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SUMMARY

In this thesis a new electromagnetic scattering problem is solved analytically. The structure

considered is a parallel-plate waveguide in which a slotted wall is inserted. Exact expressions of

the electromagnetic field and surface current densities in the whole structure, for the character-

istic modes of the parallel-plate waveguide (TEM mode,TE and TM modes) are theoretically

evaluated. Numerical calculations of the surface current densities on the metallic posts and

parallel plates are performed too, with the assistance of Fortran 90 subroutines.

vii



CHAPTER 1

INTRODUCTION

A new scattering problem is presented in this thesis. In order to solve it analytically,

the well known concepts of the electromagnetic field in a parallel-plate waveguide are used,

together with the general results obtained in previous works by professor Uslenghi [1], [2] about

exact solutions to scattering problems in particular structures, with cavities and metal edges.

The entire analysis is conducted in phasor domain, with time dependance factor ejωt, omitted

throughout. The structure, described in detail in Chapter 2, is a parallel plate waveguide with a

slotted wall inserted; all the metallic parts are assumed to be PEC and the dielectric materials,

both on one side and the other of the slotted wall, isorefractive. In Chapter 3 the scattering

of a wave with normal incidence to the slotted wall is solved; the analysis is performed for

an E-polarized field, that in the structure corresponds to the TEM mode of the parallel-plate

waveguide, but also for an H-polarized field since its expression is needed for the TE mode

analysis (done in Chapter 5). The scattering analysis of TM modes is performed in Chapter 4

and likewise for TE modes in Chapter 5, the results of normal incidence are used, together with

the formulas of [2] concerned with the oblique incidence of a wave on a structure truncated by

a metal plane. In Chapter 6 numerical results are presented for the surface current densities on

the metal slotted wall in the three cases and, in addition, on the metal parallel plates for the

TM case. All of that thanks to the code developed by professor Erricolo on the computation

of Mathieu functions, that was used in addiction to a short part of code that puts together
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the values of Mathieu functions needed in order to evaluate all the surface currents derivated

theoretically.



CHAPTER 2

HISTORY AND DESCRIPTION OF THE PROBLEM

In Figure 1 is shown the three-dimensional structure analyzed. The metal parallel-plates

extend to the infinity along the x direction and stand respectively on the plane z = 0 and z = b.

The electromagnetic wave, in case of normal incidence (both for E and H polarization) propa-

gates towards the negative y-direction; same thing for TE and TM modes with the difference

that the propagation vector presents a component along the direction z, alternatively positive

and negative.

The slotted wall is in the plane y = 0, the dielectric materials in the two parts of the structure,

divided by the wall, are isotropic, linear and homogeneous. They have respectively permittiv-

ity ε1 and ε2, permeability µ1 and µ2 and intrinsic impedances Z1 and Z2. It’s necessary that

the two materials are isorefractive to perform the analysis, otherwise the canonical solutions

obtained by professor Uslenghi [1] couldn’t be used. Isorefractivity [3] means that:

ε1µ1 = ε2µ2

but in general (
Z1 =

√
µ1
ε1

)
6=
(
Z2 =

√
µ2
ε2

)

)

3
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The slotted wall is treated like a particular case of an elliptic cavity, shown in Figure 2.

To perform the derivations it’s therefore necessary to introduce the elliptic coordinates (u, v, z),

that are related to the Cartesian system by

x =
d

2
coshu cos v

y =
d

2
sinhu sin v

z = z

where 0 < u < ∞ and 0 < v < 2π. Three other variables are introduced for semplicity:

ξ = coshu, η = cos v and c =
kd

2
where d is the interfocal distance and k is the wave number.
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Figure 1: Slotted wall inserted in a parallel plate waveguide in with reference system

Figure 2: Semielliptical cavity



CHAPTER 3

SOLUTION FOR THE TEM MODE

3.1 Normal incidence, E-polarization solution (TEM mode)

It’s considered a plane wave, normally incident on the slotted wall

Ei = ẑE1z

E1z = ejky

with the wave number k = ω
√
ε1,2µ1,2.

According to the electromagnetic theory [4], the electric field, incident in general with an angle

φ0 with respect to the negative x-axis, can be expanded in a series of elliptic-cylinder wave

functions

Ei1z =
√

8π
∞∑
l=0

(j)l

[
1

N
(e)
l (c)

Re
(1)
l (c, ξ)Sel (c, η)Sel (c, cosφ0) +

1

N
(o)
l (c)

Ro
(1)
l (c, ξ)Sol (c, η)Sol (c, cosφ0)

]
(3.1)

where Re
(1)
l , Ro

(1)
l are even and odd Mathieu functions of the first kind, Sel, Sol are even and

odd angular Mathieu functions and N
(e),(o)
l (c) are normalization coefficients, all according to

the Stratton notation [4].

In this case of normal incidence, according to the current reference system, φ0 = π
2 .

6
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Considering the properties of the even Mathieu angular functions:

Sem (c, η)
∣∣∣
v=π±v0

= (−1)mSem (c, η)
∣∣∣
v=v0

For v0 =
π

2
:

Sem (c, 0) = (−1)mSem (c, 0)

Se2l+1 (c, 0) = 0

In the same way for odd Mathieu angular functions

Som (c, η)
∣∣∣
v=π±v0

= ±(−1)mSom (c, η)
∣∣∣
v=v0

For v0 =
π

2
:

Som (c, 0) = −(−1)mSom (c, 0)



8

So2l (c, 0) = 0

After these considerations the incident electric field can be written in the following way:

Ei1z =
√

8π
∞∑
l=0

(−1)l

[
1

N
(e)
2l (c)

Re
(1)
2l (c, ξ)Se2l (c, η)Se2l (c, 0) +

+
j

N
(o)
2l+1(c)

Ro
(1)
2l+1 (c, ξ)So2l+1 (c, η)So2l+1 (c, 0)

] (3.2)

The electric field that would be reflected by the metal plane y = 0 is

Er1z = −
√

8π
∞∑
l=0

(−1)l
[ 1

N
(e)
2l (c)

Re
(1)
2l (c, ξ)Se2l (c, η)Se2l (c, 0)−

− j

N
(o)
2l+1(c)

Ro
(1)
2l+1 (c, ξ)So2l+1 (c, η)So2l+1 (c, 0)

] (3.3)

So that, the sum of the two terms is

Ei+r1z = 4
√

2π
∞∑
l=0

j(−1)l
1

N
(o)
2l+1(c)

Ro
(1)
2l+1 (c, ξ)So2l+1 (c, η)So2l+1 (c, 0) (3.4)

and the diffracted electric field is

Ed1z = 4
√

2π

∞∑
l=0

(−1)l

N
(o)
2l+1(c)

a
(h)
l (c)Ro

(4)
2l+1 (c, ξ)So2l+1 (c, η)So2l+1 (c, 0) (3.5)

Where Ro
(4)
2l+1 is the radial Mathieu function of 4th type is used for the satisfaction of the

radiation condition at infinity, since it asymptotically tends to zero.
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The total electric field in the first medium is the sum of the previous terms and therefore

can be expressed as follows

E
(e)
1z = 4

√
2π

∞∑
l=0

j(−1)l

N
(o)
2l+1

[
Ro

(1)
2l+1 (c, ξ) + a

(e)
l (c)Ro

(4)
2l+1 (c, ξ)

