
Comparing Similarity of Patent Textual Data Through the Application of

Machine Learning

BY

SALVATORE C. IMMORDINO
BS, Northern Illinois University, 1992

MS, Marquette University, 2004

THESIS

Submitted as partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Industrial Engineering and Operations Research

in the Graduate College of the
University of Illinois at Chicago, 2019

Chicago, Illinois

Defense Committee:

Michael J. Scott, Chair and Advisor
Houshang Darabi
Sybil Derrible, Civil and Materials Engineering
Mengqi Hu
Jelena Spanjol, Ludwig-Maximilians-Universität München



Copyright by

SALVATORE C. IMMORDINO

2019



To Tracy,

My amazing wife, who has believed in me since the day we met.

iii



ACKNOWLEDGMENTS

I would like to express my sincere gratitude to my advisor Dr. Michael Scott for his continuous

support of my PhD study, for his patience, motivation, and consistent encouragement. His

guidance helped me in my research and writing of this thesis. I could not have asked for a better

advisor and mentor for my PhD study.

My sincere thanks to USG and my industry colleagues and friends Dr. Dominic Dannessa,

Dr. Srinivas Veeramasuneni, and Dr. Kumar Natesaiyer who provided unwavering support and

encouragement throughout this journey.

Last but not the least, I am grateful to Dr. Sybil Derrible who opened my eyes to the

potential of data science.

SCI

iv



TABLE OF CONTENTS

CHAPTER PAGE

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 The Study of Inventiveness . . . . . . . . . . . . . . . . . . . . . 6
1.4 Patent Requirements . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4.1 Patent Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4.2 Provisional Patent . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.4.3 Patent Classification . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.4.3.1 United States Patent Classification (USPC) . . . . . . . . . . . . 11
1.4.3.2 National Bureau of Economic Research (NBER) . . . . . . . . . 11
1.4.3.3 International Patent Classification (IPC) . . . . . . . . . . . . . 12
1.4.3.4 Cooperative Patent Classification (CPC) . . . . . . . . . . . . . 13
1.4.4 Patent Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.4.4.1 General Requirements . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.4.4.2 Description Requirements . . . . . . . . . . . . . . . . . . . . . . 16
1.4.4.3 Citations of Prior Art . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.4.5 Patent Exclusivity Period . . . . . . . . . . . . . . . . . . . . . . 19
1.4.6 Patent Granting Rights . . . . . . . . . . . . . . . . . . . . . . . 20

2 RESEARCH: ML APPLIED TO NBER CITATION DATA . . . 23
2.1 Original Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.1.1 Assignee Identifier . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.1.2 Number of Claims . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.1.3 Main U.S. Patent Class . . . . . . . . . . . . . . . . . . . . . . . 25
2.2 Constructed Fields . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.2.1 Technological Category . . . . . . . . . . . . . . . . . . . . . . . 26
2.2.2 Citations Made, Received, and Lag . . . . . . . . . . . . . . . . . 27
2.2.3 Measures of Generality and Originality . . . . . . . . . . . . . . 28
2.3 Visual Inspection of NBER Data . . . . . . . . . . . . . . . . . 29
2.4 Statistical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.4.1 Proportion Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.5 Association and Pattern Analysis . . . . . . . . . . . . . . . . . . 31
2.6 Supervised Machine Learning . . . . . . . . . . . . . . . . . . . 35
2.6.1 Principal Component Analysis . . . . . . . . . . . . . . . . . . . 35
2.6.2 Decision Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.6.3 Artificial Neural Network . . . . . . . . . . . . . . . . . . . . . . 36
2.7 Preliminary Research Insights . . . . . . . . . . . . . . . . . . . 38

v



TABLE OF CONTENTS (Continued)

CHAPTER PAGE

2.7.1 Computational Effects . . . . . . . . . . . . . . . . . . . . . . . . 39
2.7.2 Office effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.7.3 Examiner effects . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.7.4 Strategic effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.8 Results from examination of the NBER data file . . . . . . . . . 41

3 RESEARCH: ML APPLIED TO USPTO TEXTUAL DATA . . 43
3.1 PatentsView Data Tables . . . . . . . . . . . . . . . . . . . . . . 43
3.1.1 Patent Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.1.2 Claims Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.1.3 Raw Assignee Table . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.1.4 Cooperative Patent Classification Table . . . . . . . . . . . . . . 47
3.1.5 Citation Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.1.6 Application Table . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.2 Invention Impact: Intra-Citation Visualization . . . . . . . . . 50
3.3 Text Mining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.3.1 Data Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.3.2 Data Cleaning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.3.3 Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.3.4 Vectorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.3.5 Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.3.5.1 Cosine Similarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.3.5.2 Minimum CSS Threshold . . . . . . . . . . . . . . . . . . . . . . 69
3.3.6 Dimension Reduction . . . . . . . . . . . . . . . . . . . . . . . . 72
3.3.6.1 Principal Component Analysis . . . . . . . . . . . . . . . . . . . 72
3.3.6.2 t-distributed Stochastic Neighbor Embedding . . . . . . . . . . 76
3.3.7 Invention Impact: Intra-CSS Visualization . . . . . . . . . . . . 79
3.3.8 Invention Knowledge Flow: Intra-CSS vs Intra-CIT . . . . . . 82
3.3.9 Latent Relatedness: Intra-CSS Relatedness . . . . . . . . . . . . 91
3.3.10 Latent Relatedness: Google Patent Search Method Comparison 99

4 DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
4.1 Inventive Descriptors . . . . . . . . . . . . . . . . . . . . . . . . . . 111
4.2 Patent Jargon and Enabling Language - “Start Words” . . . . 113
4.3 Weighted Patent Claims . . . . . . . . . . . . . . . . . . . . . . . 113
4.4 Predictive models . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

CITED LITERATURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

vi



TABLE OF CONTENTS (Continued)

CHAPTER PAGE

APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
Appendix A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
Appendix B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
Appendix C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
Appendix D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
Appendix E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
Appendix F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
Appendix G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
Appendix H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
Appendix I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
Appendix J . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
Appendix K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
Appendix L . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
Appendix M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
Appendix N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
Appendix O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
Appendix P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
Appendix Q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

vii



LIST OF TABLES

TABLE PAGE
I NBER U.S. Patent Citations Data File Fields . . . . . . . . . . . . . 24
II Raw Assignee Category Type . . . . . . . . . . . . . . . . . . . . . . 25
III NBER proportion of patents based on assignee . . . . . . . . . . . 32
IV NBER proportion of patents based on assignee . . . . . . . . . . . 32
V Association & Pattern Measures Applied to the NBER Data . . . 33
VI PatentsView Patent Table . . . . . . . . . . . . . . . . . . . . . . . . . 44
VII PatentsView Claims Table . . . . . . . . . . . . . . . . . . . . . . . . 45
VIII PatentsView Assignee Table . . . . . . . . . . . . . . . . . . . . . . . . 47
IX PatentsView CPC Table . . . . . . . . . . . . . . . . . . . . . . . . . 48
X Cooperative Patent Classification . . . . . . . . . . . . . . . . . . . . 48
XI PatentsView Citation Tables . . . . . . . . . . . . . . . . . . . . . . 49
XII PatentsView Application Table . . . . . . . . . . . . . . . . . . . . . 50
XIII Patent NLP Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
XIV Patent Pre-processing Function Steps . . . . . . . . . . . . . . . . . 56
XV Example Document Term Matrix . . . . . . . . . . . . . . . . . . . . . 67

viii



LIST OF FIGURES

FIGURE PAGE
1 USPTO Issued Patents (1963 - 1999) . . . . . . . . . . . . . . . . . . . 29
2 Density plot and histogram of USPTO issued patents (1963 - 1999) . 31
3 Decision Tree prediction of patent technical category using NBER

patent data (1963 - 1999) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4 Neural network prediction of patent technical category using NBER

patent data (1963 - 1999) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5 U.S. Patent 6,673,144 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6 U.S. Building Material Patents: Invention Impact Using Intra-Citations

(1970-2015) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
7 Patent Text Mining Method Flowchart . . . . . . . . . . . . . . . . . . . 54
8 Patent 6,673,144: Pre-processing Output of Unstructured Textual

Data with Examples of Lemmatisation Boxed in Red . . . . . . . . . . . 60
9 Patent Term Frequency Analysis Pre-Jargon Removal . . . . . . . . . . 61
10 Patent Term Frequency Analysis Post-Jargon Removal . . . . . . . . 62
11 U.S. Patent 6673144: Pre-Processing Comparison with Blue High-

lighted Legal Jargon Removed . . . . . . . . . . . . . . . . . . . . . . . . . 62
12 Patent Corpus Pre-processing Output Word Cloud . . . . . . . . . . 63
13 Cosine similarity example . . . . . . . . . . . . . . . . . . . . . . . . . . 68
14 Changes in mean CSS for patent citation pairs based on total forward

citation count. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
15 Dimension Reduction via Principal Component Analysis . . . . . . . . 74
16 k-means clustering using six clusters . . . . . . . . . . . . . . . . . . . . 77
17 t-SNE results: U.S. Building Material Companies Intra-CSS Patent

Corpus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
18 U.S. Building Material Patents: Invention Impact Using Intra-Cosine

Similarity Threshold (1970 - 2015) . . . . . . . . . . . . . . . . . . . . . . 80
19 Inventive Knowledge Flow: Intra-CSS vs Intra-CIT for Top 12 Most

Cited Patents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
20 Inventive Knowledge Flow Comparison: U.S. Patent 4,647,496 . . . 85
21 Inventive Knowledge Flow Comparison: U.S. Patent 4,647,496 . . . 86
22 Inventive Knowledge Flow Comparison: U.S. Patent 7,588,660 . . . . 87
23 Inventive Knowledge Flow Comparison: U.S. Patent 6,432,267 . . . 88
24 Inventive Knowledge Flow Comparison: U.S. Patent 7,662,257 . . . 89
25 Inventive Knowledge Flow: Heat Map of Intra-CSS vs Intra-CIT for

Top 12 Cited Patents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
26 Inventive Knowledge Flow: VENN Intra-CSS vs Intra-CIT Top 12

