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SUMMARY

In many machine learning applications, predicting incorrect classes or labels incurs different

penalties depending on the predicted class and the actual class. Cost-sensitive classification

formulates this situation by seeking predictions that minimize this variable loss. Since directly

optimizing the empirical cost-sensitive loss is generally intractable, existing cost-sensitive meth-

ods minimize surrogate loss functions. For example, the support vector machine (SVM) uses

the hinge loss. However, the SVM can fail to learn the cost-minimizing prediction for even

in ideal learning conditions (i.e., it does not provide a Fisher consistency guarantee). On the

other hand, Logistic Regression, which uses log-loss as the surrogate, is difficult to adapt to

the cost-sensitive setting. Although it allows class importance weights to be incorporated, it

cannot be adapted to the cost-sensitive setting with more than two classes.

We formulate the cost-sensitive classification as a minimax game between a predictor and a

hypothetical adversary who approximates the training data labels, but is constrained by some

training data properties. We directly include the cost-sensitive loss measure instead of a sur-

rogate loss in the formulation. Unlike empirical risk minimization the resulting optimization

problem is convex, allowing us to efficiently solve it. We develop and apply this method for

multiclass cost-sensitive classification with arbitrary cost matrices. We then extend this work to

sequence tagging (multiple interrelated variables) where Hamming loss is considered as the cost

of mismatch between the target sequence and the predicted sequence. Later we improve the

sequence tagging algorithm for faster computation and compare the two methods. We discuss

xii



SUMMARY (Continued)

a real-world application to welding quality detection and activity recognition. We demonstrate

that this adversarial approach is competitive with traditional methods, while having the theo-

retical benefit of consistency.
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CHAPTER 1

INTRODUCTION

(Contents of this chapter were published in Asif, Kaiser, Wei Xing, Sima Behpour, and

Brian D. Ziebart. ”Adversarial Cost-Sensitive Classification.” In UAI, pp. 92-101. 2015. (Asif

et al., 2015))

In machine learning, classification is a task where different entities fall into different cate-

gories and based on the attributes of the entities, an algorithm learns to categorize future unseen

entities. In a general classification task, the learning algorithm incurs a penalty whenever a

predicted label does not match the corresponding actual label. For example, if a model is to

classify cat versus dog pictures, it accumulates one misclassification cost whenever it identifies

a dog picture as a cat or vice versa. However, in many applications of machine learning, the

penalty or cost for classification errors is not uniform and instead depends on both the predicted

label and the actual label. For example, an incorrect disease diagnosis may lead to treatments

that cause complications of varying severity depending on the patient’s actual disease. These

different incurred penalties for mistakes can be represented as a confusion cost matrix that

is indexed by the predicted class (row) and actual class (column). As shown in the following

confusion cost matrix for a classification task with four possible labels,

1



2

C =



0 1 2 0

3 0 1 3

4 2 0 1

1 1 2 0


, (1.1)

the confusion costs need not be symmetric or possess any other specific structural relationships.

Here, correct predictions incur zero cost (Ci,i = 0), but even this property is not required of

the cost matrix. Additionally, other classification errors may incur zero cost (C1,4 = 0) if, e.g.,

the same treatment cures two different diseases. Note that the zero-one loss is a special case

with off-diagonal values of one and on-diagonal costs of zero.

For an illustrative example, let us assume a binary classification problem of identifying

expired items in a retail store based on some specific attribute – if the item is predicted to be

expired then it will be removed from the shelf. Let us also assume that history shows that an

approximate proportion of 0.3 of the items have the specific attribute are actually expired, rest

are not. Then a classifier will predict future items having that attribute to be “not-expired” and

be wrong at frequency 0.3 for the truly expired item, which is lower than the opposite choice.

Now, if an item is falsely identified to be expired its value is the incurred cost by this prediction,

but if an expired item is bought by a customer it results into a higher cost due to customer

dissatisfaction which, let us suppose, has been quantified to be three times higher than the cost

of discarding a good item. Then the confusion cost can be written as shown in Table I. If we
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TABLE I: Costs for misclassification of item’s expiration.

not-expired expired

predict not-expired 0 3

predict expired 1 0

use the classifier as mentioned above, which misclassifies the items with frequency 0.3, which

are in fact “expired,” to be “not-expired,” the average cost will be 0.3 × 3 = 0.9 unit. On the

other hand if this expected cost is taken into account, then classifying future items having that

attribute to be expired will cause 0.7× 1 = 0.7 unit average cost. Therefore, although general

classification method suggests a “not-expired” prediction, predicting “expired” based on the

cost-sensitive decision incurs smaller expected cost.

Other applications of cost-sensitive classification include imbalanced class distributions,

where during the training process smaller class is given higher misclassification penalty so that

overall loss of the full data-set accounts for all categories in a balanced way. In fraud detection,

missing a fraud might have a higher cost than falsely labeling a valid instance as fraud. A

similar situation applies to bank loan approval, where approving a bad customer has a higher

risk than rejecting a good customer (Elkan, 2001). In time-series prediction one may vary the

cost based on timeliness (Turney, 2002). There are three main ways cost-sensitive classification

can be performed:

1. Learn the class probability distribution and use the Bayes optimal decision to select the

class that minimizes expected cost under the estimated distribution;
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2. Reweight or relabel training samples and train cost-insensitive classifiers based on the

modified dataset; or

3. Train a classifier that directly incorporates the cost in its design.

A natural goal for machine learning is to obtain a classifier that minimizes the expected

cost incurred when classifying an example. Previous research in cost-sensitive learning primarily

takes existing classification methods based on empirical risk minimization and tries to adapt

them in various ways to be sensitive to these misclassification costs. Reweighting methods

artificially augment the training data with copies of “high cost” examples to make the classifier

more cost-sensitive to them (Chan and Stolfo, 1998; Elkan, 2001; Zadrozny et al., 2003; Zhou

and Liu, 2010). While this is trivial for the binary classification problem, for the multiclass

problem, the costs need to have some specific consistency that allows similar reweighting ratio

across all pair of classes (Zhou and Liu, 2010). Other methods modify the criteria used to obtain

a classifier that incorporates mistake-specific losses (Knoll et al., 1994; Turney, 1995; Elkan,

2001; Brefeld et al., 2003; Ling et al., 2004; Lomax and Vadera, 2013). However, in both cases

the non-convexity of the cost-sensitive loss function makes direct empirical risk minimization

impractical (Hoffgen et al., 1995).

To avoid these difficulties, surrogate loss functions that are convex (e.g., the hinge loss) are

instead minimized. These include the hinge loss and the log loss surrogate loss functions for

classification tasks. However, these approximations using surrogate losses can introduce signif-

icant suboptimality. On the other, hand modifying the surrogate loss is a difficult task when

given arbitrary cost matrices, because the loss incurred is typically non-convex in the classi-
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fier’s parameters. For example, support vector machines (Cortes and Vapnik, 1995), have been

successfully demonstrated for a number of classification tasks, but efforts to make them cost-

sensitive have been restricted to cost matrices with specific consistency properties as mentioned

above (Zhou and Liu, 2010).

In this thesis, we develop and explore the benefits of a different approach: adversarial pre-

diction methods for cost-sensitive learning. Rather than integrating cost-sensitivity into

existing machine learning techniques, we develop an approach from first principles to robustly

minimize the expected cost. Our approach treats classifier construction as a game against an

adversarial evaluator (Topsøe, 1979; Grünwald and Dawid, 2004). This enables us to directly

minimize the cost-sensitive loss on an approximation of the training data instead of using a

convex approximation of the cost-sensitive loss, as is done with empirical risk minimization.

Inference reduces to solving a zero-sum game in our approach. This is efficiently accomplished

using linear programming. We obtain parameter estimates by constructing game payoff param-

eters using convex optimization methods. The key benefit of our approach is that the exact

confusion cost matrix is employed rather than a convex surrogate.

Similar cost-sensitive losses arise in more complicated structured prediction tasks as well. In

a sequence tagging task, a sequence of variables are labeled jointly that may depend on the labels

of each other. Sequence tagging is used in Natural Language Processing (NLP) for Parts of

Speech (POS) tagging (Lafferty et al., 2001b; Sha and Pereira, 2003) where words are sequence of

variables and target class for each word is the POS. Then, if a word can be labeled as more than

one POS, its label also depends on adjacent labels. For example, a preposition is always followed
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by a noun clause and the word “on” can be either preposition, adjective or adverb. Various

activity recognition task also falls under sequence tagging. In human activity recognition,

human activities are tracked using smartphone sensor data (Reyes-Ortiz et al., 2016) as they

transition from sitting to standing to walking and so on. In some applications, cost-sensitive

sequence tagging may be preferred. For example, in POS tagging, labeling “physics” as plural

noun NNS instead of singular NN is a minor error compared to labeling “plans” as NNS instead

of verb VBZ (Song et al., 2012). In case of activity recognition, walking vs walking-downstairs

might have a higher penalty than sit-to-stand vs lie-to-stand. Existing methods for sequence

tagging also optimize similar surrogate loss functions. For example, log-loss is optimized in

the conditional random field (CRF) and the hinge loss is minimized in the structured support

vector machine (structured-SVM). To perform a cost-sensitive sequence tagging, structured-

SVM can be modified (Song et al., 2012). However, we extend our adversarial framework to

sequence tagging which does not require us to assume a surrogate loss function and also can

easily incorporate cost-sensitivity.

In Chapter 2, we discuss related work and provide a brief introduction to background mate-

rial, including empirical risk minimization, cost-sensitive classification, adversarial approaches,

and game theory. We develop the adversarial approach for classification in Chapter 3 and il-

lustrate its procedures with toy examples. We extend it to sequence tagging, and develop and

compare two approaches to solve the optimization problem for the sequence tagging task. We

discuss results for both cost-sensitive classification and sequence tagging in Chapter 4. We elab-
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orate using an application of sequence tagging to automated welding quality detection. Finally,

in Chapter 5 we provide our conclusion, and discuss future directions.



CHAPTER 2

RELATED WORK

(Sections of this chapter were published in Asif, Kaiser, Wei Xing, Sima Behpour, and Brian

D. Ziebart. ”Adversarial Cost-Sensitive Classification.” In UAI, pp. 92-101. 2015. (Asif et al.,

2015), and in Jia Li, Kaiser Asif, Hong Wang, Brian D. Ziebart, and Tanya Y. Berger-Wolf.

”Adversarial Sequence Tagging.” In IJCAI, pp. 1690-1696. 2016. (Li* et al., 2016))

2.1 Empirical Risk Minimization

A standard approach to parametric classification is to assume some functional form for the

classifier (e.g., a linear discriminant function, fθ(x) = argmaxy θ
Tφ(x, y), where φ(x, y) ∈ Rk

is a feature function) and then select model parameters θ that minimize the empirical risk,

argmin
θ

EP̃(x,y) [loss (Y, fθ(X))] + λ||θ||, (2.1)

with a regularization penalty λ||θ|| often added to avoid overfitting to available training data.

Here we denote scalar values and vector values lowercase non-bold, x, and bold, x, and random

variables in capital X or X. Unfortunately, many combinations of classification functions, fθ(x),

and loss functions, loss(·, ·), do not lend themselves to efficient parameter optimization under

8
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Figure 1: Convex surrogates for the zero-one loss.

the empirical risk minimization (ERM) formulation. For example, minimizing the zero-one loss

measuring the misclassification rate,

argmin
θ

EP̃(x,y) [I (Y 6= fθ(X))] + λ||θ||,

will generally lead to a non-convex empirical risk minimization problem that is NP-hard to

solve (Hoffgen et al., 1995).

To avoid these intractabilities, convex surrogate loss functions (Figure 1) that serve as upper

bounds on the desired loss function are often used to create tractable optimization problems.

The popular support vector machine (SVM) classifier (Cortes and Vapnik, 1995), for example,

employs the hinge-loss—an upper bound on the zero-one loss—to avoid the often intractable

empirical risk minimization problem. For binary classification with a scoring function ψθ,x =
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θTφ(x) where sign of the score defines the class, and target class y ∈ {−1,+1} the hinge loss is

defined as

loss(y) = max(0, 1− yψθ,x).