]
So2l+1 (c, η)So2l+1 (c, 0) (3.6)

In the second medium, inside the cavity, the expression for the total electric field is:

E
(e)
2z = 4

√
2π

∞∑
l=0

j(−1)l

No
2l+1(c)

b
(e)
l (c)

[
Ro

(4)
2l+1 (c, ξ1)

Ro
(1)
2l+1 (c, ξ1)

Ro
(1)
2l+1 (c, ξ)−Ro(4)2l+1 (c, ξ)So2l+1 (c, η)So2l+1 (c, 0)

]
(3.7)

The magnetic field components are obtained in the following way:

H
(e)
(1,2)ξ =

j

cZ1

√
ξ2 − η2

∂

∂v
E(1,2)z (3.8)

H
(e)
(1,2)v =

−j
cZ1

√
ξ2 − η2

∂

∂u
E(1,2)z (3.9)

The unknown coefficients a
(e)
l (c) and b

(e)
l (c) are determined by imposing the boundary condition

of continuity of the total tangential electric and magnetic field on the interface u = 0, or

analogally, ξ = 1. The boundary conditions, according to the current reference system, can be

written:

E
(e)
1z = E

(e)
2z

∣∣∣
u=0

(3.10)



10

Where So2l+1(c, η)
∣∣∣
v=2π−v0

= −So2l+1(c, η)
∣∣∣
v=v0

H
(e)
1v = −H(e)

2v

∣∣∣
u=0

(3.11)

i.e. H
(e)
1x = H

(e)
2x

∣∣∣
u=0

Notice that in equations (Equation 3.10) and (Equation 3.11), η = cos v|y=0+ = cos 2π − v|y=0−

From (Equation 3.6) and (Equation 3.7) into (Equation 3.10):

b
(e)
l (c) = a

(e)
l (c) (3.12)

Where

Ro
(1)
2l+1(c) = 0 (3.13)

was used. Starting from the (Equation 3.9) into (Equation 3.11),using (Equation 3.6), (Equation 3.7)

and (Equation 3.12): the following result is obtained:

a
(e)
l (c) =

1

ζ
Ro

(4)
2l+1(c,ξ1)

Ro
(1)
2l+1(c,ξ1)

− (1 + ζ)
Ro

(4)
2l+1′(c,1)

Ro
(1)
2l+1′(c,1)

(3.14)

where ζ =
Z1

Z2
and the apix prime means ”derivative with respect to u”
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3.1.1 Limit cases

The first limit case is if medium 2 is a PEC, that means there’s no cavity, Z2 = 0 hence

ζ →∞ and

a
(e)
l (c)

∣∣∣
Z2=0

= b
(e)
l (c)

∣∣∣
Z2=0

= 0

The second limit case is the one of interest, it means if the cavity ξ = ξ1 of is removed to infinity,

therefore that medium 2 fills a half space and since is not an active medium and (Im [c] < 0).

P hysically corresponds to the slotted wall.

Since lim
ξ1→∞

Ro
(4)
2l+1 (c, ξ1) = 0

a
(e)
l (c)

∣∣∣
ξ1→∞

= b
(e)
l (c)

∣∣∣
ξ1→∞

= −
Ro

(1)
2l+1′ (c, 1)

(1 + ξ)Ro
(4)
2l+1′ (c, 1)

(3.15)

This result leads to the following expression for the electric field components:

E
(e)
1z

∣∣∣
ξ→∞

= 4
√

2π
∞∑
l=0

j(−1)l

No
2l+1(c)

[
Ro

(1)
2l+1 (c, ξ)−

Ro
(1)
2l+1′ (c, 1)

(1 + ζ)Ro
(4)
2l+1′ (c, 1)

Ro
(4)
2l+1 (c, ξ)

]
So2l+1 (c, η)So2l+1 (c, 0)

(3.16)

E
(e)
2z

∣∣∣
ξ→∞

= 4
√

2π
∞∑
l=0

j(−1)l

No
2l+1(c)

Ro
(1)
2l+1′ (c, 1)

(1 + ζ)Ro
(4)
2l+1′ (c, 1)

Ro
(4)
2l+1 (c, ξ)So2l+1 (c, η)So2l+1 (c, 0)

(3.17)
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Notice that the diffracted electric field in the first and the transmitted electric field into medium

1 are symmetrical with respect to the plane y = 0:

(
Ed1z

∣∣∣
ξ1→∞

)
ξ=ξ0,v=v0

=

(
E

(e)
2z

∣∣∣
ξ1→∞

)
ξ=ξ0,v=(2π−v0)

(3.18)

3.1.2 Surface current densities

The surface current densities depends on the magnetic field components at the surface,

according to the electromagnetic theory:

J = n̂×H

So in the different parts of the structure, referring to Figure 2 the current densities are defined:

FG(v = 0); n̂ = v̂; J
(e)
1 = −H1ξ|v=0ẑ (3.19)

AB(v = π); n̂ = −v̂; J
(e)
1 = H1ξ|v=π ẑ (3.20)

FE(v = 2π); n̂ = −v̂; J
(e)
2 = −H2ξ|v=2π ẑ (3.21)

AC(v = π); n̂ = v̂; J
(e)
2 = −H2ξ|v=π ẑ (3.22)

CDE(ξ = ξ1); n̂ = −û; J
(e)
1 = −H2v|ξ=ξ1 ẑ (3.23)
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As consequence:

J
(e)
1z

∣∣∣
v=0

=
4

cZ1

√
2π

ξ2 − 1

∞∑
l=0

(−1)l

N
(o)
2l+1

So2l+1 (c, 0)
[
Ro

(1)
2l+1 (c, ξ) + a

(e)
l (c)Ro

(4)
2l+1 (c, ξ)

]
(3.24)

J
(e)
1z

∣∣∣
v=π

=
4

cZ1

√
2π

ξ2 − 1

∞∑
l=0

(−1)l

N
(o)
2l+1

So2l+1 (c, 0)
[
Ro

(1)
2l+1 (c, ξ) + a

(e)
l (c)Ro

(4)
2l+1 (c, ξ)

]
= J

(e)
1z

∣∣∣
v=0

(3.25)

J
(e)
2z

∣∣∣
v=2π

=
−4

cZ2

√
2π

ξ2 − 1

∞∑
l=0

(−1)l

N
(o)
2l+1

a
(e)
l (c)So2l+1 (c, 0)

[
Ro

(4)
2l+1 (c, ξ1)

Ro
(1)
2l+1 (c, ξ1)

Ro
(1)
2l+1 (c, ξ)−Ro(4)2l+1 (c, ξ)

]
(3.26)

J
(e)
2z

∣∣∣
v=π

=
−4

cZ2

√
2π

ξ2 − 1

∞∑
l=0

(−1)l

N
(o)
2l+1

a
(e)
l (c)So2l+1 (c, 0)

[
Ro

(4)
2l+1 (c, ξ1)

Ro
(1)
2l+1 (c, ξ1)

Ro
(1)
2l+1 (c, ξ)−Ro(4)2l+1 (c, ξ)

]
=

= J
(e)
2z

∣∣∣
v=2π

(3.27)

