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SUMMARY

Nowadays, with the booming development of the Internet, people benefit from its conve-

nience due to its open and sharing nature. A large volume of natural language texts is being

generated by users in various forms, such as search queries, documents, and social media posts.

As the unstructured text corpus is usually noisy and messy, it becomes imperative to correctly

identify and accurately annotate structured information in order to obtain meaningful insights

or better understand unstructured texts. On the other hand, the existing structured infor-

mation, which embodies our knowledge such as entity or concept relations, often suffers from

incompleteness or quality-related issues. Given a gigantic collection of texts which offers rich

semantic information, it is also important to harness the massiveness of the unannotated text

corpus to expand and refine existing structured knowledge with fewer annotation efforts.

In this dissertation, I will introduce principles, models, and algorithms for effective struc-

tured knowledge discovery from the massive text corpus. We are generally interested in obtain-

ing insights and better understanding unstructured texts with the help of structured annotations

or by structure-aware modeling. Also, given the existing structured knowledge, we are inter-

ested in expanding its scale and improving its quality harnessing the massiveness of the text

corpus. In particular, four problems are studied in this dissertation: Structured Intent Detection

for Natural Language Understanding, Structure-aware Natural Language Modeling, Generative

Structured Knowledge Expansion, and Synonym Refinement on Structured Knowledge.

ix



CHAPTER 1

INTRODUCTION

1.1 Dissertation Outline

Nowadays, with the booming development of the Internet, people benefit from its conve-

nience due to its open and sharing nature. A wide range of user goals is fulfilled on the Internet

through various forms of interactions such as web search, web chats, social media postings and

so on. The abundant text corpus that is available online embodies rich knowledge that is to be

discovered. Due to the open, sharing nature of the Internet and different linguistic preferences

of individuals, the gigantic collection of unstructured text corpus is usually noisy and messy.

It is challenging yet rewarding to correctly identify and accurately annotate structured infor-

mation in order to obtain meaningful insights or better understand the massive unstructured

texts.

The structured information summarizes our existing knowledge in a structured manner,

which is ubiquitously accessible for both machine and human beings. We may introduce triplets

that contain factual relationships among entities as the structured information in knowledge

graphs. For example, Barack Obama as an entity has a semantic relation president of with

another entity U.S.A. The structured information could be also on the concept level, where

the triplets introduce semantic relationships between concepts. For example, we may have

medicine as a concept with a relation cure to another concept disease. Besides that, the

1
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structured information can contain both entity and concept level information in a hierarchical

structure, such as Barack Obama as an entity may connect to Politician as a concept. Many

researchers in academia and industry are striving to obtain high-quality structured knowledge,

such as WordNet (Miller, 1995), Yago (Fabian et al., 2007), Freebase (Bollacker et al., 2008),

ConceptNet (Speer and Havasi, 2012), and SenticNet (Cambria et al., 2018).

However, the existing structured knowledge often suffers from incompleteness and quality-

related issues. As obtaining high-quality structured information for knowledge discovery is

usually time-consuming and labor-intensive, it is thus important to automatically expand and

refine the structured information exploiting the massiveness of unannotated text corpus.

The contributions of this dissertation are made toward two strongly correlated, synergistic

objectives:

• Utilizing Structured Information for Natural Language Understanding and

Modeling: Given a massive unannotated text corpus, we are interested in obtaining

insights, understanding and modeling the texts with the help of existing structured an-

notations or by structure-aware modeling.

• Expanding and Refining Structured Knowledge Harnessing the Massiveness of

the Text Corpus: Given the existing structured knowledge, we are interested in expand-

ing the scale and improving the quality of structured knowledge, where additional human

annotation efforts are minimized via harnessing the massive collection of the unannotated

text corpus.
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In particular, four problems are studied in this dissertation: Structured Intent Detection

for Natural Language Understanding, Structure-aware Natural Language Modeling, Generative

Structured Knowledge Expansion, and Synonym Refinement on Structured Knowledge.

• To better understand complicated user intents from their diversely expressed natural lan-

guage utterances, we utilize concept-level structured knowledge and treat intent detection

on unannotated text utterances as a structured prediction problem.

• To extract both word-level and sentence-level semantics while preserving their structural

relationships, we provide a structure-aware approach that jointly annotates word-level

concept mentions and sentence-level intent labels for each utterance.

• To expand the scale of high-quality structured knowledge and reduce data preparation

efforts, we introduce a generative modeling approach that harnesses word-level semantics

learned from the massive text corpus for structured knowledge expansion.

• To improve the quality of the existing structured knowledge, we refine it by removing syn-

onymous entities. We introduce a framework that detects entity synonyms by comparing

among contexts in which entities are mentioned from a massive text corpus.

1.2 Structured Intent Detection for Natural Language Understanding

(Part of this chapter was previously published in (Zhang et al., 2016; Zhang et al., 2017).)

Unstructured texts generated by users in their web search or social media posts are naturally

encoded with users’ information-seeking intents. To better understand texts generated by

users, an intent detection task aims to categorize the text corpus according to intents. Unlike
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conventional topic classification tasks where the label of the text is highly correlated with some

topic-specific concept words, words from different concept categories tend to co-occur in a single

piece of information-seeking utterance. When the user tries to express more information in a

single piece of utterance, the intent also becomes complicated: the users mention multiple

concepts and semantic transitions emerge among multiple concepts.

In Chapter 2, first we formally define the user intent as a semantic transition between

two concepts. For complicated utterances, we further utilize a concept-level intent graph and

formulate intent detection as a structured prediction problem: a structured intent is defined as a

sub-graph over the pre-defined concept-level intent graph where each node represents a concept

mention and each directed edge indicates a semantic transition. A multi-task neural network

model is proposed: one task extracts concept mentions, and the other task infers semantic

transitions from the utterance. A customized graph-based mutual transfer loss function is

designed to impose explicit constraints over two subtasks for collective inference.

1.3 Structure-aware Natural Language Modeling

(Part of this chapter was previously published in (Zhang et al., 2019))

Being able to recognize words as slots and detect the intent of an utterance has been a

keen issue in natural language understanding. Existing works either treat word-level slot filling

and utterance-level intent detection separately in a pipeline manner, or adopt joint models

which sequentially label slots while summarizing the utterance-level intent without explicitly

preserving the semantic hierarchy among words on the word level, slots on the concept level,

and intents on the utterance level. In Chapter 3, to exploit the semantic hierarchy for effective
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natural language modeling, we investigate a structure-aware approach that accomplishes slot

filling and intent detection in a bottom-up fashion via a dynamic routing-by-agreement schema.

The model does slot filling by learning to assign each word on the word-level to the most

appropriate slot on the concept-level via dynamic routing. The dynamic routing also aggregates

concept-level slot representations to predict the utterance-level intent. As the intent of the

utterance may also help recognize words as different slots, a re-routing schema is proposed

that further synergizes the word-level slot filling performance using the inferred utterance-level

intent in a top-down fashion.

1.4 Generative Structured Knowledge Expansion

(Part of this chapter was previously published in (Zhang et al., 2018a).)

When knowledge graph is becoming an indispensable resource that offers rich structured

information for numerous knowledge-intensive applications, it often suffers from incompleteness

issues. Building a complete, high-quality knowledge graph is time-consuming and requires

significant human annotations. Previously, most knowledge graph completion methods use

discriminative classifiers that extract triplets directly from corpus where certain relations are

expressed. When the knowledge graph is in its infancy, we lack sufficient and high-quality

annotations on the text corpus for existing discriminative models to excel.

To reduce human annotation efforts for structured knowledge expansion, in Chapter 4 we

introduce a generative perspective to increase the scale of high-quality structured knowledge and

study the Structured Knowledge Expansion task. The proposed model explores the generative

modeling capacity for entity pairs and harnesses word-level semantics learned from the massive
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text corpus for structured knowledge expansion. It is able to generate meaningful entity pairs

that are not yet observed and efficiently expand the scale of structured knowledge.

1.5 Synonym Refinement on Structured Knowledge

(Part of this chapter was previously published in (Zhang et al., 2018b).)

Currently, information extraction systems can automatically extract structured knowledge

from a large collection of text corpus. However, the task to extract information is challenging

and current systems make many mistakes: ambiguous, redundant or conflicting entity infor-

mation are prevalently observed during the construction of structured knowledge. Given an

existing knowledge graph, a lot of human annotation efforts are being made to improve the

quality of the extracted knowledge.

To improve the quality of the existing structured knowledge, in Chapter 5 we propose to

remove duplicated and redundant entity information in an existing knowledge graph. Previous

works on detecting synonymous entities focus on learning the similarity between entities using

character-level features. These methods work well for synonyms that share a lot of character-

level features like airplane/aeroplane. However, a much larger number of synonym entities in

the real-world do not share a lot of character-level features, such as JD/law degree. Instead of

relying on excessive human annotations, we propose to leverage the free-text contexts in which

entities are mentioned in a gigantic collection of text corpus for effective synonym detection.

Instead of using entities features, a novel neural network model is proposed which makes use

of multiple pieces of contexts in which the entity is mentioned, and compares the context-level

similarity via a bilateral matching schema to determine synonymity.



CHAPTER 2

Structured Intent Detection for Natural Language Understanding

This chapter was previously published as “Mining User Intentions from Medical Queries:

A Neural Network based Heterogeneous Jointly Modeling Approach” in WWW’16 (Zhang et

al., 2016), DOI: https://doi.org/10.1145/2872427.2874810, and “Bringing Semantic Struc-

tures to User Intent Detection in Online Medical Queries” in BigData’17 (Zhang et al., 2017).

DOI: https://doi.org/10.1109/BigData.2017.8258025.

2.1 Introduction

A wide range of user goals is fulfilled on the Internet through various forms of interactions

such as web search, web chats and so on. For example, online question answering websites are

able to offer globally accessible information via human-human interactions. As voice assistants

and chat-bots become more and more popular, users may ask smart devices questions via voice

commands. In service center question answering systems, customers express their requests and

get their tasks resolved. For example, booking a flight with customer service representatives.

Figure 1 illustrates three scenarios on community Q&A, voice assistant/chatbot, and service

center Q&A.

With various forms of interactions, a huge amount of text corpus are generated by users. The

text corpus generated by users, usually consists of declarative statements followed by questions,

are naturally encoded with users’ information-seeking intentions. An intent detection task tries

7
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I would like to book a flight.

I can help you with that. Where 
are you traveling to?

I am traveling to Singapore.

What date will you be traveling?

I want to fly on June 14th.

How's the weather? Is it going to 
rain? 

What helps relieve a stuffy nose?

There are a number of different 
modalities that can be used to 
help with nasal congestion…

It doesn’t look so nice in Chicago… 
down to 17 °F and snowing: 

A stuffy nose can cause 
associated sinus inflammation, 
which can give feeling of swollen 
inside and head hurting…

Chicago
Snow Showers

17°
(a) Community Q&A (b) Voice AssistantChatbot (c) Service Center Q&A

Figure 1: Intent Detection from various types of user-generated utterances.

to model and discover intentions that a user encodes in the text corpus. Unlike conventional

text classification tasks where the label of text is highly correlated with some topic-specific

words, words from different topic categories tend to co-occur in questions generated by users

for information-seeking purposes. Besides the existence of topic-specific words and word order,

word correlations and the way words are organized in the corpus are crucial to the intent

detection task. Due to different linguistic preferences of individuals, the intentions can be

expressed partially, implicitly or diversely, which makes it challenging to accurately understand

user intentions from the text corpus.

Text Intent
I have (got) a fever, should I take the Tylenol? Symptom → Medicine
Which medicine should I take if I’m running a fever? Symptom → Medicine
I’ve come down with a fever, should I take Aspirin? Symptom → Medicine
Is it okay to use ibuprofen when I’m running a temperature? Symptom → Medicine
My temperature is 103, can I use Advil? Symptom → Medicine

TABLE I: Utterances with the same intent but different expressions.
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Specifically, the intention we studied in this work is characterized as a directed semantic

transition between two concepts: from a concept that is mentioned in declarative statements

(e.g. Symptom), to another concept that indicates the user’s information need (e.g. Medicine).

As shown in Table I, each sentence adopts a unique expression but they all share the same

intention where users mention symptom concepts and look for related medications. Moreover,

when users try to express more sophisticated information in a single piece of sentence, the

semantic transitions also become complicated over multiple concepts, as shown in Table II.

Text Structured Intent
My three-year-old child is sick with a temperature of
100 degrees she can’t keep anything down including
liquids. What kind of medicine should I give my child,
and how much?

Symptom → Medicine → Instruction

Do I have insomnia if I have trouble staying asleep?
Any medication is recommended to help me fall asleep
easier?

Disease ← Symptom → Medicine

TABLE II: Complicated sentences with structured intents.

In this work, we introduce a novel neural network architecture that bring structures to detect

complicated user intents in the user-generated text corpus. We observe an appealing property

that information-seeking text corpus exhibits a strong coupling between concept mentions and

semantic transitions between concepts. The proposed model is trained to automatically discover

concept mentions and infer semantic transitions from the unstructured text corpus, in contrast
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to relying on fixed dictionaries for word-concept mapping (Chiang et al., 2012; Godbole et al.,

2010; Zhang et al., 2016) or using pre-defined parsing rules (De and Kopparapu, 2010) and

templates (Spink et al., 2004) in prior works. A customized graph-based mutual transfer loss

function is designed to impose explicit constraints to reduce the conflicts between extracting

concept mentions and inferring semantic transitions. We show that by taking the correlations

among concept mentions and semantic transitions into considerations, the proposed model is

able to accurately detect complicated user intents from the text corpus.

Experiments are conducted on the text corpus collected from an online question-answering

discussion forum. We contrast the performance of the proposed model with other alternatives

by an 8% relative improvement in micro-AUC and an 23% relative reduction in coverage loss.

2.2 Preliminaries

We now formally define the terminologies and describe the structured intent detection prob-

lem for natural language understanding. Also, we provide observations to show appealing cou-

pling properties of concept mentions and semantic transitions in the text corpus (Cai et al.,

2017), which motivates a graph-based formulation for structured intent.

2.2.1 Terminologies

Definition 1 (Concept). Let a concept c be a group or class of objects and/or abstract

ideas that share similar fundamental characteristics in a certain domain. C = {c1, c2, ..., cM}

is list of a full spectrum of M concepts in a specific domain. For example, the medical domain

contains concepts of diseases, symptoms, medicine and so on. Users can mention concepts in

a text corpus by specific object names as explicit mentions (“Tylenol”, “Ibuprofen” or “xxx
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caplet/capsule/drop/syrup”), or as implicit mentions by abstract ideas (“remedy” or “which

medication/medicine/drug”).

Definition 2 (Semantic Transition). Let a semantic transition ti→j defines a transition of

a user information-seeking intention from a concept ci to a concept cj . A semantic transition

ti→j exists in the text corpus when two concepts ci, cj ∈ C are mentioned (either explic-

itly or implicitly) with a semantic transition between them. For example, a concept transi-

tion tSymptom→Medicine in the healthcare domain usually starts with patients describing their

symptoms and asking for related information about medications that help them alleviate their

symptoms.

T contains the full spectrum of N semantic transitions in a certain domain, which can be

indexed as flat labels T = {t1, t2, ..., tN} for simplicity instead of {ti→j}. Those two index

notations are used interchangeably in this work. Multiple semantic transitions can co-exist in a

single piece of text corpus and the direction of a semantic transition does not necessarily follow

the order of concept occurrence in the text corpus. Multiple semantic transitions may follow

certain structures such as a chain-like path, like Symptom→Medicine→Instruction.

An intent is defined as a semantic transition between two concepts. Formally, we have:

Definition 3 (Intent). Considering a basic case, where each text corpus consists of some

declarative sentences followed by questions. For each information-seeking text corpus Q, the

resulting intent is denoted as a tuple pair 〈s, n〉: where s is the concept being mentioned in

declarative sentences as the information known to the user, while n indicates a concept being

mentioned in questions indicating user’s information needs.
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When a user tries to express complicated information needs, a single piece of text corpus

may embody multiple intents. We observe that multiple semantic transitions in a single piece

of text are often correlated with each other, coupled with some shared concept mentions.

To effectively model complicated semantic transitions among multiple concept mentions, we

first define an intent graph that bring structures to concept mentions and semantic transitions.

Definition 4 (Intent Graph). Let G = 〈C, T 〉 be an intent graph where each node represents

a concept cm ∈ C and each directed edge ti,j ∈ T be a semantic transition from node ci to cj .

An intent graph G is a graph representation that indicates all possible concept mentions and

semantic transitions in a certain domain. Note that the domain-specific intent graph can be

obtained from domain experts or constructed as a concept-level graph from large text corpora

using existing techniques (Hasegawa et al., 2004; Yan et al., 2009; Zhang et al., 2016).

Definition 5 (Structured Intent). Let a Structured Intent ĜQ = 〈ĈQ, T̂Q〉 be a sub-graph

of G = 〈C, T 〉, indicating concepts ĈQ ⊆ C mentioned by the text corpus Q and semantic

transitions T̂Q ⊆ T inferred from Q.

2.2.2 Problem Statement

Definition 6 (Structured Intent Detection for Natural Language Understanding).

Given 1) an information-seeking text corpus Q which consists of K elements {q1, q2, ..., qK},

where each element is a word or a phrase and 2) an intent graph G = 〈C, T 〉, where C denotes

all possible concept mentions and T indicates all possible semantic transitions, the Structured

Intent Detection problem tries to effectively infer the Structured Intent ĜQ = 〈ĈQ, T̂Q〉 as a
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Figure 3: Frequent structured intents.

sub-graph of the intent graph G, where ĈQ ⊆ C and T̂Q ⊆ T . Figure 2 illustrates this idea,

where ĈQ are shown as colored nodes and T̂Q are shown as black arrows with dashed lines.

