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SUMMARY

Parts of this section have been presented in (Sharifzadeh et al., 2019a; Sharifzadeh et al.,
2019b). Copyright c© 2019, IEEE.

Steganography is the art of hiding data in a cover medium without arousing suspicion of the warden

(Simmons, 1984). In this thesis, we focus on the most popular and studied cover medium for steganog-

raphy, digital images. In digital image steganography, the statistical model of an image is essential for

hiding data in less detectable regions and achieving better security. This has been addressed in the liter-

ature, where different cost-based and statistical model-based approaches were proposed. However, due

to the usage of heuristically defined distortions or statistical models resulting in numerically solvable

equations, there is no closed-form expression for security as a function of payload. The closed-form

expression is crucial for a better insight into image steganography, batch steganography, and pool ste-

ganalysis problems. Besides, it is also required for improving the security of steganography and batch

steganography algorithms against single image and pool steganalysis. Towards this goal, our research is

focused on four problems.

1) We develop a general spatial image steganography embedding model that can utilize embedding

costs and residual variances for embedding the hidden message and achieves state-of-the-art perfor-

mance. 2) We extend the embedding model to JPEG steganography, which is also generalized in the

sense that it can accomplish embedding using any spatial or DCT embedding cost as well as residual

variances. Employing the proposed model improves the security of previous works and outperforms the

state-of-the-art JPEG steganography algorithms. 3) We derive the closed-form expression for steganal-

ysis error of batch steganography. The expression allows us to study the effect of batch size on security

xi



SUMMARY (Continued)

which results in a novel batch steganography method, Adaptive Batch size Image Merging steganogra-

pher (AdaBIM). 4) We further extend the closed-form expression of single image steganalysis to pool

steganalysis for an optimal omniscience detector. The developed analytical model is validated by its

ability to accurately estimate empirical results of pool steganalysis and predict the behavior of empirical

pool steganalysis error variance.

xii



CHAPTER 1

INTRODUCTION

Parts of this chapter have been presented in (Sharifzadeh et al., 2019a; Sharifzadeh et al.,
2019b). Copyright c© 2019, IEEE.

1.1 Motivation and background

Steganography is the art of concealing data within an innocent cover medium such as multimedia

files. This problem was first defined as the prisoners’ problem in which two prisoners, Alice and Bob,

want to communicate a secret message in the presence of warden, Wendy (Simmons, 1984). Alice cre-

ates a stego medium by embedding the secret message in a cover medium using a private or public key,

and Bob decodes the message from the stego medium. Steganography is closely related to watermarking

and cryptography. However, they all have different methodologies and applications. In cryptography,

information is converted from a readable state to incomprehensible state. Regardless of how complex

and unbreakable a cryptography method is, it arises suspicion. In watermarking, a marker is embedded

for authenticity purposes and tracing infringements. As a result, robustness is a top priority. In contrast

to these two concepts, steganography hides the very existence of the hidden content, and not rising sus-

picion is the top priority. Furthermore, by applying encryption first, then steganography, the content of

the hidden message is protected in addition to concealing its existence (Sadek et al., 2015).

Due to the high redundancy of digital images, they are the most common medium for steganogra-

phy. Early methods of image steganography do not take into account the underlying distribution and

correlation of image elements and, therefore, hide the same amount of hidden message in every element.

1
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Examples of such non-adaptive methods for spatial domain are (Cheddad et al., 2010; Johnson and Ja-

jodia, 1998) and for DCT domain are (Upham, 1993; Westfeld, 2001; Fridrich et al., 2007). Treating all

the cover elements similarly results in embedding hidden message in highly correlated regions in which

even small perturbations are easily detectable (Fridrich et al., 2001; Fridrich et al., 2007). To tackle this

issue and increase security, one must do image steganography adaptively by considering the detectabil-

ity of cover elements and embedding more hidden data in less detectable ones. This problem is modeled

by an optimization problem for minimizing the distortion caused by embedding data and formulated to

source coding with a fidelity criterion (Shannon, 1959). A general solution for this optimization problem

is Syndrome Trellis Codes (STC), which performs embedding according to cover elements embedding

costs (Filler and Fridrich, 2010; Filler et al., 2011). STC hides more data in low-cost elements and less

in high-cost ones.

STC has led to many studies on computing embedding costs for image steganography for both

spatial and JPEG domains. Well-known examples of such studies for spatial domain are as follows

(Pevnỳ et al., 2010b; Holub and Fridrich, 2012; Fridrich and Kodovskỳ, 2013; Li et al., 2014; Holub et

al., 2014; Sedighi et al., 2015; Sedighi et al., 2016). For JPEG domain steganography, they are (Guo et

al., 2014; Holub et al., 2014; Guo et al., 2015; Pan et al., 2016; Denemark and Fridrich, 2017). These

examples can be clustered into two categories according to their approach, one is cost-based methods

that compute costs using purely heuristic approaches, and the other one is model-based method, which

calculates costs based on statistical models for cover and stego mediums. Because of using heuristics

or statistical models resulting in numerically solvable equations, there are no closed-form solutions

for spatial and JPEG image steganography. Obtaining a closed-form solution would allow us to better
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understand image steganography as well as batch steganography and pool steganalysis and enable us to

predict their behavior.

Batch steganography is the extension of steganography in which the embedder spreads the hidden

message among multiple cover objects. On the other hand, pool steganalysis is the extension of ste-

ganalysis problem in which the detector examines multiple objects sharing the same sender and pools

all the available pieces of evidence. Batch steganography and pool steganalysis are dual problems in-

troduced in (Ker, 2006) and highlighted as significant open problems in steganography in (Ker et al.,

2013).

In the subject of batch steganography, early works were focused on non-adaptive message spreading

techniques (Ker, 2007; Ker, 2008a; Ker and Pevny, 2012). Later on, in (Zhao et al., 2016), a content-

adaptive batch steganography method has been introduced where the suitability of the images in the

batch are taken into consideration for spreading payload. The results were further improved using better

spreading strategy in (Cogranne et al., 2017). In all these methods, all the available covers were grouped

into one batch, and the effect of smaller batch sizes has never been studied. Also, no closed-form

expression has been derived for steganalysis of batch steganography.

For the pool steganalysis problem, the case of having multiple senders has been studied in (Ker and

Pevnỳ, 2011; Ker and Pevny, 2012). Sequential steganalysis scenario has been discussed in (Cogranne,

2015). Later, researchers have focused on finding out if a single sender is guilty or not. Assuming that

the detector is omniscience, it has been shown that the average pooling function is close to optimal in

(Pevnỳ and Nikolaev, 2015). Cogranne et al. have shown that knowing the steganographer’s strategy

improves pool steganalysis results (Cogranne et al., 2017). However, Zakaria et al. proposed a pooling
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method that performs close to an omniscience pool steganalysis without having the knowledge of the

sender’s strategy (Zakaria et al., 2019). In all the mentioned works, there is no statistical analysis for

modeling pool steganalysis of steganography with the state-of-the-art payload spreading strategies in

real images.

1.2 Main contributions

In this section, we provide a summary of various studies presented in this thesis. We do not intend

to propose any method for computing cost of embedding in spatial or DCT domain, or estimating pixel

residual variances, but rather to develop an embedding model which can be leveraged for spreading

the hidden message. Note that the separation between the computation of embedding cost or residual

variance and the embedding model suggests that the proposed methods can potentially be used for

steganography in other cover mediums such as video and audio data, extending the applicability of our

studies to other steganography scenarios.

1.2.1 Image Steganography for Raw Images

We develop a statistical framework for image steganography in spatial domain in which the cover

and the stego messages are modeled as multivariate Gaussian random variables. We propose a novel

quantized Gaussian embedding model by maximizing the detection error of the most common optimal

detectors within the adopted statistical model. Afterward, the closed-form detection error is derived

within the adopted model for spatial image steganography. Furthermore, we extend the formulation

to cost-based steganography, resulting in a universal embedding scheme that improves the empirical

results of current cost-based and statistical model-based approaches. This methodology and its presented
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solution remain the same for any m-ary embedding scenario, because of assuming a continuous hidden

message.

1.2.2 Image Steganography for Compressed Images

We extend the statistical framework developed for raw image steganography to compressed image

steganography. Similarly, the cover and the hidden message are modeled by multivariate Gaussian dis-

tribution. Based on this statistical model, we propose a novel quantized Gaussian JPEG steganography

model, which is able to accomplish embedding using any spatial or DCT embedding cost as well as

residual variances. Employing the proposed model improves the security of previous works and outper-

forms the state-of-the-art JPEG steganography algorithms.

1.2.3 Batch Steganography

Batch steganography is the extensions of steganography where the hidden message is spread in

multiple objects. To address this problem, we extend the closed-form detection error derived within our

statistical model for image steganography to batch steganography. Using the closed-form expression,

we introduce a novel batch steganography method, Adaptive Batch size Image Merging steganographer

(AdaBIM), and mathematically prove it outperforms the state-of-the-art batch steganography method

and further verify its superiority by experiments.

1.2.4 Pool Steganalysis

The pool steganalysis problem arises when the detector knows a pool of objects share the same

source, and therefore, it jointly analyzes the objects. To tackle the pool steganalysis problem, we extend

the closed-form expression of single image steganalysis detection error to pool steganalysis for an omni-

science optimal warden. We employ the derived expression to approximate the empirical results of pool
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steganalysis computed by an ensemble classifier steganalyzer. The approximation is based on the em-

pirical detection error of single image steganalysis, and it approximates the detection error for any pool

size greater than one. Although the approximation is derived based on the adopted statistical model, it is

precise for all the payloads, embedding domains, embedding methods, and steganalysis features as long

as the pooling strategy is optimal. This validates our analytical model. In addition to approximation

of the error, we employ the proposed model to make predictions about the behavior of pool steganal-

ysis error variance. Our model shows that the variance increases as the pool size increases in small

payloads. We observe the same behavior in empirical results, which re-validates our analytical model.

Small payloads are more useful comparing to high payloads, which are easily detectable. Therefore, we

conclude that although pooling makes the detector more reliable as it decreases the detection error, it

makes the detector less reliable in the sense that it increases the variance. In other words, pooling makes

the steganalyzer less stable.

1.3 Organization

The rest of this thesis is organized as follows. A detailed summary of previous works in steganog-

raphy and steganalysis is presented in Chapter 2. In Chapter 3, we elaborate on our published works

(Sharifzadeh et al., 2019a; Sharifzadeh et al., 2019b) for developing an embedding model for image

steganography in spatial domain and leveraging the model for batch steganography. In Chapter 4, we

discuss the extension of the model to DCT domain resulting in an embedding model for JPEG steganog-

raphy and a unified framework for estimation of pool steganalysis error and its variance. Chapter 5

concludes this thesis and discusses possible future directions.



CHAPTER 2

OVERVIEW OF STEGANOGRAPHY AND STEGANALYSIS

2.1 Steganography

Since the definition of steganography problem as the prisoners’ problem, there have been lots of

theoretical and empirical studies in this topic (Simmons, 1984). One of the earliest theoretical studies

is Cachin’s work from an information-theoretic point of view, where he proposed a model for steganog-

raphy (Cachin, 1998). He interpreted the problem of detecting the existence of a secret message in a

medium as a hypothesis testing problem. Then, he defined perfectly secure and ε-secure steganogra-

phy using relative entropy and KullbackLeibler divergence between the cover and stego messages. This

problem was investigated further in a study by Moulin et al., where an upper-bound was derived for

steganography by incorporating the trade-off between the achievable information rate and the allowed

distortion levels for the steganographer and the steganalyzer (Moulin and O’Sullivan, 2003). They pro-

vided explicit formulas for hiding capacity in various cases based on different assumptions regarding the

probability distribution of the cover medium and the availability of side information. In a later study by

Moulin et al., considering a unified framework for data hiding problem, capacity formulas and random-

coding exponents were derived for coding part of such problems resulting in asymptotic upper bounds

on the achievable probability of channel coding error (Moulin and Wang, 2007). In another study, a

coding method was proposed for perfectly secure steganography, which achieves the transmission rate

upper bound derived in the literature while guaranteeing not to alter the underlying distribution of cover

7
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(Wang and Moulin, 2008). Similarly, in (Ryabko and Ryabko, 2009), a perfectly secure cover gener-

ating steganography system was proposed, which asymptotically reaches the transmission rate upper

bound. All these theoretical works assumed that the steganographer has a perfect knowledge of the

cover probability distribution, and they concluded that the transmission rate is proportional to the cover

size. However, in practice, steganographers can only approximate the cover distribution, and this re-

sults in hidden message size being a sub-linear function of cover size. This has been explored in many

studies under various conditions, and they all concluded in a sub-linear relation, and some of them

concluded in the well-known square root law of steganography (Anderson, 1996; Ker, 2004; Böhme,

2005; Ker, 2006; Ker, 2007; Ker, 2008b; Ker et al., 2008; Filler et al., 2009). The square root law has

different variants under different conditions and they all state that the steganographic capacity of a cover

is proportional to the square root of cover size.

Now, we go through a summary of previous works in practical steganography for hiding data in

images, which is the focus of this thesis. Image steganography methods can be divided into two groups,

i.e., spatial and frequency domain. Spatial image steganography methods alter the intensity of pixels

of an image; however, frequency-domain methods embed in a transform domain, e.g., by changing the

coefficients of Discrete Cosine Transform (DCT) of a JPEG image. In this thesis, we focus on spatial and

JPEG steganography. In both types of image steganography, non-adaptive methods have low security

because of treating all the cover elements similarly and not taking into account their correlation. After

the development of STC, lots of studies have been done on adaptive steganography, which tries to model

the image and assign a suitability measure to each cover element and then embed the hidden message
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accordingly. In the rest of this section, we explain recently proposed methods for spatial and JPEG

steganography.

The state-of-the-art spatial image steganography algorithms fall into two main categories: cost-

based and statistical or model-based methods. On the one hand, cost-based algorithms heuristically

define the cost of embedding in each pixel. These costs should be lower in noisy or textured regions

where changes due to embedding hidden message are less detectable. However, they should be higher in

smooth regions where even small perturbations are easily detectable due to cover elements being highly

correlated. To achieve this goal, Wavelet Obtained Weights (WOW) algorithm (Holub and Fridrich,

2012) utilizes a bank of directional high-pass filters to find suitable areas for embedding in which the

image has high frequency of change in every direction. Similarly, the S-UNIWARD algorithm assigns a

cost to each cover pixel by calculating the summation of changes in directional filter bank decomposition

coefficients of the cover caused by changing that pixel (Holub et al., 2014). As a result, in smooth

regions where pixels are easy to predict in every direction, embedding costs are high and less hidden

message is embedded. However, in noisy regions that are hard to model, more embedding takes place.

In another work, Li et al. have proposed a method called HILL for calculating costs, which is faster and

more secure comparing to S-UNIWARD (Li et al., 2014). HILL finds noisy regions of a cover image

using a high-pass filter, and then, smooths the estimated costs by two low-pass filters.

On the other hand, statistical or model-based spatial steganography methods analytically model the

cover instead of using pure heuristics for computing embedding costs, and then, they hide more data in

regions that are noisier according to the model. The first statistical model-based steganography is HUGO

(Pevnỳ et al., 2010b), which defines distortion as a weighted sum of differences between SPAM feature
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vectors of a cover image and its stego version (Pevny et al., 2010a). The main downside of embedding

while preserving an empirical feature space such as SPAM is that since the method is over-trained to

that feature, it results in low security if the warden utilizes a more complete feature space (Kodovsky

et al., 2011). Another approach is proposed in (Fridrich and Kodovskỳ, 2013), which models the cover

image pixels by independent normally distributed variables, where the variances are computed using a

proposed variance estimator. Then, the message is embedded in a ternary scheme in each pixel while

minimizing the KL divergence between the cover and the stego message. Using a similar framework but

with a generalized Gaussian statistical model for cover images, a better variance estimator, embedding

quinary message in each pixel, and minimizing the detection error of an optimal hypothesis testing

detector, better results were achieved in (Sedighi et al., 2015). Building upon the result of these two

works, MiPOD (Sedighi et al., 2016) was proposed outperforming state-of-the-art cost-based image

steganography methods. In MiPOD, the cover is modeled as independent Gaussian random variables,

and the stego message is the result of embedding a ternary message in each cover pixel. The embedding

is done in a way to minimize the power of a hypothesis testing detector. In contrast to the methods

utilizing the KL divergence, this method does not require the assumption of small payload.