J
(e)
2z

∣∣∣
u=u1

=
−4j

cZ2

√
2π

ξ2 − 1

∞∑
l=0

(−1)l

N
(o)
2l+1

a
(e)
l (c)

So2l+1 (c, 0)

Ro
(1)
2l+1 (c, ξ1)

So2l+1 (c, η) (3.28)

Where in (Equation 3.28) the Wronskian property for radial Mathieu functions was used, that

is:

Re, o
(1)
l (c, ξ)

∂

∂v
Re, o

(4)
l (c, ξ)−Re, o(4)l (c, ξ)

∂

∂v
Re, o

(1)
l (c, ξ) = −j (3.29)
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On the concave corners C and E:

J
(e)
2z

∣∣∣
v=π;u=u1

= J
(e)
2z

∣∣∣
v=2π;u=u1

= J
(e)
2z

∣∣∣
v=π,2π;u=u1

= 0 (3.30)

The current densities near the sharp edges A and F, using (Equation 3.13) it’s seen that



J
(e)
1z

∣∣∣
v=0;ξ→1

' K

Z1

√
ξ2 − 1

J
(e)
2z

∣∣∣
v=2π;ξ→1

' K

Z2

√
ξ2 − 1

(3.31)

Where K is a constant.

Set ξ = 1 + δ ,where δ << 1, then
1√
ξ2 − 1

' 1√
2δ

; For v = 0, 2π, x =
d

2
ξ =

d

2
(1 + δ) =

d

2
+ w, where w = x− d

2
=
d

2
δ is the distance from the edge F.

The currents in (Equation 3.31) diverge as
1√
w

as the edge is approached, as expected.

A similar reasoning rules also for the edge A, this means that the edge condition at A and

F is satisfied.
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The surface currents,considering no closed cavity (ξ1 →∞) :

J
(e)
1z

∣∣∣
v=0,π

=
4

cZ1

√
2π

ξ21 − 1

∞∑
l=0

j(−1)l

No
2l+1

So2l+1 (c, 0)

[
Ro

(1)
2l+1 (c, ξ)−

Ro
(1)
2l+1′ (c, 1)

(1 + ξ)Ro
(4)
2l+1′ (c, 1)

Ro
(4)
2l+1 (c, ξ)

]
(3.32)

J
(e)
2z

∣∣∣
v=π,2π

=
−4

cZ2

√
2π

ξ21 − 1

∞∑
l=0

j(−1)l

No
2l+1

So2l+1 (c, 0)
Ro

(1)
2l+1′ (c, 1)

(1 + ξ)Ro
(4)
2l+1′ (c, 1)

Ro
(4)
2l+1 (c, ξ) (3.33)

The surface currents expressed in(Equation 3.32) and(Equation 3.33) are numerically calculated

in Chapter 6.

3.2 H-polarization solution

The method of analysis for an H-polarized field is analog to the E-polarization.

An incident magnetic field is given:

H i = ẑH1z

H1z = ejky

The expression can be expanded in Mathieu functions

H i
1z =

√
8π

∞∑
l=0

(j)m

[
1

N
(e)
l (c)

Re
(1)
l (c, ξ)Sel (c, η)Sel (c, cosφ0) +

1

N
(o)
l (c)

Ro
(1)
l (c, ξ)Sol (c, η)Sol (c, cosφ0)

]
(3.34)
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Given φ = π
2 and considering the properties of the even and odd Mathieu angular functions

given in the previous secton the magnetic field can be rewritten:

H i
1z =

√
8π

∞∑
l=0

(−1)l

[
1

N
(e)
2l

Re
(1)
2l (c, ξ)Se2l (c, η)Se2l (c, 0) +

j

N
(o)
2l+1

Ro
(1)
2l+1 (c, ξ)So2l+1 (c, η)So2l+1 (c, 0)

]
(3.35)

The magnetic field that would be reflected by the metal plane y = 0 is

Hr
1z =

√
8π

∞∑
l=0

(−1)l

[
1

N
(e)
2l (c)

Re
(1)
2l (c, ξ)Se2l (c, η)Se2l (c, 0)−

− j

N
(o)
2l+1(c)

Ro
(1)
2l+1 (c, ξ)So2l+1 (c, η)So2l+1 (c, 0)

] (3.36)

So that the sum of the two terms is

H i+r
1z = 4

√
2π

∞∑
l=0

(−1)l
1

N
(e)
2l (c)

Re
(1)
2l (c, ξ)Se2l (c, η)Se2l (c, 0) (3.37)

and the diffracted magnetic field

Hd
1z = 4

√
2π

∞∑
l=0

(−1)l

N
(e)
2l (c)

a
(h)
l (c)Re

(4)
2l (c, ξ)Se2l (c, η)Se2l (c, 0) (3.38)

Where the radial Mathieu function of 4th type is used for the satisfaction of the radiation

condition at infinity. Therefore the electric field in the first medium is:

H
(h)
1z = H i

1z +Hr
1z +Hd

1z
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That leads to:

H
(h)
1z = 4

√
2π

∞∑
l=0

(−1)l

N
(
2lc)

[
Re

(1)
2l (c, ξ) + a

(h)
l (c)Re

(4)
2l (c, ξ)

]
Se2l (c, η)Se2l (c, 0) (3.39)

Whereas the total magnetic field inside the cavity is:

H
(h)
2z = 4

√
2π

∞∑
l=0

(−1)l

N
(e)
2l (c)

b
(h)
l (c)

[
Re

(4)
2l ′ (c, ξ1)

Re
(1)
2l ′ (c, ξ1)

Re
(1)
2l (c, ξ)−Re(4)2l (c, ξ)

]
Se2l (c, η)Se2l (c, 0)

(3.40)

To find the coefficients a
(h)
l (c) and b

(h)
l (c) the boundary conditions at the interface between the

two mediums are applied, in the same way of the E-polarization case:

H
(h)
1z = H

(h)
2z

∣∣∣
u=0

(3.41)

E
(e)
1v = −E(e)

2v

∣∣∣
u=0

(3.42)

Considering that:

Ev =
jZ

c
√
ξ2 − η2

∂Hz

∂u

Starting from (Equation 3.42) and using the following property

∂

∂u
Re

(1)
l (c, ξ)

∣∣∣
u=0

= 0
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the result obtained is:

a
(h)
l (c) =

1

ζ
b
(h)
l (c) (3.43)

From (Equation 3.41), using (Equation 3.43):

a
(h)
l (c) =

1

ζ

(
Re

(4)
2l ′ (c, ξ1)

Re
(1)
2l ′ (c, ξ1)

)
− (1 + ζ)

(
Re

(4)
2l (c, 1)

Re
(1)
2l (c, 1)

) (3.44)

Finally considering the cavity removed to infinity (ξ1 −→∞)

a
(h)
l (c) =

1

ζ
b
(h)
l (c) = −

Re
(1)
2l (c, 1)

(1 + ζ)Re
(4)
2l (c, 1)

(3.45)



CHAPTER 4

SOLUTION FOR THE TM MODES

4.1 Oblique incidence, E-polarization (TM modes)

The propagation of an electromagnetic wave in the parallel plate waveguide, according to

the current reference system that fits with the one of the elliptical cavity from [1], shown in

Figure 1 is analyzed. The position of the parallel plates and the direction of the wave, with

respect to the system is indicated in Figure 3, notice that the infinite direction is along the

x-axis, that means in the solution of the Maxwell equations to carry out the expression of the

field in propagation in the waveguide, no dependance on the x directions is considered,
∂

∂x
= 0.