A generalized version for more than two class is given by loss(y) = max(0, 1+maxy6=y ′ θ
Tφ(x, y ′)−

θTφ(x, y)) (Crammer and Singer, 2002). SVM for binary classification optimizes:

min
θ,b,ξt

1

2
θTθ+ C

m∑
t=1

ξt (2.2)

subject to: ξt ≥ 0, t = 1, . . . ,m

yt

(
θTφ(xt) + b

)
≥ 1− ξit

which is essentially min
(
1
2 ||θ||+ C

∑m
t=1 max

[
0, 1− yt

(
θTφ(xt) + b

)])
.

Another popular classifier is Adaboost (Freund and Schapire, 1997), it incrementally mini-

mizes the exponential loss,

loss(y) = e−yfm(x),

where fm(x) is the incrementally updated predictor.

The difference between these convex surrogates and the actual loss can introduce a sub-

stantial mismatch between optimal parameter estimation under the surrogate loss function and

optimal parameter estimates for the original performance objective.
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2.2 Cost-sensitive Learning

Cost-sensitive learning considers more general loss functions than the zero-one loss in which

the loss depends on the actual and the predicted class. One approach is to estimate the

conditional label distribution, P̂(y|x), and employ the Bayesian optimal classifier:

f̂(x) = argmin
y ′∈Y

EP̂(y|x)[Cy ′,Y ], (2.3)

using, e.g., the cost matrix of Equation 1.1. However, accurately estimating the conditional

label distribution will typically require much more data than methods that directly learn the

best class prediction for a given loss function (Margineantu, 2002).

Early meta-learning methods for cost-sensitive learning attempt to modify how a cost-

insensitive learner is used during training and/or prediction time so that the end result of its

use is cost-sensitive. One approach for this is to either stratify or reweight available training

data so that more costly mistakes will incur a larger overall cost and therefore the resulting

classifier will be more sensitive to them (Chan and Stolfo, 1998; Elkan, 2001; Zadrozny et al.,

2003; Zhou and Liu, 2010). For binary classification with confusion cost of:

actual negative actual positive

predict negative c00 c01

predict positive c10 c11
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Equation 2.3 implies the cost-sensitive prediction is class +1 if and only if

(1− p)c10 + pc11 ≤ (1− p)c00 + pc01

where p = P(y = +1|x) is the cost-insensitive probability of sample x being of class +1.

Rearranging this equation gives the threshold p∗ (instead of the 0.5, i.e. assign class +1 if

p ≥ p∗) as

p∗ =
c10 − c00

c10 − c00 + c01 − c11
(2.4)

The number of negative samples are then multiplied by p∗/(1 − p∗) (Elkan, 2001). With

c00 = c11 = 0, i.e. correct classification having 0 cost, multiplication factor for number of

negative samples is:

p∗

1− p∗
=
c10
c01

However, the validity of this approach is limited to a restricted class of consistent cost matrices

when applied to multi-class prediction tasks (Domingos, 1999; Zhou and Liu, 2010). The simpler

traditional multiclass reweighting is

wi
wj

=
costi
costj

=

∑
k cik∑
k cjk

,
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which certainly is not ideal since it does not retains the misclassification cost ratio, i.e. cij/cji

(Zhou and Liu, 2010). Therefore Zhou and Liu proposed to use rescaling only if m weights

w = [w1, w2, ..., wm]
T can be computed from the cost matrix such that

wi
wj

=
costik, ∀k
costjl, ∀l

,

otherwise learn m(m − 1)/2 binary cost-sensitive classifiers and use voting to get a final pre-

diction. A method that reduces multi-class predictions to binary predictions using iterative

reweighting, data space expansion, and gradient boosting with stochastic ensembles (Abe et

al., 2004) has been proposed to overcome these limitations. The Metacost algorithm (Domin-

gos, 1999) similarly wraps around any underlying classifier. It uses bagging (Breiman, 1996)

to produce label probability estimates, which it then uses to modify training data labels us-

ing Equation 2.3, and retrain the classifier with the modified training labels to produce cost-

sensitive learner. The cost-transformation technique (Lin, 2008) modifies the objective during

the training and uses traditional classifiers to perform cost-sensitive classification.

Direct cost-sensitive learning methods incorporate the confusion costs directly into the for-

mulation of the classifier. Some classification methods are much more amenable to cost-sensitive

modifications than others. In decision trees, for example, modified criteria for greedily selecting

decision nodes and/or pruning the tree based on the confusion cost have been successfully em-

ployed (Knoll et al., 1994; Turney, 1995; Elkan, 2001; Ling et al., 2004; Davis et al., 2006; Lomax
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and Vadera, 2013), while relatively little attention has been given for developing cost-sensitive

nearest neighbor classifiers (Qin et al., 2013).

Boosting iteratively creates an ensemble of weak classifiers that are then combined to create a

much stronger classifier (Freund and Schapire, 1997) that often performs well in practice. Cost-

sensitive boosting techniques employ cost-sensitive weak learners to produce a stronger learner

that is cost-sensitive as well (Fan et al., 1999; Ting, 2000). This is accomplished by minimizing

the risk over the training dataset, 1
n

∑n
i=1 loss ′(C, yi, S(xi)), using a generalized surrogate loss

function, loss ′(C, ỹ, Sm(x)), for the cost matrix C, class label ỹ, and where Sy(x) represents the

classifier confidence in assigning class y to data point x. Recently developed loss functions are

the Generalized Exponential Loss (GEL),
∑
y ′ Cy,y ′e

Sy ′ (x)−Sy(x) and the Generalized Logistic

Loss (GLL), log(1+
∑
y ′ Cy,y ′e

Sy ′ (x)−Sy(x)). These loss functions are guess-averse and produce

state-of-the-art performance when used in boosting for cost-sensitive classification (Beijbom et

al., 2014).

Support vector machines (Cortes and Vapnik, 1995) have been generalized in the binary

classification setting by penalizing mistakes for one class more than for the other class (Brefeld

et al., 2003). Multiclass problems are reduced to binary classifiers using one-versus-all (Bottou

et al., 1994) and one-versus-one (Knerr et al., 1990) prediction tasks. The Cost-Sensitive One-
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Versus-All (CSOVA) algorithm (Lin, 2008) trains a separate binary SVM classifier for each

class:

min
θi,bi,ξit

1

2
(θi)Tθi + C

t∑
t=1

wtξ
i
t (2.5)

subject to: ξit ≥ 0, t = 1, . . . ,m

(θi)Tφ(xt) + b
i ≥ 1− ξit, if yt = i

(θi)Tφ(xt) + b
i ≤ −1+ ξit, if yt 6= i,

where wt is a weight based on the misclassification cost for example t. Prediction is done based

on maximum prediction score of the predictors. The Cost-Sensitive One-Versus-One (CSOVO)

algorithm (Lin, 2010) instead constructs a total of m(m− 1)/2 classifiers—one for each pair of

classes (i, j):

min
θi,j,bi,j,ξ

i,j
t

1

2
(θi,j)Tθi,j + C

∑
t

wtξ
i,j
t (2.6)

subject to: ξi,jt ≥ 0, t = 1, . . . ,m

(θi,j)Tφ(xt) + b
i,j ≥ 1− ξi,jt if yt = i

(θi,j)Tφ(xt) + b
i,j ≤ −1+ ξi,jt if yt = j.
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Prediction is done based on voting. Using structured SVM methods (Tsochantaridis et al.,

2005) to directly incorporate cost-sensitivity into the multiclass generalization of the hinge loss

(Lee et al., 2004),

min
θ, ε≥0

θ · θ+ α
∑
i

εi such that: (2.7)

θ · φ(xi, yi) − θ · φ(xi, y ′) ≥ Cy ′,yi − εi, ∀i, y ′ 6= yi,

creates a margin-based classifier that incorporates mistake costs additively. We note that cen-

tral to each of these SVM-based methods is the hinge loss approximation of the cost-sensitive

loss function. Our approach avoids such approximations of the loss function by instead approx-

imating the available training data.

2.3 Consistency

A classifier is called Bayes optimal if it minimizes the probability error of the true distribu-

tion,

Y|x = argmin
y

(1− P(y|x)) = argmax
y

P(y|x).

For unequal misclassification costs, this becomes,

Y|x = argmin
y

∑
y ′

C(y, y ′)P(y ′|x).

Fisher consistency validates this theoretical property for a classifier.
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Definition 1. Given an arbitrarily rich feature representation φ(x, y), a predictor f̂(X) trained

on the true evaluation distribution P(X, Y) that minimizes the expected loss EP(X,Y)[∆(f̂(X), Y)]

is called Fisher Consistent for the loss function ∆(f̂(X), Y).

We show that multiclass SVM is not Fisher consistent. Assume a cost-matrix (Cyprediced,ytrue)

and true conditional distribution for the sample x,

C =


0 1 2

1 0 1

1 2 0

 , P(Ytrue|x) =


0.4

0.25

0.35

 ,

then a Bayes optimal classifier will predict,

argmin
ypredicted

CP(Ytrue|x) = argmin
ypredicted

[
0.95 0.75 0.9

]T
= 2

In SVM, the optimal minimizer ψ∗ minimizes the expected hinge loss

EP(Y|x)
[
max
y 6=y ′

[
Cy,y ′ +ψ(x, y

′) −ψ(x, y)
]
+

]



18

To be Bayes optimal, the potentials should be at least ψ(x, Y) = [0, δ, 0], δ > 0. Then expected

loss for the given cost-matrix becomes,

0.4× (max(1+ δ, 2) − 0) + 0.25× (1+ 0− δ)+ + 0.35× (2+ δ− 0)

=


0.8+ 0.25− 0.25δ+ 0.7+ 0.35δ 0 < δ ≤ 1

0.4+ 0.4δ+ 0+ 0.7+ 0.35δ δ ≥ 1

=


1.75+ 0.1δ 0 < δ ≤ 1

1.1+ 0.75δ δ ≥ 1

This expected loss is larger than a degenerate case where all the potentials are equal, ψ(x, Y) =

[0, 0, 0], and loss = 0.4× (2+ 0− 0) + 0.25× (1− 0+ 0) + 0.35× (2+ 0− 0) = 1.75. Therefore,

SVM for multiclass cost-sensitive classification is not Fisher consistent. But as we will see, by

definition, our adversarial method is Fisher consistent.

2.4 Adversarial Methods

The adversarial perspective that we leverage in our approach has played a formative role in

statistical estimation and decision making under uncertainty. These include Wald’s maximin

model (Wald, 1949) of decision making as a sequential adversarial game, Savage’s minimax

optimization of the regret of decisions (Savage, 1951), and statistical estimates under uncer-

tainty that minimize worst-case risk (Wolfowitz, 1950). We follow a relaxation of this idea,
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which estimates complete probability distributions as solutions to a minimax game (Topsøe,

1979; Grünwald and Dawid, 2004). This formulation is most commonly known as a means for

deriving the principle of maximum entropy using the logarithmic loss. From this, many exponen-

tial family distributions (e.g., Gaussian distribution, exponential) can be derived (Wainwright

and Jordan, 2008).

Our approach differs substantially from adversarial machine learning formulations that are

made robust to adversarial shifts in the dataset (Dalvi et al., 2004; Liu and Ziebart, 2014) or

uncertainty in the loss function (Wang and Tang, 2012) where minimax formulation is used to

learn optimal classifier from a set of possible cost-matrices using existing cost-sensitive classifica-

tion methods. We assume training and testing data are independent and identically distributed

(IID) and the cost-sensitive loss function is fully known. We restrict our uncertainty to the

conditional label distribution P(y|x) and adversarially estimate it. In contrast with minimax

approaches to classification that assume parametric forms of the data (Lanckriet et al., 2003),

our approach allows the estimation of any conditional label distribution. Only training data

properties are incorporated in the form of constraints on the adversary’s conditional label dis-

tribution (Grünwald and Dawid, 2004). Our method is different from generative adversarial

networks (GAN) (Goodfellow et al., 2014) which also use the minimax game but the goal there

is to train a generative model as the max-player of the game that tries to mimic true training

samples to fool the discriminator network which is the min-player trying to distinguish true

samples from generated samples. For special cases of cost-sensitive cost matrices, our adver-

sarial approach ca be analyzed, leading to more comparable algorithms. For example, 0-1 loss
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is the special case where costs along diagonal of the cost-matrix is 0 and non-diagonals are 1.