Similar to spatial image steganography, steganography methods in JPEG domain include two main

categories: cost-based and statistical or model-based approaches. A summary of the state-of-the-art

cost-based JPEG steganography methods is as follows. Similar to S-UNIWARD, J-UNIWARD uses di-

rectional filter banks to calculates costs, but it computes the cost of changing the scaled DCT coefficient

instead of changing a pixel in spatial domain (Holub et al., 2014). Then, in contrast to the conventional

JPEG steganography approaches, which embed only in non-zero AC DCT coefficients, it alters all the
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coefficients according to the calculated costs. J-UNIWARD suffers from high computational complex-

ity because of using wavelet domain for determining costs. In another work, Guo et al. proposed a

faster approach by assigning costs to DCT coefficients in a way that results in embedding changes being

uniformly spread among different coefficients magnitudes (Guo et al., 2014). As a result, the average

changes of the first and the second-order statistics of DCT coefficients is reduced, and UED achieves

acceptable performance. Later, based on UED, UERD was proposed, which improved the results of

UED algorithm by taking into account the energy of a block of DCT coefficients and its neighbors for

determining the cost of embedding in its coefficients (Guo et al., 2015). UERD embeds more in blocks

with higher energy as these blocks belong to noisier regions of image, and therefore, it achieves better

security comparing to UED. In blocks located between noisy and smooth regions of images, UERD

does not work well, because the high energy of a noisy region results in lower embedding costs not only

for its own coefficients but also for coefficients in its neighboring blocks. This issue has been addressed

in a later study where a new distortion function called IUERD was proposed. By incorporating the

correlation of neighboring DCT blocks more efficiently, IUERD achieves considerably better security

compared to its predecessors, and its performance is comparable to J-UNIWARD, which is compu-

tationally more expensive. In JPEG steganography, there has been only one statistical-based method

called J-MiPOD, which is based on MiPOD, and it employs the same statistical cover model as MiPOD

(Denemark and Fridrich, 2017). In the mentioned study, in addition to proposing J-MiPOD, they have

also introduced algorithms for steganography with side information or pre-cover for both spatial and

JPEG domains (SI-MiPOD and SI-J-MiPOD).
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The extension of image steganography in a single cover is batch steganography in which the embed-

der spreads the hidden message among multiple cover objects. Batch steganography for non-adaptive

message spreading techniques was studied in (Ker, 2007; Ker, 2008a; Ker and Pevny, 2012), showing

that the message should be distributed evenly or concentrated in the fewest possible number of cover

mediums depending on the payload. However, for content-adaptive methods, Zhao et al. showed that

choosing a more suitable sub-batch of images to carry the whole message significantly improves se-

curity comparing to randomly choosing a sub-batch (Zhao et al., 2016). Further studies improved the

performance by spreading the payload among all the images of a batch using three message spreading

techniques, distortion limited sender (DiLS), detectability limited sender (DeLS), and image merging

sender (IMS) (Cogranne et al., 2017). Assuming only one batch containing all the images of a dataset,

DiLS and DeLS spread the payload among them in a way to have the same distortion and KL diver-

gence, respectively, according to an adopted cover model. However, IMS, the best performing tech-

nique, merges all the images, then the embedding algorithm distributes the payload among them. In

other words, IMS treats all the pixels in a batch as though they belonged to one image.

2.2 Steganalysis

The converse problem of steganography is steganalysis, in which a detector tries to distinguish be-

tween a cover object and a stego one. Steganalysis can be used as a performance measure for designing

steganography algorithms, and for comparing different steganography methods. Theoretical approaches

for steganalysis include, but is not limited to, KullbackLeibler divergence and hypothesis testing using

likelihood ratio. These theoretical methods require the exact knowledge of the underlying distribution of

the cover and the stego objects. However, such knowledge is not accessible for real-world cover objects
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such as images. Therefore, image steganalysis is done empirically using machine learning techniques

by training a classifier on steganalysis features extracted from a database of images, including both

cover and stego objects. This approach has a few disadvantages, which are subjects of many studies

in the field of steganalysis research. Theoretical performance analysis is impossible due to the usage

of heuristically defined features that are needed for training classifiers. Another problem called cover

source mismatch arises because of the differences between the database and cover source. And last

but not least, these steganalysis methods are time-consuming, and they become more computationally

expensive as the feature dimension increases.

Now, we go through a summary of steganalysis features proposed for detecting spatial and JPEG

steganography in the literature. There is a group of steganalysis features called rich models that are

built by concatenating a large number of sub-models where each sub-model computes noise residuals

using different denoising filters. In all the denoising filters, the prediction of a cover element is made

using only neighbors of the element, not the element itself. Therefore, in analyzing a stego message, the

embedding only affects the residual of the prediction, not the prediction, given that the hidden message

elements are independent. In steganalysis using rich models, the classifier is responsible for understand-

ing the dependencies between all the residuals calculated by sub-models. The first rich model for spatial

steganalysis was introduced in (Pevny et al., 2010a), which uses first-order and second-order Markov

chains to model the differences between adjacent pixels. Although this method, SPAM, was designed

to detect spatial steganography, it detected JPEG steganography as well. SPAM was later extended to

two of the well-known rich models for spatial steganalysis, i.e., SRM (Fridrich and Kodovsky, 2012)

and PSRM (Holub and Fridrich, 2013), by adding more sub-models. They both use the same 45 lin-
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ear and non-linear pixel estimators to predict each pixel and approximate the noise component of that

pixel by subtracting its value from its estimation. However, after approximation of noise residuals, they

utilize different statistical representation of noise residuals. SRM features are computed based on four-

dimensional co-occurrences, but PSRM is based on histograms of residual projections on to multiple

random directions. PSRM features outperform SRM features, but they are computationally more ex-

pensive. Further improvement was done in (Denemark et al., 2014) where maxSRM is proposed. This

steganalysis feature set makes use of selection channel and utilizes an approximation of the probability

of embedding changes. Throughout this thesis, we use maxSRMd2, which is a variation of maxSRM,

and it is proposed in the same paper for steganalysis of spatial steganography (Denemark et al., 2014).

Rich models are also extended to steganalysis for JPEG steganography in (Kodovskỳ and Fridrich,

2012), where JRM features are proposed based on prediction of DCT coefficients from their frequency

and spatial neighborhoods. JRM is effective for detecting non-adaptive JPEG steganography methods;

however, it is far less successful in detection of content-adaptive methods. Steganalysis feature sets that

are successful in detection of adaptive JPEG steganography methods are called phase aware features as

they split the histogram of the noise residuals by their JPEG phase, i.e., location of the DCT coefficient

in the 8×8 block (Holub and Fridrich, 2014; Song et al., 2015; Holub and Fridrich, 2015). The effec-

tiveness of splitting by JPEG phase comes from the fact that the impact of altering DCT coefficients

on pixels in a decompressed JPEG image depends on the JPEG phase. All three mentioned methods

calculate the histogram of the residual, but they utilize different filter banks. DCTR determines residuals

using a filter bank of 64 kernels corresponding to 64 JPEG phases, while GFR uses 256 Gabor filters,
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and PHARM uses 900 kernels. For steganalysis of JPEG steganography, we use DCTR and GFR feature

set as they achieve state-of-the-art performance.

All the performance measures reported in this paper are computed using an ensemble of random

forest classifiers optimized for high dimensional features (Kodovsky et al., 2012). This classifier is

trained on the features extracted from a database of images containing cover and stego images. Then, the

classifier is tested on a testing set, that has no overlap with the training set, and the average probability

of detection error, defined as the average of false alarm and missed detection based on equal priors, is

reported as a performance measure. For a fair comparison of different steganography approaches, we

employ the standard BOSSbase 1.01 database with 10k gray-scale 512×512 pixels images (Bas et al.,

2011).

The extension of single image steganalysis is pool steganalysis, where the detector knows that a pool

of object share the same source and, therefore, examines them together. The multiple sender scenario

has been discussed, and various methods were proposed to rank the senders according to their possibility

of being a stego message sender (Ker and Pevnỳ, 2011; Ker and Pevny, 2012). Further work has been

done to answer a more general question of whether a source is guilty or not with a different assumption

about the knowledge of the detector and the payload spreading strategy. In the case of the detector being

omniscience, the average pooling function is shown to be close to optimal for various payload spreading

strategies in (Pevnỳ and Nikolaev, 2015). In a later study, sequential steganalysis, a variation of pool

steganalysis problem, is discussed (Cogranne, 2015). Cogranne et al. have shown that knowledge of the

payload spreading strategy improves pool steganalysis (Cogranne et al., 2017). However, Zakaria et al.
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proposed a pooling method that performs close to an omniscience pool steganalysis without having the

knowledge of payload spreading strategy (Zakaria et al., 2019).



CHAPTER 3

ADAPTIVE BATCH SIZE IMAGE MERGING STEGANOGRAPHY AND

QUANTIZED GAUSSIAN IMAGE STEGANOGRAPHY

Parts of this chapter have been presented in (Sharifzadeh et al., 2019a; Sharifzadeh et al.,
2019b). Copyright c© 2019, IEEE.

3.1 Introduction

Steganography problem is formulated by the prisoner’s problem where Alice and Bob want to com-

municate through a cover medium without raising any suspicion from Wendy, the warden (Simmons,

1984). In this paper, we focus on the most popular and studied cover medium, digital images. Non-

adaptive image steganography approaches (Cheddad et al., 2010; Johnson and Jajodia, 1998) are easily

detectable as they neglect pixel to pixel dependencies (Fridrich et al., 2001). Therefore, in order to

achieve a better security, hidden message should be embedded in textured or noisy areas rather than

smooth regions. This has led to a group of content-adaptive spatial image steganography methods,

which we call cost-based methods. In these methods, message embedding is done while minimizing

the caused distortion, and it is formulated as a source coding problem with a fidelity criterion (Shan-

non, 1959). These methods include two main steps, first is calculating the cost of embedding in each

pixel using a heuristically defined distortion function, and second is embedding the message according

to the costs. The second step is solved for a general distortion function using syndrome trellis codes

and Gibbs measure (Filler et al., 2011; Filler and Fridrich, 2010). Examples of such steganography

methods are Spatial UNIversal WAvelet Relative Distortion (SUNIWARD) (Holub et al., 2014) and

17
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HIgh-pass, Low-pass, and Low-pass (HILL) (Li et al., 2014). Although these methods achieve superior

results, there is no theoretical relation between statistical security measures and these derived distortion

functions (Böhme, 2010). Thus, the security of these methods can be measured only empirically. This

issue has been resolved in the other category of steganography methods, which we call statistical-based

methods. They rely on a cover model and aim to minimize statistical distortion while embedding.

The first successful example of such a steganography method is Highly Undetectable steGO (HUGO),

which tries to preserve SPAM feature vector (Pevny et al., 2010a) of the cover while embedding (Pevnỳ

et al., 2010b). HUGO has low security against steganalysis with more complete feature space since it

is overfit to SPAM features (Kodovsky et al., 2011). To avoid this drawback, embedding can be done

while minimizing statistical detectability instead of preserving an empirical feature space. This has

been addressed in a revolutionary work by Fridrich et al., where a general Gaussian model was devel-

oped for the cover image, and embedding was done by minimizing its statistical distortion modeled as

Kullback-Leibler (KL) divergence (Fridrich and Kodovskỳ, 2013). The results were improved using a

generalized Gaussian model and measuring statistical distortion as the performance of a likelihood ratio

testing detector (Sedighi et al., 2015). By assuming Gaussian cover model and utilizing a better pixel

variance estimator, security of (Sedighi et al., 2015) was enhanced in Minimizing the Power of Optimal

Detector (MiPOD) (Sedighi et al., 2016).

In all the mentioned statistical model-based methods, as a result of a non-constrained message prob-

ability distribution, embedding probabilities are calculated using numerically solvable equations. There-

fore, their performances are not expressed as closed-form functions of payload. Having a closed-form
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detection error plays a critical role in understanding image steganography and also batch steganography

in which the payload is spread across multiple objects.

Batch steganography and pool steganalysis are the extensions of steganography and steganalysis

where the message is spread in multiple objects, and the detector jointly analyzes objects. These two

concepts were introduced in (Ker, 2006) and highlighted as important open problems in (Ker et al.,

2013). Non-adaptive message spreading batch steganography was studied in (Ker, 2007; Ker, 2008a; Ker

and Pevny, 2012). Batch steganography for content-adaptive methods was introduced in (Zhao et al.,

2016), where a more suitable sub-bath of images is chosen for embedding. The results were further

improved by spreading the payload among all the images of a batch in (Cogranne et al., 2017). In all the

proposed methods, the batch size is assumed to be infinity. In other words, the whole dataset is grouped

into one batch. To the best knowledge of the authors, smaller batch sizes have never been studied in the

literature.

In this chapter, our contribution is threefold:

1. For the first time, we model the hidden message as continuous Gaussian random variables and

propose a novel Gaussian embedding technique by minimizing the detection error of the three

most common optimal hypothesis detectors simultaneously. Subsequently, the closed-form de-

tection error as a function of payload is derived for such an embedder. The explained formulation

is also extended to the distortion minimization framework. As a result, the proposed embedding

model can be applied not only utilizing residual variances estimated by any variance estimator

used in model-based approaches such as MiPOD (Sedighi et al., 2016) and (Sedighi et al., 2015)

but also using embedding costs calculated by any cost-based image steganography methods, such
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as HILL (Li et al., 2014) and SUNIWARD (Holub et al., 2014). In all the cases, the proposed

method results in better security compared to the original embedding schemes.

2. Employing continuous hidden message in the formulation allows us to do (2q+1)-ary embedding

for any q by only changing the quantization levels. Therefore, we effortlessly investigate the effect

of maximum pixel change (q) on the security of image steganography within the adopted model.

We conclude that the higher the q is, the better the security is, which is contrary to the common

belief of executing small changes or altering only the least significant bit of pixels.

3. We obtain the closed-form detection error for image merging batch steganography with batch size

M. Consequently, we prove that using larger batch size results in higher detection errors in small

payloads. However, for large enough payloads, using smaller batch sizes is more secure. Based

on this, we introduce a novel Adaptive Batch size Image Merging steganographer (AdaBIM) that

merges images in batches with size M, where M depends on the payload. It outperforms the

state-of-the-art batch steganography method based on empirical evaluations.

This chapter is organized as follows. The statistical model for the cover and stego images are

presented in Sec. 3.2. Using the statistical model, a framework is developed for a hypothesis testing

detector in Sec. 3.3.1. Three optimal decision strategies for such a detector are investigated in Sec.

3.3.2. Based on all these strategies, a novel Gaussian embedding model is proposed in Sec. 3.4.1. In

Sec. 3.4.2, the impact of batch size is studied, and a new batching strategy, AdaBIM, is proposed and

proven to be superior. Then, the results are further extended to the distortion steganography framework

in Sec. 3.4.3, which makes the Gaussian embedding model applicable to cost-based methods. The

experimental results are provided in Sec. 3.5.
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3.2 Statistical Models

In this section, the statistical models for the cover and the stego messages are described. Cover

image pixels are modeled by independent Gaussian random variables. Subsequently, the distribution of

the stego image pixels is derived by embedding a Gaussian message in each cover pixel.

The motivation of using a continuous random variable to model the discrete message arises because

of the difficulty in solving this problem in the discrete space. We, therefore, propose to work in a contin-

uous framework in which both the cover and the message are modeled by continuous random variables.

Once the problem is solved in the continuous space, we discretize the derived solution to the original

discrete model to obtain the desired results. We note that the discrete model could potentially be solved

directly to provide the same (and possibly even superior) results. However, a direct closed-form solution

for the discrete model is currently unknown and remains an open problem. Furthermore, we would like

to have a unified probability framework where the cover and message distributions are consistent and

remain unchanged once the message has been added to the cover in a spatial steganography scenario;

i.e., we are limited to stable distributions, also known as Levy alpha-stable distributions, that are closed

under linear transformation. Our interest is further focused on a random variable model among the sta-

ble distributions that is symmetric. It is known that a symmetric alpha-stable distribution can be viewed

as a transform of zero-mean Gaussian random variables whose variance is drawn from a stable distribu-

tion (see, e.g., Section 3.2.2. in (Lee, 2010)). We, therefore, assume a Gaussian cover model as well as

a Gaussian message model, which as a result of the central limit theorem, has the added advantage of

robustness to channel and noise degradation as well as hostile attacks (see, e.g., Section 1.2.1 in (Lee,

2010)).
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3.2.1 Cover Model

Cover images are shown by c = [c1, . . . ,cn] ∈P = {0, . . . ,255}n, where P is the set of all vector

representation of 8-bit gray-scale images of size n1× n2 = n. Each ci is modeled as an independent

Gaussian variable, N (µi,ω
2
i ), quantized to P . Suppose µ̂i is an unbiased estimation of µi based on the

rest of the image. Thus, the residual of the estimation, defined as xi = ci− µ̂i, has a Gaussian distribution,

N (0,σ2
i ), where σ2

i is greater than ω2
i as it includes both the pixel’s variance (ω2

i ) and the estimation

error. Assuming σi� ∆, where ∆ is the quantization step size equal to 1, the probability distribution of

the ith cover pixel residual is

pxi(k) ∝
1

σi
√

2π
exp
(
−k2

2σ2
i

)
(3.1)

Refer to (Sedighi et al., 2016) for more information regarding this model. This statistical model is

violated in practice in smooth or saturated regions because of assuming unbounded pixels and σi �

∆. However, our proposed method will avoid embedding in those regions anyway which is covered

thoroughly in Sec. 3.4.1.

3.2.2 Stego Model

Unlike the previous works which only considered discrete hidden message elements, we model

them, mi, as Gaussian random variables with variance βi distributed according to

pmi(k) =
1

βi
√

2π
exp
(
−k2

2β 2
i

)
(3.2)
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The stego image is the summation of the cover image with the stego message elements, i.e. s =

c+m. Hence, the ith stego pixel residual is yi = xi +mi, and based on (3.1) and (3.2), its probability

distribution is derived as

pyi(k) ∝
1√

2π(σ2
i +β 2

i )
exp
(

−k2

2(σ2
i +β 2

i )

)
(3.3)

with the assumption of unbounded quantization levels and
√

σ2
i +β 2

i � ∆. The next section is devoted

to find the proper βis for achieving the best security for a payload limited sender.

3.3 Hypothesis Testing

The problem of steganography in a single image with a fixed payload can be formulated as constraint

maximization of detection error of the warden (Sedighi et al., 2015; Sedighi et al., 2016) given by


argmax
(β1,...,βn)

PE(β1, . . . ,βn)

n
∑

i=1
H(pmi) = np

(3.4)

where PE is the detection error derived in the following section, H(pmi) is the entropy of a random vari-

able with probability distribution pmi in natural unit of information (nats) and p is the relative payload

in nats per pixel.

3.3.1 Likelihood Ratio Test Framework

To derive the detection error of the steganalyzer which is a function of the message variances, i.e.