Cited Patents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
27 Method Comparison Venn Diagram: U.S. Patent 7,588,660 . . . . . 93

ix



LIST OF FIGURES (Continued)

FIGURE PAGE

28 Method comparison Venn diagram: U.S. Patent 6,500,493 . . . . . . 95
29 Method comparison Venn diagram: U.S. Patent 3,935,021 . . . . . . . 101
30 All forward related patents to U.S. 3,935,021 . . . . . . . . . . . . . . 105
30 Continued: All forward related patents to U.S. 3,935,021 . . . . . . 106
30 Continued: All forward related patents to U.S. 3,935,021 . . . . . . . 107
30 Continued: All forward related patents to U.S. 3,935,021 . . . . . . 108
30 Continued: All forward related patents to U.S. 3,935,021 . . . . . . 109
31 U.S. Building Material Patents: Invention Impact Using Intra-CIT

Similarity Threshold (1975 - 2015) . . . . . . . . . . . . . . . . . . . . . . . 237

x



LIST OF ABBREVIATIONS

USPTO United States Patent and Trademark Office

USPC United States Patent Classification

NBER The National Bureau of Economic Research

CPC Cooperative Patent Classification

WIPO World Intellectual Property Organization

NLP Natural Language Processing

PCA Principle Component Analysis

IP Intellectual Property

VSM Vector Space Model

LOE Loss of Exclusivity

ECLA European Classification System

IPC International Patent Classification

NaN Not a Number

ANN Artificial Neural Network

PAP Patent Examiner Performance Appraisal Plan

CSS Cosine Similarity Score

DTM Document Term Matrix

xi



LIST OF ABBREVIATIONS (Continued)

VSM Vector Space Model

HITL Human-in-the-loop

SVD Single Value Decomposition

CIP Continuation-in-part

RCE Request for continued examination

VOC Voice of Customer

NLTK Natural Language Toolkit

POS Part of Speech

xii



SUMMARY

The objective of this research is to understand if machine learning (ML) techniques, including

natural language processing (NLP), can be applied to patent data to help domain experts

efficiently answer important questions about how to manage newly created intellectual property

(IP) by revealing latent relationships between IP documents. Domain experts are authorities in

a specific area of technical knowledge based upon years of experience, education, and training.

They are typically the first people consulted when it comes to assessing the value of a new

invention and how to protect the inventive knowledge associated with it. The first step in

making this assessment is usually a determination of whether the invention has any commercial

value, and if so, how best to protect the innovation. There are a number of methodologies

and techniques used to make this initial assessment including value engineering, value stream

mapping, voice of customer research (VOC), and price sensitivity analysis.

Once a determination is made that an invention has commercial value a number of additional

questions are raised. For example: Should we keep the inventive knowledge associated with

the innovation secret or should we seek patent protection? What is the likelihood that our

inventive knowledge will be discovered independently or reverse engineered? How likely is it

that a competitor would develop a comparable invention and how long would it take them to

do so? and if they were to develop a comparable invention would we be able to know if they

were infringing on our intellectual property? The latter set of questions go to the heart of the

xiii



SUMMARY (Continued)

issue at hand. It basically comes down to the question “how much time do we have before the

knowledge of this invention is disseminated?”

The answers to these questions are typically subjective and while domain expertise continues

to be a crucial component of intellectual property analysis, reliance on intuition and subjective

opinion to make important innovation related decisions fails to exploit a wealth of information

in the patent record. Furthermore, patterns extracted objectively from large data-sets, such as

the patent record, hold vastly more data than even the most knowledgeable domain experts can

process. Unfortunately, most of the textual data is unstructured, making it difficult and time

consuming for humans, even domain experts, to process quickly, let alone decipher complex

relationships between invention knowledge flow timing. This research attempts to understand

invention patterns by studying the textual data used by inventors to describe their inventions.

It uses NLP techniques to distill inventors’ words down to core descriptive term combinations

that are representative of one or more inventive steps. These latent combinations of words

represent discrete inventive units referred to here as inventive descriptors. By measuring patents

based upon the similarity of their respective inventive descriptors it is possible to measure latent

relationships between inventive documents that can be used to assess invention impact as well

as understand inventive knowledge dissemination patterns. These insights can in turn be used

to answer questions with regard to likely competitive responses by using historical patterns from

the patent record as a guide.

This approach is distinct from a wide body of research used to assess inventive impact that is

reliant upon either patent surveys or statistical methods applied to numerical data derived from

xiv



SUMMARY (Continued)

patents. While patent surveys can be used to gain insights into the independent variables that

drive innovation it is difficult to compare results over time when using qualitative and potentially

subjective measures. Statistical methods rely heavily upon constructed metrics derived from

patents, such as measuring patent counts. However, counting alone is not a suitable proxy

for inventiveness as the individual technological impact and quality of each patent may differ.

To overcome this, many analysis techniques have been developed, including patent indicators,

patent landscape maps, and patent citation analysis. The most prevalent of these is citation

analysis, which is based upon the optimistic assumption that patent seekers in good faith cite

any body of work that they relied upon at the time of patent application filing. Insights gained

by studying statistical methods applied to patent numerical data raised doubts as to whether

patent citation data and patent counts were the best modes of assessing overall inventiveness or

measuring inventive knowledge flow. This is due to a number of changes made to the patent

process over time that can directly impact citation behavior. The fundamental problem is that

most citations (unlike the academic world) are done after an invention has been conceived, either

by the patent attorney handling the filing or the examiner themselves.

Independent of my research, Jaffe and de Rassenfosse [1] also highlighted many concerns in

their survey review of patent citation data use over the last two decades. The rationale behind

current citation methods no longer holds and there is good reason to believe that citation counts

cannot completely capture knowledge flow. This research presents the application of ML and

NLP techniques to a subset of United States Patent and Trademark Office (USPTO) patent

documents to assess whether it can be used to discover latent relationships between patent

xv



SUMMARY (Continued)

documents and in turn be used to measure invention impact and study diffusion of inventive

knowledge over time. Patents are uniquely suited for this analysis because of the rules placed

upon patent seekers to describe their inventions in such detail that they can be used to define

legal boundaries of exclusivity.

This approach is twofold. First, develop an improved computational process to enhance

how domain experts determine the core inventive aspects of any patented invention. Ideally,

this process could be used to reduce the time-consuming aspects of manual patent searches

by culling out core inventive knowledge quickly, so that valuable expert time can be used

more efficiently. Second, develop new techniques to measure inventiveness and knowledge flow

through the application of ML using newly constructed textual-based cosine similarity measures

as dependent variables for intellectual property decision modeling.

This approach begins by first extracting unstructured abstract, title, and claim textual data

from a subset of patent documents from a competitive group of companies and then utilizing NLP

techniques to convert that data into a vector space model (VSM) using a numerical statistical

method called term frequency-inverse document frequency (tf-idf). This technique converted the

sets of inventive descriptors associated with each patent into a representative numerical vector

within the vector space model. The next step measures the cosine angle between patent vectors

within the higher-dimension vector space and establishes a minimum cosine similarity threshold

to select for forward cosine related patents. Since each vector space is different the selection

of an appropriate threshold is usually dependent upon a human to provide subject relevance

for an appropriate threshold. This research utilizes the existing patent record to establish a

xvi



SUMMARY (Continued)

minimum threshold using statistical analysis applied to known forward cited patent pairs where

a human (e.g., patent attorney or patent examiner) has already determined relatedness by citing

patents. Thus it exploits the patent record by using the cosine angle of cited patent pairs as a

basis to establish a CSS threshold. The result is an ability to count patents based upon cosine

relatedness which can be directly substituted for citation counts. For example, measurements

like total citation count (inventiveness) and mean forward citation lag (knowledge flow) can use

the CSS relatedness count value. To visualize patent cosine relatedness the higher-dimension

vector space was reduced to a two-dimensional plot first by using principal component analysis

and then t-distributed stochastic neighbor embedding. The resulting visualization was then

color coded using patent office technical classifications to reveal some discrete technology class

clusters. Lastly, a comparison of invention impact and inventive knowledge flow is demonstrated

by plotting patent citation data alongside cosine relatedness outputs to reveal both similar and

dissimilar inventive patterns.

This research shows that new computational techniques can be used to convert unstructured

patent textual data into actionable knowledge by revealing latent relationships between patents.

It accomplishes this by relying upon the language used by inventors to describe their inventions

and in doing so lays the ground work to study inventiveness and knowledge flow with less

dependence on domain expertise and metrics derived from patent counts and citation analysis.

The increased understanding can be used to study inventive knowledge flow which has both

scientific and practical applications. The conversion of unstructured patent textual data into

structured data that can be used for intellectual property decision modeling, and the method-

xvii



SUMMARY (Continued)

ological enhancements provided to researchers in the field provides increased understanding of

the nature of inventiveness and inventive knowledge flow. There is also significant potential

to reduce the most time-consuming and tedious aspects of patent searches, to not only free

up valuable domain expert time, but also provide them with more actionable knowledge to

make informed intellectual property decisions. Going forward these techniques could be used

in a number of applications including novelty assessment of patent applications prior to filing,

competitive surveillance to monitor published patent applications, an automated patentability

assessment tool, or as a means to suggest new inventive steps by combining inventive descriptors

between CSS related patents.

xviii



CHAPTER 1

INTRODUCTION

How do business leaders effectively manage new inventive knowledge when it is created at

the corporate level? The first step in answering this question is usually a determination of

whether the new inventive knowledge has any commercial value, and if so, how best to protect it.