In ordinal regression problem, the cost increases gradually as the distance from diagonal in-

creases. Our adversarial approach can be extended to such cost-matrices easily and can achieve

competitive performance (Fathony et al., 2016; Fathony et al., 2017).

2.5 Game Theory

Adversarial approach are motivated by game theory. In game theory, a game involves

multiple players or decision makers where each individual’s goal is to maximize a benefit or

minimize a loss that is dependent upon their interactions. Without the knowledge of other

players’ actions, the decisions are made under uncertain conditions (Ferguson, 2014). We only

utilize two-player zero-sum game theory. In a two-player zero-sum game, there are exactly

two players, one player (Player I) gains as the other player (Player II) loses the exact amount,

and the sum of the payoffs is zero, hence is the name “zero-sum”. Mathematically a two player

zero-sum game can be expressed by a strategic form.

Definition 2. The strategic form, or normal form, of a two-person zero-sum game is given

by a triplet (X, Y,A), where

1. X is the nonempty set of strategies of Player I

2. Y is the nonempty set of strategies of Player II

3. A : X× Y → R gives the payoff for each strategy pair.

Each action or choice by a player separately is called pure strategy and when a combination

of corresponding strategies with some randomness are selected by a player, it is called mixed
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strategy. The optimal choice of each player’s strategies is given the by the minimax theorem

of von Neumann (von Neumann and Morgenstern, 1947) when both X and Y are finite.

Theorem 1. The Minimax Theorem states that, for a finite two-person zero-sum game,

there is a game value that is the minimum value Player I can ensure to win by a mixed strategy

irrespective of Player II’s actions. The game value is also the upper bound that Player II can

ensure to lose via its mixed strategy.

Let, A be a payoff matrix where ai,j is the payoff from Player II to Player I when Player I

chooses row i and Player II chooses column j. p = (p1, p2, ..., pm) be a mixed strategy where

Player I chooses row i with probability pi, and similarly Player II has a mixed strategy q =

(q1, q2, ..., qn). The value of the game is V =
∑
i

∑
j piaijqj = pTAq. For p to be optimal, the

following must be true,

∑
i

piaij ≥ V, ∀j (2.8)

that is, whichever column Player II chooses, Player I can ensure at least the expected game

value V. Player II tries to minimize its loss. And therefore it will have V as the upper bound,

∑
j

aijqj ≤ V, ∀i. (2.9)
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When both players choose optimally, we have

V =
∑
j

Vqj
∑
j

qj = 1, probability distribution

≤
∑
j

(∑
i

piaij

)
qj Equation (Equation 2.8)

=
∑
i

∑
j

piaijqj =
∑
i

pi

∑
j

aijqj


≤
∑
i

piV Equation (Equation 2.9)

= V (2.10)

So, the optimal game value for both players are equal and unique.

We can follow Linear Programming to prove this theorem. If Player I moves first, its

objective is,

max
p

min
q

pTAq = max
p

min
q

m∑
i=1

n∑
j=1

piaijqj. (2.11)

Similarly Player II’s objective is,

min
q

max
p

pTAq = min
q

max
p

m∑
i=1

n∑
j=1

piaijqj. (2.12)

We have to show Equation 2.11 and Equation 2.12 are equal, then the value of the objective

will be the game value and this will prove the minimax theorem.
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Now let us observe that if q is known, then

max
p

m∑
i=1

n∑
j=1

piaijqj = max
1≤i≤m

n∑
j=1

aijqj. (2.13)

This is true because the right side is a pure strategy, the probabilistic mean on the left side

is less or equal to the right, conversely, right is less or equal to the left since a pure strategy

is a special case of mixed strategy and if left is not greater or equal, we can always find a

distribution that chooses the maximum row from the right. Similarly if p is known,

min
q

m∑
i=1

n∑
j=1

piaijqj = min
1≤j≤n

m∑
i=1

piaij. (2.14)

We can rewrite Equation 2.11 as,

max
p

min
q

pTAq = max
p

min
q

m∑
i=1

n∑
j=1

piaijqj = max
p

min
1≤j≤n

m∑
i=1

piaij, (2.15)

where
∑m
i=1 pi = 1 and pi ≥ 0, since p is a probability distribution. To make the objective

(right side of Equation 2.15) linear, we introduce a new variable v,

max
p,v

v

s.t. v ≤ min
1≤j≤n

m∑
i=1

piaij,

m∑
i=1

pi = 1, pi ≥ 0. (2.16)
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Which is equivalent to,

max
p,v

v

s.t. v ≤
m∑
i=1

piaij, ∀j ∈ {1, ..., n}

m∑
i=1

pi = 1, pi ≥ 0. (2.17)

Similarly, Player II’s objective can be written as minq max1≤i≤m
∑n
j=1 aijqj, and the corre-

sponding linear program,

min
q,w

w

s.t. w ≥
m∑
j=1

aijqj, ∀i ∈ {1, ...,m}

n∑
j=1

qi = 1, qi ≥ 0. (2.18)

It is easy to show that Equation 2.17 and Equation 2.18 are dual of each other, where minimize

and maximize switches, for each constraint in primal a variable is created in the dual, vari-

ables corresponding to equality constraint is unbounded (v and w here), inequality constraints

becomes non-negativity constraints and vice versa. Hence the above objectives are equal, and

therefore Equation 2.11 and Equation 2.12 are equal. This proves that the optimal game value

of the players are equal,

max
p

min
q

pTAq = min
q

max
p

pTAq.
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We also use these linear programming formulations for solving the objectives in our algorithm

later.

2.6 Lagrange Duality

We briefly discuss the Lagrangian method for convex optimization. For further details,

readers are referred to the book Convex Optimization (Boyd and Vandenberghe, 2004). A set

is called convex if for any line connecting any two points of the set completely lies within the

set, i.e. for x1, x2 ∈ C and 0 ≤ γ ≤ 1, γx1 + (1− γ)x2 ∈ C.

Definition 3. A function f : Rn → R is convex if the domain of f is a convex set C and if

for all x, y ∈ C, and γ with 0 ≤ γ ≤ 1, we have

f(γx+ (1− γ)y) ≤ γf(x) + (1− γ)f(y)

A function f is concave if −f is convex.

The Lagrangian of an optimization is the constraints-augmented objective. Let an opti-

mization be,

minimize f0(x)

subject to fi(x) ≤ 0, i = 1, ..., k

hi(x) = 0, i = 1, ..., l
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Then the Lagrangian will be,

L(x, η, θ) = f0(x) +

k∑
i=1

ηifi(x) +

l∑
i=1

θihi(x),

and the vectors η and θ are called Lagrange multiplier vectors. The function g(η, θ) =

infx L(x, η, θ) is called the Lagrange dual function. This is a concave function as it is

pointwise infimum of an affine function of (η, θ). This dual function provides the lower bounds

of the original optimization. The maximum value of the dual, achieved by the dual problem,

maximize g(η, θ)

subject to η ≥ 0,

gives the lower bound of the original optimization (minimize f0(x), called primal). The value

of the dual and primal values are equal if strong duality holds. Then the optimizations are

equivalent,

maximize
η,θ

minimize
x

L(x, η, θ) = minimize
x

maximize
η,θ

L(x, η, θ)

There are several ways to establish strong duality. By weaker Slater’s condition if f0, ..., fk

are convex, and the inequality constraints are strict if they are not affine, then we have an x in

the relative interior of the solution space, and strong duality holds. And, according to Sion’s

minimax theorem (Sion, 1958), if the domain of x is a closed and convex subset of Rn and
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the domain of the dual variables (η, θ) is a convex subset of Rm, the objective is (quasi-)convex

on x (i.e. f0) and concave on (η, θ), and they are (semi-)continuous, then strong duality holds

as well. We will see that our optimization satisfy all of the Sion’s conditions easily.

2.7 Sequence Tagging

In this thesis we explore an adversarial approach to cost-sensitive classification and sequence

tagging. For sequence tagging without cost-sensitivity, the exact loss can be measured as the

Hamming loss, which is the count of mismatched tags of the sequence. However, directly

minimizing Hamming loss is NP-hard (Höffgen and Simon, 1992). Conditional random fields

(CRFs) and structured support vector machines (SSVMs) are two prominent methods which

minimize the empirical risk of a surrogate loss function in sequence tagging:

argmin
θ

EP̃(x,y)P̂θ(ŷ|x)
[
loss

(
Y, P̂θ(·|x)

)]
+ λ||θ|| (2.19)

or argmin
θ

EP̃(x,y)
[
loss

(
Y, f̂θ(X)

)]
+ λ||θ||. (2.20)

In CRFs, the loss is a logarithmic loss, − log P̂(y|x), and an exponential random field model,

e.g., P̂(y|x) ∝ exp(θ ·Φ(x,y)) is also employed in Equation 2.19 (Lafferty et al., 2001a). For

SSVMs (Tsochantaridis et al., 2004), the structured hinge loss is a convex approximation to

the Hamming loss, ∆(y, ŷ) =
∑T
t=1 I(ŷt 6= ỹt),

[
max
y ′ 6=y

∆(y,y ′) + θ · (Φ(x,y ′) −Φ(x,y))

]
+

, (2.21)
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where [f(x)]+ , max(0, f(x)), and a linear discriminant function, f̂θ(x) = argmaxŷ∈Y θ·Φ(x, ŷ),

are employed in Equation 2.20. The loss function of each model is a convex upper bound on

the Hamming loss,
∑T
t=1 I(ŷt 6= ỹt).

In a cost-sensitive tagging task using CRF, following Bayes optimal prediction formula can

be used during prediction after the conditional probability distribution is learn via conventional

method,

argmin
ŷ1:T

EP̂(ŷ1:T |x1:T )

[
T∑
t=1

Cŷt,yt

]
. (2.22)

In structured SVM, cost-matrix can directly define the loss additively, ∆(y,yi) =
∑T
t=1Cyt,yi,t :

min
θ,ξ
‖θ‖2 + α

∑
i

ξi (2.23)

such that,

(θ · φ(x,yi)) − (θ · φ(x,y)) ≥ ∆(y,yi) − ξi

ξi ≥ 0, ∀i,∀y ∈ Y.

But, as mentioned previously, surrogate losses may be loose and hence may not always pro-

vide optimal parameters. Moreover, CRF usually has a higher computational cost. Therefore,

we apply our adversarial formulation in sequence tagging as well.
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2.8 Viterbi Algorithm

The Viterbi algorithm is a dynamic programming algorithm that finds the most probable

sequence under the assumption of Markov independence (Viterbi, 1967). The Markov indepen-

dence property states that the current state is independent of all other previous states if the im-

mediate previous state is known. Viterbi algorithm finds the most probable labels y1, y2, ..., yT

for observation x1, x2, ..., xT given emission probability distributions P(xt|yt) (i.e. probability

of observing xi in state yi) and transition probability distribution P(yt|yt−1) that gives the

probability of current label based on previous state’s label, for y ∈ Y. A brute-force method

would be to compute the probability for all possible sequences P(x1, x2, . . . , xT , y1, y2, . . . , yT )

and select the sequence having the maximum value. But there are |Y |T number of possible

sequences, which is extremely high. The Viterbi algorithm uses the following equations to

recursively compute maximum probability:

V1,k = P(x1|k) · πk (2.24)

Vt,k = max
y∈Y

(P(xt|k) · P(k|yt−1) · Vt−1,y) , ∀k ∈ Y (2.25)

Here Vt,k is the probability of sequence y1, y2, . . . , yt and πk is the probability of initial state.

The resulting complexity is |Y |× T which is much lower than |Y |T . While finding the maximum
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probability in Equation 2.25, the y for maximum value is saved in Ptr(t, k), then following

equation is used to retrieve the maximum probable sequence:

yT = argmax
k

VT,k, ∀k ∈ Y (2.26)

yt−1 = Ptr(t, k), t > 1

In Equation 2.25, if we use log-probabilities instead of probabilities, then the multiplicative

formula turns into an additive one. We can then replace the log-probability with any suitable

measure that represents similar properties of relations among variables. We use these versions

of the Viterbi algorithm in Section 3.2.2 and 3.2.4.