PE(β1, . . . ,βn), we assume that the steganalyzer utilizes a likelihood ratio test (LRT) to do a binary
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hypothesis testing between H0 and H1, representing the cases of receiving a cover or a stego image

respectively. We assume the worst-case scenario of an omniscience steganalyzer who knows all the βis

and σis. Let us assume that r = [r1, . . . ,rn] are the residuals of the received image’s pixels, and they

are statistically independent. As a consequence, the likelihood ratio for the whole image can be written

as ∏
n
i=1 Λi in which Λi, the likelihood ratio for the ith pixel, can be written based on (3.1) and (3.3) as

follows

Λi =
pyi(ri)

pxi(ri)
=

√
σ2

i

σ2
i +β 2

i
exp
(
−r2

i

2
−β 2

i

σ2
i (σ

2
i +β 2

i )

)
(3.5)

As a result, the natural logarithm of the likelihood ratio is

lnΛi = ln

√
σ2

i

σ2
i +β 2

i
+

β 2
i

2σ2
i (σ

2
i +β 2

i )
r2

i (3.6)

where ri has a normal distribution. Hence, r2
i multiplied by a constant term results in a Gamma distri-

bution. Therefore, the natural logarithm of the likelihood ratio, lnΛi, is a constant term plus a random

variable with Γ(ki,θi) distribution, where ki and θi are the shape and scale parameters respectively. Pa-

rameter θi depends on the variance of ri, in other words, whether ri is distributed according to (3.1) or

(3.3). In order to derive ki and θi for both hypotheses, we employ Taylor series expansion of ln(1+ x)

where x = β 2
i /σ2

i , assuming x < 1

ln
(

σ2
i

σ2
i +β 2

i

)
=− ln

(
1+

β 2
i

σ2
i

)
≈−β 2

i

σ2
i
+

1
2

(
β 2

i

σ2
i

)2

(3.7)
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If x =−β 2
i /(σ

2
i +β 2

i ), the approximation is

ln
(

σ2
i

σ2
i +β 2

i

)
≈− β 2

i

σ2
i +β 2

i
− 1

2

(
β 2

i

σ2
i +β 2

i

)2

(3.8)

which can be further simplified using Taylor series of x
1+x

β 2
i

σ2
i +β 2

i
≈ β 2

i

σ2
i

(3.9)

Given H0, the Gamma distribution parameters are k = 0.5 and θi = β 2
i /(σ

2
i +β 2

i ). The resulted

mean and variance of the natural logarithm of the likelihood ratio are:


E

H0

ri|σi,βi

[lnΛi] = ln
(√

σ2
i

σ2
i +β 2

i

)
+ kθi ≈ −1

4

(
β 2

i
σ2

i +β 2
i

)2
≈ −1

4

(
β 2

i
σ2

i

)2

Var
H0

ri|σi,βi

[lnΛi] = kθ 2
i ≈ 1

2

(
β 2

i
σ2

i

)2

(3.10)

where the approximations are based on (3.8) and (3.9). However, for H1, k = 0.5, θi = β 2
i /σ2

i and the

mean and variance are


E

H1

ri|σi,βi

[lnΛi] = ln
(√

σ2
i

σ2
i +β 2

i

)
+ kθi ≈ 1

4

(
β 2

i
σ2

i

)2

Var
H1

ri|σi,βi

[lnΛi] = kθ 2
i = 1

2

(
β 2

i
σ2

i

)2

(3.11)

where the approximation is based on (3.7). For large enough number of pixels (n), the following theorem

can be used to approximate the probability distribution of ∑
n
i=1 ln(Λi).
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Theorem 1. Asymptotic Sum of Gamma Random Variables

Suppose X1, · · · ,Xn are all independently distributed by Gamma with shape k, but with scaling pa-

rameters θ1, · · ·θn respectively. If all θ ’s are bounded, the probability distribution of the following

summation, where a1, . . . ,an are some constants, converges to normal distribution as shown below.

n

∑
i=1

(Xi +ai)
d−→N

( n

∑
i=1

(kθi +ai),k
n

∑
i=1

θ
2
i

)
(3.12)

See Appendix A: Asymptotic Sum of Gamma Random Variables for the proof. Thus, the probability

distribution of ∑
n
i=1 ln(Λi), for large enough n, can be approximated with the following distributions,

based on (3.10) and (3.11):


N (−1

4 α, 1
2 α) if H0 is true

N (+1
4 α, 1

2 α) if H1 is true

(3.13)

where α is as follows

α =
n

∑
i=1

(
β 2

i

σ2
i
)

2

(3.14)

The result shown in (3.13), is also consistent with the shift hypothesis, which states embedding only

affects the mean of the detector’s output (Ker, 2006). Here is the logarithm of the LRT

n

∑
i=1

ln(Λi)
H1
≷
H0

γ (3.15)
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where γ is the decision threshold. In the next section, we will discuss three different optimal deci-

sion criteria for deriving the decision boundary, γ , and consequently the detection error of the warden

PE(β1, . . . ,βn).

3.3.2 Optimal Decision Strategies

To derive the detection error of steganalyzer, PE, we employ the most common optimality criteria

for hypothesis testing, Bayes, minimax, and Neyman-Pearson. All these strategies utilize a likelihood

ratio test (LRT), but with different decision boundaries. In this section, we show that they all result in

the same simplification of PE(β1, . . . ,βn).

3.3.2.1 Bayes Criterion

Let’s denote the prior probabilities of H0, and H1 with P0, and P1 respectively. The event and the

cost associated with the decision Hi given that the true hypothesis is H j are shown with Di j and Ci j

respectively. The risk function is defined as

R =
1

∑
j=0

1

∑
j=0

PiC ji p(D ji) (3.16)

The Bayes decision boundary, γBayes, which minimizes the risk defined in (3.16), is given by

γBayes = ln
(

P0(C10−C00)

P1(C01−C11)

)
(3.17)

Consequently, the expected value of the detection error (summation of false alarm and missed de-

tection) is given by
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PEBayes = φ(
γ− α

4√
α

2

)P1 +φ(
−γ− α

4√
α

2

)P0 (3.18)

where φ is the cumulative distribution of standard normal distribution, i.e. φ(x)= (2π)−0.5 ∫ x
−∞

e−x2/2dx.

If P0 = P1, which is frequently used for evaluating the security in practical steganalysis, derivative of

(3.18) with respect to α is negative. This shows that regardless of the γ’s value in (3.17), PEBayes is a

monotonic decreasing function of α in case of equal priors. As a result, a steganographer can minimize

α instead of maximizing the PEBayes .

3.3.2.2 Minimax Criterion

In a minimax criterion, the decision rule is the same as the Bayes’ rule but for the least favorable

priors. The least favorable prior probability of H1, PL
1 , is defined as the prior probability that maximizes

the risk function in (3.16). In case of having differentiable R, it is proven that PL
1 can be 0, 1, or the

solution of R0 = R1. The first two cases will result in γ = ±∞. Therefore, we will consider the third

case, which is called an equalizer rule. To find the threshold of the equalizer rule, we need to solve the

following equation

C11

(
1−φ

(
γ−α/4√

α/2

))
+C01φ

(
γ−α/4√

α/2

)
=C00

(
1−φ

(−γ−α/4√
α/2

))
+C10φ

(−γ−α/4√
α/2

)
(3.19)

By assuming symmetric costs, C00 = C11 and C01 = C10, γ = 0 is the solution that has the minimum

expected risk over all possible prior distributions, and its error is given by

PEminimax = φ(
−α/4√

α/2
) = φ(−

√
α

8
) (3.20)
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which is a monotonically decreasing function of α .

3.3.2.3 Neyman-Pearson Criterion

In Bayesian formulation, the overall expected cost is minimized to find the optimal strategy. In

minimax criterion, the case where the prior probabilities are unknown is discussed and the optimal

decision is found based on the cost of each decision and the calculated least favorable priors. However,

in practice, there might not be any cost defined for each decision. Therefore, we utilize a Neyman-

Pearson formulation to find the optimal decision and its corresponding error. In this framework, the

detector maximizes the probability of detection, p(D11), while keeping the probability of false alarm

bounded, p(D10) ≤ l, where l is the significance level of the test. According to the Neyman-Pearson

Lemma, an optimal decision rule exists for any p(D10) = l. As a consequence, the decision threshold

for such an optimal decision rule can be calculated as

γNeyman-Pearson =−
√

α

2
φ
−1(l)− α

4
(3.21)

This results in the following total probability of error:

PENeyman-Pearson = φ

(
−φ
−1(l)−

√
α

2

)
P1 + lP0 (3.22)

The same as the two previously discussed criteria, this criterion also results in an error, which is a

monotonically decreasing function of α . Based on this behavior, the problem formulation in (3.4) can

be simplified and will be discussed in the next section. From now on, for simplicity’s sake, we employ
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the minimax error calculated in this section for the warden’s detection error, PE(β1, . . . ,βn), as it does

not depend on any variable other than α .

3.4 Gaussian Embedding Model

In this section, a novel image steganography method is introduced based on maximizing the detec-

tion error of three optimal detectors shown in the previous section. First, the methodology is derived

for embedding in a single image, and then it is extended to batch steganography. Subsequently, based

on the theoretical findings for batch steganography, a new algorithm, AdaBIM, is proposed. Last but

not least, the formulation is extended to the distortion image steganography framework, which makes

the algorithm applicable in case of having the cost of embedding in each pixel instead of the residual

variance.

3.4.1 Single Image Steganography

The detection error, PE(β1, . . . ,βn), is shown to be a monotonic decreasing function of α . Thus,

in the proposed Gaussian embedding scenario, the problem of optimal embedding for a fixed payload,

shown in (3.4), can be written as


argmin
(β1,...,βn)

α ≡ argmin
(β1,...,βn)

n
∑

i=1
(

β 2
i

σ2
i
)

2

n
∑

i=1
H(pmi) = np

(3.23)
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where p is the relative payload per pixel in nats. Shannon entropy of the hidden message elements (mi),

a Gaussian random variable with variance β 2
i , can be written as:

H(pmi) =
1
2

ln(2πeβ
2
i ) (3.24)

The solution of (3.23) using Lagrangian multipliers is the solution of the following equation:

∂

∂βi

 n

∑
j=1

(
β 2

j

σ2
j

)2

+λ

(
np− 1

2

n

∑
j=1

ln(2πeβ
2
j )
)= 0 (3.25)

for i = 1, . . . ,n, where λ is the Lagrangian multiplier that is calculated using the payload constraint in

(3.23), and thus will be shown as a function of the payload, p. The solution of (3.23) is as follows

β
∗
i =

4
√

λ (p)√
2

σi for i = 1, . . . ,n (3.26)

To achieve optimal security, the message’s variance, β 2
i , should be proportional to the pixel’s resid-

ual variance, σ2
i . In other words, in a noisy or textured region where residual variances are high, embed-

ding variances are high as well. On the other hand, if a pixel’s residual variance is zero, which means

it belongs to a smooth region, no embedding takes place. Now that the distribution of the continuous

hidden message is determined, the actual message is computed by quantizing the Gaussian distributed

message to Q = {−q, . . . ,−1,0,1, . . . ,+q}, for any natural number q.

Here is the explanation of the proposed algorithm steps. First, in order to calculate the message

variances, βi, the pixel’s residual variance, σi, is calculated using any variance estimator such as the
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methods proposed in (Sedighi et al., 2015; Sedighi et al., 2016). Then, by assuming a (2q+ 1)-ary

embedding scenario where the message is a Gaussian random variable with variance βi quantized to

Q = {−q, . . . ,+q}, the following system of equations with n+1 equations and variables, β1, . . . ,βn and

λ , is solved using Newton-Raphson method.


β ∗i =

4
√

λ (p)√
2

σi for i = 1, . . . ,n

−
n
∑

i=1

q
∑

k=−q
(pmi(k) ln pmi(k)) = np

(3.27)

where p is the relative payload in nats per pixel and pmi , the probability distribution of mi, is given by

pmi(k) =
φ( k+0.5

βi
)−φ( k−0.5

βi
)

φ(q+0.5
βi

)−φ(−q−0.5
βi

)
, ∀k ∈ {−q, . . . ,+q} (3.28)

which is a quantized truncated Gaussian. In other words, pmi(k) is the probability of changing the ith

pixel by k. For implementing the proposed embedding technique by syndrome-trellis codes (Filler et

al., 2011), we need to find the embedding costs for all the pixels. Embedding cost, ρi(k), is defined as

the amount of distortion added to image by changing the ith pixel by k. These costs are calculated by

solving the following system of equations, having Gibbs form (Filler and Fridrich, 2010) for all pixels.

pmi(k) = e−ρi(k)/
q

∑
d=−q

e−ρi(d) ∀i ∈ {1, . . . ,n}, ∀k ∈ {−q, . . . ,q} (3.29)

There are n× q equations and variables by assuming symmetric costs, and ρi(0) = 0, ∀i ∈ {1, . . . ,n}.

Note that finding the costs using Eq. (3.29) guarantees that by increasing the computational com-
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plexity, the coding loss can become arbitrarily small. To avoid rapid increase of complexity and any

loss of performance for q values higher than 1, the actual embedding can be done using multi-layered

STCs schemes which employ a layered-construction to decompose the non-binary case into several bi-

nary cases (Filler et al., 2011). Refer to the mentioned work for more information regarding the time

complexity and the coding loss of such a coding scheme. However, in this study, the same as all the

other conceptual studies, the coding process is disregarded, and the embedding process is simulated by

altering the image according to the probabilities shown in (3.28). The pseudo-code of the proposed

embedding model is shown in Fig. 1.

The steganalyzer detection error for such an embedder can be computed based on (3.20) and (3.26).

In order to get that, the closed-form expression of the Lagrangian multiplier, λ (p), is needed. By

substituting (3.26) in the payload constraint of (3.23) and utilizing (3.24), the Lagrangian multiplier is

given by

λ (p) =
e4p(

πe n
√

∏
n
i=1 σ2

i

)2 (3.30)

which is a monotonically increasing function of payload as expected. As a result, all the message

variances, β , are monotonically increasing functions of the payload as well. Note that based on the

assumption of all residual variances being much greater than 1, σ � 1, for very small payloads, p� 1,

lambda is very small, λ � 1. In addition, for large payloads, p→∞, lambda also approaches infinity. In

the following section, based on these asymptotic behaviors, we compare the security of different batch

sizes in various payloads.



34

Figure 1: Pseudo-code for Gaussian Embedding Model. COPYRIGHT c©2019 IEEE.

Input: c = Cover Image, p = Payload, q, Hidden Message

Output: s = Stego Image

1: Compute all the pixel residual variances σi or embedding costs ρi for each cover pixel ci.

2: if using residual variances, σi, for embedding then

3: Solve (3.27) using Newton-Raphson method to find λ .

4: Calculate all βi values by (3.26).

5: else if using embedding costs, ρi, for embedding then

6: Substitute the first equation in (3.27) with (3.41), then solve it using Newton-Raphson method

to find λ .

7: Calculate all βi values by (3.41).

8: end if

9: Determine all pmi(k) values for all k and i by (3.28).

10: Encode the hidden message according to the computed change probabilities, pmi , to get m =

[m1, . . . ,mn].

11: Generate the stego image by s = c+m.
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Based on (3.26) and the definition of α in (3.14), α is given by

α
∗ =

n

∑
i=1

(
β ∗i

2

σ2
i

)2

=
nλ (p)

4
(3.31)

which results in the following error in detection for the whole image using (3.20) and (3.30),

PE = φ

(
−
√

nλ (p)
32

)
= φ

(
−
√

n
32
· e2p

πe n
√

∏
n
i=1 σ2

i

)
(3.32)

It can be concluded that the geometric mean of residual variances, n
√

∏
n
i=1 σ2

i , is a suitability mea-

sure of the image for steganography since for a fixed payload, the greater it is, the higher the detection

error is. In addition, an image with higher residual variances (having noisier regions) has a higher

suitability measure as expected.

To calculate the average detection error for N images, we assume all the images have the same

number of pixels, n, for simplicity. Thereby, the closed-form expression for average detection error of

the Gaussian embedding scheme is

PE(M = 1,N, p) =
1
N

N

∑
l=1

φ

(
−
√

nλl(p)
32

)
(3.33)

where λl(p) is the Lagrangian multiplier shown in (3.30) for the lth image and M is the batch size which

is 1 as no batching took place. In the next section, we discuss greater batch sizes.
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3.4.2 Adaptive Batch Size Image Steganography

The problem of optimizing the distribution of a fixed size message among pixels of a single image

is discussed in the previous section, and the closed-form expression for detection error is derived. In

this section, the results are extended to batch steganography in which the message is spread in multiple

images. The state-of-the-art batch steganography method, image merging sender (IMS), batches all

the images of a dataset into one group (Cogranne et al., 2017). In this section, we investigate the

case when images are batched in groups of size M. Therefore, there are N/M batches of images in a

dataset with N images. Without loss of generality, we assume the lth batch contains images with indexes

(l−1)M, . . . , lM−1. We use IMS for spreading n ·M · p nats among M images in each batch (Cogranne

et al., 2017; Sharifzadeh et al., 2017). This means that all the images in each batch are merged together

and treated as one image. Thus, formulation is the same as (3.23) except that the number of pixels is

n ·M instead of n. Therefore, the solution is similar to the solution of (3.23) shown in (3.26) and it is

given by

β
∗
i j =

4
√

λ
(M)
l (p)
√

2
σi j ∀i ∈ {1, . . . ,n} (3.34)

and ∀ j ∈ {(l−1)M, . . . , lM−1}, where σi j is the variance of the ith pixel of jth image, and λ
(M)
l is the

Lagrangian multiplier for the lth batch derived similar to (3.30) as

λ
(M)
l (p) =

e4p(
πe M

√
∏

lM−1
j=(l−1)M

n
√

∏
n
i=1 σ2

i j

)2 (3.35)
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Based on (3.35) and (3.24), payload of the jth image is

p j = np+
n
2

ln

(
n
√

∏
n
i=1 σ2

i j

M

√
∏

lM−1
k=(l−1)M

n
√

∏
n
i=1 σ2

ik

)
(3.36)

which shows that in an image with suitability measure, geometric mean of residual variances, greater

than the suitability measure of the whole batch, more information than the average payload, n · p nats

per image, is embedded. Similarly, the payload of an image with suitability measure smaller than the

batch’s is smaller than the average payload. This results in all the images in the same batch having equal

detection error.

