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SUMMARY

The Internet of Things (IoT) is emerging as a new paradigm that connects an exponentially in-

creasing number of devices, including smartphones, wireless sensors, smart meters, health monitoring

devices, etc. The number of these devices keeps increasing and is estimated to reach billions in the next

five years. As a result, the data collected by these devices will grow at exponential rates. In many appli-

cations, unlocking the full power of these devices requires (i) communicating high volumes of data, and

(ii) analyzing and processing this data through computationally intensive algorithms at unprecedent-

edly high rates. This thesis focuses on the design, optimization, and implementation of communication

and computation algorithms by particularly focusing on computing devices; i.e., Internet of Computing

Things.

The first chapter of this thesis focuses on exploiting local area connections for delivering the same

video content to mobile devices within proximity of each other. More particularly, each can download

a portion of the content and cooperatively share it over Wi-Fi Direct links with each other. Unlike

traditional source-centric network control algorithms, which introduce high overhead and delay, we

develop a device-centric stochastic cooperation scheme instead. The proposed scheme reduces overhead

and improves the quality of service. We show the benefit of our scheme by a set of simulation.

The second chapter of this thesis focuses on energy-aware cooperative computation framework at the

edge. In this setup, a group of cooperative devices, within proximity of each other, (i) use their cellular

or Wi-Fi (802.11) links as their primary networking interfaces, and (ii) exploit their device-to-device

connections (e.g., Wi-Fi Direct) to overcome processing power and energy bottlenecks. We evaluate

xxi



SUMMARY (Continued)

our energy-aware cooperative computation framework on a real test-bed consisting of smartphones and

tablets, and we show that it brings significant performance benefits.

The third chapter focuses on device-to-device networks at the edge, where devices with heteroge-

neous capabilities including computing power, energy limitations, and incentives participate in D2D

activities heterogeneously. We develop (i) a device-aware routing and scheduling algorithm (DARS) by

taking into account device capabilities, and (ii) a multi-hop D2D testbed using Android-based smart-

phones and tablets by exploiting Wi-Fi Direct and legacy Wi-Fi connections. We show that DARS

significantly improves throughput in our testbed as compared to the state-of-the-art.

The fourth chapter focuses on predictive edge computing with hard deadlines. We design an algo-

rithm; PrComp, which (i) predicts the uncertain dynamics of resources of devices at the edge including

energy, computing power, and mobility, and (ii) makes sub-task offloading decisions by taking into

account the predicted available resources. We evaluate PrComp on a testbed consisting of real Android-

based smartphones and show that it significantly improves the energy consumption of edge devices and

task completion delay as compared to the baselines.

The fifth chapter focuses on seeking the possibility of utilizing social media to obtain and dissemi-

nate information during natural disasters. We find that there are areas where people can still access the

Internet even when 911 services are down. Furthermore, our analysis indicates that social media can

potentially help in disaster management and improve outcomes.

The sixth chapter focuses on dynamic heterogeneity-aware coded cooperative computation at the

edge. To exploit the potential of edge computing, we proposed Coded Cooperative Computation Pro-

tocol (C3P) to overcome the challenge caused by the heterogeneous and time-varying nature of edge
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devices. We show that C3P can improve task completion delay significantly as compared to baselines

via both simulations and in a testbed consisting of real Android-based smartphones.

The seventh chapter focuses on private and rateless adaptive coded computation at the edge. To take

into account the privacy requirement of IoT applications and the heterogeneous, time-varying resources

of edge devices, we develop a private and rateless adaptive coded computation (PRAC) algorithm. We

demonstrate the benefit of PRAC via a set of simulations and experiments in a testbed consisting of real

Android-based smartphones.
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CHAPTER 1

INTRODUCTION

The contents of this chapters are based on our work that is published in [2–8].©2014 IEEE. Reprinted,

with permission, from [2]. ©2016 IEEE. Reprinted, with permission, from [3].©2017 IEEE. Reprinted,

with permission, from [4]. ©2018 IEEE. Reprinted, with permission, from [5–7]. ©2019 SPIE. Reprinted,

with permission, from [8].

1.1 Motivation

New data-intensive applications are continuously emerging in the daily routines of mobile devices.

Furthermore, the number of edge devices, e.g., Internet of Things (IoT) keeps increasing and is esti-

mated to reach billions in the next five years [9]. Thus, the dramatic increase in throughput and connec-

tivity demand [10], [11], in addition to heterogeneous device capabilities, poses a challenge for current

and future wireless networks. One of the promising solutions is Device-to-Device (D2D) networking.

D2D networking, advocating the idea of connecting two or more devices directly without traversing

the core network, can potentially improve spectral efficiency, throughput, energy efficiency, delay, and

fairness [12]. Therefore, D2D networking is promising to address increasing data and connectivity de-

mand. Also, edge computing advocates that computationally intensive tasks in a device (master) could

be offloaded to other edge or end devices (workers) in close proximity via D2D networks. In this thesis,

several applications for such networks are proposed: (i) Wireless devices within the approximate among

each other could help each other processing computation tasks to increase throughput. This application

1
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is introduced in work Device-Centric Cooperation in Mobile Networks and Energy-Aware Cooperative

Computation in Mobile Devices; (ii) Cooperative wireless devices self-organize into a multi-hop net-

work for communication. This application is introduced in work Device-Aware Routing and Scheduling

in Multi-Hop Device-to-Device Networks; (iii) Wireless devices exploit computation task offloading

opportunities to nearby edge devices to reduce energy consumption while satisfying a hard deadline.

This application is introduced in work Predictive Edge Computing with Hard Deadlines; (iv) Wireless

devices exploits computation task offloading opportunities to nearby edge devices to reduce delay con-

sidering heterogeneous, time-varying resources and privacy requirement. This application is introduced

in work Dynamic Heterogeneity-Aware Coded Cooperative Computation at the Edge and PRAC: Private

and Rateless Adaptive Coded Computation at the Edge.

1.2 Device-Centric Cooperation in Mobile Networks

Cooperation among mobile devices by exploiting both cellular and local area connections is a

promising approach to meet the increasing demand for network throughput. More particularly, we

consider a group of cooperative mobile devices that are interested in the same content. Each mobile

device can download a portion and share it with its peers via D2D networks such as Wi-Fi Direct and

Bluetooth. Traditionally, network control algorithms such as backpressure make control decisions by

servers in the cloud. This approach introduces a significant amount of overhead over the cellular links.

Our approach is grounded on a network utility maximization (NUM) formulation of the problem and its

solution. The solution decomposes into several parts with an intuitive interpretation, such as flow con-

trol, scheduling over cellular links, and cooperation and scheduling over local area links. Based on the

structure of the decomposed solution, we develop a stochastic algorithm: Device-Centric Cooperation.
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We further evaluate our proposed scheme via a set of simulation to show it indeed reduces overhead and

delay.

1.3 Energy-Aware Cooperative Computation in Mobile Devices

D2D networking is a promising solution to address the ever-growing demand for throughput. In

D2D networks, due to close proximity among devices and the development of communication theory,

sometimes the processing power and energy become main scarce resources instead of bandwidth. We

carried out a pilot study to demonstrate that processing power can be the bottleneck of throughput.

When a mobile device downloading contents while performing computational intensive processing on

previously downloaded data, there is a significant decrease in throughput. In order to fully exploit

the potential of D2D networking, a new network mechanism is proposed. In this work, we develop

an energy-aware cooperative computation framework for mobile devices. In this setup, a group of

device that helps each other cooperatively by utilizing the high rate of D2D connections. In particular,

mobile devices are classified into two categories, receivers and helpers. At first, all mobile devices use

their cellular or Wi-Fi (802.11) links as their primary networking interfaces to download unprocessed

data from the source. The data then is processed and helpers forward processed data to receivers by

exploiting their D2D connections (Wi-Fi Direct) among them. Our framework is based on a Network

Utility Maximization (NUM) formulation of the problem and its solutions. The solution decomposes

into several parts with an intuitive interpretation, such as flow control, computation control, energy

control, and cooperation & scheduling. Based on the structure of the decomposed solution, we develop

a stochastic algorithm. Finally, we tested our energy-aware cooperative computation framework on a
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testbed consists of several Android-based smart devices. Results showed that our framework brings

significant performance benefits in terms of throughput and energy.

1.4 Device-Aware Routing and Scheduling in Multi-Hop Device-to-Device Networks

D2D networking also has the potential to address connectivity issues and data demand for IoT

devices. In particular, mobile devices and IoT devices can seek Internet connectivity via other devices

through D2D networks rather than base stations or access points. However, due to heterogeneous device

capabilities, energy constraint and incentives, how to design routing and scheduling in multi-hop D2D

networks is still an open problem. We propose a pilot study to illustrate that among different multi-hop

paths, it is crucial to determine which device should forward packets and provide higher throughput.

We develop NUM functions to formulate the optimization problem. Its solution is also provided and

decomposed into two parts, rate control and routing & scheduling. From the solutions, we develop our

Device-aware Routing and Scheduling (DARS) framework considering devices’ capabilities, energy,

and willingness. We then proposed a way to enable multi-group intercommunication for Wi-Fi direct by

utilizing both legacy Wi-Fi interfaces and Wi-Fi direct interfaces on real mobile devices. Finally, DARS

is implemented on such multi-hop networks with different topologies. We compared DARS with the

state-of-the-art and experimental results demonstrate the benefits of our algorithm.

1.5 Predictive Edge Computing with Hard Deadlines

IoT devices are often required performing computation-intensive tasks to analyze the data they col-

lected promptly. In many scenarios, those tasks have to be out-sourced to clouds since IoT devices

usually have very limited computing powers. Yet, offloading to remote clouds is costly in terms of delay

and availability. Edge computing is a promising approach for localized data processing for many edge
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applications and systems including Internet of Things (IoT), where computationally intensive tasks in

IoT devices could be divided into sub-tasks and offloaded to other IoT devices, mobile devices, and /

or servers at the edge. However, existing solutions on edge computing do not address the full range of

challenges, specifically heterogeneity; edge devices are highly heterogeneous and dynamic in nature.

In this work, we develop a predictive edge computing framework with hard deadlines. Our algorithm;

PrComp(i) predicts the uncertain dynamics of resources of devices at the edge including energy, com-

puting power, and mobility, and (ii) makes sub-task offloading decisions by taking into account the

predicted available resources, as well as the hard deadline constraints of tasks. We evaluate PrComp

on a testbed consisting of real Android-based smartphones and show that it significantly improves the

energy consumption of edge devices and task completion delay as compared to baselines.

1.6 The Evolving Nature of Disaster Management in the Internet and Social Media Era

Traditional means for contacting emergency responders depend critically on the availability of the

911 service to request help. Large-scale natural disasters such as hurricanes and earthquakes often result

in overloading and sometimes failure of communication facilities. Affected citizens are increasingly us-

ing social media to obtain and disseminate information. We firstly crawled millions of tweets sent in

affected areas during hurricane Harvey and Irma in 2017. We investigate tweets based on keyword

association and categorizing for disaster management. Furthermore, the status of the civilian communi-

cation infrastructure is monitored and we find that there exists a sizable number of people with access to

the Internet even in areas where 911 services were down. Also, they tweet disaster-related information

including requests for help. Our analysis indicates that social media can potentially help in disaster

management and improve outcomes.
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1.7 Dynamic Heterogeneity-Aware Coded Cooperative Computation at the Edge

We consider a master / worker cluster where there is one master requires to complete a computa-

tionally intensive task. We focus on the computation of linear functions. In particular, we assume that

the collector’s data is represented by a large matrix A and it wishes to compute the product y = Ax,

for a given vector x. The master can divide the task into subtasks and offload subtasks to workers

within proximity via D2D networks. Coded computation, which advocates mixing data in sub-tasks by

employing erasure codes and offloading these sub-tasks to other devices for computation, is recently

gaining interest, thanks to its higher reliability, smaller delay, and lower communication costs. In this

work, we utilize coded computation in edge devices to overcome the challenge brought by the hetero-

geneous and time-varying nature of edge devices and mitigate the affection of possible stragglers. We

formulate the coded cooperative computation problem as an optimization problem. We investigate the

non-ergodic and static solutions to this problem. As a dynamic solution to the optimization problem, we

develop a coded cooperative computation protocol (C3P), which is based on Automatic Repeat reQuest

(ARQ) mechanism. We evaluate C3P via simulations as well as in a testbed consisting of real Android-

based smartphones and show that (i) C3P improves task completion delay significantly as compared to

baselines, and (ii) the efficiency of C3P in terms of resource utilization is higher than 99%.

1.8 PRAC: Private and Rateless Adaptive Coded Computation at the Edge

The very nature of task offloading from a master to worker devices makes the computation frame-

work vulnerable to attacks. One of the attacks, which is also the focus of this work, is eavesdropper

adversary, where one or more of the workers can behave as an eavesdropper and can spy on the coded

data sent to these devices for computations. In this work, we consider a similar model as previous work
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where a master device requires to compute a large matrix multiplication y = Ax with the cooperation

of nearby helpers. In addition to heterogeneous and time-varying nature of edge devices, we also con-

sider the privacy requirement of IoT applications. We propose Private and Rateless Adaptive Coded

Computation (PRAC) to satisfy privacy conditions, which is any collection of a particular number of

colluding workers will not be able to obtain any information about matrixA, in an information-theoretic

sense. Each information matrix is padded with a linear combination of random keys to create a secure

matrix. We show that PRAC outperforms known secure coded computing methods when resources are

heterogeneous. We provide theoretical guarantees on the performance of PRAC and its comparison

to baselines. Moreover, we confirm our theoretical results through simulations and experiments in a

testbed consisting of real Android-based smartphones.

1.9 Thesis Contributions

The key contributions of this thesis are as follows:

1.9.1 Device-Centric Cooperation in Mobile Networks

• We consider a scenario where a group of cooperative mobile devices, exploiting both cellular and

local area links, are within proximity of each other, and are interested in the same content. We

propose a novel “device-centric cooperation” scheme for this scenario.

• We develop network utility maximization (NUM) formulation of the device-centric problem, and

provide its decomposed solution. Based on the structure of the decomposed solution, we develop

a stochastic device-centric algorithm; DcC. We show that DcC moves the functionality required

for cooperation to mobile devices without loss of optimality.
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• We evaluate our scheme via simulations for multiple mobile devices. The simulation results con-

firm that DcC reduces; (i) overhead; i.e., the number of control packets that should be transmitted

over cellular links, and (ii) the amount of delay that each packet experiences.

1.9.2 Energy-Aware Cooperative Computation in Mobile Devices

• We consider a group of cooperative mobile devices within proximity of each other. In this sce-

nario, we first investigate the impact of processing power to transmission rate. Then, we develop

an energy-aware cooperative computation model, where devices depending on their energy con-

straints could cooperate to get benefit of aggregate processing power in a group of cooperative

devices.

• We characterize our problem in a NUM framework by taking into account processing power,

energy, and bandwidth constraints. We solve the NUM problem, and use the solution to develop

our stochastic algorithm; energy-aware cooperative computation (EaCC). We show that EaCC

provides stability and optimality guarantees.

• An integral part of our work is to understand the performance of EaCC in practice. Towards this

goal, we develop a testbed consisting of Nexus 5 smartphones and Nexus 7 tablets. All devices

use Android 5.1.1 as their operation systems. We implement EaCC in this testbed, and evaluate it

for two applications; Byte Counting and Video Streaming. The experimental results show that our

algorithm brings significant performance benefits.
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1.9.3 Device-Aware Routing and Scheduling in Multi-Hop Device-to-Device Networks

• We consider a group of devices that form a multi-hop D2D network. We develop a network utility

maximization (NUM) formulation of the device-aware framework, which provides a systematic

approach to take into account device capabilities. We provide a decomposed solution of the NUM

formulation, and based on the structure of the solution, we develop a stochastic device-aware

routing and scheduling algorithm (DARS).

• An integral part of our work is to understand the performance of DARS in practice. Towards

this goal, we develop a testbed consisting of Nexus 5 smartphones, and Nexus 7 tablets. In this

testbed, mobile devices can be configured in a multi-hop topology using Wi-Fi Direct interfaces.

To the best of our knowledge, our implementation is the first that enables and supports real time

multi-hop forwarding (instead of store and forward mechanism [13] or using broadcast [14]) over

Android-based mobile devices with Wi-Fi Direct.

• We implemented DARS as well as the backpressure algorithm [15], which is a state-of-the-art

baseline on the testbed we developed. The experimental results show that DARS brings significant

performance benefits as compared to backpressure.

1.9.4 Predictive Edge Computing with Hard Deadlines

• We develop a resource prediction module for Android-based mobile devices. Our prediction

module determines the amount of delay and energy consumption when a task is processed locally

or remotely in an Android device. This module also predicts the mobility of devices.



10

• We develop online task scheduling algorithms PrComp for serial and parallel tasks by using the

predicted available resources. Our algorithms are based on the structure of the solution of an

optimal task scheduling problem.

• We evaluate our PrComp framework on a testbed consisting of real smartphones, and we show

that it brings significant performance benefits in terms of energy consumption and delay.

1.9.5 The Evolving Nature of Disaster Management in the Internet and Social Media Era

• We investigate how people call for help via social media, what kinds of help do they require and

where.

• We analyze what is the network status during the disaster and how that affects people when they

need to call for help.

• We process the tweets based on keyword association and categorized tweets for disaster manage-

ment.

• Our analysis indicates that social media can potentially help in disaster management and improve

outcomes.

1.9.6 Dynamic Heterogeneity-Aware Coded Cooperative Computation at the Edge

• We formulate the coded cooperative computation problem as an optimization problem. We in-

vestigate the non-ergodic and static solutions of this problem. As a dynamic solution to the opti-

mization problem, we develop a coded cooperative computation protocol (C3P), which is based

on Automatic Repeat reQuest (ARQ) mechanism. In particular, a collector device offloads coded
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sub-tasks to helpers gradually, and receives Acknowledgment (ACK) after each sub-task is com-

puted. Depending on the time difference between offloading a sub-task to a helper and its ACK,

the collector estimates the runtime of the helpers, and offloads more/less tasks accordingly. This

makes C3P dynamic and adaptive to heterogeneous and time-varying resources at helpers.

• We characterize the performance of C3P as compared to the non-ergodic and static solutions, and

show that (i) the gap between the task completion delays of C3P and the non-ergodic solution

is finite even for large number of sub-tasks, i.e., R → ∞, and (ii) the task completion delay of

C3P is approximately equal to the static solution for large numbers of sub-tasks. We also analyze

the efficiency of C3P in each helper in closed form, where the efficiency metric represents the

effective utilization of resources at each helper.

• We evaluate C3P via simulations as well as in a testbed consisting of real Android-based smart-

phones and show that (i) C3P improves task completion delay significantly as compared to base-

lines, and (ii) the efficiency of C3P in terms of resource utilization is higher than 99%.

1.9.7 PRAC: Private and Rateless Adaptive Coded Computation at the Edge

• We design PRAC for heterogeneous and time-varying private coded computing with colluding

workers. In particular, PRAC codes sub-tasks using Fountain codes, and determines how many

coded packets and keys each worker should compute dynamically over time.

• We provide theoretical analysis of PRAC and show that it (i) guarantees privacy conditions, and

(ii) uses minimum number of keys to satisfy privacy requirements. Furthermore, we provide a

closed form task completion delay analysis of PRAC.
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• We evaluate the performance of PRAC via simulations as well as in a testbed consisting of real

Android-based smartphones as compared to baselines.

1.10 Thesis Organization

The rest of the dissertation is organized as follows. In Chapter 2, we present our work on device-

centric cooperation in mobile networks. In Chapter 3, we present the work on energy-aware cooper-

ative computation in mobile devices. In Chapter 4, we present our work on device-aware routing and

scheduling in multi-hop device-to-device networks. In Chapter 5, we present our work on predictive

edge computing with hard deadlines. In Chapter 6, we present our work on the evolving nature of dis-

aster management in the Internet and social media era. In Chapter 7, we present our work on dynamic

heterogeneity-aware coded cooperative computation at the edge. In Chapter 8, we present our work on

PRAC: private and rateless adaptive coded computation at the edge. And in Chapter 9, we conclude the

thesis.



CHAPTER 2

DEVICE-CENTRIC COOPERATION IN MOBILE NETWORKS

The contents of this chapter are based on our works that are published in the proceedings of the

2014 IEEE CloudNet conference [2]. ©2014 IEEE. Reprinted, with permission, from [2].

The increasing popularity of applications such as video streaming in today’s mobile devices intro-

duces higher demand for throughput, and puts a strain especially on cellular links. Cooperation among

mobile devices by exploiting both cellular and local area connections is a promising approach to meet

the increasing demand. In this chapter, we consider that a group of cooperative mobile devices, ex-

ploiting both cellular and local area links and within proximity of each other, are interested in the same

video content. Traditional network control algorithms introduce high overhead and delay in this setup

as the network control and cooperation decisions are made in a source-centric manner. Instead, we

develop a device-centric stochastic cooperation scheme. Our device-centric scheme; DcC allows mo-

bile devices to make control decisions such as flow control, scheduling, and cooperation without loss

of optimality. Thanks to being device-centric, DcC reduces; (i) overhead; i.e., the number of control

packets that should be transmitted over cellular links, so cellular links are used more efficiently, and (ii)

the amount of delay that each packet experiences, which improves quality of service. The simulation

results demonstrate the benefits of DcC.

13



14

2.1 Background

The increasing popularity of applications such as video streaming in today’s mobile devices intro-

duces higher demand for throughput, and puts a strain especially on cellular links. In fact, cellular traffic

is growing exponentially and it is expected to remain so for the foreseeable future [16], [11].

Cooperation among mobile devices is a promising approach to meet the increasing throughput de-

mand over cellular links. In particular, when mobile devices are in the close proximity of each other and

are interested in the same content, device-to-device connections such as WiFi or Bluetooth can be oppor-

tunistically used to construct a cooperative system [17], [18]. Indeed, this scenario is getting increasing

interest [17]. E.g., a group of friends may be interested in watching the same video on YouTube, or a

number of students may participate in an online education class [17]. More details about the practicality

of this scenario is provided in [17]. To better illustrate this setup, we provide the following example.

Example 1. Let us consider Figure 1, where mobile device users in close proximity are interested in the

same video content. Figure 1(a) shows no-cooperation where each mobile device uses only its cellular

link to stream video. For example, if the cellular link rates are 100kbps, each user’s streaming rate will

be 100kbps. Figure 1(b) shows cooperation, where each mobile device uses cellular and local area links

simultaneously (these links operate simultaneously thanks to using different parts of the spectrum) to

stream video. Each user downloads 100kbps of video through their cellular connection, and 200kbps

from their neighbors. Thus, the streaming rate increases to 300kbps from 100kbps, which is a significant

improvement [17], [18]. One important problem, and is the focus of this chapter, is the design of a

stochastic control algorithm that is efficient in practice in terms of overhead and delay. �
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Figure 1. Mobile device users; A, B, and C are in close proximity, and interested in the same video

content. (a) No-cooperation. Each mobile device uses its own cellular link to stream video. (b)

Cooperation. Each mobile device uses cellular and local area links simultaneously to stream video.

Traditional network control algorithms such as backpressure [19], [20], [21] make control decisions

such as routing and scheduling (and cooperation decision in our problem setup) in a “source-centric”

manner. In our problem, this corresponds to the case that the servers in the cloud make decisions about

(i) the number of video packets that should be pushed to each mobile device, and (ii) the amount of

cooperation among mobile devices; i.e., the number of packets that each mobile device should transmit

to other mobile devices in its neighborhood. In order to make these decisions, video servers should

keep track of the states of the mobile devices, which includes queue sizes in mobile devices as well as

cellular link qualities towards each mobile device. This puts significant amount of overhead over the
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cellular links. Furthermore, when there is congestion over the cellular links, the state information, i.e.,

control packets can be delayed significantly, and the video servers may not make timely decisions such

as reducing or increasing the rates towards each mobile device. This increases end-to-end delay, which

may not fulfill quality of service (QoS) requirements of video streaming applications.

In this chapter, we develop a device-centric cooperation scheme to determine the number of video

packets each mobile device should receive via cellular links as well as from its neighbors. Our approach

is grounded on a network utility maximization (NUM) formulation of the problem and its solution

[22]. The solution decomposes into several parts with an intuitive interpretation, such as flow control,

scheduling over cellular links, and cooperation and scheduling over local area links. Based on the

structure of the decomposed solution, we develop a stochastic algorithm; Device-Centric Cooperation;

DcC.

The structure of the rest of the chapter is as follows. Section 2.2 gives an overview of the system

model. Section 2.3 presents the NUM formulation of our device-centric scheme. Section 2.4 presents the

stochastic device-centric cooperation algorithm; DcC. Section 2.5 evaluates DcC. Section 2.6 presents

related work.

2.2 System Model

In this section, we provide an overview of the device- and source-centric cooperation models demon-

strated in Figure 2.1 First, we provide a cooperative system setup that are common to both device- and

source-centric models.

1Note that we provide the source-centric model in addition to our device-centric model so that we can make a
connection and comparison between device- and source-centric schemes in the rest of the chapter.
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2.2.1 Cooperative System

Setup: We consider a cooperative system shown in Figure 2(a), where each mobile device is able to

connect to the Internet via cellular links1, and forward packets to other mobile devices through the local

links, e.g., Bluetooth or WiFi.

The cooperative system consist of N mobile devices and a source node. Note that the source node

represents video servers, proxies, and base stations. This representation allows us to focus on the bottle-

necks of the system, namely cellular links from the base station to the mobile devices and the local area

links [18]. N is the set of the mobile devices, where N = |N |. The mobile devices are interested in the

same content and they construct a cooperating group.2 We consider that time is slotted and t refers to

the beginning of slot t.

Cellular Links: Each mobile device k ∈ N is connected to the Internet via its cellular link. At slot

t, Cc(t) is the channel state vector of the cellular links, where Cc(t) = {Cc1(t), ..., Cck(t), ..., C
c
N (t)}.

We assume that Cck(t) is the state of the cellular links to mobile node k. We consider that cellular links

towards different mobile devices are interference free as interference could be handled by base stations.

Let ΓCc(t) denote the set of the link transmission rates feasible at time slot t for channel state Cc(t).

Local Area Links: In our setup, we consider that mobile devices are in close proximity and they hear

each other. Therefore, in the local area, each mobile device can connect to another device directly. This

1Note that our device-centric scheme is generic enough to include Internet connections via WiFi, but we only
focus on cellular links for Internet connection in this chapter to make the presentation and analysis simple.

2We consider that all mobile devices volunteer to cooperate without any malicious activity. This is possible in
our setup due to existing social ties as the mobile device users are in close proximity to each other.
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Figure 2. (a) Cooperative system. (b) Source-centric cooperation. (c) Device-centric cooperation.

gives us a fully connected topology. Depending on the underlying technology, local area transmissions

can be unicast (e.g., Bluetooth, or WiFi) or broadcast (can be achieved by extending WiFi [17]). In

our formulations, we consider both unicast and broadcast transmissions in the local area. We consider

protocol model in our formulations [23], where each mobile device can either transmit or receive at the

same time. Since our local area network is fully connected, only one mobile device can transmit in a

slot.

At slot t,Cw(t) is the channel state vector of the local area links, whereCw(t) = {Cw1,2(t), ..., Cwk,n(t),

..., CwN−1,N (t)}. We assume that Cwk,n(t) is the state of the wireless link between node k and n. Let

ΓCwu (t) denote the set of the link transmission rates feasible at time slot t for channel state Cw(t) for

unicast transmission. Similarly, ΓCwb (t) denote the set of the link transmission rates feasible at time slot

t for channel state Cw(t) for broadcast transmission.
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2.2.2 Source-Centric Model

The source-centric cooperation model is shown in Figure 2(b), where the source node transmits a

video flow to a set of mobile devices N . The flow generation rate at the source for mobile device k

is xk(t), k ∈ N . xk(t) is i.i.d. over the slots and their expected values; Ak = E[xk(t)], E[xk(t)
2]

are finite. Note that even if all mobile devices are interested in the same content, they may receive the

content at different rates. In video streaming applications, this corresponds to different levels of video

quality. Flow rate xk(t) is associated with a utility function Uk(xk(t)), which we assume to be strictly

concave function of xk(t).

Flow rate over the cellular link towards node k is maxn∈N {xk,n(t)}, where xk,k(t) is the rate

towards node k to help node k, while xk,n(t), k 6= n is the rate towards node k to help node n. The

flow rate over the cellular link is maximum of the rates, i.e., maxn∈N {xk,n(t)} as all mobile devices are

interested in the same content. Note that xk,k(t) is the rate over the cellular link towards node k, while

xk(t) is the flow generation rate for device k. Flow rate over the local area link from node k to node n

is hk,n(t), k 6= n. Note that hk,n(t) is to help node n using node k as a relay.

In the source-centric model, at time slot t, queue µk(t) is constructed at the source, and it queues

packets that will be transmitted to node k, and changes according to following dynamics at every time

slot t.

µk(t+ 1) ≤ max[µk(t)−
∑
n∈N

xn,k(t), 0] + xk(t) (2.1)
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At time slot t, queue νn,k(t) is the queue size at mobile device n, and it queues the packets that should

be transmitted to node k. νn,k(t) changes according to following dynamics at every time slot t.

νn,k(t+ 1) ≤ max[νn,k(t)− hn,k(t), 0] + xn,k(t) (2.2)

2.2.3 Device-Centric Model

In the device-centric model shown in Figure 2(c), a virtual source is added to the system and the

real source becomes a virtual sink. Node k receives packets with rate yk(t) from the virtual source

and forwards these packets to the virtual sink and other mobile devices. The transmission rate over the

cellular link from node k to the virtual sink is maxn∈N {gsk,s(t)}. The transmission rate from node k to

n is gkk,n(t).

Note that the flow rates; yk(t), gnk,s(t), gkk,n(t) are virtual flow rates. In our device-centric scheme,

these virtual flow rates are used to determine the real flow values; xk(t), xk,n(t), hk,n(t) as explained

in Section 2.4.

In the device-centric model, at time slot t, queue λk(t) is a virtual queue size constructed at node k.

λk(t) changes according to following dynamics at every time slot t.

λk(t+ 1) ≤ max[λk(t)− gkk,s(t)−
∑

n∈N−{k}

gkk,n(t), 0] + yk(t) (2.3)
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At time slot t, queue ηn,k(t) is a virtual queue size constructed at node n. ηn,k(t) changes according to

following dynamics at every time slot t.

ηn,k(t+ 1) ≤ max[ηn,k(t)− gkn,s(t), 0] + gkk,n(t) (2.4)

In addition to the virtual queues λk(t) and ηn,k(t), a real queue Qn,k(t) is constructed at node n and

evolves according to the following dynamics at every time slot t.

Qn,k(t+ 1) ≤ max[Qn,k(t)− hn,k(t), 0] + xn,k(t) (2.5)

Note that hn,k(t) is the amount of the real outgoing traffic from node n to k (i.e., from queue Qn,k), and

xn,k(t) is the amount of the real incoming traffic to node n from the source (i.e., to the queue Qn,k).

The relationship between the real and virtual queues as well as real and virtual flows are provided in

Section 2.4.

2.3 Device-Centric NUM

In this section, we formulate the device-centric network utility maximization (NUM) framework.

This approach sheds light into the structure of the our stochastic algorithm DcC, which we present in

the next section.1

1Note that NUM optimizes the average values of the parameters that are defined in Section 2.2. By abuse of
notation, we use a variable, e.g., φ as the average value of φ(t) in our NUM formulation if both φ and φ(t) refers
to the same parameter.
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2.3.1 Formulation

We provide NUM formulations for (i) unicast and (ii) broadcast transmissions in the local area. For

unicast setup, the NUM formulation is P-Unicast:

max
y,g

∑
k∈N

Uk(yk)

s.t. gkk,s +
∑

n∈N−{k}

gkk,n = yk, ∀k ∈ N

gkn,s = gkk,n, ∀k ∈ N , n ∈ N − {k}

{max
n∈N
{gnk,s}}∀k∈N ∈ ΓCc ,

{gkk,n}∀k∈N ,n∈N−{k} ∈ ΓCwu . (2.6)

The objective of P-Unicast is to determine y = {yk}k∈N , g = {gkn,s}k∈N ,n∈N which maximize the total

utility function;
∑

k∈N Uk(yk). The first constraint is the flow conservation constraint at node k; yk is

the incoming traffic rate from virtual source to node k, and gkk,s+
∑

n∈N−{k} g
k
k,n is the outgoing traffic

rate from node k to the virtual sink and the neighbors. The second constraint is the flow conservation

constraint at node n for node k’s flow; gkk,n is the incoming flow rate to node n from node k, and gkn,s is

the flow rate from node n towards virtual sink. The last two constraints are the capacity constraints over

cellular and local links.
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For broadcast setup, the NUM formulation is P-Broadcast. The objective function and the first three

constraints of P-Broadcast is the same as P-Unicast in Equation 2.6. The rest of the constraints of

P-Broadcast:

gkk,n ≤
∑

J∈H|k∈J ,n/∈J

fn,J , ∀k ∈ N , n ∈ N − {k}

{fn,J }∀n∈N ,J∈H|n/∈J ∈ ΓCwb . (2.7)

The first constraint in Equation 2.7 relates the broadcast transmission rate to the link rate. Let J be a

set of nodes, and H be the set of node combinations, i.e., J ∈ H. If packets are broadcast from node

n to node set J , each node k ∈ J can receive the packets (depending on the loss probability). In the

device-centric system, this corresponds to simultaneous transmission from nodes in J to node k. fn,J is

the broadcast rate in the source-centric system. Since there may be different J sets which contain node

k, fn,J is summed ∀J ∈ H|k ∈ J , n /∈ J to determine gkk,n. The second constraint in Equation 2.7 is

the broadcast capacity constraint.

2.3.2 Solution

Lagrangian relaxation of the first two constraints of both Equation 2.6 and Equation 2.7 gives the

following Lagrange function:

L =
∑
k∈N

Uk(yk) +
∑
k∈N

λk(g
k
k,s +

∑
n∈N−{k}

gkk,n − yk) +
∑
k∈N

∑
n∈N−{k}

ηn,k(g
k
n,s − gkk,n) (2.8)
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where λk and ηn,k are the Lagrange multipliers. Note that λk and ηn,k represent the virtual queue sizes

defined by Equation 2.3 and Equation 2.4. The values of λk and ηn,k are tracked at nodes k and n,

respectively. Note that these values are virtual values, and a counter is sufficient to keep track of these

values.

Equation 2.8 can be decomposed into several intuitive sub-problems such as rate control, and

scheduling. First, we solve the Lagrangian function with respect to yk:

yk = (U ′k)
−1(λk) (2.9)

where (U ′k)
−1 is the inverse of the derivative of Uk. Since Uk is strictly concave function of yk, yk is

inversely proportional to λk. This means that when the queue size λk increases, yk should reduce. In

the system implementation, node k requests yk packets from the real source (e.g., video server).

Second, we solve the Lagrangian for gkk,s and gkn,s:

max
g

∑
k∈N

[λkg
k
k,s +

∑
n∈N−{k}

ηk,ng
n
k,s]

s.t. {max
n∈N
{gnk,s}}∀k∈N ∈ ΓCc , (2.10)

After gkk,s and gnk,s are determined, node k requests maxn∈N {gnk,s} packets from the source through its

cellular link. Note that gkk,s and gnk,s are different from yk as yk is the total flow rate requested by node k

and this rate can be transmitted through both its cellular link or from the neighboring nodes, while gkk,s

and gnk,s are the rates over cellular links.
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Finally, we solve the Lagrangian with respect to gkk,n. Note that the solutions in Equation 2.9 and

Equation 2.10 holds for both P-Unicast and P-Broadcast. However, the solutions of P-Unicast and P-

Broadcast with respect to gkk,n differ as explained next. The solution of P-Unicast with respect to gkk,n

is: maxg
∑

k∈N
∑

n∈N−{k}(λk − ηn,k)gkk,n subject to the last two constraints of Equation 2.6. The

solution of P-Broadcast with respect to gkk,n is: maxg
∑

k∈N
∑

n∈N−{k}(λk − ηn,k)gkk,n subject to all

the constraints in Equation 2.7.