2.2.3 Observations

We sample 10,000 pieces of text corpus from an online medical question answering discussion

forum and label them with structured intents. We end up having 17 unique types of concepts

and 23 unique types of semantic transitions (Details in Section 2.4.1).

We show the top-9 frequent structured intents being annotated, as shown in Figure 3.

By characterizing complicated user intentions with a graph-based formulation, the Structured

Intent Detection task maps each text corpus with diverse expressions into a graph structure

that indicates users’ information needs in a clear and structural way.

More importantly, we found that the Structured Intents rarely have disconnected compo-

nents, from a perspective of the graph theory. This not only shows that users tend to express

multiple semantic transitions in a single piece of information-seeking text corpus but also in-
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dicates that multiple semantic transitions in a single piece of text corpus are expressed and

developed together, coupled with some shared concept mentions. In summary, the connectivity

patterns of frequent Structured Intents further imply that by taking advantages of the seman-

tic structure, the correlations between nodes and edges in the Structured Intent can be jointly

inferred with a synergistic effect.

2.3 Proposed Approach

In this section, a neural network structure is introduced to provide an end-to-end solution

to the Structured Intent Detection problem where the input is a text corpus and the output

is a Structured Intent inferred from the corpus. The model utilizes word representations to

deal with the lexical diversities. Also, part-of-speech embedding of each word is used to further

capture the syntax information. Recurrent neural networks are adopted to model the sequential

information from distributed representations of word and POS tag sequences in each query

simultaneously. In the graph-based co-inference procedure, concept mentions and semantic

transitions are inferred collectively. A Concept Extractor is proposed to utilize the joint outputs

of two RNNs to encode each element into a concept vector. Especially, the Concept Extractor

is able to learn an attention weight as a confidence score that indicates the contribution of each

element to each concept. While for inferring semantic transitions, a transition encoder learns to

summarize the semantics and construct a transition vector, from which we infer a probability

distribution over all possible semantic transitions. The loss of the neural network structure

not only incorporates prediction errors between the inferred semantic transitions and the true

semantic transitions but also exploits a mutual transfer loss indicating the conflicts between
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the extracted concepts and the semantic transitions. A Structured Intent is presented with the

inferred concepts and semantic transitions, by collectively minimizing a graph-based mutual

transfer loss based on the intent graph. Figure 4 gives an overview of the proposed method.

Query

Word POS Tag

Embedding Embedding

RNN RNN

Concept Encoder Transition Encoder

Concept 
TransitionsConcepts

Active Concept Graph

Figure 4: The proposed neural network architecture.

2.3.1 Lexical-Syntax Representations

Unlike traditional methods which ignore the sequential information of the input text corpus

and treat it as a bag-of-words (BoW), in this work a text corpus Q is considered as a sequence

of elements {q1, q2, ..., qK}, where each element qk can be a word or a phrase. K is the length of
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the text corpus, which varies in different corpora. For each element qk in a text corpus Q, we

utilize both word representations indicating the lexical information, as well as its corresponding

Part-of-Speech (POS) tag as the syntax information.

Part-of-speech (POS) tags bring useful syntax information about general word categories

(such as noun, verb, adjective, etc.), which is helpful in dealing with ambiguous words and

diversified expressions. For example, fever can be either a noun or a verb. The word fever

with a POS tag “noun” is defined as a disease that causes an increase in body temperature and

the fever with a POS tag “verb” can be considered as someone in a fever, as a symptom. In

this work, an existing POS tagger1 is utilized to give general POS tags to each element in the

text corpus. The lexical-syntax joint representation consists of words along with POS tags are

shown to be effective in modeling both lexical (words) and syntax (POS tags) from the natural

language text corpus in various tasks (Legrand and Collobert, 2015; Zhang et al., 2016). In this

work, each element qk of a text corpus Q is represented by words and POS tags as a tuple:

qk = (wk, pk) s.t. wk ∈ RVword , pk ∈ RVpos , (2.1)

where wk is the one-hot representation of the k-th word in the corpus Q and Vword is the number

of unique words, namely the vocabulary size. Similarly, pk is the one-hot representation of the

k-th word’s POS tag in the corpus. VPOS is the POS vocabulary size.

1https://github.com/fxsjy/jieba
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2.3.2 Word Embedding

The one-hot representation suffers from the curse of dimensionality since the representation

becomes extremely sparse as the vocabulary becomes large. The word embedding is used to

transfer one-hot representation of each word wk and POS tag pk into a dense representation:

w embedk ∈ RDword , p embedk ∈ RDpos , where Vword usually can be large up to millions while

Dword is reduced to several hundreds. Note that Dword and Dpos are usually set empirically. In

this work, we set Dword = 100 and Dpos = 20. The embedded representation of each wk and pk

are learned respectively by a linear mapping via a skip-gram model (Mikolov et al., 2013b):

embed wk = Wword wk, embed pk = Wpos pk, (2.2)

where Wword ∈ RDword×Vword and Wpos ∈ RDpos×Vpos are weights.

In this work, the embedding is initialized with word vectors pre-trained from 64 million

text corpus and updated with the model during training. After the word embedding, the k-

th element in the text corpus qk has a lexical-syntax representation, represented by a tuple:

ek = (embed wk, embed pk).

2.3.3 Recurrent Neural Network

Once we obtained a representation ek for each element qk in a text corpus Q, the embed wk

sequence and the embed pk sequences are fed into two recurrent neural networks, namely RNNW

and RNNP, to capture the sequential semantics respectively.
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In general, a recurrent neural network keeps hidden states over a sequence of elements and

updates the hidden state hk by the current input xk as well as the previous hidden state hk−1

where k > 1 by a recurrent function: hk = RNN(xk, hk−1). The Gated Recurrent Unit (GRU)

(Cho et al., 2014) is proposed to address the gradients decay or exploding problem (Bengio

et al., 1994; Hochreiter, 1998) over long sequences in the vanilla RNN. The GRU has been

attracting great attention since it overcomes the vanishing gradient in traditional RNNs and

is more efficient than LSTM (Hochreiter and Schmidhuber, 1997) on certain tasks (Chung et

al., 2014). The GRU is designed to learn from previous time stamps with long time lags of

unknown size between important time stamps.

In this work, two separate RNN with GRU cells, namely RNNW and RNNP , are adopted

to model the sequential information in the sequence of embedded words embed wk and the

sequence of embedded POS tags embed pk:

h wk, o wk = RNNW(embed wk, h wk−1), h pk, o pk = RNNP(embed pk, h pk−1), (2.3)

2.3.4 Graph-based Co-inference

In order to fully exploit the correlations of concept mentions and semantic transitions,

instead of inferring concepts and semantic transitions separately, a collective inference schema

is adopted. The Concept Extractor aims to select a subset of concepts ĈQ ⊆ C that are

mentioned in a the corpus Q. A transition encoder is introduced to infer semantic transitions

T̂Q ⊆ T over the Intent Graph G. The concepts ĈQ and transitions T̂Q are inferred collectively,
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by minimizing a mutual transfer loss which indicates the conflicts within the inferred Structured

Intent ĜQ =< ĈQ, T̂Q >.

Concept Extractor The Concept Extractor encodes all concept mentions from a sequence

of output states of an RNN to a single concept vector. Since some words in the text corpus

may contribute more to a concept, the Concept Extractor itself learns to assign a confidence

score to each output state. Let ok be the k-th output vector of an RNN, while in this work we

concatenate the output vectors of RNNW and RNNP :

ok = [o wk, o pk], o wk ∈ R1×Dow , o pk ∈ R1×Dop , (2.4)

where Dow and Dop are the output dimensions of output vectors in RNNW and RNNP . The

Concept Extractor assigns a score sk for each ok indicating the degree of confidence, parame-

terized by θ:

sk = CE (ok; θ)∑
k′∈K

CE (ok′ ; θ)
s.t.

∑
k
sk = 1, ∀sk ∈ [0, 1]. (2.5)

The sk scores for all elements in a text corpus are normalized to sum up to one. We implement

the CE(·) function as a single layer neural network with a non-linear activation function ReLU.

Thus θ consists of {Wθ ∈ R(Dow +Dop )×1, bθ ∈ R}. Note that although weights and biases

are applied on each of the ok, they are shared among all o1, o2, ..., oK . Figure 5 shows the

architecture of the Concept Extractor, which is used to determine confidence scores for each

joint output state. This figure shows an example of a score s1 learned from the Concept

Extractor for o1. The oCE ∈ R(Dow +Dop )×1 is a representation of encoded concepts from the
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Figure 5: The Concept Extractor.

text corpus, which is calculated as the weighted sum on the output vectors as OCE = ∑
k
skok.

The probability of a concept ci ∈ C being mentioned in any part of the text corpus Q is

defined by a softmax function over logits on all concepts, where the logit for each concept is

learned by a logistic function:

(ĈQ)m = P (cm|cm ∈ C; θ) = 1
1 + e−WCEOCE+bCE

, (2.6)

where WCE ∈ R1×(Dow +Dop ), bCE ∈ R are weights and biases for each type of concept m ∈M .

We feed logits ĈQ ∈ R1×M to the softmax layer and get the probability distribution over all M

types of concepts being mentioned in the given text corpus Q.

Transition Encoder In the field of machine translation, a novel recurrent neural network

encoder-decoder has gained attention (Sutskever et al., 2014), where the encoder recurrent

neural network encodes the global information spanning over the whole input sentence in its last
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hidden state. Inspired by the effectiveness of the last hidden states in modeling natural language

sequences in applications like dialog systems (Serban et al., 2016), we propose a transition

encoder which leverages the last hidden state of the neural network for both RNNW , RNNP

to make inferences on semantic transitions, where the transition vector oTE is constructed by

OTE = [h wK , h pK ], where K is the length of the query. The logit of a transition tn ∈ T is

quantified as:

(T̂Q)n = P (tn|tn ∈ T ;φ) = 1
1 + e−WT EOT E+bT E

, (2.7)

where φ = {WTE ∈ R1×(Dow+Dop), bTE ∈ R} parameterizes weights and biases for each type of

transition. Similarly, T̂Q ∈ R1×N is fed to the softmax layer and we get the inferred probability

distribution over all N semantic transitions.

2.3.5 Mutual Transfer Loss

The idea of mutual transfer loss is to characterize the loss caused by transferring the inferred

semantic transitions to their corresponding concept mentions, and the other way around. Since

for each semantic transition ti→j ∈ T , two concepts ci and cj are involved. If a semantic

transition ti→j is inferred with a high probability while its corresponding concepts ci, cj have

low probabilities, then that indicates conflicts in the final Structured Intent. The mutual

transfer loss is proposed in the co-inference procedure to minimize the conflicts between the

inferred concepts and semantic transitions so that the resulting Structured Intent can be more

reasonable.

The graph-based formulation for the Structured Intent gives an appealing property that

transitions and their proximate concepts can be clearly characterized by a transfer matrix
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A ∈ RM×N over the Intent Graph G = 〈C, T 〉. Each entry amn = 1 if and only if the concept

cm involves in at least one end of a semantic transition tm→· or t·→m. The mutual transfer loss

is defined on ĈQ, T̂Q, TQ as:

LMTL(ĈQ, T̂Q, TQ) = H(TQ, T̂Q) + E(ĈQ, T̂Q), (2.8)

where TQ is a ground truth one-hot indicator for semantic transitions given the corpus Q. ĈQ

and T̂Q are extracted concepts and inferred semantic transitions with the proposed method.

H(·, ·) calculates the cross entropy (Tsoumakas et al., 2009). E(ĈQ, T̂Q) is an energy-based

function on inferred transitions T̂Q and extracted concepts ĈQ. Each combination of ĈQ and

T̂Q corresponds with an energy value, the lower energy level a combination of ĈQ and T̂Q has

indicates less conflicts among the inferred concepts and transitions. In this work, an energy-

based function for E(ĈQ, T̂Q) is proposed as:

E(ĈQ, T̂Q) = LR(ĈQ, T̂QAT ) + LR(T̂Q, ĈQA), (2.9)

where LR is implemented by a ranking loss function (Murphy, 2012) that penalizes cases where

the inferred concepts/transitions after transformation by matrix A have high probabilities but

order below the ranking of the originally inferred concepts/transitions in the same corpus. LR

has a general form:

LR(X̂, Ŷ ) = 1∣∣∣X̂∣∣∣ (L− ∣∣∣X̂∣∣∣) |{(p, q) : Ŷp < Ŷq, X̂p ≥ X̂q}, (2.10)
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where X̂ ∈ R1×L is the originally inferred labels and Ŷ ∈ R1×L is the inferred labels from the

transformation with A. |·| denotes the number of ground truth labels being assigned. L is the

label size, where we have M for concepts and N for semantic transitions.

2.4 Evaluation

2.4.1 Dataset

We collect text corpora from an online medical question answering discussion forum1, on

which user posted their healthcare related questions and medical professionals give online sug-

gestions or advice. The obtained corpora are in Chinese. Due to the fact that sentences in

Chinese are not naturally split by spaces, word segmentation is performed using a Chinese

word segmentation package2.

After preprocessing and annotation, we obtain 10,000 pieces of text corpora. We end up

having 17 unique types of concepts and 23 unique types of semantic transitions, among which

11,531 unique words and 60 unique POS tags are observed. The POS tagging uses ICTCLAS

annotation (Zhang et al., 2003). The average length of the text corpus is 13.8, with a standard

variation of ±6.1. The average number of concepts in the labeled corpus is 3.6020±0.8. The

average number of semantic transitions is 2.4723±0.7.

Word embeddings are pre-trained using a skip-gram model (Mikolov et al., 2013b) on 64

million unlabeled text corpus separately. Context window size is set to 8 and we specify a

1http://club.xywy.com

2https://github.com/fxsjy/jieba
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minimum occurrence count of 5. The vocabulary contains 100-dimension vectors on 382,216

words. Words not presented in the set of pre-trained words are initialized as random vectors.

All word vectors will be updated during training.

2.4.2 Experiment Settings

To show the advantages of the proposed method in addressing the concept transition infer-

ence problem, we compare it with the following baseline models.

• LR: a logistic regression model applied with POS tagging features and word representa-

tions.

• NNID-JM (Zhang et al., 2016): the neural network intent detection model with joint

modeling. Both words and POS tags are used to characterize the words in the corpus.

Domain-specific POS tags, such as “noun medicine”, are used in NNID-JM instead of

“noun” for word “Tylenol”. The NNID-JM doesn’t explicitly exploit label correlations on

the output level.

• CI: the Concept Inference model which only infers mention of concepts from the corpus

with the Concept Extractor. H(CQ, ĈQ) is used as the loss function for the CI task.

• CTI: the Concept Transition Inference model without co-inference. Only semantic tran-

sitions are inferred from the corpus. The last output states of two RNNs are concatenated

to predict the semantic transitions. H(TQ, T̂Q) is used as the loss function.

• coCTI: the Concept Transition Inference model with co-inference. H(TQ, T̂Q)+H(CQ, ĈQ)

is used as the loss function. This variation can be seen as a multi-task learning model for
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extracting concepts and inferring semantic transitions, where two tasks share the lower-

level neural network structure for word representation.

• coCTI-MTL: the proposed model with co-inference and a mutual transfer loss LMTL,

where the CI task and CTI task not only share the neural network structure, but also

adopt the mutual transfer loss.

Evaluation Metrics: Each directed edge in the Intent Graph is considered as an individual

label and we evaluate inferred Structured Intent as a multi-class, multi-label classification prob-

lem. Receiver operating characteristic (ROC), the micro/macro-average area under the curve

(micro-AUC, macro-AUC), coverage error and label ranking average precision (LRAP) are used

to evaluate the effectiveness of the proposed model in inferring Structured Intents from the text

corpus. The ROC and AUCs focus on the quality of prediction, while the coverage error and

LRAP are introduced to evaluate the completeness/ranking of the prediction. ROC is the curve

created by plotting the true positive rate (TPR) against the false positive rate (FPR) at various

threshold settings. Micro-AUC computes the averaged area under the ROC curve over all the

labels. Coverage error computes the average number of labels that we need to have in the final

prediction in order to predict all true labels. LRAP score favors better rank to labels that are

associated to each sample and is usually used in multi-label ranking problems.

Experiment Settings: The embeddings for word and POS tagging have a dimension of 100

and 20, respectively. The hidden layer and the output layer of the GRU unit have a dimension

of 100. For training the proposed neural network structure, 70% of the labeled data are used

for training and 10% samples are served as the validation set to tune for the best parameter set.
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The remaining data are used for testing. Cross-validation is used and we combine test data in

each fold to report the test performance. The optimization is performed in a mini-batch fashion

with a batch size of 32. The Adam Optimizer (Kingma and Ba, 2014) is applied to train the

neural network and the initial learning rate is set to 10−4. Weight variables are initialized with

the Xavier initializer (Glorot and Bengio, 2010) and bias variables are initialized as zeros.

2.4.3 Experiment Results

Figure 6 shows the effectiveness of the proposed model by micro-AUC and ROC curves.

Generally, neural network based models (NNID-JM, CTI, coCTI, coCTI-MTL) outperform

traditional logistic regression model (LR) consistently. For NNID-JM, in order to make a fair
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Figure 6: Micro-AUC scores and ROC curves.

comparison, domain specific POS tags (such as noun disease, noun medicine, noun symptom)

are maintained as an external knowledge base. Those POS tags are used by the POS tag-



27

ger in NNID-JM as its default setting. When compared with NNID-JM, the proposed CTI

model achieves similar performance on micro-AUC, while it doesn’t rely on any other external

knowledge like domain-specific POS tags in NNID-JM.