This in turn leads to a series of additional questions. For example: Should we keep the inventive

knowledge secret or seek patent protection? What is the likelihood that our inventive knowledge

will be discovered independently or reverse engineered and how long would it take to do so? How

likely is it that a competitor would develop a comparable invention without infringing on our

patent and would we be able to know if they were infringing? In answering these questions, most

business leaders rely heavily on subjective opinion, historical market behaviors, and domain

experts. Domain experts, also known as subject matter experts, are authorities in a specific area

of technical knowledge. They often have years, even decades, of experience, or specific skills in a

particular area from significant training and educational investments. While domain expertise

continues to be a crucial component of intellectual property analysis, reliance on intuition and

subjective opinion to make important intellectual property decisions fails to exploit a wealth

of information in the patent record. Furthermore, patterns extracted objectively from large

data-sets, such as the patent record, hold vastly more data than even the most knowledgeable

domain experts can process. Unfortunately most of the information contained within the patent

system is in the form of unstructured textual data making it difficult and time consuming for

1



2

humans, even domain experts, to make informed decisions. The purpose of this research is

to understand if ML techniques can be applied to patent data to help domain experts answer

the above questions in an efficient manner that is less dependent on subjective opinion. This

research attempts to understand invention patterns within the construction industry by studying

the textual data used by inventors to describe their inventions. The hypothesis is that patent

texts can be mined for combinations of words and unique expressions that represent discrete

inventive units and by measuring patents based upon the similarity of their inventive descriptors

it will be possible for domain experts to answer many of the invention impact and knowledge

dissemination related questions more objectively.

1.1 Motivation

Patent information can be used to study the flow of inventive knowledge through space,

time, and technology domains, making it a valuable tool for the measurement of scientific

progress and to study what factors influence technological change. The World Intellectual

Property Organization (WIPO), a specialized agency of the United Nations (UN) created

in 1967, lists [2] that there are over 200 patent offices worldwide representing 191 member

states [3]. The overwhelming amount of unstructured textual data associated with this inventive

knowledge is beyond the capacity of humans to study holistically; however, with advances in ML

techniques and ever-increasing computational power it is possible that this data can be turned

into comprehensible, structured, and actionable knowledge. A key area where such actionable

knowledge would be helpful is at the corporate level where the decision of whether to apply for

a patent, and as a result make inventive knowledge public, carries inherent financial risks. This



3

research attempts to understand invention patterns within the construction industry by studying

the textual data used by inventors to describe their inventions. The goal is to efficiently reveal

core inventive concepts, assess overall invention impact, and understand how those inventive

concepts diffuse over time. These insights can be used to make more informed decisions when it

comes to protecting intellectual property. Intellectual property includes creations of the mind,

such as inventions, literary and artistic works, designs, and symbols, names, and images used

in commerce [4]. This research methodology builds upon existing ML and NLP techniques to

convert unstructured patent textual data into structured data such as those outlined by [5]

who proposed a text mining methodology for full-text patent analysis based upon methods

used by patent analysts. Their methodology includes various text mining techniques including

segmentation, summarization, feature selection, term association, and topic clustering. Their

goal was to improve the process of patent analysis by automating many of the specialized, time

consuming, and tedious steps performed by analysts. Tseng et al. articulate well the motivation

for automated patent analysis when they state:

“. . . these processes require the analysts to have a certain degree of expertise in information

retrieval, domain-specific technologies, and business intelligence. This multi-discipline

requirement makes such analysts hard to find or costly to train.”

(1)

This research leverages conventional methods of NLP, patent office application requirements,

and methods used by corporate domain experts to discover patterns, relations, and trends among

intellectual property documentation. The premise is that there are high value combinations

of words and expressions that represent discrete inventive units within patents. Analyzing



4

patents based upon the similarity of these inventive sets should make it possible to not only

measure inventive knowledge dissemination over time but also gain insight into the potential

impact of that inventive knowledge. This impact can be measured within a given technology

sector or broadly across many sectors. This research focuses on the technology area of building

science & construction using patent data from the USPTO. It begins with a historical review on

patents and how they have been used to study inventiveness, which is defined as a measure of

the technological significance that an invention creates. This includes an overview of historical

methods used to study invention impact and inventive knowledge diffusion followed by a review

of the evolving patent process in the United States including a discussion of patent types,

classification methods, requirements, exclusivity periods, and rights. It then presents the

methodology used including a direct comparison to patent citation analysis to reveal interesting

similarities and dissimilarities. Lastly, it finishes with a conclusion and a discussion of potential

areas of future research as access to latent relationships have raised new questions.

1.2 Background

The United States Patent and Trademark Office (USPTO), which was created in 1836, has

issued over 6 million patents [6]. The USPTO issues patents to inventors thereby granting them

special rights for their intellectual property. This fulfills the USTPO’s mandate which is outlined

in the United States Constitution under Article I, Section 8, Clause 8:

“To promote the Progress of Science and useful Arts, by securing for limited times to authors

and inventors the exclusive right to their respective writings and discoveries.”
(2)



5

A patent represents a government sanctioned right to exclude others from practicing a

specified invention for a limited time, in the U.S., 20 years from the earliest filing date, thereby

creating an economic incentive for disclosing valuable inventive knowledge to the public. This in

turn facilitates societal progress as the inventive knowledge diffuses over time and becomes part

of the public domain. Patent holders receive a legal monopoly to exclude others from practicing

their inventions, however, a new inventor can be prevented from practicing their own invention

if it infringes upon the rights holder of another enforceable patent. Such scenarios occur because

the process of invention is an inherently iterative as it builds upon the prior inventive knowledge

of others. [1] provide an elegant description of this process:

“First, we can think of all possible technologies as mapping onto a high-dimensional technology

space, such that a given invention can be located in that space, and a patent represents

the right to exclude others from marketing products that impinge upon specific region (or

regions) of that space. Second, the invention process is cumulative, that is, inventions build

on those that came before and, in turn, facilitate those that come after. In this geometric

interpretation, the patent claims delineate the metes and bounds of the region of technology

space over which exclusivity is being granted, while the citations indicate previously marked

off areas that are in some sense built upon by or connected to the invention being granted.”

(3)

This research aims to show that ML & NLP can be used to create this geometric interpretation

by converting patent title, abstract, and claim textual data into numerical vectors that can be

placed into a higher-dimensional technology space. Furthermore, the metes and bounds can be

delineated by measuring the cosine angle between these vectors.



6

1.3 The Study of Inventiveness

Patents have been used by researchers to study inventiveness on a global, corporate, and

individual level for decades. Jacob Schmookler proposed the relationship between patent counts

and economic performance among industries [7]. Subsequent research has shown that a country’s

collective technological advancement is directly correlated to international competitiveness

and economic prosperity [8–11]. Patent data analysis has been used to study how inventive

knowledge flows between corporate and not-for-profit entities [12], to understand the impact

of R&D investment strategy [13], and as a competitive business intelligence tool where the

intellectual property filing behavior of rival businesses is analyzed [14–16]. Patents have been

used as a measure of corporate innovative performance [17–19] and to strategically assess

technical advances among competitors for stock market valuation and merger and acquisition

targeting [20]. On an individual basis, patent data has been used as a performance metric

for patent office examiners [21] and as a means to assess R&D employee engagement [22]. It

has also been used to visualize inventor networks within organizations [23] and to compare

innovation culture between business entities [24]. Patent data has even been used to study

the movement of inventors over space and time using geographical data collected from patent

documents [25–28]. While there is a wide body of research regarding the use of patent data to

measure inventive activity, much of the historical analysis focuses on the use of patent surveys

or statistical methods applied to the numerical structured data derived from patents. While the

former can be used to gain unique insights into the independent variables that drive innovation,

it is difficult to compare results over time, especially when using qualitative and potentially



7

subjective measures. The latter relies heavily upon statistics applied to patent counts. However,

counting patents alone is not a suitable proxy for inventiveness as patents differ in technological

impact and quality. Patent quality reflects the degree to which an invention meets the statutory

requirements enforced by the patent office. For example, inventors are required to articulate in

written form the best mode of their invention while also showing novelty over prior inventions.

High-quality patents are those that clearly articulate the scope and boundaries of a claimed

invention over others with little ambiguity. When patent rights are asserted against others the

validity of the asserting patent can be challenged if it can be shown that they did not meet the

requirements of the patent office. To overcome differences in patent impact and quality, many

analysis techniques have been developed, including patent change mining, patent indicators,

patent maps, and patent citation analysis. The most prevalent of these is patent citation

analysis, which is based upon the assumption that inventors, in good faith, list any evidence

that their invention is already known at the time of filing. While the use of citation metrics

has been shown to be an effective means of weighting patent counts, the methods used for

discovering prior art citations, and the incentives for doing so, can result in missed or incorrect

citations by either the patent examiner or applicant. The fundamental problem is that most

citations (unlike the academic world) are done after an invention has been conceived, either

by the patent attorney handling the filing or the examiner themselves. The premise that the

number of citations made is somehow reflective of knowledge flow to the inventor is this flawed.

It is clear that many pitfalls exist with the use of citation metrics [1] and improved methods of

measuring invention impact and inventive knowledge flow over time are required. The method



8

of this research accomplishes this by measuring invention relatedness using the cosine similarity

of patent document vectors as a substitute for direct citation counts. Patent documents are

uniquely suited for this technique because of the requirements set forth by the patent office.

These rules require inventors to describe their inventions in great detail thus allowing us to select

for core and likely rare inventive terms. The following section highlights important aspects of

the USPTO patenting process which is relevant for both citation analysis and our methods.

1.4 Patent Requirements

In the following sections we will provide an overview of the various patent types and

classification methods. This includes the reasoning behind selection of utility patents and the

cooperative patent classification system as a research focus. It also discuss patent examination

procedures related to the general, description, and citation of prior art patent application

requirements as they are heavily dependent on written communication making them fertile

ground for text mining. Lastly, there is a review of changes made to patent office rules related

to both the patent exclusivity period and inventorship rights. This changes have impacted

intellectual property filing behavior over time.

1.4.1 Patent Types

The USPTO grants four types of patents with varying degrees of protections.

• Reissue Patent - Issued to correct an error in an already issued patent

• Plant Patent - A distinct, invented or discovered asexually reproduced plant

• Design Patent - A new, original, and ornamental design embodied in or applied to an

article of manufacture



9

• Utility Patent - Issued for a new and useful process, machine, manufacture, or composition

of matter, or a new and useful improvement thereof

• Provisional Patent - A legal document that establishes a filing date but does not convert

to a regular patent

Both reissue and plant patents are uncommon. A reissue patent is intended to correct for

unintentional errors that can render a granted patent partially or completely invalid. The

patentee is prevented from introducing any new inventive matter and the reissue patent covers

only the remaining unexpired term of the original patent. Plant patents are intended to provide

protection for asexually produced distinct plant varieties that cannot otherwise be made or

manufactured. This includes plants, algae, or fungi that are considered mutants or hybrids.

