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SUMMARY

The thesis presents one feature-based stitching system for high-quality stereoscopic panoramic video

generation. Although panorama stitching is a well-studied topic, and various algorithms and software

are available to create high-quality monocular panoramas, generalizing those methods for both stereo

and video modes is not an easy task. One satisfying output of the stitching system needs to meet several

requirements in different senses. For every single frame, the output monocular-view panorama should

have minimal spatial stitching errors or distortion. For every pair of output stereoscopic panorama,

no vertical disparity can be perceived, and the horizontal disparity should be appropriately distributed

across the scenario. For the output video, discontinuities, such as shakiness or abrupt changes of depth

between consecutive frames, are not desired.

The main contribution of our work consists of the definition of depth-constrained feature in stitch-

ing framework, the introduction of human-visual interest to control point refinement, and the post-

stitching correction of the artifact and depth anomaly. First, the stitching, based on the proposed depth-

constrained feature, can ensure fewer visible artifacts in the generated monocular panorama and better

stereo consistency between the left and right views. Furthermore, we utilize human visual sensitivity to

refine and qualify the input control points and tracking results of the Kanade-Lucas-Tomasi tracker in

the video sequences. Finally, the pixel-based monocular geometric correction and feature-based depth

control enable us to minimize all the visible stitching errors and adjust the perceived depth from the

stereoscopic panoramic video into one reasonable range.
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CHAPTER 1

INTRODUCTION

The content of this chapter is based on our works that are published in [1–3]. c©2017 IEEE.

Reprinted with permission, from [1]. c©2018 IEEE. Reprinted with permission, from [2]. c©2019 IEEE.

Reprinted with permission, from [3].

1.1 Goal Description and Motivation

The increasing interest in virtual reality (VR) has heightened the need for high-quality VR video

content using real-world data. Although panorama stitching is a well-studied topic, and various al-

gorithms and software are available to create high-quality monocular panoramas, generalizing those

methods for both stereo and video modes is not an easy task. Some early studies about the monocular

panorama stitching, such as the original spinning PSI system, fail to extend to stereo or video case since

they don’t take stereo and video into account. Some newer algorithms suffer from expensive compu-

tation for densely sampled data or high-accuracy depth information [4]. Some omnistereo projection-

based algorithms [5] utilize view interpolation techniques to synthesize each column from real captured

image views. But all these methods heavily depend on the high-quality, dense depth maps, which is still

not easy to generate [6], especially for high-resolution images. Base on the literature review we make,

there are no efficient sparse feature-based stereoscopic panoramic video generation systems. Thus, in

this thesis, we intend to construct a unified stitching framework that operates feature-based 360 by 180

stereoscopic panoramic video panorama stitching tasks with low computational costs.

1
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To construct a stitching system for stereoscopic panoramic video, we assume that a good output

video has the following properties. First, the single-frame panorama should have minimal spatial stitch-

ing errors or distortion. Second, the stereoscopic panorama should be consistently stitched so that no

vertical disparities can be detected, and the perceived depths of all objects should be properly distributed.

In an excellent panoramic video, discontinuities, such as shakiness or abrupt changes of depth between

consecutive frames, are not desired. In summary, we face four challenges with the stitching framework:

1. good monocular view panorama stitching quality

2. stereo consistency between binocular views

3. reasonable depth carried with the stitched video

4. temporal consistency between consecutive frames

To solve these problems, we formulate a framework for the stereoscopic panoramic video generation,

based on commonly identified features, such that the monocular stitching quality, stereo consistency,

and temporal consistency can be achieved simultaneously. The commonly identified feature (CIF) is

one designed feature structure to describe the points, edges, and areas that can be observed and precisely

described by multiple camera views in the stereoscopic camera arrangement. Since this feature structure

characterizes the same content from different view perspectives, the corresponding depth information

can be easily obtained based on the triangulation and known baselines between stereo camera pairs.

Thus, compared to independently detected features, the operation of control points matching between

CIF can benefit from the incorporated depth term and get more reliable corresponding results.
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Given the initially detected CIF set from input images, we conduct one feature refinement before

sending them into the feature tracker in the video sequence. To construct one reasonable and efficient

stitching system, we employ human visual sensitivity to eliminate the redundant control points and

adjust the distribution of sampled control points. The proposed energy map combines depth maps,

gradient maps, and saliency maps to indicate the visual importance of each pixel. According to the

generated energy map, we redistribute all selected commonly identified grid-wise features to shrink the

size of control point lists and to fit the sampled control points in tune to human visual perception.

Because video stitching largely relies on temporal coherence of selected control points, we utilize

commonly identified features in successive frames to achieve well-stitched content in the video genera-

tion task. The temporal consistency between consecutive frames can be interpreted as consistencies in

geometry, vertical, and horizontal disparities. For more detail, the geometric consistency indicates the

shape, size, and relative location of objects that should remain identical between the prior and consecu-

tive frames. The temporal consistency in vertical and horizontal directions guarantees there will be no

abrupt changes in the perceived depth from the same object. We employ human visual sensitivities to

generate a grid- and saliency-based energy map to indicate the visual importance of pixels. Then, the

global temporal feature-tracking can be decomposed into several grid-based local tracking tasks accord-

ing to changes in pixel energy. To further improve the accuracy of commonly identified features, we

extend the underlying assumption of small-displacement into the depth domain, removing the falsely

tracked control points. Moreover, to compensate removed CIF, we detect and construct new features

that have the minimal L2 norm distance to the position of CIF in the previous frame.
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During the image alignment step, the standard operation in the conventional framework is to uti-

lize random-sample consensus (RANSAC) for homography estimation for the left-view and right-view

independently. However, the random draw from the control point pool at left-view and right-view re-

spectively won’t guarantee the consistency of the fitted homography. Thus, we modified the original

random-sample consensus (RANSAC)-based homography estimation algorithm so that it can work for

the stereo camera pose estimation.

After the final composition of the stereoscopic panorama, we can always find some artifacts in the

overlapping region, especially near the blending seams. Those stitching errors, such as object cropping,

straight-line discontinues, and region distortion, are not expected according to the first challenge we

stated above. Thus, to mitigate all these undesirable viewing experiences, we propose one flow-map-

guided correction framework to solve those problems. Since there is no ground truth in the monocular

stitching task, the correct reference we can utilize to make the artifact correction should come from the

input images. In our proposed correction technique, we intend to fix all the visible stitching errors in

the output panorama via ROI reconstruction from the corresponding artifact-free area from the input

images.

After the artifact correction in the monocular sense output panorama, we still need to take care of

possible depth issues carried with the independently corrected panoramas. Considering the depth from

the input image pairs as the ground truth, we intend to adjust the left-view and right-view panorama

globally and locally to provide a more accurate depth distribution. The global depth adjustment aims to

align the output left-view and right-view panorama via pure translation. Subsequently, the majority of

the pixels in the output panorama are expected to have no vertical disparity and minimal horizontal error
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distance. Then, for those regions that still suffer from depth issues, we select one of the two monocular-

view panoramas as the reference and then warp another monocular view via Thin-plate-spline (TPS) to

achieve depth correctness in the local region.

The main contribution of our work consists of a unified framework that facilitates the generation

of high-quality stitched stereoscopic panoramic videos and the introduction of human-visual interest to

control point selection and refinement in the 360 by 180 stereoscopic panorama composition. First,

the stitching, based on commonly identified features, can ensure fewer visible artifacts in the gen-

erated monocular panorama and better stereo consistency between the left and right views. Further-

more, we utilize human visual sensitivity to refine and qualify the tracking results of the Kanade-Lucas-

Tomasi (KLT) tracker for more reliably matched control points. Then, we extend the original monocular

RANSAC-based algorithm to the stereo sense for the more consistent camera poses. Finally, the pixel-

based monocular geometrical correction and feature-based depth control enable us to minimize all the

visible stitching errors and adjust the perceived depth from the stereoscopic panoramic video into one

reasonable range. To validate the stitching feasibility under various camera arrangements and robustness

to different scenes, we conduct extensive panorama stitching experiments with various camera-based

images and synthetic data from simulation software.

1.2 Proposed Framework

Figure 1 shows the pipeline of the standard framework used by PanoTools [7], and Figure 2 shows

our proposed generation system. In the following of this chapter, we walk through our proposed frame-

work step by step.
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Figure 1. Pipeline of standard framework

Figure 2. Pipeline of proposed framework

1.2.1 Depth-constrained Feature Detection and Matching

In the first step of panorama stitching, we detected standard SIFT features from all the input images

independently. Instead of directly considering them as control points for matching, we divide them into

two groups: commonly identified feature (CIF) and partially occluded feature (POF). The commonly

identified feature refers to those patches that can be observed by all the input images, while a partially

occluded feature indicates the absence of at least one input image. Based on the grouping result, we

carefully select commonly identified features as control points and operate corresponding matching

in the first frame. Since the CIF contains multiple standard features, the depth information carried

with these standard features is taken into consideration in the proposed matching function to improve



7

the matching reliability. The nonvertical disparity term and horizontal disparity consistency term in

our proposed matching function make it more robust than the standard two-dimensional (2D) features

matching based on the gradient.

1.2.2 Saliency-based Feature Selection

After we obtain the generated CIF set for stereoscopic panorama stitching at the first frame, we

operate one feature selection process to prune the original control point list for later feature tracking

steps. Instead of sending all detected features to the video feature tracker directly, we only choose parts

of original commonly identified features that can guarantee efficient feature tracking, distributed across

the camera views. Thus, we incorporate saliency and gradient maps to construct one energy map, which

indicates the pixel sampling weight distribution. Then, we divide the camera image into multiple grids

and select the best-matched commonly identified features of each grid. The proposed energy map will

determine the maximal sample number in each grid. In this way, we could improve the feature tracking

efficiency and avoid the potential artifacts caused by the imbalance distribution of control points in

different depth planes.

1.2.3 Depth-constrained Feature Tracking

Given the refined control points in the first frame, the next step is about tracking their positions

in the video sequence. During this step, we introduce one energy-based and grid-based feature update

strategy to replace the original global update. This proposed feature update strategy focuses on the

change of energy in each grid between consecutive frames. Hence, only those regions with significant

energy changes require feature updates; other areas can retain the same control points inherited from

the previous frame. Moreover, to improve the reliability of control point tracking and to avoid drift
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problems, we extend a small displacement assumption of the KLT tracking algorithm into the 3D case

and propose two filtering conditions to qualify valid CIF. After the strict qualification of the tracking

results, we need to fill those rejected positions in the control point list for the current frame. To attain

the spatial coherence in the video sequence, we intend to select new feature descriptors that have the

least distance with retrieved position parameters from the old features at previous frames.

1.2.4 Stereo-constrained Image Alignment

The next step in our proposed framework is image alignment and blending. During this step, we

extend the original RANSAC-based homography estimation algorithm into the stereo sense. Instead of

randomly selecting subsets of ther standard feature list and operating homography estimation for the left

and right views independently, we only choose CIF from the control point list and introduce similarity

penalty terms to fit consistency between left-view and right-view perspective transformation matrices.

With known camera poses, we use EnBlend [8] as the blender to compose the final output panoramas

from multiple camera views.

1.2.5 Post-stitching Flow-Map-Guided Panorama Correction

Usually, the standard panorama stitching framework ends up the image alignment and blending step.

However, the previous feature-based technique cannot eliminate all the visual artifacts in the finally

composited panorama. Those stitching errors, such as object cropping, straight-line discontinuities, and

region distortion, will cause viewing discomfort. To correct those visible errors in the output panorama,

we establish one dense and pixel-wise correspondence between the erroneous region of interest (ROI)

and artifact-free ROI from the input image. By adjusting the pixel-wise position movement between

target coordinate and reference coordinate, we expect to warp that artifact-free area into the correspond-
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ing region in the output panorama. After the removal of original pixel position displacement values

around ROI, we assign these neighboring pixels with smoother position displacement values. Under

the guidance of pixel-wise updated position displacement maps, we can reconstruct the erroneous target

ROI from the reference ROI and avoid the generation of visible stitching errors.

1.2.6 Post-stitching Feature-based Depth Adjustment

The post-stitching flow-map-guided panorama correction is designed to deal with the monocular-

view stitching problems, but viewing experience of the stereoscopic panorama also heavily relies on the

stereo consistency between left-view and right-view panorama. After we apply our proposed artifact

correction technique to fix all the visible stitching in the original monocular view panorama, one sparse

feature-based method is used to ensure the depth accuracy of output stereoscopic panorama globally and

locally. The depth information obtained from input-rectified image pairs is considered ground truth in

this depth adjustment. For global depth correction, we fix the reference panorama and globally shift the

target panorama until the minimal sum of absolute differences in both vertical and horizontal directions

is achieved. In the local depth correction, we manually label those regions that still suffering from depth

issues after global correction. Then we adopt the thin-plate-spline morphing (TPS) method to warp all

the pixels in the ROI to their expected positions with more reasonable disparity values.

1.3 Thesis organization

The rest of the thesis is organized as follows.

In Chapter 2, we present the definition of depth-constrained and adapted matching operation for the

CIF construction for the first frame.
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In Chapter 3, we present the feature selection and redistribution of control points according to the

human visual interest.

In Chapter 4, we present the depth-constrained CIF tracking strategy and blending strategy in the

video sequence.

In Chapter 5, we present the original RANSAC-based homography estimation and our proposed

stereo-constrained image alignment.

In Chapter 6, we present all the details of the experiment and simulation setup.

In Chapter 7, we present the flow map guided artifact correction to the monocular panorama.

In Chapter 8, we present the feature-based depth adjustment to the stereoscopic panorama.

In Chapter 9, we summarize our works and contributions stated in the thesis.



CHAPTER 2

COMMONLY IDENTIFIED FEATURE CONSTRUCTION AND MATCHING

The content of this chapter is based on our work that is published in [1] . c©2017 IEEE. Reprinted

with permission, from [1].

2.1 Background and Related Works

Panorama stitching is a well-studied topic, and various algorithms and software are available for

users to create high-quality monocular panorama [9]. The increasing interest in the field of virtual real-

ity has heightened the need for high-quality VR content based on real-world data. However, the gener-

alization from monocular panorama approaches to the stereo case by independently creating binocular

view panorama is problematic. The inconsistency in the same objects in the left-view and right-view

scenes may cause viewing discomfort and 3D fatigue to viewers and incorrectly delivered depth.

Several reliable stereoscopic image stitching methods have been proposed to deal with the stitching

task in stereo mode [4, 5, 10–12]. Unfortunately, these approaches require densely sampled depth in-

formation, which requires expensive computation and may result in inaccurate estimation of the depth.

Peleg et al. proposed the setup of a single camera that rotates in a circular trajectory for stereoscopic

panorama stitching [11]. Couture et al. introduced a system based on a pair of rotating cameras and

stitching complete frames instead of small strips [13, 14]. Because these old rotating systems can only

work for static scenes, synchronized multi-camera arrays were proposed. Couture proposed a system

containing six cameras with fish-eye lenses [15]. The Google Jump system used 16 static cameras

11
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arrayed along a circle and interpolated hundreds of virtual views for stitching [5]. However, most of

these extensions of the idea by Peleg lack the necessary procedure to handle the increasing distortions

at the top and bottom of the camera array, which means that it is quite difficult to generalize them to the

360◦x180◦ case.

Richardt et al. [12] proposed an optical flow-based blending approach to reduce visual artifacts for

images captured using hand-held cameras. However, they only compensate for vertical parallax by

projecting undistorted input images onto a cylindrical imaging surface. Zhang and Liu also extended a

spatially varying warping method [16] in their proposed approach to perform panorama stitching from

a sparse set of casually taken input images [4]. However, its stereo consistency of the stitching results

is mainly manipulated by the pre-stitched reference panorama and the pre-stitched dense disparity map.

In this chapter, we mainly present a depth-constrained feature structure for the generation of high-

resolution stereoscopic panoramas. Compared to generating a high-quality monocular scene, generating

a high-quality stereo panorama using existing technologies is challenging owing to the inconsistency be-

tween the left and right views and difficulties in disparity control. In our proposed stitching framework,

the CIF is designed to describe the identical feature in two pairs of adjacent input images instead of pro-

cessing the left and right images independently. The proposed feature structure can not only fit different

hardware setups well with higher reliability but also attain good extensibility to further modification to

the camera arrangement designs. Moreover, the proposed CIF structure and matching operation are also

flexible enough to be generalized to the 4π steradian stereoscopic panoramic video case.
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2.2 Proposed Feature Structure for Stereoscopic Panorama Stitching

2.2.1 Traditional Feature Structure in Panorama Generation

In one standard panorama stitching task, various feature descriptors are employed to characterize the

pose between neighboring cameras, such as scale-invariant feature transform (SIFT) [17] and speeded up

robust features (SURF) [18]. These features are popular in the task of panorama stitching because they

are invariant to the rotation and scaling, which is the desired property during the image alignment. Thus,

in our proposed stitching system, we adopt SIFT as the basic operation unit for the feature detection

from each single input image. To better understand of the proposed SIFT structure for the stereoscopic

panorama task, we first discuss more details about the generation of the standard SIFT feature descriptor.