From Figure 6 we can further observe that CTI-MTL achieves the best performance (0.8731

in micro-AUC) among all the comparison methods in correctly inferring semantic transitions

from the text corpus. The CTI-MTL model has a nearly 2.5% improvement on micro-AUC

when compared with coCTI and a nearly 7.5% improvement with CTI. This demonstrates that

the mutual transfer loss which penalizes conflicts between the extracted concept mentions and

inferred semantic transitions can indeed improve the structured intent detection performance.
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Concept Transition LR NNID-JM CTI coCTI coCTI-MTL
Symptom→Diet 0.6544 (5) 0.7755 (4) 0.7669 (3) 0.7959 (2) 0.8495 (1)
Symptom→Medicine 0.7022 (5) 0.7893 (4) 0.8242 (3) 0.8571 (2) 0.8624 (1)
Symptom→Cause 0.7600 (5) 0.8549 (4) 0.8786 (3) 0.8911 (1) 0.8880 (2)
Disease→Diet 0.7818 (5) 0.8670 (4) 0.8681 (3) 0.9059 (2) 0.9458 (1)
Disease→Treatment 0.7181 (5) 0.7787 (3) 0.7482 (4) 0.8456 (2) 0.8836 (1)
Disease→Examine 0.6397 (5) 0.6707 (4) 0.7838 (3) 0.8221 (2) 0.8480 (1)
Disease→Medicine 0.7623 (5) 0.8726 (4) 0.8749 (3) 0.8873 (2) 0.9015 (1)
Surgery→Recover 0.8117 (5) 0.9126 (3) 0.9012 (4) 0.9239 (2) 0.9396 (1)
Surgery→Sequela 0.7385 (5) 0.8031 (4) 0.8214 (3) 0.8417 (2) 0.8972 (1)
Surgery→Syndrome 0.7896 (5) 0.7994 (4) 0.8634 (2) 0.8619 (3) 0.9172 (1)
Surgery→Risk 0.6613 (5) 0.8063 (4) 0.8688 (3) 0.8715 (2) 0.9099 (1)
Medicine→Symptom 0.6861 (5) 0.8275 (3) 0.7553 (4) 0.8294 (2) 0.8598 (1)
Medicine→Side Effect 0.6652 (5) 0.8162 (3) 0.7771 (4) 0.8135 (2) 0.8814 (1)
Medicine→Disease 0.6806 (4) 0.6514 (5) 0.8081 (3) 0.8126 (2) 0.8678 (1)
Medicine→Instruction 0.7090 (5) 0.7761 (3) 0.7603 (4) 0.8170 (2) 0.8820 (1)
Examine→Fee 0.7576 (5) 0.9049 (3) 0.8981 (4) 0.9425 (2) 0.9482 (1)
Examine→Diagnosis 0.6832 (5) 0.7956 (3) 0.7445 (4) 0.8383 (2) 0.8822 (1)
Symptom→Treatment 0.6817 (5) 0.7640 (3) 0.7313 (4) 0.8130 (2) 0.8531 (1)
Symptom→Department 0.5978 (5) 0.6460 (3) 0.6013 (4) 0.6738 (2) 0.8080 (1)
Disease→Cause 0.7306 (5) 0.8206 (4) 0.8515 (3) 0.8608 (2) 0.8634 (1)
Disease→Symptom 0.6936 (4) 0.7552 (3) 0.6845 (5) 0.7554 (2) 0.8372 (1)
Disease→Department 0.6931 (5) 0.7387 (4) 0.7431 (3) 0.7652 (2) 0.8290 (1)
Disease→Surgery 0.7801 (5) 0.8795 (4) 0.9029 (3) 0.9236 (2) 0.9380 (1)

TABLE III: Fine-grained AUC scores for all semantic transitions.

Figure 7 shows the effectiveness of the co-inference procedure by comparing the performance

of CTI with coCTI. The CI infers concept mentions so we can’t simply compare its performance

with CTI/coCTI where semantic transitions are inferred. However, for CTI and coCTI, the

improved performance on both micro-AUC and macro-AUC validates the effectiveness of infer-

ring concepts and semantic transitions collectively than inferred separately. The coCTI model

can be considered as a multi-task learning model where the lower-level text representations are

learned jointly and shared between two sub-tasks.

Furthermore, the fine-grained AUC scores on all semantic transitions without micro/macro-

averaging are shown in Table III. A general observation we can draw from the results is that
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the coCTI-MTL model is able to outperform other baselines in almost all types of semantic

transitions.
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Figure 8: Coverage Loss and Label Ranking Average Precision (LRAP).

Figure 8 shows the coverage loss and LRAP over proposed methods and other baselines,

where the coCTO-MTL model is able to achieve the lowest coverage error and the highest label

ranking average precision score.

2.5 Related Works

Query Analysis As the number of people posting questions or searching for information online

is growing rapidly, researchers have been focusing on new problems and applications based on
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the user-generated text corpus, such as queries or search queries. (Limsopatham et al., 2013)

analyzes the conceptual relationship in online web documents records for a better web search.

(Stanton et al., 2014) focuses on the circumlocution problem in diagnostic questions in the

healthcare domain, where users are not able to express their ideas effectively. (Zhang et al.,

2016) tries to model user intentions as a classification task for text queries. (Liu et al., 2015)

proposes a technique to detect whether users express their own experiences in the generated

text corpus. (Li et al., 2016) introduces a knowledge discovery model for the online question-

answering corpus. In (Liu et al., 2016), authors introduce a neural network model to understand

users questions and try to generate answers appropriately. Being able to infer concept transi-

tions from noisy, user-generated questions may further facilitate various applications in domains

like healthcare, such as healthcare question-answering, medical dialog systems or recommen-

dation. For example, once we extracted the concept transition Symptom → Medicine from a

question Any medication is recommended to help me fall asleep easier?, we may fol-

low up by recommending the user to the nearest pharmacy for further medical consultations

on corresponding OTC medicines on Insomnia.

Text Classification Recently, lots of neural network models are developed for classifying

natural language text corpus into different categories (Kalchbrenner et al., 2014; Lai et al.,

2015). Those methods achieve decent performance on general text classification tasks. The

proposed Structured Intent Detection task can be seen as a multi-class multi-label classification

problem. Unlike traditional text classification tasks like news classification where the existence

of some topic words may easily dominate the label for a news title, users tend to mention
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multiple concepts in a single piece of text corpus. It is crucial to accurately infer semantic

transitions among those concepts, besides extracting concept mentions only.

Also, the aforementioned methods consider the textual information only. With a graph-

based formation in this work, our model seamlessly incorporates an existing Intent Graph for

effective intent detection on complicated information-seeking text corpora. More specifically,

we propose to predict concept mentions as nodes and semantic transitions as links collectively,

while most existing works have been focusing on predicting links among concrete entities, e.g.

among users in social networks (Liben-Nowell and Kleinberg, 2007), or predicting links among

entities on a knowledge graph (Nickel et al., 2016; Bordes et al., 2013).



CHAPTER 3

Structure-aware Natural Language Modeling

Part of this chapter was published as “Joint Slot Filling and Intent Detection via Cap-

sule Neural Networks”, in ACL’19 (Zhang et al., 2019): https://arxiv.org/abs/1812.09471.

3.1 Introduction

With the ever-increasing accuracy in speech recognition and complexity in user-generated

utterances, it becomes a critical issue for mobile phones or smart speaker devices to understand

the natural language in order to give informative responses. Slot filling and intent detection play

important roles in Natural Language Understanding systems. For example, given an utterance

from the user, the slot filling annotates the utterance on a word-level, indicating the slot type

mentioned by a certain word such as the slot artist mentioned by the word Sungmin, while

the intent detection works on the utterance-level to give categorical intent label(s) to the whole

utterance. Figure 9 illustrates this idea.

Word Put Sungmin into      my          summer playlist

Slot   O  B-artist  O B-playlist_owner B-playlist O
Intent  AddToPlaylist

Figure 9: An example of an utterance with BIO format annotation.

32

https://arxiv.org/abs/1812.09471
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To deal with diversely expressed utterances without additional feature engineering, deep

neural network based user intent detection models (Hu et al., 2009; Xu and Sarikaya, 2013;

Zhang et al., 2016; Liu and Lane, 2016; Zhang et al., 2017; Chen et al., 2016; Xia et al., 2018)

are proposed to classify user intents given their utterances in the natural language.

Currently, the slot filling is usually treated as a sequential labeling task. A neural network

such as a recurrent neural network (RNN) or a convolution neural network (CNN) is used

to learn context-aware word representations, along with sequence tagging methods such as

conditional random field (CRF) (Lafferty et al., 2001) that infer the slot type for each word in

the utterance.

Word-level slot filling and utterance-level intent detection can be conducted simultaneously

to achieve a synergistic effect. The recognized slots, which possess word-level signals, may give

clues to the utterance-level intent of an utterance. For example, with a word Sungmin being

recognized as a slot artist, the utterance is more likely to have an intent of AddToPlayList

than other intents such as GetWeather or BookRestaurant.

Some existing works learn to fill slots while detecting the intent of the utterance (Xu and

Sarikaya, 2013; Hakkani-Tür et al., 2016; Liu and Lane, 2016; Goo et al., 2018): a convolution

layer or a recurrent layer is adopted to sequentially label word with their slot types: the last

hidden state of the recurrent neural network, or an attention-weighted sum of all convolution

outputs are used to train an utterance-level classification module for intent detection. Such

approaches achieve decent performances but do not explicitly consider the task taxonomy on two

tasks, nor the hierarchical relationship between words, slots, and intents: intents are sequentially
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summarized from the word sequence. As the sequence becomes longer, it is risky to simply rely

on the gate function of RNN to compress all contexts in a single vector (Cheng et al., 2016).

In this work, we make the very first attempt to bridge the gap between word-level slot

modeling and the utterance-level intent modeling via a hierarchical capsule neural network

structure (Hinton et al., 2011; Sabour et al., 2017) that is aware of the task taxonomy. A capsule

houses a vector representation of a group of neurons. The capsule model learns a hierarchy

of feature detectors via a routing-by-agreement mechanism: capsules for detecting low-level

features send their outputs to high-level capsules only when there is a strong agreement of their

predictions to high-level capsules.

The aforementioned properties of capsule models are appealing for natural language under-

standing from a hierarchical perspective: words such as Sungmin are routed to concept-level

slots such as artist, by learning how each word matches the slot representation. Concept-

level slot features such as artist, playlist owner, and playlist collectively contribute to

an utterance-level intent AddToPlaylist. The dynamic routing-by-agreement assigns a larger

weight from a lower-level capsule to a higher-level when the low-level feature is more predictive

to one high-level feature, than other high-level features. Figure 10 illustrates this idea. The

model does slot filling by learning to assign each word in the WordCaps to the most appropriate

slot in SlotCaps via dynamic routing. The weights learned via dynamic routing indicate how

strong each word in WordCaps belongs to a certain slot type in SlotCaps. The dynamic rout-

ing also learns slot representations using WordCaps and the learned weight. The learned slot

representations in SlotCaps are further aggregated to predict the utterance-level intent of the
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utterance. Once the intent label of the utterance is determined, a novel re-routing process is

proposed to help improve word-level slot filling by the inferred utterance-level intent label. The

solid lines indicate the dynamic-routing process and dash lines indicate the re-routing process.

put my summer playlist
Word

Slot

Intent

playlist contextmovie_type
…

play_music

…

add_to_playlist get_weather

into

… …
……

playlist
_ownerartist

Dynamic 
Routing

Dynamic 
Routing

Re-
Routing

WordCaps

SlotCaps

IntentCaps

Sungmin

Figure 10: Illustration of the proposed Capsule-NLM model.

The inferred utterance-level intent is also helpful in refining the slot filling result. For exam-

ple, once an AddToPlaylist intent representation is learned in IntentCaps, the slot filling may

capitalize on the inferred intent representation and recognize slots that are otherwise neglected

previously. To achieve this, we propose a re-routing schema for capsule neural networks, which

allows high-level features to be actively engaged in the dynamic routing between WordCaps

and SlotCaps, which improves the slot filling performance.

To summarize, the contributions of this work are as follows:
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• Encapsulating the hierarchical relationship among word, slot, and intent in an utterance

by a hierarchical capsule neural network structure.

• Proposing a dynamic routing schema with re-routing that achieves synergistic effects for

joint slot filling and intent detection.

• Showing the effectiveness of our model on two real-world datasets, and comparing with

existing models as well as commercial natural language understanding services.

3.2 Proposed Approach

We propose to model the hierarchical relationship among each word, the slot it belongs to,

and the intent label of the whole utterance by a hierarchical capsule neural network structure

called Capsule-NLM. The proposed architecture consists of three types of capsules: 1) Word-

Caps that learn context-aware word representations, 2) SlotCaps that categorize words by their

slot types via dynamic routing, and construct a representation for each type of slot by aggre-

gating words that belong to the slot, 3) IntentCaps determine the intent label of the utterance

based on the slot representation as well as the utterance contexts. Once the intent label has

been determined by IntentCaps, the inferred utterance-level intent helps re-recognizing slots

from the utterance by a re-routing schema.

3.2.1 WordCaps

Given an input utterance x = (w1,w2, ...,wT ) of T words, where each word is initially

represented by a vector of dimension DW . Here we simply trained word represenations from

scratch. Various neural network structures can be used to learn context-aware word represen-
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tations. For example, a recurrent neural network such as a bidirectional LSTM (Hochreiter and

Schmidhuber, 1997) can be applied to learn representations of each word in the utterance:

~ht = LSTMfw(wt, ~ht−1),
←
ht = LSTMbw(wt,

←
ht+1). (3.1)

For each word wt, we concatenate each forward hidden state ~ht obtained from the forward

LSTMfw with a backward hidden state
←
ht from LSTMbw to obtain a hidden state ht. The

whole hidden state matrix can be defined as H = (h1,h2, ...,hT ) ∈ RT×2DH , where DH is the

number of hidden units in each LSTM. In this work, the parameters of WordCaps are trained

with the whole model, while sophisticated pre-trained models such as ELMo (Peters et al.,

2018) or BERT (Devlin et al., 2019) may also be integrated.

3.2.2 SlotCaps

Traditionally, the learned hidden state ht for each word wt is used as the logit to predict

its slot tag. When H for all words in the utterance is learned, sequential tagging methods

like the linear-chain CRF models the tag dependencies by assigning a transition score for each

transition pattern between adjacent tags to ensure the best tag sequence of the utterance from

all possible tag sequences.

Instead of doing slot filling via sequential labeling which does not directly consider the

dependencies among words, the SlotCaps learn to recognize slots via dynamic routing. The

routing-by-agreement explicitly models the hierarchical relationship between capsules to address

the task taxonomy explicitly. For example, the routing-by-agreement mechanism send a low-
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level feature, e.g. a word representation in WordCaps, to high-level capsules, e.g. SlotCaps,

only when the word representation has a strong agreement with a slot representation.

The agreement value on a word may vary when being recognized as different slots. For

example, the word three may be recognized as a party size number slot or a time slot. The

SlotCaps first convert the word representation obtained in WordCaps with respect to each slot

type. We denote pk|t as the resulting prediction vector of the t-th word when being recognized

as the k-th slot:

pk|t = σ(WkhTt + bk), (3.2)

where k ∈ {1, 2, ...,K} denotes the slot type and t ∈ {1, 2, ..., T}. σ is the activation function

such as tanh. Wk ∈ RDP×2DH and bk ∈ RDP×1 are the weight and bias matrix for the k-th

capsule in SlotCaps, and DP is the dimension of the prediction vector.

Slot Filling by Dynamic Routing-by-agreement We propose to determine the slot type for

each word by dynamically route prediction vectors of each word from WordCaps to SlotCaps.

The dynamic routing-by-agreement learns an agreement value ckt that determines how likely

the t-th word agrees to be routed to the k-th slot capsule. ckt is calculated by the dynamic

routing-by-agreement algorithm (Sabour et al., 2017), which is briefly recalled in Algorithm 1.

The above algorithm determines the agreement value ckt between WordCaps and SlotCaps

while learning the slot representations vk in an unsupervised, iterative fashion. ct is a vector

that consists of all ckt where k ∈ K. bkt is the logit (initialized as zero) representing the log

prior probability that the t-th word in WordCaps agrees to be routed to the k-th slot capsule in

SlotCaps (Line 2). During each iteration (Line 3), each slot representation vk is calculated by
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Algorithm 1 Dynamic routing-by-agreement
1: procedure Dynamic Routing(pk|t, iter)
2: for each WordCaps t and SlotCaps k: bkt ← 0.
3: for iter iterations do
4: for all WordCaps t: ct ← softmax(bt)
5: for all SlotCaps k: sk ← Σrcktpk|t
6: for all SlotCaps k: vk = squash(sk)
7: for all WordCaps t and SlotCaps k: bkt ← bkt + pk|t · vk
8: end for
9: Return vk
10: end procedure

aggregating all the prediction vectors for that slot type {pk|t|t∈T}, weighted by the agreement

values ckt obtained from bkt (Line 5-6):

sk =
T∑
t

cktpk|t, (3.3)

vk = squash(sk) = ‖sk‖2

1 + ‖sk‖2
sk
‖sk‖

, (3.4)

where a squashing function squash(·) is applied on the weighted sum sk to get vk for each slot

type. Once we updated the slot representation vk in the current iteration, the logit bkt becomes

larger when the dot product pk|t · vk is large. That is, when a prediction vector pk|t is more

similar to a slot representation vk, the dot product is larger, indicating that it is more likely

to route this word to the k-th slot type (Line 7). An updated, larger bkt will lead to a larger

agreement value ckt between the t-th word and the k-th slot in the next iteration. On the other
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hand, it assigns low ckt when there is inconsistency between pk|t and vk. The agreement values

learned via the unsupervised, iterative algorithm ensures the outputs of the WordCaps get sent

to appropriate subsequent SlotCaps after iterslot iterations.