Next, we design our stochastic algorithm; Device-Centric Cooperation (DcC) based on the struc-

ture of the decomposed NUM solutions, i.e., Equation 2.9 and Equation 2.10 as well as the local area

scheduling solution presented above.

2.4 Device-Centric Cooperation (DcC)

Now, we provide our Device-Centric Cooperation (DcC) algorithm which includes rate control,

cellular link scheduler and cooperation & local area link scheduler. Note that both unicast and broadcast

setups have the same rate control and cellular link scheduling parts. The only different part is the

cooperation & local area link scheduling as explained later.

Device-Centric Cooperation (DcC):

• Rate Control: At every time slot t, the rate controller at node k determines the number of packets

that should be requested from the source according to;

max
y

[MUk(yk(t))− λk(t)yk(t)]

s.t. yk(t) ≤ Rmaxk (2.11)
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where Rmaxk is be a positive constant larger than the cellular rate from the actual source, and M

is a large positive constant. The values of Rmaxk and M are important for the stability of the DcC

algorithm [24]. yk(t) is the number of packets that will be requested from the source.

• Cellular Link Scheduler: At every time slot t, the cellular link scheduler at node k determines the

number of packets requested through the cellular links.

max
g

λk(t)g
k
k,s(t) +

∑
n∈N−{k}

(ηk,n(t)−Qk,n(t))gnk,s(t)

s.t. {gnk,s(t)}∀n∈N ∈ ΓCc(t). (2.12)

After gkk,s(t) and gnk,s(t) are determined, the real flow rates are determined as xk,k(t) = gkk,s(t) and

xk,n(t) = gnk,s(t)− β, where β > 0 can be chosen to be arbitrarily small, and maxn∈N {xk,n(t)}

amount of video packets are requested from the source by node k.

• Cooperation & Local-Area Link Scheduler for Unicast: At time slot t, the link rate gkk,n(t) is

determined by;

max
g

∑
k∈N

∑
n∈N−{k}

[λk(t)− ηn,k(t) +Qn,k(t)]g
k
k,n(t)

s.t. {gkk,n(t)}∀k∈N ,n∈N−{k} ∈ ΓCwu (t). (2.13)

After gkk,n(t) is determined, hn,k(t) = gkk,n(t) amount of video packets is requested from node n

by node k.
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• Cooperation & Local-Area Link Scheduler for Broadcast: At time slot t, the link broadcast rate

is determined by;

max
f

∑
k∈N

∑
n∈N−{k}

∑
J∈H|k∈J ,n/∈J

[λk(t)− ηn,k(t) +Qn,k(t)]fn,J(t)

s.t. {fn,J (t)}∀n∈N ,J∈H|k/∈J ∈ ΓCwb (t) (2.14)

After fn,J (t) is determined, fn,J (t) amount of video packets are transmitted from node n to

nodes in J . The optimum value of gkk,n(t) is gkk,n(t) =
∑
J∈H|k∈J ,n/∈J fn,J (t), ∀k ∈ N , n ∈

N − {k}. Therefore, the real transmission rate of over each link is equal to hn,k(t) = gkk,n(t) =∑
J∈H|k∈J ,n/∈J fn,J (t), ∀k ∈ N , n ∈ N − {k}.

Theorem 1. If channel states are i.i.d. over time slots, and the arrival rates E[yt(t)] = Ak, ∀k ∈ N

are interior of the stability region of cellular and local area links, then DcC stabilizes the network and

the total average queue sizes, including both virtual and real queues, are bounded for both unicast and

broadcast setups.

Proof: The proof is provided in [24]. �

Theorem 2. If the channel states are i.i.d. over time slots, and the traffic arrival rates are controlled by

the rate control algorithm in Equation 2.11, then the admitted flow rates converge to the utility optimal

operating point with increasing M .

Proof: The proof is provided in [24]. �
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2.5 Evaluation of Device-Centric Cooperation

In this section, we evaluate our DcC algorithm as compared to Source-Centric Cooperation (ScC),

and highlight the benefits of DcC over ScC. Therefore, we first provide a brief description of ScC

algorithm in the following.

2.5.1 Source-Centric Cooperation (ScC)

• Rate Control: At every time slot t, the source node determines xk(t);

max
x

[MUk(xk(t))− µk(t)xk(t)]

s.t. xk(t) ≤ Rmaxk (2.15)

• Cellular Link Scheduler: At every time slot t, the source node determines xk,k(t) and xn,k(t);

max
x

µk(t)xk,k(t) +
∑

n∈N−{k}

(µk(t)− νn,k(t))xn,k(t)

s.t. {xn,k(t)}∀n∈N ∈ ΓCc(t). (2.16)

• Cooperation & Local-Area Link Scheduler for Unicast: At time slot t, node n determines the link

rate hn,k(t);

max
h

∑
k∈N

∑
n∈N−{k}

νn,k(t)hn,k(t)

s.t. {hn,k(t)}∀k∈N ,n∈N−{k} ∈ ΓCwu (t). (2.17)
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• Cooperation & Local-Area Link Scheduler for Broadcast: At time slot t, node n determines the

broadcast rate;

max
f

∑
k∈N

∑
n∈N−{k}

∑
J inH|k∈J ,n/∈J

νn,k(t)fn,J(t)

s.t. {fn,J (t)}∀n∈N ,J∈H|k/∈J ∈ ΓCwb (t) (2.18)

where hn,k(t) =
∑
J∈H|k∈J ,n/∈J fn,J (t).

2.5.2 Benefits of DcC over ScC

In this section, we explain the benefits of DcC over ScC in terms of overhead, delay, and practical

deployment.

Overhead: ScC determines xk(t), xk,k(t), and xn,k(t) at the source node according to Equa-

tion 2.15, and Equation 2.16. Therefore, the source node should know the queue sizes; µk(t), νn,k(t),

and cellular downlink properties ΓCc(t). Although µk(t) is constructed at the source node, νn,k(t) is

constructed at mobile devices, and the cellular downlink properties ΓCc(t) are usually measured by mo-

bile devices. Therefore, νn,k(t) and ΓCc(t) should be carried to the source node from each mobile device

over a cellular uplink. These control messages introduce O(N) overhead over each cellular uplink.

On the other hand, in DcC, mobile devices construct all the real and virtual queues and make all

decisions. E.g., mobile device k determines and requests xk(t) and maxn∈N {xk,n(t)} amount of video

packets from the source. These request messages introduce O(1) overhead over each cellular uplink.

Thus, DcC reduces the overhead from O(N) to O(1), which is significant considering the fact that

cellular link capacities are limited as the demand for cellular links is already high and keeps increasing
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[16], [11]. Furthermore, since DcC introduces constant overhead over the cellular links, it provides

scalability.

Delay: DcC improves packet delay over ScC thanks to employing virtual queues. Indeed, although

the virtual queue sizes could be large in DcC, the real queue sizes could be significantly small as com-

pared to the real queue sizes in ScC. Furthermore, the loss of control packets carrying queue size and

cellular link quality information over cellular links increases real queue sizes in ScC. On the other hand,

DcC makes all the decisions using local information in the mobile devices, so control packets are not

carried over cellular links (only packet request messages are carried over the cellular links in DcC), so

the loss of control packets does not affect DcC as much as ScC. The simulation results provided in the

next section demonstrate the benefit of DcC in terms of delay as compared to ScC.

Practical Deployment: With the introduction of Dynamic Adaptive Streaming over HTTP (DASH)

or MPEG-DASH [25], there is an increasing interest to client-based video streaming applications, e.g.,

Netflix uses DASH [26]. According to DASH, the clients request video chunks at different rates using

their connection level measurements. Our device-centric approach, since it operates at the client side,

could be easily engaged with DASH to develop cooperative video streaming applications. Note that this

could not be possible in ScC as it requires the video servers to be involved in the decision of which

video chunks should be transmitted to the clients. We believe that our approach could be used to extend

DASH for cooperative video streaming in mobile devices.
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Figure 3. Average rate per mobile device in unicast and broadcast scenarios for (a) DcC and (b) ScC.

(c) Percentage of overhead vs packet size.

2.5.3 Simulation Results

In this section, we demonstrate the benefits of DcC over ScC in terms of overhead and delay through

simulations. We consider a cooperative video streaming system and topology shown in Figure 2 for

different number of users.

Figure 3 presents the average rate per mobile device versus number of users for DcC and ScC. In

this setup, the cellular and local area link rates are the same and 1 unit, and there is no loss over the

links. As seen, in both DcC and ScC, broadcast improves over unicast as local area resources are used

more efficiently. More importantly, DcC and ScC achieve the same rates for both unicast and broadcast,

which is expected from Theorem 2. Note that we do not take into account the effect of overhead in this

simulation, i.e., the length of control packets are zero bytes.

Let us now consider overhead. We consider that queue size and channel state information are carried

using 4 bytes from the mobile devices to the video servers in ScC, and the video rate request messages

are carried from the mobile devices to the video servers using 4 bytes in DcC. The percentage of the
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Figure 4. Queue Sizes. (a) ScC. Queue sizes at the source. (b) ScC. Queue sizes at the mobile devices.

(c) DcC. Real queue sizes at the mobile devices. (d) Virtual queue sizes at the mobile devices.

overhead as compared to packet size, which we assume to be 1000 bytes is presented in Figure 3(c). The

overhead of ScC is increasing with the increasing number of users, while the overhead does not change

with the increasing number of users for DcC. For example, the overhead is almost 20% when the number

of mobile devices is 50. This means that 20% of the cellular link capacities should be allocated to carry

the control messages in ScC. On the other hand, the overhead of DcC is small for any number of mobile

devices.

Figure 4 presents queue size vs time for DcC and ScC. In this setup, both cellular and local area link

rates are 1 units, and there is no loss over the links. As seen, the real queue sizes of ScC; i.e., µk(t) and

νk(t), could be very large, up to 75 packets. On the other hand, although virtual queue sizes could be

also large in DcC, the real queue sizes; Qn,k(t) is very low. Thus, our scheme reduces queueing delay.

Figure 5 presents transmission rate towards each user versus the loss probability over the cellular

links. In this setup, both cellular and local area link rates are 1 units, and there is loss only over the

cellular links, i.e., there is no loss over the local-area links. As expected, in both DcC and ScC, flow
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Figure 6. Rate versus loss probability over the cellular links. (a) DcC. (b) ScC.

rates decrease with increasing loss probability. However, DcC improves over ScC when the loss rate

increases, because control packets are lost over the cellular links at high loss rates, and the source cannot

make correct decisions in ScC. Figure 6 shows the average queue size versus the loss probability for the

same setup. In particular, queue sizes are averaged over time and per-node queues. For example, λavg is

the average queue size of λ1, λ2, and λ3 which are time averages of λ1(t), λ2(t), and λ3(t), respectively.

As seen, although the virtual queue sizes increase in DcC with the increasing loss probability, the real

queue size Qavg is very small and does not really increase with the increasing loss probability. On

the other hand, the queue sizes in ScC, which are already very high as compared to DcC, increase

significantly with increasing loss rate, which introduces significant delay.
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2.6 Related Work

This work combines ideas from cooperation, network utility maximization, and stochastic network

control.

When several users are interested in the same content, cooperative streaming is promising to improve

throughput. For instance, [27], [28], [29] consider a scenario in which device-to-device and cellular

connections are used to disseminate the content, considering the social ties and geographical proximity

for cooperation. Cooperation between mobile devices for content dissemination taking into account

social ties, has been studied extensively [30,31]. Cooperative video streaming systems are implemented

over mobile devices in [32, 33]. As compared previous work, the goal of this chapter is to design

device-centric cooperation scheme.

The NUM framework is promising to understand how different layers and/or algorithms, such as

flow control, congestion control, and routing should be designed and optimized [22], [34]. We follow a

similar approach, but we formulate the NUM framework considering the specific requirements such as

device-centric design of the cooperative mobile devices.

The traditional source-centric, and backpressure-based stochastic network control algorithms have

emerged from the pioneering work in [19], [20], which showed that in wireless networks where nodes

route packets and make scheduling decisions based on queue backlog differences, one can stabilize

queues for any feasible traffic. It has also been shown that backpressure can be combined with flow con-

trol to provide utility-optimal operation guarantee [21]. Recently, receiver-based flow control scheme

is developed for overloaded networks [35]. As compared to previous work, our scheme is designed

for cooperative mobile devices, and it creates virtual flows and queues to move control functionality to
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mobile devices, and reduces the overhead over cellular links and delay, which was not the focus of the

previous work.



CHAPTER 3

ENERGY-AWARE COOPERATIVE COMPUTATION IN MOBILE DEVICES

The contents of this chapters are based on our work that is published in the proceedings of 2016 IFIP

Networking conference [3] and a journal under submission. ©2016 IEEE. Reprinted, with permission,

from [3].

New data intensive applications, which are continuously emerging in daily routines of mobile de-

vices, significantly increase the demand for data, and pose a challenge for current wireless networks

due to scarce resources. Although bandwidth is traditionally considered as the primary scarce resource

in wireless networks, the developments in communication theory shifts the focus from bandwidth to

other scarce resources including processing power and energy. Especially, in device-to-device networks,

where data rates are increasing rapidly, processing power and energy are becoming the primary bottle-

necks of the network. Thus, it is crucial to develop new networking mechanisms by taking into account

the processing power and energy as bottlenecks. In this chapter, we develop an energy-aware coopera-

tive computation framework for mobile devices. In this setup, a group of cooperative mobile devices,

within proximity of each other, (i) use their cellular or Wi-Fi (802.11) links as their primary networking

interfaces, and (ii) exploit their device-to-device connections (e.g., Wi-Fi Direct) to overcome process-

ing power and energy bottlenecks. We evaluate our energy-aware cooperative computation framework

on a testbed consisting of smartphones and tablets, and we show that it brings significant performance

benefits.

36
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3.1 Background

The dramatic increase in mobile applications and the number of devices demanding for wireless

connectivity poses a challenge in today’s wireless networks, and calls for new networking mechanisms.

One of the promising solutions to address the increasing data and connectivity demand is Device-

to-Device (D2D) networking. As illustrated in Figure 7(a), the default operation in current wireless

networks is to connect each device to the Internet via its cellular or Wi-Fi interface. The D2D connec-

tivity idea, which is illustrated in Figure 7(b), breaks this assumption: it advocates that two or more

devices in close proximity can be directly connected, i.e., without traversing through auxiliary devices

such as a base station or access point. D2D networking, that can be formed by exploiting D2D connec-

tions such as Wi-Fi Direct [36], is a promising solution to the ever increasing number and diversity of

applications and devices. In this context, it is crucial to identify scarce resources and effectively utilize

them to fully exploit the potential of D2D networking.

Although bandwidth is traditionally considered as the primary scarce resource in wireless networks,

in D2D networks, thanks to close proximity among devices and the developments in communication

theory, the main bottleneck shifts from bandwidth to other scarce resources including processing power

and energy.

Next, we present our pilot study demonstrating that processing power can be more pronounced as a

bottleneck than bandwidth in D2D networks.

Pilot Study: We developed a prototype for this pilot study as shown in Figure 8(a), where a mobile

device D2 receives data from another device D1 over a Wi-Fi Direct link. We use Android operating

system [37] based Nexus 7 tablets [38] as mobile devices. In this experiment, after receiving the packets,
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Figure 7. (a) The default operation for the Internet connection. (b) D2D connectivity: two or more

mobile devices can be connected directly, i.e., without traversing through the core network, if they are

in close proximity by exploiting local area connections such as Wi-Fi Direct

the mobile device D2 performs operations with complexities of O(1), O(n), and O(n2) above the

transport layer (TCP), where n is the packet size, and the operations we perform are counting the bytes

in the packets. In particular, O(1), O(n), and O(n2) correspond to (i) no counting, (ii) counting every

byte in a packet once, and (iii) counting every byte in a packet n times, respectively. We demonstrate in

Figure 8(b) the received rate at the mobile device D2 (note that this is the rate we measure at the mobile

device D2 after performing computations) versus time. This figure demonstrates that the received rate

decreases significantly when the complexity increases. �

Our pilot study shows that even if actual bandwidth is high and not a bottleneck, processing power

could become a bottleneck in D2D networks. Similar observations can be made for the energy bot-

tleneck. Furthermore, with the advances in communication theory, e.g., millimeter wave communica-

tion [39], it is expected that data rates among devices in close proximity will increase significantly,

which will make processing power and energy more pronounced as bottlenecks. However, existing
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Figure 8. Pilot Study: (a) Setup: Data is transmitted from mobile device D1 to another mobile device

D2. In this setup, the mobile devices are Android operating system (OS) based Nexus 7 tablets. The

specific version of the Anroid OS is Android Lollipop 5.1.1. The devices have 16GB storage, 2GB

RAM, Qualcomm Snapdragon S4 Pro, 1.5GHz CPU, and Adreno 320, 400MHz GPU. Packet size is

500B. (b) Transmission rate versus time for different computational complexities at the receiver side.

Note that we present the rate that we measure at the mobile device after performing the computations.

The presented rates are the averages over 10 seeds

applications, algorithms, and protocols are mainly designed by assuming that bandwidth is the main

bottleneck. Thus, it is crucial to develop new networking mechanisms when bandwidth is not the pri-

mary bottleneck, but processing power and energy are.

In this chapter, our goal is to create group of devices that help each other cooperatively by exploiting

high rate D2D connections to overcome the processing power and energy bottlenecks. The next example

demonstrates our approach.
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Example 2. Let us consider Figure 7(a) again, where device D1 would like to receive a file from a

remote resource via its cellular or Wi-Fi connection. Assume that the cellular (or Wi-Fi) rates of all de-

vices are 1Mbps, but device D1 can receive data with 500kbps rate due to processing power bottleneck,

i.e., deviceD1 has limited processing power (similar to our pilot study we presented earlier). In a tradi-

tional system, D1 will behave as a single end point, so its receiving rate will be limited to 500kbps. On

the other hand, if devices D1, D2, and D3 will behave as a group and cooperate, then devices D2 and

D3 can also receive and process 500kbps portions of data, and transmit the processed data to device

D1 over D2D connections. This increases the receiving rate of device D1 to 1.5Mbps from 500kbps,

which is a significant improvement.

This example could be extended for scenarios when energy (battery of mobile devices) is limited.

For example, if device D2’s battery level is too low, its participation to the group activity should be

limited. �

Application Areas. The scenario in the above motivating example could arise in different practical

applications from health, education, entertainment, and transportation systems. The following are some

example applications. Health: A person may own a number of health monitoring devices (activity

monitoring, hearth monitoring, etc.) which may need updates from the core network. These updates

- potentially coded for error correction, compression, and security reasons - should be processed (de-

coded) by these devices. Processing takes time, which may lead to late reaction to the update (which

may require timely response) and energy consumption. On the other hand, by grouping mobile devices,

the person’s smartphone or tablet could receive the update, process, and pass the processed data to the

health monitoring devices via high rate D2D links. Education & Entertainment: A group of students
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may want to watch the video of a lecture from an online education system (or an entertainment video)

while sitting together and using several mobile devices. In this setup, one of the devices can download

a base layer of a video and decode, while the other devices could download enhancement layers and

decode. The decoded video layers could be exchanged among these mobile devices via high rate D2D

links. As in the motivating example, if a device’s download and decoding rate is limited to 500kbps, it

could be improved to 1.5Mbps with the help of other devices. �

Note that the processing overhead in these applications could be due to any computationally inten-

sive task related to data transmission. For example, for video transmission applications, H.264/AVC

decoders introduce higher computational complexity when higher quality guarantees are needed [40],

[41]. Another example could be network coding; data could be network coded at the source to im-

prove throughput, error correction, packet randomization potential of network coding [42]. However,

most of the network coding schemes introduce high computational complexity at the receiver side;

O(n3), [43], [44], which limits the transmission rate. Encryption could be another example that intro-

duces processing overhead [45]. As seen, there exist several applications and scenarios where band-

width and energy could be bottlenecks, while bandwidth is not the bottleneck. This makes our approach

demonstrated in Example 2 part promising.

In this work, we develop an energy-aware cooperative computation framework for mobile devices.

In this setup, a group of cooperative mobile devices, within proximity of each other, (i) use their cellular

or Wi-Fi (802.11) links as their primary networking interfaces, and (ii) exploit their D2D connections

(Wi-Fi Direct) for cooperative computation. Our approach is grounded on a network utility maximiza-

tion (NUM) formulation of the problem and its solution [22]. The solution decomposes into several
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parts with an intuitive interpretation, such as flow control, computation control, energy control, and

cooperation & scheduling. Based on the structure of the decomposed solution, we develop a stochastic

algorithm; energy-aware cooperative computation.1

The structure of the rest of the chapter is as follows. Section 3.2 presents related work. Section 3.3

gives an overview of the system model. Section 3.4 presents the NUM formulation of our cooperative

computation scheme. Section 3.5 presents our stochastic algorithm; EaCC. Section 3.6 evaluates the

performance of our scheme in a real testbed.

3.2 Related Work

This work combines ideas from D2D networking, network utility maximization, and stochastic net-

work control.

The idea of D2D networking is very promising to efficiently utilize resources, so it has found several

applications in the literature. In particular, D2D connections are often used to form cooperative groups

for data streaming applications, and for the purpose of (i) content dissemination among mobile devices

[30], [31], (ii) cooperative video streaming over mobile devices [17], [18], [32], [33], and (iii) creating

multiple paths and providing better connectivity by using multiple interfaces simultaneously [48], [49].

As compared to this line of work, we investigate the impact of processing power and energy in D2D

networks, and develop mechanisms to effectively utilize these scarce resources.

1Note that our work focuses on cooperative resource utilization in mobile devices. In this sense, our work is
complementary to and synergistic with: (i) creating incentive mechanisms in D2D networks, and (ii) providing
privacy and security for D2D users [46], [47]. Looking into the future, it is very likely that our proposed work on
the design, analysis, and implementation of cooperative resource utilization is gracefully combined with the work
on creating incentives and providing privacy and security.
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D2D networking is often used for the purpose of offloading cellular networks. For example, pre-

vious work [27], [28], [30] disseminates the content to mobile devices by taking advantage of D2D

connections to relieve the load on cellular networks. Instead of offloading to cellular networks, our

goal is to create energy-aware cooperation framework to overcome the processing power and energy

bottlenecks of mobile devices.

There is an increasing interest in computing by using devices at the edge [50], [51], [52], [53] as a

cheaper and delay-efficient alternative to remote clouds. This approach, sparking a lot of interest, led to

some very interesting work in the area [54], [55], [56]. As compared to this line of work, we focus on

processing power and energy bottlenecks in mobile devices and address the problem by (i) exploiting

D2D connections, and (ii) developing energy-aware cooperative computation mechanism.

An integral part of our proposed work in this task is to develop efficient resource allocation mech-

anisms. In that sense, our approach is similar to the line of work emerged after the pioneering work

in [19], [20], [21]. However, our focus is on energy-aware cooperative computation, which is not con-

sidered in previous work.

3.3 System Model

We consider a cooperative system setup with N mobile devices, where N is the set of the mobile

devices. Our system model for three nodes is illustrated in Figure 9(a). The source in Figure 9(a)

represents the core network and base stations (access points). This kind of abstraction helps us focus on

the bottlenecks of the system; processing power, energy of mobile devices, and downlink/uplink data

rates. In this setup, mobile devices communicate via D2D connections such as Wi-Fi Direct, while the
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Figure 9. (a) System model for the scenario of three devices; n, m, k. The source in this model

represents the core network and base stations (access points). (b) Building blocks of the source. Filen,

∀n is read and inserted in the buffer Sn(t), and packets are transmitted from Sn(t). xn,k(t) is the

transmission rate of the packets from the source towards device n, and these packets will be processed

by device n and forwarded to device k. (c) Building blocks of mobile device n. If packets are received

from the source via cellular and Wi-Fi interfaces, then they go to the computation and energy control

blocks. If packets are received from other mobile devices via D2D interface, they are directly passed to

the application

source communicates with mobile devices via cellular or Wi-Fi links. We consider in our analysis that

time is slotted and t refers to the beginning of slot t.
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Connecting Devices Together: The total flow rate towards device n in Figure 9(a) (as also explained

in Figure 9(b)) is
∑

k∈N xn,k(t), where xn,n(t) is the transmission rate of the packets from the source

towards device n, and these packets will be used by device n. Note that xn,k(t) is the transmission rate

of the packets from the source towards device n, and these packets will be processed by device n and

forwarded to device k. On the other hand, yn(t) is the total flow rates targeting device n as demonstrated

in Figure 9(b). The source constructs a queue Sn(t) for the packets that will be transmitted to the mobile

device n. The evolution of Sn(t) based on yn(t) and xk,n(t) is expressed as

Sn(t+ 1) ≤ max[Sn(t)−
∑
k∈N

xk,n(t), 0] + yn(t), (3.1)

where the inequality comes from the fact that there may be less than yn(t) packets arriving into Sn(t) at

time t in practice (e.g., in real time applications, the number of available packets for transmission could

be limited).

The flow rate yn(t) is coupled with a utility function gn(yn(t)), which we assume to be a strictly

concave function of yn(t). This requirement is necessary to ensure stability and utility optimality of our

algorithms. The ultimate goal in our resource allocation problem is to determine the flow rates; yn(t)

which maximize the sum utility
∑

n∈N gn(yn(t)).

Finally, flow rate over D2D connection between device n and k is hn,k(t), k 6= n. Note that hn,k(t)

is to help node k using node n as a processing device.
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Inside a Mobile Device: In each device, we develop different modules depending on where data is

arriving from (as shown in Figure 9(c)); i.e., from the source via cellular or Wi-Fi interface, or other

mobile devices via D2D interfaces.

When data is arriving from a D2D interface, it is directly passed to the application layer, as this

data is already processed by another device.1 On the other hand, when data is arriving from the source

via cellular or Wi-Fi interfaces, packets go through multiple queues as shown in Figure 9(c), where

Un,k, Qn,k, and Zn,k represent three different queues constructed at mobile device n for the purpose of

helping node k. Incoming packets via cellular or Wi-Fi links are stored in Un,k, which then forwards the

packets to computation block with rate dn,k(t). The computation block processes the packets, and pass

them to queue Qn,k. Note that the output rate from computation block is dn,k(t)αn,k(t), where αn,k(t)

is a positive real value. This value captures any possible rate changes at the computation block, i.e.,

αn,k(t) is a rate shaper. For example, if the computation block is H.264/AVC decoder or transcoder, we

expect that the rate at the output of the computation block should be higher than the input. Thus, αn,k(t)

captures this fact for any n, k, t. On the other hand, if there is no rate change after the processing, then

αn,k(t) = 1.

The processed (and possibly rate shaped) packets are queued at Qn,k(t) and passed to energy filter.

The energy filter is coupled to the energy source, which determines the amount of energy that can

be spent to support the tasks at each slot. The amount of energy is determined according to energy

credits. In particular, the energy source, depending on the battery level as well as the estimate on the

1Note that we make this assumption only for the theoretical modeling and analysis; this assumption will be
relaxed in practice in Section 3.6.
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expected battery consumption in the near future, calculates the number of packets that can be supported

by the mobile device, and the same number of energy credits enter the energy filter. (Note that both

energy filter, energy source, and energy credits are not real, but virtual entities, so they can be modeled

by using a few counters in practice.) Thus, at each transmission slot, packets are transmitted from

Qn,k(t) to Zn,k(t) with rate en,k(t) if there exist energy credits in the energy filter. Finally, packets

from Zn,k(t) are transmitted to application if device n is the destination of the data (i.e., n = k), or they

are transmitted to the original destination via D2D interface with rate hn,k(t).

The computation and energy filter blocks in Figure 9(c) model the processing and energy bottlenecks

of the mobile device, respectively. If packets in Un,k increase too much, this means that the computation

block, hence processing power, is the bottleneck, so node n should not receive much packets from the

source. Similarly, if Qn,k increases too much, this means that energy filter is the bottleneck, so again

node n should not receive much packets. Note that there could be also some buildup in Zn,k if the link

between node n and k is the bottleneck of the system, and it should be taken into account when the

energy-aware cooperative computation framework is developed.

Also, it is crucial in our system model to put energy filter after the computation block, because if

device n will help device k, the actual amount of packets that are supposed to be transmitted are the

processed packets, which will cause energy consumption (i.e., not the packets before processing).
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TABLE I

EVOLUTION OF QUEUES UN,K(T ), QN,K(T ), AND ZN,K(T ).

Un,k(t+ 1) ≤ max[Un,k(t)− dn,k(t), 0] + xn,k(t)

Qn,k(t+ 1) ≤ max[Qn,k(t)− en,k(t), 0] + dn,k(t)αn,k(t)

Zn,k(t+ 1) ≤ max[Zn,k(t)− hn,k(t), 0] + en,k(t)

Based on the above intuitions and observations, we will develop our resource allocation problem and

algorithm in the next sections. The evolution of the queues Un,k(t), Qn,k(t), and Zn,k(t) are provided

in Table I.1

Links: In our system model, we consider two scenarios: (i) cellular + Wi-Fi Direct, and (ii) Wi-Fi +

Wi-Fi Direct. In both cases, the D2D links between mobile devices are Wi-Fi Direct. In the first case,

i.e., in cellular + Wi-Fi Direct, the links between the source and mobile devices are cellular, while they

are Wi-Fi in the second case, i.e., in Wi-Fi + Wi-Fi Direct. These two scenarios are different from each

other, because in the first scenario, cellular and Wi-Fi Direct links could operate simultaneously as they

use different parts of the spectrum. On the other hand, in the second scenario, both Wi-Fi and Wi-Fi

Direct use the same spectrum, so they time share the available resources. Our model and energy-aware

1We note that the buffer sizes are finite and buffer overflows occur in practice and in our implementation in
Section 3.6, although they are assumed to be very large for the sake of analysis in Sections 2.3 and 3.5.
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cooperative computation framework are designed to operate in both scenarios. Next, we provide details

about our link models.1

In the system model in Figure 9(a), each mobile device n ∈ N is connected to the Internet via its

cellular or Wi-Fi link. At slot t,Cs(t) is the channel state vector of these links, whereCs(t) = {Cs1(t),

..., Csn(t), ..., CsN (t)}. We assume that Csn(t) is the state of the link between the source and mobile

device n, and it takes “ON” and “OFF” values depending on the state of the channel. Without loss of

generality, if mobile device n does not have Internet connection, then Csn(t) is always at “OFF” state,

which means there is no cellular or Wi-Fi connection.

Since we consider that mobile devices are in close proximity and transmission range, they form a

fully connected clique topology. At slot t, Cw(t) is the channel state vector of the D2D links, where

Cw(t) = {Cw1,2(t), ..., Cwn,k(t), ..., C
w
N−1,N (t)}. We assume that Cwn,k(t) is the state of the D2D link

between node n and k.

We consider protocol model in our formulations [23], where each mobile device can either transmit

or receive at the same time at the same frequency. Assuming that C(t) = {Cs(t),Cw(t)} is the

channel state vector of the system including both the links between the source and mobile devices as

well as among mobile devices, ΓC(t) denotes the set of the link transmission rates feasible at time slot

t depending on our protocol model. In particular, for cellular + Wi-Fi Direct setup, ΓC(t) is the set that

1Note that the link models described in this section provide a guideline in our algorithm development and basis
in our theoretical analysis. However, in Section 3.6, we relax the link model assumptions we made in this section,
and evaluate our algorithms on real devices and using real links.
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allows more links to operate at the same time, while for the Wi-Fi + Wi-Fi Direct setup, ΓC(t) is a more

limited set due to the interference among the links.

3.4 Problem Formulation

In this section, we characterize the stability region of the energy-aware cooperative computation

problem, and formulate network utility maximization (NUM) framework. The solution of the NUM

framework provides us insights for developing the stochastic control algorithms in the next section.1

3.4.1 Stability Region

We provide the stability region of the cooperative computation system for both cellular + Wi-Fi

Direct and Wi-Fi + Wi-Fi Direct setups. First, the flow conservation constraint at the source should be

yn ≤
∑

k∈N xk,n to stabilize the system. This constraint requires that the total outgoing rate from the

source, i.e.,
∑

k∈N xk,n should be larger than the generated rate yn.

Furthermore, the following flow conservation constraints inside a mobile device should be satisfied

for stability; xn,k ≤ dn,k, dn,kαn,k ≤ en,k, and en,k ≤ hn,k. These constraints are necessary for the

stability of queues Un,k, Qn,k, and Zn,k, respectively. Finally, the transmission rates over the links

should be feasible, i.e., {xn,k, hn,k}∀n∈N ,k∈N ∈ ΓC .

Thus, we define the stability region as Λ = {{yn, xn,k, dn,k, en,k, hn,k}∀n∈N ,k∈N | yn, xn,k, dn,k,

en,k, hn,k ≥ 0, ∀n ∈ N , k ∈ N , yn ≤
∑

k∈N xk,n, xn,k ≤ dn,k, dn,kαn,k ≤ en,k, en,k ≤ hn,k,

{xn,k, hn,k}∀n∈N ,k∈N ∈ ΓC}.

1Note that NUM optimizes the average values of the parameters that are defined in Section 8.2. By abuse of
notation, we use a variable, e.g., φ as the average value of φ(t) in our NUM formulation if both φ and φ(t) refers
to the same parameter.
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3.4.2 NUM Formulation

Now, we characterize our NUM problem.

max
y

∑
n∈N

gn(yn)

s.t. yn, xn,k, dn,k, en,k, hn,k ∈ Λ, ∀n ∈ N , k ∈ N (3.2)

The objective of the NUM problem in (Equation 3.2) is to determine yn, xn,k, dn,k, en,k, hn,k for ∀n ∈

N , k ∈ N , which maximizes the total utility
∑

n∈N gn(yn).

3.4.3 NUM Solution

Lagrangian relaxation of the flow conservation constraints that characterize the stability region Λ

gives the following Lagrange function:

L =
∑
n∈N

gn(yn)−
∑
n∈N

sn(yn −
∑
k∈N

xk,n)−
∑
n∈N

∑
k∈N

un,k(xn,k − dn,k)−

∑
n∈N

∑
k∈N

qn,k(dn,kαn,k − en,k)−
∑
n∈N

∑
k∈N

zn,k(en,k − hn,k) (3.3)

where sn, un,k, qn,k, and zn,k are the Lagrange multipliers. Note that we will convert these Lagrange

multipliers to queues Sn, Un,k, Qn,k, and Zn,k when we design our stochastic algorithm in the next

section.
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The Lagrange function in (Equation 3.3) is decomposed into sub-problems such as flow, computa-

tion, and energy controls as well as cooperation and scheduling. The solutions of (Equation 3.3) for yn,

dn,k, en,k, xn,k, and hn,k are expressed as:

• Flow control:

max
y

∑
n∈N

(gn(yn)− ynsn) (3.4)

• Computation control:

max
d

∑
n∈N

∑
k∈N

dn,k(un,k − qn,kαn,k) (3.5)

• Energy control:

max
e

∑
n∈N

∑
k∈N

en,k(qn,k − zn,k) (3.6)

• Cooperation & Scheduling:

max
x,h

∑
n∈N

∑
k∈N

[xn,k(sk − un,k) + zn,khn,k]

s.t. {xn,k, hn,k}∀n∈N ,k∈N ∈ ΓC (3.7)

Next, we design a stochastic algorithm; energy-aware cooperative computation inspired by the NUM

solutions in Equation 3.4, Equation 3.5, Equation 3.6, and Equation 3.7.
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3.5 Energy-Aware Cooperative Computation

Now, we provide our energy-aware cooperative computation algorithm which includes flow control,

computation control, energy control, and cooperation & scheduling.

