
An Exploration of Sarcasm Detection Using Deep Learning

BY

EDOARDO SAVINI
B.S., Computer Engineering, Politecnico di Torino, Torino, Italy, 2017

THESIS

Submitted as partial fulfillment of the requirements
for the degree of Master of Science in Computer Science

in the Graduate College of the
University of Illinois at Chicago, 2019

Chicago, Illinois

Defense Committee:

Cornelia Caragea, Chair and Advisor

Erdem Koyuncu

Elena Maria Baralis, Politecnico di Torino

ACKNOWLEDGMENTS

First of all, I would like to thank my advisor, Prof. Cornelia Caragea, for her constant

support, help and patience throughout the time I spent at UIC. She stimulated my work with

her ideas and motivation and made an important contribution to my academic and personal

growth.

I would also like to express my gratitude to the other members of my thesis committee, Prof.

Elena Baralis and Prof. Erdem Koyuncu, for their interest and their feedback and advices on

this work.

A very special thanks to Lynn Thomas and Jenna Stephens for their prompt assistance to

solve any problems that could affect an international student at UIC.

I want to thank my family for supporting me and giving me the chance to live this amazing

experience.

I thank my friend Alessandro for sharing this whole journey with me till the end, and also

the amazing Rafiki’s Squad for giving me the best times I had in this permanence in the US:

thanks to my party buddy Gabriele, the bomber Arturo and also to that funny useless panda

Davide.

A special thanks to all the people that made these last two years unforgettable, especially

to Alessandra, Marco and Valerio who, despite the distance, never stopped supporting me and

cheering me up.

ES

ii

TABLE OF CONTENTS

CHAPTER PAGE

1 INTRODUCTION . 1

2 RELATED WORK . 4
2.1 Content Feature-Based Analyses 4
2.2 Context-based models . 5
2.3 Deep Learning for Sarcasm Detection 6
2.4 Multitasking . 7

3 NEURAL NETWORK MODELS . 9
3.1 LSTM . 9
3.2 BiLSTM . 10
3.3 BiLSTM+Attention . 11
3.4 CNN . 12
3.5 CNN+LSTM . 14

4 WORD EMBEDDINGS . 15
4.1 GloVe . 15
4.2 FastText . 16
4.3 ELMo . 16
4.4 Concatenation of ELMo with non-contextual embedding . . . 17

5 DATA . 18
5.1 Sarcasm V2 Corpus . 18
5.2 SARC . 19
5.3 Crawled Dataset . 20

6 EXPERIMENTS . 23
6.1 Base Model . 23
6.2 Implementation . 25
6.3 Experiments on Sarcasm V2 Corpus 26
6.3.1 Experiments on Validation Set 26
6.3.1.1 LSTM . 26
6.3.1.2 BiLSTM . 28
6.3.1.3 CNN . 29
6.3.1.4 Analysis on the Validation Set 30
6.3.2 Evaluation on the Test set . 30
6.4 SARC analysis . 31

iii

TABLE OF CONTENTS (continued)

CHAPTER PAGE

6.4.1 SARC Training . 31
6.5 Multi-Tasking Approach . 32
6.5.1 Sentiment Analysis . 34
6.5.2 Finding the most performing auxiliary task 35
6.5.3 Multitask Training phase . 36
6.6 Experiments on the Crawled Dataset 37

7 RESULTS . 39
7.1 Results on Sarcasm Corpus V2 39
7.2 Results on Sarcasm Corpus V2 with Multitasking 42
7.3 Results on SARC . 44
7.4 Results on SARC with MultiTasking 46
7.5 Comparison with Baseline methods on SARC 47
7.6 Best Model Prediction . 49
7.6.1 Comparisons with Reality . 52

8 CONCLUSION AND FUTURE WORK 53

CITED LITERATURE . 55

VITA . 60

iv

LIST OF TABLES

TABLE PAGE

I TOTAL NUMBER OF TWEETS CRAWLED 21

II CONTENT OF THE FINAL CRAWLED DATASET FOR PREDICTIONS 22

III EXPERIMENT ON VALIDATION SET WITH LSTM ENCODER . . . 27

IV EXPERIMENT ON VALIDATION SET WITH BILSTM ENCODER . 28

V EXPERIMENT ON VALIDATION SET WITH CNN ENCODER 29

VI RESULTS ON SARCASM V2 CORPUS (WITHOUT MULTITASKING) 41

VII RESULTS USING MULTITASKING ON SARCASM V2 CORPUS . . . 43

VIII RESULTS ON SMALL SARC (NO MULTITASKING) 45

IX RESULTS USING MULTITASKING ON SMALL SARC 46

X COMPARISON WITH THE BASELINES OF MAIN BALANCED SARC 49

XI SARC BEST MODEL PREDICTIONS WITH 0.5 THRESHOLD 50

XII SARC BEST MODEL PREDICTIONS WITH 0.6 THRESHOLD 50

v

LIST OF FIGURES

FIGURE PAGE

1 Configuration of an LSTM cell. 9

2 Example of a Bidirectional LSTM network 11

3 Example of a Convolutional Neural Network for image processing . 13

4 Base Model for the experiments. 23

5 Two Models configuration. 24

6 Multi-tasking framework. 33

vi

LIST OF ABBREVIATIONS

BiLSTM Bidirectional Long-Short Memory

CNN Convolutional Neural Network

ELMo Embeddings from Language Models

GloVe Global Vector for word representations

IAC Internet Argument Corpus

LSTM Long-Short Memory

MLP Multi-Layer Perceptron

NLP Natural Language Processing

NN Neural Network

SARC Self-Annotated Reddit Corpus

SVM Support Vector Machine

vii

SUMMARY

Sarcasm detection plays an important role in Natural Language Processing as it has been

considered one of the most challenging task in sentiment analysis and opinion mining appli-

cations. Our work aims to recognize sarcasm in social media sites, microblogs and discussion

forums, exploiting the potential of Deep Learning tools such as Deep Neural Network and

Word Embeddings. In this thesis, we (a) develop multiple types of neural models and analyze

their efficiency when combined with word embeddings; (b) create a new multitasking frame-

work that exploits the strong correlation between sarcasm and sentiment detection (c) test the

performances of our models on two pre-labelled datasets; (d) compare our results with other

state-of-the-art models; (e) apply our models on real word data to evaluate the efficiency of

their prediction. We then discuss on the benefits of our research in the field of sarcasm detection

and sentiment analysis, and put the basis for some future researches.

viii

CHAPTER 1

INTRODUCTION

In recent years, Internet has become the main source to communicate and share information.

In particular, social media sites, microblogs, discussion forums, online reviews have become

more and more popular. They represent a way for people to express their own opinion with

no inhibition, and to look for some advice. Many companies take advantage of these sites’

popularity to share their products and services, provide assistance and understand costumer

needs.

For this reason, social media have developed into one of the the main domains for Natural

Language Processing (NLP) research, especially in the area of Sentiment Analysis. Analyzing

people sentiment could be useful to comprehend their behaviour, monitor customer satisfaction

and increase sales revenue. However, this opinion mining task appears to be very challenging,

due to the dense presence of figurative languages in social communities like Reddit1 or Twitter2.

Our research focuses on a recurrent sophisticated linguistic phenomenon (and a form of

speech act) that makes use of figurative images to implicitly convey contempt through incon-

gruity [20] between text and context, the sarcasm. Its highly figurative nature has caused

1https://www.reddit.com/

2https://twitter.com/

1

https://www.reddit.com/
https://twitter.com/

2

sarcasm to be defined as one of the main challenges in sentiment analysis and opinion mining

applications.

While many previous works on this task have focused more on approaches based on feature

engineering, that use distant supervision and Support Vector Machines to extract lexical cues

recurrent in sarcasm, we propose to continue the path followed by Amir et al. (2016), Ghosh

and Veale (2016) and Joshi et al. (2016) [1; 13; 21] in attempting to automatically detect

sarcasm harnessing the potentials of deep neural networks combined with word embeddings to

capture both semantic and syntactic features in sarcastic utterances.

The first phase of our work consists on experimenting with five basic neural network models

(BiLSTM, LSTM, CNN, BiLSTM+Attention, CNN-LSTM) combined with different typologies

of pre-trained word embeddings (GloVe, FastText, ELMo) and their concatenations, to find the

best configuration to predict sarcasm.

We study the performances of our basic models on two datasets of different sizes, collected

from Internet Argument Corpus (IAC)3 and Reddit. Our purpose is to analyze the efficiency

of Deep Learning elements in the sarcasm detection task and find a neural framework able

to accurately predict sarcasm in many types of social platforms, from discussion forums to

microblogs, without recurring to manual feature engineering or user embeddings (context-based

features). We also attempt to develop a multitasking framework for sarcasm detection, joining

an auxiliary sentiment detection task to our main model.

3https://nlds.soe.ucsc.edu/iac2

https://nlds.soe.ucsc.edu/iac2

3

In the last part of our research we apply our best models on real-word data. We create

our own data collections with tweets coming from the cities of Chicago, San Francisco and

Philadelphia, concerning eight different topics in which sarcasm is recurrent (Abortion, Cre-

ation, Health, Homophobia, Obama, Racism, Terrorism, Trump). We analyze the percentage

of sarcastic tweets to evaluate our model and make sociological analyses on how geographical

circumstances, such as climate and political tendencies, could affect people attitude towards

certain arguments.

CHAPTER 2

RELATED WORK

Many studies and researches have been conducted in the past years having sarcasm as

subject, not only in linguistic field, but also in psychology and cognitive science [32; 15; 25; 43;

47; 16]. However, experiments on automatic sarcasm detection represent a recent field of study.

2.1 Content Feature-Based Analyses

One of the first analyses has been made by Tepperman et al. (2006) [45] who aimed to

recognize sarcasm in speech using prosodic, spectral, and contextual cues. Their research

attracted the interest of many sentiment analysis experts.

The first investigations made on text were focused on discovering lexical indicators and

syntactic cues that could be used as features for sarcasm detection. In fact, at the beginning,

sarcasm recognition was considered as a simple text classification task.

Kreuz and Caucci (2007) [24] noted that interjections, punctuation symbols, intensifiers

and hyperboles play a fundamental role for the research. Also Carvalho et al. (2009) [7] found

that oral and gestural expressions such as emoticons and other keyboard characters are more

predictive of sarcasm.