Based on (3.33) and (3.35), the average detection error for the whole database for the proposed

embedding can be written as:

PE(M,N, p) =
1
N

N/M

∑
l=1

lM−1

∑
j=(l−1)M

φ

(
−
√

nλ
(M)
l (p)/32

)
=

M
N

N/M

∑
l=1

φ

(
−
√

nλ
(M)
l (p)/32

)
(3.37)

In other words, equation (3.37) is the security measure of the algorithm for batch size M and payload p.

The following theorem is needed to compare the security of various M’s.

Theorem 2. Effect of Batch Size on Security

Given any powers of two, M and N, where 2M is less or equal than N, the following statements are

true.

(i) PE(M,N, p)< PE(2M,N, p) p� 1

(ii) PE(M,N, p)> PE(2M,N, p) p→ ∞



38

See Appendix B: Effect of Batch Size on Security for the proof. Based on this theorem, for pay-

loads much smaller than 1, sorted batch sizes according to their detection error in ascending order are

1,2,4,8, ...,N. However, for large enough payloads, this ranking is totally flipped, and M = 1 has the

highest detection error. Theorem 2 is consistent with the experiments, not only for the Gaussian ver-

sion of HILL, MiPOD, and SUNIWARD but also their original versions. This flip happens in payloads

between 0.75 and 1.5 bits per pixel, depending on the embedding algorithm.

Based on theorem 2, we propose employing different batch sizes in different payloads. This results

in a novel Adaptive Batch size Image Merging steganographer (AdaBIM). In AdaBIM, the batch size

is N for payloads close to zero, and then it gradually decreases as the payload increases until it reaches

1. This is done based on empirical results. Based on (3.36), it is observed that AdaBIM spreads the

payload non-uniformly among all the images according to their suitability measure (more payload in

images with more textured regions) for payloads near zero. However, for large payloads where the

batch size is 1, the payload is spread uniformly among images.

The state-of-the-art batch steganography method (IMS) uses M = N for all the payloads. Therefore,

AdaBIM performs as well as IMS in payloads near zero. However, as the payload increases, we proved

AdaBIM outperforms IMS. We also demonstrate this by comparing their empirical performances against

the state-of-the-art steganalysis method in Sec. 3.5.

3.4.3 Extension to Cost Based Methods

Cost based steganography methods calculate embedding cost instead of residual variances (Li et al.,

2014; Pevnỳ et al., 2010b; Holub et al., 2014). In these methods, the steganographer tries to minimize

the expected value of a distortion function, D(s,c), where s and c are the stego and cover images re-
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spectively. To adapt our framework to be applicable for these methods and boost their performance, we

define the distortion to be the expected value of the absolute difference between the pixel intensities the

same as prior arts. As a result, the steganography problem for a payload limited sender can be written

as: 
argmin
(β1,...,βn)

E[D(s,c)] = argmin
(β1,...,βn)

n
∑

i=1
Emi|βi [ρi|si-ci|]

n
∑

i=1
H(pmi) = np

(3.38)

where ρi is the cost of embedding ±1 in the ith pixel which can be calculated by any of the mentioned

algorithms (Li et al., 2014; Pevnỳ et al., 2010b; Holub et al., 2014). Assuming the same Gaussian

embedding scenario where mi ∼N (0,β 2
i ), the expected value of the distortion is

Emi|βi [ρi|si− ci|] = Emi|βi [ρi|mi|] = ρiβi

√
2
π

(3.39)

Using Lagrangian multipliers approach, the problem is translated to

∂

∂βi

(
n

∑
j=1

(
ρ jβ j

√
2
π

)
+λ

(
np− 1

2

n

∑
j=1

ln(2πeβ
2
j )
))

= 0 (3.40)

The solution to (3.40) is

β
∗
i =

λ (p)
ρi

√
π

2
(3.41)

where λ is the Lagrangian multiplier, which can be calculated using the payload constraint in (3.38).

The rest of the embedding approach is the same as it is explained in Sec. 3.4.1. The proposed Gaus-

sian steganography method can be applied in both cases of having pixel residual variances and embed-
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ding costs. This makes our approach a universal technique for improving all the recent spatial image

steganography methods.

3.5 Experiments and Discussions

Throughout this chapter, BOSSbase 1.01 database with 10k gray-scale 512×512 pixels images (Bas

et al., 2011) is used. To show the performance of each method, the average detection error, defined as

the average of false positive and negative rates, is reported. It is evaluated by an ensemble classifier

steganalyzer (Kodovsky et al., 2012) with a 10-fold cross-validation, trained on maxSRMd2 feature

vectors with 34,671 elements (Denemark et al., 2014). 4096 and 4096 images are chosen randomly

as training/validation, and testing set respectively since throughout this paper we assumed the size of

dataset to be a power of 2 and 4096 is the largest power of 2 less than 5k (half of the images in the

dataset).

Three state-of-the-art content-adaptive image steganography methods: HILL (Li et al., 2014), Mi-

POD (Sedighi et al., 2016), and SUNIWARD (Holub et al., 2014) are used for evaluations with settings

that are shown in the original papers to achieve the best security. HILL algorithm is used with a 3× 3

Ker-Bohme high-pass filter and a 3×3 and a 15×15 averaging filters as low-pass filters (Li et al., 2014).

MiPOD method utilizes a two dimensional Wiener filter with width, w = 2, and medium blocks, which

means p = 9 and l = 9 (Sedighi et al., 2016). SUNIWARD algorithm is used with σ = 1 (Denemark et

al., 2014). For the 7-ary version of HILL, and SUNIWARD, the cost of adding ±d to the ith pixel is the

distortion introduced by changing only the ith pixel by ±d according to distortion function of the corre-

sponding algorithm. For 7-ary version of MiPOD, the probability of changes is computed by employing
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TABLE I: DETECTION ERROR COMPUTED BY STEGANALYSIS USING maxSRMd2 FEATURES IN DIF-

FERENT PAYLOADS RANGING FROM 0 TO 1 BPP FOR THE PROPOSED GAUSSIAN VERSION OF THE

HILL ALGORITHM WITH DIFFERENT q VALUES IN A (2q+1)-ary EMBEDDING SCENARIO. COPY-

RIGHT c©2019 IEEE.

q payload = 0.01 0.05 0.1 0.2 0.3 0.4 0.5 0.75 1

1 .499±.0025 .488±.0018 .464±.0031 .412±.0033 .351±.0026 .296±.0035 .240±.0029 .132±.0025 .064±.0028

2 .498±.0023 .488±.0018 .467±.0020 .415±.0025 .359±.0028 .303±.0034 .253±.0029 .150±.0035 .084±.0028

3 .499±.0033 .489±.0019 .469±.0025 .417±.0027 .361±.0035 .306±.0040 .256±.0044 .154±.0027 .091±.0034

4 .500±.0030 .489±.0018 .469±.0040 .418±.0027 .361±.0024 .307±.0036 .257±.0050 .155±.0024 .092±.0030

5 .500±.0017 .491±.0027 .469±.0033 .417±.0021 .364±.0036 .309±.0034 .256±.0023 .157±.0033 .094±.0032

6 .500±.0026 .490±.0027 .468±.0029 .418±.0023 .363±.0037 .309±.0034 .258±.0036 .158±.0032 .094±.0028

a 3×3 Fisher information matrix following the same framework used in (Sedighi et al., 2015) for 5-ary

embedding.

Embedding in saturated pixels are shown to drop the performance of steganography methods (Sedighi

and Fridrich, 2016), therefore in all of the experiments, we avoid embedding in saturated pixels as well

as the pixels that will be saturated after embedding. For example, in a 7-ary embedding scheme, all the

pixels having the following intensities are avoided: 0,1,2,253,254,255.

In all the batch steganography experiments, the largest batch size tested is 128. The batch sizes

greater than 128 are not tried due to computational limitations. We believe this batch size is enough to

show sufficient proof for the claimed statements.
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3.5.1 Determining Maximum Pixel Change (q)

The Gaussian embedding technique proposed in Sec. 3.4.1 has a controlling parameter q which

represents the maximum changes of the cover pixels during embedding. To find the optimal q, we

have evaluated the performance of HILL’s Gaussian version derived in (3.41) with different settings,

q = 1, . . . ,6, for various payloads between 0 and 1 bits per pixel (bpp). The results are presented in

Table I. It is observed that for the Gaussian embedding model, the larger the q is, the higher the security

is. For example, comparing G-HILL with q = 1 and q = 3 shows that the former performs significantly

better for payloads higher or equal than 0.1 bpp. Similar conclusion can be drawn from Table II for

G-MiPOD and G-SUNIWARD. However, the complexity of the coding algorithm will increase if q

increases (Filler et al., 2011). Furthermore, the results in Table I also suggest that q values greater than

3 do not result in considerably better security comparing to q equal to 3. Thus, we choose q = 3 for the

rest of the experiments resulting in septenary (7-ary) embedding scenarios unless mentioned otherwise.

3.5.2 Comparison of Gaussian Embedding with Prior Arts

In this section, we compare the security of three stat-of-the-art image steganography methods, HILL

(Li et al., 2014), MiPOD (Sedighi et al., 2016), and SUNIWARD (Holub et al., 2014), with their pro-

posed Gaussian versions. We conduct experiments on all the methods with both ternary (q = 1) and

septenary (q = 3) embedding for various payloads between 0 and 1 bpp. The results are presented in

Table II. For the proposed Gaussian versions of these algorithms, we use a prefix of G, e.g. G-HILL.

G-HILL and G-SUNIWARD use the embedding cost calculated by HILL and SUNIWARD respectively

and they compute the message variances by (3.41). G-MiPOD uses the variance estimator of MiPOD

to calculate pixel residual variances and computes the message variances by (3.26). It is observed that



43

TABLE II: DETECTION ERROR COMPUTED BY STEGANALYSIS USING MAXSRMD2 FEATURES IN

PAYLOADS RANGING FROM 0 TO 1 BPP FOR THREE IMAGE STEGANOGRAPHY METHODS AND

THEIR PROPOSED GAUSSIAN VERSIONS WITH DIFFERENT Q VALUES IN A (2Q+1)-ARY EMBED-

DING SCENARIO. COPYRIGHT c©2019 IEEE.

Embedding q payload = 0.01 0.05 0.1 0.2 0.3 0.4 0.5 0.75 1

G-HILL 3 .499±.0033 .489±.0019 .469±.0025 .417±.0027 .361±.0035 .306±.0040 .256±.0044 .154±.0027 .091±.0034

HILL 3 .496±.0014 .486±.0026 .461±.0032 .411±.0023 .353±.0036 .298±.0029 .243±.0030 .142±.0024 .082±.0023

G-HILL 1 .499±.0025 .488±.0018 .464±.0031 .412±.0033 .351±.0026 .296±.0035 .240±.0029 .132±.0025 .064±.0028

HILL 1 .499±.0030 .488±.0019 .464±.0023 .409±.0032 .346±.0029 .292±.0034 .234±.0023 .130±.0030 .062±.0024

G-MiPOD 3 .498±.0023 .483±.0017 .461±.0024 .407±.0023 .351±.0027 .295±.0036 .241±.0034 .145±.0026 .083±.0020

MiPOD 3 .497±.0028 .480±.0019 .453±.0024 .402±.0019 .347±.0030 .289±.0029 .241±.0019 .151±.0044 .092±.0020

G-MiPOD 1 .497±.0030 .482±.0024 .457±.0014 .401±.0023 .346±.0033 .287±.0032 .233±.0024 .124±.0032 .062±.0024

MiPOD 1 .498±.0026 .479±.0017 .451±.0030 .397±.0017 .339±.0018 .279±.0034 .229±.0026 .131±.0031 .066±.0024

G-SUNIWARD 3 .500±.0026 .484±.0036 .456±.0027 .392±.0038 .324±.0025 .263±.0036 .214±.0032 .123±.0030 .067±.0024

SUNIWARD 3 .500±.0025 .482±.0030 .448±.0024 .381±.0019 .313±.0040 .256±.0042 .205±.0033 .120±.0030 .068±.0023

G-SUNIWARD 1 .499±.0015 .485±.0011 .453±.0023 .386±.0025 .319±.0028 .256±.0027 .208±.0026 .109±.0023 .051±.0022

SUNIWARD 1 .499±.0031 .483±.0017 .444±.0023 .373±.0026 .298±.0033 .239±.0032 .187±.0036 .098±.0025 .042±.0018

the statistically significant improvement of the Gaussian embedding scheme, assuming a significance

level of 0.05, with q = 1 and q = 3 emerges in the range of 0.05-0.2 bpp and 0.05-0.1 bpp respectively

depending on the algorithm. However, the advantages of the Gaussian embedding model become less

significant for HILL algorithm with q = 1 in very high payloads of 0.75-1 bpp. MiPOD outperforms G-

MiPOD in payloads of 0.75-1 bpp, regardless of the q value. For SUNIWARD with q = 3 and payload

of 1 bpp, the improvement is not significant. The most secure embedding is G-HILL with q = 3 in all

the payloads.
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Figure 2: Bits of information embedded in pixels of a single image (1.pgm) versus pixels embedding cost or

residual variance for the proposed Gaussian versions and original versions of HILL (top), SUNIWARD (middle),

and MiPOD (bottom), when embedding a payload of 0.3 bpp. COPYRIGHT c©2019 IEEE.

We believe that the improvement is due to the fact that the proposed Gaussian method embeds more

bits in textured areas (pixels with low embedding costs or equivalently high residual variances) and

fewer bits in smooth areas (pixels with high embedding costs or equivalently low residual variances).

To confirm that, in Fig. 2, we have plotted the number of bits embedded in each pixel versus pixel’s

embedding cost computed by HILL and SUNIWARD, and also pixel’s residual variances computed

by MiPOD for a payload of 0.3 bpp in “1.pgm”. It is observed that the proposed Gaussian embed-

ding scheme embeds fewer bits in smooth regions and more in noisy regions comparing to the original

methodologies.
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Figure 3: Detection error computed by steganalysis using maxSRMd2 features in different payloads ranging from

0 to 1 bpp for (a) G-HILL (b) HILL algorithms with different batch sizes (M = 1,2,4,8,16,128). It can be seen

that the best performing batch size decreases as the payload increases. COPYRIGHT c©2019 IEEE.

3.5.3 Batch Steganography

In theorem 2, two statements are proven for the effect of batch size on detection error of batch

steganography. To examine this theorem in practice, we evaluate the performance of G-HILL and HILL

with various batch sizes (1,2,4,8,16,128) for different payloads between 0 and 1 bpp. The results,

depicted in Fig. 3, indicate that the performance improves by increasing the batch size for payloads

from 0 to 0.2 bpp. This behavior is consistent with theorem 2, stating that the detection error is higher

for larger batch sizes if the payload is much lower than 1 nat per pixel (equivalently 1.44 bpp). Theorem

2 also states that when payload approaches infinity, the detection error is lower for larger batch sizes.

In Fig. 3, this behavior starts to emerge for payloads greater than 0.3 bpp, and in payload of 1 bpp,

the greatest batch size (128) has the lowest security comparing to smaller batch sizes. By comparing
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TABLE III: DETECTION ERROR OF BATCH STEGANOGRAPHY USING THREE STEGANOGRA-

PHY METHODS AND THEIR PROPOSED GAUSSIAN VERSION WITH TWO DIFFERENT BATCHING

STRATEGIES, IMS WITH BATCH SIZE 128 AND THE PROPOSED ADABIM WITH ADAPTIVE BATCH

SIZE, COMPUTED BY STEGANALYSIS USING MAXSRMD2 FEATURES IN DIFFERENT PAYLOADS

RANGING FROM 0 TO 1 BPP. COPYRIGHT c©2019 IEEE.

Embedding Batching payload = 0.01 0.05 0.1 0.2 0.3 0.4 0.5 0.75 1

G-HILL
AdaBIM .500±.0022 .498±.0022 .494±.0021 .468±.0029 .431±.0037 .387±.0022 .332±.0033 .204±.0028 .119±.0036

IMS .500±.0022 .498±.0022 .494±.0021 .468±.0029 .430±.0014 .383±.0020 .329±.0031 .184±.0035 .068±.0018

HILL
AdaBIM .500±.0024 .495±.0017 .491±.0026 .463±.0025 .422±.0025 .373±.0017 .317±.0027 .191±.0027 .111±.0023

IMS .500±.0024 .495±.0017 .491±.0026 .463±.0025 .419±.0027 .369±.0017 .311±.0017 .168±.0027 .056±.0023

G-MiPOD
AdaBIM .499±.0022 .497±.0037 .488±.0020 .453±.0024 .396±.0020 .327±.0023 .256±.0022 .133±.0022 .072±.0024

IMS .499±.0022 .497±.0037 .488±.0020 .453±.0024 .392±.0028 .322±.0016 .243±.0024 .070±.0024 .023±.0017

MiPOD
AdaBIM .499±.0032 .497±.0025 .485±.0032 .446±.0020 .383±.0017 .306±.0017 .232±.0035 .129±.0043 .070±.0033

IMS .499±.0032 .497±.0025 .485±.0032 .446±.0020 .379±.0011 .299±.0032 .214±.0021 .065±.0019 .018±.0012

G-SUNIWARD
AdaBIM .499±.0024 .497±.0028 .491±.0027 .464±.0025 .429±.0023 .382±.0048 .336±.0036 .221±.0027 .139±.0022

IMS .499±.0024 .497±.0028 .491±.0027 .464±.0025 .429±.0023 .380±.0033 .332±.0049 .206±.0028 .101±.0019

SUNIWARD
AdaBIM .500±.0027 .494±.0034 .487±.0022 .457±.0021 .418±.0023 .370±.0026 .324±.0030 .205±.0027 .135±.0013

IMS .500±.0027 .494±.0034 .487±.0022 .457±.0021 .417±.0029 .367±.0022 .317±.0021 .180±.0020 .067±.0010

the performances shown in Table II and III, similar behavior is observed for G-MiPOD, MiPOD, G-

SUNIWARD, and SUNIWARD algorithms for batch sizes equal to 1 and 128. The beauty of theorem

2 is the fact that it is formulated based on the proposed Gaussian embedding scheme; however, it also

holds for the original algorithms as well (HILL, MiPOD, and SUNIWARD).