Energy-Aware Cooperative Computation (EaCC):

• Flow Control: At every time slot t, yn(t) is determined by maximizing maxy [Mgn(yn(t)) −

Sn(t)yn(t)] subject to yn(t) ≤ Rmax
n , where Rmax

n is a positive constant larger than the transmis-

sion rate from the source, and M is a large positive constant. Note that Sn(t) is the queue size

at the source of flow and stores packets that are supposed to be transmitted to mobile device n.

After yn(t) is determined, yn(t) packets are inserted in queue Sn(t) (as illustrated in Figure 9(a)).

• Computation Control: At every time slot t, the computation control algorithm at device n deter-

mines dn,k(t) by optimizing

max
d

∑
k∈N

dn,k(t)[Un,k(t)−Qn,k(t)αn,k(t)]

s.t.
∑
k∈N

dn,k(t) ≤ Dmax
n (3.8)

where Dmax
n is a positive constant larger than the processing rate of the computation block

in device n dedicated to help device k. The interpretation of Equation 3.8 is that at every

time slot t, dn,k∗ = Dmax
n packets are passed to the computation block (in Figure 9(b)) if (i)

Un,k∗(t)−Qn,k∗(t) > 0, where k∗ is the mobile device that maximizes Equation 3.8, and (ii) the

computation block is idle. Otherwise, no packets are sent to the computation block. The packets
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that are being processed by the computation block are passed to Qn,k(t). Note that some compu-

tation blocks may require to receive a group of packets to be able to process them. In that case,

Dmax
n is arranged accordingly (i.e., it can be increased to transfer a group of packets).

• Energy Control: At every time slot t, the energy control algorithm at device n determines en,k(t)

by optimizing

max
e

∑
k∈N

en,k(t)[Qn,k(t)− Zn,k(t)]

s.t.
∑
k∈N

en,k(t) ≤ Emax
n,k (3.9)

where Emax
n is a positive constant larger than the energy capacity of device n dedicated to help

device k. The interpretation of Equation 3.9 is that at every time slot t, en,k∗ = Emax
n packets

are passed to the energy filter (as illustrated in Figure 9(b)) if Qn,k∗(t)− Zn,k∗(t) > 0, where k∗

is the mobile device that maximizes Equation 3.9. Otherwise, no packets are sent to the energy

filter. The packets passing through the energy filter are inserted in Zn,k(t).

• Scheduling & Cooperation: At every time slot t, the scheduling and cooperation algorithm deter-

mines transmission rates over links, i.e., xn,k(t) and hn,k(t) by maximizing

max
x,h

∑
n∈N

∑
k∈N

[xn,k(t)(Sk(t)− Un,k(t)) + hn,k(t)Zn,k(t)]

s.t. x,h ∈ ΓC(t) (3.10)
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For cellular + Wi-Fi Direct system, Equation 3.10 is decomposed into two terms: maximizing∑
n∈N

∑
k∈N xn,k(t)(Sk(t) − Un,k(t)) and

∑
n∈N

∑
k∈N hn,k(t)Zn,k(t), because cellular and

Wi-Fi Direct transmissions operate simultaneously and transmission over one link does not affect

the other. On the other hand, for Wi-Fi + Wi-Fi Direct setup, the joint optimization in Equa-

tion 3.10 should be solved.

Note that transmissions over all links are unicast transmissions in our work, where unicast is

dominantly used in practice over cellular, Wi-Fi, and Wi-Fi Direct links. Also, it is straightforward

to extend our framework for broadcast transmissions.

Theorem 3. If channel states are i.i.d. over time slots, and the arrival rates E[yn(t)] = An, ∀n ∈ N

are interior of the stability region Λ, then energy-aware cooperative computation stabilizes the network

and the total average queue sizes are bounded.

Furthermore, if the channel states are i.i.d. over time slots, and the traffic arrival rates are controlled

by the flow control algorithm of energy-aware cooperative computation, then the admitted flow rates

converge to the utility optimal operating point with increasing M .

Proof: The proof is provided in Appendix A. �

Our energy-aware cooperative computation framework has several advantages: (i) distributed, (ii)

takes into account scarce resources such as processing power and energy in addition to bandwidth to

make control decisions, and (iii) utilizes available resources; processing power, energy, and bandwidth

in a utility optimal manner. Theorem 3 shows the theoretical performance guarantees of our framework.

Next, we will focus on its performance in a practical setup.
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3.6 Performance Evaluation

In this section, we evaluate our energy-aware cooperative computation (EaCC) scheme using a

testbed that consists of Android-based smartphones and tablets. The evaluation results show that our

scheme significantly improves throughput as compared to (i) no-cooperation, where each device receives

its content from the source without cooperating with other devices, and (ii) cooperation, where multiple

mobile devices cooperate, but the cooperating devices do not do computation and energy control for

other devices (mobile devices just receive packets from the source, and relay them to other mobile

devices without processing and energy control). Next, we present testbed setup and results in detail.

3.6.1 Setup & Implementation Details

Devices: We implemented a testbed of the setup shown in Figure 9(a) using real mobile devices,

specifically Android 5.1.1 based Nexus 5 smartphones and Nexus 7 tablets.

We classify devices as (i) a source device, which acts as the source in Figure 9(a), (ii) helper devices,

which receive data from the source, process it, and transmit to other devices (receivers) to help them,

and (iii) receiver devices, which receive data from both the source device and the helpers. Note that a

device could be both receiver and a helper device depending on the configuration.

Applications: We consider two types of computationally intensive applications in our evaluation;

Byte Counting and Video Streaming.

Byte Counting. In byte counting application, the computation block counts the bytes in packets. In

particular, similar to the pilot study in the introduction, O(1), O(n), and O(n2) correspond to (i) no

counting, (ii) counting every byte in a packet once, and (iii) counting every byte in a packet n times,

respectively. In this application a receiver device processes data arriving from the source, but it does not
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Figure 10. (a) System model consisting of a source device, one receiver, and one helper. Wi-Fi is used

between the source and the receiver device (R1) and the helper device (H1), while Wi-Fi Direct is used

to connect R1 to H1. (b) Average rate versus time for the setup shown in (a) for the case that all the

devices are Android-based Nexus 7 tablets. (c) Average rate versus energy level at receiver device R1.

In this setup, all devices are Android-based Nexus 5 smartphones. In both (b) and (c), the average rate

is calculated as the average over 10 trials (with different seeds). The computation under consideration

in this experiment is O(n2), which counts the number of bytes in a packet for each byte in the packet

(i.e., recursive counting).

process the data arriving from helpers as the helpers send already processed data. Note that we relax

this assumption in our video streaming application.

Video Streaming. In video streaming application, a source device sends video packets to receivers,

while helper devices help decoding video. The source device determines the number of video packets

that should be sent to the receiver and helpers by taking into account each device’s computation and

energy capabilities. In this setup, when a helper receives video chunks, it pre-processes the chunks by

using an open source Android-based transcoder [57].
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Note that the task of the transcoder in the helper is not to fully decode the video chunks (as decoded

video size becomes so huge that it cannot be transmitted from the helper to the receiver), but to make

the receiver devices’ decoding task easier. The transcoder makes this possible by changing the format

of the encoded video chunks, and extracting the video chunks slightly (but not to the full extent). Note

that the receiver should still decode the transcoded video chunks after receiving them, i.e., the receiver

always processes video chunks even if they are directly received from the source node, or helper nodes.

Integration to the Protocol Stack: We implemented our energy-aware cooperative computation

(EaCC) framework as a slim layer between transport and application layers. In other words, we im-

plemented our framework on top of TCP. This kind of implementation has benefits, because (i) mobile

devices do not need rooting, and (ii) our framework and codes could be easily transferred to mobile

devices using other operating systems such as iOS.

Source Configuration and EaCC Implementation: We implemented the source node in Figure 9

using a Nexus 5 smartphone. Basically, multiple files; Filen, Filek requested by devices n and k are

categorized if they are text or video files. If they are text files that belong to the byte counting application,

they are read by using the public java class BufferedInputStream according to the flow control algorithm

described in Section 3.5 and shown in Figure 9(b). The bytestream is packetized by setting each packet

to 500B, and packets are inserted into source buffers; Sn(t), Sk(t).

If the files are video files that belong to video streaming application, then a large video file is divided

into small video chunks using a third party application; Boilsoft Video Splitter [58]. Each video chunk

is divided into 500B video packets. These video packets are inserted into the source buffers Sn(t),

Sk(t) according to the flow control algorithm as described in Section 3.5.
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For both text and video files, we set the flow control parameters as; M = 500,Rmax
n = 100, and slot

duration is 20msec. We used log function as our utility function. In this setup, reading files, converting

them into packets, and inserting packets into the input queues are done by multiple threads, i.e., a thread

runs for each file; Filen in Figure 9(b).

The other set of threads at the source device make packet transmission decisions from the source

device to receiver and helper devices. In particular, the source node collects Un,k(t) information from all

mobile devices. At each time slot, the source node checks Sk(t)− Un,k(t), and if Sk(t)− Un,k(t) > 0,

then 100 packets are transmitted from Sk(t) to the TCP socket at the source device for transmission to

mobile device n.

EaCC Operation on Mobile Devices: All mobile devices (including helper or receiver+helper de-

vices) implement all the building blocks illustrated Figure 9(c). Multiple threads are used to make these

blocks operating simultaneously.

The first thread at mobile device n receives packets that are transmitted by the source node, and

inserts these packets in Un,k.

The second thread has two tasks. First, it transfers packets from Un,k to Qn,k according to the

computation control algorithm in Equation 3.8, where Dmax
n = 100 packets and the slot duration is

20msec. We set αn,k(t) = 1 in our experiments for the byte counting application as this application

does not change the rate as explained later in this section. On the other hand, for video streaming

application, the size of the video may change after it is processed by the transcoder. The value of

αn,k(t) is decided depending on the transcoding rate that we measure periodically. The second task

of this thread is to actually do the computation tasks related to the application. In our experiments, the
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computation block either (i) counts the bytes in the packets, or (ii) processes video chunks by employing

a video transcoder.

The third thread transfers packets from Qn,k to Zn,k using the energy control algorithm in Equa-

tion 3.9, where we set Emax
n,k depending on the battery level of the device. For example, if the battery

level is below some threshold,Emax
n,k is limited. We evaluated different configurations in our experiments

as we explain later. The slot duration is again set to 20msec.

The final thread transfers packets from Zn,k to application layer if n = k, or transmits to node k if

n 6= k. In the second case, i.e., if n 6= k, the number of packets in TCP socket is checked at every time

slot, where the time slot duration is 20msec. If it is below a threshold of 500 packets, then 100 packets

are removed from Zn,k and inserted to the TCP socket to be transmitted to node k.

When node n receives packets from node k, it directly passes the packets to the application layer

for the byte counting application, because these packets are the ones that are already processed by node

k. On the other hand, node n decodes video packets even if they are received from node k, because the

helpers do not fully decode video packets as explained earlier. If node n is both a helper and a receiver

device, it runs all the threads explained above in addition to the receiving thread from node k.

Information Exchange: Our implementation is lightweight in the sense that it limits control infor-

mation exchange among mobile devices. The only control information that is transmitted in the system

is Un,k from each mobile device to the source node. Each mobile device n collects Un,k, ∀k ∈ N , and

transmits this information to the source node periodically, where we set the periods to 100msec.

Connections: All the devices in the system including the source device, helpers, receivers, and

helper+receiver devices are connected to each other using Wi-Fi Direct connections in our testbed. The
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source node is configured as the group owner of the Wi-Fi Direct group. We note that cooperation

in this setup does not bring any benefit in terms of bandwidth utilization as all the links use the same

transmission channel in a Wi-Fi Direct group. However, as we demonstrate later in this section, it

brings benefit due to cooperative processing power and energy utilization, which is our main focus in

this chapter. Therefore, this setup (where all the devices are connected to each other using Wi-Fi Direct

links) well suits to our evaluation purposes.

Test Environment: We conducted our experiments using our testbed in a lab environment where

several other Wi-Fi networks were operating in the background. We located all the devices in close

proximity of each other, and we evaluated EaCC for varying levels of computational complexity, number

of receivers, and number of helpers. Next, we present our evaluation results.

3.6.2 Results

3.6.2.1 Byte Counting Application

We first consider a setup as shown in Figure 10(a) which consists of a source device, one receiver

(R1), and one helper (H1). Figure 10(b) shows the average rate versus time graph for the setup shown in

Figure 10(a) when all three devices are Android-based Nexus 7 tablets. The average rate is calculated as

the average over 10 trials (with different seeds). The computation under consideration in this experiment

is O(n2), which counts the number of bytes in a packet n times, where n is the packet size. As can be

seen, if there is no cooperation, the rate measured at R1 is on the order of 1.5Mbps. On the other hand,

EaCC increases the rate to almost 3Mbps. This means that helper device H1 helps the receiver device

R1 process the packets in EaCC. In this setup, EaCC doubles the rate as compared to no-cooperation,

which is a significant improvement.
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Figure 11. (a) System model consisting of a source device, one receiver, and multiple helpers. Wi-Fi is

used between the source and the receiver device (R1) and the helper devices (H1, . . .), while Wi-Fi

Direct is used to connect the receiver devices with the helper devices. (b) EaCC: Average rate

measured at receiver R1 versus the number of helpers. (c) Average rate measured at receiver R1 versus

the number of helpers for EaCC and cooperation, when the complexity is O(n2).

For the same setup in Figure 10(a), we also evaluate the impact of energy control part of EaCC on

the average rate performance. In particular, Figure 10(c) shows the average rate versus battery level at

the receiver device R1. In these results, we used Android-based Nexus 5 smartphones. The average rate

is calculated as the average over 10 trials (with different seeds). The computation under consideration

in this experiment is O(n2), which counts the number of bytes in a packet for each byte in the packet.

We consider that if the battery level of a device reduces below 40% threshold, then energy credits are

not generated for the processing of the received packets. This makes Qn,k large over time, and after

some point no packets are transmitted to that device for the processing task. In Figure 10(c), when

the battery level of R1 reduces below 40%, then it stops receiving packets for processing. If there is
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no cooperation, then the rate towards R1 reduces to 0. On the other hand, with EaCC, the rate is still

higher than 0 thanks to having a helper. The helper device with larger energy level (for the sake of

this experiment), receives packets from the source, processes them, and forwards them to R1, which

receives already processed data. After 40% threshold, both EaCC and no-cooperation improve, because

R1 starts processing packets. This result shows the importance of energy-awareness in our cooperative

computation setup.

Now, we consider the impact of the number of helpers to overall rate performance. In particular,

we develop a setup shown in Figure 11(a), where there is one source, one receiver, and a varying num-

ber of helpers. In this setup, the source device, receiver, and the first two helper devices are Nexus 5

smartphones, while the other helpers are Nexus 7 tablets. Figure 11(b) shows the average rate (averaged

over 10 seeds) when EaCC is employed versus the number of helpers for different computational com-

plexities such as O(1), O(n), and O(n2), where the processing task is counting the number of bytes

in a packet. As expected, when complexity increases, the rate decreases. More interestingly, the in-

creasing number of helpers increases the rates of all complexity levels. There are two reasons for this

behavior. First, even if complexity level is low, e.g., O(1), processing power is still a bottleneck, and

it can be solved by increasing the number of helpers. Note that after the number of helpers exceeds a

value, the achievable rates saturate, which means that processing power is not a bottleneck anymore, but

bandwidth is. The second reason is that receiving data over multiple interfaces increases diversity. In

other words, when the channel condition over one interface (e.g., between source and the mobile device)

degrades, the other interface (e.g., between two mobile devices) can still have a better channel condition.
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(b) Rate at R1 vs. Number of Helpers
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(c) Rate at R2 vs. Number of Helpers

Figure 12. (a) System model consisting of a source device, two receivers, and multiple helpers. Wi-Fi

is used between the source and the receiver devices (R1, R2) and the helper devices (H1, . . .), while

Wi-Fi Direct is used to connect the receiver devices with the helper devices. (b) EaCC: Average rate

measured at receiver R1 versus the number of helpers. (c) EaCC: Average rate measured at receiver R2

versus the number of helpers.

In order to understand the real impact of processing power in a cooperative system, we tested both

EaCC and cooperation (without computation and energy control) in the setup shown in Figure 11(a).

The results are provided in Figure 11(c) when the complexity is O(n2). As can be seen, while EaCC

significantly increases the rate with increasing number of helpers, cooperation slightly increases the rate

(due to diversity). The improvement of EaCC over cooperation is as high as 83%, which is significant.

Finally, we consider a scenario that there are multiple receivers interested in different files. Fig-

ure 12(a) shows the system model with one source, two receivers, and multiple helpers. In this setup,

the source, two receivers, and the first helper is Android-based Nexus 5 smartphone, while the rest of

the helpers are Nexus 7 tablets. Figure 12(b) and (c) show the average rate (averaged over 10 seeds)
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measured at R1 and R2 when EaCC is employed with respect to the increasing number of helpers, re-

spectively. Similar to previous setups, O(1), O(n), and O(n2) correspond to different computational

complexities, where the processing task is counting the number of bytes in a packet. As can be seen,

the measured rate at both R1 and R2 increases with increasing number of helpers. This shows that our

EaCC algorithm successfully accommodates multiple flows and receivers.

3.6.2.2 Video Streaming Application

In this section, we test the video streaming application over a setup shown in Figure 11(a), where

there is one source, one receiver, and a varying number of helpers. The video file that we use in this

experiment was recorded by using our own devices, and captures a scene of a street with moving pedes-

trians and vehicles. The size of the video file is 374.97 MB, and its duration is 144 sec. We divided this

video into 72 chunks (with 2 sec duration each). As we noted earlier, each chunk is divided into 500 B

packets.

Figure 13 shows the completion time of video at the receiver versus the number of helpers. The

completion time in this scenario corresponds to the total time of receiving and decoding the entire

video file at the receiver device. The helper devices in EaCC run a transcoder [57], while the helpers

in Cooperation only receive and transmit packets without transcoding. As seen, EaCC significantly

reduces the completion time as compared to Cooperation with increasing number of helpers, because

the transcoder in each helper in EaCC changes the format of video chunks and extract them, which

reduces the computational load at the receiver device. On the other hand, the completion time increases

in Cooperation with increasing number of helpers, because Cooperation unnecessarily increases the

number of packet exchanges over D2D links, which increases the completion time.
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Figure 13. Completion time of a video file (i.e., total time of receiving and decoding the entire video

file) at the receiver device versus the number of helpers for the setup shown in Figure 11(a).



CHAPTER 4

DEVICE-AWARE ROUTING AND SCHEDULING IN MULTI-HOP

DEVICE-TO-DEVICE NETWORKS

The contents of this chapters are based on our work that is published in the proceedings of 2017

IEEE ITA workshop [4]. ©2019 IEEE. Reprinted, with permission, from [4].

The dramatic increase in data and connectivity demand, in addition to heterogeneous device capa-

bilities, poses a challenge for future wireless networks. One of the promising solutions is Device-to-

Device (D2D) networking. D2D networking, advocating the idea of connecting two or more devices

directly without traversing the core network, is promising to address the increasing data and connectiv-

ity demand. In this chapter, we consider D2D networks, where devices with heterogeneous capabilities

including computing power, energy limitations, and incentives participate in D2D activities hetero-

geneously. We develop (i) a device-aware routing and scheduling algorithm (DARS) by taking into

account device capabilities, and (ii) a multi-hop D2D testbed using Android-based smartphones and

tablets by exploiting Wi-Fi Direct and legacy Wi-Fi connections. We show that DARS significantly

improves throughput in our testbed as compared to state-of-the-art.

4.1 Background

The default operation in current wireless networks is to connect each device to the Internet via its

cellular or Wi-Fi interface, Figure 14(a). The D2D connectivity breaks this assumption: it advocates

that two or more devices can be connected directly, i.e., without traversing through an auxiliary device

67



68

Mobile
Device

D1

D2

D3

Base Station
(Access Point)

The Core 
Network

(a) The default operation

Mobile
Device

D1

D2

D3

Base Station
(Access Point)

D2D Link

The Core 
Network

(b) D2D connectivity

IoTs get connectivity 
via mobile devices 

The Core 
Network

Mobile
Device

D1

D2

D3

Base Station
(Access Point)

D2D Link

D4

(c) IoT get connectivity via D2D

Figure 14. (a) The default operation for the Internet connection. (b) D2D connectivity: two or more

mobile devices can be connected directly, i.e., without traversing through the core network, if they are

in close proximity by exploiting D2D connections such as Wi-Fi Direct or Bluetooth. (c) A number of

devices (e.g., IoT) seek connectivity via other devices (e.g., mobile devices) using D2D connections.

such as a base station if they are in close proximity [47], Figure 14(b). D2D networks can be formed

by exploiting D2D connections such as Wi-Fi Direct [36] or Bluetooth. D2D networks are promising to

address the ever-increasing number of devices as well as the demand for data and connectivity.

Although D2D networking looks very promising to address the increasing data demand and the

number of devices, and is expected to play a crucial role for the next generation networks, the following

question is still open: How to design device-aware networking algorithms and protocols?

In this chapter, we consider a scenario where a number of devices, e.g., mobile devices or Inter-

net of Things (IoT), seek Internet connectivity via other devices using D2D connections as shown in
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Figure 14(c). In this context, it is possible to connect a device to the Internet via multiple hops, so it is

crucial to determine which devices should forward packets, and how to make scheduling decisions. E.g.,

in Figure 14(c), there are two paths; D1−D2−D4 andD3−D2−D4, and it is crucial to determine the

path that provides better connectivity. However, these decisions should be made by taking into account

device capabilities.

Pilot Study: In order to show the importance of taking account of device capability in D2D routing

and scheduling, we developed a prototype for this pilot study as shown in Figure 15(a), where three

devices D1, D2, and D3 are connected as a line topology by exploiting the Wi-Fi Direct connections.

In our pilot study, we used two Nexus 7 tablets, one Samsung S4 smartphone, and one Samsung S3

smartphone. Nexus 7 tablets are used asD1 and D3, and either Samsung S4 or Samsung S3 smartphone

is used as D2. In this setup, the capabilities of the intermediate device D2, have direct impact on

the transmission rate from D1 to D3. Our experimental results in Figure 15(b) show that when D2

is Samsung S4 (a more powerful device as compared to Samsung S3), the transmission rate between

D1 − D3 is higher as compared to the case that D2 is Samsung S3. As seen, the intermediate device

with less computing power (Samsung S3) limits the transmission rate. �

Our pilot study shows that it is crucial to take into account device capabilities while designing

D2D networking algorithms. Although our pilot study only focuses on the computing power, other

parameters such as limited energy, human participation (or incentives), and bandwidth should be taken

into account. For example, it could be possible that the owner ofD2 may limit its participation in a D2D

activity, which would eventually reduce the rate between D1 −D3.
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Figure 15. Pilot study. (a) The line topology, where D1, D2, and D3 are connected via Wi-Fi Direct

links. In our experiments, we used two Nexus 7 tablets, one Samsung S4 smartphone, and one

Samsung S3 smartphone. All devices use Android as their operating systems, and Nexus 7 tablets are

used as D1 and D3. (b) The rate between D1−D3 versus time when (i) D2 is Samsung S4, and (ii) D2

is Samsung S3.

In this chapter, we consider D2D networks, where devices with heterogeneous capabilities including

computing power, energy limitations, and incentives participate in D2D activities heterogeneously. We

first develop network utility maximization problem, and provide its solution. Then, based on the struc-

ture of the solution, we develop a device-aware routing and scheduling algorithm (DARS) that takes

into account device capabilities. Furthermore, we design a multi-hop D2D testbed using Android-based

smartphones and tablets by exploiting Wi-Fi Direct and legacy Wi-Fi connections. We evaluate DARS

on this testbed.
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The structure of the rest of the chapter is as follows. Section 4.2 presents related work. Section 4.3

gives an overview of the system model and the problem formulation. Section 4.4 presents DARS algo-

rithm. Section 4.5 presents the implementation and evaluation of DARS.

4.2 Related Work

The idea of exploiting D2D connectivity is very promising to improve throughput and reduce delay,

so it has found several applications in the literature. For example, opportunistic D2D connections is

often used for the purpose of (i) offloading cellular networks [27], [28], [29], (ii) content dissemination

among mobile devices [30], [31], and (iii) cooperative video streaming over mobile devices [32], [33].

As compared to this line of work, we focus on developing device-aware routing and scheduling algo-

rithm over multi-hop D2D networks by taking into account device capabilities such as computing power,

energy, and incentives.

Our approach in this work involves using network utility maximization to characterize the system as

it is promising to understand how different layers and/or algorithms, such as flow control, routing, and

scheduling should be designed and optimized [22], [34]. However, we formulate the NUM framework

considering device capabilities to develop device-aware framework. Second, we develop DARS. In that

sense, our approach is similar to the line of work emerged after the pioneering work in [19], [20], [21].

However, our focus is on incorporating device capabilities in the framework. Furthermore, we develop

a testbed of our algorithm using real devices, which was not the focus of the previous work.

Multi-hop data transmission testbed using Wi-Fi Direct over mobile devices has been considered

in [13]. In this work, intermediate devices receive a whole file first, and then transmits it to other

devices. As compared to this work, our implementation makes simultaneous transmission and reception
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possible, so there is no need to wait to receive a complete file before starting to transmit it to a next hop.

More similar work to ours is [14], where both legacy and Wi-Fi interfaces are exploited at group owners

(not at clients as in our approach). As compared to this work, our approach (i) uses unicast transmissions

(rather than broadcast like [14]), so our testbed can operate at higher rates, (ii) supports bidirectional IP

communication supporting both TCP and UDP, (iii) requires minimal changes to existing Wi-Fi Direct

and legacy Wi-Fi operations. Furthermore, we implement DARS over this testbed by taking into account

device capabilities.

4.3 System Overview and Problem Formulation

4.3.1 System Overview

We consider a multi-hop D2D network with mobile devices, where devices are connected to each

other via D2D connections. In this setup, packets from a source device traverse potentially multiple

devices before arriving to the destination device. Devices in this setup are capable of performing var-

ious tasks including routing, scheduling, and rate control. However, depending on device capabilities

and configurations, the transmission rates vary. Our system model, and algorithm design capture this

heterogeneity. In this section, we provide an overview of this setup and highlight some of its key char-

acteristics.1

1We note that this section introduces our setup and assumptions needed for the theoretical development of our
device-aware framework. We will revise some of these assumptions in Section 4.5 when we discuss implementa-
tion details of our algorithm in a testbed.



73

Setup: We consider a multi-hop D2D network, which consists of N devices and L edges, where N

and L are the set of nodes and edges, respectively. We consider in our formulation and analysis that

time is slotted, and t refers to the beginning of slot t.

Sources and Flows: Let S be the set of unicast flows between source and destination device pairs.

Each flow s ∈ S generates As(t) packets at the application layer at time t.

The packet arrivals are i.i.d. over the slots and the first and second moments of the arrival distribution

is finite; i.e., λs = E[As(t)], and E[As(t)
2]. Packets are stored at the source device in an initial buffer

in the application layer. Each flow s is associated with rate xs and a utility function gs(xs), which we

assume to be a strictly concave function of xs for our analysis purposes. Packets from the initial buffer

are passed to the main buffer with rate xs(t) at time t and depending on the utility function gs(xs(t)).

At time t, fsi,j(t) packets from flow s are passed from node i to node j. The number of packets, i.e.,

fsi,j(t), are determined by device-aware framework by taking into account device capabilities.
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4.3.2 Problem Formulation

Now, we formulate our device-aware framework. Our objective is to determine x,f , where x =

{xs}s∈S , and f = {fsi,j}s∈S,(i,j)∈L, by maximizing the total utility function;
∑

s∈S gs(xs) subject to

the constraints1

∑
j∈N

fsi,j −
∑
j∈N

fsj,i = xs1[i=o(s)], ∀s ∈ S, i ∈ N

∑
s∈S

∑
i∈N

fsi,j ≤ min{RjP , R
j
E , R

j
W }, ∀j ∈ N

f ∈ Γ (4.1)

The first constraint in Equation 4.1 is the flow conservation at device i and for flow s, where∑
j∈N f

s
j,i + xs1[i=o(s)] is the arrival rate of flow s to node i, while

∑
j∈N f

s
i,j is the departure rate.

The second constraint captures device capabilities. The arrival rate to device j, i.e.,
∑

s∈S
∑

i∈N f
s
i,j

should be supported by the device, where RjP is the maximum rate that device j can support (receive

and transmit) with its computing power, while RjE and RjW are the rates that device j can support with

its energy and incentives, respectively.

The last constraint in Equation 4.1 is the feasibility constraint, where Γ is the set of all feasible rates

that can be in the network. Thus, f should be an element of Γ.

1Note that, in this section, we optimize the average values of the parameters defined in Section 4.3.1. Thus,
by abuse of notation, we use a variable, e.g., φ as the average value of φ(t) if both φ and φ(t) refers to the same
parameter.
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Although the solution of Equation 4.1 provides a device-aware routing and scheduling, the solution

is not practical, because it requires an active involvement of all devices in D2D network even if a device

does not prefer any involvement. For example, even if a node j has very small min{RjP , R
j
E , R

j
W }, it

needs to periodically update the other devices in the network about its status (whether it can relay packets

or not), which is not practical and introduces overhead. Thus, we modify the problem in Equation 4.1

so that the solution can be more practical.

Our first step is to explicitly involve link rates in the formulation. Assume that Ri,j is the trans-

mission rate between nodes i, j and τi,j is the percentage of time that the link i − j is used. Then,

we can express fsi,j = Ri,jτ
s
i,j , ∀i ∈ N , j ∈ N , s ∈ S . This translates the constraints in Equa-

tion 4.1 to
∑

j∈N Ri,jτ
s
i,j −

∑
j∈N Rj,iτ

s
j,i = xs1[i=o(s)], ∀s ∈ S, i ∈ N ,

∑
s∈S

∑
i∈N Ri,jτ

s
i,j ≤

min{RjP , R
j
E , R

j
W },∀j ∈ N , and τ ∈ Γτ , where τ = {τ si,j}s∈S,(i,j)∈L, and Γτ is the set of all

feasible link schedules, so τ ∈ Γτ should hold.

The next step is to create a new variable γsi,j as γsi,j = τ si,j
Ri,j

min{RjE ,R
j
W ,RjP }

assuming that min{RjP ,

RjE , R
j
W } is positive, at least slightly larger than 0. Then, the constraints become

∑
j∈N

γsi,j min{RjP , R
j
E , R

j
W } −

∑
j∈N

γsj,i min{RiE , RiW , RiP } = xs1[i=o(s)], ∀s ∈ S, i ∈ N

∑
s∈S

∑
i∈N

γsi,j ≤ 1,∀j ∈ N and γ ∈ Γγ , (4.2)

where γ = {γsi,j}s∈S,(i,j)∈L, and Γγ is the set of feasible γ’s. Next, we provide a solution to the

problem of maximizing the total utility;
∑

s∈S gs(xs) subject to the constraints in Equation 4.2.
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4.3.3 Solution

Lagrangian relaxation of the first constraint of Equation 4.2 gives the following Lagrange function:

L =
∑
s∈S

gs(xs)−
∑
s∈S

∑
i∈N

usi (
∑
j∈N

γsi,j min{RjE , R
j
W , R

j
P } −

∑
j∈N

γsj,i min{RiE , RiW , RiP } − xs1[i=o(s)])

(4.3)

where usi is the Lagrange multiplier. The Lagrange function is expressed as

L =
∑
s∈S

[gs(xs)− uso(s)xs] +
∑
s∈S

∑
i∈N

∑
j∈N

γsi,j min{RjE , R
j
W , R

j
P }(u

s
i − usj). (4.4)

This Lagrange function is decomposed into two sub-problems: (i) rate control, and (ii) routing and

scheduling. If we solve the Lagrangian function with respect to xs, we have an optimization problem:

maxx
∑

s∈S [gs(xs) − uso(s)xs], which is the rate control part. On the other hand, the routing and

scheduling part solves the following optimization problem

max
γ

∑
s∈S

∑
i∈N

∑
j∈N

γsi,j min{RjE , R
j
W , R

j
P }(u

s
i − usj)

s.t.
∑
s∈S

∑
i∈N

γsi,j ≤ 1,∀j ∈ N and γ ∈ Γγ . (4.5)

Note that the solution of Equation 4.5 is easier as compared to the solution of Equation 4.1, because

it reduces to selecting the link i − j, which maximizes min{RjE , R
j
W , R

j
P }(usi − usj) among all fea-
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sible schedules of links. Based on this idea, we will develop our device-aware stochastic routing and

scheduling algorithm in the next section.

4.4 DARS: Device-Aware Routing and Scheduling

Now, we design DARS, which has (i) rate control, (ii) routing and scheduling, and (iii) queue evo-

lution parts, based on the solutions developed in Section 4.3.3.

Device-Aware Routing and Scheduling Algorithm (DARS):

• Rate Control: At slot t, the rate controller at node o(s) determines the number of packets that

should be passed from the initial buffer to the main buffer according to

max
x

∑
s∈S

[Mgs(xs(t))− U so(s)xs(t)]

s.t. xs(t) ≤ Rmax, (4.6)

where U so(s) is the queue that stores packets from flow s at node o(s), Rmax is a positive constant

larger than the transmission rate from device o(s), and M is a large positive constant. Note

that flow control algorithm in Equation 4.6 is designed based on the structure of the rate control

solution in Section 4.3.3.
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• Routing and Scheduling: At slot t, device j determines the number of packets that it can receive,

process, and forward according to

max
γ

∑
s∈S

∑
i∈N

γsi,j(t) min{RjP , R
j
E , R

j
W }[U

s
i (t)− U sj (t)]

s.t.
∑
s∈S

∑
i∈N

γsi,j(t) ≤ 1, and γ(t) ∈ Γγ(t) (4.7)

where U si (t) and U sj (t) are queue sizes at nodes i and j, respectively. After the value of γsi,j(t) is

determined, if γsi,j(t) = 1, f si,j(t) is set to fsi,j(t) = Fmax, where Fmax is a positive constant larger

than the transmission rate from device i to device j, as well as larger than min{RjP , R
j
E , R

j
W }.

Otherwise, i.e., if γsi,j(t) = 0, then fsi,j(t) = 0. The solution in Equation 4.7 has two strengths:

(i) it takes into account device capabilities, i.e., min{RjP , R
j
E , R

j
W }, and (ii) each device j makes

its own decision on how much data it can handle (route & schedule), which is fundamentally

different than the classical backpressure [19], [21], [15], where each device j should do its best to

route and schedule any amount of data it receives. Also, note that the solution of Equation 4.7 is

both a routing decision as it determines the next hops, and a scheduling decision as it determines

which links to activate (the ones γsi,j(t) = 1 are activated).

• Queue Evolution: The evolution of the queue U si (t) at time t is as follows;

U si (t+ 1) ≤ max[U si (t)−
∑
j∈N

fsi,j(t), 0] +
∑
j∈N

fsj,i(t) + xs(t)1[i=o(s)] (4.8)
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Figure 16. Diamond topology for simulations.

where o(s) is the source node of flow s and 1[i=o(s)] is an indicator function, which is 1 if i = o(s),

and 0, otherwise. Note that Equation 4.8 is an inequality, because the actual amount of data

arriving to the queue may be smaller than
∑

j∈N f
s
j,i(t) + xs(t)1[i=o(s)].

In Section 4.5, we will provide the implementation details and evaluation of DARS in a real testbed.

Yet, before delving into that, we present simulation results of DARS as compared to backpressure [21]

in an idealized setup.

We first consider a diamond topology shown in Figure 16, where there is a flow from D1 to D4.