Solving Maxwell’s equations in the parallel-plate waveguide with this reference system leads to

two systems of equations, the first for the TM solution (E-polarization) and the second for the

TE one (H-polarization).



∂2Hx

∂y2
+
∂2Hx

∂z2
+ ω2µεHx = 0

∂Hx

∂z
= jωεEy

−∂Hx

∂y
= jωεEz

(4.1)
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∂2Ex
∂y2

+
∂2Ex
∂z2

+ ω2µεEx = 0

∂Ex
∂z

= −jωµHy

−∂Ex
∂y

= −jωµHz

(4.2)

The solution to the differential equations system (Equation 4.1), it means E-polarized field

for a wave propagating along the negative y-axis, according to the reference system can be

written as:



H
(e)
x = −Y cos(βz)ejkty

E
(e)
y =

β

jk
sin(βz)ejkty

E
(e)
z =

kt
k

cos(βz)ejkty

(4.3)

where:

Y =

√
ε

µ
is the intrinsic admittance of the medium;

β2 + k2t = k2, kt is the wave number in the propagation direction;

β =
nπ

b
, from the boundary condition of zero electric field on the PEC plates;

n = (0, 1, 2...) is a number, that defines the mode of propagation.
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The electromagnetic field can be schematized as two plane waves, both propagating in the

negative y direction but in opposite z directions. This is analytically and geometrically shown

respectively in(Equation 4.4) and in Figure 4.



H
(e)
x = −Y

2

(
ejkty+βz + ejkty−βz

)
E

(e)
y = − β

2k

(
ejkty+βz − ejkty−βz

)
E

(e)
z =

kt
2k

(
ejkty+βz + ejkty−βz

)
(4.4)

The first plane wave is propagating in direction k̂i1 = −kt
k
ŷ − β

k
ẑ forming the angle θ01

with the negative z-axis, whereas the second plane is propagating in direction k̂i2 = −kt
k
ŷ+

β

k
ẑ

forming the angle θ02 with the negative z-axis.


cos θ01 =

β

k

sin θ01 =
kt
k

(4.5)


cos θ02 = −β

k

sin θ02 =
kt
k

(4.6)

The positive direction of x-axis enters the plane yz, in fact the H
(e)
x component, for both plane

waves is negative and has opposite direction; the direction of E(e) is clearly shown in Figure 4.
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Starting from the TEM-solution results for E-polarization and using the method used in [?]for

the general three-dimensional oblique problem the electromagnetic field expression can be de-

veloped in the following way: From (Equation 3.6) and(Equation 3.7) using (Equation 3.12):

E(e)
ν = ẑ

∣∣∣
2D

= ẑE(e)
νz

∣∣∣
2D

= ẑU (e)
ν (ξ, η; c) (4.7)

where ν = (1, 2) and, from

U
(e)
1 (ξ, η; c) = 4

√
2π

∞∑
l=0

(−1)l

N
(o)
2l+1

[
Ro

(1)
2l+1 (c, ξ) + a

(e)
l (c)Ro

(4)
2l+1 (c, ξ)

]
So2l+1 (c, η)So2l+1 (c, 0)

(4.8)

U
(e)
2 (ξ, η; c) = 4

√
2π

∞∑
l=0

j(−1)l

No
2l+1(c)

b
(e)
l (c)

[
Ro

(4)
2l+1 (c, ξ1)

Ro
(1)
2l+1 (c, ξ1)

Ro
(1)
2l+1 (c, ξ)−Ro(4)2l+1 (c, ξ)So2l+1 (c, η)×

× So2l+1 (c, 0)

]
(4.9)

Applying the equations (22), (23) in [2], dividing each component by 2 and adding them it’s

obtained:

E
(e)
l =

1

2

2∑
ν=1

[
−2

k
cot θ0ν sin kz cos θ0ν∇tU (e)

l (ξ, η; c sin θ0ν) + 2 sin θ0ν cos kz cos θ0νU
(e)
l (ξ, η; c sin θ0ν) ẑ

]
(4.10)

E
(e)
l =

1

2

2∑
ν=1

− 2jY2
ksinθ0ν

cos kz cos θ0ν (ẑ ×∇t)U (e)
l (ξ, η; c sin θ0ν) (4.11)
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Considering l = (1; 2) and the same for ν:

k sin θ01 = k sin θ02 = kt

c sin θ01 = c sin θ02 =
ktd

2
= γ

k cos θ01 = β

k cos θ02 = −β

cot θ01
k

=
β

kkt
= −cot θ02

k

Therefore:

E
(e)
l =

−2β

kkt
sinβz∇tU (e)

l (ξ, η; γ) +
2kt
k

cosβzU
(e)
l (ξ, η; γ) ẑ (4.12)

H
(e)
l =

−2jYl
kt

cosβz (ẑ ×∇t)U (e)
l (ξ, η; γ) (4.13)

In ellyptic-cilinder coordinates:

∇t =
2

d
√
ξ2 − η2

(
û
∂

∂u
+ v̂

∂

∂v

)

ẑ ×∇t =
2

d
√
ξ2 − η2

(
−û ∂

∂v
+ v̂

∂

∂u

)
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That leads to the following results for the electric and magnetic field in the first medium:

E
(e)
1 = −8β

kγ

√
2π

ξ2 − η2
sinβz

∞∑
l=0

j(−1)l

N
(o)
2l+1 (γ)

So2l+1 (γ, 0)
{
û×

[
Ro(1)′2l+1 (γ, ξ) +

+ a
(e)
l (γ)Ro(4)′2l+1 (γ, ξ)

]
So(2l+1 (γ, η) + v̂

[
Ro

(1)
2l+1 (γ, ξ) + a

(e)
l (γ)Ro

(4)
2l+1 (γ, ξ)

]
×

× ∂

∂v
So(2l+1 (γ, η)

}
+ 8
√

2π
kt
k

cosβzẑ
∞∑
l=0

(−1)l

N
(o)
2l+1

[
Ro

(1)
2l+1 (γ, ξ) +

+ a
(e)
l (γ)Ro

(4)
2l+1 (γ, ξ)

]
So2l+1 (γ, η)So2l+1 (γ, 0)

(4.14)

H
(e)
1 =

8jY1
γ

√
2π

ξ2 − η2
cosβz

∞∑
l=0

j(−1)l

N2l+1 (γ)
So2l+1 (γ, 0)

{
û×

[
Ro

(1)
2l+1 (γ, ξ) +

+ a
(e)
l (γ)Ro

(4)
2l+1 (γ, ξ)

] ∂
∂v
So2l+1 (γ, η)− v̂

[
Ro2l+1′(1) (γ, ξ) +

+ a
(e)
l (γ)Ro2l+1′(4) (γ, ξ)So2l+1 (γ, η)

}
(4.15)
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Where the apix ”prime” means
∂

∂u
. Electric and magnetic field in the second medium are

expressed as follows:

E
(e)
2 = −8β

kγ

√
2π

ξ2 − η2
sinβz

∞∑
l=0

j(−1)l

N
(o)
2l+1 (γ)

a
(e)
l (γ)So2l+1 (γ, 0)