There are mainly four steps involved in SIFT algorithm as follows [19]:

1. Scale-space Extrema Detection

2. Keypoint Localization

3. Orientation Assignment

4. Keypoint Descriptor

Scale-space Extrema Detection

The generation of a standard SIFT starts with the points of interest detection, which are always

considered one pre-processing operation in the standard SIFT framework. Before the operation of

keypoint detection, we usually generate Gaussian-blurred images with different scales. For more de-
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tails, each image will be convolved with Gaussian filters at successive scaling scales. Specifically, a

DoGimageD(x, y, σ) can be defined as:

D(x, y, σ) = L(x, y, kiσ)− L(x, y, kjσ). (2.1)

whereL(x, y, kσ) is the convolution result of the original image I(x, y) with the Gaussian blurG(x, y, kσ)

at the scale parameter kσ:

L(x, y, σ) = G(x, y, kσ) ∗ I(x, y). (2.2)

Thus, a DoG image between scale kiσ and kjσ is actually defined as the difference of Gaussian-blurred

images at scaleskiσ and kjσ. After the convolution with Gaussian-blurs at various scales, the output

images are classified into different groups by octave. The octave here refers to a set of size-reduced

image after progressively Gaussian-blurring. In each octave, the DoG is represented as the difference

between images with adjacent Gaussian blurring size. After the comparison to eight neighbors at the

same scale and nine corresponding neighboring pixels in each of the adjacent scales, the pixel with the

minimal or maximal value will be considered as a candidate keypoint.

Keypoint Localization

In the result of scale-space extreme detection, there are always too many keypoint candidates. To

keep those stable key point candidates, one precise fit to nearby data is needed for the more accurate

location, scale, and ratio of principal curvatures. Thus, if the intensity at one selected keypoint is less

than the threshold value, it will be rejected. If one selected keypoint is identified as an edge, it will also

be removed.
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Orientation Assignment

Then, an major orientation has to been assigned to each keypoints to achieve invariance to image

rotation. Those neighbors that are around the keypoint location are taken into account for gradient and

magnitude and direction calculation. Gradient magnitude and direction from the neighbors around the

keypoint location are used to create one histogram with 36 bins covering 360 degrees. In the histogram,

only the highest peak and other peaks above 80% of it will be considered to calculate the orientation of

the features. They will create key points with the same location and scale but different directions.

Keypoint Descriptor

For each keypoint, the intensity values of its 16x16 neighborhood are usually used to compute the

gradient vector. The 16x16 neighborhood can be divided into 16 sub-blocks of 4x4 size. Each sub-figure

can produce an 8-bin orientation histogram so that there are 128 bin values to present one standard SIFT

feature. To enhance the invariance of feature to affine changes in illumination, this 1x128 gradient vector

needs to be normalized to unit length.

2.2.2 Definition of Depth-constrained Feature

Though the standard SIFT works well in the monocular-view panorama stitching task, it lacks

the necessary mechanism to guarantee the stereo consistency between the left-view and right-view

panorama. Compared to the monocular view stitching, the stereoscopic panorama generation needs

more careful selection of control points due to the extra constraints in the depth dimension. The straight-

forward application of standard SIFT to the stereo case can be decomposed into the original SIFT feature

detection and gradient-based matching independently for left-view and right-view input images. How-
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ever, those separately detected and matched feature descriptors may produce serious stereo rivalry in the

output stereoscopic panorama.

To solve these problems, we proposed one depth-constrained feature structure for the feature-based

stereoscopic panorama generation framework. Given the initial detection result of standard SIFT for

each input image, we don’t accept all of them as the control points for the later image alignment. Based

on whether each feature can be observed and precisely described by multiple camera views, we can

divide these initially detected features set into two groups: the commonly identified feature (CIF) and

the partially occluded feature (POF).

Figure 3 is an example of the CIF. We can find those key points in four neighboring images that

are linked by four red lines, which indicates those feature descriptors can be viewed and recognized in

all these adjacent views. Thus, the areas represented by these key points will be under consideration

for left-view and right-view panorama generation simultaneously. The consistency in control points

selection here is expected to maintain the stereo consistency in the output panoramas.

Figure 4 is an example of the partially occluded feature. We can find those key-points that are linked

by three or fewer red lines, which indicates those feature descriptors can only be viewed and recognized

in three or fewer neighboring views. In this case, the input left-view and right-view input images will

be aligned by very different control points under the independently stitching strategy.

Thus, in our proposed stitching system, CIF will be considered as the basic matching unit instead of

the standard SIFT feature. To explain the whole construction more clearly, we only consider the stitch-

ing task for two pairs of input rectified stereoscopic images, IL1, IL2, IR1, and IR2. In a more complex

situation, we can process more images with a similar pattern. In the traditional definition of SIFT fea-
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Figure 3. Commonly identified features between four neighboring image views. Images from left to

right, top to bottom, are L1, L2, R1, and R2.
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Figure 4. Partially occluded features between four neighboring image views. Images from left to right,

top to bottom, are L1, L2, R1, and R2.
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tures, each descriptor contains one 1 × 128 vector di.v to record the gradient information in multiple

directions and four scalars, di.x, di.y, di.s, di.r, for the row position, column position, scale, and orien-

tation. Note that the commonly identified feature denotes the same corner, edge, or object that can be

observed and precisely described with multiple camera views. Thus, each commonly identified feature

in two pairs of input-rectified stereoscopic images consists of four standard SIFT feature descriptors:

CIF = {(dL1.x, dL1.y, dL1.s, dL1.r), (dL2.x, dL2.y, dL2.s, dL2.r),

(dR1.x, dR1.y, dR1.s, dR1.r), (dR2.x, dR2.y, dR2.s, dR2.r)}.
(2.3)

2.2.3 Depth-constrained Feature Matching

In what follows, we will present the depth-constrained feature matching operation from four neigh-

boring input images. The standard feature matching operation between two sets is always formulated as

the problem to find the closest descriptor pairs in the given distance metric. The matching score between

two SIFT feature in the L2 norm is defined as:

ε(d1, d2) = ‖d1.v − d2.v‖2. (2.4)

Then, for each descriptor d1 in set SL1, the d̂2 with minimal L2 distance will be selected as matched

feature in set SL2:

d̂2 = argmin
d2∈SL2

ε(d1, d2). (2.5)
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To construct the well-matched CIF set, we extend the above traditional matching operation into the four-

set case. The score we used to evaluate the correspondence between four potential features is defined as

follows:

ε(d1, d2, d3, d4) = λ1

3∑
i=1

4∑
j=i+1

(‖di.v − dj .v‖2)+

λ2‖d1.y − d3.y‖2 + λ2‖d2.y − d4.y‖2+

λ3‖Depth.1−Depth.2‖2

(2.6)

Four SIFT feature descriptors, d1, d2, d3, and d4, are randomly selected from four input images,

SL1, SL2, SR1 and SR2. The first score term refers to the Euclidean distance between any two feature

descriptors in the L2 norm. The two following terms are the vertical disparity penalty terms, which

address the matching accuracy between left and right view features. The last term is the horizontal

disparity penalty term, which utilizes the depth-aware information to improve the matching reliability.

Depth.1 can be computed from the triangulation between two matched features in image IL1 and IR1

while Depth.2 is from IL2 and IR2:

Depth.1 =
f × b

d1.x− d3.x
; (2.7)

Depth.2 =
f × b

d2.x− d4.x
, (2.8)



21

where f is the focal length and b is the baseline distance between stereo camera pair. Thus, for any

chosen feature descriptor, d1, from the image IL1, we can find its best-matched features in the other

three images:

(d̂1,2, d̂1,3, d̂1,4) = arg min
d2∈SL2
d3∈SR1
d4∈SR2

ε(d1, d2, d3, d4). (2.9)

Similarly, we can perform the above process for every feature descriptor from the other three detected

SIFT feature sets:

(d̂2,1, d̂2,3, d̂2,4) = arg min
d1∈SL1
d3∈SR1
d4∈SR2

ε(d1, d2, d3, d4), (2.10)

(d̂3,1, d̂3,2, d̂3,4) = arg min
d1∈SL1
d2∈SL2
d4∈SR2

ε(d1, d2, d3, d4), (2.11)

(d̂4,1, d̂4,2, d̂4,3) = arg min
d1∈SL1
d2∈SL2
d3∈SR1

ε(d1, d2, d3, d4). (2.12)

According to the different sources of chosen feature descriptors, four candidates for the CIF set (i.e.,

CL1, CL2, CR1, and CR2) are generated.

CL1 =
⋃

d1∈SL1

{(d1, d̂1,2, d̂1,3, d̂1,4)}. (2.13)

CL2 =
⋃

d2∈SL2

{(d2, d̂2,1, d̂2,3, d̂2,4)}. (2.14)
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CR1 =
⋃

d3∈SR1

{(d3, d̂3,1, d̂3,2, d̂3,4)}. (2.15)

CR2 =
⋃

d4∈SR2

{(d4, d̂4,1, d̂4,2, d̂4,3)}. (2.16)

To ensure uniqueness and improve reliability, the verified CIF set is then defined as the intersection

of the above four candidates:

Cv = CL1 ∩ CL2 ∩ CR1 ∩ CR2. (2.17)

However, the exhaustive search and matching process suffers from low efficiency with time complexity

ofO(n4). We decide to accelerate the CIF construction process via some approximations. Instead of the

direct matching operation among four input images, we divide the entire construction process into two

steps: the matching between stereo image pairs and the matching between neighboring camera views.

The first step is to find the corresponding 2D features between input stereo pairs (L1 and L2). The

second step is to match these depth-aware features between the neighboring image capture positions

( between camera position 1 and camera position 2). For better matching efficiency, the vertical and

horizontal disparity obtained from the first step can also be employed as the qualifying condition to

filter out these false-matched features before the computation of gradient vector distance. For more

details, we first reduce the Equation 2.6 into the matching score between SL1 and SR1 as follows:

ε(d1, d3) = λ1‖d1.v − d3.v‖2 + λ2‖d1.y − d3.y‖2. (2.18)
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With the reduced matching score, the standard matching operation can produce the corresponding SIFT

pair set D1:

d̃3 = arg min
d3∈SR1

ε(d1, d3). (2.19)

d̃1 = arg min
d1∈SL1

ε(d1, d3). (2.20)

D1 =
⋃

d1∈SL1

{(d1, d̃3)} ∩
⋃

d3∈SR1

{(d3, d̃1)} (2.21)

Similarly, we can obtain the SIFT pair set D2 between SL2 and SR2:

ε(d2, d4) = λ1‖d2.v − d4.v‖2 + λ2‖d2.y − d4.y‖2 (2.22)

d̃4 = arg min
d4∈SR2

ε(d2, d4). (2.23)

d̃2 = arg min
d1∈SL2

ε(d2, d4). (2.24)

D2 =
⋃

d2∈SL2

{(d2, d̃4)} ∩
⋃

d4∈SR2

{(d4, d̃2)} (2.25)
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During these matching processes between stereo image pairs, the vertical disparity term is used

as the first qualifying condition to increase efficiency. That means it will reject the potential SIFT

descriptor with unaccepted vertical disparity before we compute its gradient vector distance to the target

SIFT descriptor. Besides, we also utilize Kd-tree to partitions the potential SIFT set into a binary tree

and then use the k-nearest neighbor to accelerate the standard matching process.

Given the two matched SIFT pair sets, D1 and D2, another round of the standard matching process

can be conducted. At this moment, the known depth information in each element of the D1 and D2

are employed as other qualifying conditions. Those SIFT pairs with very different depth values will be

filtered out before we start to compute their gradient vector distances.

According to the decompositions of exhaustive matching, we can improve the computation com-

plexity from O(n4) to O((logn)2).

2.3 Feature-based Quality Metric

Feature-based Monocular Alignment Error

To quantify the performance of our proposed feature structure on various data sets, we use the

projection position distance as the metric to evaluate the image alignment accuracy. After the warping

of two neighboring camera views (e.g., L1 and L2)) into the output canvas, each key-point within

overlapping region always corresponds to two source key-points from warpedL1 andL2 respectively. In

the ideal situation, these two source key-points on the output canvas are expected to have zero position

displacement. Therefore, given the estimated projection function from the control points list P , we

define the monocular view stitching error as the average position displacement of all the CIF in the
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overlapping region. For each single CIF = {dL1, dL2, dR1, dR2}, its Root of Mean Square Error

(RMSE) can be defined as:

EL =
√

(P (dL1.x)− dL2.x)(2) + (P (dL1.y)− dL2.y)2, (2.26)

and

ER =
√

(P (dR1.x)− dR2.x)(2) + (P (dR1.y)− dR2.y)2. (2.27)

P (d.x) and P (d.y) indicate the horizontal and vertical position of each CIF on the final output panorama

after the projection. EL and ER refer to the specific CIF’s projection error at left-view and right-view

panorama, respectively. For each constructed CIF set Cv, the overall monocular alignment error can be

defined as the average of all CIF’s projection error:

EMono =
1

N

N∑
i=1

(0.5 ∗ EiL + 0.5 ∗ EiR). (2.28)

Usually, the smaller error implies fewer misalignment and discontinues, in other words, a better

stitching quality in the monocular sense.

Feature-based Vertical Depth Error

To quantify the depth information error, we use the feature-wise depth accuracy to evaluate whether

the output stereoscopic panorama carries the correct disparity value. In the ideal stitching result, the

vertical disparity value between each two corresponded features in the binocular view is expected to be

zero. Thus, the vertical disparity between the corresponding CIF at left-view and right-view panorama
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implies the vertical depth accuracy of the system output. For each single CIF = {dL1, dL2, dR1, dR2},

the vertical depth error can be defined as:

EV 1 =
√

(P (dL1.y)− dR1.y)(2), (2.29)

and

EV 2 =
√

(P (dL2.y)− dR2.y)(2). (2.30)

P (d.y) indicates the vertical position of each CIF on the final output panorama after the projection.

EV 1 and EV 2 refers to the specific CIF’s vertical depth error at 1st and 2nd camera view respectively.

Give the constructed CIF set Cv, the overall monocular alignment error can be defined as the average of

all CIF’s vertical depth error:

EV =
1

N

N∑
i=1

(0.5 ∗ EiV 1 + 0.5 ∗ EiV 2). (2.31)

A small vertical disparity error between two final stitched panorama canvases indicates fewer verti-

cal object jumping problems.

Feature-based Horizontal Depth Error

To define the depth error along the horizontal direction, we first assume that all the input image pairs

can provide correct depth information for each CIF in the original spatial coordinate. Then, we construct

the dense disparity map of the output stereoscopic panorama and obtain the measured horizontal dis-

parity value for each CIF. Thus, the feature-based depth difference between the expected disparity map

and the measured disparity map can be used to characterize the depth accuracy of output panorama.
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Given the ground truth disparity map DispGT and measured disparity Map DispM , for each single

CIF = {dL1, dL2, dR1, dR2}, the horizontal depth error can be defined as:

EH1 =
√
DispM (P (dL1.x), P (dL1.y))−DispGT (dL1.x, dL1.y), (2.32)

and

EH2 =
√
DispM (P (dL2.x), P (dL2.y))−DispGT (dL2.x, dL2.y). (2.33)

DispGT (dL.x, dL.y) indicates the ground truth of the horizontal depth in the system output, while

DispM (P (dL.x), P (dL.y)) shows the measured horizontal disparity of each CIF on the final output

panorama after the projection. EH1 and EH2 refer to the specific CIF’s horizontal depth error at the 1st

and 2nd camera view, respectively. For each constructed CIF set Cv, the overall horizontal depth error

can be defined as the average of all CIF’s horizontal depth error:

EH =
1

N

N∑
i=1

(0.5 ∗ EiH1 + 0.5 ∗ EiH2). (2.34)

A small horizontal depth error indicates the delivered depth in the stitched panoramas is close to the

ground truth depth perceived from the input rectified camera views.

2.4 Quantitative Analysis

Based on the feature-based evaluation metric we defined above, we compute the monocular and

stereoscopic stitching quality of four different panorama stitching solution: AutoPano, PTGui, Hugin,

and our proposed method. The comparison includes one real captured indoor scene and 20 frames of

synthetic outdoor scenes. Given the field of view and resolution of each input image, we can compute
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the input pixel per degree (PPD). To construct one fair comparison, we usually scale the size of output

panorama to 12, 000 by 6, 000 pixels for 360◦ x 180◦. In this experiment, the input image usually hold

32.00 PPD (1,920 pixel for 60◦ FOV) and output panorama will hold 33.33 PPD (12, 000 pixel for 360◦

FOV). Thus, the factor for panorama scaling is around 1.04. Those regions on the top and bottom of the

panorama without valid pixels will be padded with the totally black pixels. The quantitative evaluation

result is stated in Table I and Table II. It is noted that our proposed method attains the least monocular

alignment projection error and the smallest depth errors in the vertical and horizontal direction, which

indicates our proposed method outperforms other panorama stitching solutions in both the monocular

and stereo sense

TABLE I

COMPARISON RESULT OF INDOOR SCENE

Autopano PTGui Hugin Proposed

RMSE 19.61px 12.39px 9.04px 8.55px

Vertical Disp 0.39◦ 0.20◦ 0.31◦ 0.20◦

Horizontal Dist 0.42◦ 0.47◦ 0.35◦ 0.34◦
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TABLE II

COMPARISON RESULT OF SYNTHETIC OUTDOOR SCENES

Autopano PTGui Hugin Proposed

RMSE 42.50px 47.97px 47.64px 11.59px

Vertical Disp 0.56◦ 0.81◦ 0.42◦ 0.17◦

Horizontal Dist 0.11◦ 1.21◦ 0.31◦ 0.04◦

2.5 Visual Comparison

2.5.1 Monocular Stitching Comparison

The term monocular panorama refers to the left or right view of a stereoscopic panorama. Figure 5

shows the left-view panorama stitched by the PTGui, Autopano, Hugin, and our proposed method. In the

areas marked by the yellow rectangles in the top three stitching output, the welding seam of the ceiling

pipe is always misaligned or disconnected. However, our proposed method can handle this problem

and produce a well-stitched overlapping region. The better stitching visual experience comes from

the CIF instead of independently matched standard SIFT features. The matching information between

features from one view can benefit the matching process in another monocular perspective. Thus, we

can conclude that our proposed method outperforms the other three monocular-view stitching software

alternatives in this situation.
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Autopano

(a) Autopano

PTGui

(b) PTGui

Hugin

(c) Hugin

Proposed

Method

(d) Proposed

Figure 5. Comparison of monocular stitching result. Images from top to bottom, are left-view

panorama stitched via AutoPano, PTGui, Hugin and our proposed method.
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2.5.2 Binocular Stitching Comparison

Figure 6 shows the stereoscopic panoramas stitched by four different methods. In the areas marked

by the yellow rectangles in the other three panoramas, the evident vertical and horizontal jumping of

the bicycle results in severe viewing discomfort. The contradicted depth information carried with them

can also confuse the viewer’s perception of depth. In the panorama stitched by our proposed method,

owing to the CIF set and transformation parameters that are as close as possible, the vertical disparity

issue is barely detected, and the horizontal disparity of all objects is adjusted to one reasonable range

that delivers correct depth information.