CHAPTER 3

THEORY AND ALGORITHMS

(Sections of this chapter were published in Asif, Kaiser, Wei Xing, Sima Behpour, and Brian

D. Ziebart. ”Adversarial Cost-Sensitive Classification.” In UAI, pp. 92-101. 2015. (Asif et al.,

2015), and in Jia Li, Kaiser Asif, Hong Wang, Brian D. Ziebart, and Tanya Y. Berger-Wolf.

”Adversarial Sequence Tagging.” In IJCAI, pp. 1690-1696. 2016. (Li* et al., 2016))

In this chapter we start with notation and formulation of the adversarial framework for

cost-sensitive predictions, then we describe the algorithm for solving it, discuss the solution

space with synthetic data on a two-dimensional space, and in the end extend the framework

for sequence tagging.

3.1 Adversarial Cost-sensitive Classification

The adversarial classifier is a probabilistic classifier that learns a probability distribution

that minimizes expected loss of the prediction with respect to the worst case approximation of

the evaluation distribution (since the true evaluation distribution is unknown).

3.1.1 Formulation

Let P̂(y|x) be the conditional label distribution that the predictor provides, and let the

actual evaluation distribution be P(y|x). We compactly represent each as a Y-sized vectors

31
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using p̂x and px, x ∈ X , where px = [P(y = 1|x) P(y = 2|x) . . .]T. The expected loss suffered

from this estimator on input x for a confusion cost matrix C is:

p̂T
xCpx = EP̂(ŷ|x)P(y|x)[CŶ,Y ].

Only samples from the true conditional label distribution P(y|x) are available. We denote

this by distribution P̃(y|x) (compactly represented as p̃x) and also input sample distribution

P̃(x). Minimizing the empirical risk under this distribution,

E[p̂θ,XCp̃X] =
1

n

n∑
i=1

∑
ŷ∈Y

P̂(ŷ|xi)Cŷ,yi ,

for some parametric form of the estimation distribution, e.g., P̂θ(y|x) ∝ eθ·φ(x,y), leads to a

non-convex and generally intractable optimization problem, assuming P 6= NP, as discussed in

Section 2.1.

To avoid these non-convex optimization concerns, we employ a robust minimax formulation

(Topsøe, 1979; Grünwald and Dawid, 2004) to construct our cost-sensitive classifier (Definition

4). This formulation views the estimation task as a two-player game between an estimator

seeking to minimize loss and an adversary seeking to maximize loss. The adversary is con-

strained to choose distributions that match a vector of moment statistics of the distribution,

EP(x)P(y|x)[φ(X, Y)]. We denote the set of conditional distributions P(y|x) satisfying these statis-

tics as Ξ.
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Definition 4. In the constrained cost-sensitive minimax game, the estimator player first

selects a predictive distribution, p̂x , P̂(ŷ|x) ∈ ∆, for each input x, from the conditional

probability simplex ∆, and then the adversarial player selects an evaluation distribution, p̌x ,

P̌(y̌|x) ∈ ∆, for each input x from the set Ξ of distributions consistent with known statistics:

min
{p̂x}∈∆

max
{p̌x}∈Ξ∩∆

EP(x)[p̂T
XCp̌X] (3.1)

where: Ξ : EP(x)P̌(y̌|x)[φ(X, Y̌)] = φ̃.

We denote the set of conditional probabilities for each input x as {p̂x} and {p̌x}. Here, φ̃ is a

vector of provided feature moments measured from sample training data, φ̃ = EP̃(x,y)[φ(X, Y)],

for example.

Conceptually, the feature statistics φ(x, y) defining the set Ξ should be chosen to restrict

the adversary as much as possible from maximizing the loss. However, defining the set to be

too restrictive leads to overfitting to the training data. Indeed, the complexity of the estimator

P̂(ŷ|x) implicitly grows with the dimensionality of the constraints in Ξ. Thoughtfully specifying

the feature function φ(·, ·) and employing regularization can avoid this issue (section 3.1.4).

3.1.2 Inference As Zero-sum Game Equilibrium

We establish efficient inference algorithms for our approach in this section. Theorem 2

transforms the joint adversary-constrained zero-sum games over many different inputs x into a

set of unconstrained zero-sum game that are independent for each input x and connected by a

parameterized cost matrix defining each player’s game outcomes.
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Theorem 2. Determining the value of the constrained cost-sensitive minimax game reduces to

a minimization over the expectation of many unconstrained minimax game:

min
{p̂x}∈∆

max
{p̌x}∈Ξ∩∆

EP(x)[p̂T
XCp̌X] (3.2)

= max
{p̌X}∈Ξ∩∆

EP(x)
[

min
p̂X∈∆

p̂T
XCp̌X

]
(3.3)

=min
θ

EP(x)
[

max
p̌x∈∆

min
p̂X∈∆

p̂T
XC ′X,θp̌X

]
, (3.4)

where θ parametrizes the new game characterized by matrix C ′x,θ : (C
′
x,θ)ŷ,y̌ = Cŷ,y̌+θ

T(φ(x, y̌)−

φ(x, ỹ)), and φ(·, ·) terms are from the definition of set Ξ.

Proof of Theorem 2.

min
{p̂x}∈∆

max
{p̌x}∈Ξ∩∆

EP(x)[p̂T
XCp̌X]

(a)
= max

{p̌x}∈Ξ∩∆
min

{p̂x}∈∆
EP(x)[p̂T

XCp̌X]

(b)
= max

{p̌x}∈Ξ∩∆
EP(x)

[
min
p̂X∈∆

p̂T
XCp̌X

]
(c)
= max

{p̌x}∈∆
min
θ

EP(x)
[

min
p̂X∈∆

p̂T
XCp̌X

]
+ θTEP(x)[ΦX (p̌X − p̃X)]

(d)
= min

θ
EP(x)

[
max
p̌X∈∆

min
p̂X∈∆

p̂T
XC ′X,θp̌X

]
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where Φ is the matrix defined by Φi,j = φi(x, yj) and C ′x is defined by elements:

(C ′x)ŷ,y̌ = Cŷ,y̌ + θ
T(φ(x, y̌) − φ(x, ỹ)). (3.5)

Step (a) follows from minimax duality in zero-sum games (von Neumann and Morgenstern,

1947), discussed in section 2.5. As an affine function of terms each with individual p̌x term,

each minimization can be performed independently in step (b). Step (c) expresses the primal

Lagrangian. For step (d), EP(x)[minp̂X∈∆ p̂T
XCp̌X + θTΦX(p̌X − p̃X)]—a non-negative linear

combination of minimums of affine functions—is a concave function of p̌x terms and an affine

(hence convex) function of θ. The domain of p̌x is closed and convex and domain of θ is convex,

strong duality holds (Sion, 1958), (section 2.6). Finally, as in step (b), the maximizations can

then be independently applied.

Figure 2 shows the value of the game for a single x from Equation 3.3 as a function of the

adversarial distribution p̌x for zero-one loss and a more general cost matrix. The adversary

is not free to independently maximize these functions for each x, but must instead choose a

structured prediction that resides within the constraint set Ξ.

After applying Theorem 2 and given model parameters, θ, (obtaining these parameters

is discussed in section 3.1.3) the unconstrained game, maxp̌x∈∆ minp̂x∈∆ p̂T
xC ′x,θp̌x, can be
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Figure 2: The portion of the adversary’s objective function Equation (Equation 3.3) for a single
example, minp̂x∈∆ p̂T

xCp̌x, in the adversary-constrained game for zero-one loss (left) and a more
general cost-sensitive loss with cost matrix [0 2 3; 2 0 1; 1 3 0] (right) in a three-class prediction
task.

solved independently for each x. In this augmented game, our original cost matrix from Eq.

Equation (Equation 1.1) is transformed into the augmented cost matrix:

C ′ =



0+ψ1 1+ψ2 2+ψ3 0+ψ4

3+ψ1 0+ψ2 1+ψ3 3+ψ4

4+ψ1 2+ψ2 0+ψ3 1+ψ4

1+ψ1 1+ψ2 2+ψ3 0+ψ4


, (3.6)

where Lagrangian potentials are compactly denoted as ψi = θ
T (φ(x, i) − φ(x, ỹ)) with ỹ rep-

resenting the example’s actual label. For parameter estimation, the second feature function

based on the actual label ỹ serves an important role. However, since it is constant with respect

to y̌ and ŷ, and therefore does not influence the solution strategies for the game, it can be
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ignored when making predictions on data with unknown labels (or assigned an arbitrary value

from Y without affecting predictions).

Figure 3 shows the adversary’s objective function in the unconstrained, cost-augmented

game. Conceptually, the adversary’s objective function from the constrained game (Figure 2)

is “placed” on top of a hyperplane shaped by the Lagrangian potential terms, ψi. The differ-

ence in these potential terms determines the adversary’s equilibrium strategy. For the binary

classification task, there are three possible equilibrium strategies for the adversary, two pure

strategies for the two classes and one strategy that is the mixture of the two. With three classes,

there are seven possibilities:w three pure strategies; three strategies that are mixtures of two

classes; and one strategy that is a mixture of all three classes.

0

ψ1

ψ2ŷ = 2

ψ2

ψ1
1 10

ŷ = 2
ŷ = 1

ŷ = 1

P (y̌ = 2|x) P (y̌ = 2|x)

Figure 3: The adversary’s objective in the unconstrained game for a binary classification task
with a mixed (uncertain) equilibrium solution (left) and a pure (certain) equilibrium solution
(right). The third adversary strategy, P(y̌ = 2|x) = 0, is realized when ψ1 >> ψ2.
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Unlike the logarithmic loss under this minimax formulation, which yields members of the

exponential family (Wainwright and Jordan, 2008), the cost-sensitive loss function does not

generally provide a closed-form parametric solution. Instead, the inner minimax game (inside

the expectation of Equation 3.4) for each input x can be solved as a linear program (von

Neumann and Morgenstern, 1947), discussed in Section 2.5:

max
v,P̌(y̌|x)

v (3.7)

subject to: v ≤
∑
y̌∈Y

P̌(y̌|x)(C ′x,θ)ŷ,y̌ ∀ŷ ∈ Y

∑
y̌∈Y

P̌(y̌|x) = 1 and P̌(y̌|x) ≥ 0, ∀y̌ ∈ Y.

The resulting distribution, P̌(y̌|x), gives the adversary’s strategy p̌∗x. The other strategy of the

Nash equilibrium strategy pair, (p̌∗x, p̂
∗
x) can be obtained by solving the same linear program

with the cost matrix transposed and negated.

3.1.3 Learning via Convex Optimization

Our key remaining task for employing the proposed approach is to obtain model param-

eters (Lagrangian multipliers) θ that enforce the adversarial distribution to reside within the

constraint set Ξ.
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Theorem 3. The subdifferential of the outer minimization problem (Equation 3.4) includes the

expected feature difference as a subgradient:

EP(x)P̌∗
θ̂
(y̌|x)

[
φ(X, Y̌)

]
− EP(x)P(y|x) [φ(X, Y)] (3.8)

∈ ∂θEP(x)
[

min
p̂x∈∆

max
p̌x∈∆

p̂T
XC ′X,θp̌X

] ∣∣∣∣∣
θ=θ̂

where P̌∗(y̌|x) is the solution to Equation 3.7.

Proof of Theorem 3. Taking the subdifferential, we have:

∂θkEP(x)
[

min
p̂x∈∆

max
p̌x∈∆

p̂T
XC ′X,θp̌X

] ∣∣∣∣
θ=θ̂

(a)
= EP(x)

[
∂θk max

p̌x∈∆
min
p̂x∈∆

p̂T
XC ′X,θp̌X

] ∣∣∣∣
θ=θ̂

(b)
3 EP(x)

[
∂θk (p̂

∗
X)T C ′X,θp̌

∗
X

] ∣∣∣
θ=θ̂

(c)
= EP(x)

[
(p̂∗X)T

(
∂θkC

′
X,θ

)
p̌∗X

] ∣∣∣
θ=θ̂

(d)
3 EP(x)P̌∗

θ̂
(y̌|x)

[
φk(X, Y̌)

]
− EP(x)P(y|x) [φk(X, Y)] .