Cross Entropy Loss for Slot Filling

For the t-th word in an utterance, its slot type is determined as follows:

ŷt = arg max
k∈K

(ckt). (3.5)

The slot filling loss is defined over the utterance as the following cross-entropy function:

Lslot = −
∑
t

∑
k

ykt log(ŷkt ), (3.6)

where ykt indicates the ground truth slot type for the t-th word. ykt = 1 when the t-th word

belongs to the k-th slot type.

3.2.3 IntentCaps

The IntentCaps take the output vk for each slot k ∈ {1, 2, ...,K} in SlotCaps as the input,

and determine the utterance-level intent of the whole utterance. The IntentCaps also convert

each slot representation in SlotCaps with respect to the intent type:

ql|k = σ(WlvTk + bl), (3.7)
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where l ∈ {1, 2, ..., L} and L is the number of intents. Wl ∈ RDL×DP and bl ∈ RDL×1 are the

weight and bias matrix for the l-th capsule in IntentCaps.

IntentCaps adopt the same dynamic routing-by-agreement algorithm, where:

ul = Dynamic Routing(ql|k, iterintent). (3.8)

Max-margin Loss for Intent Detection

Based on the capsule theory, the orientation of the activation vector ul represents intent prop-

erties while its length indicates the activation probability. The loss function considers a max-

margin loss on each labeled utterance:

Lintent =
L∑
l=1
{[[z = zl]] ·max(0,m+ − ‖ul‖)2 + λ [[z 6= zl]] ·max(0, ‖ul‖ −m−)2}, (3.9)

where ‖ul‖ is the norm of ul and [[]] is an indicator function, z is the ground truth intent label

for the utterance x. λ is the weighting coefficient, and m+ and m− are margins.

The intent of the utterance can be easily determined by choosing the activation vector with

the largest norm ẑ = arg max
l∈{1,2,...,L}

‖ul‖.

3.2.4 Re-Routing

The IntentCaps not only determine the intent of the utterance by the length of the activation

vector, but also learn discriminative intent representations of the utterance by the orientations

of the activation vectors. Previously, the dynamic routing-by-agreement shows how low-level

features such as slots help construct high-level ideas such as intents. While the high-level fea-
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tures also work as a guide that helps learn low-level features. For example, the AddToPlaylist

intent activation vector in IntentCaps also helps strength the existing slots such as artist name

during slot filling on the words Sungmin in SlotCaps.

Thus we propose a re-routing schema for SlotCaps where the dynamic routing-by-agreement

is realized by the following equation that replaces the Line 7 in Algorithm 1:

bkt ← bkt + pk|t · vk + α · pTk|tWRRûTẑ , (3.10)

where ûẑ is the intent activation vector with the largest norm. WRR ∈ RDP×DL is a bi-linear

weight matrix, and α as the coefficient. The routing information for each word is updated

toward the direction where the prediction vector not only coincides with representative slots,

but also towards the most-likely intent of the utterance. As a result, the re-routing makes

SlotCaps obtain updated routing information as well as updated slot representations.

3.3 Evaluation

To demonstrate the effectiveness of our proposed models, we compare the proposed model

Capsule-NLM with existing alternatives, as well as commercial natural language understand-

ing services.

3.3.1 Datasets

For each task, we evaluate our proposed models by applying it on two real-word datasets:

SNIPS Natural Language Understanding benchmark1 (SNIPS-NLU) and the Airline Travel

1https://github.com/snipsco/nlu-benchmark/

https://github.com/snipsco/nlu-benchmark/
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Information Systems (ATIS) dataset (Tur et al., 2010). The statistical information on two

datasets are shown in Table IV.

SNIPS-NLU ATIS
Vocab Size 11,241 722
Average Sentence Length 9.05 11.28
#Intents 7 21
#Slots 72 120
#Training Samples 13,084 4,478
#Validation Samples 700 500
#Test Samples 700 893

TABLE IV: Dataset statistics.

SNIPS-NLU contains natural language corpus collected in a crowdsourced fashion to bench-

mark the performance of voice assistants. ATIS is a widely used dataset in spoken language

understanding, where audio recordings of people making flight reservations are collected.

3.3.2 Experiment Settings

Baselines We compare the proposed capsule-based model Capsule-NLM with other alterna-

tives:

• CNN TriCRF (Xu and Sarikaya, 2013) introduces a Convolution Neural Network (CNN)

based sequential labeling model for slot filling. The hidden states for each word are

summed up to predict the utterance intent. We adopt the performance with lexical

features.
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• Joint Seq. (Hakkani-Tür et al., 2016) adopts a Recurrent Neural Network (RNN) for

slot filling and the last hidden state of the RNN is used to predict the utterance intent.

• Attention BiRNN (Liu and Lane, 2016) further introduces a RNN based encoder-

decoder model for joint slot filling and intent detection. An attention weighted sum of all

encoded hidden states is used to predict the utterance intent.

• Slot-gated Full Atten. (Goo et al., 2018) utilizes a slot-gated mechanism as a special

gate function in Long Short-term Memory Network (LSTM) to improve slot filling by the

learned intent context vector. The intent context vector is used for intent detection.

• DR-AGG (Gong et al., 2018) aggregates word-level information for text classification via

dynamic routing. The high-level capsules after routing are concatenated, followed by a

multi-layer perceptron layer that predicts the utterance label. We used this capsule-based

text classification model for intent detection only.

• IntentCapsNet (Xia et al., 2018) adopts a multi-head self-attention to extract inter-

mediate semantic features from the utterances, and uses dynamic routing to aggregate

semantic features into intent representations for intent detection. We use this capsule-

based model for intent detection only.
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We also compare our proposed model Capsule-NLM with existing commercial natural

language understanding services, including api.ai (Now called DialogFlow)1, Waston Assistant2,

Luis3, wit.ai4, snips.ai5, recast.ai6, and Amazon Lex7.

Implementation Details The hyperparameters used for experiments are shown in Table V.

DATASET DW DH DP DL iterslot iterintent
SNIPS-NLU 1024 512 512 128 2 2
ATIS 1024 512 512 256 3 3

TABLE V: Hyperparameter settings.

We use the validation data to choose hyperparameters. For both datasets, we randomly

initialize word embeddings using Xavier initializer and let them train with the model. In the

1https://dialogflow.com/

2https://www.ibm.com/cloud/watson-assistant/

3https://www.luis.ai/

4https://wit.ai/

5https://snips.ai/

6https://recast.ai/

7https://aws.amazon.com/lex/

https://dialogflow.com/
https://www.ibm.com/cloud/watson-assistant/
https://www.luis.ai/
https://wit.ai/
https://snips.ai/
https://recast.ai/
https://aws.amazon.com/lex/
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MODEL SNIPS-NLU ATIS
Slot (F1) Intent (Acc) Overall (Acc) Slot (F1) Intent (Acc) Overall (Acc)

CNN TriCRF (Xu and Sarikaya, 2013) - - - 0.944 - -
Joint Seq. (Hakkani-Tür et al., 2016) 0.873 0.969 0.732 0.942 0.926 0.807
Attention BiRNN (Liu and Lane, 2016) 0.878 0.967 0.741 0.942 0.911 0.789
Slot-Gated Full Atten. (Goo et al., 2018) 0.888 0.970 0.755 0.948 0.936 0.822
DR-AGG (Gong et al., 2018) - 0.966 - - 0.914 -
IntentCapsNet (Xia et al., 2018) - 0.974 - - 0.948 -
Capsule-NLM 0.918 0.973 0.809 0.952 0.950 0.834
Capsule-NLM w/o Intent Detection 0.902 - - 0.948 - -
Capsule-NLM w/o Joint Training 0.902 0.977 0.804 0.948 0.847 0.743

TABLE VI: Slot filling and intention detection results.

AddToPlaylist BookRestaurant GetWheather PlayMusic RateBook SearchCreativeWork SearchScreeningEvent
0.93
0.94
0.95
0.96
0.97
0.98
0.99
1.00

F1

api.ai
ibm.watson 
microsoft.luis 
wit.ai
snips.ai 
recast.ai 
amazon.lex
Capsule-NLM

Figure 11: Benchmarking with existing NLU services.

loss function, the down-weighting coefficient λ is 0.5, margins m+ and m− are set to 0.8 and 0.2

for all the existing intents. α is set as 0.1. RMSProp optimizer (Tieleman and Hinton, 2012)

is used to minimize the loss. To alleviate over-fitting, we add the dropout to the LSTM layer

with a dropout rate of 0.2.

3.3.3 Experiment Results

Quantitative Evaluation The intent detection results on two datasets are reported in Ta-

ble VI, where the proposed capsule-based model performs consistently better than current

learning schemes for joint slot filling and intent detection, as well as capsule-based neural net-
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work models that only focuses on intent detection. These results demonstrate the novelty of the

proposed capsule-based model Capsule-NLM in jointly modeling the hierarchical relationships

among words, slots and intents via the dynamic routing between capsules.

Also, we benchmark the intent detection performance of the proposed model with existing

natural language understanding services1 in Figure 11. Since the original data split is not

available, we report the results with stratified 5-fold cross validation. From Figure 11 we can

see that the proposed model Capsule-NLM is highly competitive with off-the-shelf systems

that are available to use. Note that, our model archieves the performance without using pre-

trained word representations: the word embeddings are simply trained from scratch.

Ablation Study To investigate the effectiveness of Capsule-NLM in joint slot filling and

intent detection, we also report ablation test results in Table VI. “w/o Intent Detection” is the

model without intent detection: only a dynamic routing is performed between WordCaps and

SlotCaps for the slot filling task, where we minimize Lslot during training; “w/o Joint Train-

ing” adopts a two-stage training where the model is first trained for slot filling by minimizing

Lslot, and then use the fixed slot representations to train for the intent detection task which

minimizes Lintent. From the lower part of Table VI we can see that by using a capsule-based

hierarchical modeling between words and slots, the model Capsule-NLM w/o Intent Detection

is already able to outperform current alternatives on slot filling that adopt a sequential labeling

1https://www.slideshare.net/KonstantinSavenkov/nlu-intent-detection-benchmark-by-intento-
august-2017
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schema. The joint training of slot filling and intent detection is able to give each subtask further

improvements when the model parameters are updated jointly.

Visualizing Agreement Values between Capsule Layers Thanks to the dynamic routing-

by-agreement schema, the dynamically learned agreement values between different capsule lay-

ers naturally reflect how low-level features are collectively aggregated into high-level ones for

each input utterance. In this section, we harness the intepretability of the proposed capsule-

based model via hierarchical modeling and provide case studies and visualizations.

Between WordCaps and SlotCaps First we study the agreement value ckt between

the t-th word in the WordCaps and the k-th slot capsule in SlotCaps. Figure 12 shows the

distribution of all agreement values between WordCaps and SlotCaps on the test split of SNIPS-

NLU dataset. Blue bars indicate the distribution of values after the first iteration and orange

bars indicate the distribution after the second iteration. We observe that the dynamic routing-

by-agreement is able to converge to an agreement quickly after the first iteration (shown in

blue bars). It is able to assign a confident probability assignment close to 0 or 1. After the

second iteration (shown in orange bars), the model is more certain about the routing decisions:

probabilities are more leaning towards 0 or 1 as the model is confident about routing a word in

WordCaps to its most appropriate slot in SlotCaps.

However, we do find that when unseen slot values like new object names emerge in utterances

like show me the movie operetta for the theatre organ with an intent of SearchCreativeWork,

the iterative dynamic routing process would be even more appealing. Figure 13 shows the

agreement values learned by dynamic routing-by-agreement. A sample from the test split of
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SNIPS-NLU dataset is shown (Left: after the fist routing iteration. Right: after the second

iteration). Since the dynamic routing-by-agreement is an iterative process controlled by the

variable iterslot, we show the agreement values after the first iteration in the left part of Fig-

ure 13, and the values after the second iteration in the right part. Due to space limitations,

only part of slots (7/72) are shown on the y-axis.
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From the left part of Figure 13, we can see that after the first iteration, the model considers

the word operetta itself alone is likely to be an object name, probably because the following

word for is usually a context word being annotated as O. Thus it tends to route word for to

both the slot O and the slot I-object name. However, from the right part of Figure 13 we

can see that after the second iteration, the dynamic routing found an agreement and is more

certain to have operetta for the theatre organ as a whole for the slot B-object name and

I-object name.

Between SlotCaps and IntentCaps Similarly, we visualize the agreement values between

each slot capsule in SlotCaps and each intent capsule in IntentCaps. The left part of Figure 14

shows that after the first iteration, since the model is not able to correctly recognize operetta

for the theatre organ as a whole, only the context slot O (correspond to the word show me

the) and B-object name (correspond to the word operetta) contribute significantly to the

final intent capsule. From the right part of Figure 14, we found that with the word operetta

for the theatre organ being recognized in the lower capsule, the slots I-object name and

B-object type contribute more to the correct intent capsule SearchCreativeWork, when com-

paring with other routing alternatives to other intent capsules.

3.4 Related Works

Intent Detection With recent developments in deep neural networks, user intent detection

models (Hu et al., 2009; Xu and Sarikaya, 2013; Zhang et al., 2016; Liu and Lane, 2016; Zhang

et al., 2017; Chen et al., 2016; Xia et al., 2018) are proposed to classify user intents given their

diversely expressed utterances in the natural language. As a text classification task, the decent
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Figure 14: Agreement values between SlotCaps (y-axis) and IntentCaps (x-axis).

performance on utterance-level intent detection usually relies on hidden representations that

are learned in the intermediate layers via multiple non-linear transformations.

Recently, various capsule based text classification models are proposed that aggregate word-

level features for utterance-level classification via dynamic routing-by-agreement (Gong et al.,

2018; Zhao et al., 2018; Xia et al., 2018). Among them, (Xia et al., 2018) adopts self-attention

to extract intermediate semantic features and uses a capsule-based neural network for intent

detection. However, existing works do not study word-level supervisions for the slot filling task.

In this work, we explicitly model the hierarchical relationship between words and slots on the

word-level, as well as intents on the utterance-level via dynamic routing-by-agreement.

Slot Filling Slot filling annotates the utterance with finer granularity: it associates certain

parts of the utterance, usually named entities, with pre-defined slot tags. Currently, the slot
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filling is usually treated as a sequential labeling task. A recurrent neural network such as Gated

Recurrent Unit (GRU) or Long Short-term Memory Network (LSTM) is used to learn context-

aware word representations, and Conditional Random Fields (CRF) are used to annotate each

word based on its slot type. Recently, (Shen et al., 2018; Tan et al., 2018) introduce the

self-attention mechanism for CRF-free sequential labeling.

Joint Modeling via Sequence Labeling To overcome the error propagation in the word-

level slot filling task and the utterance-level intent detection task in a pipeline, joint models are

proposed to solve two tasks simultaneously in a unified framework. (Xu and Sarikaya, 2013)

propose a Convolution Neural Network (CNN) based sequential labeling model for slot filling.

The hidden states corresponding to each word are summed up in a classification module to

predict the utterance intent. A Conditional Random Field module ensures the best slot tag

sequence of the utterance from all possible tag sequences. (Hakkani-Tür et al., 2016) adopt

a Recurrent Neural Network (RNN) for slot filling and the last hidden state of the RNN is

used to predict the utterance intent. (Liu and Lane, 2016) further introduce an RNN based

encoder-decoder model for joint slot filling and intent detection. An attention weighted sum

of all encoded hidden states is used to predict the utterance intent. Some specific mechanisms

are designed for RNNs to explicitly encode the slot from the utterance. For example, (Goo et

al., 2018) utilize a slot-gated mechanism as a special gate function in Long Short-term Memory

Network (LSTM) to improve slot filling by the learned intent context vector. However, as

the sequence becomes longer, it is risky to simply rely on the gate function to sequentially
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summarize and compress all slots and context information in a single vector (Cheng et al.,

2016).

In this paper, we harness the capsule neural network to learn a hierarchy of feature detectors

and explicitly model the hierarchical relationships among word-level slots and utterance-level

intent. Also, instead of doing sequence labeling for slot filling, we use a dynamic routing-

by-agreement schema between capsule layers to route each word in the utterance to its most

appropriate slot type. And we further route slot representations, which are learned dynamically

from words, to the most appropriate intent capsule for intent detection.



CHAPTER 4

Generative Structured Knowledge Expansion

This chapter was previously published as “On the Generative Discovery of Structured Medi-

cal Knowledge”, in KDD’18 (Zhang et al., 2018a). DOI: https://doi.org/10.1145/3219819.

3220010.

4.1 Introduction

Knowledge Graphs such as WordNet (Miller, 1995), Yago (Fabian et al., 2007) and Freebase

(Bollacker et al., 2008) have been playing an essential role in many applications, such as knowl-

edge inference, question answering, relation extraction, and so on. A large-scale of structured

knowledge is embodied in Knowledge Graphs, in the form of triplets (head entity, tail entity

and the relationship, denoted as h r−→ t). For example, the Disease Cause−−−−→ Symptom relation-

ship indicates a “Cause” relationship from a disease entity (e.g. synovitis) to a symptom

entity (e.g.joint pain) which is caused by this disease. Various linguistic expressions are usu-

ally observed among different triplets. For example, nose plugged, blocked nose and sinus

congestion are symptom entities that share the same meaning but expressed very differently.

The expression diversity is also widely observed for triplets of the same relation: a relation-

ship may also be instantiated by entity pairs in varying granularities or different relationship

strength. For instance, Disease Cause−−−−→ Symptom relationship may include coarse-grained entity

pairs like <rhinitis, nose plugged>, while <acute rhinitis, nose plugged>, <chronic
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rhinitis, nose plugged> are considered as fine-grained entity pairs. As for the relationship

strength, <cold, fatigue> has greater relationship strength than <cold, ear infections>

as cold rarely cause serious complications such as ear infections. It is straightforward for human

beings yet still challenging for a machine to understand the commonalities between different

triplets.