2.6 Conclusion

In this chapter, we explain the details of the proposed depth-constrained feature structure for the

stereoscopic panorama stitching task. Compared to the standard 2D feature descriptor, the proposed CIF

feature structure provides consistent points, edges, and areas to align the adjacent images at the left-view

and right view simultaneously. Furthermore, the structure of CIF promises its easy access to the depth

information of the described content. The carried extra depth information also contributes to the control

matching accuracy before image alignment. Thus, the consistency between the binocular control point

list cane be expected to maintain the stereo consistency between the generated binocular panoramas. In

the next chapter, we discuss the proposed refinement techniques to these initially produced CIF and fit

them into the video-stitching framework.
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Autopano

(a) Autopano

PTGui

(b) PTGui

Hugin

(c) Hugin

Proposed 

Method

(d) Proposed

Figure 6. Comparison of stereoscopic stitching result. Images from left to right, top to bottom, are

left-view panorama stitched via AutoPano, PTGui, Hugin and our proposed method.



CHAPTER 3

SALIENCY-BASED FEATURE SELECTION AND RE-DISTRIBUTION

The content of this chapter is based on our work that is published in [2] . c©2018 IEEE. Reprinted

with permission, from [2].

3.1 Background and Related Works

After we extract features from the input images, the standard step in the traditional panorama stitch-

ing framework is to send those control points into the feature tracker in the video sequence. However, in

this section, we present one saliency-based feature selection strategy in the feature-based stereoscopic

panoramic video generation system.

Note that both the features’ quality and distribution play an essential role in the panorama stitching

task. Once we obtain the CIF set for the four neighboring images in the first frame, we consider them

as the control points for the current frame stitching. However, the initially produced control points are

not always reasonably distributed because texture-rich regions bias the threshold. Whereas the number

of detected features can be manipulated by altering the global threshold, owing to the equal weight of

all the areas in the original images, fewer features are generated in the poor texture-rich region [20]. For

example, in Figure 7, we can see most of the control points are clustered around the grassland, which

indicates the latter image alignment will place more emphasis on the geometric correctness of it. The

lack of enough control points distributed at the human’s lower leg will likely cause the discontinues or

misalignment at the human’s lower leg in the stitching output. Thus, the first reason why we intend

33
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to operate feature refinement is to relocate the position of all those CIF according to human visual

interest. The second problem is over-sampled control points. To guarantee the detected features can

Figure 7. Example of CIF with unreasonable distribution.

be distributed across the whole image, direct utilization of the traditional feature detection algorithm

(e.g., SIFT and speeded-up robust features [17, 21]) will always produce oversized control points. For

example, in Figure 8, the CIF construction operation we described in the previous chapter produced

1000 features in the overlapping panel between each pair of neighboring camera views. If we accept all

of them as the control points for the image alignment, there will be over 20,000 feature that needs to be

tracked and aligned in later steps. A large number of control points always indicate high computation

cost in feature tracking and image alignment step. The time complexity of KLT tracking and RANSAC



35

Figure 8. Example of over-sized CIF.

algorithm is in O(n) and O(n4). Thus, the size reduction of control points is one necessary operation

for one efficient panorama stitching system. Besides, in the following homography estimation step, only

a few of these initially detected control points would make contributions to the cameras pose estimation.

Therefore, we wish to keep those control points that can give us insights for accurate image alignment

and discard those convey redundant position information.

To solve these problems, we intend to propose one saliency-based and grid-based feature selec-

tion strategy to reduce the size of the control points and make them distribute across the image more

uniformly and reasonably.

3.2 Saliency-based Feature Selection

Inspired by the image retargeting paper [22], which discusses the assignment of visual weight to

different contents in the image, we propose a similar energy map that indicates the pixel-wise importance
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of image alignment in our panorama stitching framework. The proposed energy is expected to assign

weights to each pixel in the input image and guide the redistribution of the control points according to

human visual attention. Furthermore, the idea of energy for the different regions is also used as the basic

unit to predict the temporal change of saliency energy in the later tracking stage intuitively.

3.2.1 Saliency Map

In this part, we briefly discuss the saliency of the image before we move to the proposed feature

selection part. In the neuroscience area, peripheral sensors generate afferent signals more or less con-

tinuously, and it would be computationally costly to process all this incoming information all the time.

Thus, it is essential to make decisions on which part of the available information is to be selected for

further, more detailed processing, and which sections are to be discarded. In the computer vision task,

the conspicuity at different location in the visual field is called saliency and always represented by a

scalar quantity. To facilitate the salient values assignments based on the spatial distribution, the saliency

map always partitions an image into multiple segments (sets of pixels, also known as superpixels) and

makes it easier to be analyzed. For instance, Figure 9 displays the input image, corresponding estimated

saliency map, and the saliency map overlaid on the input image. According to the generated saliency

map, we can quickly identify that the walking man area holds large saliency values, which means it will

attract more attention from the viewers. In contrast, those regions assigned with lower saliency values

usually stand for the areas without many visual essential objects, such as the ground or the sky.

3.2.2 Energy Map Components

Given the concept of the saliency map, we propose one feature-based feature selection operation

according to the human visual interest, which consists of three different maps:
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(a) Input image (b) Estimated saliency map

(c) Estimated saliency Map overlaid on Input Image

Figure 9. Example of saliency map.
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1. Disparity Map

2. Saliency Map

3. Gradient Map

To generate a visual sensitivity map for the control points refinement, one energy fusion function [22]

is used to combine the disparity map, gradient map and saliency map as:

e(i, j) = α1 ·Disp(i, j) + α2 ·Gradient(i, j) + α3 · Sal(i, j). (3.1)

In the above fusion function, (i, j) represents the pixel of the coordinate. Based on min-max nor-

malization, the value of Disp(i, j), Gradient(i, j), and Sal(i, j) are all normalized into [0,1]. In

consequence, the intensity value of each pixel in the output energy map also ranges from [0,1].

Disparity Map Estimation

Disparity Mmap Disp(i,j) can provide the horizontal disparity value between two corresponded pix-

els in left-view and right-view panorama. Due to the equivalent triangles displayed in Figure 10, we can

easily know the relationship between disparity and depth value:

disp(i, j) = x− x′
=
B ∗ f
Z

. (3.2)

In the above equation, B is the baseline distance between the optical center of the left-view and right-

view camera, while f is the focal length of the stereo camera pair. Thus, the disparity value at position

(i, j) is inversely proportional to the depth value at position (i, j). In other words, the pixel with a large
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Figure 10. Depth from stereo.

disparity value is closer to the imaging plane of the capture equipment. In the panorama stitching task,

those foreground objects usually attract more visual interest. Hence, we incorporate the disparity map

into our proposed visual sensitivity map. Given the input image depicted in Figure 11, the corresponding

estimated disparity map is depicted in Figure 12, and those areas with a whiter color imply closer pixels,

which generally coincides with the shape of the walking man.

Gradient Map Estimation

The convolution to the original image with a filter can produce a gradient map. Each pixel of a

gradient image measures the change in intensity of that same point in the original image, in a given

direction. There are various gradient operators, such as Sobel, Prewitt, and Roberts. One example of
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(a) Camera position 1 (b) Camera position 2

Figure 11. Input image for stitching
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(a) Camera position 1 (b) Camera position 2

Figure 12. Disparity map
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an estimated gradient map via the Sobel operator is depicted in Figure 13. Those edges, boundaries,

and areas assigned with a whiter color implies larger intensity change compared to neighbors, and

always attain more visual attention. Thus, the pixel-wise gradient information is also considered as one

important component of the proposed visual sensitivity map.

Gradient image can be created by the convolution to the original image with a filter. Each pixel

of a gradient image measures the change in intensity of that same point in the original image, in a

given direction. There are various different gradient operators, such as sobel, prewitt and roberts. One

example of generated Gradient Map via sobel operator is depicted in Figure 13. Those edges, boundaries

and areas assigned with whiter color, which implies more intensity change compared to neighbors,

always attain more visual attentions. Thus, the pixel-wise gradient information is also considered as one

important component of the proposed visual sensitivity map. For more clarity, we temporally use the

magnitude component of the gradient map for the final energy map composition.

Saliency Map Estimation

The algorithm we used to estimate the saliency map here is graph-based visual saliency (GBVS)

[23]. It first computes the feature vectors at locations over the whole input image plane, analogous to

the ITTI algorithm [24]. Then, one activation map is formed based on the generated feature vectors to

highlight those significant pixels where the image carries some unusual information. In this step, the

Markov chain is used to describe the dissimilarity between two potential pixels in the feature map. One

example of the saliency map with black-white color code is depicted in Figure 14. It is noted that those

regions with whiter pixels will attract more attention from viewers compared to the areas with darker

pixels.
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(a) Camera position 1 (b) Camera position 2

Figure 13. Gradient map

3.2.3 Energy Map Combination

Thus, the pixel-wise energy map for the human visual interest is the linear combination of the given

three components. The generated map is shown in Figure 15. Here, we used the hot color code for better

visualization of the difference in details between energy map and saliency map. It is noted that those

regions with red color will be assigned a larger control point size in the later feature redistribution step.

In our panorama stitching task, for the four input images, we compute the corresponding energy

maps of the overlapping region between four input images: EL1, EL2, ER1, and ER2. The matched CIF

can help to estimate the boundary of overlapping regions. For example, the SIFT descriptor d1 with the

smallest x position in image IL1 will determine its left-most limit, and d2 with the largest x position in

image IL2 will determine the corresponding right-most boundary.
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(a) Camera position 1 (b) Camera position 2

Figure 14. Saliency map with black-white color code

3.2.4 Feature Selection

Then, for every single overlapping region, we fragment it into M × N grids. For instance, the

overlapping region EL1 can be partitioned into: {Gp,qL1 , p ∈ {1, 2, ...M}, q ∈ {1, 2, ...N}}. For each

grid at the p-the row and q-th column, its corresponding grid energy weight, ω̂p,q, is defined as the

normalized value of energy summation in the grid:

ωp,q =
∑

(i,j)∈Gp,q

e(i, j) (3.3)
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(a) Camera position 1 (b) Camera position 2

(c) Camera position 1 (d) Camera position 2

Figure 15. Combined energy map with hot color code. Sub-figure (a) and (b) are input image at camera

position 1 and position 2. Sub-figure (c) and (d) are their corresponding energy maps.
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ω̂p,q =
ωp,q∑
p,q ωp,q

(3.4)

The energy weight ω̂p,q represents the corresponding percentage of visual importance in the whole

overlapping region. After the visual energy normalization in these four regions: EL1, EL2, ER1 and

ER2, we can use the average of them as the commonly-identified weight of all four corresponding grids:

ωcp,q = (ω̂L1p,q + ω̂L2M,q + ω̂R1
p,q + ω̂R2

M,q)/4. (3.5)

Once we determine the total number we intend to track or the maximal limit of our computation power,

we can compute the number of features we need to select in each grid:

Bp,q = T × ωcp,q. (3.6)

In those texture-rich regions with over-sized features, we need to discard some less-reliable matched

pairs or feature structures with redundant information feature squads based on our proposed ranking

score [2]. The gradient difference, stereo-related term, and similarity penalty term are all taken into the

construction for the proposed ranking score of one CIF structure:

R(d1, d2, d3, d4) = β1 · ε(d1, d2, d3, d4) +
β2

ε(d1, d′1)
. (3.7)

Because the small corresponding score between four pixels from Equation 2.6 usually implies high

matching reliability of the feature, it is used to define the matching confidence term here. In the second
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term, d′1 denotes the closest SIFT feature to the selected d1 in the same grid. Thus, this redundant

penalty term can inhibit the selection of two similar or identical features.

All commonly identified features in this grid are sorted in ascending order of the proposed ranking

scores, R. The first Bp,q commonly identified features in each grid are regarded as control points for

image alignment. If there are not enough potential CIF in the grid, then we keep all of them. One ex-

ample of the comparison between before and after the saliency-based selection is depicted in Figure 16.

The features after the saliency-based selection, which are the sub-figure (c) and (d), are more even and

reasonable across the whole overlapping region.

After we walk through all the girds, according to the different sources of energy maps, four candi-

dates that refined the CIF set (i.e., CrL1, CrL2, CrR1, and CrR2) are generated. The final refined CIF set is

then defined as the intersection of the above four candidates:

Crv = CrL1 ∩ CrL2 ∩ CrR1 ∩ CrR2. (3.8)

3.3 Quantitative Analysis

To test whether our proposed feature selection strategy contributes to stitching quality improvement

in the stereoscopic panoramic video, we generally compare the stitching result before and after saliency-

based feature selection:

1. No feature selection strategy (NFS)

2. Saliency-based feature selection strategy (SFS)
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Matched points 1

Matched points 2

(a) Matched feautes before selection in left view

Matched points 1

Matched points 2

(b) Matched feautes before selection in right view

Matched points 1

Matched points 2

(c) Matched feautes after selection in left view

Matched points 1

Matched points 2

(d) Matched feautes after selection in right view

Figure 16. Matched features pairs before and after saliency-based feature selection.
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The experiment’s data consists of three synthesized outdoor videos, which describe one walking man

in a circular path with a different radius. Every single video includes 30 frames. In our experiments,

the overlapping regions of four neighboring images are all divided into square grids of 100 pixels wide

by 100 pixels high. The number of the selected control points is 200 for each overlapping region. All

output panoramas are scaled to 12, 000 by 3, 000 pixels for 360◦ × 90◦. The input image usually hold

32.00 PPD (1, 920 pixel for 60◦ FOV) and output panorama will hold 33.33 PPD (12, 000 pixel for 360◦

FOV). Thus, the factor for panorama scaling is around 1.04. The three coefficients in the energy map

generation are set as 0.33. The two coefficients β1 and β2 in Equation 3.7 are set as 0.70 and 0.30.

In the numerical comparison between our proposed method and the standard selection strategy, we

mainly focus on the stitching quality of the single frame in the video. The feature-based projection

error is used to evaluate the accuracy of alignment. For the quantitative analysis of the stereoscopic

panoramic video in the vertical direction, we measured the average vertical disparity of all matched

features between the left and right views. For the horizontal direction, we first consider the estimated

depth from the original rectified image pair as the ground truth. The average distance of all matched

features between the depth from stitched stereoscopic panoramas and the depth from the ground truth is

then used as the metric to evaluate the performance of depth control.

The numerical result of 30 frames of synthetic outdoor scenes in the different radii of the circular

path is shown in Table III. It is noted that the overall stitching quality is improved as the distance between

the principal moving object and image acquisition equipment decreases, in both the monocular and

binocular sense. That trend indicates the high-quality stitching becomes a more challenging task when

the major moving object is too close to the camera imaging planes. However, the CIF feature set after
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the saliency-based selection could provide smaller projection distances between matched control points

in the output stereoscopic panorama. For the stereo sense quality, saliency-based feature selection can

efficiently reduce the vertical and horizontal depth error simultaneously. Thus, this quantitative analysis

demonstrates that our proposed feature selection strategy can lessen the stitching misalignments in the

output monocular-view panorama and obtain better stereo consistency between stereoscopic panoramas.

TABLE III

COMPARISON RESULT IN CIRCULAR PATH OF DIFFERENT RADIUS

Mono Error Vertical Error Horizontal Error

NFS+1.3m 9.73px 0.19◦ 0.94◦

NFS+2.0m 2.46px 0.13◦ 0.63◦

NFS+3.3m 1.81px 0.10◦ 0.35◦

SFS+1.3m 8.45px 0.05◦ 0.12◦

SFS+2.0m 2.06px 0.06◦ 0.12◦

SFS+3.3m 1.03px 0.05◦ 0.11◦
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(a) frame 9 in NFS strategy (b) frame 20 in NFS strategy

No Feature

 Selection

(c) frame 24 in NFS strategy

(d) frame 9 in SFS strategy (e) frame 20 in SFS strategy

????

Saliency-based

Feature Selection

(f) frame 24 in SFS strategy

Figure 17. Comparison of left view video stitching result between NFS and SFS.