For this scenario, Figure 17(a) shows the flow rate versus min {R2
P , R

2
E , R

2
W }, when min {RiP , RiE ,

RiW } = 1, for i = 1, 3, 4, and links are not lossy. Figure 17(b) shows the flow rate versus loss probability

(all links are lossy), when min {R2
P , R

2
E , R

2
W } = 0.1 and min {RiP , RiE , RiW } = 1, for i = 1, 3, 4.

In both simulations, M = 200, Rmax = 1, Fmax = 1. The results show that DARS significantly

improves over backpressure (implemented according to [21]), because DARS takes into account device

capabilities while backpressure does not. I.e., even if packets and links are scheduled by backpressure,

they may not be realized due to the device (D2 in this simulation) bottleneck.
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Figure 17. Diamond topology with one flow from D1 to D4. (a) Rate of flow D1 −D4 versus min {

R2
P , R

2
E , R

2
W }, where links are not lossy. (b) Rate of flow D1 −D4 versus loss probability, where all

links are lossy. In both simulations, M = 200, Rmax = 1, Fmax = 1.

Next, we consider the diamond topology shown in Figure 16 for two flows; one from D1 to D2,

and another from D1 to D4. Considering the same parameters of the one-flow scenario above, we

have results as shown in Figure 18. As seen, DARS dramatically improves over backpressure as in the

one-flow case thanks to taking into account device capabilities.

4.5 Implementation Details and Evaluation

In this section, we present the implementation details of our testbed. First, we start with how we

create a multi-hop topology with Android-based devices using Wi-Fi Direct. Then, we present our

DARS implementation on our testbed.
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Figure 18. Diamond topology with two flows; one from D1 to D4, and another from D1 to D2. (a)

Total rate (of both flows) versus min {R2
P , R

2
E , R

2
W }. (b) Total rate (of both flows) versus loss

probability, where all links are lossy. In both simulations, M = 200, Rmax = 1, Fmax = 1.

4.5.1 Creating Multi-Hop Topology with Android Devices

Wi-Fi Direct: Our approach to create multi-hop topology using Android-based devices is to em-

ploy Wi-Fi Direct connections [36]. However, existing Wi-Fi Direct implementation in Android-based

devices only supports a star topology as shown in Figure 19(a), but not any other multi-hop topology.

Our Approach: We use the star topology of Wi-Fi Direct shown in Figure 19(a) as our basic con-

structing unit for creating multi-hop topologies. In particular, multiple groups are constructed using the

star topology (i.e., each group is a star topology), and these groups are connected to each other. Con-

necting multiple groups (star topologies) is quite challenging, because the star topology of Wi-Fi Direct

is constructed in a way that one device (center of the topology) is a group owner (GO), and the other

devices are clients. In this setup, a device cannot act as both a group owner and a client simultaneously,

which makes connecting multiple groups to each other prohibitively difficult.
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Figure 19. (a) Star topology. A device that receives a connection request first becomes a group owner

and center of the star topology, i.e., D1, and all other devices, i.e., D2 to D5, connect to the group

owner. In this setup, there can be only one group owner, and a device cannot act as both group owner

and a client simultaneously. (b) Line topology with two groups. Group I and Group II are created using

Wi-Fi Direct. D1 and D3 are group owners, and D2 and D4 are clients of Group I and Group II,

respectively. D2 is connected to D3 using legacy Wi-Fi interface. This creates a 4-node line topology.

(c) Diamond topology. D1 and D4 are group owners, and D2 and D3 are clients in Wi-Fi Direct

groups. D2 and D3 are connected to D1 via Wi-Fi Direct interface, and connect to D4 using their

legacy Wi-Fi interfaces.

In our testbed, we use legacy Wi-Fi interface to connect multiple groups. Let us consider Fig-

ure 19(b), where there are two groups; Group I: D1, D2 and Group II: D3, D4. In this example, D1 and

D3 are group owners, and D2 and D4 are clients of Group I and Group II, respectively. Let us assume

that our goal is to connect D2 and D3. In existing Wi-Fi Direct, D2 cannot connect to D3 as D2 can

only connect to its group owner (which is D1) via Wi-Fi Direct interface. On the other hand, D3 cannot

connect to D2 as a client, because D3 is already a group owner of Group II, so it cannot be a client of
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D2. Therefore, our approach is to use legacy Wi-Fi interface of D2 to connect to D3. This connection is

possible as D2 will see D3 as an access point of the legacy Wi-Fi connection. Thus, D2 can connect to

D3, which provides a line topology consisting of 4 nodes, which was not possible by using only existing

Wi-Fi Direct setup.

Similarly, we can create other multi-hop topologies. For example, we can create a diamond topology

as shown in Figure 19(c), whereD1 andD4 are group owners, andD2 andD3 are clients in Wi-Fi Direct

groups. D2 andD3 are connected toD1 via Wi-Fi Direct interface, and connect toD4 using their legacy

Wi-Fi interfaces.

Our approach of using legacy Wi-Fi interfaces simultaneously with Wi-Fi Direct interfaces is chal-

lenging, because both legacy Wi-Fi interface and Wi-Fi Direct interfaces are actually using the same

means of communication interface in the MAC layer, which is 802.11. Thus, if we naively open both

legacy Wi-Fi and Wi-Fi Direct interfaces, only one of them will operate due to IP addressing conflicts.

For example, D2 would transmit data to D1 even if it means to transmit to D3 in Figure 19(b). We

provide a solution to this problem in a simple way (i.e., without rooting mobile devices). In particular,

we use a class called ConnectivityManager in Android API, which provides instances (objects of the

class) of all active network interfaces on each device. Thus, we access the instance of legacy Wi-Fi in-

terface, and bind it with transmission sockets TCP or UDP. This approach eliminates addressing issues

and conflicts between legacy Wi-Fi and Wi-Fi Direct interfaces.

4.5.2 DARS Implementation

In this section, we present how DARS is implemented over our multi-hop testbed described in

Section 4.5.1.



84

Network Layer 

(IP)

DARS

MAC

Transport Layer

Source Device

Application

Ui
s(t)

Network Layer 

(IP)

DARS

MAC

Transport Layer

Ui
s(t)

Network Layer 

(IP)

DARS

MAC

Transport Layer

Application

Intermediate Device Receiver Device

min{RP
i,RE

i,RW
i} min{RP

i,RE
i,RW

i}

Figure 20. DARS operations at end-points and intermediate nodes.

Devices: We implemented a testbed of the different topologies including line topology, diamond

topology using real mobile devices, specifically Android 5.1.1 based Nexus 5 smartphones and Nexus 7

tablets.

Integration to the Protocol Stack: We implemented DARS as a slim layer between transport and

application layers as demonstrated in Figure 20. In other words, we implemented DARS on top of TCP.

This kind of implementation has benefits as (i) mobile devices do not require rooting, and (ii) our DARS

codes could be easily transferred to mobile devices using other operating systems such as iOS.

Virtual Slots: As mentioned in Section 8.2, DARS uses slots to make transmission decisions. By

following the theory, in our implementation, we divided the time into virtual slots. Each decision is

made at the start of the slot. We set slot durations to 50msec.

Multiple Threads: Three sets of threads operate at each device simultaneously to perform the tasks

of rate control, routing and scheduling, and actual data transmission.

The first set of threads are implemented for the rate control, so we call them rate control threads.

In particular, the rate control thread at the source device o(s) reads data bytes from a file, packetizes
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them and inserts them into the transmission queue U so(s). The rate of reading packets from the file is

determined according to the rate control algorithm in Equation 4.6. Note that if a device is the source of

two flows, a rate control thread is created for each flow.

The second set of threads determine how many packets should be transmitted from U si to other de-

vices. Thus, these threads are called routing and scheduling threads. This part implements Equation 4.7.

For example, in the diamond topology in Figure 19(d), at each slot, D1 determines whether it should

transmit packets to D2, or D3, or none of them.

The final set of threads make actual packet transmissions possible, so we call them transmission

threads. A transmission thread is constructed for each neighboring node. For example, in the diamond

topology Figure 19(c), D1 constructs two transmission threads for D2 and D3. Packets, whose number

is determined by the routing and scheduling thread, are received by this thread and inserted into queues

that we call socket queues. The transmission threads will dequeue packets from the socket queues and

pass them to TCP sockets. Another task of transmission threads is to receive queue size information

from neighboring nodes.

Information Exchange: Our implementation is lightweight in the sense that it limits control infor-

mation exchange among mobile devices. The control information that is transmitted by node i is U si (t)

and min{RiP , RiE , RiW }, and this information is transmitted to only i’s neighbors. These control packets

are transmitted periodically at every 50msec.

Calculating min{RiP , RiE , RiW }: Each node i, based on its computing power, energy level, and

incentives (willingness), calculates its rate. For example, if node i has limited energy, then it limits RiE
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to 1Mbps even if it can support up to 20Mbps. Thus, in our implementation, every device calculates its

own rate, and exchange this information with its neighbors.

Test Environment: We conducted our experiments in a lab environment where several other Wi-Fi

networks were operating in the background. We located all the devices at varying distances, and we

have evaluated device-centric routing and scheduling. Next, we present our evaluation results.

4.5.3 Evaluation Results

Now, we focus on evaluating the performance of DARS. Figure 21(a) shows data rate versus time

graph for three-node and four-node line topologies shown in Figure 19(b), where a a flow is transmitted

fromD1 toD4. The receive & forward algorithm is the baseline in this scenario, where the intermediate

nodes just receive packets and forward. As seen, the performance of DARS is close to receive & forward.

Note that since there is no routing and scheduling diversity in the line topology, the receive & forward

provides the best performance. The results prove that DARS does not introduce too much overhead into

the system.

Figure 21(b) shows the transmission rate for the diamond topology shown in Figure 19(c), where a

flow is transmitted from D1 to D4. In this setup, D1, D2, and D4 are Nexus 5 smartphones, and D3

is a Nexus 7 tablet. The computing power of Nexus 5 smartphones is better than Nexus 7 tablet. In

particular, Nexus 5 supports two times faster rate as compared to Nexus 7. Thus, DARS should prefer

D1 − D2 − D4 route instead of D1 − D3 − D4 when D1 is the source and D4 is the receiver. The

simulation results support this as further explained next.

The best case scenario in Figure 21(b) is the case that D1 −D2 −D4 route is selected a priori. As

seen, DARS performs very close to the best case scenario, which shows the efficiency of our algorithm.
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Figure 21. (a) Line topology (as shown in Figure 19(c)) results with three and four devices. (b)

Diamond topology Figure 19(d) results.

Backpressure is the implementation of the scheme proposed in [21]. As seen, DARS improves over

backpressure (up to %15), because it takes into account device specific properties, while backpressure

does not. Equal Split is another baseline, which allows transmitting data over both paths in the diamond

topology. As long as TCP supports transmissions, packets are simultaneously transmitted over both

links. As seen, DARS significantly improves as compared to this baseline. Finally, the worst case

scenario is the case that D1 − D3 − D4 route is selected a priori, which is included in the results for

completeness.



CHAPTER 5

PREDICTIVE EDGE COMPUTING WITH HARD DEADLINES

The contents of this chapters are based on our work that is published in the proceedings of 2018

IEEE LANMAN conference [5] and a journal under submission. ©2019 IEEE. Reprinted, with permis-

sion, from [5].

Edge computing is a promising approach for localized data processing for many edge applications

and systems including Internet of Things (IoT), where computationally intensive tasks in IoT devices

could be divided into sub-tasks and offloaded to other IoT devices, mobile devices, and / or servers at

the edge. However, existing solutions on edge computing do not address the full range of challenges,

specifically heterogeneity; edge devices are highly heterogeneous and dynamic in nature. In this chapter,

we develop a predictive edge computing framework with hard deadlines. Our algorithm; PrComp (i)

predicts the uncertain dynamics of resources of devices at the edge including energy, computing power,

and mobility, and (ii) makes sub-task offloading decisions by taking into account the predicted available

resources, as well as the hard deadline constraints of tasks. We evaluate PrComp on a testbed consisting

of real Android-based smartphones, and show that it significantly improves energy consumption of edge

devices and task completion delay as compared to baselines.

5.1 Background

The number of edge devices, e.g., Internet of Things (IoT) keeps increasing and is estimated to

reach billions in the next five years [59]. As a result, the data collected by edge devices will grow at

88
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exponential rates. In many applications, unlocking the full power of edge devices requires analyzing and

processing this data through computationally intensive algorithms with stringent latency constraints.

In many scenarios, these algorithms cannot be run locally on the computationally-limited edge de-

vices (e.g., IoT devices) and are rather outsourced to the cloud [60]. Yet, offloading tasks to remote

could be costly, inefficient in terms of delay, or may not be feasible (e.g., when there is no cellular or

Wi-Fi infrastructure support). An alternative is edge computing, where tasks in an edge device could

be offloaded to other edge devices including IoT devices, mobile devices, and / or servers in close

proximity.

However, existing solutions on edge computing do not address the full range of challenges, specif-

ically heterogeneity; edge devices are highly heterogeneous and dynamic in nature. For example, if

master device M offloads some tasks to helper device W4 in Figure 22, but if device W4 is running

another computationally intensive application (either originated from itself or offloaded from another

master device - M ′ in this example), delay increases. Similarly, if device M offloads some tasks to

device W4, but before completing processing these tasks, device W4 moves away, D2D connection be-

tween M and W4 is broken. In this case, device M should offload its tasks again to other devices in

close proximity (e.g., device W3). This re-offloading process increases delay and energy consumption.

Thus, we should develop an edge computing mechanism, which is aware of the heterogeneity and time

varying nature of resources as well as mobility of devices.

In this chapter, we develop a predictive computation offloading mechanism (PrComp) by taking

into account heterogeneous and time varying resources as well as mobility. In particular, we consider

a master / helper setup as seen in Figure 22, where a master device predicts the resources of helpers
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Figure 22. Example computation at the edge. Two master devices M and M ′ offload their tasks to

helpers W1, . . . ,W4 and W ′1, . . . ,W
′
4, respectively. As seen, a device could be (i) both a master and a

helper at the same time, and (ii) helpers of multiple masters simultaneously.

using periodic probes. Then, the master device makes computation offloading decisions to minimize the

energy consumption of master and helper devices while satisfying deadline constraints of tasks.

We evaluate PrComp on a testbed consisting of real smartphones, and show that it significantly

improves energy consumption and task completion time as compared to baselines.

The structure of the rest of the chapter is as follows. Section 5.2 presents related work. Section 5.3

gives an overview of the system model. Section 5.4 presents our delay, energy, and mobility prediction

module. Section 5.5 presents our PrComp algorithms. Section 5.6 evaluates the performance of our

algorithms in a real testbed.

5.2 Related Work

Mobile cloud computing is a rapidly growing field with the goal of providing extensive computa-

tional resources to mobile devices as well as higher quality of experience [61], [62], [63], [64], [65].

The initial approach to mobile cloud computing has been to offload resource intensive tasks to re-
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mote clouds by exploiting Internet connectivity of mobile devices. This approach has received a lot

of attention which led to extensive literature in the area [66], [67], [68], [69], [70]. The feasibility of

computation offloading to remote cloud by mobile devices [71] as well as energy efficient computation

offloading [72, 73] have been considered in the previous work. As compared to this line of work, our

focus is on edge computing rather than remote clouds.

There is an increasing interest in edge computing by exploiting connectivity among mobile de-

vices [50]. This approach suggests that if devices in close proximity are capable of processing tasks

cooperatively, then local area computation groups could be formed and exploited for computation. This

approach, sparking a lot of interest, led to some very interesting work in the area [54], [55], [56]. The

performance of computing at the edge including the computation group size of IoT devices, lifetime,

and reachable time is characterized in [74] by taking into account the mobility of devices. As compared

to this line of work, we focus on offloading tasks from one edge device to others by predicting delay,

energy, and mobility.

Edge computing is investigated in [75] to deal with mobility by exploiting both cellular and Wi-

Fi connections. As compared to this work, our work makes offloading decisions by predicting the

mobility patterns of helper devices. Task offloading to minimize energy consumption of master devices

is considered in [76]. As compared to [76], our goal is to minimize the energy consumption of both

master and helper devices by taking into account hard deadlines.

Mobile cloud computing with hard deadlines are investigated in [77], [78], [79]. As compared to

this line of work, we consider heterogeneous and time-varying resources as well as mobility. Available
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resources and mobility is predicted in our work. Furthermore, we investigate both serial and parallel

tasks.

5.3 Setup and Problem Statement

Topology. We consider a setup illustrated in Figure 22 with multiple master and helper devices. We

particularly focus on a master / helper cluster to make presentation simple. We assume that there is a

master device and N helper devices in a cluster. We define a set C = {M,W1, . . .WN} as the set of

all devices in a cluster. The device M ∈ C is the master device that creates tasks and offloads them to

other devices. The set {W1,W2 . . .WN} ∈ C represents helper devices that are in close proximity of

the master device.

Offloading Scenario & Applications. We consider a scenario that a master device M runs multiple

applications, and offloads computationally intensive applications to helper devices. In this chapter, we

focus on face detection and matrix multiplication applications.

Face detection application processes a number of images, and detects human faces in each image.

We employ Android SDK’s FaceDetector and FaceDetector.Face classes to implement a face detection

application, which puts a circle on the faces it detects. The processed image is stored in the external

memories of devices.

Matrix multiplication application computes Y = AX where A = (ai,j) ∈ RR1×R2 , X = (xi,j) ∈

RR2×R3 , and Y = (yi,j) ∈ RR1×R3 . Our application uses simple matrix multiplication, i.e., computes

yi,j =
∑R2

r=1 ai,rxr,j , ∀i, j.
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Task Model. We consider a set of tasks; K = {Task 1, . . . ,Task K}. We consider two types of

tasks: (i) serial, and (ii) parallel. When the tasks are serial, kth task can only be processed after the

k − 1th task is processed. Parallel tasks could be processed simultaneously at multiple helpers.

Offloading Policy. We assign each task to a device in the set C. However, due to mobility, a master

or a helper device may move after a task is offloaded, so they may be out of transmission range of each

other. Thus, task offloading becomes unsuccessful (helper cannot send the processed task back to the

master). In this case, the task should be rescheduled again. Assume that tk,l is the time that Task k is

scheduled for the lth time, and πk,l is the policy that shows at which device that Task k is scheduled

at the lth trial. Thus, πk,l ∈ C. For example, if the kth task is scheduled to be processed at the master

device M (i.e., if the task is not offloaded to any helper) at the lth trial, then πk,l = M .

Let us assume that the set of policies πk = {πk,1, . . . , πk,Lk} corresponds to the policy for Task k,

where Lk is the last scheduling trial of Task k. Note that Lk depends on the optimal policy as well as

the randomness due to mobility. The set π = {π1, . . . ,πK} corresponds to the policy for scheduling

all the tasks.

Problem Statement. Our goal is to determine a policy π that minimizes the total energy consumption

at all devices (master and helpers) subject to hard deadline constraints by estimating per-task energy

consumption and delay at the master and helper devices as well as predicting the mobility of helpers.

5.4 Delay, Energy, and Mobility Prediction

In this section, we present our approach for predicting energy, delay, and mobility of master and

helper devices using Android-based mobile devices. The results of this section will be used in our

algorithm design in the next section.
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We implemented a testbed of a master and multiple helper cluster using real mobile devices, specif-

ically Android 6.0.1 based Nexus 6P smartphones. All the helpers are connected to the master device

using Wi-Fi Direct connections in our testbed. (In other words, the master device is configured as the

group owner of the Wi-Fi Direct group, which is a star topology.) We conducted our experiments using

our testbed in a realistic lab environment, where several other Wi-Fi networks were operating in the

background. We located all the devices in close proximity of each other (within a few meters distance).

We use face detection application as a demonstrating example for our prediction.

5.4.1 Delay

We determine task delay as the amount of time for offloading, processing, and receiving tasks back

from the helper devices. Each master device in our predictive edge computing framework determines

per task delay by periodically probing itself as well as its helpers. In particular, the master device puts

a timestamp to each task before processing or offloading it to a helper. For example, the time stamp of

the ith task such that i = kl is ti.1.

Assume that t̃i,0 is the time that the master device completes the task by processing locally (no

offloading), and t̃i,n is the time that it receives the completed task from helper Wn. Let us define

IC = {0, 1, . . . , N} as an index set of C, where 0 ∈ IC corresponds to the master device, and n ∈ IC

corresponds to helper Wn. Thus, the delay for each device j ∈ IC becomes θi,j = t̃i,j − ti. Note that

θi,j includes only processing delay at the master device when j = 0, and it includes offloading and

processing times as well as the time to receive tasks back from the helper devices when j 6= 0.

1Note that if device (master or helper) is not assigned any tasks due to our scheduling algorithm, we still
offload tasks to this device periodically to predict its resources.
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Figure 23 presents delay versus number of images for a master / helper setup. The amount of delay

is the average of 10 trials. Local - Wi-Fi Direct On and Local - Wi-Fi Direct Off

correspond to the scenarios that master device is locally processing the images when (i) it is connected to

another device via Wi-Fi Direct and (ii) Wi-Fi Direct connection is closed, respectively. Offloading

is the scenario that the master device offloads the images to its helper. As seen, the delay of Local

- Wi-Fi Direct Off is less than both Local - Wi-Fi Direct On and Offloading, be-

cause it locally processes the packet, and no time is wasted for transmitting packets. On the other hand,

Offloading is better than Local - Wi-Fi Direct On, because when a master device opens

Wi-Fi Direct connection on and becomes a group owner (i.e., behaves as an access point), it has more

computational load, which increases delay. This figure shows that (i) delay characteristics of devices

can be measured by probing these devices, and (ii) delay performance of a device is heterogeneous and

can be time-varying depending on its configuration.

5.4.2 Energy

The main source of energy consumption in edge computing applications comes from computing and

offloading tasks. This section deals with predicting energy consumption due to CPU usage and packet

transmission (and reception) using Wi-Fi interfaces in Android-based devices. However, Android APIs

do not provide granular (per application and hardware) energy consumption.

Next, we present our approach to predict energy consumption without using any external devices.

Energy consumption due to computation (i.e., CPU). The modern CPUs of Android devices consist

of multiple clusters, and each cluster can operate at different speeds. Let ιc,s be the amount of electrical
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Figure 23. Average delay per image for a master / helper setup.

current (in mA) that cluster c uses when operating at speed s, which is not time-varying, and can be

found on power profile of every Android device.

When a computationally intensive application is run on a device, multiple clusters at different speeds

could be used. If we can predict the amount of time that each cluster - speed pair is used, we can

characterize the amount of battery power (in mAh) used per application. Although Android API does

not provide this information directly, the following information can be gathered.

Let (i) Ta(t) be the total amount of time that application a has used CPU (across all clusters and

speeds) since the device is plugged off from a power supply (let us denote this time t0) until time t,

and (ii) τc,s(t) be the amount of time cluster c is used at speed s between t0 and t. Both Ta(t) and

τc,s(t) information can be acquired using the class BatteryStatsHelper of Android in the form of a list

of “battery sippers”.
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Each battery sipper represents an application associated with a unique application ID. The appli-

cation ID of a desired application can be found in the Process Android class. The battery sipper has

the battery related information including both Ta(t) and τc,s(t). Next, we define per application battery

consumption using these parameters.

The battery consumption due to application a between time interval t − δ and t, where δ is a small

time interval, is expressed as

eCPU
a (t, t− δ) =

Ta(t)− Ta(t− δ)
Tall(t)− Tall(t− δ)

∑
∀c

∑
∀s

(τc,s(t)− τc,s(t− δ))ιc,s, (5.1)

where Tall(t) is the total amount of time that CPU is used for all applications. Although Tall(t) cannot

be directly gathered from Android APK, we can characterize it as Tall(t) =
∑
∀c
∑
∀s τc,s(t).

Note that the term Ta(t)−Ta(t−δ)
Tall(t)−Tall(t−δ) in Equation 5.1 represents the percentage of time that appli-

cation a uses available CPU resources as compared to all other applications. On the other hand,∑
∀c
∑
∀s(τc,s(t) − τc,s(t − δ))ιc,s represents the total energy consumption between time t − δ and

t for all applications. The multiplication of these two terms is a good predictor of the energy consump-

tion by application a between time interval t− δ and t.

Now, let us assume that ith task of application a is processed at device j at time t− δ, and the total

processing time is δ. Thus, we can characterize the amount of battery consumption due to CPU for

processing task i at device j as εCPU
i,j = eCPU

a (t, t − δ). Figure 24 shows the real and calculated energy

consumption for face detection application at the master device. In particular, the master device (Nexus

6P) detects faces in multiple images one by one. There is no other user-level applications running on the
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Figure 24. Real versus calculated energy consumption for face detection application at the master

device.

device, and it operates in the airplane mode, so all network interfaces are closed (i.e., no other energy

consumption). The x-axis shows the cumulative energy consumption, i.e.,
∑i
∀α ε

CPU
α,j , while the y-axis

shows the battery drop percentage directly read from the device. Considering that the battery capacity

of Nexus 6P devices is 3450 mAh, our energy calculation is a good predictor of per application energy

consumption.

Energy consumption due to Wi-Fi. We measure this type of energy consumption using the energy

consumption profile of Wi-Fi interface. (Note that Wi-Fi and Wi-Fi Direct share the same interface.)

Unlike CPU energy consumption, it is straightforward to measure energy consumption in Android for

using Wi-Fi interface. In particular, wifiPowerMah value is stored in the battery sipper discussed above,

and it represents the total energy consumption to keep Wi-Fi interface open, transmitting, and receiving
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packets. Thus, we can directly obtain the battery consumption eWi-Fi
a (t, t − δ) due to application a

between time interval t − δ and t, where δ is a small time interval. If ith task from application a

is processed at device j during t − δ and t, the battery consumption due to Wi-Fi interface becomes

εWi-Fi
i,j = eWi-Fi

a (t, t− δ).

The energy consumption per image due to CPU and Wi-Fi is presented in Figure 25. Each graph

is an average of 10 experiments. Offloading - Master and Offloading - helper are the

energy consumption at master and helper devices when tasks are offloaded to a helper device. Local

- Wi-Fi Direct On and Local - Wi-Fi Direct Off are the same as in Figure 23.

As seen, energy consumption due to CPU is higher than Wi-Fi and changes depending on whether

a device is processing or offloading a task.

5.4.3 Mobility

We consider three types of mobility models: (i) Statistical: The probability that a master and helper

devices are in the same transmission range is known a priori. (ii) Predicted: A master device predicts

that a helper device is in its transmission range with some error margin. (iii) Majority voting: A master

device uses history to predict the mobility of itself and helpers. In particular, a master device divides the

time into slots and checks the most recent encounters (i.e., being in the same transmission range) with

a helper. If during most of the recent slots, there is encounter between a master and helper, the master

decides that they will be in the same transmission range in the next slot.
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5.5 PrComp Algorithms

In this section, we develop PrComp algorithms for serial and parallel tasks. Our PrComp algo-

rithms are based on the solution to the optimal task allocation, and use the predicted delay, energy

consumption, and mobility in Section 5.4.

5.5.1 Serial Tasks

Our first step is to solve the following optimization problem.

min{kn}n∈IC
∑
n∈IC

E(n)kn

subject to
∑
n∈IC

∆(n)kn ≤ ∆thr

∑
n∈IC

kn = K, (5.2)

where E(n) and ∆(n) are the average energy consumption and delay for processing one task at device

n, kn is the number of tasks assigned to device n, and ∆thr is the hard deadline constraint for processing

tasks. (We will describe how E(n) and ∆(n) are calculated later in this section.) The objective function

of Equation 5.2 is to minimize the total energy consumption at master and helper devices. The first

constraint is the deadline constraint, and the last constraint makes sure that all K tasks are scheduled.

We propose an online solution PrComp to Equation 5.2, which determines device n∗ = π∗k,l at time tk,l

for the lth trial of the kth task according to the following rule: Determine policy π∗k,l = arg minE(πk,l)
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that satisfies ∆(πk,l)(K−k+1) ≤ ∆thr−tk,l. Next, we describe how to determine ∆(πk,l) andE(πk,l)

using our predicted values in Section 5.4.

The average delay ∆(πk,l) at device n = πk,l for the kth task at lth trial is expressed by taking into

account mobility as

∆(πk,l) =
( kl−1∑
i=1

θi,πk,l
kl − 1

) 1

1− Pπk,l
, (5.3)

where θi,πk,l is the delay that is measured as described in Section 5.4.1 and Pπk,l is the probability that

device πk,l will not be in the transmission range of the master device. In this formulation,
∑kl−1

i=1

θi,πk,l
kl−1

is the average delay of all per-task delays until i = klth task, and 1
1−Pπk,l

reflects the contribution of the

mobility on average delay.

The average energy consumption is formulated as

E(πk,l) =
ε̃Proc
kl−1,πk,l

+ ε̃Off
kl−1,πk,l

1− Pπk,l
(5.4)

where ε̃Proc
kl−1,πk,l

and ε̃Off
kl−1,πk,l

are processing and offloading energy consumptions, respectively. The

processing energy consumption at device j for the i = klth task is formulated as

ε̃Proc
i+1,j =

(
ε̃Proc
i,j β + (εCPU

i,j + εWi-Fi
i,j 1[j 6=0])β̃

)
1[i→j] + ε̃Proc

i,j (1− 1[i→j]) (5.5)

where β is a small constant, β̃ = 1 − β, 1[x] is an indicator function and takes value 1 if x is true, and

0 otherwise. i→ j represents (a mapping) that task i is offloaded to device j. Note that εCPU
i,j and εWi-Fi

i,j
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are measured as described in Section 5.4.2. The term (εCPU
i,j + εWi-Fi

i,j 1[j 6=0]) in Equation 5.5 states that

there is always energy consumption due to CPU, but there is energy consumption due to Wi-Fi only

when the task is offloaded from the master device to helper devices (i.e., when j 6= 0). ε̃Proc
i,j (1− 1[i→j])

term shows that processing energy consumption is updated only if task i is offloaded to device j, i.e.,

when i→ j mapping is true. Similarly, the energy consumption due to offloading is expressed as

ε̃Off
i+1,j =

(
(ε̃Off
i,j β + εWi-Fi

i,j β̃)(1− 1[i→j]) + ε̃Off
i,j 1[i→j]

)
1[j=0] (5.6)

where ε̃Off
i+1,j = 0 when j 6= 0, because only the master device (i.e., when j = 0) offloads tasks to helper

devices. Note that both Equation 5.5 and Equation 5.6 assumes that ε̃Proc
0,j = 0, ε̃Off

0,j = 0, ∀j.

5.5.2 Parallel Tasks

Our first step is to solve the following optimization problem

min{kn}n∈IC
∑
n∈IC

E(n)kn

subject to max
n∈IC
{∆(n)kn} ≤ ∆thr∑

n∈IC

kn = K, (5.7)

where the delay constraint is maxn∈IC{∆(n)kn} ≤ ∆thr instead of
∑

n∈IC ∆(n)kn ≤ ∆thr in Equa-

tion 5.2 thanks to parallel processing.

The optimal solution to Equation 5.7 orders devices depending on their average energy consumption

E(n) (in increasing order). The vector of ordered devices is de, where [de]r is the rth element of the
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vector de. The optimal solution assigns k[de]1 =
⌊

∆thr
∆([de]1)

⌋
to device [de]1. If there still exist tasks

waiting to be scheduled, it continues assigning tasks to [de]2, . . . , [de]N+1 one by one using the same

rule and stops when all the tasks are scheduled as summarized in Algorithm 1.

Algorithm 1 The optimal solution for parallel task allocation
1: Ksch = K. r = 1. k[de]r = 0, ∀r ∈ {1, . . . , N + 1}.

2: while Ksch > 0 AND r ≤ N + 1 do

3: Assign k[de]r =
⌊

∆thr
∆([de]r)

⌋
tasks to device [de]r

4: Ksch = max{0,Ksch − k[de]r}. r = r + 1

5: end while

Theorem 4. Suppose there exists a feasible solution to Equation 5.7, then Algorithm 1 is the optimal

solution to Equation 5.7.

Proof: Without loss of generality, let N denote the total number of helpers in the set C and each

helper is placed in index 1 through N according to their average energy consumption where E(1) ≤

E(2) ≤ · · · ≤ E(N). Let sol = {k1, k2, · · · , kz−1, kz, kz+1, · · · , kN} denote the solution obtained

from Algorithm 1 where
∑z

i=1 ki = K and kz+1 = · · · = kN = 0 (1 ≤ z ≤ N ). That is to say helper

z is the last helper in the task assignment order that completes the K tasks scheduling requirement. It

can be noted that ki =
⌊

∆thr
∆(i)

⌋
(i < z) and kz = min(

⌊
∆thr
∆(i)

⌋
,K −

∑z−1
i=1 ki).
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Due to the deadline constraint in Equation 5.7, for any other solution sol∗ = {k∗1, k∗2, · · · , k∗z , k∗z+1,

· · · , k∗N} we have

k∗i ≤
⌊

∆thr

∆(i)

⌋
,∀i ∈ {1, · · · , N} (5.8)

Thus,

k∗i ≤ ki,∀i ∈ {1, · · · , z − 1} (5.9)

Furthermore, since kz+1 = · · · = kN = 0, we have

k∗i ≥ ki,∀i ∈ {z + 1, · · · , N} (5.10)

As for the relationship between k∗z and kz , let us consider two scenarios, namely, k∗z ≤ kz and

k∗z > kz .

Scenario 1 k∗z ≤ kz: Let D denote the total task completion difference among the first z helpers

using solution sol and sol∗.

D =
z∑
i=1

ki −
z∑
i=1

k∗i ≥ 0 (5.11)

Due to the total K tasks completion constraint in Equation 5.7, we have
∑N

i=1 ki =
∑N

i=1 k
∗
i = K.

Thus,
N∑

i=z+1

k∗i −
N∑

i=z+1

ki =

N∑
i=z+1

k∗i = D ≥ 0 (5.12)
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The difference of total average energy consumption using sol and sol∗ is

N∑
i=i

E(i)k∗i −
N∑
i=1

E(i)ki

= (

z∑
i=1

E(i)k∗i +

N∑
i=z+1

E(i)k∗i )−
z∑
i=1

E(i)ki

=

z∑
i=1

E(i)(k∗i − ki) +

N∑
i=z+1

E(i)k∗i

≥ E(z)
z∑
i=1

(k∗i − ki) + E(z + 1)
N∑

i=z+1

k∗i

= −E(z)D + E(z + 1)D

= D(E(z + 1)− E(z))

≥ 0 (5.13)

Scenario 2 k∗z > kz: LetD′ denote the total task completion difference among the first z−1 helpers

using solution sol and sol∗.

D′ =
z−1∑
i=1

ki −
z−1∑
i=1

k∗i ≥ 0 (5.14)

Due to the total K tasks completion constraint in Equation 5.7, we have
∑N

i=1 ki =
∑N

i=1 k
∗
i = K.

Thus,
N∑
i=z

k∗i −
N∑
i=z

ki = D′ ≥ 0 (5.15)
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Hence, the difference of total average energy consumption using sol and sol∗ is

N∑
i=1

E(i)k∗i −
N∑
i=1

E(i)ki

= (

z−1∑
i=1

E(i)k∗i +

N∑
i=z

E(i)k∗i )− (

z−1∑
i=1

E(i)ki +

N∑
i=z

E(i)ki)

=
z−1∑
i=1

E(i)(k∗i − ki) +
N∑
i=z

E(i)(k∗i − ki)

≥ E(z − 1)

z−1∑
i=1

(k∗i − ki) + E(z)

N∑
i=z

(k∗i − ki)

= −E(z − 1)D′ + E(z)D′

= D′(E(z)− E(z − 1))

≥ 0 (5.16)

Therefore, any solution sol∗ that is different from sol would achieve higher total average energy

consumption than sol. This concludes the proof. �

Our online algorithm mimics the offline solution in Algorithm 1. At the start (when scheduling

starts), our algorithm runs Algorithm 1. If k[de]r > 0, one task is assigned to device [de]r. Then,

periodically or when a device finishes processing a task, Algorithm 1 is run again and if k[de]r > 0, a

task is assigned to device [de]r. This procedure continues until all tasks are successfully scheduled or

hard deadline constraint is reached. As compared to Algorithm 1, our online algorithm assigns tasks to

devices one by one, which better adapts to the time-varying resources at edge devices.
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5.6 Performance Evaluation

In this section, we evaluate the performance of our algorithm; PrComp for serial and parallel setups

using Android-based smartphones. We implemented a testbed of a master and multiple helpers using

real mobile devices, specifically Android 6.0.1 based Nexus 6P and Nexus 5 smartphones. Nexus 6P has

higher energy efficiency than Nexus 5. All the helpers are connected to the master device using Wi-Fi

Direct connections. We conducted our experiments using our testbed in a lab environment where several

other Wi-Fi networks were operating in the background. We located all the devices in close proximity

of each other (within a few meters distance).