Step (a) follows from the rule for non-negative combinations of subdifferentials. Step (b) follows

from the subdifferential of the function evaluated at the maximizing/minimizing values being a

subset of the subdifferential of the maximum/minimum functions. Step (c), like step (a), follows

from the rule for non-negative combinations of subdifferentials by noting that (p̂∗X)T C ′X,θp̌
∗
X =

p̂∗X (p̌∗X)T •C ′X,θ, where • represents the “matrix dot product” (i.e., A •B ,
∑
i,jAi,jBi,j). In
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step (d), the subdifferential terms for C ′x include φk(x, y̌) −φk(x, ỹ) ∈ (∂θkC
′
x)ŷ,y̌ and do not

depend on p̂x.

Leveraging the convexity of the formulation’s objective function (discussed in the Proof

of Theorem 2), and using the common substitution of the sample training data distribution,

P̃(x), in place of the distribution P(x), we employ standard subgradient-based optimization

methods for convex optimization problems to obtain parameters for our cost-sensitive classifier

(Algorithm 1).

Algorithm 1 Parameter estimation for the robust cost-sensitive classifier

Require: Cost matrix C, training dataset D with pairs (x̃i, ỹi) ∈ D, feature function φ :
X × Y → Rk, time-varying learning rate {γt}

Ensure: Model parameter estimate θ
t← 1

while θ not converged do
for all (x̃i, ỹi) ∈ D do

Construct cost matrix C ′x̃i,θ using Equation 3.5

Solve for P̌(y̌|x̃i) using the LP of Equation 3.7
∇θ = EP̌(y̌|x̃i)[φ(x̃i, Y̌)] − φ(x̃i, ỹi)
θ = θ− γt∇θ
t← t+ 1

end for
end while

Though we describe a stochastic subgradient in our algorithm, any convex optimization

method for non-smooth objective functions can be employed.
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3.1.4 Performance Guarantees & Illustrative Examples

We establish performance guarantees and illustrate the behavior of our approach in this

section. We focus specifically on the similarities to and differences from support vector machines

(Cortes and Vapnik, 1995) and their structured extensions (Tsochantaridis et al., 2004). Given

ideal data (linearly separable), Theorem 4 establishes an equivalence to hard-margin SVMs.

Theorem 4. Given linearly separable training data, i.e.,

∃θ : ∀i, y ′ 6= yi, θ · φ(xi, yi) > θ · φ(xi, y ′), (3.9)

and zero cost only for correct predictions Ci,i = 0, the adversarial cost-sensitive learner with

sufficiently small L2 regularization is equivalent to a hard-margin cost-sensitive support vector

machine.

Proof. Equation 3.9 implies ∃θ ′ : ∀i, y ′ 6= yi, θ
′ · φ(xi, yi) > θ ′ · φ(xi, y ′) + Cy ′,yi (the hard-

margin cost-sensitive SVM constraint set with ε = 0 in Equation 2.7) by multiplicatively scaling

θ. The Nash equilibrium is P̌(y̌i|xi) = 1 and P̂(ŷi|xi) = 1 with a cost-sensitive loss of zero if and

only if this inequality is satisfied. Given this, the dual optimization in Equation 3.4 realizes

its minima (zero loss) only when these constraints are satisfied. The L2 regularization term is

a monotonic transformation of the objective of the hard-margin SVM: θ · θ. Thus, having the

same constraints and objective functions with corresponding maxima, an equivalent solution is

produced.
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As a result of this equivalence to hard-margin SVM, adversarial classification inherits the

convergence properties of support vectors machines in the realizable case of Equation 3.9.

The game strategies of each player are illustrated in Figure 4 for binary prediction using

the zero-one loss in the separable setting. Between perfectly classified datapoints, our approach

produces a region of uncertainty that is maximally uncertain for the adversary’s Nash equilib-

rium strategy (P̌(Y̌ = ‘o’|x) = 0.5), while the predictor’s Nash equilibrium strategy smoothly

transitions from one class to the other in this region.

Figure 4: Adversary (left) and predictor (right) distributions for separable data under zero-one
loss

Given non-separable data, the adversarial approach suggests choosing a set Ξ of constraints

based on training samples P̃(x, y) that will also contain the true label distribution, P(y|x).

When this is accomplished, Theorem 5 provides performance guarantees for generalization.
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Theorem 5. If P(y|x) ∈ Ξ, confusion costs from the adversarial game upper bound the gener-

alization error confusion costs:

EP(x)P(y|x)P̂∗(ŷ|x)[CŶ,Y ] ≤ EP(x)P̌∗(y̌|x)P̂∗(ŷ|x)[CŶ,Y̌ ].

Proof. By definition, the adversarial conditional label distribution, P̌∗(y̌|x), is a Nash equilib-

rium and it provides the worst possible loss for the estimator of all conditional label distributions

from set Ξ. So long as the true label distribution used for evaluation, P(y|x), is similar to train-

ing data properties (i.e, a member of Ξ), then costs that are no worse than P̌∗(y̌|x) can result

without P(y|x) being a better choice from Ξ than P(y|x) for maximizing the predictor’s loss, a

contradiction.

Slack can be added to the constraint set Ξ or regularization to the dual optimization prob-

lem of Equation 3.3 to address finite sample approximation error when using sample data,

EP̃(x,y)[φ(X, Y)], as an estimate of the distribution’s statistics, EP(x,y)[φ(X, Y)].

Figure 5 shows the two equilibria strategies for data that is not linearly separable in the

zero-one loss binary classification setting. The uncertainty region of our approach depends on

summary statistics rather than the specific datapoint labels that define margin boundaries of

SVMs. Increased non-separability of the data and greater regularization amounts expand this

uncertainty region.

The equilibria under cost-sensitive losses, shown in Figure 6 shifts the region of uncertainty

to better minimize the expected cost compared to Figure 5, which is based on the same data
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Figure 5: Adversary (left) and predictor (right) distributions for nonseparable data under zero-
one loss

sample. Additionally, the adversary’s predictions shift (P̌(Y = ‘o’|x) = .25) within the region of

uncertainty.

Figure 6: Adversary (left) and predictor (right) distributions for nonseparable data under [0 1;
3 0] cost matrix.
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From the perspective of Theorem 4 and Theorem 5, adversarial cost-sensitive classification

provides an alternative to hinge-loss “softening” of the hard-margin SVM. By posing cost-

sensitive prediction as an adversarial game (Definition 4), our approach approximates aspects of

the training data while being able to employ non-convex loss functions without the intractability

encountered by empirical risk minimization. Prediction under this approach reduces to the well-

studied problem of solving a zero-sum game, which is easily addressed using linear programming

via Equation 3.7. This is only a little more complicated than predictions for SVM based on the

label that maximizes a linear potential function. Like SVMs, estimating model parameters can

be posed as a convex optimization problem and solved using subgradient optimization methods

(Algorithm 1) under our approach.

3.1.5 Fisher Consistency

The premise of Fisher Consistency assumes that we have rich feature representation and

true evaluation distribution is available (Definition 1). In that case adversary’s distribution

equals the true distribution as the subgradient is zero at the optima, the constraint becomes

zero, and the predictor finds a distribution that minimizes the cost

min
p̂x∈∆

p̂T
XCpX, (3.10)

where pX is the true evaluation distribution. By definition of Fisher consistency, Equation 3.10

minimizes the loss on the true evaluation (population) distribution and hence adversarial clas-

sification method is Fisher consistent.
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3.1.6 Potential Based Prediction

As shown in Figure 3, the maximum potential value aligns with the deterministic class.

Further (Fathony et al., 2018) show that potential based prediction is consistent as well when

correct prediction has strictly smaller cost. Therefore we can use potential-based prediction

like ERM-based models, e.g. SVM, when a probabilistic prediction is not required:

y∗ = argmax
y

θφ(x, y)

On the other hand, in section 3.2.4, although the parameter optimization is faster, but we sac-

rifice the ability to retrieve the predictor’s distribution from the formulation. We use potential

based prediction is such case.

Figure 7 shows that potential based classification, i.e. assigning class label to maximum

potential matches the probability based prediction. From the bottom plots we can see that

potentials for class 2 on the right has lower values than corresponding potentials for class 1

on the left image along a line that is below the diagonal of the plot area, which matches the

decision boundary of the predictor plot (top right in the figure).

3.2 Adversarial Sequence Tagging

In this section, we extend the adversarial prediction framework to sequence tagging tasks.

In a sequence tagging task, there is a sequence of nodes or variables and the task is to predict

each node’s target class based on its feature and also adjacent nodes’ classes. The loss is the

sum of misclassification cost of all variables of the sequence. To address sequence tagging,
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Figure 7: Feature potentials corresponding to Figure 6. Top row repeats Figure 6. In the
bottom, left displays the potential for class 1, right for class 2.

first, we formulate the zero-sum game using the additive misclassification loss, where joint

probabilities for the full sequence are learned using double oracle method. Then utilizing the

additive decomposability, we modify the objectives to improve the computation efficiency using

a method called single oracle (Li* et al., 2016). Finally, we note that Markov independence
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property allows us to consider only pairwise probabilities of adjacent nodes instead of the joint

probabilities of the whole sequence, and this enables a more efficient optimization.

3.2.1 Formulation

In order to predict a sequence of predictions, the predictor chooses a conditional probability

distribution, P̂(ŷ|x), against the adversary’s distribution P̌(y̌|x). The adversary is constrained

to match the feature statisticsΦ(x,y). The optimization problem is similar to the single-variate

problem where the goal of estimator is to minimize the expected loss while adversary’s goal is

to maximize the loss:

min
P̂(ŷ|x)

max
P̌(y̌|x)

EP̃(x)P̌(y̌|x)P̂(ŷ|x)

[
T∑
t=1

CŶt,Y̌t

]
(3.11)

such that: EP̃(x)P̌(y̌|x)[Φ(X, Y̌)] = EP̃(x,y)[Φ(X,Y)],

where the feature functions, Φ(x,y), can be decomposed over pairs of the Y1, . . . , YT variables:

e.g., Φ(x,y) =
∑T−1
t=1 φ(x, yt, yt+1).

Using Lagrangian and zero-sum game duality Equation 3.11 reduces to a convex optimiza-

tion problem (Theorem 2):

min
θ

EP̃(x̃,ỹ)

[
max
p̌X

min
p̂X

p̂T
XC ′X,θp̌X

]
, (3.12)

where p̂X = {P̂(ŷ|x)} and p̌X = {P̌(y̌|x)} are vector representations of the conditional probabil-

ities, and C ′X,θ is the potential-augmented cost-matrix, payoff matrix for the zero-sum game,
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where each cell represents the total loss of the sequence mismatch between the adversary

and the predictor plus the Lagrangian potential term that enforces the optimization’s con-

straints using the Lagrangian parameter θ: (C ′x,y,θ)ŷ,y̌ = loss(ŷ, y̌) + θ · (Φ(x, y̌) −Φ(x,y)) =∑T
t=1Cŷt,y̌t + θ · (Φ(x, y̌) −Φ(x,y)) .

Considering 0-1 loss for each node is a special case of cost-sensitive sequence tagging. This

is equivalent to the number of misclassifications for a sequence, and is called the Hamming loss.

For example if predicted and true sequences are 001 and 101, then the Hamming loss is 1. We

consider this cost-insensitive loss in (Li* et al., 2016). This model can easily be extended to

a cost-sensitive model. Table II shows a 3-length binary-valued (target classes are either 0 or

1) sequence game’s payoff matrix which has the Hamming loss and a Lagrangian potential for

each cell that corresponds to the predictor and adversary’s choices.