3.4 Visual Comparison

Figure 17 shows several left- view panoramas stitched by no feature selection strategy and our

proposed strategy. In the top three panoramas, the walking man suffers from several visible stitching

errors, such as the distortion of the head at the 9th frame, the discontinues, and cropping of the human’s

chest on the 20-th and 24-th frame. However, these stitching errors are barely detected in the output
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(a) frame 9 in NFS strategy

No Feature

Selection

(b) frame 20 in NFS strategy

(c) frame 9 in SFS strategy

Saliency-based   

Feature Selection

(d) frame 20 in SFS strategy

Figure 18. Comparison of stereoscopic stitching result between NFS and SFS in red-cyan anaglyph

version.

panorama after feature selection, which implies more reasonable alignment under CIF after our proposed

feature refinement strategy

Figure 18 shows several stereoscopic panoramas stitched by no feature selection strategy and our

proposed strategy in the red-cyan anaglyph version. In the top row, these obvious monocular stitching

errors deliver contradicted depth information of the human head and chest in the stereoscopic video and



53

result in severe viewing discomfort. The visible stitching error is caused by the inadequate sampled con-

trol points in the suit with a chessboard texture. However, our proposed method can handle this problem

and produce the close walking man as smoothly stitched. Based on the optimized distribution of control

points that assign an adequate percentage of features to those visual sensitive regions, the homography

estimation will be operated under the guidance of human attention. Thus, better monocular stitching

quality and correctly delivered depth information in those visually sensitive regions are expected.

3.5 Conclusion

In this chapter, we present one feature-based selection strategy that reduces the control point size

and improves the distribution of control points in the panoramic video generation system. For this goal,

we utilize the energy map that consists of a disparity map, saliency map and gradient map to compute the

visual importance of each pixel. Under the guidance of these pixel-wise maps, we divide the overlapping

region into grids and decompose the control points optimization problem into multiple ranking problems

in each grid according to our proposed matching score. In every single grid, CIF with a higher matching

reliability term and smaller similarity penalty term will be selected as the control points for the image

alignment. To achieve the well-stitched output successfully and efficiently, the number of the necessary

control points, grid window size, and coefficients of the energy map generation need to be carefully

specified. In the next chapter, we discuss the corresponding tracking strategy to these refined control

points in the video sequence.



CHAPTER 4

DEPTH-CONSTRAINED FEATURE TRACKING

The content of this chapter is based on our work that is published in [2] . c©2018 IEEE. Reprinted

with permission, from [2].

4.1 Background and Related Works

Compared to image stitching, panoramic video-stitching has received far less attention. Many

video-stitching methods either adopted a fixed dominant homography from one selected frame to align

the whole video [25, 26] or conducted frame-stitching independently [27]. Shimizu et al. proposed a

video-stitching scheme that used pure translation motion for sporting events [28], which can only deal

with the simple translation case. Xu and Mulliga used a multi-grid scale-invariant feature transform

(SIFT) to show acceleration and combined SIFT feature sets from randomly selected frames to one

common homography [29]. Recently, Jiang and Gu proposed an algorithm to utilize spatial-temporal

content-preserving warping [30] to composite one output panoramic video from multiple synchronized

input video streams. However, they only used the matched features in the first K frames to define one

commonly-used homography for all remaining video frames and never update features later.

Regarding video stitching from free-moving mobile devices, other works consider stabilization for

better stitching [31–36]. These algorithms usually only utilize the estimated camera path to combine

different camera views and did not take advantage of the calibrated geometries between adjacent cam-
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eras. Hence, one generalized control point sampling strategy is needed in our proposed video-stitching

framework for good quality of output video.

In previous chapters, we present the proposed optimization and extension to the standard stereo-

scopic panorama generation system. While our ultimate goal is the stereoscopic 360 video, we will

discuss the corresponding strategy to deal with the panorama stitching in the video case. To follow with

the human visual interest idea in Chapter 3, we present one saliency-based feature update strategy in the

feature-based stereoscopic panoramic video generation system. Based on the CIF detection and match-

ing we introduced in Chapter 2, we still utilize it as the basic stitching unit in later frame composition to

achieve stable stitching output in the video task. The temporal consistency between consecutive frames

can be interpreted as consistencies in geometry, vertical disparities, and horizontal disparities. For more

detail, the geometric consistency indicates the shape, size, and relative location of objects that should

remain identical between the prior and consecutive frames. The temporal consistency in vertical and

horizontal directions guarantees there will be no abrupt changes in the perceived depth from the same

object. We employ human visual sensitivities to generate a grid- and saliency-based energy map to in-

dicate the visual importance of pixels. Then, the global temporal feature- tracking can be decomposed

into several grid-based local tracking tasks according to changes in pixel energy. To further improve the

accuracy of commonly identified features, we extend the underlying assumption of small-displacement

into the depth domain, removing the falsely tracked control points. Moreover, to compensate removed

tracked control points that violate the commonly-identified property, we can detect new CIF from the

new frame and incorporate the position data from the previous rejected CIF into the new CIF selection.
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4.2 Feature Update Strategy

Given the refined CIF set, we start to deal with the tracking operation of those control points in later

frames. One straightforward way is directly utilizing the tracked feature points in the next frame via

different objective tracking algorithms. However, the pure tracking-based feature selection is always

affected by occlusion, drift, and loss in the long-term video. It is nearly impossible to generate one

well-stitched stereoscopic panoramic video based on the initialized feature set.

Another promising method uses the newly detected commonly identified feature set for the cur-

rent frame, stitching each frame independently. This method, based on detection, can mostly avoid the

monocular geometrical stitching errors of each frame. However, it always causes poor temporal consis-

tency. Another reason why the detection-based feature selection is not a good choice for video stitching

is its inefficiency, compared to the tracking-based method.

To avoid the problems mentioned above, we propose a local saliency-based feature tracking strategy

that focuses on the temporal energy change of each grid. Thus, instead of stitching based on tracked

features or newly detected features, we update the control points in the necessary grid and operate

image alignment based on these local hybrid feature sets. The proposed feature-tracking strategy can

be divided into three parts. Grid update determination tells us which grid needs a control-point update.

Depth-constrained feature tracking refines the KLT tracking result with the depth-related conditions.

Feature compensation detects new features, making up for invalid CIF at the new frame.

4.2.1 Grid Update Determination

Before we send initially selected features, Ŝi,j , to the KLT tracker, we should determine each divided

grid, based on its energy change. As in the generation of energy maps from the first frame, we compute
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pixel-based energy changes, δ(i, j)n+1 = e(i, j)n+1− e(i, j)n+1, for pixels in all grids. The grid-based

energy change for the grid at the row p and column q, between frame n and n+ 1, is defined as:

Dp,q = Mean(δ(i, j); (i, j) ∈ Gp,q). (4.1)

Those grids, associated with tiny energy changes, are considered as still regions (e.g., background).

Generally, no object enters or leaves those grids. Therefore, it is unnecessary to operate tracking pro-

cesses, because those control points inherited from a previous frame can describe the current frame quite

well. Thus, we only focus on control points in those grids having energy changes. The original grid is

assigned to two groups, still and dynamic, according to their grid-based energy changes. Then, we pass

the control point information of the dynamic grid to the KLT tracker in a later step. An example of the

grid after finishing the update determination is shown in Figure 19. Sub-figure(a) and sub-figure(b) are

the grid-wise energy map for camera position 1 at two consecutive frames. Sub-figure(c) is the differ-

ence energy map between two consecutive frames. Sub-figure(d) is the difference energy map after we

convert Sub-figure(c) into the black-white map. Grids with black color mean there is no need to update

control points, and grids with white color imply the features update is necessary. Sub-figure(e) to sub-

figure(h) are the corresponding maps for camera position 2. In Figure 19, the jet and black-white color

maps are only used for visualization, while no color information used in the grid update determination.

4.2.2 Depth-constrained Feature Tracking

After we determine whether each grid needs an update or not, we update the control points and

utilize the traditional KLT to track the control point from the previous frame. In the standard formulation

statement for the KLT tracking problem, I and J refer to the previous and current images. I(x, y)
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Figure 19. Left part: (a) Grid-based energy at 1st nd 2nd right camera view at frame n; (b) Grid-based

energy at 1st nd 2nd right camera view at frame n+1; (c) Grid-based energy difference; (d) Grid-based

indicator map for feature update.

represents the gray value of the pixel at (x, y)T . Let u = [ux, uy]
T be one pixel of the previous image,

I . The goal is to find one pixel, v = u + f, on the current image, J , where the intensity distance
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between two integration windows around I(u) and J(v) is minimized. With the integration window

size parameter, wx and wy, the residual function, ε(f), between two integration windows is defined as:

ε(f, I, J,u) =

x=ux+wx∑
x=ux−wx

y=uy+wy∑
y=uy−wy

(I(x, y)− J(x+ fx, y + fy)). (4.2)

In our case, we need to operate a tracking process for the CIF set, {d1, d2, d3, d4}, simultaneously

between consecutive frames from four neighboring cameras views. Note that the target pixel, u, in the

residual function, refers to the key point position of the target feature. Thus, we obtain four motion

vectors:

f1 = argmin
f
ε(f , InL1, I

n+1
L1 , d1)

f2 = argmin
f
ε(f , InL2, I

n+1
L2 , d2)

f3 = argmin
f
ε(f , InR1, I

n+1
R1 , d3)

f4 = argmin
f
ε(f , InR1, I

n+1
R2 , d4).

(4.3)

However, the straightforward independent tracking of these four images cannot ensure good updated

positions for the initial feature descriptors. Any mistakenly tracked result or drift in these four KLT

tracking processes will lead to the failure of new CIF constructions in the current frame.

To obtain more reliable tracked results of control points in the current frame, we utilize the depth-

based constraint to qualify those tracking results strictly. The computed motion vectors for the four fea-

ture descriptors are {f1, f2, f3, and f4}, based on the assumption of the target pixel’s small-displacement
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between consecutive frames in the traditional KLT tracking algorithm. We extend this assumption from

the 2D to 3D case. Hence, we formulate two depth-based criteria to qualify these independent tracking

features:

1. The difference of horizontal disparity between previous and current frame should be small;

2. There is no visible vertical disparity between left and right views for tracked, commonly identified

features in the current frame.

Given that the CIF at the frame n is:

CIFn = {dn1 , dn2 , dn3 , dn4}, (4.4)

and the tracked feature at frame n+ 1 is:

CIFn+1 = {dn+1
1 , dn+1

2 , dn+1
3 , dn+1

4 }, (4.5)

the horizontal temporal disparity between two frames and the vertical disparity of the new frame can be

represented as:
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εh(n, 1) = ‖(dn1 .x− dn3 .x)− (dn+1
1 .x− dn+1

3 .x)‖

εh(n, 2) = ‖(dn2 .x− dn4 .x)− (dn+1
2 .x− dn+1

4 .x)‖

εv(n, 1) = ‖(dn+1
1 .y − dn+1

3 .y)‖

εv(n, 2) = ‖(dn+1
2 .y − dn+1

4 .y)‖

(4.6)

Based on our proposed two depth-constrained qualifying conditions for the commonly-identified

property, we filter all tracked CIFs with ε̃h and ε̃v. The tracked control point at the new frame with

disparity values larger than two tolerance values will be rejected as the falsely tracked CIF. Only those

features having small depth changes and with invisible vertical disparities can be regarded as reliable

control points and pushed into the list for camera pose estimation. The proposed small-assumption in

the depth domain is usually set as 10 pixels in our experiments.

4.2.3 Feature Compensation

In the traditional feature update strategy, combined with tracking and detection, one new feature

detection will be operated when the successfully tracked features drop below a given threshold [35].

However, the size of the control point list remains shrunk until the next feature detection operation.

Thus, newly feature detection will not be conducted when the number of successfully tracked features

remains in the accepted range. Therefore, we prefer to operate the feature update step wise and to

decompose changes of control point lists into tiny updates between frames.

According to the depth-constrained qualifying condition, we identify invalid tracked features and

remove them from the control point list. Thus, to obtain the size consistency of control points in each
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grid, we fill missing slots with newly detected features. Normally, we select CIF with the highest

matching scores. In our proposed matching score, we also incorporate the position information of

commonly identified features of the normal ranking score so that the temporal consistency of the selected

control points can be obtained:

R2(d
n+1
1 , dn+1

2 , dn+1
3 , dn+1

4 ) = R(dn+1
1 , dn+1

2 , dn+1
3 , dn+1

4 )

+
β3∑4

i=1[
√

(dn+1
i .x− dni .x)2 + (dn+1

i .y − dni .y)2]
.

(4.7)

In this modified score for compensated feature selection, the second term is used to describe the

position distance between newly detected features at frame n+1 and old commonly identified features

at frame n. The small distance indicates less of a positional change in the control point list and more

consistently estimated camera poses

In Figure 20, we see a comparison between different feature update strategies. Sub-figure (a) is the

initially detected CIF in the previous frame. Sub-figure (b) is the update result based on pure detection

in the next frame. Sub-figure (c) is the update result based on pure tracking at the next frame, and

those key points marked with blue colors are invalid control points that fail to fulfill the proposed depth-

constrained qualifying condition. Sub-figure (d) is the update result based on our proposed update

strategy, and the key points marked with cyan colors are the corresponding compensated features to

those invalid control points in Sub-figure (c). The tracking result displayed in sub-figure (b) shows

more newly detected CIFs clustered around the human’s head, which will break the control points

consistency in the temporal domain. The tracking result displayed in sub-figure (c) contains that control
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(a) (b) (c) (d)

Figure 20. Comparison of stitched panoramas between different softwares and proposed method.

Sub-figure (a) is the initially detected CIF in the previous frame. Sub-figure (b) is the update result

based on pure detection in the next frame. Sub-figure (c) is the update result based on pure tracking at

the next frame, and those key points marked with blue colors are invalid control points that fail to fulfill

the proposed depth-constrained qualifying condition. Sub-figure (d) is the update result based on our

proposed update strategy, and the key points marked with cyan colors are the corresponding

compensated features to those invalid control points in Sub-figure (c).

points without commonly-identified property that may impair the stereo consistency between left-view

and right-view output panorama.

4.3 Conclusion

In this section, we propose one saliency-based control point update strategy to deal with the 360

video-stitching task. Since the first frame in the video sequence has been aligned under well-matched

control points and stereo-constrained homography, the following frames should be processed with the
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same routines. However, due to the spatial position change of objects in different frames, one highly

reliable CIF in the previous frame may become the POF in the next frame. To maintain the temporal

consistency in the stitched 3D 360 video, we operate one grid-based feature update strategy based on the

human visual interest difference between two successive frames. Those areas with an abrupt change of

human visual interest indicate a significant change of content. Hence, we adjust the size of control points

in all the updated grids via CIF pruning or CIF compensation for more reasonable image alignment. In

the next chapter, we discuss the details of image alignment based on the control point we generate for

each frame in the video sequence.



CHAPTER 5

STEREO-CONSTRAINED IMAGE ALIGNMENT

The content of this chapter is based on our work that is published in [1] . c©2017 IEEE. Reprinted

with permission, from [1].

5.1 Background

After we extract a well-matched CIF feature set from the input images and conduct saliency-based

feature selection, the next step in the standard panorama stitching framework is called image alignment,

which intends to estimate the global homography with these control points. In the monocular stitching

pipeline, the RANSAC algorithm of Fischler and Bolles [37] is usually adopted for homography esti-

mation for the adjacent camera pose computation. The RANSAC algorithm is a robust estimator for

mathematical model parameters based on a set of observed data containing outliers. For more details

about its application in the panorama stitching case, the model presents a planar homography between

two camera views, and the observed data corresponds to the detection of 2D-point correspondences.

Without considering the stereo constraint, the standard RANSAC algorithm [38] can fit the best trans-

formation matrix and generate a high-quality monocular panorama for the left and right views. However,

the two independently well-stitched monocular panoramas cannot guarantee correct delivered depth in-

formation and an excellent 3D viewing experience. Thus, we proposed a modified RANSAC algorithm

incorporated with a stereo constraint to maintain consistency between the left and right views. In this
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chapter, we mainly discuss the original RANSAC in the homography estimation task and its adapted

version based on the CIF for the stereoscopic panoramic stitching case.

5.2 Standard Image Alignment

The application of original RANSAC to homography estimation is described in Algorithm 1.

The standard RANSAC-based homography estimation starts with the random selection from the

given input dataset. Let us assume we already produced one well-matched pair of control points T

between two neighboring images, L1 and L2. Then, we can randomly draw four pairs of corresponded

control points from the data-set: {(fj , f
′
j), j = 1 : 4}. Based on the eight equations from 4 pairs of

matched points, we can fit the projection matrix H via normalized direct linear transform. Then, those

unselected control points will be used as the test set to evaluate the fitness of this estimated H to all

control points. The projection error of each corresponded pair from the testing set will be computed.

If the error is within the accepted range, there will be one consistent count added to this estimated

homography. After we go through all the possibilities of the random selection or the predefined iteration

number runs out, the homography with the largest percentage of the consistent count will be considered

as the best-fitted projection matrix H . For more details about parameters set-up, the corresponding data

set T in Algorithm 1 is defined as one well-matched pair of control points. The inlier percentage p is

always set as 95%. The distance threshold σ need to be specified under different input datasets; we

usually set them as 10 pixels in our experiments. The max number of iteration N is determined by the

trade-off between the estimation accuracy and computation time.

5.3 Modified Image Alignment

The application of modified RANSAC to homography estimation is described in Algorithm 2.
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In the modified RANSAC, we randomly select corresponding points from the commonly identi-

fied feature set, so that the sampled subset data for model-fitting and the remaining testing data remain

consistent. Then, we solved the inhomogeneous linear least squares problem from the overdetermined

system and fit one identical homography for the left-view and right-view. For each unselected corre-

spondence, we utilized the combined distance error to determine whether it is consistent under the fitted

homography. The identical homography here can ensure the output panorama will carry more consis-

tent stereo information and avoid undesired disparity issues. For more details about parameters set-up,

the corresponding data set T in Algorithm 2 is defined as CIF set instead of monocular-view matched

control points. The inlier percentage p is always set as 90%. The distance threshold σ also need to be

specified under different input datasets; we usually set them as 10 pixels in our experiments. The max

number of iteration N is determined by the trade-off between the estimation accuracy and computation

time.