Tsur et al. (2010) [46] found that exclamations like ”yay!” or ”great!” are good indicators

on Amazon product reviews, and Davidov et al. (2010) [10] exploited syntactic patterns such

as sarcasm hashtags to train classifiers using a semi-supervised technique.

4

5

González-Ibánez et al. (2011) [17] performed Support Vector Machines and logistic regres-

sion on tweets using also emoticons and sarcastic hashtags as features. They also found positive

and negative emotions to be strongly correlated with sarcasm. This theory was deepened by

Riloff et al. (2013) [40] which developed a bootstrapping algorithm based on the opinion that

sarcasm consists on a contrast between Positive Sentiment and a Negative Situation (e.g. ”I

love being ignored”). Their work was resumed by Joshi et al. (2015) [20] who used a similar

method to predict implicit and explicit incongruity features.

While the previous works focused on unigrams, Lukin and Walker (2017) [28] proposed a

bootstrapping method too, based on the expansion of sarcastic N-grams cues, such as ”no way”,

”oh really”, etc. N-grams were considered also by Liebrecht et al. (2013) [26] and Ptáček et al.

(2014) [38] to create classifiers to analyze Dutch, Czech and English tweets.

2.2 Context-based models

However, sarcasm can not be considered only as a purely lexical and syntactic phenomenon.

In fact, Wallace et al. (2014) [48] showed that many of the classifiers previously described fail

when dealing with sentences where context is needed. For example, in political posts, a general

knowledge of the political situation regarding the time and place in which a certain post was

written is crucial to understand its meaning.

A more semantic approach was performed by Joshi et al. (2015) [20] who used a method

similar to Riloff et al. (2013) [40] to predict implicit and explicit incongruity features. They

expanded the context of a discussion forum post including the parent post (called ”elicitor”)

in the discussion thread.

6

Rajadesingan et al. (2015) [39] and Bamman and Smith (2015) [2] extracted contextual

features (user profile information) from the history tweets of the same author. Also, Khattri et

al. (2015) [22] tried to discover sarcasm looking for contrast between users and specific entities

along their tweets history.

2.3 Deep Learning for Sarcasm Detection

In order to detect this kind of semantic information from a sarcastic statement, some re-

searchers experimented also a new approach using Deep Learning techniques. The advantage

of adopting neural networks is in their ability to induce features automatically, allowing them

to capture long-range and subtle semantic characteristics that are hard to find with manual

feature engineering.

Amir et al. (2016) [1] use Convolutional Neural Networks to capture user embeddings

and utterance-based features. They managed to discover homophily scanning user’s historical

tweets. Also Joshi et al. (2016) [21] proposed different kinds of word embeddings (Word2Vec,

GloVe, LSA), augmented with other features on word vector-based similarity, to apprehend

context in phrases with no sentiment words. Poria et al. (2016) [37] developed a framework

based on pre-trained CNN to retrieve sentiment, emotion and personality features for sarcasm

recognition.

Zhang et al. (2016) [49] created a bi-directional gated recurrent neural network with a pool-

ing mechanism to automatically detect content features from tweets and context information

from history tweets. They demonstrated the efficiency of neural networks over manual feature

engineering.

7

Ghosh and Veale (2016) [13] proposed a concatenation of Convolutional Neural Network,

Long-Short Term Memory Network and Deep Neural Network (CNN-LSTM-DNN) that out-

performed many state-of-art methods based on text features. We created a similar framework

for one of our main network models (Section 3.5). They exploited the same framework one year

later [14] to capture the mood of the users along time, in order to increase the accuracy of their

framework.

Tay et al. (2018) [44] used a Multi-dimensional Intra-Attention Recurrent Network (MI-

ARN) to detect word-to-word and long range dependencies.

Hazarika et al. (2018) [18] proposed a framework able to detect contextual information

with user embedding created through user profiling and discourse modeling from comments on

Reddit. Their model reaches the state-of-art in one of the datasets (SARC) we consider for the

experiments. Nevertheless, our evaluation without user embedding information outperforms

their basic model.

2.4 Multitasking

For as regards the multitask learning [6], our model relies on the work made by Cohan

et al. (2019) [9] for citation intent classification. They showed that the performances of a

main classification task can be improved by being biased from the training of some secondary

tasks. We adapted their code in order to make it work for the sarcasm classification, having

the sentiment analysis as secondary task.

We discovered that this mechanism was only applied recently on sarcasm detection task

by Majumder et al. (2019) [29]. Following the same intuition we had regarding a correlation

8

between sentiment classification and sarcasm detection, they created a GRU-based classifier

with attention mechanism and applied it on the dataset by Mishra et al. (2016) [31], which

contained about a thousand samples of sentences with both sarcastic and sentiment tags. Their

mechanism shares the GRU model between the two tasks and exploits a neural tensor network

to fuse sarcasm and sentiment-specific word vectors. They outperform the state-of-the-art

previously obtained by Mishra et al. (2016) [31] with a CNN-based model.

Other relevant works in NLP on this matter were made by Chen et al. (2017) [8] and Liu et

al. (2017) [27]. The first obtained relevant results in the field of Chinese Word Segmentation.

They use 3 different segmentation criteria (with a shared-private layer configuration) as single

tasks, and integrate their knowledge in a multitasking framework to extract criteria-invariant

(with the shared layer) and criteria-specific (with the private layer) features. The second ones

use an adversarial multitask framework for text classification in which private and shared fea-

tures are disjoint. They introduced orthogonality constraints to remove feature redundancy

and avoid noise data.

CHAPTER 3

NEURAL NETWORK MODELS

In this chapter we describe briefly the main features of the networks we have employed

for our experiments. The main models used for our evaluations are: LSTM, BiLSTM, CNN,

CNN+LSTM, BiLSTM+Attention.

3.1 LSTM

The Long Short-Term Memory (LSTM) network is a variation of the ”classic” Recurrent

Neural Network (RNN), proposed by the German researchers Sepp Hochreiter and Juergen

Schmidhuber [19] to reduce the vanishing gradient problem. Figure 1 displays an example of

an LSTM cell.

Figure 1. Configuration of an LSTM cell.

9

10

The main feature of this network is the presence of a loop, that makes it able to capture

data information in its states and propagate it over the time. This characteristic has caused

LSTM to be widely used in the last years to classify and process sequential data, especially in

applications as time series prediction, audio and video composition, and speech processing.

For our experiment we use a single-layer LSTM encoder with a dropout rate of 0.2 and h

cells on the hidden/output layer (usually h = 100). The model we use is a Seq2VecEncoder

that transforms an input sequence of shape [batch size, sentence length, embedding dim] into a

vector in the form [batch size, h].

3.2 BiLSTM

A Bidirectional LSTM is a network developed to retrieve more information from the same

input data. As a simple LSTM scans an input only in one direction to predict new data

capturing the old one, the bidirectional framework runs the input in two directions, forward

and backward, allowing to store more information both from past and future.

The model has been really exploited recently especially for sentence prediction tasks because,

thanks to its peculiarity, BiLSTM is able to detect more contextual information. This makes

it a powerful tool for sarcasm detection.

For our experiment we model a single-layer BiLSTM Seq2VecEncoder with a dropout rate

of 0.2 and h cells on the hidden layer (usually h = 100). As the hidden cells are scanned twice,

the output data will have size equal to [batch size, 2 ∗ h].

11

Figure 2. Example of a Bidirectional LSTM network

3.3 BiLSTM+Attention

Another approach we have implemented consists on taking every output of the hidden states

of our BiLSTM and joining them through a simple attention mechanism [9] in order to obtain

a single contextual vector representing the full sentence.

The BiLSTM encoder, in this instance, is a Seq2Seq encoder, which means that takes an

input sequence of dimensions [batch size, sentence length, embedding dim] and shapes it into an

output of size [batch size, sentence length, 2 ∗ h]. This data is then transformed into a vector

of shape [batch size, 2 ∗ h] by our attention framework, which consists on a concatenation of

dot-product and softmax operation.

12

In particular, given an input d = {d1, d2, ..., d2h} with di ∈ <(sentence length,2h), the output

vector y is computed as:

y =

sentence length∑
i=1

γidi (3.1)

where:

γi = softmax(wTdi) (3.2)

and w is a vector of parameters initialized with Xavier normalization, having zero mean and

variance V ar(wi) = 1/2h, that embodies the query vector for dot-product attention.

3.4 CNN

A Convolutional Neural Network is a deep learning network developed for the image classi-

fication task but used also for text classification (sentence prediction) [50].

It consists on performing on an input data a series of convolutions and sub-sampling (pool-

ing) operations, in order to analyze only relevant information (e.g. borders and shapes of an

image) and simplify the initial data. This overcomes the problem of over-fitting data that could

affect a multi-layer perceptron (MLP) network.

As it can be seen in the Figure 3, the CNN may exploit a fully connected layer only after

the execution of the other operations, when the data has become more simple and informative.

13

Figure 3. Example of a Convolutional Neural Network for image processing

For our experiment we use a Seq2Vec CNN encoder with a single combination of one con-

volution layer, with 150 filters of size 5, and one max-pooling layer, with kernel size and stride

equal to 2, that aggregates the results of each convolution, outputs their max value and con-

catenates them into a single vector of size 150. Before the max-pooling operation, a ReLu

activation function is applied on the results of each convolution.

Given the configuration of our model, its output should be of size:

out = N convolutions ∗N filters. (3.3)

In this way, changing the number of filters may vary the output size. To address this problem,

we add a projection layer that projects the collected features into a vector of fixed dimensions.

14

3.5 CNN+LSTM

We also build a model similar to the one developed by Ghosh and Veale (2016) [13], in

which the output of the CNN is passed as input to an LSTM layer. For our implementation we

follow the directions described by Brownlee (2017) [5].

In this instance, the CNN encoder takes an input of shape [batch size, sentence length,

embedding dim, 1] and creates an output of shape [batch size, sentence length/2, N filters], that

feeds our Seq2Vec LSTM network, with the same features as the one described previously.

CHAPTER 4

WORD EMBEDDINGS

As context plays a relevant role in sarcasm detection, the choice of the right word embedding

becomes one of the most important tasks in our experiment. To obtain a detailed view of

their performance and analyze their differences, we execute a lot of experiments with different

typologies of pre-trained word embeddings and their concatenations, applied to the networks

described in the previous chapter.