By taking advantage of this phenomenon, AdaBIM is proposed that has significantly higher perfor-

mance, with a p-value less than or equal to 0.05, for the majority of the payloads between 0 and 1 bpp,
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TABLE IV: AVERAGE TIME IN SECONDS SPENT TO EMBED A CODED MESSAGE IN AN IMAGE

USING THREE DIFFERENT STEGANOGRAPHY METHODS AND THEIR PROPOSED GAUSSIAN VER-

SIONS IN DIFFERENT (2Q+ 1)-ARY EMBEDDING SCENARIOS WITH VARIOUS BATCH SIZES (M).

COPYRIGHT c©2019 IEEE.

M q G-HILL HILL G-MiPOD MiPOD G-SUNIWARD SUNIWARD

1
1 0.160 0.037 0.197 0.263 0.219 0.058

3 0.372 0.074 0.425 0.799 0.457 0.107

128
1 0.097 0.022 0.111 0.206 0.129 0.051

3 0.252 0.065 0.335 0.665 0.416 0.093

compared to IMS. See Table III. Security improvement in AdaBIM rises in the range of 0.2-0.4 bpp

depending on the steganography algorithm. Authors believe that advantages of AdaBIM could emerge

in even lower payloads if IMS batch size (M) is equal to the total number of images in the database as

it is defined in its original paper, instead of M = 128. However, due to computational limitations, we

could not utilize higher M.

The performance improvement of AdaBIM comparing to IMS, is due to the fact that in AdaBIM,

the batch size gradually decreases as the payload increases. In low payloads, the highest batch size

(M = 128) has the highest security. However, as the payload increases, the optimum M decreases until

very high payloads (near 1), where the optimal option is M = 2. Note that, the optimal batch size in

each payload varies for different methods. Thus, it needs to be calculated separately for each algorithm.

It is needless to say that the larger the number of experimented M is, the more precise the optimal M is.
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This time-consuming step needs to be done once, and the calculated optimal batch sizes can be used in

practice. In other words, finding optimal batch sizes for each payload and algorithm can be seen as a

training step whose results can be used in future practices without further calculations.

In this study, we do not impose any assumptions about the warden’s knowledge of image sources,

and thus, we do not perform any pooled steganalysis experiments. However, we plan to investigate the

pooled steganalysis problem in the future, where the derived closed-form expression of the detection

error could be utilized to improve the performance when the warden is assumed to know the image

sources.

3.5.4 Computational Time

In this section, we compare the amount of time that each embedding algorithm and its Gaussian

version spend to embed a (2q + 1)-ary message in one image. In addition, we also compare their

computation time in the batch steganography scenario for M = 128. See Table IV. Each time is reported

in seconds and calculated by taking the average of time spent per image when embedding payloads

ranging from 0.01 to 1 bpp in the whole database. It is observed that all the proposed approaches

(G-HILL, G-MiPOD, and G-SUNIWARD) are faster than MiPOD, the state-of-the-art model-based

method. G-HILL and G-SUNIWARD are 3 to 5 times slower than HILL and SUNIWARD, respectively,

depending on q and M values; however, given the superior security of the Gaussian versions, their

computation time is still reasonable. In general, embedding a 7-ary message is 2 to 3 times slower than

3-ary message. For all the embedding methods, the batch steganography scenario with M = 128 is faster

than M = 1 for similar q, which is expected since MATLAB performs vectorization faster than “for”

loops.



CHAPTER 4

QUANTIZED GAUSSIAN JPEG STEGANOGRAPHY AND POOL STEGANALYSIS

4.1 Introduction

Steganography is the art of embedding a hidden message in a cover medium without getting detected

by the warden (Simmons, 1984). The most common medium for steganography is digital image data

due to having high redundancy, which results in high capacity for embedding. In early works in digital

image steganography both in spatial and compressed domains, non-adaptive methods were proposed,

and they treated all the pixels or DCT coefficients in the same manner. Examples of such methods in

spatial domain are (Cheddad et al., 2010; Johnson and Jajodia, 1998) and in JPEG steganography are

Jsteg (Upham, 1993), F5 (Westfeld, 2001), and nsF5 (Fridrich et al., 2007). As a result of not taking

pixel to pixel or coefficient to coefficient dependencies into consideration, all non-adaptive approaches

have low security (Fridrich et al., 2001; Fridrich et al., 2007). Thus, for attaining a higher security

performance, adaptive methods have been developed.

Content adaptive steganography methods embed more in textured regions rather than smooth regions

of an image to minimize the produced distortion. Distortion minimization embedding is formulated to

source coding with a fidelity criterion (Shannon, 1959), and it is solved for a general case by syndrome

trellis codes (Filler and Fridrich, 2010; Filler et al., 2011). This coding scheme employs a distortion

measure or embedding cost for each cover element and executes embedding accordingly, e.g., a higher

embedding rate in low-cost elements. Many methods are available for computing the embedding costs

49
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for image steganography for both spatial and JPEG domains. HILL (Li et al., 2014) and SUNIWARD

(Holub et al., 2014) are well-known examples of spatial domain steganography. For JPEG domain

steganography, UED (Guo et al., 2014), UERD (Guo et al., 2015), IUERD (Pan et al., 2016), and

JUNIWARD (Holub et al., 2014) are among the most frequently used approaches. Even though some

of these methods such as HILL, SUNIWARD, and JUNIWARD have the highest security, they are

all based on heuristically defined distortions, and therefore, there is no theoretical/statistical measure

for their performances. This issue has been addressed in another type of image steganography, called

statistical or model-based.

Statistical or model-based image steganography methods mathematically model the cover image

and perform embedding while minimizing a distance measure between the cover and the stego im-

age. Examples of such approaches in spatial domain are HUGO (Pevnỳ et al., 2010b), MG (Fridrich

and Kodovskỳ, 2013), MVGG (Sedighi et al., 2015), and MiPOD (Sedighi et al., 2016). Denmark et

al. introduced the only statistical-based method in JPEG domain called J-MiPOD based on MiPOD

statistical model and also proposed algorithms for steganography with pre-cover for both spatial and

JPEG domains (SI-MiPOD and SI-J-MiPOD) (Denemark and Fridrich, 2017). In all of the mentioned

statistical-based approaches, the optimization problem, defined as minimizing distance between cover

and stego images while embedding, results in numerically solvable equations. Thus, there are no closed-

form expressions for the embedding probabilities and detection error. Having such an expression, espe-

cially for the detection error, would be beneficial in understanding and estimating image steganography

behavior as well as batch steganography and pool steganalysis.
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In our previous work, we developed a statistical framework for spatial steganography, which resulted

in closed-form expressions for embedding probabilities and detection error while achieving state-of-

the-art empirical performance (Sharifzadeh et al., 2019b). In this work, we extend our model to JPEG

domain and propose a statistical framework for JPEG steganography, which results in closed-form ex-

pressions for detection error and embedding probabilities. Our proposed framework can employ any

embedding costs defined in the spatial or JPEG domain, and also any residual variance estimator for

JPEG steganography. In addition, it can be utilized to model single image and pool steganalysis.

Pool steganalysis is the extension of the steganalysis problem in which the warden knows multiple

objects share the same source and, therefore, pools evidence from all of the objects to achieve a higher

detection performance. This problem was introduced by Ker, and it is the dual of batch steganography

problem in which the steganographer embeds a payload in multiple cover objects (Ker, 2006). Both

problems are major research problems in steganography (Ker et al., 2013). Previous studies have pro-

posed methods for ranking multiple sources according to their “guiltiness” (Ker and Pevnỳ, 2011; Ker

and Pevny, 2012). However, a more general question remains; which source is guilty? This question

was studied under the assumption of an omniscience detector, and it was shown that for finding the

guilty source, the average pooling strategy performance is close to optimal for a vast range of hidden

message distribution strategies (Pevnỳ and Nikolaev, 2015). In another study, the problem of sequential

steganalysis is discussed, and a method is proposed for finding the first stego message in a sequence

of objects (Cogranne, 2015). Cogranne et al. formulated the problem in spatial domain and demon-

strated that knowledge of the steganographer’s strategy increases the performance of pool steganalysis

(Cogranne et al., 2017). In contrast to these studies, Zakaria et al. assumed that steganalyzer does not
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know the payload spreading strategy and proposed a pooling method that performs close to an omni-

science steganalyzer for all the state-of-the-art payload spreading strategies (Zakaria et al., 2019). In

all the mentioned works, there is no statistical analysis for modeling pool steganalysis of steganography

with state-of-the-art payload spreading strategies in real images.

In this study, we derive the detection error for single image steganalysis mathematically based on

the adopted statistical model. We show that the detection error formula is valid for embedding in spatial

domain or any linear transformation domain. This allows us to derive a unified closed-form formula-

tion for the optimal pool steganalysis strategy and its error for steganography in any domain. Here, we

assume steganalyzer is omniscience, and payload is spread among all of the images uniformly or us-

ing the state-of-the-art batch steganography method (Sharifzadeh et al., 2019b). To show the relevance

of the results, we employ the derived closed-form expression for pool steganalysis error to approxi-

mate the empirical detection error of JPEG steganography, and it’s variance for various pool sizes. We

demonstrate that our proposed approximation is precise, considering the error of empirical steganalysis.

As a result, one can approximate the pool steganalysis results instead of running time-consuming and

cumbersome experiments.

In this work, our contribution is threefold:

1. We develop a statistical model for JPEG cover and stego images. Based on that, we extend

our previous embedding model for spatial steganography to JPEG steganography and derive the

closed-form detection error for such an embedder against an optimal hypothesis detector (Shar-

ifzadeh et al., 2019b). The embedding model is generalized in the sense that it is able to utilize any
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embedding cost or variance estimator defined in spatial domain or JPEG domain, and it results in

superior security comparing to the state-of-the-art approaches.

2. We extend the closed-form expression of single image steganalysis detection error to pool ste-

ganalysis for an omniscience optimal warden. We employ the derived expression to approximate

empirical results of pool steganalysis computed by an ensemble classifier steganalyzer based on

the empirical detection error of single image steganalysis (Kodovsky et al., 2012). Although the

approximation is derived based on our proposed embedding model, it is precise for all the pay-

loads, embedding domains, embedding methods, and steganalysis features as long as the pooling

strategy is optimal. It also holds for single image steganography and batch steganography using

the state-of-the-art batching strategy, i.e., AdaBIM (Sharifzadeh et al., 2019b).

3. We approximate the variance of such a pool steganalyzer and show that it increases as the pool

size increases in small payloads employing the proposed detection error approximation. Small

payloads are more interesting as they are more applicable than high payloads, which are easily

detectable. Therefore, we conclude that although pooling makes the detector more reliable as

it decreases detection error, it makes the detector less reliable in the sense that it increases the

variance. In other words, pooling makes the steganalyzer less stable. We observed the same

behavior in empirical results as well, which confirms the correctness of the approximation.

This chapter is organized as follows. The statistical models for cover and stego message are pre-

sented in Sec. 4.2. Based on the proposed Gaussian model, a framework for quantized Gaussian JPEG

steganography is introduced in Sec. 4.3. The results are then extended to pool steganalysis in Sec. 4.4.

In Sec. 4.5, we provide the empirical results.
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4.2 Statistical Models

In this section, we describe the statistical model for the cover image in spatial domain, and sub-

sequently, we derive the probability distribution of DCT coefficients of cover. Also, we derive the

statistical model of the stego image in DCT domain by embedding a Gaussian message in each coeffi-

cient.

4.2.1 Cover Model

We show an 8-bit gray-scale image in spatial domain by P = [P1, . . . ,Pn′ ], where n′ is the number

of blocks, and Pb is the bth block of 8× 8 pixels, Pb = [pbi j]8×8. Note that total number of pixels

shown by n is n = n′× 64. All the pixels, pbi j, are quatized to {0,1, . . . ,255}. Lets assume p̂bi j is

an unbiased estimation of the pixel based on its neighbors. We model the estimation errors, defined

as ebi j = pbi j− p̂bi j, as independent Gaussian random variables, N (0,ω2
bi j). This model is based on

the assumption of fine quantization which is given by ωbi j � 1, since the quantization step is 1. For a

detailed explanation of this model, refer to (Sedighi et al., 2016). Suppose the scaled DCT coefficients

of the cover image are similarly shown as F = [F1, . . . ,Fn′ ], where Fb = [ fbkl]8×8 and each coefficient,

fbkl , is given by

fbkl =
1

qkl

7
∑

i, j=0
w(k, l, i, j)pbi j ∀k, l ∈ {0,1, . . . ,7} (4.1)

where qkl is the klth element of JPEG quantization matrix and w(k, l, i, j) is defined as

w(k, l, i, j) =
c(k)c(l)

4
cos

πk(2i+1)
16

cos
πl(2 j+1)

16
(4.2)
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where c(x) is given by

c(x) =


1/
√

2 if x = 0

1 o.w.
(4.3)

By using Eq. (4.1) and the estimation in spatial domain, p̂bi j, we can estimate the scaled DCT coeffi-

cients as well. The estimation, f̂bi j, is

f̂bkl =
1

qkl

7

∑
i, j=0

w(k, l, i, j)p̂bi j (4.4)

and the residual of the estimation, xbkl = fbkl− f̂bkl , is

xbkl =
1

qkl

7

∑
i, j=0

w(k, l, i, j)ebi j (4.5)

which is a linear combination of zero mean Gaussian random variables. Therefore, the distribution of

scaled DCT coefficient residual is

pxbkl (k) =
1

σbkl
√

2π
exp
(
−k2

2σ2
bkl

)
(4.6)

where σbkl , based on all ebi j being independent, is given by

σ
2
bkl =

1
q2

kl

7

∑
i, j=0

w2(k, l, i, j)ω2
bi j (4.7)

where ω2
bi j is the residual variance of i jth pixel of the bth block in the raw image. The conclusion of

DCT residuals having Gaussian distribution, shown in Eq. (4.6), is drawn based on the fact that DCT
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is a linear transformation. Thus, the conclusion is valid for any linear transformation of image. Note

that Eq. (4.6) is the probability distribution of scaled DCT coefficient residual or estimation error not

the coefficient’s distribution. It is well known in the literature that the probability distribution of the

scaled DCT coefficient of an image is Laplacian (Joshi and Fischer, 1995; Lam and Goodman, 2000).

The Gaussian distribution of the residuals or in other words noise in the JPEG domain can alternatively

be derived based on the previous studies on DCT coefficients of JPEG images. By analysing JPEG

errors, it has been shown that the summation of all the quantization, rounding, and truncation errors has

a Gaussian distribution (Luo et al., 2010). In a later work on uncovering JPEG compression history, Li

et al. have shown that distribution of the error in JPEG domain depends on the number of compression

cycles and quantization matrix elements and it has a Gaussian distribution or a quantized-Gaussian

distribution (Li et al., 2015).

Now, we prove that given the independence of the estimation errors in spatial domain, the errors are

independent in DCT domain as well. Based on Eq. (4.5), and E[ebi jebi′ j′ ] = 0 for two distinct pixels, the

covariance of the errors in the same block is

E[xbklxbk′l′ ] =
1

qklqk′l′

7

∑
i, j=0

w(k, l, i, j)w(k′, l′, i, j)ω2
bi j (4.8)

We can assume that ω2
bi j is constant in each block, which is reasonable as in real image ω2

bi j is highly

correlated with the energy of the bth block, and it has small variation in each block of 8×8 pixels. At

the end of this paragraph, we show that this assumption results in a diagonal covariance matrix, which

elements are shown in Eq. (4.8). But in general, the covariance matrix is not necessarily diagonal. It can
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be diagonalized/whitened using eigen-decomposition because it is a real symmetric matrix. Suppose the

eigen-decomposition of error covariance matrix of bth block is UbΓbUT
b . Then, the hidden message can

be computed using the method, which is explained in Sec. 4.3 based on the whitened error covariance,

Γb. Then the computed message is multiplied by Ub, quantized and embedded into DCT coefficients.

This method is explained thoroughly in Sec. 4.5.3 where we show that it results in slightly better per-

formance only in high payloads comparing to skipping the whitening step. It also drastically increases

the time complexity, which is discussed in Sec. 4.5.4. Note that dependant hidden message elements

cannot be embedded in dependent cover elements by syndrome trellis codes in practice because of vio-

lating the additive distortion assumption of such coding method, although there have been some studies

on using STC for non-additive distortion coding for steganography in special cases such as (Zhang et

al., 2016). As a result, for the rest of this study, we assume that ω2
bi j is constant in each block, unless

mentioned otherwise. Therefore, we can move the ω2
bi j out of the summation in Eq. (4.8). Given that

∑
7
i, j=0 w(k, l, i, j)w(k′, l′, i, j)≈ 0 unless k = k′ and l = l′, the covariance of the errors are

E[xbklxbk′l′ ] =


1 if k = k′ and l = l′

0 o.w.
(4.9)

Thus all xbkl are independent zero-mean Gaussian random variables with variances shown in Eq.