Since most knowledge graphs were built either collaboratively or (partly) automatically (Ji

et al., 2015), they are far from complete (Socher et al., 2013). The knowledge graph completion

task aims at predicting relationships between entities based on existing triplets in a knowledge

graph. Many works have focused on extending existing knowledge graphs using well-trained

classifiers to predict whether or not there is a relationship between two existing or new entities

(Socher et al., 2013; Bordes et al., 2013; Komninos and Manandhar, 2017; Trouillon et al.,

2017; He et al., 2018). Existing models such as for relation extraction (Agichtein and Gravano,

2000; Baeza-Yates and Tiberi, 2007; Jiang et al., 2017; Liu et al., 2017; Mintz et al., 2009;

Sahay et al., 2008; Wang et al., 2015a) or knowledge graph completion (Socher et al., 2013;

Komninos and Manandhar, 2017; Trouillon et al., 2017; He et al., 2018; Gardner and Mitchell,

2015; Lin et al., 2016; Wang et al., 2015b; Zeng et al., 2014) adopt a discriminative setting.

Although achieving decent performance in identifying the correctness of candidate triplets,

their performances rely on well-prepared annotated triplets as the training data, as well as

high-quality candidate triplets for testing. Relation extraction methods aim to examine if a

semantic relationship exists between two entities in the given context. And they also require a

substantial collection of contexts over a full spectrum of relationships we would like to work on.
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However, they can be vulnerable to the “garbage-in, garbage-out” situation: the meaningful

relational triplets for a specific relationship cannot be identified when no high-quality relational

triplets having that relationship are among the candidate relational triplets. The choice of

candidates may involve additional human annotation, which is tedious and labor-intensive.

In both tasks mentioned above (Knowledge Graph Completion and Relation Extraction), the

lacking preparation of external resource or additional human annotation is fatal to the successful

discovery of structured knowledge (Ma et al., 2019). Therefore, it is crucial for us to discover

structured knowledge without substantial data requirement.

To reduce human annotation efforts for effective structured knowledge discovery, in this

chapter we propose a novel research problem called Generative Structured Knowledge Expan-

sion, which aims at understanding each relationship between entities solely from the existing

triplets via their diverse expressions. With the help of rich semantic information embodied in

entity representations learned from a massive text corpus, we aim to discover meaningful and

novel triplets of a specific relationship in a generative fashion, without sophisticated feature

engineering and substantial data requirement such as large-scale text corpora as contexts, or

further data preparation.

We introduce a generative perspective to increase the scale of high-quality structured knowl-

edge harnessing the massiveness of the unannotated text corpus. The proposed model explores

the generative modeling capacity for entity pairs and their relationships while incorporating

deep learning for hands-free feature engineering. It is able to generate meaningful triplets that

are not yet observed, which expand the scale of existing structured knowledge.
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Specifically, the model takes the triplets as the input. It encodes each triplet r into a

latent space conditioned on the relationship type. Based on pre-trained entity representations

from a massive text corpus, the encoding process further addresses relationship-enhanced entity

representations, entity interactions, and expressive latent variables. The latent variables are

decoded to reconstruct both the head and tail entity. Once trained, the generator samples

directly from the learned latent variables and decodes them into novel triplets that expand the

scale of structured knowledge with minimized additional human annotations. The performance

of the proposed method is evaluated on real-world structured knowledge data in the medical

domain both quantitatively and qualitatively.

4.2 Preliminaries

In this section, we briefly review preliminaries that relate to the proposed model.

Autoencoder (AE) The traditional autoencoder (Bengio and others, 2009) is a multi-layer

non-recurrent neural network architecture which has been widely used for unsupervised repre-

sentation learning. When given an input data x, the autoencoder starts with an encoder net

where the input is mapped into a low-dimensional latent variable z = encoder net(x) through

one or more layers of non-linear transformations, followed by a decoder net where the resulting

latent variable z is mapped to an output data x′ = decoder net(z) which has the same number

of units as the input data x, via one or more non-linear hidden layers. The objective of the AE

is to minimize the data reconstruction loss:

LAE(x) =
∥∥x− x′∥∥2 = ‖x− decoder net(encoder net(x))‖2 , (4.1)
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and the resulting latent variable z is the low-dimensional latent feature learned from the data

x in a totally unsupervised fashion.

Variational Autoencoder (VAE) The concept of automatic encoding and decoding makes

AE suitable for generative models. Unlike the traditional autoencoder (Bengio and others,

2009) where the hidden variable z has unspecified distributions, the variational autoencoder

(VAE) (Kingma and Welling, 2014) roots in Bayesian inference and inherits the architecture

of AE to encode the Bayes automatically for an expressive generation. VAE assumes that the

input data x can be encoded into a set of latent variables z with certain distributions, such as

multivariate Gaussian distributions. The resulting Gaussian latent variables z are generated by

the generative distribution Pθ(z) and x′ is generated with a Bayesian model by a conditional

distribution on z: Pθ(x′|z). VAE infers the latent distribution P (z) using Pθ(z|x). Pθ(z|x) can

be considered as some mapping from x to z, which is inferred by variational inference as one

of the popular Bayesian inference methods. In VAE, Pθ(z|x) is usually inferred using a simpler

distribution Qφ(z|x) such as a Gaussian distribution. The objective of VAE is to optimize its

variational lower bound:

LV AE(x, y; θ, φ) = −KL [Qφ (z|x) ||Pθ (z|x)] + log (Pθ (x)), (4.2)

where the first term uses the KL-divergence to minimize the difference between the simple

distribution Qφ(z|x) and its true distribution Pθ(z|x), while the second term maximizes the

log (Pθ(x)).
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Conditional Variational Autoencoder (CVAE) Although the VAE can generate data that

belongs to different types, the latent variable z is only modeled by x in Pθ(z|x) without knowing

the type of it. Thus it cannot generate an output x′ that belongs to a particular type y. The

conditional variational autoencoder (CVAE) (Sohn et al., 2015) is an extension to VAE that

generates x′ with conditions. CVAE models both the data x and latent variables z. However,

both x and z are conditioned on a class label y:

LCV AE(x, y; θ, φ) = −KL [Qφ (z|x, y) ||Pθ (z|x)] + log (Pθ (x|y)). (4.3)

In this way, the real latent variable is distributed under Pθ(z|y) instead of Pθ(z). With such

appealing formulation, we can have a separate Pθ(z|y) for each class y.

4.3 Proposed Approach

In this section, we introduce the Conditional Relationship Variational Autoencoder (CR-

VAE) model for the Generative Structured Knowledge Expansion problem. The proposed model

consists of three modules: encoder, decoder, and generator. The encoder module takes entity

pairs and their relationship indicator as the input, trained to enhance entity representations and

encode the diversely expressed entity pairs for each relationship to a latent space as Qφ. The

decoder is jointly trained to reconstruct the entity pairs as Pθ. The generator model shares the

same structure with the decoder. However, instead of reconstructing the relational entity pair

given in the input, it directly samples from the learned latent variable distribution to generate

meaningful relational entity pairs for a particular relationship. Figure 15 gives an overview of
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Figure 15: An overview of the proposed model CRVAE during training.

the proposed model, where the encoder module is show in green color and the decoder module

is show in blue. Model inputs are in white color.

The model takes a tuple <eh, et> and a relationship indicator r as the input, where eh and

et are head and tail entity of a relationship r. For example, eh =“synovitis” and et=“joint

pain”, while the corresponding r is an indicator for Disease Cause−−−−→ Symptom.

To effectively represent entities, pre-trained word embeddings that embody rich semantic

information can be obtained as initial entity representations for eh and et. For simplicity, we

adopt 200-dimensional word embeddings pre-trained using Skip-gram (Mikolov et al., 2013a).

After a table lookup on the pre-trained word vector matrix Wembed ∈ RV×DE where V is

the vocabulary size (usually tens of thousands) and DE is the dimension of the initial entity

representation (usually tens or hundreds), embedh ∈ R1×DE and embedt ∈ R1×DE are derived

as the initial embedding of entities.
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4.3.1 Encoder

With the initial entity representation embedh and embedt and their relationship indicator r,

the encoder first translates and then maps entity pairs to a latent space asQφ(z|embedh, embedt, r).

Translating for Relationship-enhancing The initial embedding obtained from word em-

bedding reflects semantic and categorical information. However, it is not specifically designed

to model the relationship between entities.

To get entity representations that address relationship information, the encoder learns to

translate each entity from its initial embedding space to a relationship-enhanced embedding

space that distills relational commonalities. For example, a non-linear transformation can be

used: translate(x) = f(x·Wtrans+btrans) where f can be an non-linear activation function such

as the Exponential Linear Unit (ELU) (Clevert et al., 2015). Wtrans ∈ RDE×DR is the weight

variable and btrans ∈ R1×DR is the bias where DR is the dimension for relationship-enhanced

embeddings.

transh = translate(embed h), transt = translate(embed t) (4.4)

are obtained as relationship-enhanced embeddings for eh and et.

Mapping to Latent Variables The relationship-enhanced entity representation transh and

transt are concatenated

transht = [transh, transt] (4.5)
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and mapped to the latent space by multiple fully connected layers. For example, we can obtain

a variable lht that addresses the relationship information, as well as entity interactions from two

medical entities, by applying three consecutive non-linear fully connected layers on transht.

As a variational inference model, we assume a simple Gaussian distribution ofQφ(z|embedh, embedt, r)

for the entity pairs <eh, et> with a relationship r. Therefore, for each entity pair <eh, et> and

a relationship indicator r, a mean vector µ and a variance vector σ2 can be learned as latent

variables to model Qφ(z|embedh, embedt, r):

µ = [lht, r] ·Wµ + bµ, σ2 = [lht, r] ·Wσ + bσ, (4.6)

where a one-hot indicator r ∈ R1×|R| is used for the relationship r and |R| is the number of all re-

lationships. Wµ,Wσ ∈ R(Dlht
+|R|)×DL are weight terms and bµ, bσ ∈ R1×DL are bias terms. DL

is the dimension for latent variables and Dlht
is the dimension for lht. To stabilize the training,

we model the variation vector σ2 by its log form log σ2 (to be explained in Equation 4.12).

4.3.2 Decoder

Once we obtain latent variables µ, σ2 for an input tuple <eh, et> which has the relationship

r, the decoder uses latent variables and the relationship indicator r to reconstruct the relational

medical entity pair. The decoder implements the Pθ(embedh, embedt|z, r).

Given µ, σ2, it is intuitive to sample the latent value z from the distribution N(µ, σ2)

directly. However, such operator is not differentiable thus optimization methods failed to cal-

culate its gradient. To solve this problem, a reparameterization trick is introduced in (Kingma
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and Welling, 2014) to divert the non-differentiable part out of the network. Instead of directly

sampling from N(µ, σ2), we sample from a standard normal distribution ε ∼ N(0, I) and convert

it back to z by z = µ+ σε. In this way, sampling from ε does not depend on the network.

Similarly as the use of multiple non-linear fully connected layers for the mapping in the

encoder, multiple non-linear fully connected layers are used for an inverse mapping in the

decoder. After the inverse mapping we obtain trans′ht ∈ R1×2DR . The first DR dimensions of

trans′ht are considered as a decoded relationship-enhanced embedding for eh, while the last DR

dimensions are for et:

trans′h = trans′ht [: DR] , trans′t = trans′ht [DR :] , (4.7)

where trans′h, trans′t ∈ R1×DR . trans′h and trans′t are further inversely translated back to the

initial embedding space RDE :

embed′h = f(trans′h ·Wtrans inv+btrans inv), embed′t = f(trans′t ·Wtrans inv+btrans inv), (4.8)

where embed′h, embed′t ∈ R1×DE are considered as reconstructed representations for embedh and

embedt.
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4.3.3 Training

Inspired by the loss function of CVAE, the loss function of CRVAE is formulated to minimize

the variational lower bound:

LCRV AE(embedh, embedt, r; θ, φ) =

−KL [Qφ (z|embedh, embedt, r) ||Pθ (z|embedh, embedt, r)] + log (Pθ (embedh, embedt|r)).
(4.9)

The first term minimizes the KL divergence loss between the unknown true distribution

Pθ (z|embedh, embedt, r) and a simple distribution Qφ (z|embedh, embedt, r). The second term

models the entity pairs by log (Pθ (embedh, embedt|r)). The above equation can be reformulated

as:

LCRV AE(embedh, embedt, r; θ, φ) =

−KL [Qφ (z|embedh, embedt, r) ||Pθ (z|r)] + E [log (Pθ (embedh, embedt|z, r))] ,
(4.10)

where Pθ (z|r) describes the true latent distribution z given a certain relationship r and

E [log (Pθ (embedh, embedt|z, r))] (4.11)

estimates the maximum likelihood. Since we want to sample from Pθ(z|r) in the generator,

the first term aims to let Qφ(z|embedh, embedt, r) be as close as possible to Pθ(z|r) which has

a simple distribution N(0, I) so that it is easy to sample from. Furthermore, if Pθ(z|r) ∼
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N(0, I) and Q(z|embedh, embedt, r) ∼ N(µ, σ2), then a closed-form solution for the first term

in Equation 4.9 is derived as:

−KL [Qφ (z|embedh, embedt, r) ||Pθ (z|r)] = −KL [N(µ, σ)||N(0, I)]

= −1
2(tr(σ2) + µTµ−DL − log det(σ2)) = −1

2

DL∑
l

(σ2
l + µ2

l − 1− log σ2
l ),

(4.12)

where l in the subscript indicates the l-th dimension of the vector. Since it is more stable

to have exponential term than a log term, we model log
(
σ2) as σ2 which results in the final

closed-form of Equation 4.12:

−1
2

DL∑
l

(
exp

(
σ2
)
l
+ µ2

l − 1− σ2
l

)
. (4.13)

The second term in Equation 4.9 penalizes the maximum likelihood, where is the conditional

probability Pθ(embedh, embedt|z, r) of a certain entity pair <eh, et> given the latent variable

z and the relationship indicator r. The mean squared error (MSE) is adopted to calculate the

difference between <embedh, embedt> and <embed′h, embed
′
t>:

E [log (Pθ (embedh, embedt|z, r))] =

1
2DE

(
||embedh − embed′h||

2
2 + ||embedt − embed′t||

2
2

)
,

(4.14)

where ‖·‖2 is the vector `2 norm.

To minimize the LCRV AE , existing gradient-based optimizers such as Adadelta (Zeiler, 2012)

can be used. Furthermore, a warm-up technique introduced in (Sønderby et al., 2016) can let



66

the training start with deterministic and gradually switch to variational, by multiplying β to

the first term. The final loss function used for training is formulated as:

LCRV AE = −β2

DL∑
l

(
exp

(
σ2
)
l
+ µ2

l − 1− log σ2
l

)

+ 1
2DE

(
||embedh − embed′h||

2
2 + ||embedt − embed′t||

2
2

)
,

(4.15)

where β is initialized as 0 and increase by 0.1 at the end of each training epoch, until it reaches

1.0 as its maximum.

4.3.4 Generator

When we would like to generate entity pairs of a specific relationship, a density-based

sampling method is introduced for the generator to sample ẑ from the distribution of latent

variables conditioned on that relationship r.

Instead of using the latent variable z provided by certain µ and log σ2 in the encoding process

from a certain eh, et and r, the generator tries to sample ẑ directly from Pθ(ẑ|r) to get the latent

space value ẑ for a particular relationship r. Once ẑ is obtained, the decoder structure is used

to decode the entity pair. Figure 16 illustrates the generative process. The denser region in

the latent space Pθ(ẑ|r) indicates that more densely entity pairs are located in the manifold.

Therefore, a sampling method that considers the density distribution of Pθ(ẑ|r) samples more

often from that region to preserve the true latent space distribution. Specifically, for each

relationship r, the density-based sampling samples ẑ directly from Pθ(ẑ|r) ∼ N(0, I), when

trained properly. The resulting vectors êmbedh and êmbedt are mapped back to entity names
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Figure 16: An overview of the proposed model CRVAE during generation.

in natural language, namely êt and êh, by finding the nearest neighbor in their initial embedding

space R1×DE using Wembed. The `-2 distance measure is used for the nearest neighbor search.

Note that the vocabulary of pre-trained word embedding is way more comprehensive than

entities from labeled triplets in training. Using the pre-trained word embedding gives our model

the ability to introduce unseen entities that are in the vocabulary, but not necessarily in the

training data.

4.4 Evaluation

4.4.1 Dataset

The dataset consists of 46,018 real-world triplets in Chinese, and it covers six different types

of medical relationships, where 70% data are used for training and 30% validation data are used

for hyperparameter tuning. Since the proposed model discovers entity pairs by directly sampling

from the latent space, not by verifying pre-determined test cases, we evaluate the generated

entity pairs directly. Table VII shows the statistics and representative samples for each medical

relationship. We use 200-dimensional word embeddings learned from a Chinese medical corpus
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on the healthcare forum as the initial entity representation. The vocabulary covers 126,270

words.

RELATIONSHIP COUNT ENTITY PAIRS

Disease Cause−−−−→ Body Part 2320
<tricuspid insufficiency (三尖瓣闭锁), tricuspid valve (三尖瓣)>
<vaginal cancer (阴道癌), reproductive system (生殖)>
<hydrocephaly (脑积水), head (头部)>

Disease RelatedTo−−−−−−→ Disease 4614
<infant hydrocephalus (婴儿脑积水), congenital hydrocephalus (先天性脑积水)>
<urethritis (尿道炎), cystitis (膀胱炎)>
<retention of food in the stomach (食滞胃脘), infantile indigestion (小儿消化不良)>

Disease Need−−−→ Examine 4185
<salicylates poisoning (水杨酸类中毒), routine urianlysis (尿常规)>
<tetralogy triad (法洛三联症), electrocardiogram, ECG (心电图)>
<epididymitis (附睾炎) , cremasteric reflex (提睾反射)>

Symptom BelongTo−−−−−−→ Department 8595
<anchylosis, stiffness of a joint (关节强直), orthopedics (骨科)>
<female lower abdominal pain (女性小腹疼痛), gynecology (妇科)>
<absent infant sucking reflex (吸吮反射消失), neonatology (新生儿科)>

Disease Cause−−−−→ Symptom 16642
<peritonitis (腹膜炎), abdominal venous engorgement (腹部静脉怒张)>
<urethritis (尿道炎), urethra itching (尿道痒感)>
<radial nerve palsy (桡神经麻痹), upper extremity weakness (上肢无力)>

Symptom RelatedTo−−−−−−→ Symptom 9662
<redness and swelling around the umbilicus (脐周红肿), periumbilical swelling (脐周肿胀)>
<muscular contusion (肌肉挫伤), disinsertion (肌腱断裂)>
<fingers benumbed with cold (手指冻肿), skin frostbite (皮肤冻伤)>

TABLE VII: Sample medical relationships and entity pairs.