4.1 GloVe

GloVe (Global Vectors for word representations) is an unsupervised learning algorithm de-

veloped by Pennington et al. (2014) [35] that generates vector representations of words from

their co-occurence information. This implies that the vectors contain information on how fre-

quently words appear together in corpora of big size.

GloVe is a count-based model, which means that the vectors are built performing a dimen-

sionality reduction from a co-occurence counts matrix. The matrix has words as rows and some

contexts as columns and, for every word, it counts how often the word appears in some context

along the corpus. For our experiment we consider 50, 100 and 300-dimensional word vectors

trained on a collection of 6B tokens from Wikipedia1 and Gigaword2.

1https://www.wikipedia.org/

2https://catalog.ldc.upenn.edu/LDC2003T05

15

https://www.wikipedia.org/
https://catalog.ldc.upenn.edu/LDC2003T05

16

4.2 FastText

FastText [3] is an open-source, free, lightweight library that allows users to learn word

embeddings and text classifiers, created by Facebook’s AI Research (FAIR) lab. It is different

from the previous embeddings as it treats each word as composed of n-grams. Each vector of

a word is composed by the sum of its character n-grams.

The model represents an extension of the classic Word2Vec, faster in training with large

corpora, able to compute word representations also for rare words and for words that do not

appear in the training data (”out-of-vocabulary” words). It also supports 157 different lan-

guages. In our research we use 300-dimensional word vectors pre-trained on Common Crawl3

(600B tokens).

4.3 ELMo

ELMo (Embeddings from Language Models) [36] is a deep contextualized word representa-

tion developed by the Allen Institute of Artificial Intelligence. It differs from the other models

because it represents each word vector as a function of the sentence to which it belongs. In-

deed, they are computed from the hidden states of a 2-layers bidirectional Language Model.

This approach consistently increases the contextual information in the embeddings, making it

appropriate for tasks such as sarcasm prediction and sentiment analysis.

3http://commoncrawl.org

http://commoncrawl.org

17

We generally employ vectors trained on the 1 Billion Word Benchmark4 (approximately

800M tokens of news crawl data from WMT 20115) having output size of 1024. For the last

part of our experiments we also tested the model trained on a dataset of 5.5B tokens (from

Wikipedia (1.9B) and monolingual news crawl data from WMT 2008-2012 (3.6B)) as it turned

out to obtain better performances.

4.4 Concatenation of ELMo with non-contextual embedding

We investigate also a mixed approach, concatenating ELMo with the other previously de-

scribed embedding models, in order to obtain word embeddings with both contextualized and

non-contextualized features.

In particular, we focuse on both the combinations with 300-dimensional GloVe and FastText

Embeddings. For example, given a sentence of length l, we encode it as x = {x1, x2, ..., xl}

where:

xi = [xGloV e
i , xELMo

i] or xi = [xFastText
i , xELMo

i] (4.1)

and xi ∈ <d. In the case of 300-dimensional non-contextual vectors, the value of d is equal to

1024+300 = 1324.

4https://www.statmt.org/lm-benchmark/

5http://www.statmt.org/wmt11/translation-task.html

https://www.statmt.org/lm-benchmark/
http://www.statmt.org/wmt11/translation-task.html

CHAPTER 5

DATA

To evaluate our models, we focuse attention on labelled datasets on sarcasm that, in addition

to the sole sarcastic statement (that we call ”Response”), contain also the parent comment

(”Quote”) that elicits the sarcastic utterance.

We perform our studies on the Sarcasm V2 Corpus1, a dataset created by Oraby et al.

(2017) [34]. Then, given the limited size of the dataset, we test our models also on a large-scale

self-annotated corpus for sarcasm, SARC2 [23]. In addition, we crawl some comments from

Twitter in order to evaluate the accuracy of our final model on a real-word data distribution.

5.1 Sarcasm V2 Corpus

Sarcasm V2 is a dataset released by Oraby et al. (2017) [34]. It is a highly diverse corpus of

sarcasm developed using syntactical cues and crowd-sourced annotation. It contains 4692 lines

containing both Quote and Response sentences from dialogue examples on political debates

from the Internet Argument Corpus (IAC 2.0). The data is collected and divided in three

categories: General Sarcasm (Gen, 3260 comments), Rhetorical Questions (RQ, 582 comments)

and Hyperbole (Hyp, 850 comments).

1https://nlds.soe.ucsc.edu/sarcasm2

2http://nlp.cs.princeton.edu/SARC/

18

https://nlds.soe.ucsc.edu/iac2
https://nlds.soe.ucsc.edu/sarcasm2
http://nlp.cs.princeton.edu/SARC/

19

As our model is supposed to work also with real-word data, we use only the Gen Corpus

for our experiments.

5.2 SARC

The Self-Annotated Reddit Corpus (SARC) was introduced by Khodak et al. (2017) [23]. It

contains more than a million sarcastic and non-sarcastic statements retrieved from Reddit, with

some contextual information such as author details, score and parent comment (corresponding

to the Quote text in Sarcasm V2).

Reddit is a social media site in which users can communicate on topic-specific discussion

forums called subreddits, each titled by a post called submission. People can vote and reply to

the submissions or to their comments, creating a tree-like structure. This guarantees that every

comment has its ”father”. The main feature of the dataset is the fact that sarcastic sentences

are directly annotated by the authors themselves, through the inclusion of the marker ”/s” in

their comments. This method provides reliable and trustful data. Another important aspect is

the fact that almost every comment is made of one sentence.

As SARC dataset has many variants (Main Balanced, Main Unbalanced and Pol), in order

to make our analyses more consistent with the Sarcasm V2 Corpus, we run our experiments only

on the first version of the Main Balanced dataset, composed of an equal distribution of both

sarcastic (505413) and non-sarcastic (505413) statements (Total training set size: 1010826).

They also provide a balanced test set of 251608 comments for model evaluation.

20

5.3 Crawled Dataset

To prove the efficiency of our model, we create our own collection of sentences. The Corpus

has been collected from the Twitter platform through their designated API. The decision to use

Twitter is given to the fact that we wanted our model to work efficiently on multiple platforms.

In order to retrieve relevant sarcastic data for our experiments, we studied many preexisting

sarcastic datasets and, after further analyses, we found eight main topics for which sarcasm

is mainly recurrent: Politics (Trump, Obama), Healthcare, Creationism, Abortion, Terrorism,

Racism and Homophobia. We then selected three cities from different parts of the United

States: Chicago (Center), San Francisco (West Coast), Philadelphia (East Coast) to evaluate

how some circumstances, like climate or political tendencies, could affect people’s behaviour

with respect to a certain topic.

Finally we collected thousands of tweets on each one of these topics, written in the surround-

ings of the cities listed above between January and May 2019. As we can see from Table I,

given that some arguments are more recurrent than others on social media, for every topic in

every city we crawled a different number of tweets.

21

TABLE I: TOTAL NUMBER OF TWEETS CRAWLED

Chicago Philadelphia San Francisco

Abortion 10268 6208 6694

Creation 3208 1578 6999

Health 50000 50000 50000

Homophobia 31033 13420 17092

Racism 43951 30853 34443

Terrorism 29130 17888 16320

Trump 50K 36185 45780

Obama 2273 1280 1222

Once all the data have been collected and cleaned, we chose the criteria according to which

analyse them and make predictions. At first, we set the maximum size of the collections to

50.000. Then, to make our analysis more consistent, for every topic we selected the minimum

number of crawled tweets between the 3 cities and cut down the collections of the other two

cities to that size. At the end of this procedure our final crawled dataset had the configuration

shown in Table II.

22

TABLE II: CONTENT OF THE FINAL CRAWLED DATASET FOR PREDICTIONS

Chicago Philadelphia San Francisco

Abortion 6208 6208 6208

Creation 1578 1578 1578

Health 50000 50000 50000

Homophobia 13420 13420 13420

Racism 30853 30853 30853

Terrorism 16320 16320 16320

Trump 36185 36185 36185

Obama 1222 1222 1222

CHAPTER 6

EXPERIMENTS

6.1 Base Model

Figure 4. Base Model for the experiments.

The first experiments were made on the Sarcasm V2 dataset, since it is way smaller and

faster to run than the SARC one. Our network framework is represented in the Figure 4.

23

24

As in the datasets the sarcastic and non-sarcastic comments (Response) are collected with

their own parent comment (Quote), we attempted three different network configurations to

study how contextual information from the quote can affect sarcastic predictions:

• Two Models (Quote Encoder + Response Encoder): the purpose of this network is to

analyze both inputs separately and unify them through the feedforward network, in order

to maintain the context features in the Quote (Figure 5);

Figure 5. Two Models configuration.

25

• Quote Response (Q+R): it consists on one model which takes a single input that joins

quote and response separated only by a white-space. Its configuration is the same as in

Figure 4, having Sentence = Quote + ” ” + Response.

• Response Only: it has a single model having only the Response as input (Sentence =

Response). Even though this structure does not take into account the context information

in the Quote, it is supposed to be useful to the network in order to capture the subtle

patterns of sarcastic utterances.

6.2 Implementation

To obtain a reliable and good performing model, a supervised learning has been studied

on the two sarcasm datasets. We implement our models using the AllenNLP library [12] on

Python 3.6. To perform our experiments we use the AWS Platform, in particular we run EC2

instances (Ubuntu Deep Learning AMI) having one GPU on a Pytorch environment. We

experiment with almost all the possible combinations of neural network models (Encoders) and

word embeddings described in the chapters 3 and 4.

On each iteration, the input sentence is split into words, each word is embedded with a word

embedding and then passed as input to the encoder. The internal parameters of the encoders

may vary from one experiment to another. The encoded result of the model goes through a

Feed Forward Network (also called Multi Layer Perceptron, MLP), having as input dimension

the output size of the model (in the Two Models configuration it will be equal to the sum of

the output sizes of both Quote and Response encoders), h hidden nodes, ReLU [33] activation

function and a Dropout rate [42] of 0.2 between the input and the hidden layer. We then apply

26

a Softmax function [4] on the result, compute the class probability and output the label with

highest value.

We iterate over the datasets with a batch of size equal to 16. The model parameters are

tuned with AdaGrad optimizer [11] having gradient clipping threshold set to 5.0. For every

epoch we compute F-Measure, Precision, Recall, Accuracy and Loss. The training is stopped

once the validation accuracy ceases to grow after some consecutive epochs (the patience is

generally set to 5).