There have been less that 1500 plant patents issued per year in the Unites States from 1997

through 2018 [29]. The majority of patents issued in the United States are Design Patents and

Utility Patents. Design patents are intended to protect artistic works and ornamental designs

with a heavy dependence on pictures and drawings to communicate the scope of an invention.

Design patents are less frequent than utility patents and are suited for inventions that are

dependent on design aesthetics for success. The vast majority, in excess of 90%, of patents

issued in the United States are utility patents [30]. The successful granting of a utility patent is

dependent upon its functional purpose which must be expressed in written form, with diagrams

and renderings used as supporting aids. This research focuses on utility patents because they

represent the vast majority patents granted in the United States and because they are heavily

dependent on written communication.



10

1.4.2 Provisional Patent

The provisional patent allows authors to file a patent before they have fully refined their

invention. At the end of one year provisional filers are required to submit a full non-provisional

patent application which allows them to keep their provisional filing date. They also have the

option to abandon their provisional application and file a new application therby losing their

provisional filing date. Provisional filers are not allowed to introduce new matter outside of

what was described in their original application. The provisional patent is an excellent tool

for inventors to ensure an early filing date. This research focuses on textual data contained

within granted utility patents; however, provisional patents are intriguing, as they represent an

earlier stage of inventive knowledge which could be potentially combined with published patent

application textual data to study the evolution of inventive knowledge as it moves through the

entire patent application process. This includes comparing how innovation flows out from the

first public provisional disclosure to the actual granted patent as lag times between the two

can exceed three years. This particular patent type is noted because of the future potential to

include it’s textual data to study the evolution of inventive knowledge flow with ML from the

earliest filing date.

1.4.3 Patent Classification

Although there are numerous patent classification systems employed worldwide we will focus

on the following systems they cover the vast majority of patents issued:

1. United States Patent Classification (USPC)

2. National Bureau of Economic Research (NBER)



11

3. International Patent Classification (IPC)

4. Cooperative Patent Classification (CPC)

1.4.3.1 United States Patent Classification (USPC)

The USPC is a legacy system for classifying all U.S. patents by subject matter that dates

back to the mid 1800’s. The USPC has historically been an evolving classification system

that tries to keep up with new technologies. In some cases entirely new technology classes

were created while others have been deleted and replaced with sub-classes when they became

excessively large to manage. The fact that the USPC technology classes can change over time

makes it difficult to compare the influence of specific technologies both within and outside

specific categories. It also makes it difficult to compare intellectual property between countries.

In June, 2015 the USPTO transitioned classification of utility patents from the USPC to the

Cooperative Patent Classification System (CPC). For patents granted prior to this date both

USPC & CPC classifications are listed.

1.4.3.2 National Bureau of Economic Research (NBER)

The NBER technological category system was developed by [17]as an overlay to the USPC

system to make it more manageable for academic research. They consolidated the USPC

classes into 37 economically meaningful technology subcategories and placed those under 6 main

technology areas being:

1. Chemical(excluding Drugs)

2. Computers and Communications (C&C)



12

3. Drugs and Medical (D&M)

4. Electrical and Electronics (E&E)

5. Mechanical

6. Others

They then used these main categories to show interesting patterns and trends in U.S. patenting

behavior over three decades. The work was intriguing as the authors proposed a number of

constructed measures for assessing a patents influence over time. These measures built upon

work conducted by [31], which showed that the number of citations a patent receives were

directly related to the technological significance of the particular claimed invention. The NBER

research showed a claimed invention varies in technological and economic importance both

within and outside the main NBER assigned technology class and that simple patent counts

were inherently limited.

1.4.3.3 International Patent Classification (IPC)

The IPC was established by the Strasbourg Agreement of 1971 to create an internationally

uniform classification of patent documents. Its primary purpose was the establishment of an

effective search tool for the retrieval of patent documents by intellectual property offices and

other users worldwide. It has standard definitions to help clarify and overcome discrepancies

due to differences in language and terminology among the numerous international patent

offices [32], [33].



13

1.4.3.4 Cooperative Patent Classification (CPC)

The Cooperative Patent Classification (CPC) system was introduced in January 2013. It is

a harmonized approach towards a global classification system that was jointly developed by the

European Patent Office (EPO) and the United States Patent and Trademark Office (USPTO). It

eliminates document reclassification between the two offices and allows for a single classification

search result [34]. The CPC is a more specific and detailed version of the International Patent

Classification (IPC) system as it is based upon its structure. It includes over 250,00 classes and

represents the most detailed smallest denomination of all the English based patent classification

systems [35].

1.4.4 Patent Rules

Patent examiners have requirements that they use when deciding whether an invention is

patentable, the rules of which can be referenced in the Manual of Patent Examining Procedure,

or MPEP [36]. There are a number of ways these rules are enforced. First, a determination is

made by the patent examiner upon review of the patent application. If the patent application

does not meet the requirements it will be rejected by the examiner via an Office Action,

which is an official written document mailed to the applicant conveying the determination

of patent application allow-ability. Applicants are then given an opportunity to respond to

the examiners listed objections. This includes clarifications, adjustments, and proposals to

address the examiners concerns. This correspondence is another opportunity space ripe for

the application of NLP techniques because it goes to the heart of defining the boundaries of

the invention in multidimensional space. Second, there are additional avenues by which third



14

parties can challenge a patent: pre-issuance submissions, post grant review, and an inter parte

review [37]. From a wider perspective these patent process requirements have created the core

data records that enabled patents to serve as proxies for inventiveness, inventive knowledge

flow, and technological change over time [7, 11, 38–42]. It is important to note that much of this

historical research was based upon statistics applied to numerical data derived from patents.

This historical research required significant resources in terms of human capital and time to

acquire and transcribe the data to convert it into a structured format for research. Technology

capable of processing large amounts of unstructured textual data was not available when much

of this research was conducted.

1.4.4.1 General Requirements

The research of thesis focuses on the general, description, and citation of prior art require-

ments as they are heavily dependent on written communication making them fertile ground for

text mining. Section 101 of the U.S. Patent Act establishes the general requirements for patent

protection in the following sentence:

“Whoever invents or discovers any new and useful process, machine, manufacture, or compo-

sition of matter, or any new and useful improvement thereof, may obtain a patent therefore,

subject to the conditions and requirements of this title.”

(4)

An invention is patentable if it meets the following four general requirements: (1) it must be

Statutory, (2) Novel, (3) Useful, and (4) Non-obvious.



15

1.4.4.1.1 Statutory

The statutory requirement states that processes, machines, articles of manufacture, and

compositions of matter are considered patentable. Examples of things that are not patentable

are abstract ideas, laws of nature, and natural phenomena.

1.4.4.1.2 Novelty

To meet the novelty requirement an invention must be new and can not have been publicly

disclosed more than a year prior to the application date. Public disclosure constitutes items

such as a printed publication or previously published patent documents that encompass all

features of the invention. Applicants, as part of the patent application process, will submit an

information disclosure statement (IDS) that includes citations to any relevant work that their

invention may have relied upon. Patent applicants will describe the differences between their

subject invention and the cited work. In addition, examiners look for and cite previous patents

that counter applicant claims of novelty. Prior public disclosures of inventive work are often

referred to as prior art, which is defined as all the public information relevant to a patent’s

claim of originality at the time of application.

1.4.4.1.3 Useful

To meet the useful requirement an invention must have a beneficial purpose. A written

statement explaining a market, societal, or human need along with an explanation of how the

proposed invention addresses that need is usually enough to meet this requirement.



16

1.4.4.1.4 non-obvious

Lastly, the non-obvious requirement is based upon a determination that the invention would

not be obvious to “. . . a person having ordinary skill in the art to which the claimed invention

pertains”. A patent examiner who is familiar with the technology of the claimed invention will

typically make this determination. In doing so an examiner will attempt to find all the claimed

features of a patent application from the prior art. If this can be done the examiner will reject

the claimed invention as obvious. The best counter argument to a patent office rejection based

on obviousness is to provide written evidence of an unanticipated or unexpected result related

to a particular invention.

1.4.4.2 Description Requirements

Inventors who seek patent protection must meet the following description requirements set

forth in Title 35 U.S. Code Section 112:

“The specification shall contain a written description of the invention, and of the manner

and process of making and using it, in such full, clear, concise, and exact terms as to enable

any person skilled in the art to which it pertains, or with which it is most nearly connected,

to make and use the same, and shall set forth the best mode contemplated by the inventor or

joint inventor of carrying out the invention.”

(5)

Thus inventors are required to describe in writing the best mode of their invention to such

an extent that other practitioners of ordinary skill can reproduce it. These specifications are

referred to as the written, best mode, and enablement requirements, respectively.



17

1.4.4.2.1 Written

The first requirement of the specification states that applicants must describe their inventions

in writing. This requirement makes patents well suited for NLP techniques.

1.4.4.2.2 Best Mode

The second requirement states that applicants must describe the most preferred mode of

their invention upon filing. This requirement is intended to prevent applicants from withholding

optimal versions of their inventions from the public.

1.4.4.2.3 Reproducible

The third requirement is intended to ensure that applicants describe their inventions in full

reproducible detail. Applicants must provide enough written detail for others of ordinary skill to

reproduce their invention without undue experimentation. The description requirements provide

fertile ground to mine the written text for inventive descriptors.