4.4.2 Experiment Settings

Evaluation Metric Three evaluation metrics are introduced to quantitatively measure the

generated relational medical entity pairs: quality, support, and novelty.

Quality Since it is hard for the machine to evaluate whether a entity pair is meaningful or

not, human annotation is involved in assessing the quality of the generated entity pairs. We

deploy a human annotation task on Amazon Mechanical Turk. Annotators need to pass at
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least four in five sample cases to qualify the annotation. Majority voting of three annotators is

adopted. The quality is measured by:

quality = # of entity pairs that are meaningful
# of all the generated entity pairs . (4.16)

Support Besides human annotations, a support score quantitatively measures the belong-

ingness of an entity pair generated by a specific relationship to existing entity pairs with that

relationship. For each generated entity pair <êh, êt>, the support score measures its similarities

to known entity pairs of each relationship rc:

support<êh,êt,rc> = 1
1 + distance(êmbedh, êmbedt, rc)

, (4.17)

where distance(êmbedh, êmbedt, rc) calculates the distance between the vector êmbedh− êmbedt

and NNrc (êmbedh − êmbedt) using distance measure such as cosine distance. The NNrc im-

plements the nearest neighbor search over the embedh−embedt space among all the entity pairs

having the relationship rc. For each generated entity pair, the support scores of all relationships

are normalized:

norm support<êh,êt,rc> = support<êh,êt,rc>

|R|∑
ri

support<êh,êt,ri>

. (4.18)

The generated entity pair <êh, êt> finds support from its estimated relationship which has the

highest score, while the relationship r given during the generating process is considered as the
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ground truth for <êh, êt>. The final support value is based on the accuracy of the estimated

relationship and the ground truth relationship.

Novelty The ability to generate novel entity pairs is one of our key contributions. Due

to different scope of knowledge among individuals, human annotators are not able to precisely

evaluate the novelty. We measure the novelty of the generation process by:

novelty = # of entity pairs that do not exist in the dataset
# of all the generated entity pairs . (4.19)

Baselines Considering that no known methods are currently available for the Generative Struc-

tured Knowledge Expansion problem, and we consider it unfair to compare with discriminative

methods which have external resources or further data requirements, the performance on the

following models are compared:

• CRVAE-MONO: The proposed model that works with all entity pairs having the same

relationship in both training and generation. For each relationship, we train a separate

CRVAE with entity pairs having that relationship.

• RVAE: The unconditional version of the model CRVAE where the relationship indicator

r is not provided during model training and generation.

• CRVAE-RAND: The proposed model CRVAE with a random sampling based generator.

Rather than using the density-based sampling strategy, the generator of CRVAE-RAND

samples randomly from the latent space.
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• CRVAE: The proposed method where entity pairs with all types of relationships are used

together to train the model. The training is conditioned on relationships, and density-

based sampling is used.

• CRVAE-WA: The proposed method with the warm-up strategy introduced in Section

4.3.3.

MODEL QUALITY SUPPORT NOVELTY LOSS (TRAIN / VALID)

CRVAE-MONO 0.6698 0.9550 0.5118 47.3002 / 116.6739
CRVAE-RAND 0.2550 0.3764 0.9952 43.0954 / 83.6589
CRVAE 0.7308 0.9048 0.5682 43.0954 / 83.6589
CRVAE-WA 0.7717 0.9291 0.6193 33.4399 / 57.9470

TABLE VIII: Performance comparison results.

4.4.3 Experiment Results

We generate 1000 entity pairs for each medical relationship for evaluation. Table VIII sum-

marizes the performance of the proposed method when comparing with other alternatives. In

summary, CRVAE-MONO demonstrates the power of generative model that learns commonali-

ties purely from the diversely expressed entity pairs without substantial data requirements. By

comparing CRVAE-RAND and CRVAE we show the effectiveness of the density-based sampling

in generating high-quality entity pairs. The warm up technique adopted in CRVAE-WA is able

to give CRVAE a further performance boost. As a qualitative measure, we also provide entity
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pairs generated by the proposed model in Table IX, from which we can see the meaningful and

novel structured knowledge discovered in a generative fashion.

Disease Cause−−−−→ Body Part
<dysentery (痢疾), intestine (肠)>
<brain tumor (脑瘤), head (头部)>
<leukopenia (白细胞减少症), vascular system (血液)>

Disease RelatedTo−−−−−−→ Disease
<foreign body in esophagus (食管异物), bowel obstruction (肠梗阻)>
<brain contusion (脑挫裂伤), amnesia (记忆障碍)>
<respiratory acidosis (呼吸性酸中毒), pulmonary edema (肺水肿)>

Disease Need−−−→ Examine
<uremia (尿毒症), routine urianlysis (尿常规)>
<bacterial meningitis (细菌性脑膜炎), cranial CT (头颅CT)>
<bowel obstruction (肠梗阻), abdominal x-ray (腹部平片)>

Symptom BelongTo−−−−−−→ Department
<retained placenta (胎盘滞留), obstetrics (产科)>
<fluid retention (水潴留), nephrology (肾内科)>
<stuffy nose (鼻塞), otolaryngology (耳鼻咽喉科)>

Disease Cause−−−−→ Symptom
<otogenic brain abscess (耳源性脑脓肿), earache (耳痛)>
<neuritis (神经炎), numbness in the hands (手麻)>
<open head injury (开放性颅脑损伤), loss of consciousness (意识模糊)>

Symptom RelatedTo−−−−−−→ Symptom
<fatigue (乏力), feel wobbly and rough (四肢无力)>
<joint pain (关节痛), limited joint mobility (关节活动受限)>
<blurred vision (雾视), eye discomfort (眼睛不舒服)>

TABLE IX: Novel and meaningful entity pairs generated by the proposed method.
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Generative Modeling Capacity Unlike discriminative models which utilize the discrepancies

among instances of different classes to discriminate one class from another, the generative nature

of the proposed method makes it generate entity pairs only when it fully understands the diverse

expressions within each relationship. To validate such appealing property, we introduce the

baseline CRVAE-MONO which works with all entity pairs having the same relationship in both

training and generation.

Table X compares the fine-grained quality, support and novelty of the generated entity

pairs of CRVAE-MONO and CRVAE on each relationship. The CRVAE-MONO achieves a

reasonable performance on each relationship, which shows that the generative modeling has

the ability to learn directly from the existing entity pairs without additional data requirement.

Furthermore, when all types of entity pairs are trained altogether in CRVAE, we observe a

consistent improvement in not only quality but also novelty.

Effectiveness of Density-based Sampling To validate the effectiveness of the density-based

sampling for the generator, we compare the proposed method with CRVAE-RAND where a

random sampling strategy is adopted. From Table VIII we can see that when the distribution

of the latent space is not considered, the random sampling strategy in CRVAE-RAND tends to

generate more entity pairs that are not seen in the existing dataset. However, the generated

entity pairs are of low quality and support.

CRVAE adopts a density-based sampling. The dense region in the latent space indicates that

more entity pairs are located. Therefore, in CRVAE, the quality and support of the generated
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CRVAE-MONO QUALITY SUPPORT NOVELTY LOSS (TRAIN/VALID)

Disease Cause−−−−→ Body Part 0.6830 1.0000 0.4880 54.9830 / 126.7426
Disease RelatedTo−−−−−−→ Disease 0.6890 0.8700 0.4830 51.5131 / 155.0721
Disease Need−−−→ Examine 0.7080 1.0000 0.5210 54.7635 / 136.4802
Symptom BelongTo−−−−−−→ Department 0.6870 1.0000 0.4660 39.0959 / 72.5872
Disease Cause−−−−→ Symptom 0.5870 0.9400 0.5730 37.3276 / 83.8797
Symptom RelatedTo−−−−−−→ Symptom 0.6650 0.9200 0.5400 46.1180 / 125.2818
CRVAE

Disease Cause−−−−→ Body Part 0.7560 0.9990 0.7240

43.0954 / 83.6589
Disease RelatedTo−−−−−−→ Disease 0.6910 0.7440 0.8670
Disease Need−−−→ Examine 0.7570 0.9810 0.8710
Symptom BelongTo−−−−−−→ Department 0.7680 0.9950 0.6130
Disease Cause−−−−→ Symptom 0.7020 0.8820 0.9270
Symptom RelatedTo−−−−−−→ Symptom 0.7110 0.8280 0.8880

TABLE X: Performance comparison between CRVAE-MONO and CRVAE.

entity pairs benefit from sampling more often at denser regions in the latent space, resulting in

less novel but higher quality entity pairs.

Ability to Infer Conditionally To effectively discover structured medical knowledge, one of

our key contributions is to generate relational medical entity pairs for a specific relationship.

That is, the ability to infer new entity pairs for a particular relationship without additional

data preparation. Besides seamlessly incorporating this idea in the model design, we also show

such conditional inference ability by visualization.

Figure 17 shows the µ of validation samples after being mapped into a two-dimensional

space using Primary Component Analysis for dimension reduction. The samples are colored

based on their ground truth relationship indicators. The left figure indicates that when the

relationship indicator r is not given during the training/validation, RVAE is still able to map
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Figure 17: Visualizing the latent variable µ of RVAE (left) and CRVAE (right).

different relationships into various regions in the latent space, while a single distribution models

all types of relationships. Such property is appealing for an unsupervised model, but since the

relationship indicator r is not given during training, RVAE fails to generate entity pairs having a

particular relationship, unless we manually assign a boundary for each relationship in the latent

space. The right figure shows that when the relationship indicator r is incorporated during the

training, CRVAE learns to let each relationship have a unified latent representation Pθ(ẑ|r).

A separate but nearly identical distribution is used to model each relationship. Such property

may enable the generator of our model to sample the expression variations from a relationship-

independent latent space, while the relationship indicator r provides the categorical information

regarding what type of relationship should the expression variation applies on.

Relationship-enhancing Entity Adjustment To show the effectiveness of relationship-

enhancement, Table XI shows the nearest neighbors of a disease entity genital tract
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• genital tract malformation (生殖道畸形)
NN in the relationship-enhanced space R1×DR NN in the initial embedding space R1×DE

genital tract (生殖道) reproductive system (生殖系统)
reproductive system (生殖系统) reproductive tract tumors (生殖道肿瘤)
heart malformations (心脏畸形) urinary system malformations (泌尿系畸形)
chromosome abnormalities (染色体异常) infertility (不孕)
reproductive tract tumors (生殖道肿瘤) vaginal atresia (阴道闭锁)
generative organs (生殖器官) genital tract (生殖道)
urinary system malformations (泌尿系畸形) generative organs (生殖器官)
gastrointestinal malformations (消化道畸形) acyesis (不孕症)
• muscle strain (肌肉拉伤)
NN in the relationship-enhanced space R1×DR NN in the initial embedding space R1×DE

strain (拉伤) 拉伤 (strain)
ligament strain (韧带拉伤) muscle tear (肌肉撕裂)
sprain (扭伤) pull-up (引体向上)
foot pain (足痛) sprain (扭伤)
muscle tear (肌肉撕裂) muscle fatigue (肌肉疲劳)
plantar fasciitis (足底筋膜炎) tenosynovitis (腱鞘炎)
joint sprain (关节扭伤) tendonitis (肌腱炎)
repetitive strain injury, RSI (劳损) amount of exercise (运动量)

TABLE XI: The effectiveness of relationship-enhancing adjustment.

malformation (生殖道畸形) and a symptom entity muscle strain (肌肉拉伤) in their original

embedding space, as well as in the space after relationship-enhancing.

From these cases we can see that the original entity representations trained with skip-gram

(Mikolov et al., 2013a) tend to put entities in proximity when they appear in similar contexts.

In the first case, the entity genital tract malformation (生殖道畸形) is in close proximity

to infertility (不孕) and acyesis (不孕症). In the second case, entities that have similar

context like pull-up (引体向上) and amount of exercise (运动量) are found near by the

entity muscle strain (肌肉拉伤).
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The translation layer adjusts the original entity representation so that they are more suit-

able for Generative Structured Knowledge Expansion. The nearest neighbors in the adjusted

space are not necessarily entities that co-occur in the same context, but more relation-wise

similar with the given entity. For example, heart malformations (心脏畸形) and chromosome

abnormalities (染色体异常) may not be semantically similar with the given word genital

tract malformation (生殖道畸形), but they may serve similar functionalities in a Disease

Cause−−−−→ Symptom relationship.

4.4.4 Hyperparameter Analysis

We train the proposed model with a wide range of hyperparameter configurations, which are

listed in Table XII. We vary the batch size from 64 to 256. The dimension DR for translating

the initial entity embeddings is set from 64 to 2048. We try two to seven hidden layers from

transht to lht and from [z, r] to trans′ht, with different non-linear activation functions. For each

hidden layer, the hidden unit number DH is set from 2 to 1024. The latent dimension DL is

set from 2 to 200.

Parameter Value
Batch Size 64, 128, 256
DR 64, 128, 256, 512, 640, 768, 1024, 1280, 1536, 1792, 2048
DH 2, 4, 8, 16, 32, 64, 128, 256, 512, 640, 768, 1024
DL 2, 3, 4, 5, 10, 20, 50, 100, 200
Activation ELU (Clevert et al., 2015), ReLU (Nair and Hinton, 2010), Sigmoid, Tanh
Optimizer Adadelta (Zeiler, 2012), Adagrad (Duchi et al., 2011), Adam (Kingma and Ba, 2014), RMSProp (Tieleman and Hinton, 2012)

TABLE XII: Hyperparameter configurations.
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The top-5 hyperparameter settings with low validation losses are shown in Table XIII.

Among the combinations of hyperparameter configurations, we find that for fully connected

hidden layers from transht to lht, a sequence of six consecutive layers: 1792-640-640-512-256-64

works the best for the encoder with ELU as the activation function. For [z, r] to trans′ht in the

decoder, such layer setting is organized in a reverse order. A batch size of 64 and the Adadelta

optimizer work the best for our task. DR = 640 is used. The latent dimension DL = 200

is adopted for µ and σ2. We use Xavier initialization (Glorot and Bengio, 2010) for weight

variables and zeros for biases. Such configuration achieves a training loss of 43.0954 and a

validation loss of 83.6589.

Batch DR {DH} DL Act. Optimizer Loss(Training /Valid)
64 640 1792-640-640-512-256-64 200 ELU Adadelta 43.0954 / 83.6589
64 640 1792-256-640-512-256-128 200 ELU Adadelta 51.0695 / 86.9153
64 640 1792-256-640-512-256-64 200 ELU Adadelta 50.4392 / 88.6438
128 640 1792-640-768-512-64-128 50 ELU Adadelta 50.5997 / 89.0125
256 640 512-768-640-256-512 50 ELU Adam 62.1955 / 89.2014

TABLE XIII: Hyperparameter analysis.

4.5 Related Works

Deep Generative Models: Recent years have witnessed an increasing interest in deep genera-

tive models that generate observable data based on hidden parameters. Various deep generative

models have been developed, such as Generative Adversarial Networks (GANs) (Radford et al.,



79

2015) and Variational Autoencoders (VAEs) (Kingma and Welling, 2013). Unlike Generative

Adversarial Networks (GANs) (Radford et al., 2015) which generate data based on arbitrary

noises, the Variational Autoencoders (VAEs) (Kingma and Welling, 2013) setting we adopted

is more expressive since it tries to model the underlying probability distribution of the data by

latent variables so that we can sample from that distribution to generate new data accordingly.

An increasing number of models and applications are proposed which consider data in different

modalities, such as generating images (Pu et al., 2016; Gregor et al., 2015) or natural language

(Bowman et al., 2016; Marcheggiani and Titov, 2016; Xu et al., 2017). (Yao et al., 2011) works

on generative relation discovery with a probabilistic graphic model that requires hand-crafted

relation-level features. As far as we know, the Generative Structured Knowledge Expansion

problem we studied in this work, which is suitable for deep generative modeling, has not been

studied in a generative perspective with restricted data requirement.

Knowledge Graph Completion: Existing knowledge graph completion methods (Bordes

et al., 2011; Wang et al., 2014; Sun et al., 2012; Gardner and Mitchell, 2015; Wang et al.,

2015b; Lin et al., 2016) are discriminative models. During training, those methods are trained

to distinguish entity pairs of one relationship from another (Zeng et al., 2014; Lin et al., 2016),

or to identify meaningful entity pairs from randomly sampled negative entity pairs with no

relationships (Bordes et al., 2013; Socher et al., 2013). During testing, some candidate entity

pairs are prepared ahead of time and given to the model. The model examines what kind of,

and how likely there is a relationship for each candidate entity pair. Other works such as (Zhang

et al., 2019) aligns entities from multiple existing knowledge graphs for synergistic completion.
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The proposed model can be seen as augmenting an existing knowledge graph in a generative

way. Although both knowledge graph completion task and our task provide additional entity

pairs as their results, they share different objectives, and adopt entirely different approaches.