6.3 Experiments on Sarcasm V2 Corpus

The experiments on Sarcasm V2 Corpus can be divided in two phases. In the first step we

choose our best network configuration and in the second step we perform the effective evaluation

of the dataset.

6.3.1 Experiments on Validation Set

In this part of the experiment we rely on the results obtained on the validation set to

study the efficiency of our three model configuration. We split the Sarcasm V2 dataset creating

two balanced subsets (randomly shuffled) having dimension of 80% for training and 20% for

validation set. Then we experiment only with the basic Network models, LSTM, BiLSTM and

CNN and evaluate their results.

6.3.1.1 LSTM

The LSTM model we applied in this experiment is a single layer Seq2Vec encoder with

hidden size of 100 or more cells and a dropout rate of 0.2. The input size corresponds on the

27

dimension of the embedding applied on it. Table III describes also the hidden and input size

of the feed-forward network.

TABLE III: EXPERIMENT ON VALIDATION SET WITH LSTM ENCODER

Config
Embedding

Type

Embedding

Dim

Hidden

Size

FF

input

FF

hidden
Acc F P R

Two Models GloVe 50 100 200 100 0.7450 0.7573 0.7214 0.7969

Q + R GloVe 50 100 100 50 0.7435 0.7337 0.7616 0.7077

Resp Only GloVe 50 100 100 50 0.7742 0.7692 0.7853 0.7538

Two Models GloVe 100 100 200 100 0.7604 0.7746 0.7302 0.8246

Q + R GloVe 100 100 100 50 0.7358 0.7354 0.7354 0.7354

Resp Only GloVe 100 100 100 50 0.7650 0.7733 0.7457 0.8031

Two Models GloVe 300 100 200 100 0.7435 0.7458 0.7380 0.7538

Q + R GloVe 300 100 100 50 0.7419 0.7308 0.7625 0.7015

Resp Only GloVe 300 100 100 50 0.7834 0.7867 0.7738 0.8

Two Models FastText 300 100 200 100 0.7450 0.7573 0.7214 0.7969

Q + R FastText 300 100 100 50 0.7650 0.7678 0.7575 0.7785

Resp Only FastText 300 100 100 50 0.7788 0.7778 0.7802 0.7754

Two Models ELMo 1024 200 400 200 0.7742 0.7699 0.7834 0.7569

Q + R ELMo 1024 400 400 200 0.7819 0.7848 0.7731 0.7969

Resp Only ELMo 1024 400 400 200 0.7803 0.7797 0.7809 0.7785

Two Models ELMo+GloVe 1024+100 200 400 200 0.7742 0.7879 0.7418 0.84

Q + R ELMo+GloVe 1024+100 400 400 200 0.7604 0.7570 0.7666 0.7477

Resp Only ELMo+GloVe 1024+100 400 400 200 0.7588 0.7464 0.7857 0.7108

Two Models ELMo+FastText 1024+300 200 400 200 0.7727 0.7744 0.7674 0.7815

Q + R ELMo+FastText 1024+300 400 400 200 0.7634 0.7701 0.75 0.7914

Resp Only ELMo+FastText 1024+300 400 400 200 0.7680 0.7769 0.7493 0.8067

28

6.3.1.2 BiLSTM

The BiLSTM model has the same features as LSTM, the only difference is that the Multi

Layer Perceptron takes twice the hidden size (forward + backward LSTM) as input.

TABLE IV: EXPERIMENT ON VALIDATION SET WITH BILSTM ENCODER

Config
Embedding

Type

Embedding

Dim

Hidden

Size

FF

input

FF

hidden
Acc F P R

Two Models GloVe 50 100* 200+200 200 0.7512 0.7699 0.7150 0.8338

Q + R GloVe 50 100* 200 100 0.7327 0.7500 0.7035 0.8030

Resp Only GloVe 50 100* 200 100 0.7650 0.7740 0.7443 0.8062

Two Models GloVe 100 100* 200+200 200 0.7419 0.7399 0.7445 0.7354

Q + R GloVe 100 100* 200 100 0.7143 0.7513 0.6643 0.8646

Resp Only GloVe 100 100* 200 100 0.7665 0.7725 0.7522 0.7938

Two Models GloVe 300 100* 200+200 200 0.7465 0.7660 0.7105 0.8308

Q + R GloVe 300 100* 200 100 0.7358 0.7410 0.7257 0.7569

Resp Only GloVe 300 100* 200 100 0.7634 0.7781 0.7317 0.8308

Two Models FastText 300 100* 200+200 200 0.7512 0.7699 0.7150 0.8338

Q + R FastText 300 100* 200 100 0.7604 0.7600 0.76 0.76

Resp Only FastText 300 100* 200 100 0.7680 0.7743 0.7530 0.7969

Two Models ELMo 1024 200* 400+400 200 0.7757 0.7853 0.7521 0.8215

Q + R ELMo 1024 400* 800 400 0.7588 0.7625 0.75 0.7754

Resp Only ELMo 1024 400* 800 400 0.7665 0.7625 0.7746 0.7508

Two Models ELMo + GloVe100 1024+100 200* 400+400 200 0.7680 0.7802 0.7403 0.8246

Q + R ELMo + GloVe100 1024+100 400* 800 400 0.7650 0.7552 0.7867 0.7262

Resp Only ELMo + GloVe100 1024+100 400* 800 400 0.7680 0.7615 0.7825 0.7415

Two Models ELMo + FastText 1024+300 200* 800 400 0.7696 0.7845 0.7358 0.84

Q + R ELMo + FastText 1024+300 400* 800 400 0.7496 0.7606 0.7296 0.7945

Resp Only ELMo + FastText 1024+300 400* 800 400 0.7527 0.7736 0.7143 0.8436

29

6.3.1.3 CNN

The CNN encoder is set with only one filter of size equal to 5. We fix the output dimension of

the network thanks to an internal fully connected layer (projection layer) already implemented

in the AllenNLP library.

TABLE V: EXPERIMENT ON VALIDATION SET WITH CNN ENCODER

Config
Embedding

Type

Embed.

Dim

N

Filters

Output

Dim

FF

input

FF

hidden
Acc F P R

Two Models GloVe 50 100 100 100+100 100 0.7435 0.7504 0.7297 0.7723

Q + R GloVe 50 130 100 100 50 0.7066 0.7170 0.6914 0.7446

Resp Only GloVe 50 130 100 100 50 0.7081 0.6975 0.7227 0.6738

Two Models GloVe 100 100 100 100+100 100 0.7266 0.7236 0.7304 0.7169

Q + R GloVe 100 130 100 100 50 0.7174 0.7437 0.6794 0.8215

Resp Only GloVe 100 130 100 100 50 0.7435 0.7618 0.7101 0.8215

Two Models GloVe 300 100 100 100+100 100 0.7327 0.7290 0.7382 0.72

Q + R GloVe 300 130 100 100 50 0.7327 0.7356 0.7267 0.7446

Resp Only GloVe 300 130 100 100 50 0.7665 0.7765 0.7437 0.8123

Two Models FastText 300 130 100 100+100 100 0.7972 0.8002 0.7629 0.8615

Q + R FastText 300 130 100 100 50 0.7389 0.7578 0.7056 0.8185

Resp Only FastText 300 130 100 100 50 0.7926 0.7874 0.8065 0.7692

Two Models ELMo 1024 100 100 100+100 100 0.7680 0.7722 0.7574 0.7877

Q + R ELMo 1024 400 400 400 200 0.7558 0.7512 0.7643 0.7385

Resp Only ELMo 1024 400 400 400 200 0.7527 0.7440 0.7697 0.72

Two Models ELMo + GloVe100 1024+100 100 100 100+100 100 0.7680 0.7716 0.7589 0.7846

Q + R ELMo + GloVe100 1024+100 400 400 400 200 0.7389 0.7592 0.7034 0.8246

Resp Only ELMo + GloVe100 1024+100 400 400 400 200 0.7711 0.7773 0.7558 0.8

Two Models ELMo + FastText 1024+300 130 100 100+100 100 0.7696 0.7774 0.7507 0.8062

Q + R ELMo + FastText 1024+300 130 100 100 50 0.7435 0.7443 0.7431 0.7454

Resp Only ELMo + FastText 1024+300 130 100 100 50 0.7557 0.7686 0.7313 0.8098

30

6.3.1.4 Analysis on the Validation Set

As we can see from the tables, the Q+R model has lower performances than the others.

Probably, analyzing the context phrase and the sarcastic utterance together in the same string,

our model was not able to capture many contextual information, making the whole sentence

less dense of sarcastic content and thus harder to classify. So, Q+R was the first framework

that we discarded before proceeding to our next experiments.

As the predictions had to be done on Twitter comments, which do not have any context

information such as a quote or a parent comment, and given that according to our results the

Two Models and Response Only structures have similar performances, we chose to continue our

research using the Response Only framework. This choice was also favored by the fact that the

Two Models framework needs more memory to be run causing an increase in the training time.

Once the best structure has been chosen we proceeded to the next step of our experiment.

6.3.2 Evaluation on the Test set

The next step of our research consists on the evaluation of the dataset. Oraby et al. (2017)

[34] performed a Supervised Learning using SVM and, as the Sarcasm V2 dataset has small

dimensions, they executed a 10-fold cross-validation on the data to obtain the state-of-art

metrics shown in Table VI.

For our approach, we randomly divided the Gen Dataset into 90% training and 10% test

set. Then we split the temporary training set into 80% training and 20% validation set. We

performed this procedure three times using a different random seed, obtaining three sets of data.

It is important to note that all the subdivisions were maintained balanced (i.e. with the same

31

number of sarcastic and non-sarcastic data). We ran the same model over the three created

sets and computed the mean values of the metrics we obtained through the 3 executions. We

set a fixed value of random seed, pytorch seed and numpy seed to compare the results on the

same footing.

6.4 SARC analysis

While on the Sarcasm V2 Corpus we were able to perform many experiments with different

network models, for the SARC dataset, which is hundreds times bigger, we used a different

approach to deal with its magnitude (An epoch with ELMo embeddings can last more than 7

hours).

As Khodak et al. (2017) [23] provided also a balanced test set for the training task, we only

had to create our own validation set. We firstly removed some noise data from our training.