Figure 26 shows the performance of PrComp for serial tasks, where we used the face detection

application, similar to the setup in Section 5.4, as a serial task. The master device is Nexus 5, and the

helpers are Nexus 6P. The performance of PrComp is evaluated as compared to baselines: (i) Full

Offloading, which offloads each task to a helper device that has the least energy consumption, but

does not allow local processing. This baseline is similar to the algorithm developed in [76], but updated

for serial tasks setup, (ii) Local Processing, where the master device processes all the tasks (i.e.,

it does not offload tasks). We assume statistical mobility model described in Section 5.4, where time is

divided into 10 sec slots. At each slot, one of the helpers moves out of transmission range of the master

device with probability 0.3, and comes back to the transmission range with probability 0.5. For the other

helpers, these (both moving out and in) probabilities are 0.9. Given these values, it is straightforward to

calculate Pπk,l . Figure 26 (a) shows the task completion time versus number of helpers, and Figure 26

(b) shows the total energy consumption (at all masters and helpers). As seen PrComp satisfies the hard

deadline constraint and significantly reduces task completion time, while Local Processing fails
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to satisfy the deadline constraint on the average and Full Offloading fails to satisfy the deadline

constraint in some instances (confidence interval exceeds deadline). Full Offloading performs

worse in terms of both delay and energy consumption, because the master device is Nexus 5 which is a

weaker device as compared to helpers (Nexus 6P). The energy consumption of Full Offloading

increases with increasing number of helpers, because more helpers cause more energy consumption.

PrComp performs the best as it (i) takes advantage of local resources at the master device as well as

helpers, and (ii) is adaptive to time-varying resources.

Figure 27 shows the performance of PrComp for serial tasks when we use matrix multiplication

Y = AX as the application. A is a 10K × 10K matrix, X is a 10K × 1 vector. Matrix A is divided

into 500 sub-matrices, each of which is a 20 × 10K matrix. Again, the master device is a Nexus 5

and the helpers are Nexus 6P. The performance of PrComp is compared to the same baselines, Local

Processing and Full Offloading. We assume that for each task, the first helper has 0.1 proba-

bility of failing (low mobility helper) and the other helpers have 0.6 probability of failing (high mobility

helper). Figure 27 (a) and Figure 27 (b) show the task completion time and energy consumption against

number of helpers. As seen, Local Processing performs better in terms of task completion time,

while the energy consumption performance of PrComp is better than Local Processing and the

task completion time of PrComp still meets the hard deadline constraint. On the other hand, Full

Offloading cannot meet the deadline as it does not use local (at master) resources. Its energy con-

sumption is better than both PrComp and Local Processing in the one-helper scenario, as Full

Offloading offloads all the tasks from the master device (Nexus 5) to the helper device (Nexus

6P), and Nexus 6P is more energy efficient than Nexus 5. Both the task completion time and energy
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Figure 26. The task completion time and energy consumption performance of PrComp for serial face

detection tasks. The figures are generated by averaging 16 trials. 60 images are processed and the

deadline threshold is 500 sec.
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consumption of Full Offloading increases with increasing number of helpers as more time and

energy are wasted on helpers with high mobility. To summarize, PrComp takes advantage of using

both local (at master) and remote (at helper) resources to minimize the total energy consumption while

satisfying hard deadline constraints.

Figure 28 demonstrates the performance of PrComp for face detection application in a serial-task

setup. The master device is a Nexus 5 and the helpers are Nexus 6P. There are five helpers in this setup.

One of the helpers is a low mobility helper, which can have connection to the master device 70% of the

time. The connection (or fail) probability of other helpers varies from 0.1 to 0.9.

Figure 28 (a) and Figure 28 (b) show the task completion time and the average energy consumption

in the system versus fail probability of the four helpers. As can be seen, when the fail probability is small

PrComp and Full Offloadingmeet the deadline requirement (while Local Processingmisses

the deadline) and their energy consumption levels are close to each other. The reason is that offloading

is a better decision in terms of both delay and energy when fail probability is small as helper devices

are more delay and energy efficient than the master device. When the fail probability increases, more

and more offloaded tasks will fail and more packets will be rescheduled which increases completion

time and energy consumption. For example, the completion time and energy consumption of Full

Offloading is exponentially increasing with increasing fail probability. On the other hand, PrComp

wisely uses local (i.e., at master) and remote (i.e., at helper) resources efficiently. and its completion

time is always below the hard deadline and it is efficient in terms of energy consumption.

Figure 29 shows the delay and energy performance of PrComp for parallel tasks, where we used

matrix multiplication Y = AX as a parallel task. The sizes of A and X are the same as the serial case.
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Figure 27. The task completion time and energy consumption performance of PrComp for serial

matrix multiplication tasks. The figures are generated by averaging 10 trials. 500 matrices are

processed and the deadline threshold is 350 sec.
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Figure 28. The task completion time and energy consumption performance of PrComp for serial face

detection tasks. The figures are generated by averaging 5 trials. 60 images are processed and the

deadline threshold is 500 sec.
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There is a master device (Nexus 5) and two helpers (Nexus 6P). The probability of not being in the

same transmission range of helpers are P1 = 0.1 and P2 = 0.8. PrComp is compared with baselines:

Local Processing, which is the same algorithm described above; Opportunistic, which uses

master and helper devices simultaneously; and ARC, which is an algorithm developed in [76] to reduce

the energy consumption at local devices (i.e., the master device). As seen in Figure 29(a), PrComp,

although it has larger task completion time as compared to baselines, it always satisfies hard deadline

constraints. Furthermore, PrComp reduces total energy consumption as compared to baselines, and its

energy efficiency increases when the hard deadline threshold increases, because PrComp has a larger

set of task scheduling policies that it can exploit when deadline threshold increases.

Figure 30 and Figure 31 demonstrate the delay and energy performance of PrComp versus the

number of helpers for the same setup described above, but we use face detection as a parallel task. The

hard deadline is 500 seconds. The probability of not being in the same transmission range of helpers

are P1 = 0.3 and P2 = . . . = P5 = 0.6 and P1 = 0.3 and P2 = . . . P5 = 0.9 for Figure 30 and Fig-

ure 31, respectively. As seen, PrComp always satisfies the hard deadline constraints and performs better

in terms of energy consumption when mobility of helpers increases thanks to making task offloading

decisions by taking into account the mobility of devices.

Figure 32 shows the task completion time and energy consumption performance of PrComp versus

error margin. Master device is Nexus 5 and we have three helper devices; all of them are Nexus 6P. The

hard deadline constraint is 400 seconds. The helper devices follow mobility pattern from the dateset

in [1], which collects data on if the master and a helper device are in the same transmission range or
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Figure 29. The task completion time and energy consumption performance of PrComp for parallel

tasks. The figures are generated by averaging 16 trials.
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not. The master device estimates whether a helper device is in its transmission range with some error

probability, which corresponds to the error margin.

PrComp is compared with baselines: Opportunistic and ARC. As seen in Figure 32 (a), both

Opportunistic and PrComp satisfies the hard deadline while the average completion time of ARC

exceeds the deadline. The energy consumption of PrComp is less than Opportunistic as seen in

Figure 32 (b), but higher than ARC as ARC is optimized for energy, but ARC misses the hard deadline

constraint as seen in Figure 32 (a).

Figure 33 shows the delay and energy performance of PrComp when majority voting is used to

predict the mobility of devices. These results are for the parallel-task setup, where we used the face

detection application as a parallel task. The master device is Nexus 5 and helpers are Nexus 6P smart-

phones. There are three helpers. All helpers move according to the mobility pattern from the dataset

in [1]. In order to predict the mobility, we divide the time into slots as described in Section 5.4.3, and

the master device counts the number of encounters in the last 5 slots with each helper device. If there

are encounters during most of the slots with a helper, the master concludes that it will encounter with

this helper at the next time slot. Figure 33 shows that PrComp significantly improves task completion

time as well as energy consumption as compared to Local Processing thanks to effectively using

resources at master and helpers by predicting mobility, while Local Processing is limited with

the resources at the master device. Note that the average completion time of ARC exceeds the deadline,

while Opportunistic can achieve minimum delay by utilizing all available resources. However,

PrComp reduces the energy consumption as compared to Opportunistic while meeting the dead-

line requirement by offloading more tasks to stable helpers.
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Figure 30. The task completion time and energy consumption performance of PrComp versus number

of helpers for parallel tasks (face detection). The figures are generated by averaging 5 trials. The

probability of not being in the same transmission range of helpers are P1 = 0.3 and

P2 = . . . = P5 = 0.6.
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Figure 31. The task completion time and energy consumption performance of PrComp versus number

of helpers for parallel tasks (face detection). The figures are generated by averaging 5 trials. The

probability of not being in the same transmission range of helpers are P1 = 0.3 and P2 = . . . P5 = 0.9.
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Figure 32. The task completion time and energy consumption performance of PrComp versus error

margin for parallel tasks (face detecton) when helpers follow real mobility data in [1]. The figures are

generated by averaging 5 trials.
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Figure 33. Completion time and energy consumption performance of PrComp when mobility is

predicted via majority voting. The figures are generated by averaging 5 trials.



CHAPTER 6

THE EVOLVING NATURE OF DISASTER MANAGEMENT IN THE INTERNET

AND SOCIAL MEDIA ERA

The contents of this chapters are based on our work that is published in the proceedings of 2018

IEEE LANMAN conference [6]. ©2019 IEEE. Reprinted, with permission, from [6].

Traditional means for contacting emergency responders depend critically on the availability of the

911 service to request help. Large-scale natural disasters such as hurricanes and earthquakes often

result in overloading and sometimes failure of communication facilities. Affected citizens are increas-

ingly using social media to obtain and disseminate information. Social media is not only being used

to communicate with first responders but also for people to organically volunteer and seek help from

each other, complementing the role of first responders. In this chapter, we examine the use of Twitter

during two major hurricanes in the U.S. in 2017. We find that there exists a sizable number of people

with access to the Internet even in areas where 911 services were down, and they tweet disaster-related

information including requests for help. Our analysis indicates that social media can potentially help in

disaster management and improve outcomes.

6.1 Background

Effective communication among citizens in need of help, first responders and others who are able to

help during and in the aftermath of a disaster can affect outcomes dramatically. The ability to provide

timely and relevant information to the right person can help manage disasters better and save lives.
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The past several years have brought significant changes on how our society communicates, increasingly

dominated by social media. The integration of social media in daily lives has also dramatically changed

how victims, volunteers, and first responders exchange information, seek and provide help during and

after disasters.

As an example, during Hurricane Harvey [80], hundreds of stranded Texas residents sought help

by posting on Twitter, Facebook, Instagram, etc. [81]. Social media was also used in the aftermath of

the Great Eastern Japanese earthquake and tsunami in 2011 [82]. In the case of Hurricanes Harvey and

Irma [83], they tweeted their addresses to emergency officials and posted pictures to clarify or emphasize

their situation. Especially, when people felt that traditional aid-seeking methods such as 911 was not

adequate, due to the overloaded demand and also infrastructure being down, and mainstream news media

was not real-time enough [81,84–86], many of them posted their address, location with information and

pictures about their situation online, hoping to get help. Another concern when traditional approaches

such as “911” were overloaded as that cell phone batteries ran down while on hold [81], and without

power, social media became important.

Thus, people sought help by using their everyday communication mechanisms on social media.

The asynchronous nature of data communication and the ability to spread the information widely with

reasonable efforts may also be likely driving factors. Further, informal ad-hoc volunteer groups are

increasingly becoming an integral part of rescue efforts. Such volunteer groups used social media ex-

tensively to organize effective rescue missions.

We believe it is crucial to better harness the potential of social media information and the Internet

connectivity to individuals during time-critical situations. Techniques that can automatically process



123

social media posts and Internet connectivity to identify potential victims or areas needing help should

be developed to improve the disaster management. Further, again, it is imperative to devise social media

data processing methods to understand the trust and security challenges. Identifying if a tweet calling for

help is malicious or establishing a framework for civilians and communities to communicate securely

via social media without being risked of looters or individuals with malicious intent are examples of

such challenges.

Communications infrastructures fail as a result of disasters (especially the last mile, with telephone

poles, cable and fiber nodes in the neighborhood or cell phone base stations being impacted). A critical

lifeline for disaster management has been the ability to contact emergency services through a telephone

number (such as “911” in the United States). It primarly provides ability for citizens to request help from

first responders. Also in modern day systems, it provides automatic location identification, a feature

that is very helpful in speeding up the delivery of emergency services. It is therefore very helpful to

understand the current capabilities of the infrastructure to sustain disasters. The United States Federal

Communications Commission (FCC) collect and report data on the availability of these emergency

services as well as of cellular communication on a relatively fine grain (both spatial and temporal)

data, which we examine in this chapter. When emergency services (i.e., 911) are impacted, it is also

useful to examine if other forms of communication (e.g., Internet connection via cellular) are impacted.

Moreover, since emergency services are synchronous communication between people seeking help and

a human facilitator at the other end, the limited availability of a large enough number of 911 operators

in the disaster stricken area can severely limit service. Moreover, when a person calls such a service and

is put on hold, then consumes power on the hand-held device (often a cellular phone because land-line,



124

wired access may have failed), and the battery drain can be a serious concern at times when power

is a precious, scarce commodity. As such, the ability to utilize alternative form of communication,

such as the Internet via social media (broadcast, group multicast) or email can be valuable. However,

even this requires access to communication facilities (e.g., cellular networks, which may be the “last

facility standing”). It is important therefore to understand the availability of the cellular infrastructure

as well. We examine the failure and repair times for these facilities as well as the finer-grained service

of providing automatic location identification (ALI) during and in the aftermath of recent disasters in

the United States.

6.2 Related Work

Social media has been increasingly used for communication and information dissemination for cri-

sis response purposes. Work in [87, 88], among others, describe the effect of online social media for

emergency relief. Gao et al. [89] describe the benefits, issues and research topics of using online social

media for disaster relief, confirming our motivation. In this chapter, we focus on two major recent dis-

asters in the U.S.: Hurricanes Harvey and Irma, during which numerous civilians in the affected areas,

chose to or had to go online on Social media, such as Facebook or Twitter, in order to get information

and also ask for help.

Social media can be very beneficial, as a supplement to traditional communication methods, to help

requests get distributed and go viral, catching the attention of more people, especially volunteers who

can help. One example of this benefit was a case of the residents of a nursing home being rescued after

it was posted online during Harvey [84]. Additionally, social media can bring more comfort to disaster
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victims, as they feel that they have a better chance of being noticed and possibly rescued [85], as it can

be a more reliable source when infrastructure is down [86].

The latest Google crisis response tools provide several disaster management related features such as

Google person finder, Google crisis maps and Google public alerts [90]. Google person finder is a web

application serves like a message board for survivors and their friends and families to find each other

during a natural disaster [91]. Google crisis maps publish the geo-spatial disaster information such as

updated satellite images, flood zones, evacuation routes and shelters [92]. Furthermore, users that are

close to the impacted areas will get notifications about the disasters pushed to their mobile devices via

Google public alerts available in the search engine and maps [93]. Facebook’s disaster response on

the other hand, is a service that allows people in the affected areas to find or offer help. The types of

help are categorized such as food, clothes, shelters, fuels, etc. Also, people in the affected area can

share information that they are safe quickly to their friends on Facebook via the “Safety check” [94].

Safety check function will be activated automatically when a lot of people in the affected area are

posting about the incident or disaster. Finally, Facebook utilizes their app along with a location service

to deliver disaster maps [95]. Disaster maps contain the information about the density, movement and

Safety checks of the population in the affected areas.

Using the social media content in an efficient architecture can be helpful for disaster information

dissemination. Work in [96] proposes a location-independent information-centric approach [97] for this

purpose; it studies the 2010 Haiti earthquake dataset [98,99] for the communication trace for evaluation.

The authors observed that a social media-like system with push capability can dramatically improve the

performance of message dissemination in such disasters.
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Figure 34. Disaster area of Hurricane Harvey.

6.3 Data Set Collection

We focus on a pair of hurricanes, which were significant natural disasters that occurred in the U.S. in

August and September 2017. Hurricane Harvey hit the state of Texas on August 25th and its effects (e.g.,

rain and flooding) lasted until the end of the month. Hurricane Irma hit the state of Florida on September

9th and its effects continued beyond September 14th. We collected data about Harvey and Irma from

two sources: 1) FCC communication status report on these hurricanes, to get an understanding about

the infrastructure failure including that for emergency services, and 2) social media data, in particular

Twitter, to explore where and when users tweeted information about the disasters.

6.3.1 FCC Communication Status Report

The U.S. Federal Communications Commission (FCC) activates the Disaster Information Report

System (DIRS) in disaster areas when requested by Federal Emergency Management Agency (FEMA).

The DIRS collects data from the following three sources:
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Figure 35. Tweets crawled during Harvey.

Date Tweet # Start (CDT) End (CDT)

Aug.24 117,971 6:33:34 pm 6:59:59 pm

Aug.25 432,968 5:10:12 pm 6:59:59 pm

Aug.26 96,664 6:39:12 pm 6:59:59 pm

Aug.27 561,187 5:22:52 pm 6:59:59 pm

Aug.28 288,618 6:09:12 pm 6:59:59 pm

Aug.29 308,723 6:10:22 pm 6:59:59 pm

Aug.30 182,117 6:23:10 pm 6:59:59 pm

• Communication providers for civilians (including wireless, wireline and cable) submit their net-

work outage. FCC reports county-based outage of cellular communications, and overall wireline

and cable outage.

• The Public Safety and Homeland Security Bureau (PSHSB) learns about the status of each Pub-

lic Safety Answering Point (PSAP) through the filings of 911 Service Providers in the DIRS,

through reporting to the FCC’s Public Safety Support Center (PSSC), coordination with state 911

Administrators and, if necessary, individual PSAPs.

• Broadcast media outages including TV and radio stations.

Of the FCC data, we mainly focus on cellular outage and PSAP (911 service) status.

For Harvey and Irma, FCC published the communication status report around 11am EDT each

day [100, 101]. For Harvey, 55 counties in Texas and Louisiana (marked red in Figure 34) are listed as

disaster areas from August 25 to 30. Nine more counties in Texas (marked in blue in Figure 34) were
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Figure 36. Percentage of Harvey-related Tweets over total collected tweets.

added for the period from August 31 to September 1. DIRS remained active in 13 counties (with yellow

border in Figure 34) between September 2nd and 4th. For Irma, all the counties in Florida were marked

as disaster areas from September 10 to 17.

6.3.2 Twitter Data Crawling

To obtain an idea of the extent to which social media was being used during and in the aftermath of

disasters, we developed a Twitter crawling application. Twitter allows querying for tweets using devel-

oper accounts, with a limit on the rate of queries. The query builder and sender part of our application

sends queries with
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Figure 37. Percentage of Irma-related tweets during Sept. 9-11 over 3-hour periods.

• geocode that specifies the location of the queried tweets;

• time-interval of interest for the tweets to constrain what was collected;

• count: the number of tweets returned per query, and

• maxId: limits the tweets according to their IDs which is assigned and sorted by Twitter.

Our application receives and saves the responses to queries. We collected data sets for both Harvey and

Irma:

• For Harvey, we crawled 1,988,248 tweets within a 500-mile radius of Houston. Figure 35 has

timing and number of tweets.
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• For Irma, a total of 14,416,118 tweets were collected within 500 miles of a central point in Florida

(lat, long: (29.6875, –82.4150)). We observed 11,038,342 (46.7 GB of) tweets were sent between

9:27:02pm EDT Sept. 9th and 7:59:59pm EDT Sept. 11th (about 2 days), and 3,377,776 tweets

were sent between 6:25:24am and 7:59:59pm EDT Sept. 12th.

6.4 Social Media Usage in Disasters

Data collected from social media (in particular, Twitter) can be very informative about disaster-

related issues as it has been widely used for asking and offering help, by government, volunteers, civil-

ians, etc. This was observed anecdotally in several news articles soon after Harvey. We crawled the

Tweets sent during and just after the hurricanes Harvey and Irma and see if they can potentially answer

many useful questions such as what, when and where the need/offer for help occurs. Analyzing this data

both qualitatively and quantitatively, we can get insights for the design of communication capabilities

to complement traditional emergency service communication.

6.4.1 Keyword-Based Association of Tweets

We implemented an early-stage tweet processing algorithm that:

• parses large collections of raw crawled tweets, and

• identifies keywords and performs a phrase-based classification of tweets.

For the first phase, we use Java JSON Parser to extract those attributes of a tweet that we are most

interested in, i.e., mainly createdAt showing the time of the tweet, text showing the content of the

tweet, and geolocation field of the tweet as a (latitude, longitude) pair. For the second phase, we

use the Lucene [102] library, an open-source text mining engine to determine whether or not a tweet is
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TABLE II

TWEET COUNTS PER CATEGORY FOR HARVEY ON AUG. 27TH BETWEEN 5:22:52 PM AND

6:59:59 PM.
Category Query phrase #

Total 561,187

Harvey-related harvey* hurricane* 50,140

Deaths death* dead 6,012

Shelter shelter* 3,552

Damage damage* 1,067

Search & Rescue (search)AND(rescue) 852

Fire Fire 736

Missing Persons Missing 522

Collapsed Infrastruc-

ture
collaps* 876

Trapped Trapped 382

Forward This Mes-

sage
(please this)AND(forward retweet) 337

Outage

((electricity power) AND (no

out without outage* blackout*))

outage* blackout*

301

Shortage
shortage* suffic* insuffic* ((run*

ran are)AND(short low out))
248

Distribution distribut* 181

Earthquake & After-

shocks

aftershocks AND earthquake*

aftershock*
157

Need Medical Equip-

ment & Supplies
(need*)AND(medic* suppl*) 146

Human Remains remains bodies 114

Looting loot* 84
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associated to the disaster. We mine the text field of the tweets to get an understanding of what a tweet is

about. Additionally, a dictionary construction program on the tweet pool gives us the frequency of each

word and also the top k most frequent words, thus allowing us to learn what words are most popular in

a tweet collection.

We analyze temporal and spatial distribution of incident-related tweets. For the tweets we crawled

from the approximate one-week duration of Harvey, we identified Harvey-related tweets by counting the

results of the harvey* hurricane* query (similarly for Irma, with the keyword irma*). We used the

createdAt and geoLocation fields to plot the temporal and spatial distribution of the hurricane-related

tweets. In this section we focus on the temporal analysis and leave the spatial analysis to Section 6.5.

6.3 shows the percentage of the Harvey-related tweets during the crawling periods on Twitter, show-

ing how the ratio of tweets related to Harvey was higher during the peak of the incident. Aug. 25th was

the day Harvey made landfall while Aug. 27th was the day of considerable flooding. Figure 37 shows

the percentage of Irma-related tweets for continuous 3-hour periods between the night of Sept. 9 and

the evening of Sept. 11. We observe that Irma-related tweets tracked the progress of the hurricane. It is

interesting to note the correlation between these results and real events: According to [103], “. . . Irma

was upgraded to a Category 4 . . . ” on Sept. 10 and “. . . downgraded to a Category 1 . . . ” on Sept. 11.

As for Florida (where most crawled tweets are from), “Hurricane Irma pummeled the Florida Keys late

Saturday (Sept. 9) into Sunday (Sept. 10) as a Category 4 and hit the Florida mainland as a Category 3

storm around 1pm eastern time Sunday . . . ” [104]. While the frequency of tweets on a topic may rely

on many different factors, we observed that Harvey-related tweets are more frequent during the peak of

the hurricane.
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TABLE III

CATEGORIES FOR IRMA TWEETS DURING SEPT. 9TH - SEPT. 12TH.
Period start 9/09 9:27pm 9/10 9:00am 9/10 9:00pm 9/11 9:00am 9/12 6:25pm 9/12 9:00am

Period end 9/10 8:59pm 9/10 8:59pm 9/11 8:59am 9/11 7:59pm 9/12 8:59am 9/12 7:59pm

Category # per Hour # per Hour # per Hour # per Hour # per Hour # per Hour

Total 1939504 167922.42 3640540 303378.33 2350414 195867.83 3107882 282534.73 381807 147987.21 2960088 269098.91

Irma-related 214245 18549.35 464809 38734.08 252559 21046.58 217026 19729.64 15616 6052.71 88055 8005

Outage 6721 581.90 15031 1252.58 13937 1161.42 21097 1917.91 2439 945.35 13933 1266.64

Deaths 6407 554.72 10858 904.83 11817 984.75 19357 1759.73 1879 728.29 15641 1421.91

Shelter 11931 1032.99 26958 2246.5 7384 615.33 7673 697.55 359 139.15 2314 210.36

Damage 2188 189.44 8610 717.5 8017 668.08 15356 1396 1268 491.47 8287 753.36

Looting 200 17.32 10383 865.25 13782 1148.5 12172 1106.55 434 168.22 2142 194.73

Fire 3068 265.63 6377 531.42 4700 391.67 5251 477.36 678 262.79 6605 600.45

Forward This Message 186 16.10 489 40.75 307 25.58 403 36.64 320 124.03 15919 1447.18

Missing Persons 2022 175.06 2986 248.83 1851 154.25 3155 286.82 290 112.40 3086 280.55

Shortage 1363 118.01 2375 197.92 1116 93 2171 197.36 238 92.25 2169 197.18

Human Remains 2031 175.84 1997 166.42 1446 120.5 1838 167.09 190 73.64 1349 122.64

Collapsed Infrastructure 211 18.27 3784 315.33 705 58.75 752 68.36 28 10.85 547 49.73

Earthquake & Aftershocks 803 69.52 1745 145.42 481 40.08 430 39.09 63 24.42 384 34.91

Distribution 750 64.94 854 71.17 283 23.58 456 41.45 65 25.19 609 55.36

Trapped 230 19.91 473 39.42 391 32.58 319 29 40 15.50 273 24.82

Need Medical Equip.&Supplies 193 16.71 383 31.92 150 12.5 310 28.18 53 20.54 434 39.45

Search & Rescue 77 6.67 89 7.42 253 21.08 627 57 43 16.67 146 13.27

Road Blocked 16 1.39 127 10.58 141 11.75 345 31.36 93 36.05 177 16.09

Contaminated Water 122 10.56 157 13.08 151 12.58 215 19.55 6 2.33 136 12.36

Unstable 42 3.64 78 6.5 48 4 88 8 17 6.59 88 8

Rubble 26 2.25 62 5.17 38 3.17 66 6 6 2.33 39 3.55

Medical Emergency 22 1.90 36 3 18 1.5 99 9 4 1.55 51 4.64

Water Sanitation&Hygiene 7 0.61 50 4.17 18 1.5 92 8.36 2 0.78 36 3.27

Security Concern 5 0.43 20 1.67 23 1.92 25 2.27 5 1.94 12 1.09

6.4.2 Categorizing Tweets for Disaster Management

Once disaster-related tweets are identified, we classify the tweets according to what the tweeter is

requesting/offering regarding the disaster, e.g., requesting or offering aid, volunteering, reporting, or
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complaining. We identified a set of disaster-related categories and show their frequency in Table II and

Table III for Harvey and Irma, respectively. We picked the query phrase associated with each category

after some trial and error to get a reasonable accuracy rate.

For Harvey, the tweet count for each category is shown in Table II. We found the most frequent

topics in Harvey tweets to be on “deaths”, “shelter”, and “damage”. For Irma, we did a more compre-

hensive classification. Table III shows the tweet count for each disaster-related category for three days

(Sept. 10, 11 and 12) in 12-hour intervals (starting from 9pm). We used the same category list and

search keywords as we did for Harvey. As time values for different periods differ, we also show the

tweets per hour which is the tweet count divided by the number of hours. This is very helpful for fair

comparisons. Most of the trends observed in the table correlate with real progression of events. For

example, It is interesting to note that the most frequent Irma tweet category was “outage” which was

not a frequent category in Harvey. For “outage”, we observe that the related tweets increase from Sept.

10 (1,252.58) to Sept. 11 (1,917.91) and decrease on Sept. 12 (1,266.64) during the daylight hours

9am–9pm (a similar pattern, with lower numbers, is seen during the night time, 9pm–9am). According

to [105], power outage increased till Sept. 11, peaked, and then decreased after that. That seems to be

similar to the numbers in our results. The aforementioned article also states “.. power outages peaked

at 3pm on Sept. 11, affecting 64% of customers ..” which also correlates with the results; as we see

an increase-then-decrease pattern, peaking on Sept. 11. Looking at other categories, “Looting” reports

go up first (immediately after event) and goes down afterwards – probably because of law enforce-

ment. Likewise, “Shelter” requests go down over time. Similar trends can be observed for “Deaths” and
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Figure 38. # of cell sites down vs. total (%age down) in the most affected southern counties of Florida

on Sept. 11 (Darker implies a higher %age of sites down).

“Damage” categories. There may be anomalies too; e.g., “Forwarding of message” goes strangely up

on Sept. 12. This may be due to excessive retweets of one tweet.

6.5 Monitoring Communication Infrastructure

Knowing that people use social media for communicating disaster-related information, we seek to

understand the relationship between the availability of traditional 911 service and cellular communi-

cation infrastructure, and the use of social media (Twitter) in the disaster areas. This can help answer

questions like “what is the potential of using social medial when 911 services are not running prop-

erly?”, and “can social media help during a disaster?”

6.5.1 Status of Civilian Communication Infrastructure

Focusing on Irma, we first look at the cell site outages in the counties hit by the hurricane. Figure 38

shows the outage-percentage by county on Sept. 11, the day after Irma made landfall. Since Irma made
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Figure 39. # of cell sites down vs. population affected in Florida during Hurricane Irma.

the first landfall at Cudjoe Key (southwest Monroe county) as a category 4 storm, and the second landfall

on Marco Island (southwest Collier county) as a category 3 storm [103], we can see that the western

side of the southern Florida (Monroe, Collier, Hendry and Lee counties) is affected more severely – up

to 80% cell site outage.In comparison, the east side (Miami-Dade, Broward and Palm Beach counties)

suffers less, i.e., 30%–40% cell site outage.

To get an idea of the population affected,we correlated the FCC data with the county population data

reported by World Population Review [106]. The population and # cell sites serving a county appear

quite correlated, with ≈6 cell sites per 10K people according to our calculation. To get a rough estima-

tion on the population affected in a county, we multiply the county’s population with the percentage of

cell sites down in that county. While this estimation may be over-simplified, assuming each person is

served by exactly one cell site, we are limited by the granularity of the data reported. Even if this isn’t

the case, when a subset of cell sites are down, the impact is felt by users, possibly with lower throughput.
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Figure 39 shows the # of cell sites down and the population affected during the period reported by FCC.

We can see that in the first 2 days, around 1/3 cell sites are damaged by the hurricane (about 4K down

out of a total of 14,730 cell sites serving Florida) and the population affected is over 5.5 million on those

2 days. Five days after (9/16) the hurricane made its first landfall, 95% of the cell sites were back to

normal and the population affected reduced to 1.3 million, reflecting reasonably rapid failure recovery.

6.5.2 Status of PSAPs (911 Services)

We also look at the status of the PSAPs served in Florida during Irma. According to the FCC reports,

each PSAP can be in one of the following 5 states:

• down (no service at all),

• reroute without Automatic Location Information (ALI),

• up but without ALI,

• reroute with ALI, and

• not affected.

We mainly focus on the first 3 states (either down or without ALI) and we categorize them as “ab-

normal”. ALI is important in emergencies to help first responders provide help quickly, rather than

depending on the caller to provide the exact location. Comparatively, “reroute w/ ALI” is less severe

since all the functions of 911 are available, but there may be fewer answering positions, i.e., operators

answering the calls.

Since FCC only reports the PSAPs affected by Irma (the first 4 categories), we correlated the data

with E911 plan in Florida from Florida Department of Management Services (DMS) [107]. In the
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DMS documents, each county reports the detail of each PSAP served, including the location, the # of

answering positions, total staff, etc. Table IV shows the total number and the affected number of PSAPs

(and answer positions) in the 7 southern counties in Florida. Based on these, we make two observations.

Firstly, there is a correspondence between the percentage of PSAPs affected and the percentage of the

cellular infrastructure that failed. Counties with higher cell site outage (i.e., Monroe, Collier, Hendry and

Lee) also suffer from higher PSAP outage. This is understandable since the hurricane causes damage to

both 911 and cellular service infrastructure and resources.

More interestingly, we observe that even in the counties with poor 911 service availability, there

were still cell sites available. For example, in the first 3 days (reported in Table IV), the two PSAPs

in Collier county are either down or w/o ALI. However, there are still 52–75 (24.5%–35.4%) cell sites

available in the county. Similarly, in Lee county, we observe that around 95% of PSAPs were down

or w/o ALI whilst 118–214 (34.4%–62.4%) cell sites were still functioning during that period. That

means a proportion of citizens could still get access to social media (e.g., to call for help) even when the

911 service is not functioning properly. With Device-to-Device (D2D) [108] and Disruption-Tolerant

Networking (DTN) [109] techniques, we expect the coverage of the cell sites could be extended to even

more people, enabling them to seek and possibly receive help through social media.

6.5.3 Infrastructure Failure vs. Geo-Tagged Tweets

Availability of geo-location by the smartphones and their social media use could be a significant

help when civilians call for help – especially when 911 service or ALI in the county is not functioning.

We inspected the geoLocation field of the Irma tweets and tried to observe if geo-tagged tweets can

be useful in disaster management. A small percentage of tweets have geoLocation in them, and our
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TABLE IV

STATUS OF PUBLIC SAFETY ANSWERING POINTS (PSAPS).
(D: down, U: up w/o ALI, R: reroute w/o ALI, A: reroute w/ ALI,

Abnormal %: % of answer positions down or w/o ALI)

Date County

PSAPs (Answer Positions) Abnor- Cell sites

Total D U R A mal(%) down (%)

Monroe 3 (011) 2 (07) 63.64 87 (80.56)

Collier 2 (039) 2 (39) 100.00 160 (75.47)

Hendry 4 (008) 2 (03) 1 (2) 62.50 31 (67.39)

9/10 Lee 5 (041) 2 (15) 1 (14) 1 (2) 75.61 186 (54.23)

Miami-Dade 7 (212) 1 (19) 0.00 739 (51.50)

Broward 6 (126) 0.00 443 (47.94)

Palm Beach 19 (142) 2 (13) 0.00 311 (42.84)

Monroe 3 (011) 2 (07) 63.64 89 (82.41)

Collier 2 (039) 1 (33) 1 (6) 100.00 154 (72.64)

Hendry 4 (008) 3 (05) 62.50 36 (78.26)

9/11 Lee 5 (041) 4 (39) 1 (02) 95.12 170 (49.56)

Miami-Dade 7 (212) 1 (19) 0.00 602 (41.95)

Broward 6 (126) 1 (18) 0.00 353 (38.20)

Palm Beach 19 (142) 2 (13) 0.00 244 (33.61)

Monroe 3 (011) 1 (05) 45.45 89 (82.41)

Collier 2 (039) 1 (33) 1 (6) 100.00 137 (64.62)

Hendry 4 (008) 3 (5) 62.50 35 (76.09)

9/12 Lee 5 (041) 4 (39) 1 (02) 95.12 129 (37.61)

Miami-Dade 7 (212) 1 (19) 0.00 457 (31.85)

Broward 6 (126) 1 (18) 0.00 254 (27.49)

Palm Beach 19 (142) 2 (13) 0.00 178 (24.52)
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geo-analysis is based on this small set of tweets. We hope to increase their proportion with better

geo-location techniques in future.