5.4 Visual Comparison

An example of input control points grouping result under the standard and proposed RANSAC algo-

rithms are depicted in Figure 21. All the input control points into RANSAC are divided into two groups

according to whether the control point pairs are consistent under the estimated projection matrix. Those

control points pairs that carry the tolerated projection error are regarded as inliers, while the remaining

one is called an outlier. For more details, those inliers are marked as green lines and outliers are marked

as blue lines in Figure 21. The first row represents the division result of the standard RANSAC algorithm

into the left-view and right-view control points independently. Though we observe that several falsely-

matched control points are identified as outliers successfully in both left-view and right-view panorama,
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the inliers identification between left-view and right-view images is not consistent. In the second row

of Figure 21, we can see the inliers and outliers are selected based on the CIF sense according to our

proposed adapted RANSAC algorithm. The stereo-constrained RANSAC will output the left-view and

right-view homography matrix that can fit the alignment under the same points, edges, and areas in the

binocular views. Thus, the stereo-contained RANSAC is expected to provide a more similar camera

pose estimation result between the left-view and right-view output panorama.

5.5 Conclusion

In this section, we discussed the adapted version of the RANSAC algorithm for the homography

estimation based on the CIF feature set. Given the stereo consistency of the CIF set in the feature

matching step, we wish to keep this good property in the later system operations. To achieve that goal,

we randomly pick the CIF feature instead of standard 2D features for projection matrix fitting. The

best-fitted homography should obtain the largest consistent percentage at the left-view and right-view

simultaneously to guarantee the majority of the control points can be correctly aligned in the output

panorama. Hence, the finally fitted homography in the left-view and right-view can prevent most of the

stereo inconsistency in output stereoscopic panorama.
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(a) Inliers and outliers determined by standard RANSAC

(b) Inliers and outliers determined by proposed RANSAC

Figure 21. Inliers and outliers determined by proposed RANSAC. Green lines connect those

corresponding control points that are considered as inliers under y the fitted homography. Blues lines

connect those corresponding control points that are considered as outliers under the fitted homography.
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Algorithm 1 RANSAC-based homography estimation
Input: Corresponding data set T, distance threshold σ, inlier percentage p, max number of iteration N ,

max number of inlier M

Output: 2D homography Ĥ

1: Initialize N , M , σ, p

2: for all for ith (i = 1 : N ) estimation do

3: Randomly select 4 corresponding feature pair from T: {(fj , f
′
j), j = 1 : 4}

4: Compute transformation matrix H by normalized DLT from 4 selected corresponding feature

pairs

5: For each unselected putative correspondence, calculate distance dj = d(f
′
j , Hfj)+d(fj , H

−1f
′
j)

6: Count the number of inlier m which has the distance dj < σ

7: if mi > M then

8: Update best fitted homography Ĥ = H

9: Update largest number of consistent inlier M = mi

10: Record all the inlier set as S

11: end if

12: end for

13: return Ĥ
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Algorithm 2 Stereo Constrained RANSAC-based homography estimation
Input: Commonly-identified feature set T, distance threshold σ, inlier percentage p, max number of

iteration N , max number of inlier M

Output: 2D homography in left and right view ĤL, ĤR

1: Initialize N , M , σ, p

2: for all for ith (i = 1 : N ) estimation do

3: Randomly select 4 commonly-identified features from T: {(fL,j , f
′
L,j , fR,j , f

′
R,j), j = 1 : 4}

4: Compute transformation matrix HL and HR by normalized DLT independently

5: For each unselected putative correspondence in left view, calculate distance dL,j =

d(f
′
L,j , HfL,j) + d(fL,j , H

−1f
′
L,j)

6: For each unselected putative correspondence in right view, calculate distance dR,j =

d(f
′
L,j , HfL,j) + d(fL,j , H

−1f
′
L,j)

7: For each unselected putative correspondence, calculate the distance between two fitted homogra-

phy dH,j = ‖HL −HR‖

8: Count the number of inlier mi when the combined distance dj = dL,j + dR,j + γdH,j < σ

9: if mi > M then

10: Update best estimated homogrphy ĤL = HL and ĤR = HR

11: Update largest number of consistent inlier M = mi

12: Record consistent inlier sets ŜL and ŜR

13: end if

14: end for

15: return ĤL, ĤR



CHAPTER 6

EXPERIMENT AND SIMULATION

6.1 Introduction

In this section, we present the experiments and simulation we conducted to validate the stitch-

ing feasibility and robustness of the proposed stitching framework. We will introduce several image

acquisition equipment used in our stitching experiments. Then, some basic information about the real-

captured datasets and synthetic data will be presented. After that, we define the numerical metric we

used in performance evaluation in the later section of this chapter. In the following, we demonstrate the

visual comparison between our proposed stitching framework and other stitching solutions in different

stitching tasks in the monocular sense, stereoscopic sense, and video sense. Then, the corresponding

numerical analysis of those comparisons will be stated in the last part of this chapter.

6.2 Image Acquisition Equipment

In the generation process of the stereoscopic panoramic video task, multiple images from different

perspectives are needed to provide input images with overlapping files. In our experiments and simula-

tions, three types of image acquisition equipment are used to provide raw data from real-world scenes

or synthetic scenarios.

6.2.1 SENSEICam Simulator

SENSEICam Simulator is a pair of stereo cameras mounted on one spinner. Its mechanical system

can freely rotate the dual camera around the optical center without the introduction of parallax. Hence,
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this simulator is widely employed in our experiments to set up many different camera array arrange-

ments. However, since it cannot shoot shoot images from different capture positions simultaneously, it

is usually employed as the image acquisition equipment for the still panorama rather than the panorama

with moving objects or the panoramic video. One possible camera’s configuration via SENSEICam

Simulator is depicted in Figure 22.

Figure 22. SENSEICam Simulator. (Photograph by Lance Long, SENSEICam, September 30, 2018,

Electronic Visualization Laboratory, University of Illinois at Chicago).

6.2.2 StarCam

The second camera design is called StarCam, which is one typical interleaved parallel camera. The

interleaved design indicates the stereo camera pair are not placed as neighbors along the circle. For

each pair of the stereo camera pair, there are four more cameras mounted between the left and right

camera perspective. This special camera structure is designed for a more compact camera package and
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larger overlapping fields for stitching. Additionally, it will provide a smaller position difference between

adjacent cameras for stitching with less parallax. The prototype of StarCam is depicted in Figure 23 and

more detailed information can be found in [39].

Figure 23. StarCam prototype. (Photograph by Dominique Meyer, StarCam, September 30, 2018,

Qualcomm Institute, University of California at San Diego).

6.2.3 Chameleon

The third camera design is called Chameleon, which is one typical radial design. It consists of a

monocular camera array mounted in one circle, and there is no standard left or right camera view as in

other dual-camera designs. Thus, before we process the image captured by Chameleon design with our

standard stitching framework, it requires extra rectification to construct the virtual left and right view
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based on captured images. Moreover, the radial design is one of the most popular camera arrangement

solutions on the commercial market. One 5-camera prototype of Chameleon is depicted in Figure 24.

Figure 24. Chameleon prototype. (Photograph by Daniel Sandin, Chameleon, September 30, 2018,

Electronic Visualization Laboratory, University of Illinois at Chicago).

6.3 Experiment Setup

We conducted experiments with unoptimized MATLAB and PanoTools [7] on a PC with an Intel

Core i7-3770s 3.1-GHz CPU and 16-GB memory. The vlfeat library [40] provided the original SIFT fea-

ture detection to produce basic features for CIF construction. During energy map generation, the depth

map was generated by basic semiglobal block matching algorithms. The gradient map was generated

by the Sobel gradient operator. The saliency map was generated by the GBVS. All three maps were im-

plemented in MATLAB. Regarding feature tracking in the video, we utilized MATLAB’s built-in KLT
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tracker. For the image alignment and blending steps, we estimated the cameras poses and combined

individual camera views into the final panoramic video using PanoTools framework and Enblend [8].

To verify whether our proposed stitching system was capable of stitching under different scenes and

camera setups, we tested our proposed stitching strategy on several data-sets. Generally, we divided all

the testing data-set into two groups: one for the real-captured scenes from the camera prototype and

another group is the synthetic data-sets rendered in simulation software. The distance between stereo

camera pair is 75 mm for real data-sets and set as 80 mm in the synthetic data-sets.

In Figure 25, we observed six different datasets for camera-based capture. Among them, Cases

(a) and (b) were captured by a pair of stereo cameras mounted on a spinner for indoor and outdoor

scenarios. The StarCam prototype [39] is used to capture cases (c) and (d). Cases (e) and (f) were

captured by CAVECam [41].

In Figure 26, we observed six different datasets from the simulation software. Among them, Cases

(a) and (b) were rendered with 3D software, Blender, for outdoor and indoor scenarios. Cases (c) and

(d) are rendered by Unity for the indoor walking man in a circular path with various radii. Cases (e) and

(f) are rendered by Unity for the outdoor walking man in a circular path with two different radii.

To clarify the technical details of input data used in the experiment and simulation, we also state the

resolution of the input image, number of cameras, and the field of view for each dataset. All the basic

information for static scenario dataset-sets and video dataset-sets is recorded in Table IV and Table V,

respectively.
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(a) Atrimum

(b) Basement

(c) Bearstone

(d) Courtyard

(e) Campus

(f) Rampart

Figure 25. Real data used in the experiments, numbered from 1 to 6.
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(a) Pavalion

(b) Classroom

(c) Lving-Room 1

(d) Lving-Room 2

(e) Village 1

(f) Village 2

Figure 26. Synthetic data used in the experiments, numbered from 7 to 14.
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TABLE IV

BASIC INFORMATION OF STATIC DATASET

Static Scene Atrium Basement Campus Rampart Pavilion Classroom

Number of Cameras 10x1 10x1 12x3 12x3 10x1 10x1

Number of Rings 1 1 3 3 1 1

Resolution 3448x4729 3448x4729 2992x2992 2992x2992 1500x2000 1500x2000

FOV 47x64 47x64 36x36 36x36 46x69 46x69

6.4 Evaluation Metric Definition

In this part, we define three pixel-based and one feature-based evaluation metrics for a fair compar-

ison with other different panorama stitching solutions. Compared to the feature-based quality metric

we used in 2, the pixel-based metric for the single frame can characterize the final stitching quality

for all overlapping regions rather than the sparsely distributed features. The performance evaluation

based on pixel-wise alignment and disparity distance can better define the quality of stitching output in

both the monocular sense and stereo sense. As for the evaluation of panoramic video, we believe the

feature-based metric is more suitable rather than the pixel-based one because the long-term tracking for

the dense pixels is a difficult task.
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TABLE V

BASIC INFORMATION OF VIDEO DATASET

Dynamic Scene Village Living room Courtyard Bearstone

Video Number 8 8 8 8

Resolution 1920x1920 1920x1920 1920x1080 1920x1080

FOV 60x60 60x60 60x33 60x33

Number of Frames in Video 100 100 500 500

Synthesized or Real Synthesized Synthesized Real-captured Real-captured

6.4.1 Pixel-based Alignment Accuracy

To quantify the effect of our proposed strategy on various monocular stitching pipelines, we use the

projection position distance as the metric to evaluate the image alignment accuracy. After the warping of

two neighboring camera views (e.g., L1 and L2) into the output canvas, each pixel within overlapping

region always corresponds to two source pixels from warped L1 and L2 respectively. In the ideal

situation, the two source pixels on the output canvas are expected to have zero position displacement.

Therefore, given the dense optical flow map Flow between warpedL1 andL2, we define the monocular-

view stitching error as the average position displacement of all the pixels in the overlapping region:

Sl =
1

M ∗N

M∑
i=1

N∑
j=1

√
Flow2

x(i, j) + Flow2
y(i, j). (6.1)
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Flowx(i, j) and Flowy(i, j) indicates the horizontal and vertical component of the dense optical flow

map between warped L1 and L2 at position (i, j). The algorithm we used to compute the dense corre-

spondence is called SIFT Flow [42]. Regarding similarity, the right- view monocular stitching error can

be defined as a similar pattern. The monocular stitching error stated in later figures is the average error

from left-view and right-view panoramas. Usually, the smaller error implies fewer misalignment and

discontinuities; in other words, a better stitching quality in the monocular sense.

6.4.2 Pixel-based Vertical Depth Accuracy

To quantify the depth information error, we use the pixel-wise depth accuracy to evaluate whether

the output stereoscopic panorama carries the correct disparity value. In the ideal stitching result, the

vertical disparity value between each of the two corresponded pixels in binocular view is expected to be

zero. Thus, the vertical component of the dense optical flow map implies the vertical depth accuracy of

the output stereoscopic panorama. Given the dense optical flow map Flow, the vertical depth error is

defined as:

Sv =
1

M ∗N

M∑
i=1

N∑
j=1

|Flowy(i, j)|. (6.2)

FlowGTy (i, j) indicates the vertical component of the pixel displacement at position (i, j). A small

vertical disparity error between two final stitched panorama canvas indicates good stereo consistency.

6.4.3 Pixel-based Horizontal Depth Accuracy

To define the depth error along the horizontal direction, we first assume that all the input image

pairs can provide correct depth information for each pixel in the original spatial coordinate. Then,
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we construct a dense correspondence between the input image and output panorama to identify the

transformation via optical flow. Due to the diversity of existing stitching algorithms, the displacement

between the input image and output panorama images might vary across spatial dimensions. Thus, SIFT

Flow [42] is adopted to calculate point correspondence. Given the disparity value from the input image

and the dense pixel correspondence, we construct the expected disparity map of the output stereoscopic

panorama. Thus, the pixel-based depth difference between the expected disparity map and the measured

disparity map can be used to characterize the depth accuracy of output panorama. Given the ground truth

disparity mapDispGT and measured disparity MapDispM , the horizontal disparity score is defined as:

Sh =
1

M ∗N

M∑
i=1

N∑
j=1

|DispGT (i, j)−DispM (i, j)|. (6.3)

A small horizontal depth error indicates the delivered depth in the stitched panoramas are close to

the depth perceived from the input camera views.

6.4.4 Temporal Consistency

Giving one reasonable evaluation of temporal consistency for different algorithms is rather difficult

because there is no one commonly- used benchmark to evaluate the quality of stereo 360 videos. Liu

et al. [43] and Guo et al. [35] have presented one metric based on the frequency component of feature

trajectories. However, the metric in the frequency domain is not reliable sometimes due to its short

length. Nie et al. [36] proposed another stability metric, which is defined as the ratio between the length

of the feature trajectory and the length of the virtual straight line from the feature position at the first

frame to the last frame. Based on the idea from [35], we proposed one stability score based on CIF.
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Formally, a feature-based trajectory is composed of a set of CIFs {dti,1; i ∈ {1, 2, 3, 4}; ts ≤ t ≤ te},

and ts, te indicate the position of feature at the first and last frame. Then, the stability score of the CIF

in this stitched video is defined as:

St =

∑4
i=1 ‖dti − d

t−1
i ‖2∑te

t=ts+1

∑4
i=1 ‖dti − d

t−1
i ‖2

. (6.4)

If the trajectories of selected control points can perfectly match the virtual straight line between the

initial and end position, the stability score will be 1, which means the most stable case as expected.

To evaluate the stability of stitched video, we extract all the CIF’s trajectories in some selected frames

from the stitched video. In our experiments, we don’t place too much emphasis on these frames when

no moving objects in the overlapping field and wish to analyze the stability between consecutive frames

with significant content change. The whole tracked trajectories are cut into small segments with a length

of 25 frames. Then, we compute stability scores for all the sections via the previously defined stability

score and use the average of them as the temporal metric for video stitching quality comparison.

6.5 Application of CIF in Standard Monocular Stitching Algorithm

Given the definition of the stitching quality metric, we present several different experiments to

compare our proposed system with monocular stitching algorithms, stereoscopic panorama stitching

algorithms, and stereoscopic panoramic video solutions. First, to demonstrate the improvement brought

with our proposed feature structure CIF, in the following, we investigate the application of the proposed

strategy in different standard monocular stitching frameworks, such as Simple Homography, AANAP

[44], Hugin [7], and SPHP [45].
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6.5.1 Simple Homography

Figure 27 demonstrates one example of visual comparison before and after the application of CIF

to simple homography. Simple homography refers to one straightforward panorama stitching solution.

In a simple homography stitching process, one input image will be selected as the reference plane and

all the other input images will be projected into it under the guidance of the fitted projection matrices.

In Figure 27, there is no visible misalignment or stitching errors in the amplified ROI, which indicates

both the left-view and right-view panorama enjoy good monocular stitching quality. However, the object

size consistency in the stereo sense is violated. Given the same resolution of ROI selected from binocular

views and left-bottom pixels as the anchor, we can find that the top beam in the second sub-figure has

a different height compared to the third sub-figure, which implies the different scaling factors between

left-view and right-view panoramas. However, the stitching result under the guidance of CIF, without

any visible artifacts and stereo rivalry, can achieve the good monocular stitching quality and stereo

consistency simultaneously.