{
û

[
Ro

(4)
2l+1 (γ, ξ1)

Ro
(1)
2l+1 (γ, ξ1)

Ro
(1)
2l+1′ (γ, ξ)−

−Ro(4)2l+1′ (γ, ξ)

]
So2l+1 (γ, η) + v̂

[
Ro

(4)
2l+1 (γ, ξ1)

Ro
(1)
2l+1 (γ, ξ1)

Ro
(1)
2l+1 (γ, ξ)−Ro(4)2l+1 (γ, ξ1)

]
∂

∂v
So2l+1 (γ, η)

}

+ 8
√

2π
kt
k

cosβzẑ

∞∑
l=0

j(−1)la
(e)
l (γ)

N
(o)
2l+1 (γ)

[
Ro

(4)
2l+1 (γ, ξ1)

Ro
(1)
2l+1 (γ, ξ1)

Ro
(1)
2l+1 (γ, ξ)−

−Ro(4)2l+1 (γ, ξ1)

]
So2l+1 (γ, η)So2l+1 (γ, 0)

(4.16)

H
(e)
2 =

8jY1
γ

√
2π

ξ2 − η2
cosβz

∞∑
l=0

j(−1)l

N
(o)
2l+1 (γ)

a
(e)
l (γ)So2l+1 (γ, 0)

{
û

[
Ro

(4)
2l+1 (γ, ξ1)

Ro
(1)
2l+1 (γ, ξ1)

Ro
(1)
2l+1 (γ, ξ)

−Ro(4)2l+1 (γ, ξ)

]
∂

∂v
So2l+1 (γ, η)− v̂

[
Ro

(4)
2l+1 (γ, ξ1)

Ro
(1)
2l+1 (γ, ξ1)

Ro
(1)
2l+1′ (γ, ξ)−Ro

(4)
2l+1′ (γ, ξ)

]
So2l+1 (γ, η)

}
(4.17)

Following the same lead of the TEM solution it’s possible to analyze the behavior of the elec-

tromagnetic field considering no cavity that means ξ1 −→∞, from (Equation 3.15):

a
(e)
l (γ)

∣∣∣
ξ1→∞

= b
(e)
l (γ)

∣∣∣
ξ1→∞

= −
Ro

(1)
2l+1′ (c, 1)

(1 + ζ)Ro
(4)
2l+1′ (c, 1)
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Hence from (Equation 4.15) and (Equation 4.17):

H
(e)
1ξ

∣∣∣
ξ1−→∞

=
8jY1
γ

√
2π

ξ2 − η2
cosβz

∞∑
l=0

j(−1)l

N2l+1 (γ)
So2l+1 (γ, 0)

[
Ro

(1)
2l+1 (γ, ξ)−

−
Ro

(1)
2l+1′ (c, 1)

(1 + ζ)Ro
(4)
2l+1′ (c, 1)

Ro
(4)
2l+1 (γ, ξ)

]
∂

∂v
So2l+1 (γ, η)

(4.18)

H
(e)
2ξ

∣∣∣
ξ1−→∞

=
8jY1
γ

√
2π

ξ2 − η2
cosβz

∞∑
l=0

j(−1)l

N2l+1 (γ)
So2l+1 (γ, 0)

Ro
(1)
2l+1′ (c, 1)

(1 + ζ)Ro
(4)
2l+1′ (c, 1)

So2l+1 (γ, 0)×

×Ro(4)2l+1 (γ, ξ)
∂

∂v
So2l+1 (γ, η)

(4.19)

.

4.2 Surface current densities

Considering the same case of no closed cavity (ξ1 −→∞), according to the same reasoning

of the TEM solution, the surface current densities in the two sides of the structure can be

expressed as:

J
(e)
1z

∣∣∣
v=0,π

=
8

γZ1

√
2π

ξ2 − η2
cosβz

∞∑
l=0

j(−1)l

N2l+1 (γ)
So2l+1 (γ, 0)

[
Ro

(1)
2l+1 (γ, ξ)−

−
Ro

(1)
2l+1′ (c, 1)

(1 + ζ)Ro
(4)
2l+1′ (c, 1)

Ro
(4)
2l+1 (γ, ξ)

] (4.20)
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J
(e)
2z

∣∣∣
v=0,π

= − 8

γZ2

√
2π

ξ2 − η2
cosβz

∞∑
l=0

j(−1)l

N2l+1 (γ)
So2l+1 (γ, 0)

Ro
(1)
2l+1′ (γ, 1)

(1 + ζ)Ro
(4)
2l+1′ (γ, 1)

Ro
(4)
2l+1 (γ, ξ)

(4.21)

Since the propagation constant

kt =
√
k2 − β =

√
k2 −

(nπ
b

)2
= k

√
1−

(nπ
kb

)2

is zero at cutoff frequency, to have propagation it’s necessary that

kb > nπ

It’s arbitrarily chosen:

kb = π
√

2 (4.22)

So that only the lowest E-mode, for n = 1, that’s the fundamental mode. Given this

parameter it follows that:

β

k
=
kt
k

=
1√
2

= sin θ01 = sin θ02

Hence γ = c
kt
k

=
c√
2

The current densities on the plate are evaluated too, in the case of no

closed cavity (ξ1 −→∞):
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J (e)
∣∣∣
z=0;ξ1−→∞

= ẑ ×H(e)
∣∣∣
z=0;ξ1−→∞

= ẑ ×
[
ûH

(e)
ξ |z=0;ξ1−→∞ + v̂H(e)

v

∣∣∣
z=0;ξ1−→∞

]

J
(e)
1ξ

∣∣∣
v=0,ξ1−→∞

= − 8

γZ1

√
2π

ξ2 − η2
∞∑
l=0

j(−1)l

N2l+1 (γ)
So2l+1 (γ, 0)

[
Ro

(1)
2l+1′ (γ, ξ)−

−
Ro

(1)
2l+1′ (c, 1)

(1 + ζ)Ro
(4)
2l+1′ (c, 1)

Ro
(4)
2l+1′ (γ, ξ)

]
So2l+1 (γ, η)

(4.23)

J
(e)
2ξ

∣∣∣
v=0,ξ1−→∞

= − 8

γZ2

√
2π

ξ2 − η2
∞∑
l=0

j(−1)l

N2l+1 (γ)
So2l+1 (γ, 0)

Ro
(1)
2l+1′ (γ, 1)

(1 + ζ)Ro
(4)
2l+1′ (γ, 1)

Ro
(4)
2l+1′ (γ, ξ)

(4.24)

J
(e)
1v

∣∣∣
z=0;ξ1−→∞

= − 8

γZ1

√
2π

ξ2 − η2
∞∑
l=0

j(−1)l

N2l+1 (γ)
So2l+1 (γ, 0)

[
Ro

(1)
2l+1 (γ, ξ)−

−
Ro

(1)
2l+1′ (c, 1)

(1 + ζ)Ro
(4)
2l+1′ (c, 1)

Ro
(4)
2l+1 (γ, ξ)

]
∂

∂v
So2l+1 (γ, η)

(4.25)

J
(e)
2v

∣∣∣
z=0;ξ1−→∞

= − 8

γZ2

√
2π

ξ2 − η2
∞∑
l=0

j(−1)l

N2l+1 (γ)
So2l+1 (γ, 0)

Ro
(1)
2l+1′ (γ, 1)

(1 + ζ)Ro
(4)
2l+1′ (γ, 1)

×

×Ro(4)2l+1 (γ, ξ)
∂

∂v
So2l+1 (γ, η)

(4.26)
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Figure 3: parallel plate waveguide in reference system

Figure 4: Plane waves components of E-polarization solution



CHAPTER 5

SOLUTION FOR THE TE MODES

5.1 Oblique incidence, H-polarization (TE modes)

The solution to the differential equations system (Equation 4.2) for a wave propagating

along the negative y-axis, according to the reference system and considering the boundary

condition of zero tangential electric field on both planes z = 0 and z = d can be written as:



E
(h)
x = sin(βz)ejkty

H
(h)
y = −βY

jk
cos(βz)ejkty

H
(h)
z =

ktY

k
sin(βz)ejkty

(5.1)

Following the same principles of E-polarization solution, the electromagnetic field can be

schematized as two plane waves, both propagating in the negative y direction but in opposite

z directions. This is analytically and geometrically shown in (Equation 5.2) and in Figure 5 .