1.4.4.3 Citations of Prior Art

Patent applicants have a duty to cite any work they relied upon in the development of their

invention. This includes any historical knowledge (e.g., previous patent documents or published

scientific work, domestic or foreign) that they may have relied upon. This historical knowledge

is known as prior art and its inclusion in the application helps the inventor meet the novelty

requirement of their invention by describing how they improved upon or distinguished their

work from others. Prior art citations are typically referred to as backward citations. Backward

citations can also be made by the patent examiner when challenging the novelty of a newly

submitted invention. When an examiner cites prior art, the inventor is required to explain



18

how their claimed invention is a novel improvement over the subject cited work. Applicants

and examiners can also reference non patent related prior art, for example academic papers,

known as non-patent references (NPRs). Citations that a patent receives over time are refereed

to as forward citations. [43] showed that forward citations can be related to the value of the

patented invention. Just as with academic papers, it is presumed that the number of forward

citations an original patent receives over time is a proxy for knowledge flow and that a higher

number of citations reflects a greater impact to society [19,26,31,44]. Unlike the academic world,

where papers are published to share knowledge and the number of citations are considered an

affirmation of the body of work’s impact, patent applicants are not incentivized to cite prior

knowledge as each citation adds an additional burden of proving novelty. The risk of not properly

citing prior art can come after granting as it can be used to contest or invalidate the patent.

The duty to disclose is limited to those substantively involved in the preparation or prosecution

of the application and even then only the individual inventor is held to the standard as opposed

to a corporate assignee [36]. Furthermore, the duty is described as a ”duty of candor and good

faith” by the inventor to share known prior art. Thus there is a high bar to prove that an

inventor deliberately chose to not cite prior art out and the risk is directly linked to the value of

the inventive knowledge at stack. A lack of proper citing among related patents is one example

of the pitfalls of using citation statistics to measure technological significance and knowledge

flow over time. Another pitfall of using citation statistics is truncation of forward citations as

recent patents have inherently fewer forward citations than older patents [17,45–47]. Failure

to cite and truncation are two examples of issues with relying solely upon citation data as the



19

sole means to reveal relationships, impact, and ultimately inventive knowledge flow. Additional

pitfalls exist as a result of significant changes made to USPTO rules. For example structural

changes were made to the patent process to reduce abuse [48] and bring the U.S. into alignment

with the World Intellectual Property Organization (WIPO). Two noteworthy changes are the

adjustment of the patent exclusivity period in 1995 and a change to patent granting rights

in 2013. These changes affected patent filing behavior and in doing so reduced our ability to

compare innovation performance metrics over time [49–55].

[17] highlighted the impacts of Patent Office changes when they stated

“Indeed, the mode of operation of the Patent Office underwent significant changes in the past

decades, thereby introducing a great deal of randomness (that have nothing to do with the

actual timing of the inventions) into any patent time series dated by grant year.”

(6)

To understand how changes impacted patent filing behavior it is helpful to understand why

changes to patent granting rights and patent exclusivity times were made.

1.4.5 Patent Exclusivity Period

Prior to June 8, 1995 the “limited time” exclusive right to utility inventions was 17 years

from the patent grant date or 20 years from the original filing date, whichever was longer. In

such a scenario inventors had a strong incentive to file patent applications early in the inventive

process even though the review might take several years to complete [17]. This is because

there was no penalty related to patent office processing time, additionally, applicants could list

patent pending on their inventions as long as it was under review. The time difference between

the original application filing date and the date at which the patent is granted is called grant



20

lag. Prior to June 8, 1995 inventors would effectively maximize their patent exclusivity period

whenever the grant lag exceeded three years. Thus filing behavior that would lead to longer

process times would be incentivized. For example, larger, more complex patent applications were

likely to take longer for the USPTO to process. Since patent application were also kept secret,

those that took extended periods to process could be enforced upon granted against others who

developed and launched products in the interim. This changed in 1995 when the exclusivity

period of 17 years from patent grant date was dropped, leaving 20 years from the earliest patent

filing date either in the U.S. or internationally. The change was made to align U.S. patent law

with the World Trade Organization (WTO) and the Agreement on Trade-Related Aspects of

Intellectual Property Rights or TRIPS [56]. As a result, the incentives around patent filing

changed as the exclusivity period was now based upon the earliest filing date of the patent and

any claimed priority dates. The priority date, sometimes called the “effective filing date”, is the

date used to establish the novelty and/or obviousness of a particular invention relative to other

prior art [57]. Essentially patent seekers would now be penalized for slow office process times

which would directly reduce their exclusivity period. To mitigate the impact of this change the

USPTO offered term extensions for a limited time to compensate for administrative delays.

1.4.6 Patent Granting Rights

Historically U.S. patents have been granted on a first to invent (FTI) basis, meaning that

as long as the original creator of the intellectual property can prove they conceived of the

idea first and reduced it to practice they will be granted patent rights as the original inventor.

Reduced to practice refers to the actual making of the invention in physical form, such as a



21

working model or constructive form via patent application so that one with ordinary skill in

the art could make the invention without undue experimentation. This effectively meant that

original inventors were granted intellectual property rights over the comparable inventions of

others even if they filed their patent application at a later date. This could also be abused if

inventors elected to wait to submit their inventions until others successfully commercialized

them. First-to-invent required inventors to prove they conceived of the idea first, usually

by keeping a detailed record of inventive progress that would hold up to the legal standards

required of evidentiary demonstrations. These invention records are typically dated, signed,

and witnessed and could be used to prove a historical time-line of inventive progress without

invention abandonment meaning that the inventor took care to keep their invention secret by

not publishing or publicly disclosing their invention. This also means that a wealth of untapped

creative textual data likely exists within corporate R&D institutions that is not part of the

public domain. A noted benefit of the first-to-invent system was the level playing field it created

between individual inventors and those represented by large corporations as inventorship was

not dependent on available resources. The rest of the world uses a first-to-file concept which

grants patent protection to the applicant with the earliest filing date. As a partial step to bring

alignment with global intellectual property rules the USPTO moved to a first-inventor-to-file

concept (a.k.a first-to-disclose) which provides a small grace period for applicants to get a

filing date on record via a provisional patent application. The provisional patent application

allows authors to file before they have fully refined their invention. At the end of one year

they are required to submit a full non-provisional patent application while still keeping their



22

provisional filing date. Provisional filers are not allowed to introduce new matter outside of

what was described in their original application. Changes to granting rights from first-to-invent

to first-to-file fundamentally impact filing behavior as inventors are now incentivized to submit

their applications early in the invention process while experimentation is ongoing before the best

mode is determined. The objective of the prior review was to establish a baseline understanding

of some of the intricacies of the patent process in the hopes that 1) it becomes apparent that

significant inventive knowledge is held withing the patent record and 2) the evolutionary nature

of the process is marked with significant changes that influences metrics based solely on numerical

data. The next section focuses on the application of ML techniques to the NBER citation

data file. This initial research revealed that historical methods have been focused on numerical

data and that an opportunity exists to exploit inventive language to reveal latent relationships

between inventive documents without a formal need for a human to be make the connection via

citation.



CHAPTER 2

RESEARCH: ML APPLIED TO NBER CITATION DATA

Preliminary research focused on the use of ML techniques applied to numerical structured

data within patents. The premise was that ML could be used to predict inventive impact and

inventive knowledge flow using citation data. It began by studying the National Bureau of

Economic Research (NBER) Patent Citation Data File developed by [17]. The NBER data file

includes structured data on over 3 million U.S. patents granted between 1963 and 1999 matched

to Compustat [58] data of all firms traded in the U.S. stock market. The NBER data files

include two types of data, original and constructed. A list of the original and constructed data

fields can be referenced in Table I.

2.1 Original Fields

Many of the listed original data fields are self-explanatory, for example patent number,

patent grant date and year, and geographic data related to inventor’s country and state at the

time of filing.

2.1.1 Assignee Identifier

The assignee identifier places patents into categories based upon whether the original inventor

holds the legal rights of the patent or has assigned them to a corporate or governmental entity.

The classes for assignee can be referenced in Table II.

23



24

TABLE I: NBER U.S. Patent Citations Data File Fields

Field Name Definition

O
ri

g
in

a
l

PATENT Patent number The assigned patent number

GYEAR Grant year The year in which the patent was granted

GDATE Grant date The date the patent was granted

APPYEAR Application year The year the application was filed

COUNTRY Country of first inventor First inventor’s filing country

POSTATE State of first inventor First inventor’s filing state

ASSIGNEE Assignee identifier Assignee number to match to full assignee name

ASSCODE Assignee type One of seven USPTO assignee categories

CLAIMS Number of claims (starting in 1975) Total number of patent claims

NCLASS Main U.S. patent class USPTO assigned technology class

C
o
n

st
ru

ct
ed

CAT Technological category NBER assigned technology area

SUBCAT Technological sub-category NBER assigned sub-technology area

CMADE Number of citations made Direct count of citations listed in the patent

CRECEIVE Number of citations received Direct count of citations received by the patent

RATIOCIT Percent of citations Percent of citations to patents granted since 1963

GENERAL Measure of generality Technology spread of a patent’s forward citations

ORGINAL Measure of originality Technology spread of a patent’s backward citations

FWDAPLAG Mean forward citation lag Mean time between patent and forward citations

BCKGTLAG Mean backwards citation lag Mean time between patent and backward citations

SELFCTUB Percentage of self-citation made Percentage of citations made to own work



25
TABLE II: Raw Assignee Category Type

Code Name

1 Unassigned (has not assigned rights beyond inventor)

2 US Company or Corporation

3 Foreign Company or Corporation

4 US Individual

5 Foreign Individual

6 US Government

7 Foreign Government

8 Country Government

9 State Government (US)

2.1.2 Number of Claims

Every patent requires a set of claims, located at the end of patent, that are a numbered list

that clearly identify what exactly the inventor wants exclusive rights to practice. It is generally

understood that the less claims a patent has the broader it’s potential impact. As the number

of claims are increased the more nuanced the invention becomes as it tries to differentiate itself

from the prior art. Claims are usually designated as dependent and independent, which are not

distinguished in this data set.

2.1.3 Main U.S. Patent Class

The main U.S. patent classification is based on the USPC system which consists of two

components or classes which are then combined into a class/subclass symbolic pair. The

beginning part of the pair represents the major technology area that a particular patent falls

within. The second half of the pair further delineates the unique features of the technology

within the scope of the main class.



26

Example 1. Current U.S. Class: 106/778; 106/270

In Example 2.1.3 the class symbol 106 represents (Compositions: coating or plastic) while

the subclass 778 means (with organic material) and subclass 270 is (Wax, bituminous material

or tarry residue containing). A given patent can have numerous classifications assigned to it.