About 40 empty comments were found and deleted, equivalent to a really small percentage of

the dataset, a negligible quantity that cannot affect our models’ performance. We then divided

our original training set into 80% training and 20% validation. Both collections have been

shuffled and maintained balanced.

6.4.1 SARC Training

Basing on the results obtained on Sarcasm V2, we performed our evaluation with the best

performing configurations from previous experiment. We tested our models using a smaller

sample of 100.000 lines as training set (keeping untouched validation and test set), in order to

obtain significant results in less time. We then selected the framework with the highest accuracy

32

value and performed the experiment with the whole dataset to compare our performance with

the baseline.

6.5 Multi-Tasking Approach

Another method studied to improve the accuracy of our models is the Multi-Tasking ap-

proach. Basing on the work done by Cohan et al. (2019) [9] for Citation Intent classification, we

aimed to combine our base models with another auxiliary secondary task in order to enhance

the performance of the classification.

Given that the SARC dataset does not contain a lot of relevant information to improve

sarcasm detection (Ups, Down and Score are not strongly correlated with sarcasm) and con-

sidering that, as we stated in Chapter 2, emotion and sentiment play an important role for

detecting sarcasm, we tried to add another useful information to the dataset: the Sentiment

Label.

33

Figure 6. Multi-tasking framework.

Figure 6 shows the multitasking framework we used for our experiment, having sentiment

detection as secondary task. We can see that both tasks share the same model and embedding,

but they have their own Multi Layer Perceptrons. However, in our model, we separated the

embeddings and the models’ parameters too, because our CUDA did not have enough memory

to run both the tasks with ELMo embeddings. So, we used ELMo embeddings (and their

concatenations) only for the primary task.

The configuration of our framework allows the secondary task to affect the training on the

first task when computing the loss of the model. In fact, expressing Ω1 as the sarcastic labeled

34

dataset and Ω2 as the sentiment labeled dataset, the total loss L of our framework is computed

with the formula:

L =
∑

(x,y)∈Ω1

L1(x, y) + λ
∑

(x,y)∈Ω2

L2(x, y), (6.1)

where Li is the Cross Entropy loss computed for each sentence in the database Ωi, between the

desired output y and the output x predicted by our network. The index i ∈ {1, 2} distinguishes

the primary task (i = 1) from the auxiliary (i = 2) one. The term λ is a hyper-parameter set

to 0.06 to limit the impact of the secondary task on the training parameters. In every epoch,

our algorithm computes the gradient of L for each batch and propagates it to tune our model

parameters through the AdaGrad optimizer.

6.5.1 Sentiment Analysis

In order to add a sentiment label to our dataset, we employed the pre-trained model for

sentiment analysis available on Stanford NLP website1. The algorithm, conceived by Socher

et al. (2013) [41], scans every text content one sentence at the time, assigning to each one

an integer score from 0 to 4, that corresponds to the labels: Very Negative(0), Negative(1),

Neutral(2), Positive(3), Very Positive(4).

The main challenges we faced in this operation were: the massive size of SARC dataset, the

presence of noises and the treatment of lines composed of more than one sentence. To overcome

the first problem, we converted the original csv file into a text file, which is easier to handle,

1https://nlp.stanford.edu/sentiment/

https://nlp.stanford.edu/sentiment/

35

keeping for each line only the sentences to be analyzed (Response comments), their sarcasm

label and their number of line in the dataset (in order to track any possible errors).

The second issue was the most challenging one. As the dataset is very big and retrieved from

a social network like Reddit, it is possible to find in it comments more than 1000 characters

long, and sometimes without any punctuation marks to split the sentences, as well as comments

without any character. For as regards the empty comments, we decided to delete all of them

since their exclusion does not affect the balance in labeling (about 40 comments out of more

than a million is a negligible amount for the results of our study). The long posts, on the

other hand, were threaten differently. Whenever it was possible, we split them into multiple

sentences, labeled each sentence and then taken their mean score as final label.

There were also some sentences without punctuation marks (e.g one, two or three words

repeated hundreds of times or receipts or technical specifications). In the first case we computed

the sentiment score just analyzing the same word repeated only 5 times while, in the second,

we assigned a Neutral (2) score to all the receipts or try to analyze pieces of the whole sentence.

6.5.2 Finding the most performing auxiliary task

In order to increase the effectiveness of the multitasking framework we focused our attention

on the secondary task. We believe that finding the best possible configuration for the auxiliary

task could improve the overall performance of the whole model. We attempted to run all our

networks with 300-dimensional GloVe vectors or FastText embedding on the SARC dataset,

with the same training configuration described in Section 6.2, having the Average F-score as

36

stopping criteria. We decided to choose this metric instead of accuracy to take more into

account those labels who appear less frequently (i.e. Very Negative(0), Very Positive(4)).

After some attempts we figured out that the BiLSTM model with FastText embedding

appeared the best configuration overall. We avoided to evaluate the models with ELMo em-

bedding as our GPU did not have enough memory to handle 2 tasks with ELMo embeddings

in a such huge dataset.

6.5.3 Multitask Training phase

Once all the data has been labeled and the best auxiliary task network has been picked, we

proceeded to the training phase. Also in this case, we ran our models on the smaller training

set and applied the best configuration to the original SARC dataset. The batch size for the

multitasking approach was set to 8 (for both the tasks) to prevent any GPU out-of-memory

errors. The auxiliary task model encodes the input tokens with FastText word representations

and passes them through a single-layer BiLSTM network with hidden dimension size of 100

for each direction, to capture sentiment information about the whole sentence. The output of

the BiLSTM model is sent to a fully connected single-layer MLP with 20 hidden nodes, ReLU

activation and a Dropout rate of 0.2 between the input and the hidden layer. The output,

having size equals to the number of labels (i.e. 5), is modified by a softmax layer to obtain

class probabilities. The class with the highest probability represents the predocted sentiment

label. The main task’s configuration, on the other hand, depends on the model used and has

usually the same parameters described in Chapters 3 and 4.

37

We applied the multitasking approach also to the Sarcasm V2 Corpus and we obtained our

best state-of-the-art performance.

6.6 Experiments on the Crawled Dataset

As we have pointed out in Chapter 2, in the task of sarcasm detection also punctuation,

capital letters and abbreviations take on significant importance. For example, the phrase ”I’m

so happy!” may assume sarcastic connotation if written as ”I’m SO happy.”. The capital ”SO”

and the presence of the full stop in place of the exclamation point may drastically change the

meaning of the sentence. Another example may be ”You’re soooooooo funny”, in which the

prolongation of the word ”so” helps understanding more the purpose of the statement. In

addition, nowadays, even the use of emoticons is widespread and, as demonstrated by Carvalho

et al. (2009) [7] and González-Ibánez et al. (2011) [17], they contain relevant information for

sarcasm detection.

For all these reasons we decided to avoid stemming and lemmatizing. In our preprocessing

phase on our crawled dataset from Twitter, we removed all usernames, links (and the word

”via” that usually precedes them), and considered only the tweets with 5 or more words. The

only exception was represented by Trump’s username which was replaced by the word ”Trump”

itself to preserve the meaning of the sentences.

Once all the data was collected and cleaned, we selected the best model from the previous

experiments in order to make some predictions and comparisons. For this prediction task, we

decided to use the best models found on the SARC dataset. As it was trained on more data,

38

we thought it could be able to capture more information and detect more sarcastic utterances

on different topics than the model trained on the Sarcasm V2 Corpus.

Given that our predictors produce a set of class probabilities as output, we examined our

results considering two threshold values for the sarcastic label, 0.5 and 0.6.

CHAPTER 7

RESULTS

In this section we show and analyze the results obtained for the experiments described

in the previous section, discussing how the features of the multitasking framework affect the

performance of the sarcasm detection task.

7.1 Results on Sarcasm Corpus V2

Oraby et al. (2017) [34] run their experiment using only two types of features: Word2Vec

(W2V) and N-grams. On the rightmost column of Table VI we show their state-of-art results,

obtained with Word2Vec [30] embeddings trained on Google News as features and F-measure

computed on the Sarcastic label.

The results on the table show the mean metrics for every couple of NN Model and Word

Embedding. All the experiment were run with a batch size equal to 16. Given the size of the

dataset, we consider F1-measure as the most significant metric for the evaluation. Also, the

previous state-of-the-art by Oraby et al. (2017) [34] reports only the values of F1, Precision

and Recall. It is important to mention that CNN and CNN-LSTM models have the same

configuration and parameters (i.e. number of convolutions, number of filters, filter sizes, input

dimension) for the convolutional framework. Also the BiLSTM used in the Attention model has

the same configuration applied for the simple BiLSTM network. Whereas, the only difference

39

40

between the BiLSTM and LSTM framework is the output dimension, which is twice the size in

BiLSTM.

We can notice from the results in Table VI that almost all our experiments outperform the

pre-existent state-of-art for the Sarcasm Corpus V2. This outcome demonstrates the effective-

ness of Deep Learning neural network models for the sarcasm detection task. In particular,

we can observe that simple BiLSTM networks obtain good performances with non-contextual

embeddings (GloVe100, FastText), while CNN-LSTM works efficiently with all the kinds of

embeddings, except for the simple FastText. However, FastText embeddings outperform GloVe

embedding when applied to all the other models.

The best performing model in our evaluation is the BiLSTM framework with the Atten-

tion mechanism having as input the concatenation of contextual (ELMo) and non-contextual

(GloVe300) embedding. It consists on a single-layer BiLSTM with an input size of 1324

(1024(ELMo) + 300(GloVe)), an hidden size of 100 cells and a dropout rate of 0.2, which

is scanned twice in opposite directions creating an output of size 200. This output feeds a MLP

with the same features and activation functions described in the Section 6.2 and hidden size h

equal to 20.