E
(h)
x =

1

2j

(
ejkty+βz − ejkty−βz

)
H

(h)
y = −βY

2jk

(
ejkty+βz + ejkty−βz

)
H

(h)
z =

ktY

2jk

(
ejkty+βz − ejkty−βz

)
(5.2)
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In the same way of E-polarization the first plane wave is propagating in direction k̂i1 =

−kt
k
ŷ − β

k
ẑ forming the angle θ01 with the negative z-axis, whereas the second plane is propa-

gating in direction k̂i2 = −kt
k
ŷ+

β

k
ẑ forming the angle θ02 with the negative z-axis.The positive

direction of x-axis enters the plane yz, in fact the E
(h)
x component, for the first plane wave

is positive and has the same direction of x,whereas the second one is negative and has the

opposite direction; the direction of E(h) is clearly shown in Figure 5, as well. The procedure

to analyze the scattering solution follows the same principles of the E-polarized field. From

(Equation 3.39) and (Equation 3.40), obtained in Chapter 3:

U
(h)
1 (ξ, η; c) = 4

√
2π

∞∑
l=0

(−1)l

N
(e)
2l

[
Re

(1)
2l (c, ξ) + a

(h)
l (c)Re

(4)
2l (c, ξ)

]
Se2l (c, η)Se2l (c, 0) (5.3)

U
(h)
2 (ξ, η; c) = 4

√
2π

∞∑
l=0

(−1)l

N
(e)
2l

b
(h)
l (c)

[
Re

(4)
2l ′ (c, ξ1)

Re
(1)
2l ′ (c, ξ1)

Re
(1)
2l (c, ξ)−Re(4)2l (c, ξ)

]
Se2l (c, η)Se2l (c, 0)

(5.4)

Applying the formulas of paper [2] for H-polarization, for both the plane waves, dividing by

two j and subracting the components it’s obtained:

E
(h)
l =

1

2j

(
− 2

k sin θ01
(sin kz cos θ01) (ẑ ×∇t)U (h)

l (ξ, η; c sin θ01)

)
+

1

2j

(
2

k sin θ02
(sin kz cos θ01) (ẑ ×∇t)U (h)

l (ξ, η; c sin θ02)

) (5.5)
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H
(h)
l =

1

2j

(
2jY

k
cot θ01 cos kz cos θ01∇tU (h)

l (ξ, η; c sin θ01) + 2jY sin θ01 sin kz cos θ01U
(h)
l (ξ, η; c sin θ01

)
−

− 1

2j

(
2jY

k
cot θ02 cos kz cos θ02∇tU (h)

l (ξ, η; c sin θ02)− 2jY sin θ02 sin kz cos θ02U
(h)
l (ξ, η; c sin θ02)

)
(5.6)

Like in the E-polarization solution it rules that:

k sin θ01 = k sin θ02 = kt

c sin θ01 = c sin θ02 =
ktd

2
= γ

k cos θ01 = β

k cos θ02 = −β

cot θ01
k

=
β

kkt
= −cot θ02

k

Therefore in the first medium it’s obtained

E
(h)
1 =

2j

kt
sinβz (ẑ ×∇t)U (h)

l (ξ, η; γ) (5.7)

H
(h)
l =

2Y β

kkt
cosβz∇tU (h)

1 (ξ, η; γ) +
2Y kt
k

sinβzU
(h)
l (ξ, η; γ) (5.8)
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Equations (Equation 5.7) and (Equation 5.8), in a more general form are in a paper by Arora,

Poort and Uslenghi, that is under review [5], [6].

The expressions in ellyptic-cylinder coordinates can be expressed as follows:

E
(h)
1 =

8j

γ

√
2π

ξ2 − η2
sinβz

∞∑
l=0

(−1)l

N
(e)
2l (γ)

Se2l (γ, 0)

{
− û

[
Re

(1)
2l (γ, ξ) + a

(h)
l (c)Re

(4)
2l (γ, ξ)

] ∂
∂v
Se2l (γ, η) +

+ v̂
[
Re

(1)
2l ′ (γ, ξ) + a

(h)
l (c)Re

(4)
2l ′ (γ, ξ)

]
Se2l (γ, η)

}
(5.9)

H
(h)
1 =

8Y β

kγ

√
2π

ξ2 − η2
cosβz

∞∑
l=0

(−1)l

N
(e)
2l (γ)

Se2l (γ, 0)

{
û
[
Re

(1)
2l ′ (γ, ξ) + a

(h)
l (γ)Re

(4)
2l ′ (γ, ξ)

]
Se2l (γ, η) +

+ v̂
[
Re

(1)
2l (c, ξ) + a

(h)
l (γ)Re

(4)
2l (γ, ξ)

] ∂
∂v
Se2l (γ, η)

}
+ ẑ

8Y kt
k

sinβz
√

2π
∞∑
l=0

(−1)l

N
(e)
2l

[
Re

(1)
2l (γ, ξ) +

+ a
(h)
l (c)Re

(4)
2l (γ, ξ)

]
Se2l (γ, η)Se2l (γ, 0)

(5.10)

Same equations rule for the second medium, but using U
(h)
2 :

E
(h)
2 =

8j

γ

√
2π

ξ2 − η2
sinβz

∞∑
l=0

(−1)l

N
(e)
2l (γ)

b
(h)
l (γ)Se2l (γ, 0)

{
− û
[Re(4)2l ′ (γ, ξ1)
Re

(1)
2l ′ (γ, ξ1)

Re
(1)
2l (γ, ξ)−

−Re(4)2l (γ, ξ)
] ∂
∂v
Se2l (γ, η) + v̂

[
Re

(4)
2l ′ (γ, ξ1)

Re
(1)
2l ′ (γ, ξ1)

Re
(1)
2l ′ (γ, ξ)−Re

(4)
2l ′ (γ, ξ)

]
Se2l (γ, η)

(5.11)
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H
(h)
2 =

8Y β

kγ

√
2π

ξ2 − η2
cosβz

∞∑
l=0

(−1)l

N
(e)
2l (γ)

b
(h)
l (γ)Se2l (γ, 0)

{
û
[Re(4)2l ′ (γ, ξ1)
Re

(1)
2l ′ (γ, ξ1)