When more than one classification is given they are listed by the order in which each technology

is presented in the patent application. There is no limit on the number of main classes that can

be assigned. For each patent only one symbol is selected as the primary classification and it is

emphasized in bold font. An example of the primary main class is listed under section 52 of U.S.

Patent 6,673,144B2 shown in Figure 7.

2.2 Constructed Fields

The authors of the NBER data also created a number of constructed data fields. These

include the technological category as well as a set of citation-based calculated metrics, including

number of citations made & received, backward & forward citation lag, percent citation total and

self-citation, and measure of generality and originality.

2.2.1 Technological Category

The technological category matches the invention to one of six higher level NBER-defined

technology areas (Chemical, Computer & Communications, Drugs & Medical, Electrical &

Electronic, Mechanical, and Others). These higher level NBER technology categories are based

upon 36 technological sub-categories used under the technology sub-category name. In turn,

these 36 technological sub-categories were derived by aggregation of 400 subject matter classes

from the original main U.S. patent class.



27

2.2.2 Citations Made, Received, and Lag

Patents require that inventors in good faith list any historical knowledge that they are aware

of at the time of filing. This historical knowledge is known as prior art and it helps the inventor

distinguish the novelty of their inventions over past inventions. Just as in academic papers it

is presumed that the number of citations received is a proxy for knowledge flow and that a

higher number of citations reflects the overall inventions impact to society. Number of citations

made is a direct count of the backward citations made by a patent, while number of citations

received reflects the total count of forward citations that a patent receives over time. Percent of

citations is calculated by taking the number of citations made to patents granted since 1963

and dividing by the total number of citations made. Mean backwards citation lag is the average

time difference between the application year or grant year of the citing patent and year of the

patent cited. Mean forward citation lag is the average time between the application or grant

date of the originating patent and those that cite it. Note that mean forward citation lag suffers

from truncation and for the data set at hand the upper forward time limit was 24 years. The

mean citation lag measures are of particular interest because they attempt to answer questions

related to the diffusion of inventive knowledge.



28

2.2.3 Measures of Generality and Originality

Measure of generality and originality is based upon the work conducted by [31]. The

generality index attempts to gauge the general technological impact of a patent based upon the

spread of technical categories associated with its forward citations using the following equation:

Gi = 1−
J∑

j=1

(
Nij

Ni
)2 (2.1)

where Ni represents the total number of forward citations to the focal patent i and Nij is the

number of forward citations received in patent technology class j. Dividing Nij by Ni gives

the percentage of citations received by patent i that belong to patent class j, out of J total

patent classes. The sum of the squared percentages is based upon the Herfindahl-Hirschman

concentration index (HHI) which is used to measure market concentration within a given

industry with respect to the potential for monopolistic behavior [59–61]. The result of squaring

assures that the sum is not negative while at the same time emphasizing larger differences in

concentration. The generality index takes values between zero and one. Patents that receive a

high number of citations across differing technology categories will also have a higher generality

score compared to citations concentrated in fewer technological categories. The same technique

is applied to study patent originality by substitution of backward citation counts for forward

citations. If a patent cites a narrower set of patent technology categories its originality score will

be lower. Lastly, the percentage of self-citations made is a count of backward citations made

by a patent to its current assignee divided by the total number of backward citations made.



29

Self-citations is an important measure when considering the overall impact of a given technology.

It is not uncommon for patentee’s to cite previous work as part of an overall patent strategy

to create a moat around a firm’s intellectual property, resulting in an inflated forward citation

count.

2.3 Visual Inspection of NBER Data

Statistical, pattern, and association rule analysis was conducted on the NBER data file.

On average the USPTO issues over 79,000 patents annually with a median of 71,000 patents

between the years 1963 and 1999. A scatter plot based upon the NBER data file of the number

of patents issued from 1963 through 1999 is shown in Figure 1. Visual inspection of the plot

Figure 1: USPTO Issued Patents (1963 - 1999)



30

reveals several interesting patterns: (i) there is an overall steady growth trend of patents issued

annually; (ii) there was a slight growth trend in patents granted from 1962 to 1970; (iii) there is

a distinct leveling off period between 1970 & 1985; (iv) there is a significant spike after 1995

when the average number of patents dramatically increased to approximately 150,000 annually;

(v) there appear to be outliers with high data points in 1999 and a low value in 1978..

2.4 Statistical Analysis

Statistical analysis on the entire NBER patent data set was conducted for the purpose of

discovering potentially interesting patterns that might lead to insights about patent impact

and inventive knowledge flow. The code for this analysis can be referenced in Appendix L.

Some notable insights include: (i) a significant proportion (47%) of patents are filed by U.S.

Corporations, with the second largest category being non-U.S. Corporations at 32%, thus 79%

of all patents filed in the U.S. are by corporations; (ii) the average lag between the time a patent

is filed and granted is two years.. A histogram of the number of patents granted each year can

be referenced in Figure Figure 2. The histogram ranges from a low of 45,679 in 1963 to a high of

153,486 in 1999. The blue vertical line represents the mean of 79,024 patents while the orange

vertical line represents the median of 71,661.

2.4.1 Proportion Analysis

Table III represents a simple proportion study based upon the relative percentage of each

patent assignee type. The proportion of U. S. non-government organizations (mostly corporations)

who filed patents from 1963 through 1999 was 47.2%. This was derived by setting the assignee

identifier field code to the value of 2 (U. S. non-government organizations) and dividing by the



31

Figure 2: Density plot and histogram of USPTO issued patents (1963 - 1999)

total number of patents. Another interesting fact from the data was the relatively high percentage

(31.3%) of corporations outside the U.S. who received patents. Combined corporations represent

almost 79% of all patents award between the years of 1963 and 1999. Table IV represents a

proportion study based upon the relative percentage of each patent technology category. What

is interesting from this data is the fact that Chemical and Mechanical categories represent a

significant portion of the number of granted patents. The Others category includes agriculture,

amusement, apparel, furniture, and miscellaneous.

2.5 Association and Pattern Analysis

Association and pattern analysis techniques were applied to the data set to investigate

whether a particular technology industry took longer than the 2 year average lag to be granted



32

TABLE III: NBER proportion of patents based on assignee

Type Assignee Percent

1 Unassigned (has not assigned rights beyond inventor) 18.4%

2 US Company or Corporation 47.2%

3 Foreign Company or Corporation 31.2%

4 US Individual 0.8 %

5 Foreign Individual 0.3%

6 US Government 1.7%

7 Foreign Government 0.4%

TABLE IV: NBER proportion of patents based on assignee

Type Technical Category Percent

1 Chemical 20.8%

2 Computers & Communications 9.9%

3 Drugs & Medical 7.0%

4 Electrical & Electronic 17.1%

5 Mechanical 23.3%

6 Others 21.9%



33

the results of which can be referenced in Table Table V. The objective of this exploration was

to understand what influences grant lag, and in turn, knowledge flow dissemination. Analysis

TABLE V: Association & Pattern Measures Applied to the NBER Data

Rule A Rule B Support Confidence Lift All Conf All Conf Kulczynski Cosine

P
a
te

n
t

la
g

>
2

y
e
a
rs

Chemical 4.9% 23.8% 1.15 0.24 0.24 0.24 0.24

Computers & Communications 3.2% 15.4% 1.55 0.15 0.32 0.24 0.22

Drugs & Medical 1.9% 9.1% 1.31 0.09 0.27 0.18 0.16

Electrical & Electronic 3.3% 16.3% 0.95 0.16 0.20 0.18 0.18

Mechanical 3.9% 18.9% 0.81 0.17 0.19 0.18 0.18

Others 3.4% 16.5% 0.75 0.15 0.16 0.16 0.16

started by generating a patent lag field that took the difference between the patent application

and grant dates for each patent from the set of 2.9 million. The average patent lag was

determined to be approximately 2 years. A single association rule was tested to see what the

support, confidence, and lift was of technology categories associated with any particular industry

taking longer than the average to have their patents granted. These equations can be referenced

in Equation Equation 2.2, Equation Equation 2.3, and Equation Equation 2.4. In this analysis

A represents an item-set of patents that exceed 2 years to grant with B being a select technology

category. The association rule antecedent A given the consequent B is A⇒ B and the Support

of A with respect to L, our set of 2.9 million lag records, is defined as the proportion of lags l in

the data-set which contain A.

supp(A) =
|{l ∈ L;A ⊆ l}|

|L|
(2.2)



34

In Table V the support column represents the fraction of lag records that contained both the

technology category and a patent lag of greater than two years. Confidence is an indication of

how often the rule is likely to be true:

conf(A⇒ B) = supp(A ∪B)/supp(A) (2.3)

In Table V the confidence column represents among records containing A the fraction of rows

that also contain B or the conditional probability of B given A. Lift is the ratio of confidence

to support or the ratio of observed support to the support of A and B occurring independently.

The lift value is considered an interestingness measure in that it helps us understand the relative

strength of a rule. If the lift is > 1 there is a positive correlation while < 1 is negative. A lift

value of zero has no correlation.

lift(A⇒ B) =
A ∪B

supp(A)× supp(B)
(2.4)

Table V also includes additional interestingness pattern evaluation measures including Kulczynski

which is represented by the following equation:

Kulczynski =
1

2
(P (A|B) + P (B|A)) (2.5)

A Kulczynski score near 0 or 1 indicates that we have an interesting rule that is either negatively

or positively associated respectively while being near 0.5 can be interpreted as uninteresting.



35

In addition to Kulczynski, other measures of interestingness include all-confidence, maximum-

confidence, and cosine (IS) [62–64]. The association analysis indicated that the technology

category with the highest support was the Chemistry category. In this category 4.9% of all

patents took over 2 years to grant. Furthermore, of the patents that did take over 2 years to

issue there is a 23.8% chance that they will also be classified as Chemical. Our lift indicates a

slightly positive correlation being 1.15 times more likely to be classified as Chemical. Based

upon this analysis it appears that technology category can influence patent lag and that patents

associated with certain technology fields, like chemistry, were more likely to have a greater

patent lag than other technology fields. Since patent lag directly influences inventive knowledge

flow we wanted to understand what independent variables had the most influence on NBER

data set.