As with the classification problem, these zero-sum games can be solved using linear pro-

gramming to find each player’s mixed Nash equilibrium (von Neumann and Morgenstern, 1947),

where a pure strategy is an assignment of labels to the full sequence. The mixed Nash equilib-

rium strategy for the adversarial player can be obtained from:

max
p̌≥0,v

v (3.13)

such that: v ≤ C ′ŷ,∗p̌ ∀ŷ ∈ Y

1Tp̌ = 1.
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TABLE II: The payoff matrix C ′x,θ for a game over the length three binary-valued chain of vari-
ables between player Y̌ choosing a distribution over columns and Ŷ choosing a distribution over
rows. Lagrangian potentials are compactly represented as: ψy̌1y̌2y̌3 , θ · (Φ(y̌,x) −Φ(y,x)).

000 001 010 011 100 101 110 111

000 0+ψ000 1+ψ001 1+ψ010 2+ψ011 1+ψ100 2+ψ101 2+ψ110 3+ψ111

001 1+ψ000 0+ψ001 2+ψ010 1+ψ011 2+ψ100 1+ψ101 3+ψ110 2+ψ111

010 1+ψ000 2+ψ001 0+ψ010 1+ψ011 2+ψ100 3+ψ101 1+ψ110 2+ψ111

011 2+ψ000 1+ψ001 1+ψ010 0+ψ011 3+ψ100 2+ψ101 2+ψ110 1+ψ111

100 1+ψ000 2+ψ001 2+ψ010 3+ψ011 0+ψ100 1+ψ101 1+ψ110 2+ψ111

101 2+ψ000 1+ψ001 3+ψ010 2+ψ011 1+ψ100 0+ψ101 2+ψ110 1+ψ111

110 2+ψ000 3+ψ001 1+ψ010 2+ψ011 1+ψ100 2+ψ101 0+ψ110 1+ψ111

111 3+ψ000 2+ψ001 2+ψ010 1+ψ011 2+ψ100 1+ψ101 1+ψ110 0+ψ111

Similarly, the predictor’s optimal mixed strategy is:

min
p̂≥0,v

v (3.14)

such that: v ≥ p̂TC ′∗,y̌ ∀y̌ ∈ Y

1Tp̂ = 1.

However, solving these matrix games directly using the method of adversarial classification

(Asif et al., 2015) becomes intractable as for each player we now have |Y |T choices in the game

matrix C ′x,θ, since there are |Y | possible assignments of labels for each of the T variables. The

size of the payoff matrix becomes |Y |2T . To address this intractability several approaches are

addressed below.
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3.2.2 Double Oracle Method for Efficient Prediction

To reduce the computational cost of solving the entire adversarial game, we use the double

oracle algorithm (McMahan et al., 2003). It constructs the game matrix iteratively until finding

the correct equilibrium. First, a subset of pure strategies are chosen, Ŝ and Š for the predictor

and adversary player respectively, using these strategy sets, which are the label assignments

of the sequence, the payoff matrix similar to Table II is constructed, then Equation 3.13 or

Equation 3.14 are used to get the probability distribution of the corresponding mixed strategies.

Using the mixed strategies of the equilibrium, P̂(ŷ|x) or P̌(y̌|x), it then finds the best response

pure strategy for the other player y̌BR or ŷBR respectively and added to the associated strategy

sets Š or Ŝ. The algorithm terminates when neither of the players can improve by adding

anymore best responses, i.e. adding a best response predictor player cannot reduce the game

value or adversary player cannot increase the game value by adding its best response. The best

response pure strategy y̌BR is computed using:

max
y̌1:T

EP̂(ŷ1:T |x)

[
T∑
t=1

I(Ŷt 6= y̌t)
]
+

T−1∑
t=1

θ · φ(x, y̌t:t+1)

=max
y̌1

(
EP̂(ŷ1|x)

[
I(Ŷ1 6= y̌1)

]
+ max

y̌2

(
θ · φ(x, y̌1:2) (3.15)

+ EP̂(ŷ2|x)
[
I(Ŷ2 6= y̌2)

]
+ max

y̌3

(
θ · φ(x, y̌2:3) + . . .

+ max
y̌T

θ · φ(x, y̌T−1:T ) + EP̂(ŷT |x)
[
I(ŶT 6= y̌T )

])))
,

which follows the Viterbi algorithm (Viterbi, 1967) that iteratively computes maximum pos-

sible loss using previous subsequence and link between current node and the last node of
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the subsequence. To compute the expected cost via Viterbi, marginal probabilities for the

nodes are required, which are computed by P̂(Ŷt = y|x) =
∑

ŷs
P̂(ŷs|x), ∀ŷs ∈ Ŝ where

ŷs,t = y, y ∈ [0, 1]. Best response ŷBR is computed similarly using adversary’s P̌(y̌|x) dis-

tribution but without the feature potential terms and finding the minimum expected loss:

argminŷ EP̌(y̌|x)
[∑T

t=1 I(ŷt 6= Y̌t)
]
.

Note that for cost-sensitive sequence tagging this formulation can easily adapted by replacing

the 0-1 loss I(Ŷt 6= y̌t) by the misclassification cost of the label CŶt,Y̌t for each node.

3.2.3 Single Oracle Method for Efficient Prediction

Unlike adversarial prediction methods for structured losses (Wang et al., 2015), the sequence

tagging loss can be additively decomposed into payoff matrix terms Ct for t ∈ {1, ..., T } as can

be observed in Equation 3.15. This makes the estimator’s predictions independent of each

other and all the “pure strategies” (assumed by all the possible labels for each node) can be

considered at once efficiently using the following pair of linear programs:

(1) min
p̂1,p̂2,...,p̂T ,v

v such that: p̂t ≥ 0 and 1Tp̂t = 1, ∀t; (3.16)

and v ≥ θTφ(x, y̌) +
T∑
t=1

p̂T
t [Ct]∗,y̌ y̌ ∈ Š;

(2) max
p̌≥0,v1,v2,...,vT

θTΦx,yp̌ +

T∑
t=1

vt such that: 1Tp̌ = 1 (3.17)

and vt ≤ [Ct]ŷ,∗ p̌ ∀t, ŷ ∈ Y ;
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Here p̂t are the predictor’s distributions for each individual node, and p̌ is the adversary’s

joint probability distribution for the full sequence assignment. As the entire set of predictor

pure strategies is considered via ŷt terms, the oracle now only needs to iteratively expand the

adversary’s set of strategy and becomes single oracle (Algorithm 2).

Algorithm 2 Single Oracle Game Solver

Require: Lagrangian potential, ψ; initial action set Š
Ensure: [P̂(ŷ|x), P̌(y̌|x)]

y̌BR ← {}

repeat
Ct ← buildPayoffMatrices(Š, ψ)
[P̂(ŷ|x), vNash1 ] ← solveZeroSumGameŶ(C)
[y̌BR, v̌BR] ← findBestResponseStrategy(P̂(ŷ|x), ψ)
Š← Š ∪ y̌BR

until (vNash1 = v̌BR)
return [P̂(ŷ|x), P̌(y̌|x)]

The size of the payoff matrix, C ′ from Equation 3.13, in the double oracle method is O(|Ŝ||Š|)

as we depict in Table II. In the single oracle method linear equations of Equation 3.16 and

Equation 3.17 corresponds to a matrix of size O(|Š|T |Y |). The complexity of efficient linear

programs are about O(k3.5) where k is the number of variables. Therefore, single oracle is

efficient when the size of predictor’s pure strategies in the double oracle is sufficiently large,

then the added complexity of the linear program of the single oracle is compensated by the size

reduction of the overall payoff matrix.



54

3.2.4 Solving Game in Terms of Pair-wise Marginal Probabilities

Finding the equilibrium in single oracle is still an iterative process with a search space for

the adversary’s mixed strategy of |Y |T . Since the objective can be additively decomposed, as

when finding the best response in the oracle methods as well as in the adversary objective in

single oracle method, we can formulate the objective that further decouples the adversary’s

distribution from the full structure in Equation 3.17 to each node separately. For each edge

connecting two adjacent nodes, we have a pairwise marginal probability P̌(y̌t, y̌t+1|xt,xt+1).

The game value at each node t depends only on the pairwise marginals corresponding to the

t-th node, which are P̌(y̌t, y̌t+1|xt,xt+1) or P̌(y̌t−1, y̌t|xt−1,xt). The maximizer linear program

then can be written in terms of, one of the two probabilities, P̌(y̌t, y̌t+1|xt,xt+1) with an

additional constraint ensuring that marginal probabilities from the pairwise distributions are

equal:
∑
y̌t+1

P̌(y̌t, y̌t+1|xt,xt+1) =
∑
y̌t−1

P̌(y̌t−1, y̌t|xt−1,xt).

max
p̌12,p̌23,...,p̌T−1,T ,

v1,v2,...,vT

T∑
t=1

vt (3.18)

such that: vt ≤ Cŷt,∗p̌t−1,t ∀ŷt ∈ Y ∀t ∈ {2, ..., T }

v1 ≤ Cŷ1,∗p̌1,2 ∀ŷ1 ∈ Y∑
y̌t−1

p̌t−1,t =
∑
y̌t+1

p̌t,t+1 ∀t ∈ {2, ..., T − 1}

1Tp̌t−1,t = 1. ∀t ∈ {2, ..., T }
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The number of variables is O(|Y |2T) since there are |Y |2 pairwise-marginals for each node.

This is much less than the worst-case size in single oracle’s |Š| = |Y |T and we do not require

Algorithm 2 to iteratively search for the equilibrium. For a dataset with four classes and about

sequences of length 31, Figure 8 shows the convergence speed of pairwise-marginal method

compared to the single oracle method.
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Figure 8: Comparison of convergence speed of Single Oracle and Pairwise-marginal method
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We have used Gurobi (Gurobi Optimization, 2015) at first and later Cvxopt (Andersen

et al., 2019) only to implement the single oracle in Python. For comparison, we show the

convergence speed of pairwise-marginal implemented in Cvxopt as well, which shows that for

the selected dataset, pairwise-marginal method is at least twice as fast. Also, noticeable is the

time spent by the single oracle for iterative search of the equilibria by horizontal plateaus in

the corresponding step-like plot.

Unfortunately, using pairwise choices for the adversary does not allow one to formulate pre-

dictor’s linear program to obtain its mixed strategies. But during learning only the adversary’s

distributions (Equation 3.19) are needed. During prediction, however, if randomized assign-

ment is not required then potential based assignment can be used, otherwise single oracle for a

probability estimates is needed.

3.2.5 Learning via Convex Optimization

As shown in Theorem 3 in Section 3.1.3, the difference of the feature expectation under the

adversary’s distribution and the empirical feature expectation provides the gradient to optimize

the Lagrangian parameters via convex optimization. The feature expectation of the sequence

samples are computed using the following equation:

EP̌(y̌|x)

[
Φ(x, Y̌)

]
= EP̌(y̌|x)

[
T−1∑
t=1

φ(x, y̌t, y̌t+1)

]
(3.19)

=

T−1∑
t=1

∑
y,y ′

P̌(Y̌t = y
′, Y̌t+1 = y|x, θ)φ(x, y̌t, y̌t+1).
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The empirical feature expectation is computed as c̃ = θΦ(x, ỹ) = θ
∑T−1
t=1 φ(x, ỹt, ỹt+1).

Equation 3.19 only requires the adversary’s distribution and therefore any of the above three

methods can be used during learning. Algorithm 1 is then used to obtain the model parameters

using stochastic gradient descent.

3.2.6 Consistency

Similar to adversarial cost-sensitive classification, adversarial sequence tagging (AST) also

provides consistency guarantee.

Theorem 6. Given that the sequence’s probability distribution factors according to the chain

independence assumptions: P(y|x) =
∏T
t=1 P(yt|yt−1,x1:T ), and an arbitrarily rich feature

representation, ψ(yt, yt+1,x1:T ), the AST method provides the loss-optimal sequence tagging,

argminŷ EP(Y|x) [loss(ŷ,Y)].