The knowledge base completion models rely on the discrepancies among entity pairs of different

relationships to distinguish one from another. Otherwise, random negative samples are used

for discriminative training. Our model does not rely on discrepancies among relationships:

it exploits the commonalities from diverse expressions within each relationship for a rational

generation. Knowledge graph completion methods are also vulnerable to low-quality candidate

entity pairs during testing: the truly meaningful entity pairs cannot be even obtained when

they are not a part of the candidate entity pairs for discriminative models to examine. The

choice of candidates involves additional human annotation to improve efficiency; otherwise, any

dyadic combinations of medical entities need to be fed to and tested by the model. While the

generative nature of our model makes it only generate rational entity pairs by learning from

the existing rational ones: no additional data needs to be prepared for generative discovery.

Relationship Extraction: There is another related research area that studies relation extrac-

tion (Baeza-Yates and Tiberi, 2007; Agichtein and Gravano, 2000; Sahay et al., 2008; Mintz et

al., 2009; Wang et al., 2015a; Jiang et al., 2017; Liu et al., 2017), which usually amounts to

examining whether or not a relation exists between two given entities in a context (Culotta et

al., 2006). Most relationship extraction methods require large amounts of high-quality external

information, such as a large text corpus (Baeza-Yates and Tiberi, 2007; Agichtein and Gravano,

2000; Sahay et al., 2008; Li et al., 2016) and knowledge graphs (Chang et al., 2014; Syed et



81

al., 2010; Verga et al., 2017). However, in specific domains such as the medical domain, it is

tedious and label-intensive to obtain a sufficient amount of free-text corpora which contains the

co-occurrence of all kinds of entity pairs. Thus, we propose an effective generative method that

learns from the existing entity pairs directly. Pre-trained word vectors are used in our model

to provide initial entity representations, which do not introduce further labeling cost.



CHAPTER 5

Synonym Refinement on Structured Knowledge

Part of this chapter was published as “SynonymNet: Multi-context Bilateral Matching for

Entity Synonyms”, on ArXiv (Zhang et al., 2018b): https://arxiv.org/abs/1901.00056.

5.1 Introduction

Discovering synonymous entities from a massive corpus is an indispensable task for auto-

mated knowledge discovery. For each entity, its synonyms refer to the entities that can be used

interchangeably under certain contexts. For example, Clogged Nose and Nasal Congestion

are synonyms relative to the context in which they are mentioned. Given two entities, the

synonym discovery task determines how likely these two entities are synonym with each other.

The main goal of synonym discovery is to learn a metric that distinguishes synonym entities

from non-synonym ones.

The synonym discovery task is challenging to deal with, a part of which due to the various

entity expressions. For example, U.S.A/ United States of America/ United States/ U.S.

refer to the same entity but are expressed quite differently. Recent works on synonym discovery

focus on learning the similarity from entities and their character-level features (Neculoiu et al.,

2016; Mueller and Thyagarajan, 2016). These methods work well for synonyms that share a

lot of character-level features like airplane/ aeroplane or an entity and its abbreviation like

Acquired Immune Deficiency Syndrome/ AIDS. However, a much larger number of synonym
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entities in the real world do not share a lot of character-level features, such as JD/ law degree,

or clogged nose/ nasal congestion. With only character-level features being used, these

models hardly obtain the ability to discriminate entities that share similar semantics but are

not alike verbatim.

Context information is helpful in indicating entity synonymity, as the meaning of an entity

can be better reflected by the contexts in which it appears. Modeling the context for entity syn-

onym usually suffers from following challenges: 1) Semantic Structure. Context, as a snippet

of natural language sentence, is essentially semantically structured. Some existing models en-

code the semantic structures in the contexts implicitly during the entity representation learning

(Mikolov et al., 2013b; Pennington et al., 2014; Peters et al., 2018). The context-aware entity

representations embody meaningful semantics: entities with similar contexts are likely to live in

proximity in the embedding space. Some other works extract and model contexts in an explicit

manner with structured annotations. Structured annotations such as dependency parsing (Qu

et al., 2017), user click information (Wei et al., 2009), or signed heterogeneous graphs (Ren

and Cheng, 2015) are introduced to guide synonym discovery. 2) Diverse Contexts. An

entity can be mentioned under a wide range of circumstances. Previous works on context-based

synonym discovery either focus on entity information only (Neculoiu et al., 2016; Mueller and

Thyagarajan, 2016), or use a single piece of context for each entity (Liao et al., 2017; Qu et al.,

2017) to learn a similarity function for entity matching. While in practice, similar context is

only a sufficient but not necessary condition for context matching. Notably, in some domains

such as medical, the context expression preference varies a lot from individuals. For example,
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sinus congestion is usually referred by medical professionals in the medical literature, while

patients often use stuffy nose on social media. It is not practical to assume that each piece of

context is equally informative to represent the meaning of an entity: a context may contribute

differently when matched with different contexts of other entities. Thus it is imperative to focus

on multiple pieces of contexts with a dynamic matching schema for accuracy and robustness.

In light of these challenges, we propose a framework to discover synonym entities from a

massive corpus without additional structured annotation. Candidate entities are obtained from

a massive text corpus unsupervisely. A novel neural network model SynonymNet is proposed

to detect entity synonyms based on two given entities via a bilateral matching among multiple

pieces of contexts in which each entity appears. A leaky unit is designed to explicitly alleviate

the noises from uninformative context during the matching process.

The contribution of this work is summarized as follows:

• We propose SynonymNet, a context-aware bilateral matching model to detect entity

synonyms. SynonymNet utilizes multiple pieces of contexts in which each entity appears,

and a bilateral matching schema with leaky units to determine entity synonymity.

• We introduce a synonym discovery framework that adopts SynonymNet to obtain syn-

onym entities from a free-text corpus without additional structured annotation.

• Experiments on generic and domain-specific real-world datasets in English and Chinese

demonstrate the effectiveness of the proposed model for synonym discovery.
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5.2 Proposed Approach

We introduce SynonymNet, our proposed model that detects whether or not two entities

are synonyms to each other based on a bilateral matching between multiple pieces of contexts

in which entities appear. Figure 18 gives an overview of the proposed model. The diamonds

are entities. Each circle is associated with a piece of context in which an entity appears.

SynonymNet learns to minimize the loss calculated using multiple pieces of contexts via

bilateral matching with leaky units.
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Figure 18: An overview of the proposed model SynonymNet.
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5.2.1 Context Retriever

For each entity e, the context retriever randomly fetches P pieces of contexts from the

corpus D in which the entity appears. We denote the retrieved contexts for e as a set C =

{c1, c2, ..., cP }, where P is the number of context pieces. Each piece of context cp ∈ C contains

a sequence of words cp = (w(1)
p , w

(2)
p , ..., w

(T )
p ), where T is the length of the context, which varies

from one instance to another. w(t)
p is the t-th word in the p-th context retrieved for an entity e.

5.2.2 Confluence Context Encoder

For the p-th context cp, an encoder tries to learn a continuous vector that represents the

context. For example, a recurrent neural network (RNN) such as a bidirectional LSTM (Bi-

LSTM) (Hochreiter and Schmidhuber, 1997) can be applied to sequentially encode the context

into hidden states:
→

h(t)
p = LSTMfw(w(t)

p ,
→

h(t−1)
p ), (5.1)

←

h(t)
p = LSTMbw(w(t)

p ,
←

h(t+1)
p ), (5.2)

where w(t)
p is the word embedding vector used for the word w(t)

p . We could concatenate the last

hidden state
→

h(T)
p in the forward LSTMfw with the first hidden state

←

h(1)
p from the backward

LSTMbw to obtain the context vector hp for cp: hp = [
→

h(T)
p ,

←

h(1)
p ]. However, such approach does

not explicitly consider the location where the entity is mentioned in the context. As the context

becomes longer, it is getting risky to simply rely on the gate functions of LSTM to properly

encode the context.
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We introduce an encoder architecture that models contexts for synonym discovery, namely

the confluence context encoder. The confluence context encoder learns to encode the local

information around the entity from the raw context, without utilizing additional structured

annotations. It focuses on both forward and backward directions. However, the encoding

process for each direction ceases immediately after it goes beyond the entity word in the context:

hp = [
→

h(te)
p ,

←

h(te)
p ], where te is the index of the entity word e in the context and hp ∈ R1×dCE .

By doing this, the confluence context encoder summarizes the context while explicitly considers

the entity’s location in the context, where no additional computation cost is introduced.

Comparing with existing works for context modeling (Cambria et al., 2018) where the

left context and right context are modeled separately, but with the entity word being dis-

carded, the confluence context encoder preserves entity mention information as well as the

inter-dependencies between the left and right contexts.

5.2.3 Bilateral Matching with Leaky Unit

Considering the base case, where we want to identify whether or not two entities, say e and

k, are synonyms with each other, we propose to find the consensus information from multiple

pieces of contexts via a bilateral matching schema. Recall that for entity e, P pieces of contexts

H = {h1,h2, ...,hP } are randomly fetched and encoded. And for entity k, we denote Q pieces

of contexts being fetched and encoded as G = {g1,g2, ...,gQ}. Instead of focusing on a single

piece of context to determine entity synonymity, we adopt a bilateral matching between multiple

pieces of encoded contexts for both accuracy and robustness.
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H→G matching phrase: For each hp in H and gq in G, the matching score mp→q is calculated

as:

mp→q =
exp(hpWBMgT

q )∑
p′∈P

exp(hp′WBMgT
q ) , (5.3)

where WBM ∈ RdCE×dCE is a bi-linear weight matrix.

Similarly, the H←G matching phrase considers how much each context gq ∈ G could be

useful to hp ∈ H:

mp←q =
exp(gqWBMhT

p )∑
q′∈Q

exp(gq′WBMhT
p ) . (5.4)

Note that P × Q matching needs to be conducted in total for each entity pair. We write

the equations for each hp ∈ H and gq ∈ G for clarity. Regarding the implementation, the

bilateral matching can be easily written and effectively computed in a matrix form, where a

matrix multiplication is used HWBMGT ∈ RP×Q where H ∈ RP×DCE and G ∈ RQ×DCE . The

matching score matrix M can be obtained by taking softmax on the HWBMGT matrix over

certain axis (over 0-axis for Mp→q, 1-axis for Mp←q).

Not all contexts are informative during the matching for two given entities. For example,

some contexts may contain intricate contextual information even if they mention the entity

explicitly. In this work, we introduce a leaky unit during the bilateral matching, so that

uninformative contexts can be routed via the leaky unit rather than forced to be matched with

any informative contexts. The leaky unit is a domain-dependent vector l ∈ R1×dCE learned
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with the model. For simplicity, we keep l as a zero vector. If we use the H→G matching phrase

as an example, the matching score from the leaky unit l to the q-th encoded context in gq is:

ml→q =
exp(lWBMgT

q )
exp(lWBMgT

q ) + ∑
p′∈P

exp(hp′WBMgT
q ) . (5.5)

Then, if there is any uninformative context inH, say the p̃-th encoded context, hp̃ will contribute

less when matched with gq due to the leaky effect: when hp̃ is less informative than the leaky

unit l.

mp̃→q =
exp(hp̃WBMgT

q )
exp(lWBMgT

q ) + ∑
p′∈P

exp(hp′WBMgT
q ) . (5.6)

5.2.4 Context Aggregation

The informativeness of a context for an entity should not be a fixed value: it heavily

depends on the other entity and the other entity’s contexts that we are comparing with. The

bilateral matching scores indicate the matching among multiple pieces of encoded contexts for

two entities. For each piece of encoded context, say gq for the entity k, we use the highest

matched score with its counterpart as the relative informativeness score of gq to k, denote as

aq = max(mp→q|p ∈ P ). Then, we aggregate multiple pieces of encoded contexts for each entity

to a global context based on the relative informativeness scores:

for entity e: h̄ =
∑

p∈P
aphp,

for entity k: ḡ =
∑

q∈Q
aqgq.

(5.7)
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Note that due to the leaky effect, less informative contexts are not forced to be heavily involved

during the aggregation: the leaky unit may be more competitive than contexts that are less

informative, thus assigned with larger matching scores. However, as the leaky unit is not used

for aggregation, scores on informative contexts become more salient during context aggregation.

5.2.5 Training Objectives

We introduce two architectures for training the SynonymNet: a siamese architecture and

a triplet architecture.

Siamese Architecture The Siamese architecture takes two entities e and k, along with their

contexts H and G as the input. The following loss function LSiamese is used in training for the

Siamese architecture:

LSiamese = yL+(e, k) + (1− y)L−(e, k), (5.8)

where it contains losses for two cases: L+(e, k) when e and k are synonyms to each other

(y = 1), and L−(e, k) when e and k are not (y = 0). Specifically, inspired by (Neculoiu et al.,

2016), we have

L+(e, k) = 1
4(1− s(h̄, ḡ))2,

L−(e, k) = max(s(h̄, ḡ)−m, 0)2,

(5.9)

where s(·) is a similarity function, e.g. cosine similarity, and m is the margin value. L+(e, k)

decreases monotonically as the similarity score becomes higher within the range of [-1,1].

L+(e, k) = 0 when s(h̄, ḡ) = 1. For L−(e, k), it remains zero when s(h̄, ḡ) is smaller than

a margin m. Otherwise L−(e, k) increases as s(h̄, ḡ) becomes larger.
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Triplet Architecture The Siamese loss makes the model assign rational pairs with absolute

high scores and irrational ones with low scores, while the rationality of entity synonymity could

be quite relative to the context. The triplet architecture learns a metric such that the global

context h̄ of an entity e is relatively closer to a global context ḡ+ of its synonym entity, say

k+, than it is to the global context ḡ− of a negative example ḡ− by some margin value m. The

following loss function LTriplet is used in training for the Triplet architecture:

LTriplet = max(s(h̄, ḡ−)− s(h̄, ḡ+) +m, 0). (5.10)

5.2.6 Inference

The objective of the inference phase is to discover synonym entities for a given query entity

from the corpus effectively. We utilize context-aware word representations to obtain candidate

entities that narrow down the search space. The SynonymNet verifies entity synonymity by

assigning a synonym score for two entities based on multiple pieces of contexts. The overall

framework is described in Figure 19, which contains four steps (1): Obtain entity representa-

tions WEMBED from the corpus D. (2): For each query entity e, search in the entity embedding

space and construct a candidate entity set ENN . (3): Retrieve contexts for the query entity

e and each candidate entity eNN ∈ ENN from the corpus D, and feed the encoded contexts

into SynonymNet. (4): Discover synonym entities of the given entity by the output of Syn-

onymNet.
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Figure 19: Synonym discovery during the inference phase with SynonymNet.

When given a query entity e, it is tedious and very ineffective to verify its synonymity with

all the other possible entities. In the first step, we train entity representation unsupervisely

from the massive corpus D using methods such as skip-gram (Mikolov et al., 2013b) or GloVe

(Pennington et al., 2014). An embedding matrix can be learned WEMBED ∈ Rv×dEMBED , where

v is the number of unique tokens in D. Although these unsupervised methods utilize the context

information to learn semantically meaningful representations for entities, they are not directly

applicable to entity synonym discovery. However, they do serve as an effective way to obtain

candidates as they tend to give entities with similar neighboring context words similar rep-

resentations. For example, nba championship, chicago black hawks and american league

championship series have similar representations because they tend to share some similar

neighboring words. But they are not synonyms with each other.

In the second step, we construct a candidate entity list ENN by finding nearest neighbors of

a query entity e in the entity embedding space of RdEMBED . Ranking entities by their proximities
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with the query entity on the entity embedding space significantly narrows down the search space

for synonym discovery.

For each candidate entity eNN ∈ ENN and the query entity e, we randomly fetch multiple

pieces of contexts in which entities are mentioned, and feed them into the proposed Syn-

onymNet model.

SynonymNet calculates a score s(e, eNN ) based on the bilateral matching with leaky units

over multiple pieces of contexts. The candidate entity eNN is considered as a synonym to the

query entity e when it receives a higher score s(e, eNN ) than other non-synonym entities, or

exceeds a specific threshold.

Here we provide pseudo codes for the synonym discovery using SynonymNet.

Algorithm 2 Effective Synonym Discovery via SynonymNet.
Data: Candidate entity e, Entity Word Embeddings WEMBED ∈ Rv×d, Document D
Result: Entity Set K where each k ∈ K is a synonym entity of e
ENN = NearestNeighbor(e, WEMBED)
Order ENN by the distance to e;
for eNN in ENN do

Retrieve Contexts for eNN from Document D;
Apply SynonymNet on e and eNN ;
if s(e, eNN ) >threshold then

Add eNN as a synonym of e to K;
end if

end for
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5.3 Evaluation

5.3.1 Datasets

Three datasets are prepared to show the effectiveness of the proposed model on synonym

discovery. The Wiki dataset contains 6.8M documents from Wikipedia1 with generic synonym

entities obtained from Freebase2. The PubMed is an English dataset where 0.82M research

paper abstracts are collected from PubMed3 and UMLS4 contains existing entity synonym

information in the medical domain. The Wiki + FreeBase and PubMed + UMLS are public

available datasets used in previous synonym discovery tasks (Qu et al., 2017). The MedBook is

a Chinese dataset collected by authors where we collect 0.51M pieces of contexts from Chinese

medical textbooks as well as online medical question answering forums. Synonym entities in

the medical domain are obtained from MKG, a medical knowledge graph. Table XIV shows

the dataset statistics.

5.3.2 Experiment Settings

Preprocessing Wiki +Freebase and PubMed + UMLS come with entities and synonym entity

annotations, we adopt the Stanford CoreNLP package to do the tokenization. For MedBook, a

1https://www.wikipedia.org/

2https://developers.google.com/freebase

3https://www.ncbi.nlm.nih.gov/pubmed

4https://www.nlm.nih.gov/research/umls/
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Dataset Wiki + FreeBase PubMed + UMLS MedBooK + MKG
#ENTITY 9274 6339 32,002

#VALID 394 386 661
#TEST 104 163 468

#SYNSET 4615 708 6600
#CONTEXT 6,839,331 815,644 514,226
#VOCAB 472,834 1,069,061 270,027

TABLE XIV: Dataset statistics.