2.6 Supervised Machine Learning

ML techniques were applied to study what independent variables were driving variability

within the NBER data set. Analysis techniques included principal component, decision trees,

and artificial neural networks (ANN).

2.6.1 Principal Component Analysis

Imputation was conducted on the data set to address missing data values with substitute

values. This is required because some ML based statistical methods are unable to process

missing or corrupt values, for example, those that result from encoding issues. There are many

different algorithmic methods to perform imputation. The particular technique used for this

analysis is known as mean substitution. Mean substitution corrects for missing numerical data



36

by subsisting the mean of the variable from the set which has the nice benefit of not changing

the overall sample mean. A random sample of 5000 patent records was extracted from the

NBER data. Independent variables for patent grant year, grant date, application year, sub

patent category, assignment code, main patent class, citations received, and generality were

defined. Principal component analysis indicated that patent grant year was responsible for 98%

of the data set’s overall variability.

2.6.2 Decision Tree

A random sample of 5000 patent records were extracted from the NBER data set. Independent

variables for patent grant year, grant date, application year, sub category, assignment code, main

patent class, and country of origin were defined. Country of origin data was converted from

categorical to numerical using a label-encoder function (e.g. U.S. = 22). The dependent variable

was set to technical category as listed in Table IV. Decision tree classification techniques were

able to successfully predict the NBER technological category with greater than 96% )accuracy

with the main splitting criterion being the application year of the patent (see Figure 3. This

made intuitive sense as the year in which an invention was developed is strongly influenced by

the technology available at the time. The code for this analysis can be referenced in Appendix

N

2.6.3 Artificial Neural Network

A random selection of 5000 records was used for this analysis. Input variables of grant year,

grant date, application year, sub category, assignee type, patent class, and patent country were

selected. The dependent variable of patent category was selected. A python for loop was used



37

Figure 3: Decision Tree prediction of patent technical category using NBER patent data (1963 - 1999)



38

to test the impact of the neurode number (up to 50) of the first hidden layer on the accuracy of

the classification model. For this particular run the accuracy of predicting the assigned patent

category was 57% which can be seen in Figure 4. The code for this analysis can be referenced in

Appendix M.

Figure 4: Neural network prediction of patent technical category using NBER patent data (1963 - 1999)

2.7 Preliminary Research Insights

Insights gained by studying the NBER citation data file raised questions as to whether patent

numerical data was the best tool to study inventiveness and knowledge flow. Further research led

to a survey review by [1] which highlighted many citation analysis drawbacks over the last two



39

decades. They specifically call out four pitfall areas associated with the use of patent citation

data. These include: (i) office effects caused by different “prior art” requirements between patent

offices worldwide; (ii) time and technology field effects such as citation truncation, citation

inflation over time, and citation count differences between technology fields; (iii) examiner

effects related to variations in examiner tenure which influence application processing time

leading to variation in patent and citation lag as well as potential examiner bias towards foreign

applications; and lastly, (iv) strategic effects caused by changes in applicants’ tendency to cite or

not cite prior art, which is a strategic decision influenced by changes to the patent process over

time. The research of this thesis raised a number of additional concerns, most of which can be

classified under the headings listed by [1] and one additional category of computational effects.

2.7.1 Computational Effects

Computational effects are related to increases in computer processing speed, digital storage,

and the development of advanced software capable of conducting complex statistical analysis.

These effects allow us to process large complex data sets that were not possible before, data

sets that are likely to contain interesting patterns and latent knowledge. The unstructured

textual data that exists within the USPTO patent corpus is a prime example. Below we discuss

additional considerations for office, examiner, and strategic effects.

2.7.2 Office effects

The tendency for applicants to use obfuscating language, whether intentional or not [65],

puts an additional burden on the patent examiner to establish credible prior art via keyword

searches which are entirely based on the language inventors use to describe their inventions.



40

It seems reasonable to conclude that a more representative number of citations would exist if

applicants held to the spirit of listing prior art, while also using clearer language to describe their

claimed inventions per the written description requirement. The use of obscure and confusing

language also makes it difficult for others to reproduce or improve upon inventions. Later in

this thesis Figure Figure 11 we propose methods to mitigate this impact through the use of a

specialized ‘Legal Jargon’ dictionary which can be used to filter for obfuscating language.

2.7.3 Examiner effects

[21] showed that examiner experience impacts patent outcomes. Human resource policies

on patent examiner performance measurement known as the Patent Examiner Performance

Appraisal Plan, or PAP, may also influence patent examiner behavior and outcomes. The

PAP is based on a combination of quality, productivity, and timeliness measures for examiners.

In the United States one specific measure of examiner performance is the production unit

time requirement, which is the count of patents processed per unit time for a specific patent

technology category. The requirement is based on a two-week cycle, with no allowance for

illness or holidays. An unintended consequence of this performance metric is an incentive for

examiners to split patents. A patent application can be split when there is a clear lack of unity,

i.e., when the patent describes more than one invention. The examiner benefits because the

split increases the patent count per unit of time. The division of applications also benefits the

applicant because it reduces the filing costs incurred up until the point of division. The outcome

is a trend towards longer applications with more claims. The increase in claims is not a function

of more inventive steps as much as an increase in the number of inventions per application.



41

The economic influences have not gone unnoticed by legal firms who specialize in intellectual

property filing, and it is common to see fees tied to the number of requested independent and

dependent claims. The examiner performance measurement system was revised in 2010 to help

remove administrative barriers to patent grants [66] as well as to facilitate identification of

patent application issues as early in the examination process as possible [67].

2.7.4 Strategic effects

The evolving legal understanding of the written description requirement has resulted in

applicants using more general language with less reliance upon specifically stated scientific based

breakthroughs [68]. Changes in patent rights, for example the transition from first-to-invent

(FTI) to a first-inventor-to-file (FITF) are noteworthy because they directly effect patent filing

behavior and reduce our ability to compare innovation performance over time using citation

analysis methods [49–55].

2.8 Results from examination of the NBER data file

Preliminary research using the NBER data revealed that there are many potential issues

with the use of historical patent metrics derived from structured numerical data to reveal latent

relationships between inventions. These concerns include statistical anomalies in the data set as

well as fundamental structural changes in the patent application process over time that impact

filing and citation behavior. Examples include, in addition to those outlined by [1], changes to

the examiner performance measurement system, changes to patent office filing requirements,

and changes to patent data processing capability, including technological advances that have

enhanced our ability to transform massive amounts of unstructured patent textual data into



42

structured data for ML. These insights inspired a refocusing of research efforts on the conversion

of unstructured patent textual data, via NLP techniques, into structured data for the application

of ML. The ultimate objective remains to provide improved methods of discovering latent

relationships, overall inventiveness, and how inventive knowledge is disseminated.



CHAPTER 3

RESEARCH: ML APPLIED TO USPTO TEXTUAL DATA

The inadequacy of analysis based solely on structured numerical data such as patent citations

to generate actionable knowledge related to the measurement of inventiveness and inventive

knowledge flow leads us to consider the unstructured textual data contained within patents. In

this research, a methodology is developed to apply text mining to unstructured patent data while

adding specific steps to take advantage of the written application requirements and language

that are unique to the patenting process. The following sections present research conducted to

date using both patent textual and numerical data.

3.1 PatentsView Data Tables

In 2015 the USPTO and partners launched PatentsView [69, 70]. The PatentsView Data

Tables and the PatentsView Visual Analysis Platform were made available specifically for

research purposes to increase the “value, utility, and transparency of U.S. patent data”. The

data set contains over 6 million detailed records representing all U.S. patenting activity since

1976. The records include the NBER technology categories that were discussed earlier in this

thesis, along with unstructured textual data located in the patent title, abstract, and claims.

PatentsView provides a data table dictionary which includes detailed information on each

table, including corresponding fields and relationships [71]. The individual data files are in tab

delimited format which allows them to be downloaded and imported into native environments.

43



44

Thirty-five database tables, in excess of 26 gigabytes, were downloaded for analysis using the

Python programming language [72]. Citation and text mining analysis were conducted using

the patent, assignee, citation, claim, CPC, and application data tables which are detailed in the

following sections.

3.1.1 Patent Table

The data fields shown in Table VI include patent numbers, dates, abstracts, and titles that

were extracted via the code listed in Appendix A. The patent number is the official number

assigned to a patent by the USPTO upon granting and is the relational key used to match

records from other tables within the database. The date field represents the official patent

grant date assigned by the USPTO at the time of issuance. Unstructured textual data exists

TABLE VI: PatentsView Patent Table

Table Field Name Definition Type

patent

id patent that this record corresponds to varchar(20)

type one of eight patent types (e.g. “utility”, “design”, etc.) varchar(100)

number patent number varchar(64)

country country in which patent was granted (always US) varchar(20)

date date when patent was granted date

abstract abstract text of patent text

title title of patent text

kind document kind codesa varchar(10)

num claims number of claims int(11)

filename
name of the raw data file where patent information is
parsed from

varchar(120)

within the title and abstract fields. Patent abstracts are intended to summarize the invention as

succinctly as possible, typically in fewer than 150 words, using less complex legal terminology



45

than is normally found in the body of the document. These fields can be seen in Figure 5 which

shows the first page of an example United States Patent with the patent number, date, title,

and abstract fields outlined in red [73].

3.1.2 Claims Table

The claims table (Table VII) contains unstructured textual data intended to define the

exclusivity zone of an invention by delineating, using an ordered list of detailed text statements,

what inventors are seeking to prevent others from making or selling. Patent claims are considered

the heart of an invention which is why they are one of the first areas studied by domain experts

when trying to understand key inventive elements.

TABLE VII: PatentsView Claims Table

Table Field Name Definition Type

claim

uuid unique id varchar(36)

patent id patent number varchar(20)

text claim text text

dependent sequence number of the dependent claim, -1 if independent int

sequence order in which claims appear in patent file int

3.1.3 Raw Assignee Table

The raw assignee table (Table VIII) provides information on the rights holder of the patent

at the time of granting which includes the first and last name of the assignee for an individual

and/or the organization name for a corporation. This research uses the organization field

from the raw assignee table to select for companies that compete within the building materials

technology space via the code listed in Appendix C. There is an alternate disambiguated form of



46

Figure 5: U.S. Patent 6,673,144



47

the assignee data table within the data set that reflects current organization names; however, it

was not used because it is not persistent across database updates. Instead the set of companies

were disambiguated use the code listed Appendix C.