Proof. The Lagrangian of Equation 3.12 gives, equivalently:

min
ψ(·,·)

max
P̌(y̌|x)

min
P̂(ŷ|x)

EP(x,y)
[
EP̂(ŷ|x)P̌(y̌|x)

[
loss(Ŷ, Y̌)

+ψ(X, Y̌)−ψ(X,Y)
∣∣∣X]] (3.20)
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(a)
= max
P̌(y̌|x)

min
ψ(·,·)

(
EP(x,y)P̌(y̌|x)

[
ψ(X, Y̌)−ψ(X,Y)

]
(3.21)

+ min
P̂(ŷ|x)

EP(x)P̌(y̌|x)P̂(ŷ|x)
[
loss(Ŷ, Y̌)

])
(b)
= min
P̂(ŷ|x)

EP(x,y)P̂(ŷ|x)
[
loss(Ŷ,Y)

]
(c)
= EP(x)

[
min

ŷ
EP(y|x)

[
loss(ŷ,Y)

∣∣∣X]],
the transformation steps are:

(a) Lagrangian duality allows to swap min and max. The expectation terms are rearranged,

since P̂(ŷ|x) terms are not in the potential terms, it can be moved to the end.

(b) If P̌(y|x) 6= P(y|x), minψ can make the value of Equation 3.21 unboundedly negative.

Therefore adversary distribution must equal to the true distribution and thus the potential

difference becomes zero.

(c) From probabilistic to non-probabilistic decision.

This is, by definition, the set of risk-minimizing predictions.

Thus, given any true distribution of sequence data, P(y,x), a consistent predictor mini-

mizing the sequence loss will be obtained when the feature representation is rich enough to

sufficiently capture the sequence relationships.



CHAPTER 4

APPLICATIONS

(Results in section 4.1 were published in Asif, Kaiser, Wei Xing, Sima Behpour, and Brian

D. Ziebart. ”Adversarial Cost-Sensitive Classification.” In UAI, pp. 92-101. 2015. (Asif et al.,

2015), and FAQ result from section 4.2 in Jia Li, Kaiser Asif, Hong Wang, Brian D. Ziebart,

and Tanya Y. Berger-Wolf. ”Adversarial Sequence Tagging.” In IJCAI, pp. 1690-1696. 2016.

(Li* et al., 2016))

4.1 Cost-sensitive Classification

Our adversarial approach provides the advantage of operating efficiently on non-convex cost-

sensitive loss functions, but only through approximating the training data label information

rather than minimizing loss on the actual labeled training data. We experimentally investigate

the trade-off our approach provides in this section.

4.1.1 Datasets

We employ publicly available datasets for multiclass classification to evaluate our approach.

The number of classes and the number of examples (size) of each dataset are listed in Table III.

For each dataset, we rescale the attributes to [0,1] and enumerate the class labels.

4.1.2 Methodology

Costs for the classification task are not predefined, so random cost matrices are used to

compare performance of the algorithms. We conduct 10 cost-sensitive classification tasks for

59
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TABLE III: Evaluation datasets and dataset characteristics.

Name Classes Attributes Training Testing

Iris 3 4 120 30
Optical Digits 10 64 3823 1797
Satellite Image 6 36 4435 2000
Shuttle 7 9 43500 14500
Vehicle 4 18 658 188
Wine 3 4 142 36
Breast Tissue 6 9 85 21
Ecoli 8 7 269 67
Glass 6 9 171 43
Image Segment 7 19 210 2100
Libras 15 90 288 72
Pen Digits 10 16 7494 3498
Vertebral 3 6 248 62

each dataset to get an average performance. We generate confusion cost matrices, C, for each

task by:

1. Assigning all correct classifications a cost of zero (Ci,i = 0, ∀i); and

2. Sampling the remaining elements of the cost matrix from the uniform distribution (Ci,j ∼

U[0, 1], ∀i 6= j).

For each classification task, we split the data into training and testing sets as described in

Table III. We measure the expected cost of each method averaged over each of the 10 tasks.

4.1.3 Comparison Methods

Our primary points of comparison for investigating this method’s central hypothesis—

that adversarial data approximation produces better cost-sensitive classifiers than convex loss
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approximation—are support vector methods. However, we also compare with recently reported

state-of-the-art cost-sensitive boosting methods. We implement and compare our proposed ap-

proach against the following specific methods for cost-sensitive learning. The methodological

details for each approach are:

• Our approach: We train our method via Algorithm 1 using a quadratic expansion of the

original attributes and a “one-hot” encoding of the class label, φ(x, y) = [vector(xxT)I(y =

1); vector(xxT)I(y = 2); . . .]. To produce deterministic predictions, we “round” the esti-

mator’s Nash equilibrium strategy, P̂∗(ŷ|x) to the most probable label. This avoids the

ambiguity of other methods for making deterministic predictions from mixed strategies

(e.g., two or more actions may be the best response to the adversary’s Nash equilibrium

strategy).

• Guess Averse Cost-Sensitive Boosting: We employ the guess averse cost-sensitive

boosting method and implementation (Beijbom et al., 2014) with GLL loss described in

section 2.1. (We also investigated GEL, but found it to be consistently and significantly

outperformed by GLL.) We use a linear regression model as the weak learner.

• Cost-Sensitive One-Versus-One (CSOVO): We employ the LIBSVM (Chang and

Lin, 2011) implementation of the CSOVO SVM approach described in section 2.2. Our

experiments use quadratic kernels (Chang and Lin, 2011), K(u, v) = (γ1u
′v+γ0)

2 to match

the expressiveness of our approach. We run five-fold cross validation on the training set

of every dataset to choose quadratic kernel parameters (shown in Table Table IV), and

then we use these best parameters to train from the training set and construct the final
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classifier model. We use the default tolerance of termination criterion, 0.001, for most

of the datasets except image segmentation and shuttle, which required a less sensitive

criterion to converge. Finally, we evaluate the CSOVO performance by measuring the

prediction cost on the test data.

• Cost-Sensitive One-Versus-All (CSOVA): We similarly employ the LIBSVM im-

plementation of the CSOVA SVM approach described in section 2.1. Our methodology

matches that of CSOVO for cross-validation (parameters shown in Table Table IV), train-

ing, and testing.

• Structured SVM (SVM-Struct): We employ the Large Scale Structured SVM (SVM

LS) software package (Branson et al., 2013) to obtain a multiclass cost-sensitive predictor

based on the additive cost-sensitive hinge loss of Equation 2.7. SVM LS applies online

subgradient methods (Ratliff et al., 2007) and sequential order optimization (Shalev-

Shwartz et al., 2011) to improve efficiency. We evaluate the Online Dual Ascent (ODA)

algorithm (Branson et al., 2013) as well as the Stochastic Gradient Descent (SGD) method

for the purpose of our cost-sensitive experiments. We employ a trade-off parameter α of

100.

4.1.4 Results

Figure 9 shows the average loss incurred by each approach on the 13 different datasets. Our

method generally performs well on all of the datasets except wine and libras datasets and has a

similar performance with boosting. SVM methods except SVM-CSOVO are strong on some of
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TABLE IV: CSOVO and CSOVA kernel parameters chosen using five-fold cross vali-
dation on the training set from γ1 ∈ {0.125, 1, 2, 5, 10, 1/number of features} and γ0 ∈
{1, 2, 5, 10, 50, 100, 200, 300, ..., 900}.

CSOVO CSOVA
Name γ1 γ0 γ1 γ0

Iris 5 2 1 700
Optical Digits 1 2 5 2
Satellite Image 10 50 1 1
Shuttle 0.125 900 0.125 900
Vehicle 10 5 10 10
Wine 1 500 1 5
Breast Tissue 0.125 900 10 400
Ecoli 5 500 0.125 800
Glass 5 400 10 700
Image Segment 0.125 300 0.125 600
Libras 1 5 1 2
Pen Digits 0.125 700 5 5
Vertebral 0.125 600 0.125 500

the datasets (optdigits, pendigits, wine and libras). For many datasets, the performance of the

reduction-based SVM approaches is significantly worse than our approach and boosting and the

multi-class structured SVM approach. The multi-class structured SVM approach specifically is

significantly worse than our method on many of the datasets (satimage, shuttle, vehicle, breast

tissue, pendigits, and vertebral), while only significantly better on the optdigits dataset.

The differences between the results of our method and those of boosting are not as extreme.

Indeed, for many of the datasets (iris, wine, shuttle, optdigits, vertebral, ecoli, breast tissue, and

libras), the differences in average performance are not significant. For one dataset (imgseg),
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Figure 9: The average loss of predictions for the datasets of Table Table III.

boosting is significantly better, while our method is significantly better for the remaining four

(satimage, shuttle, vehicle, and pendigits).

We compare the average loss of the prediction methods aggregated over all of the datasets

in Figure Figure 10, showing that on average our method provides lower cost predictions. It is

important to note that as an ensemble method, boosting is able to implicitly consider a much

richer feature space than our approach. For classification, SVMs are often only comparable when

incorporating kernels that can also implicitly consider richer feature spaces. Thus, exceeding

the performance of the state-of-the-art boosting method using only quadratic features is a
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Figure 10: Average loss of predictions across all datasets of Table Table III.

significant demonstration of our method. The comparisons with the structured SVM method,

which considers an identical feature space, illustrates the general benefit our approach provides

by adversarially approximating the training data rather than convexly approximating the loss

function.

4.2 Sequence Tagging

As an example of the experiments done with adversarial sequence tagging (AST), we describe

here the Faq Segmentation task from our publication on Adversarial Sequence Tagging (Li* et

al., 2016). The Faq Segmentation dataset (McCallum et al., 2000) contains 48 Frequently Asked

Questions (FAQs) downloaded from the Internet. 26 are used for training and 22 for testing.
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Each line in the document is labeled with four possible labels: head, question, answer, and tail.

24 Boolean features are generated for each line.
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Figure 11: Expected loss AST compared with CRF and SVM

We compare our method against linear chain CRF (Sarawagi and Cohen, 2004) and Struc-

tural SVM (SSVM). The features for CRF and AST (our method) are based on transition

between sequence variables φ(yt, yt+1) and data input at the variables φ(xt, yt). For SSVM

we use SVMhmm from the SVMlight package (Joachims, 1999). We include first order tag se-

quence as features here. For AST we use double oracle for training and testing. We start with

pure strategies of the same label for the whole sequence {11...1, 22...2, ...}. To solve the linear

programs we use Gurobi (Gurobi Optimization, 2015).
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We use 10% of the data for cross-validation to select parameters: regularization for CRF

and trade-off weight C for SSVM.

The result shows that our method outperforms both CRF (average loss 0.124) and SSVM

(0.058) by having an average loss of 0.0558.

4.2.1 Adversarial Sequence Tagging in Intelligent Welding

(This work has been submitted to 9th International Conference on Acoustic Emission as

(Asif et al., 2019))

As a direct application of sequence tagging, we apply the pairwise joint probability based

algorithm to an intelligent welding system. In gas welding two or more metal parts are joined

together using filler material.

Figure 12: Weld on a metal plate. From the left: front, back, and cross-section

Figure 12 shows ideal weld quality and Figure 13 shows a robotic welding-arm used in auto-

mated welding systems. Due to various parameters of the welding system, weld qualities may

vary. As the welding is a continuous process, the quality detection problem can be considered



68

Figure 13: Weld robot

as a sequence tagging problem. The results shown in this work compare the sequence tagging

method with simpler classification method, e.g. logistic regression. We collected the data and

therefore describe here the detailed process of feature generation and experiment evaluation.

The goal of welding is to join two or more metal parts using a weld material. A defect where

excessive weld material penetrates the metal completely is called burn-through (Figure 14).

Another weld defect is porosity where impurity in the gas flow causes bubbles trapped into the

weld (Figure 15).

The quality of a weld is usually determined by human inspection and often as a post-

processing, mostly involving destructive measures like cutting the weld. All these methods

are obstacle to an automated welding system since the decision cannot be made run-time and

independent of human observation. Therefore an automated weld-quality detection system
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Figure 14: Burn-through weld on a metal plate. From the left: front, back, and cross-section

Figure 15: Porosity weld on a metal plate. From the left: front, back, and close-up view of
porosity bubbles

using acoustic emission is sought where acoustic emission is captured during welding using

various sensors and along with welding input parameters used to predict the quality of the

weld. Machine learning has previously been employed in welding. For example, using input

parameters performance of welding trainees have been evaluated (Kumar et al., 2018). Quality

of weld has not been addressed. Relationship of the acoustic emission and weld-parameters

with the weld-defects has been established in post-processing, but machine learning had not

been employed for real-time monitoring (Zhang et al., 2018). Neural networks and support
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vector machines have been used to predict weld quality based on acoustic emission (Sumesh et

al., 2015b; Sumesh et al., 2015a). Our method varies in two ways: the number of target classes

simultaneously used is higher and by considering the weld to be a continuous process instead

of discrete data-points in time, i.e., we consider previously predicted data-points’ weld quality

while predicting current data-point. Thus the prediction will be more consistent to the weld

area if any spurious noise in the feature occurs.