(4.7). Note that the residual variances, ω2
bi j, can be calculated using any variance estimator such as

the ones proposed in (Sedighi et al., 2015; Sedighi et al., 2016). In the following two subsections, we

discuss the cases where the cost of embedding in spatial domain and DCT domain is given.
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4.2.1.1 Embedding Cost in Spatial Domain

For the proposed Gaussian embedding model, any embedding cost in spatial domain, e.g. costs

defined in (Li et al., 2014; Holub et al., 2014), can also be used as a proxy to calculate ω2
bi j. As we have

shown in our previous work, ω2
bi j ≈ 1/η2

bi j where ηbi j is the cost of changing the i jth pixel of the bth

block by 1 in the raw image. Therefore, based on Eq. (4.7), the DCT residual variances are derived as

follows in case of having spatial domain embedding costs, i.e. ηbi j, instead of residual variances, ω2
bi j.

σ
2
bkl =

1
q2

kl

7

∑
i, j=0

w2(k, l, i, j)
1

η2
bi j

(4.10)

4.2.1.2 Embedding Cost in DCT domain

In case of having the cost of embedding in each DCT coefficient as ηbi j, which is the cost of chang-

ing the scaled i jth DCT coefficient of the bth block, the DCT residual variance is given by

σ
2
bkl =

1
η2

bi j
(4.11)

based on our previous work where we showed the reciprocal of the squared embedding cost can be

used as a proxy for calculating residual variance (Sharifzadeh et al., 2019b). In Eq. (4.11), ηbi j can be

computed by any of the methods proposed in (Guo et al., 2014; Guo et al., 2015).

As a result of Equations (4.7), (4.10), and (4.11), the embedding model is universal, and it works

with embedding costs or residual variances calculated in the spatial domain, or the embedding costs

calculated in the DCT domain.
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This statistical cover model is violated in practice in smooth or saturated blocks because of assuming

unbounded DCT coefficients and σbkl � 1. However, our proposed method avoids embedding in those

regions, which is covered thoroughly in Sec. 4.3.

4.2.2 Stego Model

We show hidden message by M= [M1, . . . ,Mn], where Mb is the bth block of 8×8 message elements,

Mb = [mbi j]8×8. In contrast to all the previous works in which hidden message elements are modeled

as discrete random variables, we model them, mbi j, as Gaussian random variables with variances βbi j

distributed according to

pmbi j(k) =
1

βbi j
√

2π
exp

(
−k2

2β 2
bi j

)
(4.12)

The scaled DCT coefficients of the stego image is the summation of the cover coefficients with

hidden message elements, i.e. S = F+M. Hence, the klth scaled DCT coefficient residual of the bth

block is ybkl = xbkl +mbkl , and based on Eq. (4.6) and Eq. (4.12), its probability distribution is derived

as

pybkl (k) ∝
1√

2π(σ2
bkl +β 2

bkl)
exp
(

−k2

2(σ2
bkl +β 2

bkl)

)
(4.13)

in which we assume unbounded quantization levels and
√

σ2
bkl +β 2

bkl � 1. In the next section, we find

B = [B1, . . . ,Bn], where Bb is the bth block of 8× 8 message elements variances, Bb = [βbi j]8×8, that

maximizes the security for a payload limited sender.
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4.3 Methodology

In this section, we discuss the problem of JPEG steganography in a single image which is formulated

into the following constrained optimization.


argmax

B
PE(B)

n′

∑
b=1

7
∑

i, j=0
H(pmbi j) = ν p

(4.14)

Where ν is the number of non-zero AC DCT coefficients, PE is the detection error of the steganalyzer

derived in the following section, H(pmbi j) is the entropy of a random variable with probability distri-

bution pmbi j in natural unit of information (nats) and p is the relative payload in nats per non-zero AC

coefficients.

Assume the worst-case scenario in which the steganalyzer is omniscience and knows all the cover

and hidden message probability distributions, i.e., pxbi j and pmbi j . To compute the detection error of

this steganalyzer, i.e. PE(B), suppose that it employs a likelihood ratio test (LRT) to decide whether the

received image is a cover or it conveys a hidden message, shown by null hypothesis (H0) and alternative

hypothesis (H1) respectively.

Suppose R = [R1, . . . ,Rn] are the residuals of received image’s DCT coefficients where Rb is the

bth block of 8× 8 residuals, i.e. Rb = [rbi j]8×8, and they are statistically independent. Therefore, the
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likelihood ratio for all the DCT coefficients can be simplified as ∏
n′
b=1 ∏

7
i, j=0 Λbi j where Λbi j is the

likelihood ratio for the i jth residual of bth block. Given Eq. (4.6) and Eq. (4.13), Λbi j is

Λbi j =
pybi j(rbi j)

pxbi j(rbi j)
=

√√√√ σ2
bi j

σ2
bi j +β 2

bi j
exp

(
−r2

bi j

2

−β 2
bi j

σ2
bi j(σ

2
bi j +β 2

bi j)

)
(4.15)

Thus the natural logarithm of Λbi j is given by

lnΛbi j = ln

√√√√ σ2
bi j

σ2
bi j +β 2

bi j
+

β 2
bi j

2σ2
bi j(σ

2
bi j +β 2

bi j)
r2

bi j (4.16)

In Eq. (4.16), rbi j is Gaussian random variable. Thus, lnΛbi j is a constant term plus a Gamma

distributed term with shape (kbi j) and scale (θbi j) parameters, i.e. Γ(kbi j,θbi j). In both cases of H0 and

H1, the shape parameter is equal to 0.5, i.e. kbi j = 0.5. However, the scale parameter, θbi j, depends on

the variance of rbi j, and it is given by

θbi j =


β 2

bi j/(σ
2
bi j +β 2

bi j) if H0 is true.

βbi j
2/σ2

bi j if H1 is true.
(4.17)

Based on our previous work (Sharifzadeh et al., 2019b), for large enough number of DCT coeffi-

cients (or pixels), the following approximation for probability distribution of ∑
n′
b=1 ∑

7
i, j=0 lnΛbi j holds.

n′

∑
b=1

7

∑
i, j=0

ln(Λbi j)
d−→


N (−1

4 α, 1
2 α) if H0 is true

N (+1
4 α, 1

2 α) if H1 is true

(4.18)
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α =
n′

∑
b=1

7

∑
i, j=0

(β 2
bi j

σ2
bi j

)2

(4.19)

Eq. (4.18) shows that embedding hidden message in scaled DCT coefficients changes variance of de-

tectors output, however the mean stays the same. This behaviour is similar to the one explained by shift

hypothesis for embedding in spatial domain (Ker, 2006).

A steganalyzer utilizing a LRT compares the likelihood ratio with a decision threshold to figure out

if there is hidden message in an image or not. The natural logarithm of the LRT is given by

n′

∑
b=1

7

∑
i, j=0

ln(Λbi j)
H1
≷
H0

decision threshold (4.20)

It has been previously shown that for the given LRT, using minimax, one of the most common

optimal decision criteria, the decision threshold equal to 0 results in the lowest expected risk over all

possible priors (Sharifzadeh et al., 2019b). As a result, based on Eq. (4.18) and Eq. (4.19), the detection

error for the optimal detector is given by

P̂E = φ(
−α/4√

α/2
) = φ(−

√
α

8
) (4.21)

where φ is the cumulative density function of standard normal distribution. P̂E shown in Eq. (4.21) is

monotonically decreasing as α increases. Thus, to achieve a more secure steganography method, we

can minimize α instead of maximizing the error of the steganalyzer. The same conclusion can be made
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employing other common optimal decision rules such as Bayes and Neyman–Pearson. Consequently,

the problem shown in Eq. (4.14) can be simplified as


argmin

B
α ≡ argmin

B

n′

∑
b=1

7
∑

i, j=0
(

β 2
bi j

σ2
bi j
)

2

n′

∑
i=1

7
∑

i, j=0
H(pmbi j) = ν p

(4.22)

The solution of Eq. (4.22) using Lagrangian multiplier method is given by

β
∗
bi j =

4
√

λ (p)√
2

σbi j (4.23)

where λ is the Lagrangian multiplier determined by the payload constraint in Eq. (4.22) as a function

of the relative payload, p, and it is derived as follows

λ (p) =
e4p(

ν

√
∏

n′
b=1 ∏

7
i, j=0 πeσ2

bi j

)2 (4.24)

Therefore

α =
n′

∑
b=1

7

∑
i, j=0

(
β 2

bi j

σ2
bi j

)

2

= 64n′
λ (p)

4
=

nλ (p)
4

(4.25)

P̂E = φ(−
√

α

8
) = φ

(
−
√

nλ (p)
32

)
(4.26)

where n = n′× 64 is the total number of pixels or DCT coefficients. The closed-form expression for

detection error of steganalysis shown in Eq. (4.26) is derived based on the Gaussian distribution of cover

elements residuals and hidden message elements. In addition, the Gaussian distribution is drawn from
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the fact that DCT is a linear transformation. As a result, the closed-form expression for detection error of

steganalysis shown in Eq. (4.26) is valid for embedding using the proposed adopted model in raw image,

or any linear transformation of image such as DCT. Based on this generalized error formulation, in the

next section, we develop an statistical model for pool steganalysis which is valid for steganography in

raw image data or any linear transformation of image data.

Eq. (4.23) shows that the message variance is proportional to the DCT coefficients residual vari-

ance. As a result, we embed more nats by adding a Gaussian with higher variance in noisy coefficients

comparing to coefficients with small variance.

Now that the problem is solved in the continuous domain, we translate the problem, shown in Eq.

(4.22), to discrete domain by quantizing hidden message to Q = {−q, . . . ,−1,0,1, . . . ,+q}, as follows


β ∗bi j =

4
√

λ (p)√
2

σbi j ∀b, i, j

−
n′

∑
b=1

7
∑

i, j=0

q
∑

k=−q
(pmbi j(k) ln pmbi j(k)) = ν p

(4.27)

pmbi j(k) =
φ( k+0.5

βbi j
)−φ( k−0.5

βbi j
)

φ(q+0.5
βbi j

)−φ(−q−0.5
βbi j

)
(4.28)

Eq. (4.28) is a truncated Gaussian random variable indicating the probability of changing the i jth co-

efficient of bth block by k. We utilize the Newton-Raphson method to find the Lagrangian multiplier,

λ (p), which determines all hidden message variances, i.e. βbi j, and distributions, i.e. pmbi j . To be able

to take advantage of practical embedding methods such as syndrome-trellis codes (STCs) (Filler et al.,

2011) for real world implementation of the proposed embedding model, the cost of changing each coef-

ficient is required. We show cost of changing the i jth coefficient of bth block by k by ρbi j(k). Assuming
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symmetric costs, i.e. ρbi j(k) = ρbi j(−k), there are 64×n×q variables and equations having Gibbs form

given by

pmbi j(k) = e−ρbi j(k)/
q

∑
d=−q

e−ρbi j(d), (4.29)

∀b ∈ {1, . . . ,n}, ∀i, j ∈ {0, . . . ,7}, ∀k ∈ {1, . . . ,q}. Computing these costs, allows us to utilize STCs

for the actual embedding when q = 1 and multi-layered STCs for q > 1 (Filler et al., 2011). However

in this manuscript, similar to conceptual studies in steganography, we disregard the coding process and

change the coefficients according to the change rates shown in Eq. (4.28). A summary of our proposed

method is shown in Fig. 4.

4.4 Pool Steganalysis

In the previous section, we have derived the closed-form solution for JPEG steganography against

optimal single image steganalysis and its error. In this section, we discuss the case where the stegana-

lyzer also knows the source of a pool of images. Then, the detection error is derived for an arbitrarily

sized pool of images, in which the images are all stego or cover. The notation is the same as before

except that we show the image number using superscript in parenthesis, e.g., λ (i) is the Lagrangian

multiplier for the ith image. In addition, we show the detection error for pool size l by P̂E(l) when it is

theoretically estimated and by PE(l) when it is empirically computed. The following theorem explains

how to derive P̂E(l) and what would be its error’s behavior.

Theorem 3. Statistical Model for Pool Steganalysis Detector’s Error and Variance

Suppose that l images are sent from the same source and in the case of being stego images, they

carry the same amount of hidden message or embedding has been done using the state-of-the-art batch
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Figure 4: Pseudo-code of the JPEG Gaussian Embedding Model

Input: F = Cover Image Scaled DCT Coefficients, p = Payload, q, Hidden Message

Output: S = Stego Image Scaled DCT Coefficients

1: if using residual variances in spatial domain, ω2
bi j, for embedding then

2: derive residual variances in DCT domain by Eq. (4.7).

3: else if using embedding costs in spatial domain, ηbi j, for embedding then

4: derive residual variances in DCT domain by Eq. (4.10).

5: else if using embedding costs in DCT domain, ηbi j, for embedding then

6: derive residual variances in DCT domain by Eq. (4.11).

7: end if

8: Find λ by solving the system of equations shown in Eq. (4.27) using Newton–Raphson method.

9: Calculate all βbi j values for all b, i, and j by Eq. (4.23).

10: Determine all pmbi j(k) values for all b, i, j, and k by Eq. (4.28).

11: Encode hidden message according to the determined change rates, pmbi j , to get M = [M1, . . . ,Mn].

12: Compute the stego image scaled DCT coefficients by S = F+M.
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steganography method (Sharifzadeh et al., 2019b). An omniscience optimal detector should examine

the images together and decide based on the summation of all the images detection statistics. The error

of such optimal detector can be approximated by

P̂E(l)≈ φ

(
φ
−1(P̂E(1)

)√
l
)

(4.30)

The standard deviation of P̂E(l), i.e. σ̂l , as a function of the standard deviation of P̂E(1), i.e. σ̂1, is

given by

σ̂l ≈
√

l exp
(
−1

2

(
φ
−1(P̂E(1)

))2
(l−1)

)
σ̂1 (4.31)

which is an increasing function of the pool size (l) until l = l0 and a decreasing function afterwards,

where l0 is written as

l0 =
(

φ
−1(P̂E(1)

))−2
(4.32)

See Appendix C: Statistical Model for Pool Steganalysis Detector’s Error and Variance for the proof.

Given that Theorem 3 is true for steganography in raw image data or any linear transformation of image

data, its true for JPEG steganography as well. The beauty of this approximation is that utilizing it, one

can run only one experiment employing an ensemble classifier steganalyzer (Kodovsky et al., 2012) to

find P̂E(1), and plug the result in Eq. (4.30) to find P̂E(l) for any l. In Sec. 4.5.5, we show that although

this approximation is based on the Gaussian embedding model and optimal pool steganalysis, it works

for any embedding method, as long as the same steganalyzer is employed for all the pool sizes using the

explained optimal pooling strategy.
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Another conclusion that can be drawn from Theorem 3 is that although pool steganalysis gives

better results comparing to single image steganalysis, it suffers from an increasing variance as the pool

size increases for some payloads. To the best of authors’ knowledge, this phenomenon has never been

discussed nor been formulized in the literature. The variance increases until pool size reaches l0, shown

in Eq. 4.32 and Fig. 8, and it decreases afterwards. In Sec. 4.5.5, we observe that this statistical model

and its results are aligned with the empirical results.

4.5 Experiments and Discussion

Throughout this paper, we use the BOSSbase 1.01 database containing 10k gray-scale 512× 512

pixels images (Bas et al., 2011). All the images are compressed to JPEG with two quality factors, 75

and 95. Performance evaluations are done using an ensemble of classifiers with 10-fold cross-validation

trained on steganalysis features extracted from 5k images chosen randomly as training/validation set and

tested on features extracted from the rest 5k images (Kodovsky et al., 2012). We utilize two different

state-of-the-art JPEG steganalysis feature vectors DCTR (Holub and Fridrich, 2014) and GFR (Song

et al., 2015) with 8000 and 17000 elements, respectively. Performances are reported by the classifier

average detection error defined as the mean of false alarm and missed detection rates in payloads ranging

from 0.05 to 1, i.e. p ∈ {0.05,0.1,0.2,0.3,0.4,0.5,0.75,1}, bits per non zero AC coefficient (bpnzac).

To find out if a performance improvement is statistically significant, we employ the significance

level of 0.05. For all the performance evaluations in this article, sample sizes are 10, and the standard

deviations of samples are in the range of 0.001 to 0.005. In the worst-case scenario of comparing two

performances, both having a standard deviation of 0.005, if the difference between them is greater than

0.0047, it is statistically significant.
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For all the experiments, we employ five different JPEG steganography methods. The first two are

the two state-of-the-art JPEG steganography methods, i.e., UERD (Guo et al., 2015) and JUNIWARD

(Holub et al., 2014), with their optimal parameters for achieving best security. The next two methods are

based on the mentioned methods, UERD and JUNIWARD, but utilizing our proposed quantized Gaus-

sian embedding, we show them by G-UERD and G-JUNIWARD respectively. In addition to these four

methods, we also experiment G-JHILL, which employs the proposed quantized Gaussian embedding

model using spatial domain embedding cost computed by the HILL algorithm, as shown in Sec 4.2.1.1.

HILL algorithm is used with a 3× 3 Ker-Bohme high-pass filter and a 3× 3 and a 15× 15 averaging

low-pass filters (Li et al., 2014).

4.5.1 Determining Maximum DCT Coefficient Change (q)

The parameter q of the proposed quantized Gaussian embedding model summarized in Fig. 4 con-

trols the maximum amount that DCT coefficients will be changed during embedding. In other words,

our embedding model is a (2q+1)-ary embedding. To determine optimal q value for achieving highest

security, we evaluate all the JPEG steganography methods with different q values, i.e. q ∈ {1,2,3}.