Figure 40 shows the origin locations of 7,806 geo-tagged Irma tweets. The size of the circles is

proportional to the number of tweets from that exact coordinate. The figure shows in which areas the

density of hurricane-related tweets is higher. The map in The map for Harvey looks similar. For Irma,

there are several locations of different densities, showing the generation of tweets as Irma progressed

north through the Florida panhandle relatively quickly.

According to the map in Figure 40, out of 7,806 geo-tagged tweets, 2,370 (30.4%) are in the 7

southern counties. To compensate for the difference in the population and the period we crawled the

Twitter feed to get our dataset, we normalize the tweet count as the number of tweets per million people

per hour. The exact number of tweets and the normalized value for the 7 southern counties are in

Table V. The table shows that people tweeted more on the first days of the disaster. Monroe county

had 17.92 tweets per million people per hour on Sept. 10 even with 80% cell sites down. Collier and

Lee counties also had a significant value for the normalized tweet count. These three counties were

the most affected, and did not have 911 services functioning properly during that period. Finally, there

is a significant reduction of geo-tagged tweets after Sept. 11, as the hurricane had moved on. This is

indication that the geo-tagged social media data can be an important tool in disaster management and

recovery.
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Figure 40. Geo-distribution of Irma-related tweets (circle size: # of tweets at the same location).

TABLE V

TWEET FREQUENCY IN DIFFERENT COUNTIES DURING HURRICANE IRMA.
(Normalized Tweet #: # of Tweets per million people per hour)

County Population
# of Tweets (Normalized)

Sept. 9 Sept. 10 Sept. 11 Sept. 12

Monroe 79,077 3 (14.88) 34 (17.92) 10 (6.32) 7 (6.52)

Collier 365,136 2 (02.15) 58 (06.62) 13 (1.78) 11 (2.22)

Hendry 39,290 0 (00.00) 1 (01.06) 0 (0.00) 0 (0.00)

Lee 722,336 4 (02.17) 71 (04.10) 29 (2.01) 17 (1.73)

Miami-Dade 2,712,945 79 (11.42) 635 (09.75) 294 (5.42) 190 (5.16)

Broward 1,909,632 30 (06.16) 348 (07.59) 143 (3.74) 76 (2.93)

Palm Beach 1,443,810 15 (04.08) 176 (05.08) 88 (3.05) 36 (1.84)



CHAPTER 7

DYNAMIC HETEROGENEITY-AWARE CODED COOPERATIVE COMPUTATION

AT THE EDGE

The contents of this chapters are based on our work that is published in the proceedings of 2018

IEEE ICNP conference [7]. ©2019 IEEE. Reprinted, with permission, from [7].

Cooperative computation is a promising approach for localized data processing at the edge, e.g.,

for Internet of Things (IoT). Cooperative computation advocates that computationally intensive tasks in

a device could be divided into sub-tasks, and offloaded to other devices or servers in close proximity.

However, exploiting the potential of cooperative computation is challenging mainly due to the hetero-

geneous and time-varying nature of edge devices. Coded computation, which advocates mixing data

in sub-tasks by employing erasure codes and offloading these sub-tasks to other devices for computa-

tion, is recently gaining interest, thanks to its higher reliability, smaller delay, and lower communication

costs. In this chapter, we develop a coded cooperative computation framework, which we name Coded

Cooperative Computation Protocol (C3P), by taking into account the heterogeneous resources of edge

devices. C3P dynamically offloads coded sub-tasks to helpers and is adaptive to time-varying resources.

We show that (i) task completion delay of C3P is very close to optimal coded cooperative computation

solutions, (ii) the efficiency of C3P in terms of resource utilization is higher than 99%, and (iii) C3P

improves task completion delay significantly as compared to baselines via both simulations and in a

testbed consisting of real Android-based smartphones.
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7.1 Background

Data processing is crucial for many applications at the edge including Internet of Things (IoT), but it

could be computationally intensive and not doable if devices operate individually. One of the promising

solutions to handle computationally intensive tasks is computation offloading, which advocates offload-

ing tasks to remote servers or cloud. Yet, offloading tasks to remote servers or cloud could be luxury

that cannot be afforded by most of the edge applications, where connectivity to remote servers can be

lost or compromised, which makes localized processing crucial.

Cooperative computation is a promising approach for edge computing, where computationally inten-

sive tasks in a device (collector device) could be offloaded to other devices (helpers) in close proximity

as illustrated in Figure 41.

These devices could be other IoT or mobile devices, local servers, or fog at the edge of the network

[74], [75]. However, exploiting the potential of cooperative computation is challenging mainly due to

the heterogeneous and time-varying nature of the devices at the edge. Indeed, these devices may have

different and time-varying computing power and energy resources, and could be mobile. Thus, our

goal is to develop a dynamic, adaptive, and heterogeneity-aware cooperative computation framework by

taking into account the heterogeneity and time-varying nature of devices at the edge.

We focus on the computation of linear functions. In particular, we assume that the collector’s data

is represented by a large matrix A and it wishes to compute the product y = Ax, for a given vector

x, as seen in Figure 41. In fact, matrix multiplication forms the atomic function computed over many

iterations of several signal processing, machine learning, and optimization algorithms, such as gradient

descent based algorithms, classification algorithms, etc. [110–113].
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Figure 41. Cooperative computation to compute y = Ax. (a) Matrix A is divided into sub-matrices

A1, A2, ..., AN . Each sub-matrix along with the vector x is transmitted from the collector to one of the

helpers. (b) Each helper computes the multiplication of its received sub-matrix with vector x and sends

the computed value back to the collector.

In cooperative computation setup, matrix A is divided into sub-matrices A1, A2, ..., AN and each

sub-matrix along with the vector x is transmitted from the collector to one of the helpers, as shown

in Figure 41(a). Helper n computes Anx, and transmits the computed result back to the collector,

illustrated in Figure 41(b), who can process all returned computations to obtain the result of its original

task; i.e., the calculation of y = Ax.

Coding in computation systems is recently gaining interest in large scale computing environments,

and it advocates higher reliability and smaller delay [110]. In particular, coded computation (e.g., by

employing erasure codes) mixes data in sub-tasks and offloads these coded sub-tasks for computation,
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which improves delay and reliability. The following canonical example inspired from [110] demon-

strates the effectiveness of coded computation.

Example 3. Let us consider that a collector device would like to calculate y = Ax with the help of three

helper devices (helper 1, helper 2, and helper 3), where the number of rows inA is 6. Let us assume that

each helper has a different runtime; helper 1 computes each row in 1 unit time, while the second and

the third helpers require 2 and 10 units of time for computing one row, respectively. Assuming that these

runtimes are random and not known a priori, one may divide A to three sub-matrices; A1, A2, and A3;

each with 2 rows. Thus, the completion time of these sub-matrices becomes 2, 4, and 20 at helpers 1,

2, and 3, respectively. Since the collector should receive all the calculated sub-matrices to compute its

original task; i.e., y = Ax, the total task completion delay becomes max(2, 4, 20) = 20.

As seen, helper 3 becomes a bottleneck in this scenario, which can be addressed using coding. In

particular, A could be divided into two sub-matrices A1 and A2; each with 3 rows. Then, A1 and

A2 could be offloaded to helpers 1 and 2, and A1 + A2 could be offloaded to helper 3. In this setup,

runtimes become 3, 6, and 30 at helpers 1, 2, and 3, respectively. However, since the collector requires

reply from only two helpers to compute y = Ax thanks to coding, the total task completion delay

becomes max(3, 6) = 6. As seen, the task completion delay reduces to 6 from 20 with the help of

coding. �

The above example demonstrates the benefit of coding for cooperative computation. However, of-

floading sub-tasks with equal sizes to all helpers, without considering their heterogeneous resources is

inefficient. Let us consider the same setup in Example 3. If A1 with 4 rows and A2 with 2 rows are

offloaded to helper 1 and helper 2, respectively, and helper 3 is not used, the task completion delay be-
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comes max(4, 4) = 4, which is the smallest possible delay in this example. Furthermore, the resources

of helper 3 are not wasted, which is another advantage of taking into account the heterogeneity as com-

pared to the above example. As seen, it is crucial to divide and offload matrix A to helpers by taking

into account the heterogeneity of resources.

Indeed, a code design mechanism under such a heterogeneous setup is developed in [114], where

matrix A is divided, coded, and offloaded to helpers by taking into account heterogeneity of resources.

However, available resources at helpers are generally not known by the collector a priori and may vary

over time, which is not taken into account in [114]. For example, the runtime of helper 1 in Example 3

may increase from 1 to 20 while computing (e.g., it may start running another computationally intensive

task), which would increase the total task completion delay. Thus, it is crucial to design a coded coop-

eration framework, which is dynamic and adaptive to heterogeneous and time-varying resources, which

is the goal of this chapter.

In this chapter, we design a coded cooperative computation framework for edge computing. In par-

ticular, we design a Coded Cooperative Computation Protocol (C3P), which packetizes rows of matrix

A into packets, codes these packets using Fountain codes, and determines how many coded packets each

helper should compute dynamically over time. We provide theoretical analysis of C3P’s task comple-

tion delay and efficiency, and evaluate its performance via simulations as well as in a testbed consisting

of real Android-based smartphones as compared to baselines.

The structure of the rest of this chapter is as follows. Section 7.2 presents the coded cooperative

computation problem formulation. Section 7.3 presents the ergodic and static solutions to coded coop-
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erative computation problem and the design of C3P. Section 7.4 provides the performance analysis of

C3P. Section 7.5 presents the performance evaluation of C3P. Section 7.6 presents related work.

7.2 Problem Formulation

Setup. We consider a setup shown in Figure 41, where the collector device offloads its task to helpers

in the setN (where N = |N |) via device-to-device (D2D) links such as Wi-Fi Direct and/or Bluetooth.

In this setup, all devices could potentially be mobile, so the encounter time of the collector with helpers

varies over time. I.e., the collector can connect to less than N helpers at a time.

Application. As we described in Section 7.1, we focus on computation of linear functions; i.e., the

collector wishes to compute y = Ax where A = (ai,j) ∈ RR×R, and x = (xi,j) ∈ RR×1. Our goal is

to determine sub-matrix An = (ai,j) ∈ Rrn×R that will be offloaded to helper n, where rn is an integer.

Coding Approach. We use Fountain codes [115], [116], which are ideal in our dynamic coded

cooperation framework thanks to their rateless property, low encoding and decoding complexity, and

low overhead. In particular, the encoding and decoding complexity of Fountain codes could be as low

as O(R log(R)) for LT codes and O(R) for Raptor codes and the coding overhead could be as low as

5% [117]. We note that Fountain codes perform better than (i) repetition codes thanks to randomization

of sub-tasks by mixing them, (ii) maximum distance separable (MDS) codes as MDS codes require

a priori task allocation (due to their block coding nature) and are not suitable for the dynamic and

adaptive framework that we would like to develop, and (iii) network coding as the decoding complexity

of network coding is too high [118], which introduces too much computation overhead at the collector

which obsoletes the computation offloading benefit.



148

Packetization. In particular, we packetize each row of A into a packet and create R packets; Γ =

{ρ1, ρ2, . . . , ρR}. These packets are used to create Fountain coded packets, where νi is the ith coded

packet. The coded packet νi is transmitted to a helper, where the helper computes the multiplication

of νix and sends the result back to the collector. R + K coded computed packets are required at the

collector to decode the coded packets, where K is the coding overhead. Let pn,i be the jth coded packet

generated by the collector and the ith coded packet transmitted to helper n; pn,i = νj , j ≥ i.

Delay Model. Each transmitted packet pn,i experiences transmission delay between the collector

and helper n as well as computing delay at helper n. Also, the computed packet pn,ix experiences

transmission delay while transmitted from helper n to the collector. The average round trip time (RTT)

of sending a packet to helper n and receiving the computed packet, is characterized as RTT data
n . The

runtime of packet pn,i at helper n is a random variable denoted by βn,i.1 Assuming that rn packets

are offloaded to helper n, the total task completion delay for helper n to receive rn coded packets,

compute them, and send the results back to the collector becomes Dn, which is expressed as Dn =

RTT data
n +

∑rn
i=1 βn,i. Note that RTT data

n in this formulation is due to transmitting the first packet pn,1

and receiving the last computed packet pn,rnx. The other packets can be transmitted while helpers are

busy with processing packets; it is why we do not sum RTT data
n across packets.

1Our framework is compatible with any delay distribution, but for the sake of characterizing the efficiency of
our algorithm, and simulating its task completion delay, we use shifted exponential distribution in Sections 7.4.4
and 7.5.
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Problem Formulation. Our goal is to determine the task offloading set R = {r1, . . . , rN} that

minimizes the total task completion delay, i.e., we would like to dynamically determine R that solves

the following optimization problem:

min
R

max
n∈N

Dn

subject to
N∑
n=1

rn = R, rn ∈ N, ∀n ∈ N . (7.1)

The objective of the optimization problem in Equation 7.1 is to minimize the maximum of per helper

task completion delays, which is equal to maxn∈N Dn, as helpers compute their tasks in parallel. The

constraint in Equation 7.1 is a task conservation constraint that guarantees that resources of helpers are

not wasted, i.e., the sum of the received computed tasks from all helpers is equal to the number of rows

of matrix A. Note that this constraint is possible thanks to coding.1 As we mentioned earlier, R + K

coded computed packets are required at the collector to decode the coded packets when we use Fountain

codes. The constraint in Equation 7.1 guarantees this requirement in an idealized scenario assuming

that K = 0. The constraint rn ∈ N makes sure that the number of tasks rn is an integer. The solution

of Equation 7.1 is challenging as (i) Dn = RTT data
n +

∑rn
i=1 βn,i is a random variable and not known a

priori, and (ii) it is an integer programming problem.

1We note that the optimal computation offloading problem, when coding is not employed, is formulated as
minΓn maxn∈N (RTT data

n +
∑|Γn|

i=1 βn,i) subject to ∪Nn=1Γn = Γ where Γn ⊂ Γ is the set of packets offloaded to
helper n. As seen, the optimization problem in Equation 7.1 is more tractable as compared to this problem thanks
to employing Fountain codes.
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7.3 Problem Solution & C3P Design

In this section, we investigate the solution of Equation 7.1 for non-ergodic, static, and dynamic

setups.

7.3.1 Non-Ergodic Solution

Let us assume that the solution of Equation 7.1 is

T best = max
n∈N

(
RTT data

n +

rbest
n∑
i=1

βn,i

)
, (7.2)

where rbest
n = argminrn∈N maxn∈N

(
RTT data

n +
∑rn

i=1 βn,i

)
. We note that Equation 7.2 is a non-

ergodic solution as it requires the perfect knowledge of βn,i a priori. Although we do not have a compact

solution of T best, the solution in Equation 7.2 will behave as a performance benchmark for our dynamic

and adaptive coded cooperative computation framework in Section 7.4.1.

7.3.2 Static Solution

We assume that RTT data
n becomes negligible as compared to

∑rn
i=1 βn,i. This assumption holds in

practical scenarios with largeR, and/or when transmission delay is smaller than processing delay. Then,

Dn can be approximated as
∑rn

i=1 βn,i, and the optimization problem in Equation 7.1 becomes

min
R

max
n∈N

rn∑
i=1

βn,i

subject to
N∑
n=1

rn = R, rn ∈ N, ∀n ∈ N . (7.3)
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Figure 42. Different states of the system: (a) ideal case, (b) underutilized case, and (c) congested case.

As a static solution, we solve the expected value of the objective function in Equation 7.3 by relax-

ing the integer constraint, i.e., rn ∈ N. The expected value of the objective function of Equation 7.3

is expressed as E[maxn∈N
∑rn

i=1 βn,i], which is greater than or equal to maxn∈N
∑rn

i=1E[βn,i] =

maxn∈N rnE[βn,i] (noting that max(.) is a convex function, soE[max(.)] ≥ max(E[.])), where expec-
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tation is across the packets. Assuming that the average task completion delay is T = E[maxn∈N
∑rn

i=1

βn,i] ≥ maxn∈N rn E[βn,i], Equation 7.3 is converted to

min
R

T

subject to rnE[βn,i] ≤ T, ∀n ∈ N
N∑
n=1

rn = R. (7.4)

We solve Equation 7.4 using Lagrange relaxation (we omit the steps of the solution as it is straightfor-

ward); the optimal task offloading policy becomes

rstatic
n =

R

E[βn,i]
∑N

n=1
1

E[βn,i]

, (7.5)

and the optimal task completion delay becomes T static = R∑N
n=1

1
E[βn,i]

. Although the solution in Equa-

tion 7.5 is an optimal solution of Equation 7.4, the algorithm that offloads rstatic
n sub-tasks to helper n

a priori (static allocation) loses optimality as it is not adaptive to the time-varying nature of resources

(i.e., βn,i). Next, we introduce our Coded Cooperative Computation Protocol (C3P) that is dynamic

and adaptive to time-varying resources and approaches to the optimal solution in Equation 7.5 with

increasing R.

7.3.3 Dynamic Solution: C3P

We consider the system setup in Figure 41, where the collector connects to N helpers. In this setup,

the collector device offloads coded packets gradually to helpers, and receives two ACKs for each packet;
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one confirming the receipt of the packet by the helper, and the second one (piggybacked to the computed

packet pn,ix) showing that the packet is computed by the helper. Inspired by ARQ mechanisms [119],

the collector transmits more/less coded packets based on the frequency of the received ACKs.

In particular, we define the transmission time interval TTIn,i as the time interval between sending

two consecutive packets, pn,i and pn,i+1, to helper n by the collector. The goal of our mechanism is to

determine the best TTIn,i that reduces the task completion delay and increases helper efficiency (i.e.,

exploiting the full potential of the helpers while not overloading them).

TTIn,i in an ideal scenario. Let Txn,i be the time that pn,i is transmitted from the collector to helper

n, Tcn,i be the time that helper n finishes computing pn,i, and Trn,i be the time that the computed packet

(i.e., by abusing the notation pn,ix) is received by the collector from helper n. We assume that the time

of transmitting the first packet to each helper, i.e., pn,1, ∀n ∈ N , is zero; i.e., Txn,1 = 0, ∀n ∈ N .

Let us first consider the ideal scenario, Figure 42(a), where TTIn,i is equal to βn,i for all packets

that are transmitted to helper n. Indeed, if TTIn,i > βn,i, Figure 42(b), helper n stays idle, which

reduces the efficient utilization of resources and increases the task completion delay. On the other hand,

if TTIn,i < βn,i, Figure 42(c), packets are queued at helper n. This congested (overloaded) scenario

is not ideal, because the collector can receive enough number of packets before all queued packets in

helpers are processed, which wastes resources.

Determining TTIn,i in practice. Now that we know that TTIn,i = βn,i should be satisfied for the

best system efficiency and smallest task completion delay, the collector can set TTIn,i to βn,i. However,

the collector does not know βn,i a priori as it is the computation runtime of packet pn,i at helper n. Thus,

we should determine TTIn,i without explicit knowledge of βn,i.
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Our approach in C3P is to estimate βn,i as E[βn,i], where expectation is taken over packets. We

will explain how to calculate E[βn,i] later in this section, but before that let us explain how to use

estimated E[βn,i] for setting TTIn,i. It is obvious that if the computed packet pn,ix is received at the

collector before packet pn,i+1 is transmitted from the collector to helper n, the helper will be idle until

it receives packet pn,i+1. Therefore, to better utilize resources at helper n, the collector should offload

a new packet before or immediately after receiving the computed value of the previous packet, i.e.,

TTIn,i ≤ Trn,i−Txn,i should be satisfied as in Figure 42. Therefore, if the calculated E[βn,i] is larger

than Trn,i−Txn,i, then we set TTIn,i as Trn,i−Txn,i to satisfy this condition. In other words, TTIn,i

is set to

TTIn,i = min(Trn,i − Txn,i, E[βn,i]). (7.6)

Calculation of E[βn,i]. In C3P, E[βn,i] is estimated using runtimes of previous packets:

E[βn,i] ≈
∑mn

j=1 βn,i

mn
, (7.7)

where mn is the number of computed packets received at the collector from helper n before sending

packet pn,i+1. In order to calculate Equation 7.7, the collector device should have βn,i values from

the previous offloaded packets. A straightforward approach would be putting timestamps on sub-tasks

to directly access the runtimes βn,i at the collector. However, this approach introduces overhead on

sub-tasks. Thus, we also developed a mechanism, where the collector device infers βn,i by taking into

account transmission and ACK times of sub-tasks.
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C3P in a nutshell. The main goal of C3P is to determine packet transmission intervals, TTIn,i,

according to Equation 7.6, which is summarized in Algorithm 2. Note that Algorithm 2 has also a

timeout value defined in line 8, which is needed for unresponsive helpers. If helper n is not responsive,

TTIn,i is quickly increased as shown in line 6 so that fewer and fewer packets could be offloaded to that

helper. In particular, C3P doubles TTIn,i when the timeout for receiving ACK occurs. This is inspired

by additive increase multiplicative decrease strategy of TCP, where the number of transmitted packets

are halved to backoff quickly when the system is not responding.

After TTIn,i is updated when a transmitted packet is ACKed or timeout occurs, this interval is used

to determine the transmission times of the next coded packets. In particular, coded packets are generated

and transmitted one by one to all helpers with intervals TTIn,i until (i) TTIn,i is updated with a new

ACK packet or when timeout occurs, or (ii) the collector collects R + K computed packets. Next, we

characterize the performance of C3P.

7.4 Performance Analysis of C3P

7.4.1 Performance of C3P w.r.t. the Non-Ergodic Solution

In this section, we analyze the gap between C3P and the non-ergodic solution characterized in

Section 7.3.1. Let us first characterize the task completion delay of C3P as

T C3P = max
n∈N

(
RTT data

n +

rC3Pn∑
i=1

(βn,i + Tun,i)
)
, (7.8)

where rC3Pn = argminrn maxn∈N

(
RTT data

n +
∑rn

i=1(βn,i + Tun,i)
)

, and Tun,i is per packet under-

utilization time at helper n, which occurs as C3P does not have a priori knowledge of βn,i, but it
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Algorithm 2 C3P algorithm at the collector.
1: Initialize: TOn =∞, ∀n ∈ N .

2: while R+K calculated packets have not been received do

3: if Calculated packet pn,ix is received before timeout expires then

4: Calculate TTIn,i according to Equation 7.7 and Equation 7.6.

5: else

6: TTIn,i = 2× TTIn,i.

7: end if

8: Update timeout as TOn = 2TTIn,i.

9: end while

estimates βn,i and accordingly determines packet transmission times TTIn,i according to Equation 7.6.

The gap between T C3P and T best in Equation 7.2 is upper bounded by:

T C3P − T best = max
n∈N

(
RTT data

n +

rC3Pn∑
i=1

(βn,i + Tun,i)
)
−max

n∈N

(
RTT data

n +

rbest
n∑
i=1

βn,i

)

≤ max
n∈N

(
RTT data

n +

rbest
n∑
i=1

(βn,i + Tun,i)
)
−max

n∈N

(
RTT data

n +

rbest
n∑
i=1

βn,i

)

≤ max
n∈N

(
RTT data

n +

rbest
n∑
i=1

βn,i

)
+ max

n∈N

rbest
n∑
i=1

Tun,i −max
n∈N

(
RTT data

n +

rbest
n∑
i=1

βn,i

)

= max
n∈N

rbest
n∑
i=1

Tun,i, (7.9)
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where the first inequality comes from rC3Pn = argminrn maxn∈N

(
RTT data

n +
∑rn

i=1(βn,i + Tun,i)
)

and the second inequality comes from the fact that max(f(x) + g(x)) ≤ (max(f(x)) + max(g(x))).1

As seen, the gap between C3P and the non-ergodic solution is bounded with the sum of Tun,i. The next

theorem characterizes Tun,i.

Theorem 5. Tun,i is monotonically decreasing with increasing number of sub-tasks, and limi→∞

Pr(Tun,i > 0)→ 0.

Proof: Let us first consider the following lemma that determines the conditions for having a positive

Tun,i+1.

Lemma 6. The necessary and sufficient conditions to satisfy Tun,i+1 > 0 are

i∑
j=i+1−k

βn,j < kE[βn,i],∀k = 1, 2, . . . , i (7.10)

�

According to the conditions given in Lemma 6, the probability of Tun,i > 0 is calculated as:

Pr(Tun,i > 0) =

∫ E[βn,i]

0

∫ 2E[βn,i]−xi

0
. . .

∫ iE[βn,i]−
∑i
j=2 βn,j

0
(7.11)

fβn,1,...,βn,i(x1, . . . , xi)dx1 . . . dxi,

1Note that in Equation 7.9, we assume that the runtime of packet i at helper n is the same in both the non-
ergodic solution and C3P, which is necessary for fair comparison.
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where fβn,1,...,βn,i(x1, . . . , xi) is the joint probability density function of (βn,1, . . . , βn,i). With the

assumption that βn,j , j = 1, 2, ..., i is from an i.i.d distribution, the joint probability distribution function

of βn,1, . . . , βn,i is the product of i probability distribution functions:

Pr(Tun,i > 0) =

∫ E[βn,i]

0

∫ 2E[βn,i]−xi

0
...

∫ iE[βn,i]−
∑i
j=2 xj

0

fβn,i(x1)fβn,i(x2)...fβn,i(xi)dx1dx2...dxi (7.12)

=

∫ E[βn,i]

0
fβn,i(xi)

∫ 2E[βn,i]−xi

0
fβn,i(xi−1)

...

∫ (i−1)E[βn,i]−
∑i
j=3 xj

0
fβn,i(x2)∫ iE[βn,i]−

∑i
j=2 xj

0
fβn,i(x1)dx1dx2...dxi (7.13)

<

∫ E[βn,i]

0
fβn,i(xi)

∫ 2E[βn,i]−xi

0
fβn,i(xi−1)

...

∫ (i−1)E[βn,i]−
∑i
j=3 xj

0
fβn,i(x2)dx2...dxi (7.14)

=

∫ E[βn,i]

0
fβn,i(xi−1)∫ 2E[βn,i]−xi−1

0
fβn,i(xi−2)...∫ (i−1)E[βn,i]−
∑i−1
j=2 xj

0
fβn,i(x1)dx1...dxi−1, (7.15)

where the last inequality comes from the fact that
∫ iE[βn,i]−

∑i
j=2 xj

0 fβn,i(x1)dx1 is less than 1, because

the probability density function is integrated over a finite range of variable x1, and the last equality
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comes from a change of variables in the integrals. Equation 7.15 is equal to Pr(Tun,i−1 > 0) and thus

Pr(Tun,i > 0) < Pr(Tun,i−1 > 0). Similarly, we can show that:

Pr(Tun,j > 0) < Pr(Tun,j−1 > 0),∀j = 2, 3, . . . , i (7.16)

From the above equation, we can conclude that as i gets larger, Pr(Tun,i > 0) gets smaller, and

limi→∞ Pr(Tun,i > 0)→ 0 is satisfied. This concludes the proof. �

We can conclude from Theorem 5 that the rate of the increase in the gap between C3P and the

non-ergodic solution decreases with increasing the number of sub-tasks and eventually the rate becomes

zero for R→∞. Therefore, the gap becomes finite even for R→∞.

7.4.2 Performance of C3P w.r.t the Static Solution

In this section, we analyze the performance of C3P as compared to the static solution characterized

in Section 7.3.2. The next theorem characterizes the task completion delay of C3P as well as the optimal

task offloading policy.

Theorem 7. The task completion delay of C3P approaches to

T C3P ≈ R+K∑N
n=1

1
E[βn,i]

, (7.17)

with increasing R and the number of offloaded tasks to helper n is approximated as

rC3Pn ≈ R+K

E[βn,i]
∑N

n=1
1

E[βn,i]

. (7.18)
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�

Theorem 7 shows that the task completion delay of C3P is getting close to the static solution T static

characterized in Section 7.3.2 with increasing R. The gap between T static and T C3P is K∑N
n=1

1
E[βn,i]

which is due to the coding overhead of Fountain codes, which becomes negligible for large R.

7.4.3 Performance of C3P w.r.t. Repetition Codes

In this section, we demonstrate the performance of C3P as compared to repetition coding with

Round-robin (RR) scheduling through an illustrative example. Repetition codes with RR scheduling

works as follows. Uncoded packets from the set Γ = {ρ1, ρ2, . . . , ρR} is offloaded to helpers one by

one (in round robin manner) depending on their sequence in Γ. For example, ρ1 is offloaded to helper

1, ρ2 is offloaded to helper 2, and so on. When all the packets are offloaded from Γ, we start again from

the first packet in the set (so it is a repetition coding). Note that whenever a packet is computed and

a corresponding ACK is received, the packet is removed from Γ. Thus, this RR scheduling continues

until Γ becomes an empty set. We use TTIn,i in Equation 7.6 to determine the next scheduling time

for helper n. The next example demonstrates the benefit of C3P as compared to this repetition coding

mechanism with RR scheduling.

Example 4. We consider the same setup in Example 3. We assume that per-packet runtimes are β1,1 =

1, β1,2 = 1, β1,3 = 0.5, β1,4 = 1, β1,5 = 1.5, β2,1 = 1.5, β2,2 = 3.5, and β3,1 = 3, β3,2 = 2.5, and the

transmission times of packets are negligible.

As seen in Figure 43(a), RR scheduler sends ρ1, ρ2, and ρ3 to helpers 1, 2, and 3, respectively at

time t = 0. At time t = 1, the computed packet ρ1x is received at the collector, and ρ4, which is the next

packet selected by RR scheduler, is transmitted to helper 1. Similarly, at time t = 1.5, ρ2x is received
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Figure 43. Performance of C3P with respective to repetition codes with RR scheduling.

at the collector, and ρ5 is transmitted to helper 2. Similarly, the next packets are transmitted to helpers

until the results for all packets are received at the collector, which is achieved at time t = 5. As seen,

the resources of helper 1 is wasted while computing ρ3, because those resources could have been used

for computing a new packet. C3P addresses this problem thanks to employing Fountain codes.

In particular, at time t = 0, three Fountain coded packets of ν1, ν2, ν3 are created and transmitted to

the three helpers, i.e., p1,1 = ν1, p2,1 = ν2, p3,1 = ν3. At time t = 1, a new coded packet of ν4 is created

and transmitted as a second packet to helper 1, i.e., p1,2 = ν4. This continues until 6 computed coded

packets (assuming that the overhead of Fountain codes, i.e., K is zero) are received at the collector,

which is achieved at time t = 3.5. �
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Example 4 shows that the task completion delay is reduced from 5 to 3.5 when we use Fountain

codes, which is significant. Section 7.5 shows extensive simulation results to support this illustrative

example.

7.4.4 Efficiency of C3P

In this section, we characterize the efficiency of C3P in the worst case scenario when per task

runtimes follow the shifted exponential distribution. We call it the worst case efficiency, because we

take into account per packet under-utilization Tun,i in efficiency calculation, but the fact that Tun,i is

monotonically decreasing, which is stated in Theorem 5, is not used.

Theorem 8. Assume that the runtime of each packet, i.e., βn,i, is a random variable according to an

i.i.d shifted exponential distribution of

Fβn,i(t) = Pr(βn,i < t) = 1− e−µn(t−an), (7.19)

with mean an + 1/µn and shifted value of an. The expected value of the duration that helper n is

underutilized per packet is characterized as:

E[Tun,i] =


1

(eµn)

(
1− e(µnRTT data

n )
)

+RTT data
n , if RTT data

n < 1
µn

1
(eµn) , otherwise.

(7.20)

�

We define the efficiency of helper n in the worst case as γn = 1 − E[Tun,i]/E[βn,i]. Note

that E[Tun,i] is the expected time that helper n is underutilized per packet in the worst case, while
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E[βn,i] is the expected runtime duration, i.e., the expected time that helper n works per packet. Thus,

E[Tun,i]/E[βn,i] becomes the under-utilization ratio of helper n in the worst case, so γn = 1−E[Tun,i]

/ E[βn,i] becomes the worst case efficiency. From Equation 7.20 and replacing E[βn,i] with an+1/µn,

γn is expressed as the following:

γn =


1+anµn−µnRTT data

n −1/e+exp(µnRTT data
n −1)

1+anµn
, if RTT data

n < 1/µn

e(1+anµn)−1
e(1+anµn) , otherwise.

(7.21)

We show through simulations (in Section 7.5) that, (i) γn in Equation 7.21 is larger than 99%, which is

significant as Equation 7.21 is the worst case efficiency, and (ii) C3P’s efficiency is even larger than γn

as γn in Equation 7.21 is the efficiency in the worst case, where the under-utilization time period has the

maximum value.

7.5 Performance Evaluation of C3P

In this section, we evaluate the performance of our algorithm; Coded Cooperative Computation

Protocol (C3P) via simulations and using real Android-based smartphones.

7.5.1 Simulation Results

We consider two scenarios: (i) Scenario 1, where the system resources for each helper vary over

time. In this scenario, the runtime for computing each packet pn,i, ∀i at each helper n is an i.i.d. shifted

exponential random variable with shifted value an and mean an + 1/µn, and (ii) Scenario 2, where

the runtime for computing packets in helper n does not change over time, i.e., βn,i = βn,∀i, and

βn,∀n ∈ N is a shifted exponential random variable with shifted value an and mean an + 1/µn.
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Figure 44. Task completion delay vs. number of rows/packets for (i) Scenario 1, and (ii) Scenario 2,

where the runtime for computing one row by helper n is selected from a shifted exponential

distribution with an = 0.5, ∀n ∈ N and µn, which is selected uniformly from {1, 2, 4}.

In our simulations, each simulated point is obtained by averaging over 200 iterations for N = 100

helpers. The transmission rate for sending each packet from the collector to each helper n and from

helper n to the collector is a Poisson random variable with the average selected uniformly between 10

Mbps and 20 Mbps for each helper n. The size of a transmitted packet pn,i is set to Bx = 8R bits,

where R is the number of rows of matrix A, and it varies from 500 to 20, 000 in our simulations. The

sizes of a computed packet pn,ix and an acknowledgement packet are set to Br = 8 bits and Back = 1

bit, respectively. These are the parameters that are used for creating all plots unless otherwise is stated.

Task Completion Delay vs. Number of Rows: We evaluate C3P for Scenarios 1 and 2 and compare

its task completion delay with: (i) Static solution, which is the task completion delay characterized

in Section 7.3.2 for both Scenarios 1 and 2. (ii) Non-ergodic solution, which is a realization of the

non-ergodic problem characterized in Section 7.3.1 by knowing βn,i a priori at the collector and setting



165

TTIn,i as βn,i. (iii) Uncoded: rn packets without coding are assigned to each helper n, and the collector

waits to receive computed values from all helpers. The number of assigned packets to each helper n

is inversely proportional to the mean of βn,i, i.e., rn ∝ 1
an+1/µn

. (iv) HCMM: Coded cooperative

framework developed in [114] using block codes. We introduce 5% coding overhead for C3P, static,

and non-ergodic solutions.

Figure 44(a) shows completion delay versus number of rows for Scenario 1, where the runtime for

computing each packet by helper n, βn,i, ∀i, is a shifted exponential random variable with shifted value

of an = 0.5 and mean of an + 1/µn, where µn is selected uniformly from {1, 2, 4}. As seen, C3P

performs close to the static and non-ergodic solutions. This shows the effectiveness of our proposed

algorithm. In addition, C3P performs better than the baselines. In particular, in average, 30% and 24%

improvement is obtained by C3P over HCMM and no coding, respectively. Figure 44(b) considers the

same setup but for Scenario 2, where the runtime for computing rn packets by helper n is rnβn, where

βn is selected from a shifted exponential distribution with an = 0.5, ∀n ∈ N and µn, which is selected

uniformly from {1, 2, 4}. As seen, for this scenario, C3P performs close to the static and non-ergodic

solutions. C3P performs better than HCMM, and HCMM performs better than no coding. In particular,

in average, 40% and 69% improvement is obtained by C3P over HCMM and no coding, respectively.