41

TABLE VI: RESULTS ON SARCASM V2 CORPUS (WITHOUT MULTITASKING)

Embedding Metrics BiLSTM LSTM CNN Attention CNN-LSTM Oraby et al. (2017)

Acc 0.7321 0.7362 0.7065 0.7536 0.7556

F1 0.7381 0.7259 0.7045 0.7566 0.7598 0.74

Prec 0.7256 0.7536 0.7098 0.7481 0.7458 0.71
GloVe50

Rec 0.7526 0.7035 0.7014 0.7669 0.7751 0.77

Acc 0.7658 0.7515 0.7219 0.7515 0.7515

F1 0.7632 0.7508 0.7201 0.7576 0.7529 0.74

Prec 0.7715 0.7531 0.7254 0.7425 0.7500 0.71
GloVe100

Rec 0.7566 0.7485 0.7198 0.7751 0.7587 0.77

Acc 0.7372 0.7372 0.7168 0.7485 0.7474

F1 0.7236 0.7361 0.7265 0.7426 0.7507 0.74

Prec 0.7619 0.7383 0.7006 0.7647 0.7458 0.71
GloVe300

Rec 0.6912 0.7342 0.7566 0.7260 0.7587 0.77

Acc 0.7791 0.7597 0.7607 0.7638 0.7495

F1 0.7748 0.7620 0.7558 0.7654 0.7430 0.74

Prec 0.7887 0.7556 0.7718 0.7645 0.7615 0.71

FastText

Crawl

Rec 0.7628 0.7689 0.7423 0.7689 0.7301 0.77

Acc 0.7720 0.7740 0.7648 0.7669 0.7781

F1 0.7603 0.7716 0.7646 0.7639 0.7731 0.74

Prec 0.7996 0.7782 0.7662 0.7787 0.7911 0.71
ELMo

Rec 0.7280 0.7689 0.7710 0.7566 0.7566 0.77

Acc 0.7597 0.7607 0.7607 0.7597 0.7740

F1 0.7577 0.7521 0.7604 0.7554 0.7736 0.74

Prec 0.7619 0.7814 0.7641 0.7743 0.7783 0.71

ELMo +

GloVe100

Rec 0.7546 0.7260 0.7587 0.7403 0.7710 0.77

Acc 0.7658 0.7781 0.7669 0.7822 0.7689

F1 0.7667 0.7764 0.7641 0.7844 0.7703 0.74

Prec 0.7659 0.7824 0.7734 0.7765 0.7684 0.71

ELMo +

GloVe300

Rec 0.7689 0.7710 0.7566 0.7935 0.7751 0.77

Acc 0.7720 0.7597 0.7648 0.7791 0.7679

F1 0.7666 0.7574 0.7511 0.7798 0.7749 0.74

Prec 0.7867 0.7639 0.7937 0.7766 0.7527 0.71

ELMo +

FastText

Rec 0.7526 0.7526 0.7219 0.7832 0.7996 0.77

42

7.2 Results on Sarcasm Corpus V2 with Multitasking

Table VII shows the results when applying the multitasking approach to the frameworks

used in the previous experiments. The configuration and the parameters of the models we

evaluated have remained unchanged. We only modified them adding the auxiliary task for

detecting sentiment and setting the batch size of both the tasks to 8, in order to prevent

CUDA-out-of-memory errors.

43

TABLE VII: RESULTS USING MULTITASKING ON SARCASM V2 CORPUS

Embedding Metrics BiLSTM LSTM CNN Attention CNN-LSTM Oraby et al. (2017)

Acc 0.7362 0.7505 0.7219 0.7556 0.7393

F1 0.7416 0.7541 0.7185 0.7636 0.7483 0.74

Prec 0.7272 0.7437 0.7273 0.7398 0.7290 0.71
GloVe50

Rec 0.7566 0.7648 0.7117 0.7894 0.7710 0.77

Acc 0.7546 0.7536 0.7229 0.7413 0.7454

F1 0.7539 0.7549 0.7264 0.7595 0.7445 0.74

Prec 0.7572 0.7518 0.7158 0.7083 0.7492 0.71
GloVe100

Rec 0.7566 0.7587 0.7403 0.8200 0.7423 0.77

Acc 0.7382 0.7607 0.7280 0.7434 0.7485

F1 0.7308 0.7594 0.7206 0.7425 0.7515 0.74

Prec 0.7534 0.7639 0.7411 0.7437 0.7425 0.71
GloVe300

Rec 0.7137 0.7607 0.7014 0.7423 0.7607 0.77

Acc 0.7597 0.7536 0.7444 0.7577 0.7515

F1 0.7581 0.7539 0.7401 0.7602 0.7487 0.74

Prec 0.7630 0.7533 0.7524 0.7530 0.7535 0.71

FastText

Crawl

Rec 0.7566 0.7546 0.7301 0.7689 0.7464 0.77

Acc 0.7679 0.7781 0.7628 0.7781 0.7751

F1 0.7767 0.7895 0.7756 0.7820 0.7787 0.74

Prec 0.7490 0.7511 0.7355 0.7678 0.7636 0.71
ELMo

Rec 0.8078 0.8323 0.8262 0.7975 0.7955 0.77

Acc 0.7556 0.7536 0.7699 0.7587 0.7546

F1 0.7640 0.7533 0.7792 0.7692 0.7582 0.74

Prec 0.7430 0.7523 0.7492 0.7438 0.7475 0.71

ELMo +

GloVe100

Rec 0.7894 0.7566 0.8119 0.7996 0.7710 0.77

Acc 0.7648 0.7771 0.7710 0.7771 0.7618

F1 0.7734 0.7818 0.7803 0.7842 0.7736 0.74

Prec 0.7521 0.7671 0.7495 0.7629 0.7351 0.71

ELMo +

GloVe300

Rec 0.7996 0.7975 0.8139 0.8078 0.8200 0.77

Acc 0.7597 0.7526 0.7638 0.7730 0.7495

F1 0.7588 0.7634 0.7777 0.7843 0.7566 0.74

Prec 0.7598 0.7326 0.7346 0.7517 0.7364 0.71

ELMo +

FastText

Rec 0.7587 0.7996 0.8262 0.8221 0.7791 0.77

44

From these results, we can notice that the multitasking method increases the performances

of the simplest models, such as CNN and LSTM, up to a 2.8% on F-measure but it does not work

well on the CNN-LSTM network. This may be caused by the complexity of the CNN-LSTM

network with respect to the simple BiLSTM structure of the sentiment detection task. Our

framework has also bad performances with FastText, while generally improves the efficiency

of all the other embeddings. The BiLSTM with attention model, on the other hand, does not

noticeably vary in performance, but reaches the highest values for most of the embeddings.

However, the new state-of-the-art model that we developed for Sarcasm V2 Dataset consists

on a primary task with a single-layer LSTM network, having only ELMo contextual embedding

as input (size = 1024), a hidden layer of 100 cells which is passed as input on the MLP network

with an hidden size h equal to 20. Our model outperforms the previous state-of-the-art by

about 5% in all the metrics and highlights the importance of context in the sarcasm detection

task.

7.3 Results on SARC

Table VIII shows the results, expressed in term of accuracy, obtained running our experiment

on SARC dataset with a training set size reduced to 100.000 comments and considering only the

embeddings of high dimensions. We also run our experiments with a version of ELMo (ELMo

5.5B) pre-trained on a dataset of 5.5B tokens from Wikipedia and news crawldata from WMT

2008-2012.

45

TABLE VIII: RESULTS ON SMALL SARC (NO MULTITASKING)

BiLSTM LSTM CNN Attention CNN-LSTM

Glove300 0.70539 0.70493 0.68801 0.70508 0.69627

FastText Crawl 0.71763 0.71322 0.71309 0.72061 0.71357

Elmo 0.72884 0.72717 0.72250 0.73049 0.72026

Elmo 5.5 0.73111 0.73268 0.72482 0.73134 0.72656

Glove 300 Elmo 0.73046 0.73188 0.72626 0.73207 0.72412

Glove 300 Elmo 5.5B 0.73049 0.73201 0.72684 0.73431 0.72689

FastText Elmo 0.73346 0.73355 0.72990 0.73446 0.72721

FastText Elmo 5.5B 0.73383 0.73459 0.73102 0.73503 0.73102

From these results we can notice that the LSTM-based models (LSTM, BiLSTM, BiLSTM

with attention) perform generally better than the CNN-based model (CNN, CNN-LSTM). In

particular, the BiLSTM with Attention model appears to outperform all the other models for

almost every typology of embedding (except for GloVe 300-dimensional vectors and ELMo

5.5B). In addition, the version of ELMo trained on 5.5B tokens gives better results than the

version trained 1 Billion Word Benchmark in all the instances. From the results we can also

observe that the concatenation of FastText embeddings with ELMo 5.5B embedding seems the

most efficient embedding overall.

46

The best model for this experiment is a BiLSTM encoder with 300 cells in its hidden size,

trained with the concatenation of ELMo 5.5b and FastText, that feeds a Multi Layer Perceptron

with an hidden size of 200 neurons.

7.4 Results on SARC with MultiTasking

Table IX shows the outcomes of the same experiment obtained using a Multitasking ap-

proach and a batch size equal to 8.

TABLE IX: RESULTS USING MULTITASKING ON SMALL SARC

BiLSTM LSTM CNN Attention CNN-LSTM

Glove300 0.70543 0.70438 0.68718 0.70552 0.69476

FastText Crawl 0.71935 0.72061 0.71133 0.71851 0.71481

Elmo 0.72829 0.73130 0.72483 0.73161 0.72318

Elmo 5.5 0.72908 0.73301 0.72632 0.73196 0.72593

Glove 300 Elmo 0.73001 0.73177 0.72502 0.73025 0.72308

Glove 300 Elmo 5.5 0.73137 0.73046 0.72561 0.72998 0.72563

FastText Elmo 0.73471 0.73352 0.73105 0.73256 0.72641

FastText Elmo 5.5 0.73583 0.73580 0.73167 0.73575 0.72833

We can observe that in this experiment LSTM and BiLSTM still achieve good performances

with the concatenation of contextual and non-contextual embeddings. In addition, also in these

47

instances the ELMo version trained on 5.5B tokens is slightly more efficient than the other one.

In every single model, the concatenation of ELMo 5.5B with FastText outperforms all the other

embeddings combinations from 1% to 3% in accuracy.

As in the Sarcasm V2 Corpus, also for this dataset the CNN-LSTM model does not improve

its performances with the multitasking approach. We can notice that the Multitasking frame-

work has slightly better results than the basic framework for most of the FastText embeddings,

the ELMo embeddings and their concatenation.

Also for this dataset, the best performing model overall is obtained using the Multitasking

approach. Our best model main task consists on a BiLSTM encoder, trained with ELMo 5.5B

and FastText, with 300 cells in its hidden layer, that feeds a MLP with an hidden size equal to

200. The auxiliary task uses a BiLSTM as well, trained with FastText embeddings, with 100

hidden cells and a MLP with 20 neurons in its hidden layer We kept this configuration, ran the

same experiment on the whole SARC dataset and examined its performance with respect to

other SARC’s baseline models.