6.5.2 AANAP

Figure 28 demonstrates one example of visual comparison before and after the application of CIF

to AANAP [44]. In Figure 28, we can see the stitching output without CIF suffers from severe mis-

alignment around the beam area. The output with a broken line and cropped objects fail to describe the

correct geometric structure of the scenario, much less the artifacts-free depth distribution. Thanks to the

rejection of the POF set and abandoning of redundant features, the proposed method can fix all these

errors under the CIF-based image alignment and produce well-stitched stereoscopic panoramas.
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Figure 27. From the left to the right: left view stitched by simple Homography; left view ROI without

CIF; right view ROI without CIF; left view ROI with CIF; right view ROI with CIF. Given the same

resolution of ROI selected from binocular views and left-bottom pixels as the anchor, we can find that

the top beam in the second sub-figure has a different height compared to the third sub-figure, which

implies the different scaling factors between left-view and right-view panoramas.

6.5.3 Hugin

Figure 29 demonstrates one example of visual comparison before and after the application of CIF

to Hugin [7]. Similar to what we see in the AANAP stitching output, there is also severe distortion

detected in the stitching output of Hugin without the operation of CIF. It is noted that the stitching error

is corrected in the 4th and 5th sub-figures, which indicates the improvement of proposed CIF to the

original monocular stitching algorithms.

6.5.4 SPHP

Figure 30 demonstrates one example of visual comparison before and after the application of CIF

to SPHP [45]. It is evident that the major beam is slightly curved in the left-view output without CIF,

but turns out to be straight in the corresponding right-view output. Though the viewers may not feel any
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Figure 28. From the left to the right: left view stitched by simple AANAP; left view ROI without CIF;

right view ROI without CIF; left view ROI with CIF; right view ROI with CIF. We can see obvious

misalignment around the beam area in the second and third sub-figure.

Figure 29. From the left to the right: left view stitched by Hugin; left view ROI without CIF; right view

ROI without CIF; left view ROI with CIF; right view ROI with CIF. Similar to what we see in the

AANAP stitching output, there is also severe distortion detected in the second and third sub-figure.

discomfort when they only observe the left-view or right-view panorama, the delivered depth informa-

tion around this beam area is corrupted. However, the stitching result under the guidance of CIF can

maintain good consistency between left-view and right-view output. The shape and curve of the beams
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at two monocular views remain the same, which ensures the correct carried depth information in this

area.

Figure 30. From the left to the right: left view stitched by SPHP; left view ROI without CIF; right view

ROI without CIF; left view ROI with CIF; right view ROI with CIF. It is evident that the major beam is

slightly curved in the second sub-figure without CIF, but turns out to be straight in the third sub-figure.

Therefore, the delivered depth information around this beam area is corrupted.

6.5.5 Quantitative Analysis

Figure 31 summarizes the monocular stitching error of all four algorithms before and after the

application strategy. As indicated by these numbers, the monocular image alignment accuracy is slightly

improved in all examples. Therefore, given the rejection of the POF set and abandonment of redundant

features, the proposed refinement, and the selection strategy to independently detection result will not

bring impairment to the original well-stitched panorama in the monocular sense.



88

Simple-Hom AANAP Hugin SPHP
0

5

10

15

3.06

5.56

8.02

3.182.83
4.63

5.87

2.48

pi
xe

l
Standard Proposed

Figure 31. Monocular stitching error comparison

On the other hand, Figure 32 and Figure 33 conclude the average depth error before and after the in-

troduction of CIF. Those monocular stitching algorithms all suffer from significant depth error because

they lack the necessary mechanism to deal with depth control. After we use the CIF to replace the origi-

nal 2D SIFT feature in these stitching frameworks, the pixel-based depth error is largely mitigated. The

better vertical and depth accuracy after the introduction of our proposed feature structure demonstrates

the improvement in the depth control as we expect intuitively.

6.6 Comparison with Other Featured-based Stereoscopic Panorama Stitching Solutions

To compare with other stereo panorama stitching algorithms, we consider the standard feature-based

panorama generation framework as the baseline and utilize the stitching result from Casual Stereoscopic

Panorama Stitching [4] and AutoPano Pro [17] as another two competitors.

6.6.1 Hugin

Figure 34 shows the left-view, right-view, and dense disparity map of the stereoscopic panoramas

stitched by the Hugin. In the second sub-figure, the right-view output panorama, we can see the area
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Figure 32. Horizontal depth error comparison
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Figure 33. Vertical depth error comparison

marked with the yellow rectangle has noticeable shape distortion between the pillar bottom and the

ground. Moreover, the estimated dense map can only provide incomplete depth information at a very

limited area in the output panorama. Most of the background is marked with black, which indicates no

corresponding matches between left-view and right-view panoramas.
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6.6.2 AutoPano Pro

Figure 35 shows the left-view, right-view, and dense disparity map of the stereoscopic panoramas

stitched by the AutoPano Pro. In general, the output panoramas at the left-view and right-view enjoy

good monocular stitching quality except one tiny discontinuity at the bottom of the cart. The majority

area of dense disparity map is smooth and accurate. The only erroneousness area is around the bottom

of the cart, where the right-view stitching error corrupts the depth information.

6.6.3 CSPS

Figure 36 shows the left-view, right-view, and dense disparity map of the stereoscopic panoramas

stitched by the CSPS. Due to the parallax-tolerant stitching algorithm [46], we can barely detect any

geometric errors or misalignments in the monocular-view output panorama via CSPS. For the corre-

sponding disparity map, we can also identify the correct horizontal disparity value of most pixels in this

panorama and understand the overall depth distribution in this scenario. However, there are also many

local regions without valid depth information. One of these problems can be found at the left-bottom

corner, which slightly impairs the smoothness of the whole panorama depth map.

6.6.4 Proposed System

Figure 37 shows the left-view, right-view, and dense disparity map of the stereoscopic panoramas

stitched by the proposed stitching system. From the monocular stitching perspective, there are no visible

stitching errors or misalignment in left-view or right-view panorama. From the stereoscopic stitching

perspective, the estimated disparity map can deliver complete and smooth depth distribution to the

viewers without any invalid patch or ambiguity. In summary, compared to the other three stitching
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solutions, the output panoramas from our proposed system can achieve good monocular quality and

excellent depth control simultaneously.

6.6.5 Stereoscopic 360 Panorama Comparison

Figure 38 shows another example of 360 panorama generation. The first row is the stereoscopic

panorama from Hugin with CIF in red-cyan anaglyph. The following rows are dense disparity maps from

four different stereoscopic panorama stitching solutions we discussed above. For the original Hugin and

AutoPano Pro, although we manually shifted the left-view and right-view panorama to ensure they can

deliver some useful depth information at some areas of the output, significant vertical disparities and

incorrect horizontal disparities still exist. In their disparity map, we can only perceive quite limited

useful depth information. For the stitching result of CSPS, there is no noticeable parallax in the vertical

direction. However, for the horizontal disparity distribution over the whole 360 panoramas, the output

of CSPS suffers from serious depth contraindication. Those objects on the right side usually have

positive horizontal disparity, which can be identified due to their reasonable depth. However, the objects

that should also have a positive disparity value in the middle and left side are found to carry negative

horizontal disparity. No matter how we align the left-view and right-view panorama, their perceived

depth information in this scenario is always confused and makes it difficult for viewers to understand

the accurate distance of the surrounding objects. In this case, only the output panorama of our proposed

method can provide viewers a reasonable depth distribution of all objects without any ambiguity or

misunderstanding.
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6.6.6 Quantitative Analysis

In Figure 39, we list the depth error of four stereoscopic panorama generation solutions. Hugin

shows the worst performance in the depth control as we expected because it is not designed for stereo-

scopic panorama stitching tasks. The other three stereo stitching solutions obtain much better depth

control results, especially in the vertical direction. Our proposed strategy achieves the minimal hori-

zontal depth error and the second smallest vertical depth error. Though the CSPS can perform slightly

better in the vertical depth control, the difference between the CSPS and our proposed system is rather

small. Finally, it is noted that the latter two solutions outperform Hugin and AutoPano Pro in the depth

accuracy control.

6.7 Comparison with Other Featured-based Stereoscopic Panoramic Video Stitching Solution

In addition to academic research, many commercial companies are producing the stereoscopic 360-

degree video. Some products, such as the Ricoh Theta or the Gear360, capture monoscopic video via

a monocular radial camera arrangement. That camera design allows for compact cameras but does

not meet our target since the stereo cue is missing. Some software is producing stereoscopic 360-

degree cameras such as Google Jump [5] and Facebook Surround 360 [47], however, it is challenging

to evaluate these systems because some of them did not employ the feature-based stitching framework

and others use proprietary stitching methods. For a fairer performance evaluation, in this section, we

mainly compare our method with Autopano Pro [48] stitching result, which is one feature-based 360

video generation software. We consider it as the standard feature-based panorama generation framework

without any optimization to the original detected SIFT features.



93

6.7.1 Monocular Panoramic Video

Figure 40 and Figure 41 depict the ROIs from stitched monocular panorama in the indoor and

outdoor scenarios respectively. The first row is the stitching output form AutoPano Pro and the second

row displays the stitching result from the proposed stitching system. In Figure 40, we can find shape

distortion of the human head in sub-figure(b). Compared to the correctly stitched human head at the

previous and consecutive frames, discontinuities of the object shape will lead to viewing discomfort and

will ruin the depth perception of the human head. Similar errors can also be identified in sub-figure(b)

in Figure 41. In our proposed stitching result, those unpleasant artifacts are fixed under more accurate

image alignment, which ensures the shape consistency of the moving human head between neighboring

frames.

6.7.2 Stereoscopic Panoramic Video

Figure 42 and Figure 43 demonstrate the visual comparison of stereoscopic panorama for video

datasets in red-cyan anaglyph. In those stitching results from Autopano Pro, we can always find some

objects with incorrect depth. For example, in the top row of sub-figure (c) in Figure 42, we can barely

detect any horizontal disparity of the stake between red and cyan views. Thus, the zero horizontal dispar-

ity implies the stake located at a distance from the shooting position. However, the visual understanding

of the whole scene tells us that the stake should be located between the close walking man and the house

in the background. The contradicted depth distribution in this scenario makes it difficult for the viewer

to know the true position of those objects in the 3D coordinate. In the bottom row of sub-figure (c)

in Figure 42, the horizontal disparity of the walking man, the stake and house are all adjusted into a
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reasonable range so that their depth can be correctly perceived now. More similar situations can also be

observed under other scenarios in Figure 42 and Figure 43.

6.7.3 Quantitative Analysis

Table VI summarizes the video stability score of AutoPano Pro and our proposed stitching sys-

tem. As indicated by these scores, the stability has been improved in our proposed stitching system

on all examples. Our proposed stitching system can achieve a panoramic video with a better viewing

experience.

6.8 Conclusion

In this chapter, we explain the details of our experiments and simulations for the system perfor-

mance evaluation. In the image acquisition part, we present three different camera array designs and

corresponding synthetic/camera-based data-sets. Moreover, to conduct one fair performance evaluation,

we divide the all of the experiments into three parts: application of CIF in other monocular stitching

algorithms, comparison with other stereoscopic panorama stitching algorithms, and comparison with

other stereoscopic panoramic video stitching solutions. These three different levels of comparisons fo-

cus on the monocular alignment accuracy, stereoscopic depth control, and video stability respectively.

To quantify these stitching quality improvements, we also proposed one pixel-based metric to character-

ize the stitching result from the geometric correctness, depth distance error, and temporal consistency.
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Figure 34. Left-view, right-view panorama and dense disparity map via Hugin. We can see the area

marked with the yellow rectangle has noticeable shape distortion between the pillar bottom and the

ground. The estimated dense map can only provide incomplete depth information at a very limited area

in the output panorama. Most of the background is marked with black, which indicates no

corresponding matches between left-view and right-view panoramas.
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Figure 35. Left-view, right-view panorama and dense disparity map via AutoPano Pro. The output

panoramas at the left-view and right-view enjoy good monocular stitching quality except one tiny

discontinuity at the bottom of the cart. The majority area of dense disparity map is smooth and

accurate. The only erroneousness area is around the bottom of the cart, where the right-view stitching

error corrupts the depth information.
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Figure 36. Left-view, right-view panorama and dense disparity map via CSPS. There are also many

local regions without valid depth information. One of these problems can be found at the left-bottom

corner, which slightly impairs the smoothness of the whole panorama depth map.



98

Figure 37. Left-view, right-view panorama and dense disparity map via proposed system. There are no

visible stitching errors or misalignment in left-view or right-view panorama. From the stereoscopic

stitching perspective, the estimated disparity map can deliver complete and smooth depth distribution

to the viewers without any invalid patch or ambiguity.
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Figure 38. Comparison between different stereoscopic panorama solutions under 360 case. The first

row shows the stitched 360 panorama via proposed method in red-cyan anaglyph version. The lower

four rows display the estimated dense depth map from original Hugin, CSPS, Autopano Pro and our

proposed method respectively.
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Figure 39. Depth error comparison between stereoscopic stitching solutions
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(a) (b) (c)

(d) (e) (f)

Figure 40. Visual comparison of monocular panorama for synthetic indoor dataset. The first and second

row shows three consecutive stitching results of AutoPano Pro and our proposed method respectively.
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(a) (b) (c)

(d) (e) (f)

Figure 41. Visual comparison of monocular panorama for synthetic outdoor dataset. The first and

second row shows three consecutive stitching results of AutoPano Pro and our proposed method

respectively.
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(a) (b) (c)

(d) (e) (f)

Figure 42. Visual comparison of stereoscopic panorama for synthetic dynamic dataset in red cyan

anaglyph. The first and second row shows stitching results of Autopano and our proposed method

respectively.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 43. Visual comparison of stereoscopic panorama for real dynamic dataset in red cyan anaglyph.

The first and second row shows stitching results of AutoPano Pro and our proposed method

respectively.
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TABLE VI

STABILITY COMPARISON OF DYNAMIC DATASET

Autopano Proposed

Synthetic Outdoor 1(2m) 0.7157 0.7677

Synthetic Outdoor 2(5m) 0.7186 0.7685

Synthetic Outdoor 3(Line) 0.7549 0.8246

Synthetic Outdoor 4(Cross) 0.7163 0.7523

Synthetic Indoor 1(1m) 0.6976 0.7429

Synthetic Indoor 2(2m) 0.6169 0.6839

Real Indoor 1(Real1) 0.7099 0.7798

Real Indoor 2(Real2) 0.7131 0.7201



CHAPTER 7

POST-STITCHING FLOW MAP GUIDED PANORAMA CORRECTION

7.1 Introduction

Most of the existing stereoscopic panorama generation algorithms try to achieve better stitching

output via improving the corresponding accuracy of control points or fitting one optimized blending

mask to avoid the possible discontinuities. However, these efforts are all made before the generation of

the final output, which means they lack the mechanism to adjust or update the final output according

to the feedback from the viewers. The refinement and optimization during image alignment and image

blending step can generally produce acceptable output, but they cannot guarantee the stitched panorama

is free of any stitching errors. Thus, in this chapter, we propose one post-stitching correction to remove

those visible artifacts in the original output panorama and bring a better viewing experience.

7.2 Objective

One good stereoscopic panorama is always expected to have artifact-free monocular stitching results

in both left-view and right-view output. Additionally, the stereo consistency between binocular view

panorama and the reasonable depth distribution are our purposes in the stereoscopic panorama stitching

task. Since there is no ground truth for the final stitching output, we intend to utilize the information

from the input image to adjust or correct the output panorama for satisfactory viewing. For instance,

we can see the stitched panorama with discontinuities in Figure 44 and one artifact-free input image

in Figure 45.

106
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Figure 44. Left-view output panorama from 48 images. One discontinuity is detected around the

overlapping region near the human’s leg.

7.3 Proposed Monocular Panorama Correction

The proposed stereoscopic panorama correction mainly consists of four steps: ROI Registration,

Flow-map Estimation, Flow-map Correction, and ROI Reconstruction. In the following, we will discuss

the details of each step.

7.3.1 ROI Registration

To correct the visible artifacts in the output panorama, we need to manually identify the ROI that

need correction. Since the stitching operation only occurs at the area that can be viewed by neighboring

cameras, we can leave those regions from unique input image and focus on the details in each overlap-

ping window. Given the identified ROI that needs correction, we employ it as the template and operate

the normalized cross-correlation (NCC) method to search the best-matched region in the input image.
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Figure 45. Left-view major input image selected from four input images,

In this correspondence problem, the appearance difference function needs to be defined for search the

patch with the highest similarity. One of the popular searching options, called correlation, is defined as:

Cf,g =
∑

[i,j]∈R

f(i, j) ∗ g(i, j), (7.1)

where f is the template, and g is one of the potentially matched windows.

However, the straightforward correlation may cause one problem in that brighter regions always

generate higher similarity scores, regardless of details in the template. Thus, the solution to this problem

is to subtract the mean value of the template before we operate the correlation computation. Thus, the

correlation result will not be biased by the significant difference between the average intensity values of

the two windows. Another problem of the straightforward correlation is its failure in intensity change

control between the reference and template. Those two images we intend to match may have different

intensity response characteristics due to the natural illumination change, capture position movement
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or the autogain control set from the camera. The corresponding solution is to normalize the pixels by

subtracting the mean of patch intensities and dividing by the standard deviation. Thus, one improved

correlation function, the NCC score between reference f and potentially matched template g can be

defined as:

NCCf,g =
∑

[i,j]∈R

f̂(i, j) ∗ ĝ(i, j), (7.2)

f̂ =
f − f̄√∑
(f − f̄)2

, (7.3)

ĝ =
g − ḡ√∑
(g − ḡ)2

. (7.4)

After the search for all the possible windows with the NCC function in the input image, we will

identify the patch with the largest score as the best-matched ROI.

