherical harmonic values are handled by 
ShapeObjective() which the algorithm reference each time it calls 
step(). The genome is only varying the axes and density of each 
overlapping ellipsoid. 
         
    shape.initialize(); 
    cout << "Genome initialized" << "\n"; 
     
    while (shape.done() != true) 
        { 
            double a[layers]; 
            double c[layers]; 
            double densitycontrast[layers]; 
            double ellipsoidvolume[layers]; 
            double ellipsoidmass[layers]; 
            double bodymass = 0; 
             
             
            shape.step(); 
             
            ShapeGenome = shape.population().best(); 
             
            int i = 0; 
             
            for (v = 0; v < layers; v++) 
                { 
                    Platemodel(ShapeGenome.gene(i), 
ShapeGenome.gene(i), ShapeGenome.gene(i+1), v, 1);           
                    i = i+3; 
                } 
//If intermediate axis needs to be calculated, second input should be 
i+1 and i should increment by 4. 
 
             
            PotentialCalc(0, ShapeGenome); 
            SphericalHarmonics(0); 
             
            bodymass = 0; 
            i=0; 
             
            for (v=0; v < layers ; v++) 
            { 
                a[v] = ShapeGenome.gene(i); 
                c[v] = ShapeGenome.gene(i+1); 
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                densitycontrast[v] = (ShapeGenome.gene(i+5) - 
ShapeGenome.gene(i+2)); 
                i = i+3; 
            } 
            //generate the ellipsoid mass and density contrast for the 
internal layers. Note that densitycontrast[v] represents the contrast 
between the *previous* layer; when calculating, you must use 
density[v-1] to correctly assign the contrast to the associated 
ellipsoid. 
             
            ellipsoidvolume[0] = 1.333333 * pi *a[0]*a[0]*c[0]; 
             
            ellipsoidmass[0] = ellipsoidvolume[0] * 
(ShapeGenome.gene(2)); 
             
            //generate the ellipsoid mass for the outer layer (no 
density contrast) 
 
            bodymass = ellipsoidmass[0]; 
             
             
            for (v=1; v < layers; v++) 
            { 
                ellipsoidvolume[v] = (1.33333*pi*a[v]*a[v]*c[v]); 
 
                ellipsoidmass[v] = ellipsoidvolume[v] * 
densitycontrast[v-1]; 
                                 
                bodymass = bodymass + ellipsoidmass[v]; 
            } 
            //total up the body's mass 
             
            double bulkdensity; 
            double bulkvolume; 
             
            bulkvolume = ellipsoidvolume[0]; 
            bulkdensity = (bodymass / bulkvolume); 
 
            cout << "Best of generation " << n << ":" "\n"; 
            cout << "C20: " << C2[0] << "\n"; 
            cout << "C22: " << C2[2] << "\n"; 
            cout << "Mass: " << bodymass << "\n"; 
            cout << "Bulk Density: " << bulkdensity << "\n"; 
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            cout << "Shape Parameters: " << shape.population().best() 
<< "\n"; 
             
               n++; 
             
 
        } 
 
        //Output the result of the GA and clear the memory. Right now 
the genome spits out the axes and density of each shell basically 
unformatted into the terminal window. In the future, upgrade this to a 
formatted output file. 
         
    shape.flushScores(); 
 
    return(0); 
         
} 
 
 
 
float 
ShapeObjective(GAGenome & d) 
{ 
     
    GARealGenome& ShapeGenome = (GARealGenome&)d; 
     
    float ShapeValue = 0.0; 
    double C22Error = 0.0; 
    double C20Error = 0.0; 
     
    int i = 0; 
     
    for (v = 0; v <= layers; v++) 
    { 
        Platemodel(ShapeGenome.gene(i), ShapeGenome.gene(i), 
ShapeGenome.gene(i+1), v, 1);           
        i = i+3; 
    } 
//If intermediate axis needs to be calculated, second input should be 
i+1 and i should increment by 4. 
 