7.5 Comparison with Baseline methods on SARC

We compared our best model with almost the same state-of-the-art networks and baselines

examinated by Hazarika et al. (2018) [18] on the Main Balanced version of the SARC dataset :

• Bag-of-words: a model that uses an SVM classifier having comment’s word counts as

input features.

• CNN: a simple CNN that can only model the content of a comment.

48

• CNN-SVM: model developed by Poria et al. (2016) [37] that exploits a CNN to model the

content of the comments and other pre-trained CNNs to extract from them sentiment,

emotion and personality features. All these features are joined and passed to an SVM to

perform classification.

• CUE-CNN: method proposed by Amir et al. (2016) [1] that also models user embeddings

combined with a CNN thus forming the CUE-CNN model.

• Bag-of-Bigrams: previous state-of-the-art model for this dataset, by Khodak et al. (2017)

[23], that uses the count of bigrams in a document as vector features.

• CASCADE (ContextuAl SarCAsm DEtector): method proposed by Hazarika et al. (2018)

[18] that uses user embeddings to model user personality and stylometric features, and

combines them with a CNN to extract content features. We propose the results from both

the versions, with and without personality features, in order to emphasize the efficiency

of our model even though it does not employ any user personality feature.

49

TABLE X: COMPARISON WITH THE BASELINES OF MAIN BALANCED SARC

Models Accuracy F1

Bag-of-words 0.63 0.64

CNN 0.65 0.66

CNN-SVM [37] 0.68 0.68

CUE-CNN [1] 0.70 0.69

Bag-of-Bigrams[23] 0.758 N/A

CASCADE [18](no personality features) 0.68 0.66

CASCADE [18] 0.77 0.77

Our MultiTask BiLSTM 0.764 0.763

It can be observed that our model exceeds the previous state-of-the-art by Khodak et al.

(2017) [23] by 0.6% and ouperforms all the other models that do not use personality features

(Bag-of-words, CNN, CASCADE) by 6-8%, even the CNN-SVM and the CUE-CNN that model

user embeddings. Its accuracy is only 0.6% lower than the current state-of-the-art (CASCADE

with personality features). We believe that upgrading our framework with structures like user

embeddings, to take into account personality features or other contextual information, could

outperform the actual state-of-the-art.

7.6 Best Model Prediction

We used the previously described model also to predict the tweets in our crawled dataset.

The results are shown in Table XI and Table XII.

50

TABLE XI: SARC BEST MODEL PREDICTIONS WITH 0.5 THRESHOLD

Threshold = 0.5

CHI PHI SF

Abortion 38.27 38.38 39.27

Creation 30.48 27.69 28.83

Health 39.17 39.68 39.31

Homophobia 46.92 48.26 43.41

Obama 37.73 39.85 39.36

Racism 49.25 50.71 49.95

Terrorism 44.47 43.42 44.26

Trump 30.99 31.77 33.19

TABLE XII: SARC BEST MODEL PREDICTIONS WITH 0.6 THRESHOLD

Threshold=0.6

CHI PHI SF

Abortion 28.96 29.03 30.51

Creation 22.56 20.22 19.90

Health 30.12 30.32 30.11

Homophobia 35.52 37.00 32.72

Obama 27.41 29.38 29.38

Racism 39.77 41.01 40.73

Terrorism 34.35 33.30 34.78

Trump 21.9 22.35 24.14

51

We can notice that increasing the threshold value of the sarcastic label class probability

from 0.5 to 0.6 causes a loss of 10% of sarcastic sentences detected. In this way, phrases

like: ”FOX News and Donald Trump, all lies, all the time.” which were predicted as sarcastic,

probably because of their noticeable criticism, are not considered and the statistics become

more accurate. From these results, Philadelphia appears to be the most sarcastic city of the

ones we chose.

Taking into account the single topics we can notice that Homophobia and Racism are the

most sarcastic arguments in tweets. Going manually through the classified sentences we noticed

that for those topics, the number of false positives is relevant. For example, the sentence: ”It

was only a matter of time before white gay privilege became the problem” is classified as sarcastic

with a class probability of 90% by our classifier. This mistake is probably due to the fact that

the word ”gay” is commonly used to convey contempt and thus perceived as an highly sarcastic

expression. The same consideration can be done regarding Racism. In fact, the tweet ”You

are a racist dog. Your words are empty as your brain is” is recognized as sarcastic with the

70% of class probability but it appears to be just a taunt, with no sarcastic meaning. Probably

the fact that the SARC dataset does not treat deeply the themes of homophobia and racism

could increase the classification errors in this task. In fact, for topics related to the politics

(i.e. Trump, Obama), which are more featured in SARC, the percentage of sarcastic statements

looks more realistic and we did not notice any relevant recurrent mistake in the predictions.

52

7.6.1 Comparisons with Reality

From the results we obtained on the model trained on the SARC dataset, we can notice

some patterns which are coherent with the reality.

For example, from the results, Chicago appears to be 2% less sarcastic than the other

cities on Obama topic. This instance may find an explanation in the reality: as Obama lived

in Chicago, it is highly possible that the inhabitants of Chicago are very fond and thus, less

sarcastic towards him.

In addition, our statistics support some evidence that could be confirmed by the results of

the last elections: San Francisco’s sarcastic rate on Trump is about 2% higher (700 tweets)

than the other cities. We can also see, from a more extended point of view, that Philadelphia

appears to be the most sarcastic city in the US, which could be an index to represent the

criticism and the pessimistic view of the East Coast cities. However, given the amount of false

positive encountered, in particular for topics like Terrorism or Homophobia, this assumption

should not be considered axiomatic.

CHAPTER 8

CONCLUSION AND FUTURE WORK

Sarcasm is a complex phenomenon which is hard to understand even to humans. In our

work we showed the efficiency of using neural network with Word Embeddings to predict it

accurately.

We demonstrated how sarcastic statements can be recognized automatically with a good

accuracy even without recurring to further contextual information such as users’ historical

comments or parent comments. We explored a new multitasking framework to exploit the

correlation between sarcasm and the sentiment it conveys. Except for few peculiar instances

(e.g. CNN-LSTM network), the addition of a new sentiment detection task to our configuration

improved moderately the effectiveness of our models. However, we strongly believe that further

upgrades could be done focusing more on the sentiment detection task. In fact, the Stanford

model we used is not able to predict accurately some statements. For example, the sentence ”I

love being ignored” is wrongly predicted as Positive.

We also think that further studies in considering also the parent comments in our approach

could obtain greater results. However, we obtained state-of-the-art performances on the Sar-

casm V2 Corpus and our Multitask BiLSTM model outperforms all the previous baselines that

do not exploit user embeddings for the SARC dataset. Additionally, most of the prediction on

tweets are coherent with reality, confirming the efficiency of our model.

53

54

We believe that our models could be used as baselines for new researches and we expect

that enhancing them with contextual data, such as user embeddings, new state-of-the-art per-

formances can be reached.

CITED LITERATURE

1. Silvio Amir, Byron C Wallace, Hao Lyu, and Paula Carvalho Mário J Silva. Modelling
context with user embeddings for sarcasm detection in social media. arXiv preprint
arXiv:1607.00976, 2016.

2. David Bamman and Noah A Smith. Contextualized sarcasm detection on twitter. In Ninth
International AAAI Conference on Web and Social Media, 2015.

3. Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. Enriching word
vectors with subword information. Transactions of the Association for Computa-
tional Linguistics, 5:135–146, 2017.

4. John S Bridle. Probabilistic interpretation of feedforward classification network outputs,
with relationships to statistical pattern recognition. In Neurocomputing, pages 227–
236. Springer, 1990.

5. Jason Brownlee. Cnn long short-term memory networks. https://

machinelearningmastery.com/cnn-long-short-term-memory-networks/,
2017. [Online; Accessed 22/07/2019].

6. Rich Caruana. Multitask learning. Machine learning, 28(1):41–75, 1997.

7. Paula Carvalho, Lúıs Sarmento, Mário J Silva, and Eugénio De Oliveira. Clues for detecting
irony in user-generated contents: oh...!! it’s so easy;-. In Proceedings of the 1st
international CIKM workshop on Topic-sentiment analysis for mass opinion, pages
53–56. ACM, 2009.

8. Xinchi Chen, Zhan Shi, Xipeng Qiu, and Xuanjing Huang. Adversarial multi-criteria learn-
ing for chinese word segmentation. arXiv preprint arXiv:1704.07556, 2017.

9. Arman Cohan, Waleed Ammar, Madeleine van Zuylen, and Field Cady. Structural scaffolds
for citation intent classification in scientific publications. In NAACL-HLT, 2019.

10. Dmitry Davidov, Oren Tsur, and Ari Rappoport. Semi-supervised recognition of sarcastic
sentences in twitter and amazon. In Proceedings of the fourteenth conference on

55

https://machinelearningmastery.com/cnn-long-short-term-memory-networks/
https://machinelearningmastery.com/cnn-long-short-term-memory-networks/

56

CITED LITERATURE (continued)

computational natural language learning, pages 107–116. Association for Computa-
tional Linguistics, 2010.

11. John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for on-
line learning and stochastic optimization. Journal of Machine Learning Research,
12(Jul):2121–2159, 2011.

12. Matt Gardner, Joel Grus, Mark Neumann, Oyvind Tafjord, Pradeep Dasigi, Nelson Liu,
Matthew Peters, Michael Schmitz, and Luke Zettlemoyer. Allennlp: A deep seman-
tic natural language processing platform. arXiv preprint arXiv:1803.07640, 2018.

13. Aniruddha Ghosh and Tony Veale. Fracking sarcasm using neural network. In Proceedings
of the 7th workshop on computational approaches to subjectivity, sentiment and
social media analysis, pages 161–169, 2016.

14. Aniruddha Ghosh and Tony Veale. Magnets for sarcasm: Making sarcasm detection timely,
contextual and very personal. In Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, pages 482–491, 2017.

15. Raymond W Gibbs. On the psycholinguistics of sarcasm. Journal of Experimental Psy-
chology: General, 115(1):3, 1986.

16. Raymond W Gibbs Jr, Raymond W Gibbs, and Herbert L Colston. Irony in language and
thought: A cognitive science reader. Psychology Press, 2007.