Note that uncoded performs better than HCMM for Scenario 1, as HCMM is designed for Scenario 2,

so it does not work well in Scenario 1. C3P performs well in both scenarios.

Figure 45 shows completion delay versus number of rows for both Scenarios 1 and 2, where the

runtime for computing the rows by each helper n, is from a shifted exponential distribution with µn, n ∈

N selected uniformly from {1, 3, 9} and an = 1/µn (different shifted values for different helpers). As
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Figure 45. Task completion delay vs. number of rows/packets for (i) Scenario 1, and (ii) Scenario 2,

where the runtime for computing one row by each helper n is selected from a shifted exponential

distribution with µn, which is selected uniformly from {1, 3, 9} for different helpers and

an = 1/µn, ∀n ∈ N .

seen, C3P performs close to static and non-ergodic solutions and much better than the baselines. In

particular, for Scenario 1, more than 30% and 15% improvement is obtained by C3P over HCMM and

no coding, respectively. Also, for Scenario 2, in average, 42% and 73% improvement is obtained by

C3P over HCMM and no coding, respectively.

Efficiency: We calculated the efficiency of helpers for different simulation setups and compared it

with the theoretical efficiency obtained in Equation 7.21 for Scenario 1. For all simulation setups, the

average efficiency over all helpers was around 99% and the theoretical efficiency was a little lower than

the simulated efficiency. E.g., forR = 8000 rows, where µn, n ∈ N is selected uniformly from {1, 3, 9}

and an = 1/µn, the average of efficiency over all helpers is 99.7072% and the average of theoretical
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efficiency is 99.4115%. This is expected as the theoretical efficiency is calculated for the worst case

scenario.

We also calculate the efficiency of helpers for Scenario 2. For all simulation setups, the average

efficiency over all helpers was around 99%, e.g., for R = 8000 rows, where µn, n ∈ N is selected

uniformly from {1, 3, 9} and an = 1/µn, the average of efficiency over all helpers was 99.9267%.

Note that the theoretical efficiency for Scenario 1 is 100%. The simulated efficiency is lower than the

theoretical one, because the simulation underutilizes the helpers when transmitting the very first packet

to each helper, i.e., before the collector estimates the resources of helpers.

C3P as Compared to Repetition Coding and Round Robin Scheduling: Figure 46 shows the per-

centage of improvement of C3P over repetition coding with RR scheduling in terms of task completion

delay. The number of rows is selected as R = 2000 with 5% overhead for C3P and the number of

helpers varies from N = 100 to N = 600. The transmission rate for sending each packet from the

collector to each helper n and from helper n to the collector is a Poisson random variable with the av-

erage selected uniformly between 0.1 Mbps and 0.2 Mbps for each helper n. The other parameters are

the same as the parameters used in Figure 44(a). As seen, by increasing the number of helpers, more

improvement is gained by C3P compared to the repetition coding with RR scheduling.

7.5.2 Evaluation in a Testbed

We implemented a testbed of a collector and multiple helpers using real mobile devices, specifically

Android 6.0.1 based Nexus 6P and Nexus 5 smartphones. All the helpers are connected to the collec-

tor device using Wi-Fi Direct connections. We conducted our experiments using our testbed in a lab
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Figure 46. Percentage of improvement of C3P over repetition codes with RR scheduling in terms of

the task completion delay.

environment where several other Wi-Fi networks were operating in the background. We located all the

devices in close proximity of each other (within a few meters distance).

We implemented both C3P and repetition coding with RR scheduling in our testbed. The collector

device would like to calculate matrix multiplication y = Ax, where A is a 1K × 10K matrix and x is

a 10K × 1 vector. Matrix A is divided into 20 sub-matrices, each of which is a 50 × 10K matrix. A

sub-task to be processed by a helper is the multiplication of a sub-matrix with vector x. There is one

collector device (Nexus 5) and varying number of helpers (Nexus 6P).

Figure 47 shows task completion delay versus number of helpers for both C3P and repetition codes

with RR scheduling. In this setup, each helper receives a sub-task, processes it, and waits for a random

amount of time (exponential random variable with mean 10 seconds), which may arise due to other

applications running at smartphones, and then sends the result back to the collector. As can be seen,

the task completion delay reduces with increasing number of helpers in both algorithms. When there is

one helper C3P performs worse, which is expected. In particular, C3P introduces coding overhead, and
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Figure 47. Task completion delay versus number of helpers.

the number of helpers is very small to see the benefit of coding. On the other hand, when the number

of helpers increases, we start seeing the benefit of coding. For example, when the number of helpers is

5, C3P improves 14% over repetition codes with RR scheduling. This result confirms our simulation

results in Figure 46 in a testbed with real Android-based smartphones.

Figure 48 shows the task completion delay versus per sub-task random delays at helpers. There

are 5 helpers in this scenario. As can be seen, C3P improves more over repetition codes with RR

scheduling when delay increases, as it increases heterogeneity, and C3P is designed to take into account

heterogeneity.

7.6 Related Work

Mobile cloud computing is a rapidly growing field with the goal of providing extensive compu-

tational resources to mobile devices as well as higher quality of experience [120–122]. The initial

approach to mobile cloud computing has been to offload resource intensive tasks to remote clouds by

exploiting Internet connectivity of mobile devices. This approach has received a lot of attention which
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Figure 48. Task completion delay versus per sub-task delay.

led to extensive literature in the area [68,123–126]. The feasibility of computation offloading to remote

cloud by mobile devices [127] as well as energy efficient computation offloading [72,73] has been con-

sidered in the previous work. As compared to this line of work, our focus is on edge computing rather

than remote clouds.

There is an increasing interest in edge computing by exploiting connectivity among mobile de-

vices [128]. This approach suggests that if devices in close proximity are capable of processing tasks

cooperatively, then local area computation groups could be formed and exploited for computation. In-

deed, cooperative computation mechanisms by exploiting device-to-device connections of mobile de-

vices in close proximity are developed in [128] and [129]. A similar approach is considered in [130]

with particular focus on load balancing across workers. As compared to this line of work, we consider

coded cooperative computation.

Coded cooperative computation is shown to provide higher reliability, smaller delay, and reduced

communication cost in MapReduce framework [131], where computationally intensive tasks are of-



171

floaded to distributed server clusters [132]. In [110] and [133], coded computation for matrix multi-

plication is considered, where matrix A is divided into sub-matrices and each sub-matrix is sent from

the master node (called collector in our work) to one of the worker nodes (called helpers in our work)

for matrix multiplication with the assumption that the helpers are homogeneous. In [110], workload

of the worker nodes is optimized such that the overall runtime is minimized. Fountain codes are em-

ployed in [134] for coded computation, but for homogeneous resources. In [114], the same problem is

considered, but with the assumption that workers are heterogeneous in terms of their resources. Com-

pared to this line of work, we develop C3P, a practical algorithm that is (i) adaptive to the time-varying

resources of helpers, and (ii) does not require any prior information about the computation capabili-

ties of the helpers. As shown, our proposed method reduces the task completion delay significantly as

compared to prior work.



CHAPTER 8

PRAC: PRIVATE AND RATELESS ADAPTIVE CODED COMPUTATION AT THE

EDGE

The contents of this chapters are based on our work that is published in the proceedings of 2019

SPIE Disruptive Technologies in Information Sciences II [8] and a journal under submission. ©2019

SPIE. Reprinted, with permission, from [8].

Edge computing is emerging as a new paradigm to allow processing data near the edge of the net-

work, where the data is typically generated and collected. This enables critical computations at the edge

in applications such as Internet of Things (IoT), in which an increasing number of devices (sensors, cam-

eras, health monitoring devices, etc.) collect data that needs to be processed through computationally

intensive algorithms with stringent reliability, security and latency constraints.

Our key tool is the theory of coded computation, which advocates mixing data in computationally

intensive tasks by employing erasure codes and offloading these tasks to other devices for computa-

tion. Coded computation is recently gaining interest, thanks to its higher reliability, smaller delay, and

lower communication costs. In this chapter, we develop a private and rateless adaptive coded com-

putation (PRAC) algorithm for distributed matrix-vector multiplication by taking into account (i) the

privacy requirements of IoT applications and devices, and (ii) the heterogeneous and time-varying re-

sources of edge devices. We show that PRAC outperforms known secure coded computing methods

when resources are heterogeneous. We provide theoretical guarantees on the performance of PRAC

172
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and its comparison to baselines. Moreover, we confirm our theoretical results through simulations and

implementations on Android-based smartphones.

8.1 Background

Edge computing is emerging as a new paradigm to allow processing data near the edge of the net-

work, where the data is typically generated and collected. This enables computation at the edge in

applications such as Internet of Things (IoT), in which an increasing number of devices (sensors, cam-

eras, health monitoring devices, etc.) collect data that needs to be processed through computationally

intensive algorithms with stringent reliability, security and latency constraints.

One of the promising solutions to handle computationally intensive tasks is computation offloading,

which advocates offloading tasks to remote servers or cloud. Yet, offloading tasks to remote servers or

cloud could be luxury that cannot be afforded by most of the edge applications, where connectivity to

remote servers can be lost or compromised, which makes edge computing crucial.

Edge computing advocates that computationally intensive tasks in a device (master) could be of-

floaded to other edge or end devices (workers) in close proximity. However, offloading tasks to other

devices leaves the IoT and the applications it is supporting at the complete mercy of an attacker. Fur-

thermore, exploiting the potential of edge computing is challenging mainly due to the heterogeneous

and time-varying nature of the devices at the edge. Thus, our goal is to develop a private, dynamic,

adaptive, and heterogeneity-aware cooperative computation framework that provides both privacy and

computation efficiency guarantees.

Our key tool is the theory of coded computation, which advocates mixing data in computationally

intensive tasks by employing erasure codes and offloading these tasks to other devices for computa-
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tion [7, 110, 133, 135–144]. The following canonical example demonstrates the effectiveness of coded

computation.

Example 5. Consider the setup where a master device wishes to offload a task to 3 workers. The master

has a large data matrix A and wants to compute matrix vector product Ax. The master device divides

the matrix A row-wise equally into two smaller matrices A1 and A2, which are then encoded using a

(3, 2) Maximum Distance Separable (MDS) code1 to give B1 = A1, B2 = A2 and B3 = A1 +A2, and

sends each to a different worker. Also, the master device sends x to workers and ask them to compute

Bix, i ∈ {1, 2, 3}. When the master receives the computed values (i.e., Bix) from at least two out

of three workers, it can decode its desired task, which is the computation of Ax. The power of coded

computations is that it makes B3 = A1 + A2 acts as a “joker” redundant task that can replace any of

the other two tasks if they end up straggling or failing. �

The above example demonstrates the benefit of coding for edge computing. However, the very

nature of task offloading from a master to worker devices makes the computation framework vulnerable

to attacks. One of the attacks, which is also the focus of this work, is eavesdropper adversary, where

one or more of workers can behave as an eavesdropper and can spy on the coded data sent to these

devices for computations.2 For example, B3 = A1 + A2 in Example 5 can be processed and spied by

1An (n, k) MDS code divides the master’s data into k chunks and encodes it into n chunks (n > k) such that
any k chunks out of n are sufficient to recover the original data.

2Note that this work focuses specifically on eavesdropper adversary although there are other types of attacks;
for example Byzantine adversary, which is out of scope of this work.
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TABLE VI

EXAMPLE PRAC OPERATION IN HOMOGENEOUS AND STATIC SETUP.

Time Worker 1 Worker 2 Worker 3

1 R1 A1 +A3 +R1 A3 +R1

2 R2

3 A2 +A3 +R2

4 A2 +R2

worker 3. Even though A1 +A2 is coded, the attacker can infer some information from this coded task.

Thus, it is crucial to develop a private coded computation mechanism against eavesdropper adversary.

In this chapter, we develop a private and rateless adaptive coded computation (PRAC) mechanism.

PRAC is (i) private as it is secure against eavesdropper adversary, (ii) rateless, because it uses Fountain

codes [115–117] instead of Maximum Distance Separable (MDS) codes [145,146], and (iii) adaptive as

the master device offloads tasks to workers by taking into account their heterogeneous and time-varying

resources. Next, we illustrate the main idea of PRAC through an illustrative example.

Example 6. We consider the same setup in Example 5, where a master device offloads a task to 3

workers. The master has a large data matrix A and wants to compute matrix vector product Ax. The

master device divides matrix A row-wise into 3 sub-matrices A1, A2, A3; and encodes these matrices
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using a Fountain code1 [115–117]. An example set of coded packets is A2, A3, A1 +A3, and A2 +A3.

However, prior to sending a coded packet to a worker, the master generates a random key matrix R with

the same dimensions as Ai and with entries drawn uniformly from the same field which contains the

entries of A. The key matrix is added to the coded packets to provide privacy as shown in Table VI. In

particular, a key matrix R1 is created at the start of time slot 1, combined with A1 + A3 and A3, and

transmitted to workers 2 and 3, respectively. R1 is also transmitted to worker 1 in order to obtain R1x

that will help the master in the decoding process.

�

This example shows that PRAC can take advantage of coding for computation, and provide privacy.

The use of Fountain codes in encoding the sub-tasks provides PRAC a flexibility in the number of

stragglers and in the computing capacity of the workers, reflected by the number of sub-tasks assigned

to each worker. In contrast, existing solutions for secure coded computing require the master to set a

threshold on the number of stragglers that it can tolerate and pre-assign the sub-tasks to the workers

based on this threshold.

Organization. The structure of the rest of this chapter is as follows. We start with presenting the

system model in Section 8.2. Section 8.3 presents the design of private and rateless adaptive coded

computation (PRAC). We characterize and analyze PRAC in Section 8.4. We present evaluation results

in section 8.5. Section 8.6 presents related work.

1Fountain codes are desirable here for two properties: (i) they provide a fluid abstraction of the coded packets
so the master can always decode with high probability as long as it collects enough packets; (ii) They have low
decoding complexity.
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8.2 System Model

Setup. We consider a master/workers setup at the edge of the network, where the master device

M offloads its computationally intensive tasks to workers wi, i ∈ N , (where |N | = n) via device-to-

device (D2D) links such as Wi-Fi Direct and/or Bluetooth. The master device divides a task into smaller

sub-tasks, and offloads them to workers that process these sub-tasks in parallel.

Task Model. We focus on the computation of linear functions, i.e., matrix-vector multiplication. We

suppose the master wants to compute the matrix vector product Ax, where A ∈ Fm×`q can be thought

of as the data matrix and x ∈ F`q can be thought of as an attribute vector. We assume that the entries

of A and x are drawn independently and uniformly at random1 from Fq. The motivation stems from

machine learning applications where computing linear functions is a building block of several iterative

algorithms [147,148]. For instance, the main computation of a gradient descent algorithm with squared

error loss function is

x+ = x− αAT (Ax− y), (8.1)

where x is the value of the attribute vector at a given iteration, x+ is the updated value of x at this

iteration and the learning rate α is a parameter of the algorithm. Equation 8.1 consists of computing two

linear functions Ax and ATw , AT (Ax− y).

Worker and Attack Model. The workers incur random delays while executing the task assigned to

them by the master device. The workers have different computation and communication specifications

1We abuse notation and denote both the random matrix representing the data and its realization by A. We do
the same for x.
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resulting in a heterogeneous environment which includes workers that are significantly slower than oth-

ers, known as stragglers. Moreover, the workers cannot be trusted with the master’s data. We consider

an eavesdropper adversary in this chapter, where one or more of workers can be eavesdroppers and can

spy on the coded data sent to these devices for computations. We assume that up to z, z < n, workers

can collude, i.e., z workers can share the data they received from the master in order to obtain infor-

mation about A. The parameter z can be chosen based on the desired privacy level; a larger z means a

higher privacy level and vice versa. One would want to set z to the largest possible value for maximum,

z = n − 1 security purposes. However, this has the drawback of increasing the complexity and the

runtime of the algorithm. In our setup we assume that z is a fixed and given system parameter.

Coding & Secret Keys. The matrix A can be divided into b row blocks (we assume that b divides

m, otherwise all-zero rows can be added to the matrix to satisfy this property) denoted by Ai, i =

1 . . . ,m/b. The master applies Fountain coding [115–117] across row blocks to create information

packets νj ,
∑m

i=1 ci,jAi, j = 1, 2, . . . , where the ci,j ∈ {0, 1}. Note that an information packet is a

matrix of dimension m/b × `, i.e., νj ∈ Fm/b×`q . Such rateless coding is compatible with our goal to

create adaptive coded cooperation computation framework. In order to maintain privacy of the data, the

master device generates random matrices Ri of dimension m/b × ` called keys. The entries of the Ri

matrices are drawn uniformly at random from the field that contains the entries of A. Each information

packet νj is padded with a linear combination of z keys fj(Ri1 , . . . , Riz) to create a secure packet

sj ∈ Fm/b×`q defined as sj , νj + fj(Ri1 , . . . , Riz).

The master device sends x to all workers, then it sends the keys and the sj’s to the workers according

to our PRAC scheme described later. Each worker multiplies the received packet by x and sends the
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result back to the master. Since the encoding is rateless, the master keeps sending packets to the workers

until it can decode Ax. The master then sends a stop message to all the workers.

Privacy Conditions. Our primary requirement is that any collection of z (or less) workers will not

be able to obtain any information about A, in an information theoretic sense.

In particular, let Pi, i = 1 . . . , n, denote the collection of packets sent to worker wi. For any set

B ⊆ {1, . . . , n}, let PB , {Pi, i ∈ B} denote the collection of packets given to worker wi for all i ∈ B.

The privacy requirement1 can be expressed as

H(A|PZ) = H(A), ∀Z ⊆ {1, . . . , n} s.t. |Z| ≤ z. (8.2)

H(A) denotes the entropy, or uncertainty, about A and H(A|PZ) denotes the uncertainty about A

after observing PZ .

Delay Model. Each packet transmitted from the master to a worker wi, i = 1, 2, ..., n, experiences

the following delays: (i) transmission delay for sending the packet from the master to the worker, (ii)

computation delay for computing the multiplication of the packet by the vector x, and (iii) transmission

delay for sending the computed packet from the worker wi back to the master. We denote by βt,i the

computation time of the tth packet at worker i and RTTi denotes the round-trip time spent to send and

receive a packet from worker i. The time spent by the master is equal to the time taken by the (z + 1)st

fastest worker to finish its assigned tasks.

1In some cases the vector x may contain information about A and therefore must not be revealed to the
workers. We explain in Appendix B how to generalize our scheme to account for such cases.
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TABLE VII

SUMMARY OF NOTATIONS.

Symbol Meaning

M master

wi worker i

n number of workers

A m× ` data matrix

x 1× ` attribute vector

z number of colluding workers

m number of rows in A

ε overhead of Fountain codes

Ai ith row block of data matrix A

R random matrix

RTTi round trip time to send and receive packet i

βt,i computation time of the tth packet at wi

ν Fountain coded packet of Ai’s

s secure Fountain coded packet

Ti time to compute a packet at wi

T(d) dth order statistic of Ti’s

T time spent by M to decode Ax
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8.3 Design of PRAC

8.3.1 Overview

We present the detailed explanation of PRAC. Let pt,i ∈ Fm/b×`q be the tth packet sent to worker wi.

This packet can be either a key or a secure packet. For each value of t, the master sends z keys denoted

by Rt,1, . . . , Rt,z to z different workers and up to n− z secure packets st,1, . . . , st,n−z to the remaining

workers. The master needs the results of m+ ε information packets, i.e., νt,ix, to decode the final result

Ax, where ε is the overhead required by Fountain coding1. To obtain the results of m + ε information

packets, the master needs the results of m + ε secure packets, st,ix = (νi,j + fj(Rt,i, . . . , Rt,z))x,

together with all the corresponding2 Rt,ix, i = 1, . . . , z. Therefore, only the results of the st,ix for

which all the computed keys Rt,ix, i = 1, ..., z, are received by the master can account for the total of

m+ ε information packets.

8.3.2 Dynamic Rate Adaptation

The dynamic rate adaptation part of PRAC is based on [7]. In particular, the master offloads coded

packets gradually to workers and receives two ACKs for each transmitted packet; one confirming the

receipt of the packet by the worker, and the second one (piggybacked to the computed packet) show-

ing that the packet is computed by the worker. Then, based on the frequency of the received ACKs,

the master decides to transmit more/less coded packets to that worker. In particular, each packet pt,i

1The overhead required by Fountain coding is typically as low as 5% [117], i.e., ε = 0.05m.

2Recall that fj(Rt,i, . . . , Rt,z) is a linear function, thus it is easy to extract (fj(Rt,i, . . . , Rt,z))x from
(Rt,i)x, i = 1, ..., z.
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is transmitted to each worker wi before or right after the computed packet pt−1,ix is received at the

master. For this purpose, the average per packet computing time E[βt,i] is calculated for each worker wi

dynamically based on the previously received ACKs. Each packet pt,i is transmitted after waiting E[βt,i]

from the time pt−1,i is sent or right after packet pt−1,ix is received at the master, thus reducing the idle

time at the workers. This policy is shown to approach the optimal task completion delay and maximizes

the workers’ efficiency and is shown to improve task completion time significantly compared with the

literature [7].

8.3.3 Coding

We explain the coding scheme used in PRAC. We start with an example to build an intuition and

illustrate the scheme before going into details.

Example 7. Assume there are n = 4 workers out of which any z = 2 can collude. Let A and x be

the data owned by the master and the vector to be multiplied by A, respectively. The master sends x

to all the workers. For the sake of simplicity, assume A can be divided into b = 6 row blocks, i.e.,

A =

[
A1 A2 . . . A6

]T
. The master encodes the Ai’s using Fountain code. We denote by round the

event when the master sends a new packet to a worker. For example, we say that worker 1 is at round 3

if it has received 3 packets so far. For every round t, the master generates z = 2 random matrices
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Rt,1, Rt,2 and encodes them using an (n, z) = (4, 2) systematic maximum distance separable (MDS)

code by multiplying Rt,1, Rt,2 by a generator matrix G as follows

G

Rt,1
Rt,2

 ,



1 0

0 1

1 1

1 2



Rt,1
Rt,2

 . (8.3)

The following (Rt,1, Rt,2, Rt,1 + Rt,2, Rt,1 + 2Rt,2) is the resulting encoding of the Rt,i’s. Now let

us assume that workers can be stragglers. At the beginning the master initializes all the workers at

round 1. Afterwards, when a worker wi finishes its task, the master checks how many packets this

worker has received so far and how many other workers are at this round. If this worker wi is the first

or second to be at round t, the master generatesRt,1 orRt,2, respectively, and sends it towi. Otherwise,

if wi is the jth worker (j > 2) to be at round t, the master multiplies
[
Rt,1 Rt,2

]T
by the jth row of G,

adds it to a generated coded packet, and sends it to wi. The master keeps sending packets to the workers

until it can decode Ax. We illustrate the idea in Table VIII.

We now explain the details of PRAC in the presence of z colluding workers.

1. Initialization: The master divides A into b row blocks A1, . . . , Ab and sends the vector x to

the workers. Let G ∈ Fn×zq , q > n, be the generator matrix of an (n, z) systematic MDS

code. For example one may use systematic Reed-Solomon codes that use Vandermonde matrix as

generator matrix, see for example [149]. The master generates z random matrices R1,1, . . . , R1,z

and encodes them using G. Each coded key can be denoted by giR where gi is the ith row of G
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andR ,
[
R1,1 . . . R1,z

]T
. The master sends the z keys R1,1, . . . , R1,z to the first z workers,

generates n− z Fountain coded packets of the Ai’s, adds to each packet an encoded random key

giR, i = z + 1, . . . n, and sends them to the remaining n− z workers.

2. Encoding and adaptivity: When the master wants to send a new packet to a worker (noting that

a packet pt,i is transmitted to worker wi before, or right after, the computed packet pt−1,ix is

received at the master according to the strategy described in Section 8.3.2), it checks at which

round this worker is, i.e., how many packets this worker has received so far, and checks how

many other workers are at this round. Assume the worker is at round t and j−1 other workers are

at this round. If j ≤ z, the master generates and sends Rt,j to the worker. However, if j > z the

master generates a Fountain coded packet of theAi’s (e.g., A1 +A2), adds to it gjR and sends the

packet (A1 +A2 + gjR) to the worker. Each worker computes the multiplication of the received

packet by the vector x and sends the result to the master.

3. Decoding and speed: Let τi denote the number of packets received by worker i. At the end of the

process, the master has Rt,ix for all t = 1, . . . , τmax and all i = 1, . . . , z, where τmax , maxi τi.

The master can subtract the Rt,i’s from all received secure information packets, thus can decode

the Ai’s using the Fountain code decoding process. The number of secure packets that can be

used to decode is dictated by the (z + 1)st fastest worker, i.e., the master can only use the results

of secure information packets computed at a given round if at least z+ 1 workers have completed

that round. If for example the z fastest workers have completed round 100 and the (z+1)st fastest

worker has completed round 20, the master can only use the packets belonging to the first 20

rounds. The reason is that the master needs all the keys corresponding to a given round in order
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to use the secure information packet for decoding. In Lemma 10 we prove that this scheme is

optimal, i.e., in private coded computing the master cannot use the packets computed at rounds

finished by less than z + 1 workers irrespective of the coding scheme.

8.4 Performance Analysis of PRAC

8.4.1 Privacy

In this section, we provide theoretical analysis of PRAC by particularly focusing on its privacy

properties.

Theorem 9. PRAC is a rateless real-time adaptive coded computing scheme that allows a master device

to run distributed linear computation on private data A via n workers while satisfying the privacy

constraint given in Equation 8.2 for a given z < n.

Proof. Since the random keys are generated independently at each round, it is sufficient to study the

privacy of the data on one round and the privacy generalizes to the whole algorithm. We show that

for any subset Z ⊂ {1, . . . , n}, |Z| = z, the collection of packets pZ , {pt,i, i ∈ Z} sent at round

t reveals no information about the data A as given in (Equation 8.2), i.e., H(A) = H(A|pZ). Let K

denote the random variable representing all the keys generated at round t, then it is enough to show

that H(K|A, pZ) = 0 as detailed in Appendix C. Therefore, we need to show that given A as side

information, any z workers can decode the random keys Rt,1, . . . , Rt,z . Without loss of generality

assume the workers are ordered from fastest to slowest, i.e., worker w1 is the fastest at the considered

round t. At each round the master sends z packets as the random keys to the fastest z workers, i.e.,

pi,t = Rt,i, i = 1, . . . , z. The remaining n − z packets are secure information packets sent to the
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remaining n − z workers, i.e., pt,i = st,i = νt,i + f(Rt,1, . . . , Rt,z), where νt,i is a linear combination

of row blocks of A and f(Rt,1, . . . , Rt,z) is a linear combination of the random keys generated at round

t. Given the data A as side information, any collection of z packets can be expressed as z codewords of

the (n, z) MDS code encoding the random keys. Thus, given A any collection of z packets is enough to

decode all the keys and H(K|S, pZ) = 0 which concludes the proof.

Remark 1. PRAC requires the master to wait for the (z + 1)st fastest worker in order to be able to

decode Ax. We show in Lemma 10 that this limitation is a byproduct of all private coded computing

schemes.

Remark 2. PRAC uses the minimum number of keys required to guarantee the privacy constraints.

At each round PRAC uses exactly z random keys which is the minimum amount of required keys.(c.f.

Equation (Equation C.5) in Appendix C).

Lemma 10. Any private coded computing scheme for distributed linear computation limits the master

to the speed of the (z + 1)st fastest worker.

Proof. The proof of Lemma 10 is provided in Appendix D.

8.4.2 Task Completion Delay

In this section, we characterize the task completion delay of PRAC and compare it with Staircase

codes [135], which are secure against eavesdropping attacks in a coded computation setup with homo-

geneous resources. First, we start with task completion delay characterization of PRAC.
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Theorem 11. Let b be the number of row blocks in A, let βt,i denote the computation time of the tth

packet at worker i and let RTTi denote the round-trip time spent to send and receive a packet from

worker i. The task completion time of PRAC is approximated as

TPRAC ≈ max
i∈{1,...,n}

{RTTi}+
b+ ε∑n

i=z+1 1/E[βt,wi ]
, (8.4)

≈ b+ ε∑n
i=z+1 1/E[βt,wi ]

, (8.5)

where wi are ordered indices of the workers from fastest to slowest, i.e., w1 = arg mini E[βt,wi ].

Proof. The proof of Theorem 11 is provided in Appendix E.

Now that we characterized the task completion delay of PRAC, we can compare it with the state-

of-the-art. Secure coded computing schemes that exist in the literature usually use static task allocation,

where tasks are assigned to workers a priori. The most recent work in the area is Staircase codes, which

is shown to outperform all existing schemes that use threshold secret sharing [135]. Therefore, we

restrict our focus on comparing PRAC to Staircase codes.

Staircase codes assigns a task of size b/(k− z) row blocks to each worker.1 Let Ti be the time spent

at worker i to compute the whole assigned task. Denote by T(i) the ith order statistic of the Ti’s and

by TSC(n, k, z) the task completion time, i.e., time the master waits until it can decode Ax, when using

Staircase codes. In order to decode Ax the master needs to receive a fraction equal to (k − z)/(d− z)

1Note that in addition to n and z, all threshold secret sharing based schemes require a parameter k, z < k < n,
which is the minimum number of non stragglers that the master has to wait for before decoding Ax.
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Figure 49. Scenario 1 with the

fastest 13 workers as

eavesdropper for GC3P 1 and

the slowest workers as

eavesdropper for GC3P 2.
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Figure 50. Scenario 2 with 13

workers picked at random to be

eavesdroppers.
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Figure 51. Scenario 3 with 13

workers picked at random to be

eavesdroppers.

Figure 52. Comparison between PRAC and GC3P in different scenarios with n = 50 workers and

z = 13 colluding eavesdroppers for different values of the number of rows m. For each value of m we

run 100 experiments and average the results. When the eavesdropper are chosen to be the fastest

workers, PRAC has very similar performance to GC3P. When the eavesdroppers are picked randomly,

the performance of PRAC becomes closer to this of GC3P when the non adversarial workers are more

heterogeneous.
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of the task assigned to each worker from any d workers where k ≤ d ≤ n. The task completion time of

the master can then be expressed as

TSC(n, k, z) = min
d∈{k,...,n}

{
k − z
d− z

T(d)

}
. (8.6)

Theorem 12. The gap between the completion time of PRAC and coded computation using staircase

codes is lower bounded by:

E[TSC]− E [TPRAC ] ≥ bx− εy
y(x+ y)

, (8.7)

where x = n−d∗
E[βt,wn ] , y = d∗−z

E[βt,d∗ ] and d∗ is the value of d that minimizes Equation 8.6.

Proof. The proof of Theorem 12 is provided in Appendix F.

Theorem 12 shows that the lower bound on the gap between secure coded computation using stair-

case codes and PRAC is in the order of number of row block ofA. Hence, the gap between secure coded

computation using staircase codes and PRAC is linearly increasing with the number of row blocks of A.

Note that, ε, the required overhead by fountain coding used in PRAC, becomes negligible by increasing

b.

Thus, PRAC outperforms secure coded computation using Staircase codes in heterogeneous sys-

tems. The more heterogeneous the workers are, the more improvement is obtained by using PRAC.

However, Staircase codes can slightly outperform PRAC in the case where the slowest n − z workers

are homogeneous, i.e., have compute service times Ti. Staircase codes outperform PRAC in homo-
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geneous case, because both algorithms are restricted to the slowest n − z workers (see Lemma 10),

but PRAC incurs an ε overhead of tasks (due to using Fountain codes) which is not needed for Stair-

case codes. In particular, from Equation 8.5 and Equation 8.6, when the n − z slowest workers are

homogeneous, the task completion time of PRAC and Staircase codes are equal to b+ε
n−zE[βt,wn ] and

b
n−zE[βt,wn ], respectively.

8.5 Performance Evaluation

8.5.1 Simulations

In this section, we present simulations run on MATLAB, and compare PRAC with the following

baselines: (i) Staircase codes [135], (ii) C3P [7] (which is not secure as it is not designed to be secure),

and (iii) Genie C3P (GC3P) that extends C3P by assuming a knowledge of the identity of the eaves-

droppers and ignoring them. We note that GC3P serves as a lower bound on private coded computing

schemes for heterogeneous systems1 the following reason: for a given number of z colluding workers

the ideal coded computing scheme knows which workers are eavesdroppers and ignores them to use the

remaining workers without need of randomness. If the identity of the corrupted workers is unknown,

coded computing schemes require randomness and become limited to the (z + 1)st slowest worker

(Lemma 10). GC3P and other coded computing schemes have similar performance if the z colluding

workers are the fastest workers. If the z colluding workers are the slowest, then GC3P outperforms any

coded computing scheme. In terms of comparing PRAC to secret sharing, we restrict our attention to

Staircase codes which are a class of secret sharing schemes that enjoys a flexibility in the number of

1If the system is homogeneous Staircase codes outperform GC3P, because pre-allocating tasks to the workers
avoids the overhead needed by Fountain codes.
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Figure 53. Task completion time as a function

of the number of workers with z = n/4.
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Figure 54. Task completion time as a function

of the number of workers with z = 13.

Figure 55. Comparison between PRAC, Staircase codes and GC3P in scenario 1 for different values of

the number workers and number of colluding workers. We fix the number of rows to m = 1000. For

each value of the x-axis we run 100 experiments and average the results. We observe that the

difference between the completion time of PRAC and this of GC3P is small for small number of

colluding workers and increases with the increase of z.

workers needed to decode the matrix-vector multiplication. Staircase codes are shown to outperform

any coded computing scheme that requires a threshold on the number of stragglers [135].

In our simulations, we model the computation time of each worker wi by an independent shifted

exponential random variable with rate λi and shift ci, i.e., F (Ti = t) = 1 − exp(−λi(t − ci)). We

take ci = 1/λi and consider three different scenarios for choosing the values of λi’s for the workers as

follows:
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Figure 56. Task completion time as a function

of the number of colluding workers for

n = 50. Computing time of the workers are

chosen according to scenario 1.
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Figure 57. Task completion time for n = 50

workers and variable z. Computing times of

the workers are chosen such that the n− z

slowest workers are homogeneous.

Figure 58. Comparison between PRAC and Staircase codes average completion time as a function of

number of colluding workers z. We fix the number of rows to m = 1000. Both codes are affected by

the increase of number of colluding helpers because their runtime is restricted to the slowest n− z

workers. We observe that PRAC outperforms Staircase codes except when the n− z slowest workers

are homogeneous.

• Scenario 1: we assign λi = 3 for half of the workers, then we assign λi = 1 for one quarter of

the workers and assign λi = 9 for the remaining workers.

• Scenario 2: we assign λi = 1 for one third of the workers, the second third have λi = 3 and the

remaining workers have λi = 9.
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• Scenario 3: we draw the λi’s independently and uniformly at random from the interval [0.5, 9].

When running Staircase codes, we choose the parameter k that minimizes the task completion time

for the desired n and z. We do so by simulating Staircase codes for all possible values of z ≤ k ≤ n

and choose the one with the minimum completion time.

We take b = m, i.e., each row block is simply a row of A. The size of each element of A and vector

x are assumed to be 1 Byte (or 8 bits). Therefore, the size of each transmitted packet pt,i is 8 ∗ ` bits.

For the simulation results, we assume that matrix A is a square matrix, i.e., l = m. We take m = 1000,

unless explicitly stated otherwise. Ci denotes the average channel capacity of each worker wi and is

selected uniformly from the interval [10, 20] Mbps. The rate of sending a packet to workerwi is sampled

from a Poisson distribution with mean Ci.