     
    PotentialCalc(0, ShapeGenome); 
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    SphericalHarmonics(0); 
     
  
    i = 0; 
    int score = 0; 
     
    C22Error = trueC22 - C2[2]; 
    ShapeValue += 1-abs(C22Error);           
//increases the value of a solution by a value based on its precision 
compared to the actual C22 value. 
     
    C20Error = trueC20 - C2[0]; 
    ShapeValue += 1-abs(C20Error);           
//increases the value of a solution by a value based on its precision 
compared to the modeled C20 value. C20 = -J2. 
  
    //This section calculates the volume of each ellipsoid and its 
density based on the density contrast, then sums up the total mass of 
the body and compares it to the actual. The value of the solution 
increases based on its precision compared to the actual mass value. 
    
    double a[layers]; 
    double c[layers]; 
    double densitycontrast[layers]; 
    double ellipsoidvolume[layers]; 
    double ellipsoidmass[layers]; 
    double bodymass = 0; 
    double MassError; 
    i=0; 
     
    bodymass = 0; 
    i=0; 
     
    for (v=0; v < layers ; v++) 
    { 
        a[v] = ShapeGenome.gene(i); 
        c[v] = ShapeGenome.gene(i+1); 
        densitycontrast[v] = (ShapeGenome.gene(i+5) - 
ShapeGenome.gene(i+2)); 
        i = i+3; 
    } 
    //generate the ellipsoid mass and density contrast for the 
internal layers. Note that densitycontrast[v] represents the contrast 
between the *previous* layer; when calculating, you must use  
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density[v-1] to correctly assign the contrast to the associated 
ellipsoid. 
     
    ellipsoidvolume[0] = 1.333333 * pi *a[0]*a[0]*c[0]; 
     
    ellipsoidmass[0] = ellipsoidvolume[0] * (ShapeGenome.gene(2)); 
     
    //generate the ellipsoid mass for the outer layer (no density 
contrast) 
 
    bodymass = ellipsoidmass[0]; 
     
     
    for (v=1; v < layers; v++) 
    { 
        ellipsoidvolume[v] = (1.33333*pi*a[v]*a[v]*c[v]); 
         
        ellipsoidmass[v] = ellipsoidvolume[v] * densitycontrast[v-1]; 
                 
        bodymass = bodymass + ellipsoidmass[v]; 
    } 
     
    MassError = (bodymass - trueMass) / trueMass; 
    ShapeValue += 1-abs(MassError);                                                       
//increase the value of the solution if it is near the actual body 
mass 
     
    if ( (ShapeGenome.gene(i+2) > ShapeGenome.gene(i+5)))  
//increases the value of a solution if density increases with depth. 
        {ShapeValue++;}; 
     
    i = 0; 
    score = 0; 
     
    for (v=0; v< layers; v++) 
    { 
          if(     (ShapeGenome.gene(i) > ShapeGenome.gene(i+3)) 
                    &&       
//increases the value of a solution *only* if each ellipsoid is 
smaller than the preceding. 
                    (ShapeGenome.gene(i+1) > ShapeGenome.gene(i+4)) 
                        && 
                         (ShapeGenome.gene(i) > ShapeGenome.gene(i+1)) 
//increases the value of a solution *only* if the major axis is larger 
than the minor axis. 
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                        &&  (ShapeGenome.gene(i+1) >= 
(ShapeGenome.gene(i)*.95)) 
//increases the value of a solution *only* if the a minor axis is at 
least 95% of the major axis. 
             ) 
                        {score++;} 
         
        i = i+3; 
    } 
     
    if (score >= layers) 
    {ShapeValue++;} 
    else ShapeValue = 0;             
//if none of the above conditions are met, the value of the solution 
is 0, since it would be unphysical or would throw off the gravity 
solution. Note that the increase of density with depth is only for 
this model of Europa. 
     
    if (ShapeValue < 0) 
    {ShapeValue = 0;}; 
       
    return (ShapeValue); 
} 
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