Re
(1)
2l ′ (γ, ξ)−

−Re(4)2l ′ (γ, ξ)
]
Se2l (γ, η) + v̂

[Re(4)2l ′ (γ, ξ1)
Re

(1)
2l ′ (γ, ξ1)

Re
(1)
2l (γ, ξ)−Re(4)2l (γ, ξ)

] ∂
∂v
Se2l (γ, η)

}
+

+ 8
√

2π
Y kt
k

sinβzẑ
∞∑
l=0

(−1)l

N
(e)
2l

b
(h)
l (γ)

[
Re

(4)
2l ′ (γ, ξ1)

Re
(1)
2l ′ (γ, ξ1)

Re
(1)
2l (γ, ξ)

−Re(4)2l (γ, ξ)

]
Se2l (γ, η)Se2l (γ, 0)

(5.12)

Considering no closed cavity case: (ξ1 −→∞), from Chapter 3 (Equation 4.3)

a
(h)
l (γ) =

1

ζ
b
(h)
l (γ) = −

Re
(1)
2l (γ, 1)

(1 + ζ)Re
(4)
2l (γ, 1)

(5.13)

Follows that, from (Equation 5.10) and((Equation 5.12))

H
(h)
1ξ

∣∣∣
ξ1−→∞

=
8Y1
kγ

√
2π

ξ2 − η2
cosβz

∞∑
l=0

(−1)l

N
(e)
2l (γ)

Se2l (γ, 0)
[
Re

(1)
2l ′ (γ, ξ) +

+
Re

(1)
2l ′ (γ, ξ1)

ζRe
(4)
2l ′ (γ, ξ1)

Re
(4)
2l ′ (γ, ξ)

]
Se2l (γ, η)

(5.14)

H
(h)
2ξ

∣∣∣
ξ1−→∞

=
8Y2β

kγ

√
2π

ξ2 − η2
cosβz

∞∑
l=0

(−1)l

N
(e)
2l (γ)

Se2l (γ, 0)
[
Re

(1)
2l ′ (γ, ξ)−

−
Re

(1)
2l ′ (γ, ξ1)

Re
(4)
2l ′ (γ, ξ1)

Re
(4)
2l ′ (γ, ξ)

]
Se2l (γ, η)

(5.15)
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5.2 Surface current densities

In the case of H-polarization the surface currents on the wall, considering the cavity removed

to infinity:

J
(h)
1z

∣∣∣
ξ−→∞;v=0

= −8Y1β

kγ

√
2π

ξ2 − 1
cosβz

∞∑
l=0

(−1)l

N
(e)
2l (γ)

Se2l (γ, 0)
[
Re

(1)
2l ′ (γ, ξ)−

−
Re

(1)
2l (γ, 1)

(1 + ζ)Re
(4)
2l (γ, 1)

Re
(4)
2l ′ (γ, ξ)

]
Se2l (γ, 1) = J

(h)
1z

∣∣∣
ξ−→∞;v=π

(5.16)

J
(h)
2z

∣∣∣
ξ−→∞;v=π

= −8Y2β

kγ

√
2π

ξ2 − 1
cosβz

∞∑
l=0

(−1)l

N
(e)
2l (γ)

Se2l (γ, 0)×

× ζ

1 + ζ

Re
(1)
2l (γ, 1)

Re
(4)
2l (γ, 1)

Re
(4)
2l ′ (γ, ξ)Se2l (γ,−1) = J

(h)
2z

∣∣∣
ξ−→∞;v=2π

(5.17)

Like for E-modes, kt =
√
k2 − β2 =

√
1−

(nπ
b

)
is zero at cut-off, so to have just the

first H-mode in propagation it’s needed that kb > nπ. The same value chosen for E-modes

kb = π
√

2, so that

β

k
=
kt
k

=
1√
2

= sin θ01

γ = c
kt
k

=
c√
2

It’s possible to express the surface current densities on the plates (z = 0), ξ1 −→∞:

J (h)
∣∣∣
z=0;ξ1−→∞

= ẑ ×H(h)
∣∣∣
z=0;ξ1−→∞

= ẑ ×
[
ûH

(h)
ξ |z=0;ξ1−→∞ + v̂H(h)

v

∣∣∣
z=0;ξ1−→∞

]
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J
(h)
1ξ

∣∣∣
(z=0;ξ1−→∞)

= −H1v

∣∣∣
(z=0;ξ1−→∞)

= −8Y β

kγ

√
2π

ξ2 − η2
∞∑
l=0

(−1)l

N
(e)
2l (γ)

Se2l (γ, 0)

[
Re

(1)
2l (γ, ξ)−

−
Re

(1)
2l (γ, 1)

(1 + ζ)Re
(4)
2l (γ, 1)

Re
(4)
2l (c, ξ)

]
∂

∂v
Se2l (γ, η)

(5.18)

J
(h)
2ξ

∣∣∣
(z=0;ξ1−→∞)

= −H2v

∣∣∣
(z=0;ξ1−→∞)

= −8Y2β

kγ

√
2π

ξ2 − η2
∞∑
l=0

(−1)l

N
(e)
2l (γ)

Se2l (γ, 0)
ζ

1 + ζ
×

×
Re

(1)
2l (γ, 1)

Re
(4)
2l (γ, 1)

Re
(4)
2l (γ, ξ)

∂

∂v
Se2l (γ, η)

(5.19)

J
(h)
1v

∣∣∣
(z=0;ξ1−→∞)

= H1ξ

∣∣∣
(z=0;ξ1−→∞)

=
8Y1β

kγ

√
2π

ξ2 − η2
∞∑
l=0

(−1)l

N
(e)
2l (γ)

Se2l (γ, 0)
[
Re

(1)
2l ′ (γ, ξ)−

−
Re

(1)
2l (γ, 1)

(1 + ζ)Re
(4)
2l (γ, )

Re
(4)
2l ′ (γ, ξ)

]
Se2l (γ, η)

(5.20)

J
(h)
2v

∣∣∣
(z=0;ξ1−→∞)

= H2ξ

∣∣∣
(z=0;ξ1−→∞)

=
8Y2β

kγ

√
2π

ξ2 − η2
∞∑
l=0

(−1)l

N
(e)
2l (γ)

Se2l (γ, 0)×

× ζ

1 + ζ

Re
(1)
2l (γ, 1)

Re
(4)
2l (γ, 1)

Re
(4)
2l ′ (γ, ξ)Se2l (γ, η)

(5.21)
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Figure 5: Plane waves components of H-polarization solution



CHAPTER 6

NUMERICAL RESULTS

The surface current densities, theoretically derived for the three cases, are numerically

calculated in this section. To do this, an algorithm that produces as output the values of

Mathieu functions for the given variables is required. This algorithm was developed by professor

Erricolo and written in Fortran 90 language, the algorithm is explained in [7],[8],[9]. With the

support of these Fortran subroutines, a short piece of code was written to put together all the

terms needed to evaluate the various currents. Every result was written in a text file, read by

the software Matlab2018b and displayed in different graphs, to show the variations of amplitude

and phase of the surface current densities with respect to the impedances Z1, Z2, the c or γ

parameter, and with the elliptic-cylinder coordinates ξ and η. The parameters given are:

Z1 = Z0 = 120π Ω

with Z0 that stands for the intrinsic impedance in vacuum.