17. Roberto González-Ibánez, Smaranda Muresan, and Nina Wacholder. Identifying sarcasm
in twitter: a closer look. In Proceedings of the 49th Annual Meeting of the Associa-
tion for Computational Linguistics: Human Language Technologies: Short Papers-
Volume 2, pages 581–586. Association for Computational Linguistics, 2011.

18. Devamanyu Hazarika, Soujanya Poria, Sruthi Gorantla, Erik Cambria, Roger Zimmermann,
and Rada Mihalcea. Cascade: Contextual sarcasm detection in online discussion
forums. arXiv preprint arXiv:1805.06413, 2018.

19. Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation,
9(8):1735–1780, 1997.

20. Aditya Joshi, Vinita Sharma, and Pushpak Bhattacharyya. Harnessing context incongruity
for sarcasm detection. In Proceedings of the 53rd Annual Meeting of the Associa-

57

CITED LITERATURE (continued)

tion for Computational Linguistics and the 7th International Joint Conference on
Natural Language Processing (Volume 2: Short Papers), pages 757–762, 2015.

21. Aditya Joshi, Vaibhav Tripathi, Kevin Patel, Pushpak Bhattacharyya, and Mark Carman.
Are word embedding-based features useful for sarcasm detection? arXiv preprint
arXiv:1610.00883, 2016.

22. Anupam Khattri, Aditya Joshi, Pushpak Bhattacharyya, and Mark Carman. Your sen-
timent precedes you: Using an authors historical tweets to predict sarcasm. In
Proceedings of the 6th workshop on computational approaches to subjectivity, senti-
ment and social media analysis, pages 25–30, 2015.

23. Mikhail Khodak, Nikunj Saunshi, and Kiran Vodrahalli. A large self-annotated corpus for
sarcasm. CoRR, abs/1704.05579, 2017.

24. Roger J Kreuz and Gina M Caucci. Lexical influences on the perception of sarcasm. In
Proceedings of the Workshop on computational approaches to Figurative Language,
pages 1–4. Association for Computational Linguistics, 2007.

25. Roger J Kreuz and Sam Glucksberg. How to be sarcastic: The echoic reminder theory of
verbal irony. Journal of experimental psychology: General, 118(4):374, 1989.

26. Christine Liebrecht, Florian Kunneman, and Antal van den Bosch. The perfect solution
for detecting sarcasm in tweets #not. In Proceedings of the 4th Workshop on Com-
putational Approaches to Subjectivity, Sentiment and Social Media Analysis, pages
29–37, Atlanta, Georgia, June 2013. Association for Computational Linguistics.

27. Pengfei Liu, Xipeng Qiu, and Xuanjing Huang. Adversarial multi-task learning for text
classification. arXiv preprint arXiv:1704.05742, 2017.

28. Stephanie Lukin and Marilyn Walker. Really? well. apparently bootstrapping improves the
performance of sarcasm and nastiness classifiers for online dialogue. arXiv preprint
arXiv:1708.08572, 2017.

29. Navonil Majumder, Soujanya Poria, Haiyun Peng, Niyati Chhaya, Erik Cambria, and
Alexander F. Gelbukh. Sentiment and sarcasm classification with multitask learn-
ing. CoRR, abs/1901.08014, 2019.

30. Tomas Mikolov, Kai Chen, Greg S. Corrado, and Jeffrey Dean. Efficient estimation of word
representations in vector space, 2013.

58

CITED LITERATURE (continued)

31. Abhijit Mishra, Diptesh Kanojia, and Pushpak Bhattacharyya. Predicting readers’ sarcasm
understandability by modeling gaze behavior. In Thirtieth AAAI conference on
artificial intelligence, 2016.

32. Douglas Colin Muecke. Irony and the Ironic. Routledge, 2017.

33. Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann
machines. In Proceedings of the 27th international conference on machine learning
(ICML-10), pages 807–814, 2010.

34. Shereen Oraby, Vrindavan Harrison, Lena Reed, Ernesto Hernandez, Ellen Riloff, and Mar-
ilyn Walker. Creating and characterizing a diverse corpus of sarcasm in dialogue.
arXiv preprint arXiv:1709.05404, 2017.

35. Jeffrey Pennington, Richard Socher, and Christopher Manning. Glove: Global vectors for
word representation. In Proceedings of the 2014 conference on empirical methods in
natural language processing (EMNLP), pages 1532–1543, 2014.

36. Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Ken-
ton Lee, and Luke Zettlemoyer. Deep contextualized word representations. CoRR,
abs/1802.05365, 2018.

37. Soujanya Poria, Erik Cambria, Devamanyu Hazarika, and Prateek Vij. A deeper look
into sarcastic tweets using deep convolutional neural networks. arXiv preprint
arXiv:1610.08815, 2016.

38. Tomáš Ptáček, Ivan Habernal, and Jun Hong. Sarcasm detection on czech and english
twitter. In Proceedings of COLING 2014, the 25th International Conference on
Computational Linguistics: Technical Papers, pages 213–223, 2014.

39. Ashwin Rajadesingan, Reza Zafarani, and Huan Liu. Sarcasm detection on twitter: A
behavioral modeling approach. In Proceedings of the Eighth ACM International
Conference on Web Search and Data Mining, pages 97–106. ACM, 2015.

40. Ellen Riloff, Ashequl Qadir, Prafulla Surve, Lalindra De Silva, Nathan Gilbert, and Ruihong
Huang. Sarcasm as contrast between a positive sentiment and negative situation.
In Proceedings of the 2013 Conference on Empirical Methods in Natural Language
Processing, pages 704–714, 2013.

59

CITED LITERATURE (continued)

41. Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew
Ng, and Christopher Potts. Recursive deep models for semantic compositionality
over a sentiment treebank. In Proceedings of the 2013 conference on empirical
methods in natural language processing, pages 1631–1642, 2013.

42. Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhut-
dinov. Dropout: a simple way to prevent neural networks from overfitting. The
journal of machine learning research, 15(1):1929–1958, 2014.

43. Frank Stringfellow Jr. Meaning of Irony, The: A Psychoanalytic Investigation. SUNY
Press, 1994.

44. Yi Tay, Luu Anh Tuan, Siu Cheung Hui, and Jian Su. Reasoning with sarcasm by reading
in-between. arXiv preprint arXiv:1805.02856, 2018.

45. Joseph Tepperman, David Traum, and Shrikanth Narayanan. ” yeah right”: Sarcasm
recognition for spoken dialogue systems. In Ninth International Conference on
Spoken Language Processing, 2006.

46. Oren Tsur, Dmitry Davidov, and Ari Rappoport. Icwsma great catchy name: Semi-
supervised recognition of sarcastic sentences in online product reviews. In Fourth
International AAAI Conference on Weblogs and Social Media, 2010.

47. Akira Utsumi. Verbal irony as implicit display of ironic environment: Distinguishing ironic
utterances from nonirony. Journal of Pragmatics, 32(12):1777–1806, 2000.

48. Byron C Wallace, Laura Kertz, Eugene Charniak, et al. Humans require context to infer
ironic intent (so computers probably do, too). In Proceedings of the 52nd Annual
Meeting of the Association for Computational Linguistics (Volume 2: Short Papers),
pages 512–516, 2014.

49. Meishan Zhang, Yue Zhang, and Guohong Fu. Tweet sarcasm detection using deep neural
network. In Proceedings of COLING 2016, The 26th International Conference on
Computational Linguistics: Technical Papers, pages 2449–2460, 2016.

50. Ye Zhang and Byron C. Wallace. A sensitivity analysis of (and practitioners’ guide to)
convolutional neural networks for sentence classification. CoRR, abs/1510.03820,
2015.

VITA

NAME Edoardo Savini

EDUCATION Master’s Degree in Computer Engineering, Politecnico di Torino, Oc-
tober 2019, Italy

Master of Science in Computer Science, University of Illinois at
Chicago, December 2019, USA

Bachelor’s Degree in Computer Engineering, Politecnico di Torino, July
2017, Italy

LANGUAGE SKILLS

Italian Native speaker

English Full working proficiency

2014 - Cambridge First Certificate in English (C)

2017 – IELTS examination (6.5)

A.Y. 2018/2019 One year of study abroad in Chicago, Illinois, USA

A.Y. 2017/2018 Lessons and exams attended exclusively in English at
the Politecnico di Torino, Italy

Spanish Proficient

2016/17 Six months of study abroad in Madrid, Spain

SCHOLARSHIPS

Fall 2018 Italian scholarship for students of the TOP-UIC project

2014-2017 Italian scholarship for Young Talents project

WORK EXPERIENCE

1/19 – 5/9 Research Assistant in Deep Learning, University of Illinois at Chicago,
Chicago, Illinois, USA

Performed researches for this thesis and with the perspective of a future
publication on Sarcasm Detection using Deep Learning

60

	to1 Introduction
	to2 Related Work
	 Content Feature-Based Analyses
	 Context-based models
	 Deep Learning for Sarcasm Detection
	 Multitasking

	to3 Neural Network Models
	 LSTM
	 BiLSTM
	 BiLSTM+Attention
	 CNN
	 CNN+LSTM

	to4 Word Embeddings
	 GloVe
	 FastText
	 ELMo
	 Concatenation of ELMo with non-contextual embedding

	to5 Data
	 Sarcasm V2 Corpus
	 SARC
	 Crawled Dataset

	to6 Experiments
	 Base Model
	 Implementation
	 Experiments on Sarcasm V2 Corpus
	 Experiments on Validation Set
	 LSTM
	 BiLSTM
	 CNN
	 Analysis on the Validation Set

	 Evaluation on the Test set

	 SARC analysis
	 SARC Training

	 Multi-Tasking Approach
	 Sentiment Analysis
	 Finding the most performing auxiliary task
	 Multitask Training phase

	 Experiments on the Crawled Dataset

	to7 Results
	 Results on Sarcasm Corpus V2
	 Results on Sarcasm Corpus V2 with Multitasking
	 Results on SARC
	 Results on SARC with MultiTasking
	 Comparison with Baseline methods on SARC
	 Best Model Prediction
	 Comparisons with Reality

	to8 Conclusion and Future Work
	to CITED LITERATURE
	to VITA