In Figure 52 we show the effect of the number of rows m on the completion time at the master. We

fix the number of workers to 50 and the number of colluding workers to 13 and plot the completion

time for PRAC, C3P, GC3P and Staircase codes. Notice that PRAC and Staircase codes have close

completion time in scenario 1 (Figure Figure 49) and this completion time is far from that of C3P. The

reason is that in this scenario we pick exactly 13 workers to be fast (λi = 9) and the others to be

significantly slower. Since PRAC assigns keys to the fastest z workers, the completion time is dictated

by the slow workers. To compare PRAC to Staircase codes notice that the majority of the remaining

workers have λi = 3 therefore pre-allocating equal tasks to the workers is close to adaptively allocating

the tasks.

In terms of lower bound on PRAC, observe that when the fastest workers are assumed to be adver-

sarial, GC3P and PRAC have very similar task completion time. However, when the slowest workers
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are assumed to be adversarial the completion of GC3P is very close to C3P and far from PRAC. This ob-

servation is in accordance of Lemma 2. In scenarios 2 and 3 we pick the adversarial workers uniformly

at random and observe that the completion time of PRAC becomes closer to GC3P when the workers

are more heterogeneous. For instance, in scenario 3, GC3P and PRAC have closer performance when

the workers’ computing times are chosen uniformly at random from the interval [0.5, 9].

In Figure 55, we plot the task completion time as a function of the number of workers n for a fixed

number of rows m = 1000 and λi’s assigned according to scenario 1. In Figure 55(a), we change the

number of workers from 10 to 100 and keep the ratio z/n = 1/4 fixed. We notice that with the increase

of n the completion time of PRAC becomes closer to GC3P. In Figure 55(b), we change the number

of workers from 20 to 100 and keep z = 13 fixed. We notice that with the increase of n, the effect of

the eavesdropper is amortized and the completion time of PRAC becomes closer to C3P. In this setting,

PRAC always outperforms Staircase codes.

In Figure 58, we plot the task completion time as a function of the number of colluding workers.

In Figure 58(a), we choose the computing time at the workers according to scenario 1. We change

z from 1 to 40 and observe that the completion time of PRAC deviates from that of GC3P with the

increase of z. More importantly, we observe two inflection points of the average completion time of

PRAC at z = 13 and z = 37. Those inflection points are due to the fact that we have 12 fast workers

(λ = 9) and 25 workers with medium speed (λ = 3) in the system. For z > 36, the completion time

of Staircase codes becomes less than that of PRAC because the 14 slowest workers are homogeneous.

Therefore, pre-allocating the tasks is better than using Fountain codes and paying for the overhead of

computations. To confirm that Staircase codes always outperforms PRAC when the slowest n − z
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workers are homogeneous, we run a simulation in which we divide the workers into three clusters. The

first cluster consists of bz/2c fast workers (λ = 9), the second consists of bz/2c + 1 workers that are

regular (λ = 3) and the remaining n − z workers are slow (λ = 1). In Figure 58(b) we fix n to 50

and change z from 1 to 40. We observe that Staircase codes always outperform PRAC in this setting.

In contrast to non secure C3P, Staircase codes and PRAC are always restricted to the slowest n − z

workers and cannot leverage the increase of the number of fast workers. For GC3P, we assume that the

fastest workers are eavesdroppers. We note that as expected from Lemma 10, when the fastest workers

are assumed to be eavesdroppers the performance of GC3P and PRAC becomes very close.

8.5.2 Experiments

Setup. The master device is a Nexus 5 Android-based smartphone running 6.0.1. The worker devices

are Nexus 6Ps running Android 8.1.0. The master device connects to worker devices via Wi-Fi Direct

links and the master is the group owner of Wi-Fi Direct group. The master device is required to complete

one matrix multiplication (y = Ax) where A is of dimensions 60× 10000 and x is a 10000× 1 vector.

A is further divided by each row. The matrix multiplication is completed by offloading to the workers.

There is also an introduced delay at the workers following an exponential distribution. The introduced

delays serve to emulate applications running in the background of the devices. When each worker device

is done calculating and the introduced delay is passed, it returns the result to the master. Furthermore,

we assume that there is one unknown worker that is adversarial among all the workers and we want to

protect our data by adding random keys. The experiments are conducted in a lab environment where

there are other Wi-Fi networks operating in the background.
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Baselines. Our PRAC algorithm is compared to three baseline algorithms: (i) Staircase codes that

preallocate the tasks based on the number of workers n, the minimum number of workers required to

reconstruct the information k, and the number of colluding workers z; (ii) GC3P in which we assume

the adversarial worker is known and excluded during the task allocation. In this setup we run C3P on

n− z workers; (iii) Non secure C3P in which the security problem is ignored and the master device will

utilize every resource without randomness.

Results. Figure 59 presents the task completion time with increasing number of workers for the

homogeneous setup, i.e., when all the workers have similar computing times. Computing delay for

each packet follows an exponential distribution with mean µ = 1/λ = 3 seconds in all workers. C3P

performs the best in terms of completion time, but C3P do not provide any privacy guarantees. PRAC

outperforms Staircase codes when the number of workers is 5. The reason is that PRAC performs better

than staircase codes in heterogeneous setup, and when the number of workers increases, the system

becomes a bit more heterogeneous. GC3P significantly outperforms PRAC in terms of completion time.

Yet, it requires prior knowledge of which worker is adversarial, which is often not available in real world

scenarios.

Now, we focus on heterogeneous setup. We group the workers into two groups; fast workers (per

task delay follows exponential delay with mean 2 seconds) and slow workers (per task delay follows

exponential distribution with mean 5 seconds). Figure 60 presents the completion time as a function of

number of workers. In this setup, for the n-worker scenario, there are
⌈
n
2

⌉
fast and

⌊
n
2

⌋
slow workers.

The difference between the setups of Figure 60(a) and Figure 60(b) is that we remove a fast worker

(as adversarial) for GC3P in the former, whereas in the latter, we assume that the eavesdropper is a



197

2 3 4 5
Number of Workers

0

50

100

150

200

250

C
om

pl
et

io
n 

tim
e 

(s
)

Staircase
PRAC
GC3P
C3P

Figure 59. Completion time as function of the number of workers in homogeneous setup.

slow worker. As illustrated in Figure 60, for the 2-worker case, due to the 5% overhead introduced

by Fountain codes, PRAC performs worse than Staircase code. However, PRAC outperforms staircase

code in terms of completion time for 3, 4, and 5 worker cases. This is due to the fact that PRAC can

utilize results calculated by slow workers more effectively when the number of workers is large. On

the other hand, the results computed by slow workers are often discarded in Staircase codes, which is

a waste of computation resources. If a fast worker is removed as adversarial for GC3P, the difference

between the performance of GC3P and PRAC becomes smaller. This result is intuitive as, in PRAC, the

master has to wait for the (z + 1)st fastest worker to decode Ax, which is also the case for GC3P in this

setting.

In Figure 61, we consider the same setup with the exception that for the n-worker scenario, there

are
⌈
n
2

⌉
slow and

⌊
n
2

⌋
fast workers.
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(a) We assume a fast worker

is adversarial for GC3P.
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(b) We assume a slow worker

is adversarial for GC3P.

Figure 60. Completion time as function of the number of workers in heterogeneous setup.

Staircase codes performs more closely to PRAC in the 3-worker case as compared to Figure 60

since Staircase codes and PRAC have similar number of computations. Yet, for 5-worker case, PRAC

outperforms Staircase codes when comparing to Figure 60 since PRAC is adaptive to time-varying

resources while Staircase codes assigns tasks a priori in a static manner.

Note that in all experiments when n− z slowest workers are homogeneous Staircase codes outper-

form GC3P and PRAC. This happens because pre-allocating the tasks to the workers avoids the overhead

of sub-tasks required by Fountain codes and utilizes all the workers to their fullest capacity.

8.6 Related work

Mobile cloud computing is a rapidly growing field with the aim of providing better experience of

quality and extensive computing resources to mobile devices [61, 62]. The main solution to mobile

computing is to offload tasks to the cloud or to neighboring devices by exploiting connectivity of the

devices. With task offloading comes several challenges such as heterogeneity of the devices, time vary-
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Figure 61. Completion time as function of the number of workers in heterogeneous setup.

ing communication channels and energy efficiency, see e.g., [50, 54, 63, 72]. We refer interested reader

to [7] and references within for a detailed literature on edge computing and mobile cloud computing.

The problem of stragglers in distributed systems is initially studied by the distributed computing

community, see e.g., [131, 150–166]. Research interest in using coding theoretical techniques for strag-

gler mitigation in distributed content download and distributed computing is rapidly growing. The early

body of work focused on content download, see e.g., [167–171]. Using codes for straggler mitigation in

distributed computing started in [110] where the authors proposed the use of MDS codes for distributed

linear machine learning algorithms in homogeneous workers setting.

Following the work of [110], coding schemes for straggler mitigation in distributed matrix-matrix

multiplication, coded computing and machine learning algorithms are introduced and the fundamental

limits between the computation load and the communication cost are studied, see e.g., [140, 172] and
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references within for matrix-matrix multiplication, see [110, 136, 139, 141–143, 173–180] for machine

learning algorithms and [133, 137, 138, 181] for other topics.

Codes for privacy and straggler mitigation in distributed computing are first introduced in [135]

where the authors consider a homogeneous setting and focus on matrix-vector multiplication. Beyond

matrix-vector multiplication, the problem of private distributed matrix-matrix multiplication and private

polynomial computation with straggler tolerance is studied [182–187]. The main difference between

those works and PRAC is that the former works are deigned for the homogeneous setting in which the

master pre-assigns the sub-tasks equally to the workers and sets a threshold on the number of stragglers

that it can tolerate. Works on privacy-preserving machine learning algorithms are also related to our

work. However, the privacy constraint in this line of work is computational privacy and the proposed

solutions do not take stragglers into account, see e.g., [188–190].
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TABLE VIII

DEPICTION OF PRAC IN THE PRESENCE OF STRAGGLERS. THE MASTER KEEPS

GENERATING PACKETS USING FOUNTAIN CODES UNTIL IT CAN DECODE Ax. THE

MASTER ESTIMATES THE AVERAGE TASK COMPLETION TIME OF EACH WORKER AND

SENDS A NEW PACKET TO AVOID IDLE TIME. EACH NEW PACKET SENT TO A WORKER

MUST BE SECURED WITH A NEW RANDOM VECTOR. THE MASTER CAN DECODE

A1X, . . . , A6X AFTER RECEIVING ALL THE PACKETS NOT HAVING R4,1 OR R4,2 IN THEM.

Time Worker 1 Worker 2 Worker 3 Worker 4

1 R1,1 R1,2 A4 +R1,1 +R1,2 A3 +A4 +A6 +R1,1 + 2R1,2

2 R2,1

3 R2,2

4 A3 +R2,1 +R2,2 A4 +A5 +R2,1 + 2R2,2

5 R3,1

6 A2 +R3,1 +R3,2 R3,2

7 R4,1 A1 +R3,1 + 2R3,2

8 R4,2 A2 +A3 +R4,1 +R4,2



CHAPTER 9

CONCLUSION

In this thesis, we focus on design, optimization, and implementation of communication and compu-

tation algorithms by particularly focusing on Internet of Things and Edge Computing. In particular,

1. In our work Device-Centric Cooperation in Mobile Networks, we considered a cooperation sce-

nario among mobile devices for video streaming. We developed a device-centric cooperation

scheme; DcC. We showed that DcC reduces; (i) overhead; i.e., the number of control packets that

should be transmitted over cellular links, and (ii) the amount of delay that each packet experiences.

Simulations demonstrate significant improvement in terms of overhead and delay.

2. In our work Energy-Aware Cooperative Computation in Mobile Devices, we considered that a

group of cooperative mobile devices, within proximity of each other, (i) use their cellular or Wi-

Fi (802.11) links as their primary networking interfaces, and (ii) exploit their D2D connections

(Wi-Fi Direct) for cooperative computation. We showed that if mobile devices cooperate to uti-

lize their aggregate processing power, it significantly improves transmission rates. Thus, for this

scenario, we developed an energy-aware cooperative computation framework to effectively uti-

lize processing power and energy. This framework provides a set of algorithms including flow,

computation and energy controls as well as cooperation and scheduling. We implemented these

algorithms in a testbed, which consists of real mobile devices. The experiments in the testbed

202
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show that our energy-aware cooperative computation framework brings significant performance

benefits.

3. In the work Device-Aware Routing and Scheduling in Multi-Hop Device-to-Device Networks,

we developed a device-aware routing and scheduling algorithm (DARS) over D2D networks by

taking into account device capabilities such as computing power, energy, and incentives. Our ap-

proach is grounded on a network utility maximization formulation of the problem and its solution.

We developed a multi-hop D2D testbed using real mobile devices. We implemented DARS over

this testbed. The experimental results demonstrate the benefits of our algorithm.

4. In our work Predictive Edge Computing with Hard Deadlines, we developed a predictive edge

computing algorithms PrComp with hard deadline constraints for serial and parallel tasks. Our

algorithms (i) predict the uncertain dynamics of resources of edge devices, and (ii) make task

offloading decisions by taking into account the predicted available resources, as well as the hard

deadline constraints of tasks. We evaluate PrComp on a testbed consisting of real Android-

based smartphones. The experiments show that PrComp algorithms significantly improve energy

consumption of edge devices as well as task completion delay as compared to baselines.

5. In our work the Evolving Nature of Disaster Management in the Internet and Social Media Era,

social media usage appears to mimic the usage of everyday communication (e.g., telephony) dur-

ing disasters, and could therefore effectively complement other communication channels in dis-

aster situations. Having an intelligent engine processing social media (e.g., tweets) in real-time

can help coordinate efficient, fine-grained dissemination of requests/offers of assistance to all the

intended/relevant recipients, whether it is authorities or ordinary people. Geo-tagged tweets can
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be of great help where Automatic Location Information (ALI) of 911 service is not functioning.

Despite the benefits of social media, privacy (sending personal information online like location,

etc.) and false information (starting rumors, etc.) are some of the important issues that social

media-based crisis response methods face [81]. It is important to further perfect their use through

the design of efficient, secure and reliable dissemination architectures.

6. In our work Dynamic Heterogeneity-Aware Coded Cooperative Computation at the Edge, we

designed a Computation Control Protocol (C3P), where heterogeneous edge devices with com-

putation capabilities and energy resources are connected to each other. In C3P, a collector device

divides tasks into sub-tasks, offloads them to helpers by taking into account heterogeneous re-

sources. C3P is (i) a dynamic algorithm that efficiently utilizes the potential of each helper, and

(ii) adaptive to the time-varying resources at helpers. We analyzed the performance of C3P in

terms of task completion delay and efficiency. Simulation and experiment results in an Android

testbed confirm that C3P is efficient and reduces the completion delay significantly as compared

to baselines.

7. In our work PRAC: Private and Rateless Adaptive Coded Computation at the Edge, we develop

a secure edge computing mechanism to mitigate the computational bottleneck of IoT devices

by allowing these devices to help each other in their computations, with possible help from the

cloud if available. Our key tool is the theory of coded computation, which advocates mixing

data in computationally intensive tasks by employing erasure codes and offloading these tasks to

other devices for computation. Focusing on eavesdropping attacks, we designed a private and

rateless adaptive coded computation (PRAC) mechanism considering (i) the privacy requirements
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of IoT applications and devices, and (ii) the heterogeneous and time-varying resources of edge

devices. Our proposed PRAC model can provide adequate security and latency guarantees to

support real-time computation at the edge. We showed through analysis, MATLAB simulations,

and experiments on Android-based smartphones that PRAC outperforms known secure coded

computing methods when resources are heterogeneous.
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Appendix A

PROOF OF THEOREM 3

Stability: Let H(t) = {S(t),U(t),Q(t),Z(t)}, where S(t) = {Sn(t)}∀n∈N , U(t) = {Un,k(t)

}∀n∈N ,k∈N , Q(t) = {Qn,k(t)}∀n∈N ,k∈N , and Z(t) = {Zn,k(t)}∀n∈N ,k∈N . Let the Lyapunov func-

tion be;

L(H(t)) =
∑
n∈N

Sn(t)2 +
∑
n∈N

∑
k∈N

Un,k(t)
2 +

∑
n∈N

∑
k∈N

Qn,k(t)
2 +

∑
n∈N

∑
k∈N

Zn,k(t)
2 (A.1)

The Lyapunov drift is;

∆(H(t)) = E[L(H(t+ 1))− L(H(t))|H(t)] (A.2)

which is expressed as;

∆(H(t)) = E[
∑
n∈N

Sn(t+ 1)2 −
∑
n∈N

Sn(t)2 +
∑
n∈N

∑
k∈N

Un,k(t+ 1)2 −
∑
n∈N

∑
k∈N

Un,k(t)
2+

∑
n∈N

∑
k∈N

Qn,k(t+ 1)2 −
∑
n∈N

∑
k∈N

Qn,k(t)
2 +

∑
n∈N

∑
k∈N

Zn,k(t+ 1)2 −
∑
n∈N

∑
k∈N

Zn,k(t)
2|H(t)]

(A.3)
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Appendix A (Continued)

Considering the fact that (max[Q − b, 0] + A)2 ≤ Q2 + A2 + b2 + 2Q(A − b), (Equation A.3) is

expressed as;

∆(H(t)) ≤ E
[∑
n∈N

(
Sn(t)2 +

(∑
k∈N

xk,n(t)
)2

+ xn(t)2 + 2Sn(t)
(
xn(t)−

∑
k∈N

xk,n(t)
))
−

∑
n∈N

Sn(t)2 +
∑
n∈N

∑
k∈N

(
Un,k(t)

2 + xn,k(t)
2 + dn,k(t)

2 + 2Un,k(t)
(
xn,k(t)− dn,k(t)

))
−

∑
n∈N

∑
k∈N

Un,k(t)
2 +

∑
n∈N

∑
k∈N

(
Qn,k(t)

2 +
(
dn,k(t)αn,k(t)

)2
+ en,k(t)

2 + 2Qn,k(t)
(
dn,k(t)

αn,k(t)− en,k(t)
))
−
∑
n∈N

∑
k∈N

Qn,k(t)
2 +

∑
n∈N

∑
k∈N

(
Zn,k(t)

2 + hn,k(t)
2 + en,k(t)

2 + 2Zn,k(t)

(
en,k(t)− hn,k(t)

))
−
∑
n∈N

∑
k∈N

Zn,k(t)
2|H(t)

]
(A.4)

which is expressed as

∆(H(t)) ≤ E
[∑
n∈N

((∑
k∈N

xk,n(t)
)2

+ xn(t)2 + 2Sn(t)
(
xn(t)−

∑
k∈N

xk,n(t)
))

+
∑
n∈N

∑
k∈N(

xn,k(t)
2 + dn,k(t)

2 + 2Un,k(t)
(
xn,k(t)− dn,k(t)

))
+
∑
n∈N

∑
k∈N

((
dn,k(t)αn,k(t)

)2
+ en,k(t)

2

+ 2Qn,k(t)
(
dn,k(t)αn,k(t)− en,k(t)

))
+
∑
n∈N

∑
k∈N

(
hn,k(t)

2 + en,k(t)
2 + 2Zn,k(t)

(
en,k(t)−

hn,k(t)
))
|H(t)

]
(A.5)
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Appendix A (Continued)

There always exists a finite positive constant B satisfying

B ≥ E
[∑
n∈N

((∑
k∈N

xk,n(t)
)2

+ xn(t)2

)
+
∑
n∈N

∑
k∈N

(
xn,k(t)

2 + dn,k(t)
2

)
+
∑
n∈N

∑
k∈N((

dn,k(t)αn,k(t)
)2

+ en,k(t)
2

)
+
∑
n∈N

∑
k∈N

(
hn,k(t)

2 + en,k(t)
2

)
|H(t)

]
(A.6)

because the maximum values of xn(t), xn,k(t), dn,k(t), hn,k(t), en,k(t), and αn,k(t) terms are bounded

by finite positive constants by our EaCC algorithm.

By taking into account (Equation A.6), (Equation A.5) is expressed as

∆(H(t)) ≤ B + E

[∑
n∈N

(
2Sn(t)

(
xn(t)−

∑
k∈N

xk,n(t)
))

+
∑
n∈N

∑
k∈N

(
2Un,k(t)

(
xn,k(t)−

dn,k(t)
))

+
∑
n∈N

∑
k∈N

(
2Qn,k(t)

(
dn,k(t)αn,k(t)− en,k(t)

))
+
∑
n∈N

∑
k∈N

(
2Zn,k(t)

(
en,k(t)

− hn,k(t)
))
|H(t)

]
(A.7)

The minimization of the right hand side of the drift inequality in (Equation A.7) corresponds to the

decoder control in (Equation 3.8) , energy control in (Equation 5.1), and scheduling & cooperation in

(Equation 3.10).
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Appendix A (Continued)

If the arrival rates satisfy E[xn(t)] = An and (An) is inside the stability region Λ, then there exists

a randomized policy with solution; *xn(t), *xn,k(t), *
dn,k(t), *

hn,k(t), and *en,k(t), satisfying

− E[
∑
k∈N

*xk,n(t)− *xn(t)] ≤ −δ1, ∀n ∈ N

− E[ *
dn,k(t)− *xn,k(t)] ≤ −δ2, ∀n ∈ N , k ∈ N

− E[ *en,k(t)− *
dn,k(t)αn,k(t)] ≤ −δ3,∀n ∈ N , k ∈ N

− E[ *
hn,k(t)− *en,k(t)] ≤ −δ4, ∀n ∈ N , k ∈ N (A.8)

where δ1, δ2, δ3, δ4 are positive small constants.

Since our EaCC algorithm minimizes the right hand side of (Equation A.7), the following inequali-

ties satisfy: (i) −E[
∑

k∈N xk,n(t) − xn(t)] ≤ −E[
∑

k∈N
*xk,n(t) − *xn(t)] ≤ −δ1, (ii) −E[dn,k(t) −

xn,k(t)] ≤ −E[ *
dn,k(t) − *xn,k(t)] ≤ −δ2, (iii) −E[en,k(t) − dn,k(t)αn,k(t)] ≤ −E[ *en,k(t) − *

dn,k(t)

αn,k(t)] ≤ −δ3, and (iv) −E[hn,k(t)− en,k(t)] ≤ −E[ *
hn,k(t)− *en,k(t)] ≤ −δ4. Thus, the following

inequality satisfy

∆(H(t)) ≤ B − 2
∑
n∈N

Sn(t)δ1 − 2
∑
n∈N

∑
k∈N

Un,k(t)δ2 − 2
∑
n∈N

∑
k∈N

Qn,k(t)δ3−

2
∑
n∈N

∑
k∈N

Zn,k(t)δ4 (A.9)
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Since there exists δ > 0 satisfying δ ≤ min[δ1, δ2, δ3, δ4], the time average of the Lyapunov drift in

(Equation A.9) is expressed as

lim sup
t→∞

1

t

t−1∑
τ=0

∆(H(t))

2
≤ lim sup

t→∞

1

t

t−1∑
τ=0

(
B

2
−
∑
n∈N

Sn(t)δ −
∑
n∈N

∑
k∈N

Un,k(t)δ −
∑
n∈N

∑
k∈N

Qn,k(t)δ −
∑
n∈N

∑
k∈N

Zn,k(t)δ

)
(A.10)

which leads to

lim sup
t→∞

1

t

t−1∑
τ=0

(∑
n∈N

Sn(t) +
∑
n∈N

∑
k∈N

(
Un,k(t) +Qn,k(t) + Zn,k(t)

))
≤ B

2δ
(A.11)

concluding that the time average of the sum of the queues are bounded. This concludes the stability

analysis part of the proof.

Optimality: Let us define a drift-plus-penalty function as ∆(H(t))−
∑

k∈N ME[gn(xn(t))|H(t)]

which is, considering the bound in (Equation A.7), expressed as

∆(H(t))−
∑
n∈N

ME

[
gn(xn(t))|H(t)

]
≤ B − 2E

[∑
n∈N

(
Sn(t)

(∑
k∈N

xk,n(t)− xn(t)
))

+

∑
n∈N

∑
k∈N

(
Un,k(t)

(
dn,k(t)− xn,k(t)

))
+
∑
n∈N

∑
k∈N

(
Qn,k(t)

(
en,k(t)− dn,k(t)αn,k(t)

))
+

∑
n∈N

∑
k∈N

(
Zn,k(t)

(
hn,k(t)− en,k(t)

))
|H(t)

]
−
∑
n∈N

ME

[
gn(xn(t))|H(t)

]
(A.12)

Note that the minimization of the right hand side of the drift inequality in (Equation A.12) corre-

sponds the flow control part of EaCC in Section 3.5 as well as the decoder control in (Equation 3.8),
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energy control in (Equation 3.9), and scheduling & cooperation in (Equation 3.10). Since there exists

a randomized policy as discussed in the stability part above, the right hand side of (Equation A.12) is

bounded as

∆(H(t))−
∑
n∈N

ME

[
gn(xn(t))|H(t)

]
≤ B − 2

∑
n∈N

Sn(t)δ − 2
∑
n∈N

∑
k∈N

(
Un,k(t)+

Qn,k(t) + Zn,k(t)
)
δ −

∑
n∈N

ME[gn(An + δ)] (A.13)

where
∑

n∈N gn(An) is the maximum time average of the sum utility function that can be achieved by

any control policy that stabilizes the system. We can rewrite (Equation A.12) as

lim sup
t→∞

1

t

t−1∑
τ=0

[
∆(H(τ))−

∑
n∈N

ME[gn(xn(τ))]

]
≤ lim sup

t→∞

1

t

t−1∑
τ=0

[
B − 2

∑
n∈N

Sn(t)δ−

2
∑
n∈N

∑
k∈N

(
Un,k(t) +Qn,k(t) + Zn,k(t)

)
δ −

∑
n∈N

MUn(An + δ)

]
(A.14)

Let us first consider the stability of the queues. If both sides of (Equation A.14) are divided by δ and

the terms are arranged, we have

lim sup
t→∞

1

t

t−1∑
τ=0

(∑
n∈N

Sn(t) +
∑
n∈N

∑
k∈N

(
Un,k(t) +Qn,k(t) + Zn,k(t)

))
≤ B

2δ
+ lim sup

t→∞

1

t

t−1∑
τ=0

[∑
n∈N

M

δ
E[gn(xn(τ))]

]
−
∑
n∈N

Mgn(An + δ)

δ
. (A.15)
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This concludes that EaCC stabilizes the queues in the system when the flow control algorithm in Sec-

tion 3.5 is employed. Next, we consider the optimality of EaCC. If both sides of (Equation A.14) are

divided by M , we have

lim sup
t→∞

1

t

t−1∑
τ=0

[
−
∑
n∈N

E[gn(xn(τ))]

]
≤ lim sup

t→∞

1

t

t−1∑
τ=0

[
B

M
− 2

∑
n∈N

Sn(t)
δ

M
− 2

∑
n∈N

∑
k∈N(

Un,k(t) +Qn,k(t) + Zn,k(t)
) δ
M
−
∑
n∈N

gn(An + δ)

]
(A.16)

which is expressed as

lim sup
t→∞

1

t

t−1∑
τ=0

[∑
n∈N

E[gn(xn(τ))]

]
≥ lim sup

t→∞

1

t

t−1∑
τ=0

[∑
n∈N

gn(An + δ)− B

M
+ 2

∑
n∈N

Sn(t)
δ

M
+

2
∑
n∈N

∑
k∈N

(
Un,k(t) +Qn,k(t) + Zn,k(t)

) δ
M

]
(A.17)

Since lim supt→∞
1
t

∑t−1
τ=0

[∑
n∈N 2

∑
n∈N Sn(t) δ

M+2
∑

n∈N
∑

k∈N

(
Un,k(t)+Qn,k(t)+Zn,k(t)

)
δ
M]

≥ 0, the following inequality holds

lim sup
t→∞

1

t

t−1∑
τ=0

[∑
n∈N

E[gn(xn(τ))]

]
≥
∑
n∈N

gn(An + δ)− B

M
. (A.18)

This proves that the flow rates achieved by EaCC converge to the utility optimal operating point with

increasing M . This concludes the optimality part of the proof.
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HIDING THE VECTOR

In machine learning applications, the master runs iterative algorithms in which the vector x contains

information about A and needs to be hidden from the workers. We describe how PRAC can be general-

ized to achieve privacy for bothA and x. The idea is to divide the nworkers into two disjoint groups and

ask each of them to privately multiply A by a vector that is statistically independent of x. In addition,

the master should be able to decode Ax from the results of both multiplications. The scheme works as

follows. The master divides the workers into two groups of cardinality n1 and n2 such that n1 +n2 = n

and chooses the security parameters z1 < n1 and z2 < n2. To hide x, the master generates a random

vector u of same size as x and sends x + u to the first group and u to the second group. Afterwards,

the master applies PRAC on both groups. According to our scheme, the master decodes A(x + u) and

Au after receiving enough responses from the workers of each group. Hence, the master can decode

Ax. Note that no information about x is revealed because it is one-time padded by u. Note that here

we assume workers from group 1 do not collude with workers from group 2. The same idea can be

generalized to the case where workers from different groups can collude by creating more groups and

encoding x using an appropriate secret sharing scheme. For instance, if the master divides the workers

into 3 groups and workers from any 2 different groups can collude, the master encodes x into u1, u2

and u1 + u2 + x and sends each vector to a different group.
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EXTENSION OF PROOF OF PRIVACY (i.e., THEOREM 9)

Since at each round we generate new random matrices, it is enough to study the privacy condition at

one round. Consider a given round t of PRAC. Let Pi denote the random variable representing packet

pi sent to worker wi. For any subset Z ⊂ {1, . . . , n}, |Z| = z, denote by PZ the collection of packets

indexed by Z, i.e., PZ = {pi; i ∈ Z}. We prove that the perfect secrecy constraintH(A | PZ) = H(A),

given in (Equation 8.2), is equivalent to H(K | PZ , A) = 0. The proof is standard [191–193] but we

reproduce it here for completeness. In what follows, the logarithms in the entropy function are taken

base q, where q is a power of prime for which all matrices can be defined in a finite field Fq. We can

write,

H(A | PZ) = H(A)−H(PZ) +H(PZ | A) (C.1)

= H(A)−H(PZ) +H(PZ | A)−H(PZ | A,K) (C.2)

= H(A)−H(PZ) + I(PZ ;K | A) (C.3)

= H(A)−H(PZ) +H(K | A)−H(K | PZ , A) (C.4)

= H(A)−H(PZ) +H(K)−H(K | PZ , A) (C.5)

= H(A)− z + z −H(K | PZ , A) (C.6)

= H(A)−H(K | PZ , A). (C.7)
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Equation (Equation C.2) follows from the fact that given the data A and the keys R1, . . . , Rz all packets

generated by the master can be decoded, in particular the packets PZ received by any z workers can

be decoded, i.e., H(PZ | A,K) = 0. Equation (Equation C.5) follows because the random matrices

are chosen independently from the data matrix A and equation (Equation C.6) follows because PRAC

uses z independent random matrices that are chosen uniformly at random from the field Fq. Therefore,

proving that H(A|PZ) = H(A) is equivalent to proving that H(K | PZ , A) = 0. In other words, we

need to prove that the random matrices can be decoded given the collection of packets sent to any z

workers and the data matrix A. This is the main reason behind encoding the random matrices using an

(n, z) MDS code. We formally prove that H(K | PZ , A) = 0 in the proof of Theorem 9. Note from

equation (Equation C.5) that for any code to be information theoretically private, H(K) cannot be less

then H(PZ) = z. This means that a secure code must use at least z independent random matrices.
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PROOF OF LEMMA 10

We prove the lemma by contradiction. Assume that there exists a private coded computing scheme

for distributed linear computation that is secure against z colluding workers and allows the master to

decode Ax using the help of the fastest z workers. Without loss of generality, assume that the workers

are ordered from the fastest to the slowest, i.e., worker w1 is the fastest and worker wn is the slowest.

The previous assumption implies that the results sent from the first z workers contain information about

Ax, otherwise the master would have to wait at least for the (z + 1)st fastest worker to decode Ax. By

linearity of the multiplication Ax, decoding information about Ax from the results of z workers implies

decoding information about A from the packets sent to those z workers. Hence, there exists a set of z

workers for which H(S|PZ) 6= 0, where PZ denotes the tasks allocated to a subset Z ⊂ {1, . . . , n} of

z workers, hence violating the privacy constraint. Therefore, any private coded computing scheme for

linear computation limits the master to the speed of the (z + 1)st fastest worker in order to decode the

wanted result.
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PROOF OF THEOREM 11

The total delay for receiving τi computed packets from worker wi is equal to

Ti ≈ RTTi + τiE[βt,i] ≈ τiE[βt,i]

where RTTi is the average transmission delay for sending one packet to worker wi and receiving one

computed packet from the worker, βt,i is the computation time spent on multiplying packet pt,i by

x at worker wi, and the average E[βt,i] is taken over all τi packets. The reason is that PRAC is a

dynamic algorithm that sends packets to each worker wi with the interval of E[βt,i] between each two

consecutive packets and it utilizes the resources of workers fully [194]. The reason behind counting

only one round-trip time (RTT) in Ti is that in PRAC, the packets are being transmitted to the workers

while the previously transmitted packets are being computed at the worker. Therefore, in the overall

delay only one RTTi is required for sending the first packet p1,i to worker wi and receiving the last

computed packet pτi,ix at the master. To approximate the total delay, we assume that the transmission

delay of one packet is negligible compared to the computing delay of all τi packets, which is a valid

assumption in practice for IoT-devices at the edge.

On the other hand, in PRAC, the master stops sending packets to workers as soon as it collectively

receives b + ε computed packets from the n − z slowest workers (note that b + ε is the number of

computed packets required for successful decoding, where ε is the overhead due to Fountain Coding),
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i.e.,
∑n

i=z+1 τi = b+ε. Note that the z fastest workers are assigned for computing the keys as described

in the previous sections. Due to efficiently using the resources of workers by PRAC, all n− z workers

will finish computing τi packets approximately at the same time, i.e., TPRAC ≈ Ti ≈ τiE[βt,i], i = z +

1, ..., n. By replacing τi with TPRAC
E[βt,i]

in
∑n

i=z+1 τi = b+ε, we can show that TPRAC ≈ b+ε∑n
i=z+1 1/E[βt,i]

.

Note that the approximated value approaches the exact value by increasing b. The reason is that the

workers’ efficiency increases with increasing b.
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PROOF OF THEOREM 12

We express E[TSC] as a function of the computing time βt,i of worker wi, i = 1, . . . , n, as

E[TSC] = min
d∈{k,...,n}

{
k − z
d− z

E[T(d)]

}
(F.1)

= min
d∈{k,...,n}

{
b

d− z
E[βt,d]

}
, (F.2)

where wd is the dth fastest worker. Next, we find a lower bound on E[TSC]− E [TPRAC ] as follows

E[TSC]− E [TPRAC ] =
b
d−z

E[βt,d]

− b+ ε∑n
i=z+1

1
E[βt,i]

(F.3)

=
b
d−z

E[βt,d]

− b+ ε∑d
i=z+1

1
E[βt,i]

+
∑n

i=d+1
1

E[βt,i]

(F.4)

≥ b
d−z

E[βt,d]

− b+ ε

(d− z) 1
E[βt,d] + (n− d) 1

E[βt,n]

(F.5)

=

b(n−d)
E[βt,n] −

ε(d−z)
E[βt,d]

d−z
E[βt,d](

d−z
E[βt,d] + n−d

E[βt,n])
(F.6)

=
bx− εy
y(x+ y)

, (F.7)

where x = n−d
E[βt,n] and y = d−z

E[βt,d] and the inequality (Equation F.5) comes from the fact that z ≤ k ≤

d ≤ n and the workers are ordered from the fastest to the slowest.
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from RightsLink.

If applicable, University Microfilms and/or ProQuest Library, or the Archives of Canada may supply
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