Chinese word segmentation tool Jieba1 is used to segment the corpus into meaningful entities

and phrases. We remove redundant contexts in the corpus and filter out entities if they ap-

pear in the corpus less than five times. For entity representations, the proposed model works

with various unsupervised word embedding methods. Here for simplicity, we adopt skip-gram

(Mikolov et al., 2013b) with a dimension of 200. Context window is set as 5 with a negative

sampling of 5 words for training.

Evaluation Metric For synonym detection using SynonymNet and other alternatives, we

train the models with existing synonym and randomly sampled entity pairs as negative sam-

ples. During testing, we also sample random entity pairs as negative samples to evaluate the

performance. Note that all test synonym entities are from unobserved groups of synonym en-

tities: none of the test entities is observed in the training data. Thus evaluations are done in a

completely cold-start setting.

1https://github.com/fxsjy/jieba
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The area under the curve (AUC) and Mean Average Precision (MAP) are used to evaluate

the model. AUC is used to measure how well the models assign high scores to synonym entities

and low scores to non-synonym entities. An AUC of 1 indicates that there is a clear boundary

between scores of synonym entities and non-synonym entities. Additionally, a single-tailed t-

test is conducted to evaluate the significance of performance improvements when we compare

the proposed SynonymNet model with all the other baselines.

For synonym discovery during the inference phase, we obtain candidate entities ENN from

K-nearest neighbors of the query entity in the entity embedding space, and rerank them based

on the output score s(e, eNN ) of the SynonymNet for each eNN ∈ ENN . We expect candidate

entities in the top positions are more likely to be synonym with the query entity. We report

the precision at position K (P@K), recall at position K (R@K), and F1 score at position K

(F1@K).

Baselines We compare the proposed model with the following alternatives.

• word2vec (Mikolov et al., 2013b): a word embedding approach based on entity repre-

sentations learned from the skip-gram algorithm. We use the learned word embedding

to train a classifier for synonym discovery. A scoring function ScoreD(u, v) = xuWxTv is

used as the objective.

• GloVe (Pennington et al., 2014): another word embedding approach. The entity rep-

resentations are learned based on the GloVe algorithm. The classifier is trained with

the same scoring function ScoreD, but with the learned glove embedding for synonym

discovery.
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• SRN (Neculoiu et al., 2016): a character-level approach that uses a siamese multi-layer

bi-directional recurrent neural networks to encode the entity as a sequence of characters.

The hidden states are averaged to get an entity representation. Cosine similarity is used

in the objective.

• MaLSTM (Mueller and Thyagarajan, 2016): another character-level approach. We

adopt MaLSTM by feeding the character-level sequence to the model. Unlike SRN that

uses Bi-LSTM, MaLSTM uses a single direction LSTM and l-1 norm is used to measure

the distance between two entities.

• DPE (Qu et al., 2017): a model that utilizes dependency parsing results as the structured

annotation on a single piece of context for synonym discovery.

• SynonymNet is the proposed model, we used siamese loss (Equation 5.9) and triplet

loss (Equation 5.10) as the objectives, respectively.

5.3.3 Experiment Results

We report Area Under the Curve (AUC) and Mean Average Precision (MAP) on three

datasets in Table XV.

From the upper part of Table XV we can see that SynonymNet performances consistently

better than other baselines on three datasets. SynonymNet with the triplet training objective

achieves the best performance on Wiki +Freebase, while the Siamese objective works better on

PubMed + UMLS and MedBook + MKG. Word2vec is generally performing better than GloVe.

SRNs achieve decent performance on PubMed + UMLS and MedBook + MKG. This is probably
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MODEL Wiki + Freebase PubMed + UMLS MedBook + MKG
AUC MAP AUC MAP AUC MAP

word2vec (Mikolov et al., 2013b) 0.9272 0.9371 0.9301 0.9422 0.9393 0.9418
GloVe (Pennington et al., 2014) 0.9188 0.9295 0.8890 0.8869 0.7250 0.7049
SRN (Neculoiu et al., 2016) 0.8864 0.9134 0.9517 0.9559 0.9419 0.9545
MaLSTM (Mueller and Thyagarajan, 2016) 0.9178 0.9413 0.8151 0.8554 0.8532 0.8833
DPE (Qu et al., 2017) 0.9461 0.9573 0.9513 0.9623 0.9479 0.9559
SynonymNet (Pairwise) 0.9831† 0.9818† 0.9838† 0.9872† 0.9685 0.9673

w/o Leaky Unit 0.9827† 0.9817† 0.9815† 0.9847† 0.9667 0.9651
w/o Confluence Encoder (Bi-LSTM) 0.9683† 0.9625† 0.9495 0.9456 0.9311 0.9156

SynonymNet (Triplet) 0.9877† 0.9892† 0.9788† 0.9800† 0.9410 0.9230
w/o Leaky Unit 0.9705† 0.9631† 0.9779† 0.9821† 0.9359 0.9214
w/o Confluence Encoder (Bi-LSTM) 0.9582† 0.9531† 0.9412 0.9288 0.9047 0.8867

TABLE XV: Test performance in AUC and MAP on three datasets.
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Figure 20: Test synonym score distributions on positive and negative entity pairs.

because the synonym entities obtained from the medical domain tend to share more character-

level similarities, such as 6-aminohexanoic acid and aminocaproic acid. However, even if

the character-level features are not explicitly used in our model, our model still performances

better, by exploiting multiple pieces of contexts effectively. DPE has the best performance

among other baselines, by annotating each piece of context with dependency parsing results.

However, the dependency parsing results could be error-prone for the synonym discovery task,
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especially when two entities share the similar usage but with different semantics, such as NBA

finals and NFL playoffs.

We conduct statistical significance tests to validate the performance improvement. The

single-tailed t-test is performed for all experiments, which measures whether or not the results

from the proposed model are significantly better than ones from baselines. The numbers with

† markers in Table XV indicate that the improvement is significant with p<0.05.

Table XVI reports the performance in P@K, R@K, and F1@K.

Wiki + Freebase PubMed + UMLS MedBook + MedKG
P@K R@K F1@K P@K R@K F1@K P@K R@K F1@K

K=1 0.3455 0.3455 0.3455 0.2400 0.0867 0.1253 0.3051 0.2294 0.2486
K=5 0.1818 0.9091 0.3030 0.2880 0.7967 0.3949 0.2388 0.8735 0.3536
K=10 0.1000 1.0000 0.1818 0.1800 1.0000 0.2915 0.1418 1.0000 0.2360

TABLE XVI: Performance on Synonym Discovery.

Besides numeric metrics, we also use box plots to represent the score distributions for each

method on all three datasets in Figure 20. The red bars indicate scores on positive entity

pairs that are synonym with each other, while the blue bars indicate scores on negative entity

pairs. A general conclusion is that our model assigns higher scores for synonym entity pairs,

marginally higher than other non-synonym entity pairs when compared with other alternatives.
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5.3.4 Ablation Study

To study the contribution of different modules of SynonymNet for synonym discovery,

we also report ablation test results in the lower part of Table XV. “w/o Confluence Context

Encoder” uses the Bi-LSTM as the context encoder. The last hidden states in both forward and

backward directions in Bi-LSTM are concatenated; “w/o Leaky Unit” does not have the ability

to ignore uninformative contexts during the bilateral matching process: all contexts retrieved

based on the entity, whether informative or not, are utilized in bilateral matching. From the

lower part of Table XV we can see that both modules (Leaky Unit and Confluence Encoder)

contribute to the effectiveness of the model. The leaky unit contributes 1.72% improvement

in AUC and 2.61% improvement in MAP on the Wiki dataset when trained with the triplet

objective. The Confluence Encoder gives the model an average of 3.17% improvement in AUC

on all three datasets, and up to 5.17% improvement in MAP.

5.3.5 Hyperparameters

We train the proposed model with a wide range of hyperparameter configurations, which

are listed in Table XVII. For the model architecture, we vary the number of randomly sampled

contexts P = Q for each entity from 1 to 20. Each piece of context is chunked by a maximum

length of T . For the confluence context encoder, we vary the hidden dimension dCE from 8 to

1024. The margin value m in triplet loss function is varied from 0.1 to 1.75. For the training,

we try different optimizers (Adam (Kingma and Ba, 2014), RMSProp (Tieleman and Hinton,

2012), adadelta (Zeiler, 2012), and Adagrad (Duchi et al., 2011)), with the learning rate varying

from 0.0003 to 0.01. Different batch sizes are used to train the model. We apply random search
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to obtain the best-performing hyperparameter setting on the validation split for each dataset,

as shown in Table XVIII.

HYPERPARAMETERS VALUE
P (context number) {1, 3, 5, 10, 15, 20}
T (maximum context length) {10, 30, 50, 80}
dCE (layer size) {8, 16, 32, 64, 128, 256, 512, 1024}
m (margin) {0.1, 0.25, 0.5, 0.75, 1.25, 1.5, 1.75}
Optimizer {Adam, RMSProp, Adadelta, Adagrad}
Batch Size {4, 8, 16, 32, 64, 128}
Learning Rate {0.0003, 0.0001, 0.001, 0.01}

TABLE XVII: Hyperparameter settings.

DATASETS P T dCE m Optimizer Batch Size Learning Rate
Wiki + Freebase 20 50 256 0.75 Adam 16 0.0003
PubMed + UMLS 20 50 512 0.5 Adam 16 0.0003
MedBook + MKG 5 80 256 0.75 Adam 16 0.0001

TABLE XVIII: Hyperparameters.

Furthermore, we provide sensitivity analysis of the proposed model with different hyperpa-

rameters in Wiki + Freebase dataset in Figure 21. Figure 21 shows the performance curves

when we vary one hyperparameter while keeping the remaining fixed. As the number of contexts
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Figure 21: Sensitivity analysis.

P increases, the model generally performs better. Due to limitations on computing resources,

we are only able to verify the performance of up to 20 pieces of randomly sampled contexts.

The model achieves the best AUC and MAP when the maximum context length T = 50: longer

contexts may introduce too much noise while shorter contexts may be less informative.

5.3.6 Case Studies

Table XIX and Table XX show a case for entity UNGA. The candidate entities in Table XIX

are generated with pretrained word embedding using skip-gram. Table XX shows the discov-

ered synonym entities by the proposed SynonymNet model, where a threshold of 0.8 on the

SynonymNet score is used.

5.4 Related works

Synonym Discovery The synonym discovery focuses on detecting entity synonyms. Most

existing works try to achieve this goal by learning from structured information such as query

logs (Ren and Cheng, 2015; Chaudhuri et al., 2009; Wei et al., 2009). While in this work,
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Candidate Entities Cosine Similarity
united nations general assembly||m.07vp7|| 0.847374
un human rights council 0.823727
the united nations general assembly 0.813736
un security council||m.07vnr|| 0.794973
palestine national council 0.791135
world health assembly||m.05 gl9|| 0.790837
united nations security council||m.07vnr|| 0.787999
general assembly resolution 0.784581
the un security council 0.784280
ctbt 0.777627
north atlantic council||m.05pmgy|| 0.775703
resolution 1441 0.773064
non-binding resolution||m.02pj22f|| 0.771475
unga||m.07vp7|| 0.770623

TABLE XIX: Candidate entities retrieved for UNGA.

Final Entities SynonymNet Score
united nations general assembly||m.07vp7|| 0.842602
the united nations general assembly 0.801745
unga||m.07vp7|| 0.800719

TABLE XX: Discovered synonym entities for UNGA using SynonymNet.

we focus on synonym discovery from free-text natural language contexts, which requires less

annotation and is more challenging.

Some existing works try to detect entity synonyms by entity-level similarities (Lin et al.,

2003; Roller et al., 2014; Neculoiu et al., 2016; Wieting et al., 2016). For example, (Roller et

al., 2014) introduce distributional features for hypernym detection. (Neculoiu et al., 2016) use



104

a Siamese structure that treats each entity as a sequence of characters, and uses a Bi-LSTM

to encode the entity information. Such approach may be helpful for synonyms with similar

spellings, or dealing with abbreviations. Without considering the context information, it is

hard for the aforementioned methods to infer synonyms that share similar semantics but are

not alike verbatim, such as JD and law degree.

Various approaches (Snow et al., 2005; Sun and Grishman, 2010; Liao et al., 2017; Cambria

et al., 2018) are proposed to incorporate context information to characterize entity mentions.

However, these models are not designed for synonym discovery. (Qu et al., 2017) utilize addi-

tional structured annotations, e.g. dependency parsing result, as the context of the entity for

synonym discovery. While we aim to discover synonym entities from a free-text corpus without

structured annotation.

Sentence Matching There is another related research area that studies sentence matching.

Early works try to learn a meaningful single vector to represent the sentence (Tan et al.,

2015; Mueller and Thyagarajan, 2016). These models do not consider the word-level interactions

from two sentences during the matching. (Wang and Jiang, 2016; Wang et al., 2016; Wang et

al., 2017) introduce multiple instances for matching with varying granularities. Although the

above methods achieve decent performance on sentence-level matching, the sentence matching

task is different from context modeling for synonym discovery in essence. Context matching

focuses on local information, especially the words before and after the entity word; while the

overall sentence could contain much more information, which is useful to represent the sentence-

level semantics, but can be quite noisy for context modeling. We adopt a confluence encoder
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to model the context, which is able to aware of the location of an entity in the context while

preserving information flow from both left and right contexts.

Moreover, sentence matching models do not explicitly deal with uninformative instances:

max-pooling strategy and attention mechanism are introduced. The max-pooling strategy picks

the most informative one and ignores all the other less informative ones. In context matching,

such property could be unsatisfactory as an entity is usually associated with multiple contexts.

We adopt a bilateral matching which involves a leaky unit to explicitly deal with uninforma-

tive contexts, so as to eliminate noisy contexts while preserving the expression diversity from

multiple pieces of contexts.



CHAPTER 6

CONCLUSION

(Part of the chapter was previously published in (Zhang et al., 2016; Zhang et al., 2017;

Zhang et al., 2018a; Zhang et al., 2019; Zhang et al., 2018b).) In this dissertation, we have

explored the structured knowledge discovery from the massive text corpus. More specifically,

two general and strongly correlated research objectives are explored: one is to harness struc-

tured information for natural language understanding and modeling, and the other objective

is to effectively expand and refine structured knowledge harnessing the massiveness of the text

corpus. We thoroughly studied four different research problems: Structured Intent Detection

for Natural Language Understanding, Structure-aware Natural Language Modeling, Genera-

tive Structured Knowledge Expansion, and Synonym Refinement on Structured Knowledge.

We have evaluated the effectiveness of the proposed approaches on various user-generated text

corpora such as the question-answering corpus, web search queries, voice commands, and doc-

uments by extensive quantitative experiments and case studies. The main contributions of our

works are summarized as follows:

• We studied the Structured Intent Detection problem that aims to understand compli-

cated user intentions in online question-answering discussion forums. An Intent Graph

is formulated to possess explicit constraints on concept mentions as nodes and semantic

transitions among concepts as directed edges on the Intent Graph, which are key com-

106



107

ponents to characterize Structured Intents. A neural network model named coCTI-MTL

based on multi-task learning is introduced to extract concept mentions as well as seman-

tic transitions collectively as a sub-graph of the Intent Graph to represent Structured

Intents. Empirical results show that the proposed method can accurately detect compli-

cated user intents from real-world information-seeking text corpora generated by users on

an online medical question-answering discussion forum. Being able to detect complicated

intents may further benefit other tasks such as dialogue management, recommendation,

and question rewriting.

• We presented a capsule neural network based model, namely Capsule-NLM, to harness

the hierarchical relationships among words, slots, and intents in the utterance for joint

slot filling and intent detection. Unlike treating slot filling as a sequential prediction

problem, the proposed model Capsule-NLM assigns each word to its most appropriate

slots in SlotCaps by a dynamic routing-by-agreement schema. The learned word-level slot

representations are further aggregated to get the utterance-level intent representations via

dynamic routing-by-agreement. A re-routing schema is proposed to further synergize the

slot filling performance using the inferred intent representation. Experiments on two real-

world datasets show the effectiveness of the proposed models when compared with other

alternatives as well as existing NLU services.

• We introduce a generative perspective to study the Generative Structured Knowledge

Expansion problem, which aims to expand the scale of high-quality yet novel structured

knowledge from the massive text corpus with minimized annotation and additional data
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collection. We propose a model named Conditional Relationship Variational Autoencoder

(CRVAE) which capitalizes on rich semantic information learned unsupervisely from a

large text corpus as entity representations. The proposed model defines each relationship

by solely learning the expression commonalities and differences from existing entity pairs

that are diversely expressed. It generates meaningful, novel entity pairs of a specific

relationship by directly sampling from the learned latent space without the requirement

of additional context information. The performance of the proposed method is evaluated

on real-world data both quantitatively and qualitatively.

• We developed a framework for synonym discovery from the text corpus without structured

annotation. A novel neural network model SynonymNet is introduced for synonym

detection, which tries to determine whether or not two given entities are synonym with

each other. The proposed model is able to automatically detect synonym entities from

a large corpus, which could help remove duplicate entities in knowledge graphs and thus

improve the quality of structured knowledge. SynonymNet makes use of multiple pieces

of contexts in which each entity is mentioned, and compares the context-level similarity

via a bilateral matching schema to determine synonymity. Experiments on three real-

world datasets show that the proposed method SynonymNet can discover synonym

entities effectively on both generic datasets (Wiki+Freebase in English), as well as domain-

specific datasets (PubMed+UMLS in English and MedBook+MKG in Chinese) with an

improvement up to 4.16% in AUC and 3.19% in MAP.
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