The results are presented in Table V. It can be seen that for our proposed Gaussian embedding model,

reported in the top three sections of the table, i.e. G-UERD G-JUNI G-JHILL, higher q values results

in higher performance, however the improvement is not significant for lower payloads. The security is

significantly improved only for JPEG quality factor of 95 and in higher payloads (p ≥ 0.5) which are

less important comparing to lower payloads due to high detection probability. Note that using higher q

values results in a more complex encoding algorithm (Filler et al., 2011). As a result, for the rest of the
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TABLE V: Detection error of steganalysis using GFR features for various payloads (p) and various embedding

algorithms with different q values resulting in a (2q+1)-ary embedding scenario.

JPEG Quality Factor = 75 JPEG Quality Factor = 95

Algorithm q p = .05 0.1 0.2 0.3 0.4 0.5 0.75 1 q p = .05 0.1 0.2 0.3 0.4 0.5 0.75 1

G-UERD

1 0.4600 0.4037 0.2837 0.1814 0.1065 0.0603 0.0133 0.0048 1 0.4876 0.4663 0.4127 0.3483 0.2802 0.2130 0.0797 0.0218

2 0.4612 0.4074 0.2838 0.1789 0.1075 0.0637 0.0135 0.0043 2 0.4877 0.4648 0.4111 0.3483 0.2793 0.2141 0.0903 0.0328

3 0.4581 0.4082 0.2840 0.1803 0.1082 0.0606 0.0136 0.0046 3 0.4864 0.4654 0.4126 0.3474 0.2807 0.2135 0.0967 0.0362

G-JUNI

1 0.4637 0.4085 0.2870 0.1885 0.1081 0.0596 0.0115 0.0034 1 0.4914 0.4767 0.4335 0.3782 0.3141 0.2446 0.0990 0.0292

2 0.4614 0.4062 0.2880 0.1826 0.1094 0.0606 0.0125 0.0033 2 0.4925 0.4757 0.4341 0.3764 0.3149 0.2545 0.1190 0.0457

3 0.4595 0.4063 0.2895 0.1831 0.1097 0.0615 0.0131 0.0044 3 0.4938 0.4747 0.4354 0.3758 0.3161 0.2567 0.1242 0.0520

G-JHILL

1 0.4650 0.4134 0.2986 0.1893 0.1139 0.0631 0.0131 0.0048 1 0.4943 0.4794 0.4437 0.3945 0.3354 0.2727 0.1336 0.0439

2 0.4640 0.4138 0.2968 0.1908 0.1160 0.0689 0.0156 0.0047 2 0.4939 0.4805 0.4436 0.3943 0.3384 0.2775 0.1519 0.0705

3 0.4637 0.4141 0.2971 0.1896 0.1174 0.0686 0.0163 0.0061 3 0.4944 0.4802 0.4435 0.3941 0.3395 0.2798 0.1554 0.0787

UERD

1 0.4560 0.3942 0.2729 0.1874 0.1179 0.0665 0.0169 0.0064 1 0.4857 0.4655 0.4121 0.3466 0.2788 0.2114 0.0845 0.0216

2 0.4491 0.3807 0.2464 0.1629 0.0974 0.0547 0.0117 0.0044 2 0.4855 0.4654 0.4083 0.3384 0.2701 0.2053 0.0846 0.0293

3 0.4480 0.3785 0.2422 0.1579 0.0913 0.0510 0.0109 0.0037 3 0.4883 0.4605 0.4011 0.3279 0.2593 0.1920 0.0782 0.0305

JUNI

1 0.4623 0.4056 0.2813 0.1852 0.1052 0.0582 0.0108 0.0018 1 0.4948 0.4796 0.4324 0.3749 0.3089 0.2357 0.0852 0.0153

2 0.4602 0.4000 0.2700 0.1799 0.1029 0.0555 0.0104 0.0027 2 0.4951 0.4796 0.4304 0.3754 0.3031 0.2335 0.0949 0.0313

3 0.4585 0.3987 0.2645 0.1753 0.0991 0.0500 0.0093 0.0023 3 0.4925 0.4796 0.4316 0.3740 0.2978 0.2271 0.0925 0.0341

experiments, we only consider q = 1 which has similar performance comparing to q = 2 and q = 3 for

most of the payloads and requires a less complex encoder.

We have also shown the results of different (2q+ 1)-ary embedding scenarios for non-Gaussian

embedding algorithms, UERD, and JUNIWARD, in the bottom two sections of the Table V. It can be

concluded that higher q values result in lower security for almost all the payloads.
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TABLE VI: Detection error of steganalysis using GFR features for various payloads (p) and various embedding

algorithms.

JPEG Quality Factor = 75 JPEG Quality Factor = 95

Algorithm p = .05 0.1 0.2 0.3 0.4 0.5 0.75 1 p = .05 0.1 0.2 0.3 0.4 0.5 0.75 1

UERD 0.4560 0.3942 0.2729 0.1874 0.1179 0.0665 0.0169 0.0064 0.4880 0.4655 0.4121 0.3466 0.2788 0.2114 0.0845 0.0216

G-UERD 0.4600 0.4037 0.2837 0.1814 0.1065 0.0603 0.0133 0.0048 0.4876 0.4663 0.4127 0.3483 0.2802 0.2130 0.0797 0.0218

JUNI 0.4623 0.4056 0.2813 0.1852 0.1052 0.0582 0.0108 0.0018 0.4948 0.4796 0.4324 0.3749 0.3089 0.2357 0.0852 0.0153

G-JUNI 0.4637 0.4085 0.2870 0.1885 0.1081 0.0596 0.0115 0.0034 0.4914 0.4767 0.4335 0.3782 0.3141 0.2446 0.0990 0.0292

G-JHILL 0.4650 0.4134 0.2986 0.1893 0.1139 0.0631 0.0131 0.0048 0.4943 0.4794 0.4437 0.3945 0.3354 0.2727 0.1336 0.0439

TABLE VII: Detection error of steganalysis using DCTR features for various payloads (p) and various embedding

algorithms.

JPEG Quality Factor = 75 JPEG Quality Factor = 95

Algorithm p = .05 0.1 0.2 0.3 0.4 0.5 0.75 1 p = .05 0.1 0.2 0.3 0.4 0.5 0.75 1

UERD 0.4698 0.4211 0.3257 0.2417 0.1654 0.1039 0.0240 0.0056 0.4958 0.4852 0.4509 0.4001 0.3313 0.2615 0.0981 0.0228

G-UERD 0.4750 0.4350 0.3379 0.2422 0.1614 0.0982 0.0274 0.0062 0.4948 0.4869 0.4497 0.4022 0.3400 0.2706 0.1084 0.0301

JUNI 0.4801 0.4494 0.3560 0.2570 0.1715 0.1040 0.0187 0.0023 0.4960 0.4866 0.4613 0.4158 0.3602 0.2923 0.1030 0.0128

G-JUNI 0.4814 0.4543 0.3637 0.2647 0.1780 0.1076 0.0196 0.0035 0.4954 0.4891 0.4625 0.4216 0.3722 0.3103 0.1307 0.0335

G-JHILL 0.4819 0.4549 0.3646 0.2678 0.1810 0.1114 0.0191 0.0042 0.4982 0.4892 0.4610 0.4259 0.3731 0.3167 0.1444 0.0409

These observations suggest that the proposed quantized Gaussian embedding model is more accu-

rate compared to the widely used Gibbs form (Filler and Fridrich, 2010) for calculating embedding

probabilities.
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4.5.2 Comparison of Quantized Gaussian Embedding with Prior Arts

In this section, we compare the security of the proposed steganography method with the state-of-

the-art JPEG steganography methods against steganalysis using DCTR and GFR features. We conclude

that using the proposed embedding model results in performance improvement for all the algorithms in

most of the payloads. We also show that the proposed G-JHILL method outperforms all the previously

developed methods in all the payloads.

We compare the detection error of UERD, G-UERD, JUNIWARD, G-JUNIWARD, and G-JHILL

using GFR features in Table VI. For the UERD algorithm, the proposed Gaussian version (G-UERD)

outperforms UERD significantly in payloads less than 0.3 bpnzac for images with JPEG quality 75

and its detection probabilities at these payloads are similar to the one for JUNIWARD which is a more

time-consuming algorithm. For JPEG quality of 95, G-UERD has a statistically similar performance

comparing to UERD. For JUNIWARD, the proposed Gaussian version (G-JUNIWARD) performs better

than or similar to the original JUNIWARD algorithm, and the improvement is statistically significant

for JPEG quality of 95 and payload greater than 0.3 bpnzac. The proposed G-JHILL outperforms all the

mentioned algorithms in all the payloads and JPEG quality factors (or performs similarly to the most

secure one). For images with JPEG quality factor of 75, the gap between the performance of G-JHILL

and the most secure algorithm amongst the other methods (G-JUNIWARD for p ≤ 0.3 and UERD for

p > 0.3) is statistically significant at 0.1 and 0.2 bpnzac. For images with JPEG quality factor of 95, the

gap is significant at 0.2, 0.3, 0.4, 0.5, 0.75, and 1 bpnzac.
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In addition to running experiments using GFR features, we utilize DCTR features as well, and the

results are reported in Table VII. Similar behaviors as the ones seen using GFR can be seen there;

however, the performance gaps are greater compared to Table VI.

We believe that the proposed quantized Gaussian embedding model improves performance due to

the fact that it embeds more bits in low cost or high variance DCT coefficients and less bits in high cost

or low variance ones comparing to the Gibbs measure used by all the spatial and JPEG steganography

methods.

4.5.3 Whitening

In this section, we conduct experiments on G-JHILL algorithm to check the empirical results of

applying whitening explained in Sec. 4.2.1. For applying whitenning to all the blocks, there are two

extra steps that are added to the algorithm explained in Fig. 4. First, instead of the residual variances

computed in “if” clause in lines 1 through 7, we use variances of the whitened residuals using the eigen-

decomposition. In other words, in each block, we first decompose each block residual covariance matrix

by eigen-decomposition to UbΓbUT
b , where Ub is the orthogonal 64×64 matrix of eigenvectors and Γb

is the diagonal matrix of eigenvalues. Then the diagonal elements of Γb are used instead of residual

variances, i.e. σ2
bi j. The second extra step is that in each Newton-Raphson iteration for solving Eq.

(4.27) after computing B∗b = [β ∗bi j]8×8, the hidden message elements are transformed back by Ub ·vec(B∗b)

where vec is vectorization function. This process increases the time complexity of the embedding

method, but it increases the performance. In Table VIII, the performances of G-JHILL algorithm is

reported for both cases of using and not using whitening. It can be seen that there is no statistically

significant change in the detection error for payloads up to 0.5 bpnzac. However, in 0.75 an 1 bpnzac,
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the G-JHILL version that employs whitening performs significantly better. In the next section, we

discuss the amount of increase in computation time for using whitening.

TABLE VIII: Detection error of steganalysis using GFR features in various payloads (p), and different JPEG

quality factors (Q.F.) for G-JHILL with and without whitening (Wh.).

Q.F. Wh. p=.05 0.1 0.2 0.3 0.4 0.5 0.75 1

75
No .4650 .4134 .2986 .1893 .1139 .0631 .0131 .0048

Yes .4639 .4145 .2991 .1906 .1156 .0670 .0152 .0081

95
No .4943 .4794 .4437 .3945 .3354 .2727 .1336 .0439

Yes .4949 .4786 .4443 .3918 .3384 .2749 .1460 .0642

4.5.4 Computational Time

In this section, we compare the computation time needed for all of the steganography algorithms

studied in this paper. The computation times are reported in seconds per image in Table IX for two

JPEG quality factors, i.e. 75 and 95, and two payloads, i.e. 0.1 and 0.2 bpnzac. It is observed that

the proposed Gaussian embedding versions of UERD and JUNIWARD are 2 to 5 times slower than the

original algorithms, which is still reasonable given their higher performance. G-JHILL (Wh.) is the G-

JHILL algorithm with whitening which is 2 to 3 times slower than G-JHILL. It can be seen that higher
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TABLE IX: Average computational time in seconds for embedding a coded hidden message with size of p bpnzac

in a JPEG image with quality factor Q.F..

Q.F. p UERD G-UERD JUNI G-JUNI G-JHIL G-JHILL (Wh.)

75
0.1 .2978 1.141 2.326 4.863 4.373 12.03

0.2 .2705 1.626 2.669 5.086 4.877 12.32

95
0.1 .2587 1.344 2.451 5.003 4.598 12.16

0.2 .3054 1.472 2.631 5.200 4.866 12.25

payload increases the embedding time but the JPEG quality factor does not affect the computation time

significantly.

4.5.5 Pool Steganalysis Detection Error

In this section, we conduct experiments regarding Sec. 4.4 and Theorem 3, where we have shown

that instead of running cumbersome pool steganalysis experiments, one can estimate the detection error

for pool sizes greater than 1 based on Eq. 4.30 and empirically computed detection error for pool size

equal to 1. We use various pool sizes, i.e. l ∈ {1,3, . . . ,99}, for both empirical and estimated results.

The pooling strategy here is using the summation of detection statistics of all images in a pool. This

strategy is shown to be optimal in Theorem 3 in case of embedding the same payload in all images or

using the state-of-the-art batch steganographer (Sharifzadeh et al., 2019b).

Results for using the G-UERD embedding algorithm are shown in Fig. 5. In each plot, the pink lines

are the empirical results, and their error bars show the detectors error standard deviation. The solid blue

lines with “∗” markers are the results computed by the proposed estimation. The results for JPEG quality
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Figure 5: Empirical pool steganalysis detection error (pink lines), and the estimated one and its standard deviation

calculated by Eq. 4.30 and Eq. 4.31 respectively (solid blue lines with “∗” markers and dashed blue lines re-

spectively), versus pool size for G-UERD algorithm, two steganalysis features (GFR and DCTR), different JPEG

quality factors (75 and 95) and payloads (0.05,0.1,0.2,0.3,0.4,0.5). Plot legends are read as “Embedding method

/ Steganalysis feature / JPEG quality / Payload”.
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Figure 6: Empirical pool steganalysis detection error (pink lines), and the estimated one and its standard devia-

tion calculated by Eq. 4.30 and Eq. 4.31 respectively (solid blue lines with “∗” markers and dashed blue lines

respectively), versus pool size for various algorithm, GFR as steganalysis feature, different JPEG quality factors

(75 and 95) and payloads (0.05,0.1,0.2,0.3). Plot legends are read as “Embedding method / Steganalysis feature

/ JPEG quality / Payload”.
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factor of 95, using the GFR feature, and payloads of 0.05,0.1,0.2,0.3,0.4,0.5 bpnzac are provided in the

left column in which it can be seen that our estimation is precise. To show that the proposed estimation

is precise for other quality factors and other steganalysis features as well, we show similar plots for

JPEG quality factor of 75, using DCTR feature, and payloads of 0.05,0.1,0.2,0.3,0.4,0.5 bpnzac on

the right column. Based on Fig. 5, the proposed estimation is valid in all the payloads, JPEG quality

factors, and steganalysis features for the G-UERD algorithm. To show that it is valid for all embedding

methods regardless of them using the proposed Gaussian embedding model or not, we provide similar

plots for G-JUNIWARD, G-JHILL, UERD, and JUNIWARD in Fig. 6. In this Figure, we have tried

to cover all experimented embedding algorithms, JPEG quality factors with different payloads by the

fewest possible number of plots due to space and computation limitations.

4.5.6 Pool Steganalysis Detection Error Variance

In this section, we discuss the behavior of the variance of the pool steganalysis detector. In Sec. 4.4

and Theorem 3, we have shown that although pooling improves detection error, it increase the variance

of the detector for some payloads depending on the value of single image steganalysis detection error.

In other words, according to Theorem 3, the variance of the detection error is an increasing function of

pool size for pool sizes smaller than l0, defined in Eq. (4.32), and it is a decreasing function for greater

pool sizes.

To examine this finding, in all the plots in Fig. 5 and Fig. 6, in addition to the empirical and

estimated pool steganalysis, results shown by pink error bars and solid blue lines with “∗” markers

respectively, we show the estimated standard deviation shown in Eq. (4.31) with dashed blue lines.

In other words, in all the mentioned plots, the upper and the lower dashed blue lines are P̂E(l) + σ̂l
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and P̂E(l)− σ̂l respectively. It can be observed that the pink error bar sizes have similar behaviors as

the distances between dashed blue lines. In other words, as the pool size increases, when dashed blue

lines are diverging, the error bars sizes increase, and when dashed blue lines are converging, the error

bars sizes decrease. The turning point of the explained behavior depends on the value of PE(1) and it

decreases as PE(1) for empirical results. This is similar to the behavior of the estimated turning point l0

shown in Eq. (4.32) which validates Theorem 3.

Here, we go through a few examples from the plots. In the left column of Fig. 5, in the top plot

where l0 ≈ 1035, it can be observed that the size of the error bars of the pink line is increasing until

l = 99. For the second plot from the top, where l0 ≈ 139, the error bars expand as well until l = 99.

In contrast to the last two examples, in the third plot from the top, where l0 ≈ 20.5, the error bars are

becoming larger until around l = 41, and then they start growing smaller in size. Similarly, for the fourth

plot from the top where l0 ≈ 6.6, the size of the pink error bar is increasing as l increases until around

l = 9 where it starts to decrease. For the second plot from the bottom in the left column of Fig. 5, where

l0 ≈ 2.9, error bars start to shrink after approximately l = 5. And for the last plot where l0 ≈ 1.5, the

error bar size is a decreasing function of l.