In Figure 46, we can see the target ROI from output panorama and its matched ROI from the in-

put image. It is noted that the two registered patches are similar. However, we cannot directly use the

matched ROI to replace the target ROI due to the many tiny differences and mismatches. To recon-

struct one satisfied ROI, we need more specific corresponding information rather than the patch-wise

registration.

7.3.2 Flow-map Estimation

In this section, we establish one dense pixel-based correspondence between the panorama ROI and

image ROI we registered in the previous step. Due to the diversity of existing stitching algorithms,

the displacement between the input image and output panorama might vary across spatial dimensions.
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Figure 46. Target ROI from output panorama and matched ROI from input image.

Thus, SIFT Flow is adopted to calculate point correspondence. The SIFT Flow is formulated almost the

same as the standard optical flow framework. The difference between them is that the matching function

in the SIFT Flow framework is based on the SIFT descriptors instead of RGB intensity values in the

optical flow framework.

For each pixel p = (x, y) in target ROI, the SIFT Flow framework tries to find the closest pixel in

reference ROI and return its position displacement w(p) = (u(p), v(p)). For two images I1 and I2 we

intend to match, the SIFT Flow framework utilizes the standard SIFT detection algorithm to generate

the dense SIFT representation for every pixel, which is called SIFT image. Let s1 and s2 be two SIFT

images and set ε a four-neighbor system that contains all the spatial neighborhoods, the energy function

in the SIFT Flow framework can be defined as:
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E(w) =
∑
p

min(‖s1(p)− s2(p+ w(p))‖1, t)+

∑
p

η(u(p) + v(p))+

∑
(p,q)∈ε

min(α(u(p)− u(q)), d) +min(α(v(p)− v(q)), d).

(7.5)

In Equation 7.5, the formulated energy function contains three terms: data term, small displacement

and smoothness term. The data term describes the gradient difference between two SIFT descriptors.

The small displacement term then constrains the estimated position displacement vector to be as small

as possible. The third term, which is the smoothness penalty, forces those adjacent pixels to have similar

position displacement values.

One example of horizontal and vertical flow maps between panorama ROI and image ROI are de-

picted in Figure 47. We can observe that there are some un-smooth pixels in the area we labeled as

the target ROI in the last step. Those pixels with the sudden change of intensity value because they

got different position displacement compared to their neighbors. We believe these inconsistent posi-

tion displacements are the primary reason why we can see these discontinuities in the output panorama.

To achieve the consistency of the corresponding from reference coordinate into the target coordinate,

we need to adjust the pixel intensity values in these two estimated maps. The object of this intensity

value adjustment is to make sure all the pixels of ROI at the reference coordinate to hold close position

displacement.
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(a) Target ROI (b) Reference ROI

(c) Original horizontal map (d) Original vertical map

Figure 47. Horizontal and vertical flow map before correction.

7.3.3 Flow-map Correction

In this section, we explain the details to adjust the position displacement value in the original esti-

mated flow map. In Figure 48, we first remove all the pixels in the labeled ROI and interpolate them

based on the pixels on outer boundaries. To make the nearby pixels can be warped with close displace-
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Figure 48. Horizontal and vertical flow map with holes.

ment values under the corrected flow map, we assume that pixel in this image should satisfy Laplace’s

equation:

∂2f

∂x2
+
∂2f

∂y2
= 0. (7.6)

Those pixels disturbed around the ROI can provide us the boundary condition for this partial differ-

ential equation. In the simplified discrete version of Laplace’s equation, the value of each grid element

should be the average of its four connected neighbors:

I(x+ 1, y) + I(x− 1, y) + I(x, y + 1) + I(x, y − 1) = 4 ∗ I(x, y). (7.7)

Based on the assumption stated above, we can set up a linear system of equations: Ax = b to

describe the pixel-wise relationship in the expected flow map. The left-hand side is one sparse coefficient
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updated H Flow Map updated V Flow Map

Figure 49. Horizontal and vertical flow map after correction.

matrix that is formulated from the Laplace assumption. The right-hand vector, b, contains either the

original pixel values (for pixels outside the ROI) or 0 (for pixels inside the ROI). Thus, the expected

pixel value vector x can be easily obtained and reshaped to the size of the original flow map.

In Figure 49, we can observe the updated horizontal and vertical flow map after we fill the empty

regions. Compared to the original flow maps, these updated maps achieve much better smoothness

inside the marked ROI, which indicates better warping consistency for neighboring pixels.

7.3.4 ROI Reconstruction

Since the updated flow map provide us one smoother warping function to reconstruct the target area,

our next step is to produce one new target area without any visible stitching errors. For each pixel I(x, y)

in the target ROI, we can find its position displacement along x and y coordinate from the updated flow

maps, respectively:
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Dispw(x, y) = floww(i, j), (7.8)

Disph(x, y) = flowh(i, j). (7.9)

Then we can utilize the RGB intensity value of pixel at (x+Dispw(x, y), y +Disph(x, y)) in the

reference ROI to replace the pixel at (x, y) in the target ROI coordinate. The warping technique we

use here is called reverse mapping. Figure 50 displays the reconstruction process from the original

target ROI to the corrected target ROI. Sub-figure(a) is the original target ROI with the discontinuities

around human’s lower leg. Since most of the pixels in target ROI can correspond to one valid pixel

in the reference ROI, sub-figure(b) displays one error-free reconstruction result in most of the image

area. However, there are some pixels with an invalid corresponding that fails to obtain updated intensity

values and are left as black holes in sub-figure(b). For these outliers in the reverse mapping, we directly

keep their original intensity values from the target coordinate. The final reconstruction result is shown

at sub-figure(c) of Figure 50.

7.4 Performance Evaluation

7.4.1 Experiment Setup

To validate the feasibility and robustness of our proposed flow map guided panorama correction

technique, we test parts of the stitched panoramas and panoramic videos in chapter 6, which include

both synthetic and real data-sets. For each original output with visible stitching errors, we manually

label the ROI with 500 by 500 rectangles and operate the proposed correction to them. The visual

example and numerical analysis of our proposed correction technique are discussed in the following.
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(a) Original target ROI (b) Reconstructed target ROI with Holes

(c) Reconstructed target ROI after hole filling

Figure 50. Reconstructed ROI.

It is noted that our proposed correction can mitigate most of the visible stitching errors in the original

output panorama.

7.4.2 Monocular Panorama Correction

In Figure 51, we can see an example of one monocular-view panorama correction.
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(a) Original horizontal map (b) Original vertical map

(c) Corrected horizontal map (d) Corrected vertical map

(e) Original ROI (f) Reconstructed ROI

Figure 51. Monocular correction example.
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7.4.3 Application to Stereoscopic Panorama

In this section, we extend the previous monocular correction into the stereoscopic panorama correc-

tion. To maintain the stereo consistency between left-view and right-view panorama after the correction,

we choose to operate standard operation to one of the binocular views and utilize the updated flow map

to guide the ROI reconstruction in another view. For instance, we label the target ROI in the left-view

output panorama, find its corresponding ROI in the left-view input image and correct left-view panorama

with the updated flow map. For the right-view panorama correction, we also utilize SIFT Flow to find

the corresponding target ROI in the right-view output panorama, and reference ROI in the right-view

input image. Since the well-rectified input image can ensure the good correspondence between the

left-view and the right-view input image, we can follow the routine of left-view panorama correction

and reconstruct the ROI in the right-view panorama. Figure 52 and Figure 53 display the flow-map

update process in left-view and right-view ROI, respectively. The finally corrected ROIs are depicted

in Figure 54.
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(a) Original horizontal flow map (b) Original vertical flow map

(c) Corrected horizontal flow map (d) Corrected vertical flow map

Figure 52. Left-view flow map before and after correction.
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(a) Original horizontal flow map (b) Original vertical flow map

(c) Corrected horizontal flow map (d) Corrected vertical flow map

Figure 53. Right-view flow map before and after correction.
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(a) Left-view ROI before and after correction

(b) Right-view ROI before and after correction

Figure 54. Left-view and right-view ROI before and after correction.
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7.4.4 Application to Panorama Video

In this section, we extend the previous panorama correction into the video case. Unlike the situation

of stereoscopic panorama correction, the stitching errors and artifacts always appear at some places in

the video sequence because of the fixed blending mask. Thus, there is no need to track the trajectory

of initialized ROI in later frames. Once we label the ROI with stitching errors in one frame, we only

need to focus the same place in later frames and operate standard monocular panorama correction to the

corresponding ROI in the video when it’s necessary. In Figure 55, we can see the discontinuities around

the leg region in all three frames. Given the same ROI in three consecutive frames, we update the flow

maps and interpolate the erroneous areas to obtain new maps for more consistent position displacement.

The correction to the left-view and right-view flow maps are show in the Figure 56 and Figure 57

respectively. Finally, we can see the target ROIs and reconstructed ROIs in Figure 58. There are no

visible stitching errors detected in the ROI after correction.

(a) Panorama at 1st frame (b) Panorama at 2nd frame (c) Panorama at 3rd frame

Figure 55. Cropped panorama in three consecutive frames.
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(a) Original map at 1st frame (b) Original map at 2nd frame (c) Original map at 3rd frame

(d) Corrected map at 1st frame (e) Corrected map at 2nd frame (f) Corrected map at 3rd frame

Figure 56. Horizontal flow maps in three consecutive frames.

7.4.5 Quantitative Analysis

To quantify the stitching quality of ROI before and after the proposed correction, we employ the

structural similarity index (SSIM) to characterize the similarity between target ROI in the panorama and

reference ROI in the input image. The SSIM index quality assessment consists of the luminance term,

the contract term, and the structural term. The final similarity score is the multiplicative combination of

them.
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(a) Original map at 1st frame (b) Original map at 2nd frame (c) Original map at 3rd frame

(d) Corrected map at 1st frame (e) Corrected map at 2nd frame (f) Corrected map at 3rd frame

Figure 57. Vertical flow maps in three consecutive frames.

SSIM(x, y) = [l(x, y)]α[c(x, y)]β[s[x, y]]γ , (7.10)

where

l(x, y) =
2µxµy + C1

µ2x + µ2y + C1
, (7.11)

l(x, y) =
2σxσy + C2

σ2x + σ2y + C2
, (7.12)
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(a) Original ROI at 1st frame (b) Original ROI at 2nd frame (c) Original ROI at 3rd frame

(d) Corrected ROI at 1st frame (e) Corrected ROI at 2nd frame (f) Corrected ROI at 3rd frame

Figure 58. ROI before and after correction in three consecutive frames. The three sub-figures on the

first row ares ROI before correction. The three sub-figures on the second row ares ROI after correction

s(x, y) =
σxy + C3

σxσy + C3
. (7.13)

In the above equation, µx and µy the local means for images x and y. σx , σy, and σxy are the

corresponding standard deviations and cross-covariance. In our experiment, we usually set coefficients

α, β, and γ as 1 and C3 as C2/2. Therefore, the similarity score can be simplified to:
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SSIM(x, y) =
(2µxµy + C1)(2σxσy + C2)

(µ2x + µ2y + C1)(σ2x + σ2y + C2)
. (7.14)

In Table VII, we can see the stitching quality of target ROI before correction and after correction in

different datasets. For those still frames, we manually find all the ROIs and compute their SSIM before

and after the correction. The SSIM we stated in Table VII is the average similarity score of these all

detected ROIs. For those panoramic video data-sets, we also manually find the ROIs at the first frame

and correct the same region in later frames when stitching errors detected. The SSIM we displayed is

the average of all target ROIs in all the frames we operate the proposed correction technique.

7.5 Conclusion

In this chapter, we presented one post-stitching flow-map-guided correction technique to mitigate

all the manually labeled artifacts in the output panorama. According to the registered ROI in the input

image, we establish a pixel-to-pixel correspondence between panorama and image coordinate. The

original flow map indicates the position displacement between the target ROI and the reference ROI can

be updated with newly fitted movement via interpolation. Based on the more smoothly distributed flow

map, we can reconstruct the target ROI with the corresponding pixel from the input image by reverse

mapping. The updated flow map then constrains this warping process to be smooth, which inhibits

the generation of artifacts in the reconstructed ROI. Finally, panoramas from various synthetic and real

datasets are tested with the proposed correction. Both the visual examples and quantitative analysis

demonstrate the effectiveness of our proposed post-stitching correction technique. Since the proposed

method utilizes the warping information from those corrected stitched regions, it will not work well

when there is severe distortions or significant plane misalignment. Another limitation of this correction
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technique is its lack of essential consideration of the consistency in the revision to the stereoscopic

panorama and panoramic video. For a more robust correction result and broader application scenes,

more works need to be investigated:

1. Propose one automatic ROI detection method to replace the manual labeling operation;

2. Define one reasonable geometric error metric to characterize the improvement of correction;

3. Incorporate stereo and temporal constraints to handle the stereoscopic and panoramic video prob-

lem better.

The automatic ROI detection can be established on the variance of the pixel position displacements be-

tween output panorama and the input image, which may correspond to discontinues and object cropping.

To define one reasonable geometric error metric, the neural network and deep learning may help us to

train one convincing quality-grader based on a quantity of human-evaluated data-sets.
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TABLE VII

ROI SIMILARITY COMPARISON

Before Correction After Correction

Atrium 0.8971 0.9025

Basement 0.9144 0.9198

Pavilion 0.9148 0.9206

Classroom 0.9166 0.9216

Courtyard 0.9193 0.9232

Campus 0.9201 0.9235

Rampart 0.9119 0.9230

Synthetic Indoor (Video) 0.9189 0.9216

Synthetic Outdoor (Video) 0.9189 0.9218

Bearstone (Video) 0.9171 0.9204

Courtyard (Video) 0.9323 0.9474



CHAPTER 8

POST-STITCHING FEATURE-BASED DEPTH ADJUSTMENT

The content of this chapter is based on our work that is published in [3] . c©2019 IEEE. Reprinted

with permission, from [3].

8.1 Background and Related Works

Traditional monocular panorama stitching methods cannot handle stereo consistency well due to its

lack of depth information utilization [17, 49, 50]. Therefore, recently proposed stereoscopic panorama

generation methods provide various solutions to alleviate the stereo visual discomfort caused by the

inaccurate depth information [4, 5, 10, 51]. Based on the rotation of cameras in a circular trajectory or

static radial camera array, the omnistereo projection method [11] and its extensions [5,13,14,52] usually

implement depth adjustment operation by careful selection of corresponding left-view and right-view

strips. However, Richardt et al. proposed to make compensation to the vertical disparity before stitch-

ing by projecting undistorted input images onto a cylindrical imaging surface [12]. Zhang and Liu also

extended a spatially varying warping method [16] to warp the input images under the guidance of a well-

stitched dense disparity map [4]. However, all of the above depth control strategies are highly correlated

to their unique hardware setup and stitching algorithm, which indicates the difficulty in generalization

and extension. Thus, we intend to propose one general depth correction strategy that can fit different

camera arrangements, captured scenarios and panorama generation methods. The whole depth adjust-

129
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ment process can only depend on the input- rectified image pairs and originally stitched stereoscopic

panoramas.

In this chapter, we mainly discuss the depth correction and adjustment to the stereoscopic panorama

and panoramic video after the monocular correction in the previous chapter. Given the extensive in-

vestigations in high-quality stereoscopic panorama generation and widespread usage of VR display

equipment, the comfortable immersive visual experience of real-world scenes are always expected by

audiences. The criteria for the stitching quality of stereoscopic panoramas not only includes the mis-

alignment, stitching errors, and object distortion but also relies on the accuracy of the depth information.

Although many complicated techniques and hardware-orientated solutions are proposed to handle the

depth control problem, most of the correction, refinement, and adjustment are operated before or in the

panorama generation process. Those later introduced depth disturbance, such as inconsistent blending

seams and panorama straightening, are always ignored. Thus, the goal of this investigation is to provide

an efficient general post-stitching depth correction strategy that could minimize depth error and stereo

inconsistency with sparsely sampled depth information.

8.2 Proposed Depth Adjustment

There are two step in our proposed correction strategy to correct the perceived depth into a comfort-

able range. Based on the well-matched CIF set from input images, we first operate the global translation

to adjust the relative pose between left-view and right-view panoramas. The fitted translation vector,

which causes the minimal stereo inconsistency, can ensure the majority of pixels in the stitched panora-

mas correctly deliver depth information. Then, we utilize the thin-plate-spline warping method to fix all

the noticeable depth errors in small regions after the global correction, according to the target disparity
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map from the input rectified image. For the stitched stereoscopic video, we will operate the proposed

global and local depth adjustment on every single frame.

8.2.1 Global Depth Adjustment

The first correction step can be interpreted as global registration between the left and right panorama.

We wish to adjust the output panoramas with a translation vector < dv, dh > for better global depth

perception. For simplicity, we explain its details in the stitching task for only two pairs of input im-

ages, {L1, L2, R1, R2}. The basic unit we used for global depth correction is CIF, which refers to the

same corner, edge, or region observed and precisely described by all of the adjacent camera views. The

technique for the detection and construction of the CIF in [1] is utilized here. Thus, for the two pairs

of images, we can produce one corresponding CIF set S = {di,1, di,2, di,3, di,4; i = 1 : N}. In the

ideal case, those features’ final projection position in the output panorama is expected to provide iden-

tical depth information as what we perceive from the input images. Then, two corresponding stereo

consistency errors can be defined as:

Ev(i) = |d′
i,1.y − d

′
i,3.y|+ |d

′
i,2.y − d

′
i,4.y|, (8.1)

Eh(i) = |(d′
i,1.x− d

′
i,3.x)− (di,1.x− di,3.x)|

+ |(d′
i,2.x− d

′
i,4.x)− (di,2.x− di,4.x)|.