ζ =
Z1

Z2
= 0.5; 1.0; 2.0

c = 0.1; 0.5; 1.0; 2.0; 5.0; 10.0;

The graphs are plotted in function of ξ, over the range (1 < ξ < 5) with steps of ∆ξ = 0.1.
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6.1 Surface current densities for TEM case

Respectively in Figure 6 and Figure 7 are shown amplitude and phase of the surface current

densities Jz1 and Jz2 derived in (Equation 3.32), (Equation 3.33), for ζ = 0.5 and various values

of c, indicated in the legend.

In Figure 8, amplitude and phase of Jz1 and Jz2 for the three given values of ζ are repre-

sented.

6.2 Surface current densities for TM case

The expressions for the first TM mode of Jz1 and Jz2 in (Equation 4.20) and (Equation 4.21)

are practically similar to the TEM, but they are also function of the variable z through a cosine

relation: cosβz = cos
π

b
z

So, some chosen cases are shown in Figure 9, Figure 10 and Figure 11 of the currents as functions

of ξ and
z

b
, that means a 3D graph is needed to fully represent that double dependance.

For what concerns the surface current densities Jξ1 and Jξ2 of (Equation 4.23) and (Equation 4.24)

they are evaluated with the same procedure of Jz in the TEM case, with the difference that

they depend also on the variable η.

In Figure 12 and Figure 13 η is kept fixed at 1 and ζ is 0.5, moreover the parameter γ is

nothing else but the c indicated in the legend divided by
√

2 as consequence of having chosen

the first mode, see (Equation 4.22).

Since the results for the surface current densities Jξ1 and Jξ2 are evaluated just for 5 fixed

values of η it’s not possible to have a graph showing how they change keeping fixed ξ, γ and ζ for
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every values of the angular coordinate. However the values of the currents for the η considered

are:

η = (1;

√
2

2
; 0;−

√
2

2
;−1; )

∣∣∣Jξ1∣∣∣ = (0.0030; 0.0051; 0; 0.0051; 0.0030)

Φ(Jξ1) = (−0.3134;−0.1493; 0;−0.1493;−0.3134)

∣∣∣Jξ2∣∣∣ = (0.0017; 0.0013; 0; 0.0013; 0.0017)

Φ(Jξ2) = (0.9902; 0.9904; 0; 0.9904; 0.9902)

for ζ = 1, γ =

√
2

2
, ξ = 3.0 .

Same kind of analysis is done for Jv1 and Jv2 of equations (Equation 4.25), (Equation 4.26).

The graphs are reported in Figure 15, Figure 16 and Figure 17 for the same parameters of Jξ1

and Jξ2.

Like for the results of the surface current densities Jξ1 and Jξ2, the densities Jv1 and Jv2

are evaluated just for 5 fixed values of η, so it’s not possible to have a graph showing how they

change keeping fixed ξ, γ and ζ for every values of the angular coordinate. However the values

of the currents, amplitude and phase for the η considered are:

η = (1;

√
2

2
; 0;−

√
2

2
;−1; )

∣∣∣Jv1∣∣∣ = (0.0086; 0.0069; 0.0018; 0.0069; 0.0086)
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Φ(Jv1) = (−0.0776;−0.1298;−0.6622;−0.1298;−0.0776)

∣∣∣Jv2∣∣∣ = (0.0016; 0.0021; 0.0026; 0.0021; 0.0016)

Φ(Jv2) = (0.9838; 0.9837; 0.9834; 0.9837; 0.9838)

for ζ = 1, γ =

√
2

2
, ξ = 3.0

6.3 Surface current densities for TE case

The expressions for the first TE mode of Jz1 and Jz2 in (Equation 5.16) and (Equation 5.17),

in the same way of to the TM, they are also function of the variable z through a cosine relation:

cosβz = cos
π

b
z

So in Figure 18, Figure 19 and Figure 20 the currents as functions of ξ and
z

b
are reported, in

a 3D graph showing the double dependance.
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Figure 6: TEM mode: amplitude and phase of Jz1 for ζ = 0.5 :left side for c = (0.1; 1.0; 5.0),
right side for c = (0.5; 2.0; 10.0)
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Figure 7: TEM mode: amplitude and phase of Jz2 for ζ = 0.5 : left side for c = (0.1; 1.0; 5.0)
,right side for c = (0.5; 2.0; 10.0)
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Figure 8: TEM mode: amplitude and phase of Jz1(left side) and Jz2(right side) for ζ =
(0.5; 1.0; 2.0) and c = 0.5
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Figure 9: TM mode: amplitude of Jz1 and Jz2 w.r.t ξ and
z

b
with ζ = 0.5 and γ = 1

2
√
2

Figure 10: TM mode: amplitude of Jz1 and Jz2 w.r.t ξ and
z

b
with ζ = 1 and γ = 2√

2
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Figure 11: TM mode: amplitude of Jz1 and Jz2 w.r.t ξ and
z

b
with ζ = 2 and γ = 10√

2
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Figure 12: TM mode: amplitude and phase of Jξ1 for ζ = 0.5 : left side for γ = (
√
2

20 ;
√
2
2 ; 5√

2
),

right side for γ = (
√
2
4 ;
√

2; 10√
2
)
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Figure 13: TM mode:Amplitude and phase of Jξ2 for ζ = 0.5 : left side for γ = (
√
2

20 ;
√
2
2 ; 5√

2
)

,right side for γ = (
√
2
4 ;
√

2; 10√
2
)
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Figure 14: TM mode: amplitude and phase of Jξ1(left side) and Jξ2(right side) for ζ =

(0.5; 1.0; 2.0), γ =
√
2
2 , η =

√
2
2
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Figure 15: TM mode: amplitude and phase of Jv1 for ζ = 0.5 : left side for γ = (
√
2

20 ;
√
2
2 ; 5√

2
),

right side for γ = (
√
2
4 ;
√

2; 10√
2
)
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Figure 16: TM mode: Amplitude and phase of Jv2 for ζ = 0.5 : left side for γ = (
√
2

20 ;
√
2
2 ; 5√

2
)

,right side for γ = (
√
2
4 ;
√

2; 10√
2
)
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Figure 17: TM mode: amplitude and phase of Jv1(left side) and Jv2(right side) for ζ =

(0.5; 1.0; 2.0), γ =
√
2
2 , η =

√
2
2
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Figure 18: TE mode: amplitude of Jz1 and Jz2 w.r.t ξ and
z

b
with ζ = 0.5 and γ = 1

2
√
2

Figure 19: TE mode: amplitude of Jz1 and Jz2 w.r.t ξ and
z

b
with ζ = 1 and γ = 2√

2
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Figure 20: TE mode: amplitude of Jz1 and Jz2 w.r.t ξ and
z

b
with ζ = 2 and γ = 5√

2



CHAPTER 7

CONCLUSIONS

A new scattering problem has been presented in this thesis. The analysis is performed

considering a parallel-plate waveguide with a slotted wall inserted. Exact solutions, concerning

the expression of electric and magnetic field and surface current densities are given for the

TEM mode and for the TM and TE modes, using two important results obtained by professor

Uslenghi’s research. Numerical calculations of some the surface current densities in the various

cases are performed with a code developed by professor Erricolo, and the most remarkable

results are shown in the graphs.
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