As a result of the mentioned behavior, which we also mathematically proved in Theorem 3, pool

steganalysis suffers from instability, i.e., high variance, for small payloads when single image steganal-

ysis detection error is near 0.5. The instability is a serious disadvantage for pool steganalysis, especially

in low payloads, and large pool sizes as the standard deviation can grow from a small number such as

0.004 in pool size equal to 1 to a huge number such as 0.04 in pool size equal to 99.



CHAPTER 5

CONCLUSION

Parts of this chapter have been presented in (Sharifzadeh et al., 2019a; Sharifzadeh et al.,
2019b). Copyright c© 2016, 2019, IEEE.

5.1 Summary of contributions

In the third chapter, a statistical framework is developed for raw image steganography problem in

which the cover and the stego messages are modeled by independent Gaussian random variables. Sub-

sequently, a novel Gaussian embedding model is proposed by simultaneously minimizing the detection

error of three optimal hypothesis testing detectors. The proposed Gaussian embedding model can work

with both pixel embedding costs and residual variances, which makes it a universal embedding tech-

nique applicable to all the state-of-the-art image steganography methods, and it improves their security

significantly. Additionally, the closed-form detection error as a function of payload is derived within

the adopted model for image steganography, and it is extended to batch steganography as well. The

availability of the closed-form detection error allowed us to investigate the effect of batch size on the

security of batch steganography. As a result, a new batching strategy, AdaBIM, is introduced, which is

shown to outperform the state-of-the-art both mathematically and empirically.

In the fourth chapter, we extend the statistical framework proposed in the third chapter to JPEG

steganography in which we employ a Gaussian model for the cover coefficients and also the hidden

message elements. Based on that, we propose a quantized Gaussian embedding model that is able to

work with any embedding cost or residual variance computed in spatial or DCT domain. We show that

80
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using this embedding model improves the performance of the existing JPEG steganography algorithms

in most of the payloads, and also achieves superior performance for all the payloads using cost calculated

by HILL. Subsequently, the proposed statistical model allows us to derive the closed-form expression

of an optimal omniscience single image steganalyzer error and extended it to pool steganalysis. We

use the closed-form expression of pool steganalysis error to approximate the empirical results for pool

steganalysis accurately. The main benefit of this approximation is that it is accurate if the pooling method

is optimal regardless of payload, steganalysis feature, and embedding method and domain. In addition

to approximating the error, we correctly predict the error variance empirical behavior with respect to

pool size, and therefore, reveal a deficiency of pool steganalysis.

5.2 Future directions

In future, we plan to investigate skewed statistical models such as generalized Gaussian distribution

for cover and stego image pixels. This may lead to asymmetric embedding steganography method that

can embed in saturated pixels and also outliers in smooth regions. Additionally, the derived closed-

form expression of the detection error could be utilized to solve the pooled steganalysis problem as

well as the batch steganography problem directly without utilizing the image merging sender. Another

possible direction for future is investigating side-informed steganography as an immediate extension

of the fourth chapter. In addition, the derived closed-form expressions can be used for calculation of

embedding costs and residual variances. Furthermore, the proposed statistical model can be employed

for video steganography if frame to frame dependencies are taken into account in computation of the

residual variances.
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Appendix A: Asymptotic Sum of Gamma Random Variables

Suppose X1, · · · ,Xn are all independently distributed by Gamma with shape k, but with scaling pa-

rameters θ1, · · ·θn respectively. If all θ ’s are bounded, the probability distribution of the following

summation, where a1, . . . ,an are some constants, converges to normal distribution as shown below.

n

∑
i=1

(Xi +ai)
d−→N

( n

∑
i=1

(kθi +ai),k
n

∑
i=1

θ
2
i

)
(A.1)

Proof of Theorem 1. Let Y be the sum of all Xis and Z be the normalized Y , i.e.

Z =
Y −E [Y ]

Var[Y ]
=

∑
n
`=1(X`− kθ`)√

k ∑
n
i=1 θ 2

i

(A.2)

Based on (Mathai, 1982), probability distribution of Z converges to standard normal distribution, N (0,1),

when n→ ∞ if the following conditions are met.

1. 0 < k ∑
n
i=1(

θi√
n)

2 < ∞

2. limn→∞ k ∑
n
i=1(

θi√
n)

r = 0 for r ≥ 3

These conditions are met as long the θ ’s are bounded. To show this, suppose that 0< θmin≤ θi≤ θmax <

∞ for all i’s. Then it can be easily shown that

kn
θ r

min√
nr

< k
n

∑
i=1

(
θi√

n
)r < kn

θ r
max√
nr

(A.3)
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Appendix A (Continued)

If n→ ∞, and r = 2, the lower and upper bounds are kθ 2
min and kθ 2

max respectively and they are both

bounded. If n→ ∞, and r ≥ 3, they both tend to zero.

Therefore, for large enough n, probability distribution of Y can be approximated with normal distri-

bution, i.e.

Y ∼N
(

k
n

∑
i=1

θi, k
n

∑
i=1

θ
2
i

)
(A.4)

Now we are one step away from the complete proof of the theorem. Suppose Y ′ = ∑
n
i=1(Xi +ai) which

is just a constant, ∑
n
i=1 ai, plus Y . As a result

Y ′ ∼N
( n

∑
i=1

(kθi +ai), k
n

∑
i=1

θ
2
i

)
(A.5)

which proves the theorem. �
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Appendix B: Effect of Batch Size on Security

In this section, the following lemma is proven first. Then, the result is extended to compare the

detection error in case of using different batch sizes and prove Theorem 2.

Lemma. Given any x,α ≥ 0, the following statements for normal cumulative distribution function, φ ,

are true:

(i) 1
2 φ(−x)+ 1

2 φ(−αx)≤ φ(−
√

αx) x,αx� 1

(ii) 1
2 φ(−x)+ 1

2 φ(−αx)≥ φ(−
√

αx) x,αx→ ∞

Proof (i). The first part of the lemma states that when x tends to zero, the following inequality holds;

1
2

φ(−x)+
1
2

φ(−αx)≤ φ(−
√

αx) x,αx� 1 (B.1)

To prove (B.1), we approximate φ with the first two terms of its Taylor series expansion given by

φ(z) =
1
2
+

1√
2π

∞

∑
n=0

(−1)nz2n+1

(2n+1)2nn!
z�1−−→ 1

2
+

z√
2π

(B.2)

Applying approximation shown in (B.2) to (B.1) results in

1
2
+

(−x)
2
√

2π
+

(−αx)
2
√

2π
≤ 1

2
+

(−
√

αx)√
2π

(B.3)
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Appendix B (Continued)

Since x is positive, this in turn means

−α−1≤−2
√

α (B.4)

which is true due to the fact that 0≤ (
√

α−1)2 �

Proof (ii). The second part of the lemma states that when x approaches infinity, the following inequality

holds;

1
2

φ(−x)+
1
2

φ(−αx)≥ φ(−
√

αx) x,αx→ ∞ (B.5)

To prove (B.5), we approximate φ with its asymptotic expansion. To derive this expansion, the asymp-

totic expansion of the error function, erf, is utilized which is given by

erf(z) = -1+
e−z2

√
π

∞

∑
n=0

(-1)n(2n-1)!!
2n (-z)n+1 as z→−∞ (B.6)

where !! is the double factorial, i.e. n!! = n · (n−2) · · ·1. Given that erf(z) = 2φ(
√

2z)−1 and using the

first two terms of the asymptotic series in (B.6), it can be shown that

φ(−z) z→∞−−→ e
−z2

2
√

2πz
(B.7)

By applying (B.7), to (B.5), we get the following inequality,

e
−x2

2

2
√

2πx
+

e
−(αx)2

2

2
√

2παx
≥ e

−(
√

αx)2
2

√
2παx

(B.8)
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Appendix B (Continued)

Since x and αx are positive as they approach infinity, inequality (B.8) can be simplified as

α
1
2 e
−(1−α)x2

2 +α
−1
2 e

−(α2−α)x2
2 ≥ 2 (B.9)

This is true for every positive α , since for every α other than one, one of the terms on the left hand side

of this equation goes to infinity as x approaches infinity, and for α equal to one, the left hand side is

exactly two and equality happens. �

Proof of Theorem 2. This theorem compares the error of detection for batch size of M and 2M for

embedding p nats per pixel in a database of N images. Suppose M, and N are powers of two and

2M ≤ N. Without loss of generality, assume that the lth batch includes these images: (l−1)B, . . . , lB−

1, where B is the batch size. As a result, the lth batch when B = 2M, contains images of batches

2l− 1 and 2l of the case when B = M. Based on (3.33), the average detection error for these images

((l−1)2M, . . . ,2lM−1), when B = M, is

1
2

φ

(
−
√

nλ
(M)
2l−1(p)/32

)
+

1
2

φ

(
−
√

nλ
(M)
2l (p)/32

)
(B.10)

and when B = 2M, is

φ

(
−
√

nλ
(2M)
l (p)/32

)
(B.11)
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where λ
(M)
l (p) is the Lagrangian multiplier for the lth batch when the batch size and the payload are

M, and p respectively. For using the lemma to compare these two average detection errors, (B.10) and

(B.11), let us define x and α as

x =

√
nλ

(M)
2l−1(p)
32

(B.12)

α =

√
nλ

(M)
2l (p)
32√

nλ
(M)
2l−1(p)
32

=

M

√
∏

(2l−1)M−1
j=(2l−2)M

n
√

∏
n
i=1 σ2

i j

M

√
∏

2lM−1
j=(2l−1)M

n
√

∏
n
i=1 σ2

i j

(B.13)

where the simplification is done based on (3.35). Note that, α , defined in (B.13), is constant for all the

payloads, p, regardless of the value of x and l. Employing (3.35), it can be shown that

λ
(2M)
l (p) =

√
λ
(M)
2l (p)λ (M)

2l−1(p) (B.14)

which results in √
nλ

(2M)
l (p)/32 =

√
αx (B.15)

Based on the variable definitions in (B.12), (B.13), and (B.15), and the first part of the lemma, (B.1),

it can be shown that if x,αx� 1, (B.10) is less or equal than (B.11). Therefore, the summation of

(B.10) over all batches, l ∈ {1, . . . N
M}, is less or equal than the summation of (B.11). In addition, as it

was shown in Sec. 3.4, for payloads much smaller than one, Lagrangian multiplier λ for all batches
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and consequently x and αx are much smaller than one. Therefore, based on (3.37), and the mentioned

inequality, it is concluded that

PE(M,N, p)< PE(2M,N, p) p� 1 (B.16)

Following similar steps but using the second part of the lemma, (B.5), it can be shown that if x and αx,

shown in (B.12) and (B.13), approach infinity, the summation of (B.10) over all batches, l ∈ {1, . . . N
M},

is greater or equal than the summation of (B.11). In addition, as it was shown in Sec. 3.4, for pay-

loads approaching infinity, Lagrangian multiplier λ for all batches and consequently x and αx approach

infinity. Thus, the following inequality holds

PE(M,N, p)> PE(2M,N, p) p→ ∞ (B.17)

which proves the second part of Theorem 2. �
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Appendix C: Statistical Model for Pool Steganalysis Detector’s Error and Variance

In this section, we discuss the pool steganalysis problem for steganography in raw image or any

linear transformation of image. The discussion is based on the Gaussian statistical model which is valid

for any linear transformation of image. The model for spatial domain steganography is presented in

(Sharifzadeh et al., 2019a) and for JPEG steganography is shown in Sec. 4.2.1 and 4.2.2. Within the

adopted statistical model, the detection error of an optimal single image steganalysis is given by

φ

(
−
√

n
32

λ (p)
)

(C.1)

where λ (p) is the Lagrangian multiplier for relative payload p. Now, we discuss the case in which

the detector knows that l images are sent by the same source. We prove that in such cases, an optimal

pool steganalyzer should examine the images together. To show this, we compare the detection error

for both cases of inspecting l images together and separately. Inspecting images together results in a

similar detection error with summation of Lagrangian multipliers for all of the l images because the

logarithm of the likelihood ratio is equal to summation of logarithm of likelihood ratios for l images.

Given that the steganographer is embedding in each image separately, the Lagrangian multiplier values

are different for every image, i.e. λ (a)(p) is the Lagrangian multiplier for the ath image. The detection

error for such a detector is as follows

φ

(
−

√
n
32

l

∑
a=1

λ (a)(p)
)

(C.2)
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This shows that the optimal detector developed here uses pooling strategy of summing detection statis-

tics of all the images in the pool.

If l images, known to have the same source, are inspected separately, the average detection error is

given by

1
l

l

∑
a=1

φ

(
−

√
nλ (a)(p)

32

)
(C.3)

Eq. (C.3) is greater or equal than the formula below based on Jensen’s inequality and the fact that

φ(−
√

x) is a convex function of x if x > 0.

φ

(
−

√
n

32 l

l

∑
a=1

λ (a)(p)
)

(C.4)

Eq. (C.4) is greater than detection error shown in Eq. (C.2) based on the fact that φ(−
√

x) is a decreasing

function of x if x > 0. This proves that steganalyzer should inspect all the images from the same source

together to achieve a lower detection error. However, this approach will result in a detector with higher

variance which is covered later in this section. Now that we have derived the optimal pool steganalysis

strategy and its detection error, we show that instead of running time consuming pool steganalysis

experiments, one can utilizes Eq. (C.2) to approximate the results.

Assume that a database of N images (JPEG or raw) is used for embedding a relative payload of p

nats (p nats per non zero AC DCT coefficients for JPEG images and p nats per pixel for raw images)
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using the proposed Gaussian embedding model. The average detection error of an optimal single image

steganalyzer for the whole database is given by

P̂E(1) =
1
N

N

∑
a=1

φ

(
−
√

n
32

λ (a)(p)
)

(C.5)

which can be approximated as shown below by assuming that all λ (a)(p) values are the same and equal

to a value λ (p)

P̂E(1)≈ φ

(
−
√

n
32

λ (p)
)

(C.6)

The mentioned assumption is true for the state-of-the-art batch steganography method which embeds in

each image according to its steganographic capacity and uses an image merging sender which results in

equal values of λ (Sharifzadeh et al., 2019b; Cogranne et al., 2017). The assumption is an approximation

for a steganographer that embeds the same payload in all the images but it still results in a precise

estimation as shown in Sec. 4.5.5.

If the images are received in pools of l images, the detection error of an optimal pool steganalyzer

is given by

P̂E(l) =
l
N

N/l−1

∑
t=0

φ

(
−

√√√√ n
32

(t+1)×l

∑
a=t×l+1

λ (a)(p)
)

(C.7)

which can also be approximated as shown below using the same assumption of equal Lagrangian mul-

tipliers

P̂E(l)≈ φ

(
−
√

n
32

lλ (p)
)

(C.8)
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Therefore, based on Eq. (C.6) and Eq. (C.8), an approximation of P̂E(l) based on the value of P̂E(1) is

given by

P̂E(l)≈ φ

(
φ
−1(P̂E(1)

)√
l
)

(C.9)

where φ−1 is the inverse function of cumulative standard normal distribution, φ .

In the rest of this section, we discuss the error of this approximation if P̂E(1) has an error with

standard deviation of σ̂1. We show the standard deviation of error of P̂E(l) with σ̂l . Suppose that all

the errors are small, i.e. ∀l σ̂l � 1. Therefore, our approximation shown in Eq. (C.9) has error with

standard deviation, i.e. σ̂l , given by

2σ̂l ≈ φ

(
φ
−1(P̂E(1)+σ1

)√
l
)
−φ

(
φ
−1(P̂E(1)−σ1

)√
l
)

(C.10)

This can be further simplified using the following Taylor series expansion

φ
(
φ
−1(x±δx)

√
l
)
≈ φ

(
φ
−1(x)

√
l
)
±

∂φ
(
φ−1(x)

√
l
)

∂x
δx (C.11)

By plugging in this Taylor series in Eq. (C.10), our approximation error can be calculated as

σ̂l ≈
∂φ
(
φ−1(x)

√
l
)

∂x

∣∣∣∣
x=P̂E(1)

σ̂1 = γσ̂1 (C.12)

γ
.
=
√

l exp
(
−1

2

(
φ
−1(P̂E(1)

))2
(l−1)

)
(C.13)
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Figure 7: Pool steganalysis error variance behaviour shown by plotting variable γ , defined in Eq. (C.13), versus

pool size, l, for different detection errors of single image steganalysis, P̂E(1).

The variable γ’s behavior with respect to l depends on P̂E(1) value. In Fig. 7, γ is shown for different

l and P̂E(1), which shows that for a all P̂E(1), γ = 1 when l = 1 and it has one global maximum. It

can be seen that utilizing pool steganalysis results in greater variances for some pool sizes comparing

to single image steganalysis for higher P̂E(1), because γ is greater than 1. To find out exactly when this

happens, we derive the derivation of γ with respect to l which is given by

∂γ

∂ l
=

γ ·
(

1−
(

φ−1
(
P̂E(1)

))2
l
)

2l
(C.14)
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Figure 8: l0 defined in Eq. (C.15) versus P̂E(1).

Since l takes only natural numbers in practice, γ is a decreasing function of l if its derivation shown in

Eq. (C.14) goes to zero for l ≤ 1. The derivation of γ with respect to pool size, l, is zero if l = l0 where

l0 is

l0 =
(

φ
−1(P̂E(1)

))−2
(C.15)

l0 ≤ 1⇒ P̂E(1)≤ 0.1587 (C.16)

Fig. 8 depicts l0 vs P̂E(1). Therefore, for any P̂E(1)> 0.1587, our approximation show that the variance,

σ̂l , increases as l increases until l = l0. Then, the variance of detection error decreases. The same

behaviour is also observed in practice in Sec. 4.5.6 for empirical detection error which reassures the

precision of the proposed approximation and mathematical model for pool steganalysis.
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