4.2.1.1 Data Description

Figure 16: Weld data collection sensors.

During the welding process, input parameters such as amperage, voltage, speed, and gas

flow rate are recorded. From these values, heat-input is computed. While heat-input is al-

ready highly correlated to penetration and burn-through, acoustic emission (AE) is used as an

additional attribute to infer weld quality.
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TABLE V: Dataset description of the welding experiment. Number of samples in each group
are shown in parentheses.

Sample Group

Wire
Speed

(in/min)

Gas Flow
(ft3/h)

Travel
Speed

(mm/s)

Heat
Input

(KJ/mm)

Expected
Quality

JD-P1-TS (3) 200 40 11 0.38 Good Weld
JD-P2-TS (3) 160 40 11 0.30 Good Weld
JD-P3-TS (3) 120 40 11 0.20 Good Weld
JD-P4-TS (3) 100 40 11 0.18 Good Weld
JD-P5-TS (3) 240 40 11 0.49 Penetration
JD-P6-TS (3) 260 40 11 0.52 Penetration
JD-P7-TS (3) 280 40 11 0.58 Onset of Burn-through
JD-P8-TS (3) 300 40 11 0.60 Burn-through

JD-P1-PO1 (3) 200 25 11 0.39 Good Weld
JD-P1-PO2 (3) 200 21 11 0.40 Porosity
JD-P1-PO3 (5) 200 12 11 0.39 Porosity
JD-P7-PO3 (5) 280 12 11 0.56 Porosity + Burn-through
JD-P7-PO4 (1) 280 56 11 0.56 Porosity + Burn-through
JD-P7-PO5 (1) 280 59 11 0.56 Porosity + Burn-through

At first, in order to generate different weld-qualities, weld-samples with various configura-

tions were generated using a gas tungsten arc welding system (GTAW). We changed amperage,

voltage and speed to change heat-input that in turn created different penetration levels. We

then used clustering methods (K-means and Hierarchical) to find different groups. However,

correct configurations to generate distinctive clusters were not found. Perhaps largely due to

the fact that GTAW is a quieter process and thus AE signals are not significant enough. Af-

terwards, we collected gas metal arch weld data (GMAW) in an industrial setting. There AE
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sound change between different quality welds was noticeable even by human ear. Therefore, we

proceeded with GMAW welding system for our experiment.

Table V shows the configurations how different quality welds have been generated in GMAW.

The target categories selected for modeling are “Good Weld”, “Penetration”, “Burn-through”,

and “Porosity”. Input parameters are recorded with 0.1 second intervals. Acoustic emission is

captured in two sets of data: Absolute energy and Average Signal Level (ASL) are recorded in

0.02 second intervals, these are called time-driven data (TDD). And, there are hit-driven data

(HDD) which captures values over specific thresholds without fixed time-intervals Figure 17,

the features we use are counts, amplitude, frequency centroid, and peak frequency.

Figure 17: Hit-Driven Data (HDD) features.
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We first synchronize the TDD and interpolated input parameters as 0.02 second intervals.

We merge the HDD features in feature generation phase.

4.2.1.2 Feature Generation

Figure 18: Correlations of time-driven (TDD) features. Darker means lower correlation. Chan-
nels 2 and 3 have lower correlations compared to other pairs.
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After synchronizing, we first select two acoustic emission channels that have lower correla-

tions (Figure 18). We select two channels to keep number of features low to avoid overfitting.

With extracted features from two channels and quadratic transformation, we eventually have

above 900 features. Also noticeable from Figure 18 is that RMS is highly correlated to cor-

responding channel’s ASL and absolute energy, therefore, we exclude this feature from the

channels.

Afterwards, we apply signal smoothing with a rolling window size 10, and then group each

10 time-steps together. This gives us about 24 to 31 time-steps per sample. From each group-

window, the minimum, the maximum and the average values are selected. In addition, rate of

accumulation of energy is computed as
∑
t(txt − tµx), which gives the area in Figure 19.

Figure 19: Rate of accumulation of energy

HDD features are taken from the selected features and merged in the 0.2 second window

as averages or 0 if absent. These features, mentioned here and in data description, have been

selected via histogram analysis from a larger pool of features. Once generated, we use min-max
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scaling,(xi −mini)/(maxi −mini), to make the feature values between 0 and 1, and then do

a quadratic transformation to capture any existing relations between the features.

4.2.1.3 Results

TABLE VI: Results of the welding experiment. Bold percentages indicate the expected weld
quality from Table V: Good Weld (G), Penetration (Pn), Burn-through (B), Porosity (Pr).
JD-P7 samples were not seen in the training data and does not have distinctive labels.

Adversarial Sequence Tagging Logistic Regression
Sample G Pn B Pr G Pn B Pr
JD-P1-TS-3 100 0 0 0 96.8 0 0 3.23
JD-P5-TS-3 3.23 96.77 0 0 0 100 0 0
JD-P7-TS-1 0 0 100 0 0 9.68 90.32 0
JD-P7-TS-2 3.23 0 96.77 0 0 3.23 96.77 0
JD-P1-PO1-1 83.9 16.13 0 0 83.9 0 0 16.13
JD-P1-PO1-2 96.8 0 3.23 0 93.6 0 0 6.45
JD-P1-PO1-3 77.4 12.9 0 9.68 71 0 0 29.03
JD-P7-PO3-1 0 0 96.77 3.23 0 0 19.35 80.65
JD-P7-PO3-2 0 0 96.77 3.23 0 0 0 100
JD-P7-PO3-3 0 0 48.39 51.61 0 0 16.13 83.87
JD-P7-PO3-4 0 0 90.32 9.68 0 0 9.68 90.32
JD-P7-PO3-5 0 0 93.55 6.45 0 0 0 100
JD-P7-PO4 0 0 87.1 12.9 0 0 35.48 64.52
JD-P7-PO5 0 0 38.71 61.29 0 0 67.74 32.26

We compare our adversarial sequence tagging (AST) method with multinomial logistic re-

gression (LR). For each sample, from the 24 to 31 congregated points, we look at the percentage

of points classified as each to the classes. For logistic regression we consider each data point as
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discrete sample, whereas for AST full sequence represent one sample. For space limitation we

exclude from Table VI the samples that have full correct classifications.

We consider 5% leniency per sample. and consider either of Penetration and Burn-through

as correct category for samples JD-P7-TS (those samples had heavy melting and could fall

between penetration and burn-through classes), and for JD-P7-PO samples let Burn-through

or Porosity be correct since both quality were seen in inspection. Then AST fails to correctly

label samples JD-P1-PO1-1 and JD-P1-PO1-3, whereas LR additionally fails at JD-P1-PO1-

2. Therefore the macro-accuracy in terms of correctly labeled whole samples are 94.12% and

91.18% respectively.

4.2.2 Adversarial Cost-sensitive Sequence Tagging

To demonstrate a cost-sensitive sequence tagging application, we use dataset Smartphone-

Based Recognition of Human Activities and Postural Transitions (Reyes Ortiz et al., 2015)

from UCI repository. The data contains activity data collected via smartphone sensors from

30 subjects with 12 labeled classes in 561 extracted features. The dataset provides train-test

split, but are not in sequence representation. We separate the data first by subject id and then

randomly split between 20 and 200 lengths.

To generate a cost-matrix, we compute distances (scaled) of the classes based on Euclidian

distance (Figure 20). As expected stationary activity to walking has higher cost than others.

We compare our method with structured-SVM (Finley and Joachims, 2007), we use the

misclassification cost ∆(y,yi) =
∑T
t=1Cyt,yi,t in Equation 2.23. For both structured-SVM

and Adversarial Sequence Tagging, we train a model on the cost-matrix and another 0-1 loss
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Figure 20: Cost-matrix for Human Activity Recognition

(Hamming loss), and then evaluate on the cost-matrix to show that models trained with the

cost-matrix have lower total incurred costs (Table VII).

For comparison with non-sequence prediction, Logistic Regression model is used. For the

0-1 loss model, the output of Logistic Regression is taken and total cost is computed using the

cost-matrix. For the cost-sensitive model, the probability of the Logistic Regression model is

used to obtain the Bayes optimal prediction for the cost-sensitive prediction.
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TABLE VII: Total misclassification cost incurred using cost from Figure 20 evaluated with
models trained using the cost and using 0-1 (Hamming) loss

Trained with 0-1 loss Trained with cost

Structured SVM 136.28 131.31
Adversarial Sequence Tagging 106.99 102.15
Logistic Regression (non-Bayes) 199.32 (Bayes) 198.85

We can see that AST outperforms other methods in both cases. Also, for all methods,

the cost-sensitive model minimizes the total incurred cost better than the corresponding model

trained without taking costs into account.



CHAPTER 5

CONCLUSION AND FUTURE WORK

In classification problems, depending on the nature of the data or the target problem, solely

optimizing accuracy may not always be desired. If misclassifying one class has a higher real

world loss compared to other classes, we may want to assign a higher cost to that class and per-

form cost-sensitive classification instead of maximizing accuracy. With this goal, we have devel-

oped a general adversarial framework to perform classification. We incorporated cost-sensitivity

in this framework. In Section 3.1 we showed the detailed development of the adversarial method

and showed its mathematical properties. We described how we can formulate a classification

task as a convex optimization problem and how to solve this optimization. We showed that

our method is Fisher consistent while multiclass SVM is not. Using this framework, we have

performed cost-sensitive classification using randomly generated costs with publicly available

UCI classification datasets. We compared our method with state-of-the-art methods (Section

4.1) and showed that our method was competitive in some cases and outperformed others. In

Section 3.2 we extended our adversarial approach to sequence tagging problem. We discussed

different approaches to solve a linear sequence tagging problem with the adversarial framework.

We showed the general case of 0-1 loss (accuracy) in sequence tagging in Section 4.2 and then

a cost-sensitive sequence tagging result in Section 4.2.2.

In the future, I want to explore other areas, for example, cost-sensitivity in deep neural

networks. Early cost-sensitive deep networks have been studied for the class imbalance problem

79



80

(Zhou and Liu, 2006) using resampling and threshold based classification. For general cost-

matrices (Chung et al., 2015) follows one-sided SVM method by (Tu and Lin, 2010) but uses

the smooth-SVM loss to replace the max function to log-exponential for differentiability. The

limitation of this method may be that the loss does not contain the direct cost-matrix. (Khan et

al., 2018) studies several cost-sensitive losses including mean squared error, SVM and softmax

where the output of last layer is weighted by the classification cost of the corresponding training

sample. (Tang, 2013) have shown that using hinge loss (SVM) in place of softmax gives better

results. As our model is similar to SVM, we can follow these approaches and replace the SVM

layer with our cost-sensitive adversarial loss.

Another direction can be in exploring ways to learn the costs for cost-sensitive classification.

Currently we use arbitrary cost-matrices to evaluate the performance of the classifiers, but we

should rather learn a cost-matrix that aligns with the task at hand. One method could be

first compute cost via distances of class clusters and then show experts misclassified samples

and update the cost-matrix iteratively based on feedback. Another interesting are is early

event-detection where a event happens over a period of time and the task is to identify as

early as possible. For example, human activity needs to be anticipated by robots to have

better interaction, an earlier detection enables smoother interaction (Koppula and Saxena,

2016; Hoai and De la Torre, 2014), in a sequence of medical diagnosis the earlier a disease is

detected the better (Xing et al., 2008). (Hoai and De la Torre, 2014) use maximum margin

structured prediction formulation for early event detection. Therefore, our sequence tagging
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method can easily be applied in the area. We can also follow the abstention based prediction

using adversarial method (Fathony et al., 2018) along with sequence tagging method.
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