(8.2)

In the above two equations, di,1, di,2, di,3, and di,4 are the ith four matched features in the CIF set S.

The primed symbols d
′
i,1, d

′
i,2, d

′
i,3, and d

′
i,4 are their corresponding features in the generated panorama.

Additionally, di,1.x and di,1.y represent the feature’s center point position.
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Thus, the stereo consistency errors after the translation operation with dv and dh are:

Egv (i, dv) = |d′
i,1.y + dv − d

′
i,3.y|+ |d

′
i,2.y + dv − d

′
i,4.y|, (8.3)

Egh(i, dh) = |(d′
i,1.x+ dh − d

′
i,3.x)− (di,1.x− di,3.x)|

+ |(d′
i,2.x+ dh − d

′
i,4.x)− (di,2.x− di,4.x)|.

(8.4)

The global depth correction can be formulated as the optimization problem to fit two motion scalars d̂v

and d̂h that cause the minimal stereo consistency errors for all CIF in set S:

d̂v = argmin
d∈R

N∑
i=1

viE
g
v (i, dv), (8.5)

d̂h = argmin
d∈R

N∑
i=1

viE
g
h(i, dh). (8.6)

Weight vi indicate the visual saliency index of the corresponding CIF [23,53], which characterize the

visual importance of features. The corporation of saliency weights can force the estimated translation

to care more about those features that attract more attention from viewers.

Two disparity maps from stereoscopic panoramas are shown in Figure 59. In the first row, before

the global depth correction, we can see that the overall distribution of depth suffers from serious depth

compression. All the objects in this disparity map are assigned with small values. The different color

around the nearby region indicates the spatial discontinuities of the depth information. However, in the
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second row, we can see the depth more distributed uniformly and smoothly, which provides an easy

understanding scenario to the viewers. Two cropped stereoscopic panoramas in red-cyan anaglyph are

shown in Figure 60. In the right panorama, we can see the vertical disparity issue after the global

translation is nearly eliminated. The horizontal disparity of bicycle and shovel are also adapted to one

reasonable range that delivers correct depth information.

8.2.2 Local Depth Adjustment

While the global correction can largely relieve the viewing discomfort, we can always find some tiny

artifacts in its corrected result. To remove these undesirable issues, one TPS-based morphing method

is proposed to fix the region of the interest under the guidance of the target disparity map. Without

loss of generality, we consider the right- view panorama with better monocular stitching quality as the

reference and perform TPS warping at the left-view panorama in the following discussion.

Control Point Generation

Operation of TPS warping requires two equally sized corresponding point-sets in the areas with

depth anomaly. The region of the interest is usually manually labeled for depth correction and denoted

as GL and GR. Afterward, one group of control points {PLi,j} can be detected and extracted from the

left-view ROI, where i is the index for the sampled pixel, and j is the index for ROI. Given the projection

matrix H , which describes the geometrical transformation from the camera view to the panorama view,

we utilize its inverse function to obtain the position of the corresponding point at the input- rectified

image coordinate. According to the target disparity map from input images, the expected disparity of

those sampled control points can be computed easily. Thus, the expected position of control point after

the local warping can be defined as:
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(a) Left-view output panorama

(b) Before global correction

(c) After global correction

Figure 59. Disparity map comparison between before and after global depth correction
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(a) Before global correction (b) After global correction

Figure 60. ROI comparison between before and after global depth correction

P̂Li,j .x = PRi,j .x+Disp(H−1(PLi,j .x, P
L
i,j .y))×R, (8.7)

P̂Li,j .y = PRi,j .y. (8.8)

In the above equations, PLi,j .x, PLi,j .y, PRi,j .x, and PRi,j .y represent the position of the selected control

point in the left and right-view panorama. The hatted symbols P̂Li,j .x and P̂Li,j .y refer to the expected

position of the sampled control points in the left-view panorama. Moreover, H−1 is the inverse of the

projection matrix, Disp is the disparity map from the rectified image pair and R is the ratio of pixel per

degree between the panorama view and camera view.
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(a) Original position (b) Expected position

Figure 61. Control point generation result. Blue stars and red stars indicate the original and expected

position of sampled control points, respectively. To achieve correct disparity values for each cp

between left-view and right-view panorama, the majority of control points are expected to move

left-ward in the original left-view ROI.
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In the example depicted in Figure 61, the blue stars in sub-figure (a) marks the position of the

sampled control points and the red stars in sub-figure (b) indicate their expected position with correct

depth. Under this salutation, the right-view panorama is fixed as the reference, and those sampled

control points in the left-view ROI are expected to move left-ward for expected disparity values.

Depth-aware TPS Warping

The standard TPS [54] can fit one mapping function, Φ, between the two equally sized corresponding

point-sets, A = {xa, ya} and B = {xb, yb}, with minimal bending energy:

Etps(Φ) =
M∑
i=1

||vi − Φ(xa,i, ya,i)||2

+

∫∫
R

[(
∂2Φ

∂x2
) + 2(

∂2Φ

∂x∂y
)2 + (

∂2Φ

∂y2
)] dx dy

(8.9)

In our application, we set vi equal to the target coordinates (xb, yb) in turn to obtain two continuous

transformations for the x and y coordinate respectively. Point set A is defined as the original control

point PLi,j and B refers to the corresponding point P̂Li,j at the expected position.

According to the proof in reference [55], the unique minimizer, Φ, is parameterized as follows:

Φ(x, y) = γ1 + γ2 ∗ x+ γ3 ∗ y +

M∑
i=1

wiU(|(xa,i, ya,i)− (x, y)|) (8.10)

U(r) =


r2 ln r r > 0

0 r = 0

(8.11)
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Therefore, we intend to find the coefficients [w|γ1, γ2, γ3] in mapping function Φ. For Φ to be

square-integrable at second derivatives, we require that:

M∑
i=1

wi =

M∑
i=1

wixa,i =

M∑
i=1

wiya,i = 0. (8.12)

Together with the exact interpolation conditions, Φ(xa,i, ya,i) = vi, this produces a linear system as

follows:  K P

P T O


 w

γ

 =

 v

0

 , (8.13)

whereK,P , andO are submatrices:

Ki,j = U(|(xa,i, ya,i)− (xa,j , ya,j)|)

PM×3 =



1 xa,1 ya,1

1 xa,2 ya,2

...
...

...

1 xa,M ya,M



O3×3 =


0 0 0

0 0 0

0 0 0

 ,

(8.14)



139

andw,γ, and v are column vectors, which stand for TPS coefficients and target data value respectively.

Then, we can obtain the TPS interpolation coefficients as:

 w

γ

 =

 K P

P T O


−1  v

0

 . (8.15)

Once TPS coefficients [w|γ1, γ2, γ3] are computed, we use the TPS equation (10) to find the expected

position for those un-sampled points in the ROI. After all pixels in the ROI have been projected into their

new position via the TPS coefficients, we will obtain the adjusted ROI with correct depth information.

In Figure 62, sub-figure (a) is the unwrapped ROI with control points at their expected position. Then,

sub-figure (b) shows the warped ROI after the projection of all pixels under TPS coefficients. Finally,

sub-figure (c) is the warped ROI after all black holes have been filled via nearest-neighbor interpolation.

(a) (b) (c)

Figure 62. Thin-plate-spline warping
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8.3 Performance Evaluation

8.3.1 Experiment Setup

To validate the feasibility and robustness of our proposed flow map guided panorama correction

technique, we employ the feature-based stereoscopic panorama stitching framework [1] as the baseline.

In the panorama generation process, vlfeat [40] lib is used for SIFT detection and Enblend [8] is the

panorama blender. All stitched panoramas are scaled to 12000 by 6000 pixels for 360◦ × 180◦. Each

local region is manually labeled as a 400 by 400 pixel rectangle, and there are 400 (20 by 20) control

points uniformly sampled for each local region warping.

8.3.2 Quantitative Analysis

Both the camera-captured and synthetic data are tested to quantify the improvement of our proposed

depth correction to the original stitching result. Considering the disparity map from the input rectified

image pairs as ground truth and uniformly sampled features as testing control points, the difference

between the perceived depth of testing control points from stereoscopic panoramas and expected depth

from ground truth is then used as the metric to evaluate the performance of depth adjustment. The pixel-

level depth error for global and local correction is stated in Table VIII and Table IX, respectively. The

testing data-set includes four frames of real-captured outdoor scenarios, two frames of synthetic indoor

scenarios, and five animations. The missing information of several static camera-based datasets-sets in

Table IX indicates no local depth anomaly region was found. The depth error recorded in the tables

is the average of 30 frames of panoramas in each animation data-set, while sometimes the pixel-wise

metric fails to characterize the improvement for human visual perception to depth.
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(a) Right-view panorama before correction (b) Right-view panorama after correction

(c) Before correction (d) Globally corrected

Figure 63. Example of ROI before and after correction
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TABLE VIII

DEPTH ERROR BEFORE AND AFTER GLOBAL CORRECTION

Horizontal Dist Vertical Dist

Before After Before After

Atrium 1.62px 1.41px 1.15px 1.12px

Basement 2.69px 0.67px 1.89px 0.84px

Campus 2.13px 2.02px 1.53px 1.53px

Rampart 28.87px 1.81px 1.79px 1.19px

Barcelona 1.96px 1.54px 2.30px 2.23px

Classroom 1.30px 1.27px 3.89px 1.58px

Village-a 1.62px 1.41px 1.15px 1.12px

Village-b 1.40px 1.29px 1.21px 1.11px

Village-c 1.35px 1.30px 1.05px 1.02px

Living-room-a 1.09px 0.91px 1.96px 1.94px

Living-room-b 0.68px 0.59px 1.73px 1.65px
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TABLE IX

DEPTH ERROR BEFORE AND AFTER LOCAL CORRECTION

Horizontal Dist Vertical Dist

Before After Before After

Atrium 2.78px 1.93px 1.13px 1.12px

Basement 3.40px 1.10px 1.10px 0.89px

Village-a 1.95px 0.65px 1.08px 1.05px

Village-b 1.70px 0.63px 1.23px 1.04px

Village-c 1.85px 0.57px 1.10px 1.08px

Living-room-a 2.70px 1.58px 2.03px 1.94px

Living-room-b 2.10px 1.47px 1.87px 1.86px
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(a) (b) (c) (d) (e)

Figure 64. Disparity map of ROI before and after correction. sub-figure (a) is the expected disparity

map. Sub-figure (b) is the disparity map of selected ROI. Sub-figure (c) is the ROI before any depth

correction. Sub-figure (d) is the ROI after global correction. Sub-figure (e) is the ROI after local

correction.

8.3.3 Visual Comparison

One instance in Figure 63 visually demonstrates improvement to the perceived disparity map. Sub-

figure (a) and (b) are the right-view panoramas before the local correction and after the local correction.

Sub-figure (c) and (d) are the corresponding disparity map. It is noted that the depth map after local

correction makes the pixels in the ROI achieve a color more similar to its neighbors around the ROI,

which implies better depth consistency in the spatial coordinate.

Another instance in Figure 64 visually demonstrates improvement to the perceived disparity map.

Sub-figure (a) is the full-size target disparity map estimated from input rectified image pairs, and sub-

figure (b) is the cropped version for the selected ROI. Sub-figure (c), (d), and (e) show the measured

disparity map of ROI before global correction, after global correction and after local correction, respec-

tively. The global correction shifts the overall disparity value of ROI into the range more similar to the
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target map. Moreover, the perceived disparity value of the human’s right arm, which is marked with the

red rectangle, is also corrected.

8.4 Conclusion

In this chapter, we presented a general depth correction strategy in the stereoscopic panoramic video

generation system. Given the well-matched commonly -identified features from input image pairs, we

can consider one of the stitched stereoscopic panoramas as the reference and globally shift another one

for minimal average depth error. After we manually label those regions with local noticeable depth

issues, we can fix them with the thin-plate-spline warping under the guidance of a sparse target disparity

map. Though the global depth correction can roughly guarantee the overall reasonable depth distribu-

tion across the whole image, the local region warping still needs the extra human intervention to label

the ROI with noticeable stitching errors. This post-stitching depth adjustment operation is the last step

in our proposed stitching system. To extend the proposed depth adjustment technique to more compli-

cated scenes or stitching output from other panorama generation frameworks, we need to propose one

automatic ROI detection algorithm to search all regions with abnormal disparity values.



CHAPTER 9

SUMMARY

In this thesis, we presented a general framework to generate stereoscopic panoramic videos based

on commonly identified features. To achieve this goal, we improve and extend the standard panorama

stitching pipeline, in particular:

1. We proposed the definition of commonly identified features and partially occluded features based

on whether they can be fully captured via all input camera views. The proposed feature structure

is designed to deal with the stereoscopic panoramic stitching task. Compared to the independent

stitching strategy based on the standard feature descriptor, the proposed CIF can align the left-

view and right-view input images with better stereo consistency and maintain the high-quality of

mononuclear monocular stitching simultaneously.

2. We extended the standard 2D feature matching process into the 3D sense for CIF under the guid-

ance of the depth-aware information. The original 2D feature descriptor can be matched with

gradient information, while the proposed CIF is designed to take advantage of depth information

in each of the four matched 2D feature descriptors. The extra depth-based qualifying term helps

to filter out false corresponded control points and provide more accurate image alignment.

3. We introduced human visual interest to prune the redundant feature descriptors and adjust the

distribution of the selected control points for image alignment. The control points after saliency-

based feature selection are distributed across the overlapping region more uniformly and reason-

146
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ably. Appropriate distribution of control points according to the proposed energy map can adapt

the image alignment to place more emphasis on regions that attract more attention from viewers.

4. We proposed the corresponding saliency-aware and depth-aware CIF tracking strategy in the video

sequence. The stitching strategy based on pure independent detection for every single frame

can maintain good stitching- quality but will cause serious video instability between consecutive

frames. The stitching strategy based on pure tracking will lose the trajectory of control points due

to the occlusion and drift problem after several frames. Compared to those two strategies, the pro-

posed saliency-aware stitching strategy can keep the temporally consistent image alignment. For

more details, the proposed strategy will keep original control points when no moving object enters

the overlapping region and only conducts updates when noticeable content change appears in the

overlapping area. This integrated strategy can maintain image alignment information for monoc-

ular stitching correctness and also concerns about the temporal consistency between consecutive

frames.

5. We proposed one modified version of the RANSAC-based homography estimation algorithm for a

more consistent output panorama. Instead of feature selection from the standard control point set

in left-view and right-view independently, the proposed stereo-constrained algorithm will select

corresponding control points from the CIF set. The similarity penalty term also constrains the left-

view and right-view input images to be aligned in the final output canvas under similar projection

matrices.

6. We proposed one post-stitching correction technique to mitigate the visible artifacts in the output

panorama under the guidance of densely corresponded position displacement maps. The pixel-
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based corresponding map between the target ROI from the panorama and reference ROI from the

input image can indicate the warping relationship. Thus, with the updated position displacement

of target ROI according to the corrected stitched neighbors, we can mitigate those discontinues

and stitching errors that were not fully removed by the refinement and optimization techniques in

the standard panorama generation framework. After this flow-map-guided panorama correction,

the monocular sense stitching quality can be improved.

7. We proposed one post-stitching correction technique to globally adjust the left-view and right-

view panorama for more accurate depth delivery under the guidance of sparsely distributed com-

monly identified features. Given one of the output stereoscopic panorama as the reference, we

intend to globally translate another view panorama horizontally and globally so that the majority

of the CIF can be aligned reasonably in the output canvas. For those patches and areas that still

suffer from depth issues, we utilize one feature-based image morphing method, thin-plate-spline,

to warp all the selected control points into their position with expected disparity values. After this

feature-based panorama correction, the perceived depth information from the output panorama

can be more similar to the depth information estimated input image pairs, which is considered as

ground truth in our correction process.

8. We tested our proposed stereoscopic panoramic video generation system with several different

image acquisition equipment: SENSEICam Simulator, StarCam Design, and Chameleon Design.

The difference in camera array structures always needs carefully adapted calibration or even an

extra raw image preprocessing operation. The experiments and simulation based on these image
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acquisition equipment demonstrate the compatibility of our proposed stitching system to various

camera position setups for image capture.

9. We tested our proposed stereoscopic panoramic video generation system under various scenarios:

still and dynamic data-sets, synthetic and camera-based data-sets, and indoor and outdoor data-

sets. The experiments and simulation based on these image data-sets illustrate the robustness of

our proposed stitching system in various scenarios.

Though the proposed stitching system works well under various camera array designs and scenarios,

it still has some limitations in several areas:

1. Our current stitching system can work well with the fixed camera array and limited moving objects

in the overlapping field. Under the situation of moving camera array and complicated scenarios,

the current stitching system will not promise high-quality output due to the depth change of the

background and the degraded feature tracking strategy.

2. The proposed stitching framework includes several pre-precessing and post-correction operations

and is implemented without any optimization so that the real-time stereoscopic panoramic video

processing is unavailable now. To speed up the panorama generation process, some steps in the

stitching framework should be carefully modified to benefit from parallel computation techniques.

3. Both the monocular-view post-stitching artifact correction and local depth adjustment need man-

ual ROI labeling before the operation, which indicates these corrections may not be stable and

sufficient for the perfect stitching output. Automatic erroneous ROI detection and selection is

necessary for the efficient correction and adjustment to the output video.
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