TABLE VIII: PatentsView Assignee Table

Table Field Name Definition Type

rawassignee

uuid unique id varchar(36)

patent id patent number varchar(20)

assignee id unique assignee ID generated by the disambiguation algo-
rithm

varchar(36)

rawlocation id assignee’s location varchar(128)

type assignee type int(4)

name first first name, if assignee is individual varchar(64)

name last last name, if assignee is individual varchar(64)

organization organization name if assignee is an organization varchar(256)

sequence order in which assignee appears in patent file int(11)

3.1.4 Cooperative Patent Classification Table

The CPC table (Table IX) contains four different patent classification systems that were

previously reviewed in section 1.4.3. The CPC system, introduced in January 2013, was selected

for use in this analysis for two reasons. First, it is a harmonized approach towards global

patent classification jointly developed by the European Patent Office (EPO) and the USPTO

to eliminate reclassification and simplify patent search results through the use of a single

classification system. [34,74]. Second, it has reached critical mass as many industrialized nations

have adopted the CPC with over 50 million patent documents classified [35]. The main CPC

section was selected along with the patent id via the code listed in Appendix F. This research

used the highest level main classification of the CPC, which is detailed in Table X.



48

TABLE IX: PatentsView CPC Table

Table Field Name Definition Type

cpc current

uuid unique id varchar(36)

patent id patent number varchar(20)

section id cpc section* varchar(10)

subsection id cpc subsection id* varchar(20)

group id cpc group id* varchar(20)

subgroup id cpc subgroup id* varchar(20)

category cpc category (primary or additional) varchar(36)

sequence order in which cpc class appears in patent file int(11)

* http://www.uspto.gov/web/patents/classification/cpc.html

TABLE X: Cooperative Patent Classification

Code Name

A Human Necessities

B Performing Operations; Transporting

C Chemistry; Metallurgy

D Textiles; Paper

E Fixed Constructions

F
Mechanical Engineering; Lighting; Heating; Weapons;
Blasting Engines or Pumps

G Physics

H Electricity

Y General Tagging of New Technological Developments



49

3.1.5 Citation Table

The citation table (Table XI) matches a patent number to all the corresponding backward

citations listed at the time of patent granting. This includes notations as to whether a specific

citation was made by the examiner or applicant. The sequence field gives the order in which

citations were made. This research used the patent id and citation id fields to locate forward

citations for each patent within the building material companies subset using the programming

code listed in Appendix D.

TABLE XI: PatentsView Citation Tables

Table Field Name Definition Type

uspatentcitation

uuid unique id varchar(36)

patent id patent number varchar(20)

citation id citing patent number varchar(20)

date patent citing date date

name name of cited record varchar(64)

kind document kind codesa varchar(10)

country country cited patent was granted (always US) varchar(10)

category who cited the patent (examiner, applicant, other etc) varchar(20)

sequence order in which this reference is cited by select patent int(11)

a http://www.uspto.gov/learning-and-resources/support-centers/electronic-business-center/kind-codes-included-uspto-patent

3.1.6 Application Table

The application table (Table XII) contains the patent filing date information for every

patent. This is the official start time for the 20 year term of exclusive rights to practice the

claimed invention. It is also a key input when attempting to measure inventiveness and inventive

knowledge flow as it represents the earliest official listing by the inventor of prior art via backward



50

citations. The final set of citations listed at the time of patent granting was used for this analysis,

however, the patent application date was used in place of grant date as it is a better reflection

of when the inventive knowledge was first created.

TABLE XII: PatentsView Application Table

Table Field Name Definition Type

application

id application id assigned by USPTO varchar(36)

patent id patent number varchar(20)

series code application series, ”D” for some designs* varchar(20)

number unique application identifying number varchar(64)

country country the application was filed in varchar(20)

date date of application filing date

* http://www.uspto.gov/web/offices/ac/ido/oeip/taf/filingyr.htm

3.2 Invention Impact: Intra-Citation Visualization

Figure 6 represents a holistic view of patent intellectual property filing activity for the set of

building companies that are shown on the left hand side of the figure for the years 1976 through

2015. The code for this analysis can be referenced in Appendix H.



51

Figure 6: U.S. Building Material Patents: Invention Impact Using Intra-Citations (1970-2015)



52

Each bubble represents an individual patent out of 5,651 total patents. The bubble size is

based upon the number of forward citations that the patent received over the life of the patent.

The color of the bubble aligns with the technological classification per the CPC and matches

the color bar located on the right hand side of Figure 6 [34, 75]. As expected, the categories

of chemistry, performing operations, and textiles dominate this space. Leading companies

in terms of patent counts are USG Corporation, Geogia Pacific, National Gypsum Company,

Armstrong World Industries, and Saint Gobain. As is typical with citation analysis there is

visual evidence of truncation with more recent patents having fewer forward citations than

older patents. Larger citation bubbles for Georgia Pacific beginning in 2009 are attributable

to a significant increase in patent applications in years 2012 and 2015 which included a large

number of self-citations. This latent pattern was discovered as a result of this research and will

be discussed in more detail in later sections. The next step in this research was to demonstrate

that ML could be used to derive comparable insights by generating a similar visualization using

counts of intra-cosine-related patent documents in place of intra-forward-citation counts. The

steps for this process are discussed in the next section while the Python code for creation of the

visualization can be referenced in Appendix I.

3.3 Text Mining

In this section ML techniques are applied to a subset of USPTO patent data to assess the

similarity of patents using modified text mining techniques. It presents both the steps and

considerations used to isolate key inventive terms from each patent as detailed in the process



53

flowchart shown in Figure 7. The broad steps of the method are iterative and follow typical

data mining methodology for the purpose of knowledge discovery (Table XIII).

TABLE XIII: Patent NLP Steps

Step Name Description

1 Data Selection Relevant data are retrieved from the database

2 Data Cleaning Noise and inconsistent data are removed to ensure algorithm compatibility

3 Pre-processing Data are prepared for use by ML algorithms

4 Vectorization Textual data are converted into numerical data

5 Transformation The converted numerical data are transformed and consolidated for mining

6 Dimension Reduction Intelligent computational methods extract data patterns

7 Visualization Interesting patterns representing actionable knowledge are shown

3.3.1 Data Selection

The first step of this analysis was to extract the unstructured textual data from the patent

title, abstract, and claims and load it into the Python programming language environment [72].

A subset of patents from the building materials industry was selected based on domain expertise

in this area, thus allowing human verification that methods were successful in isolating inventive

language. To select patents associated with the building materials industry a look-up pattern

was run on the organizational field of the assignee data table to select for organization names

that contained the words “gypsum” or “cement”, or any companies that were known to compete

in the building materials technology space. The patent identification numbers of the subset of



54

Figure 7: Patent Text Mining Method Flowchart



55

building material companies were then used to select for corresponding patent data (e.g., patent

number, title, abstract, and grant date) within the patent data table. The data was then merged

into a single table for further analysis. The code for this analysis can be referenced in Appendix

B. The next step was to disambiguate the assignee names to correct for duplicates. An example

of disambiguation was the consolidation of all names associated with the building materials

company USG (USG Company, USG Interiors, United States Gypsum Company, and USG

Corporation) under a single assignee name. Assignee names of all subsidiaries were consolidated

under their parent company name to make visualization of the data easier. This included

updating assignee names for organizations that no longer existed due to bankruptcy, merger, or

sale to another entity. This step was achieved via look-up and replace statements run against

the raw assignee fields to pattern match assignee names. The code for the disambiguation step

can be referenced in Appendix C.

3.3.2 Data Cleaning

Upon importation of the data into Python several cleaning steps were conducted to remove

incomplete and incorrect data. This is required because some ML algorithms do not support null

values or non-standard characters. Examples of incomplete values include “not a number” (NaN)

entries and typographical errors. An NaN is an undefined or unrepresentable value that can

not be processed in floating point calculations. Cleaning steps included removal of duplicates,

removal of special encoding characters, and imputation. Imputation replaces missing data values

with substitute values. Common imputation techniques include mean substitution and zeroing



56

for null values. Mean substitution corrects for missing numerical data by substituting the mean

of the variable from the set which has the benefit of not changing the overall sample mean.

3.3.3 Pre-processing

The objective of pre-processing is to remove low-value information terms from documents

prior to vectorization [5, 76, 77]. Pre-processing is conducted through a sequence of steps,

with each step resulting in the removal of additional low-value information, leaving only high-

quality terms for analysis. The Natural Language Toolkit (NLTK) package for Python includes

algorithmic tools to conduct many of the standard steps [78]. Table XIV lists the common steps

as well as additional steps used in this research. This process improves upon the process steps

TABLE XIV: Patent Pre-processing Function Steps

Step # Name Description

Standard

1 Tokenization Breaks up strings of text into individual words

2 Stop Words
Removes high frequency low value words like “the”, “is”, and
“at”

3 Punctuation
Removes unnecessary punctuation characters like apostrophes
and dashes. Note modification to keep hyphenated words for
this research.

4 Lemmatisation
Reduces inflectional word forms while maintaining common word
form

Custom

5 Patent Jargon
Designed to remove low value legal terms used in the patent
industry

6 Word Length Designed to remove acronyms, abbreviations, encoding errors

7 Numerical Designed to remove all numbers from the string



57

by removing noise from the corpus through a reduction of term features that are common to

intellectual property documents. The first step is to join the unstructured title, abstract, and

claim textual data into a single character string for pre-processing. For efficiency many of the

pre-processing steps have been consolidated into a custom function designed to strip text strings

of non-value-added terms, as shown in Listing 3.1. The purpose of each line of the custom

1 def clean(doc):
2 number_free = ’’.join([c for c in doc if c not in "1234567890"])
3 words = [word.strip(string.punctuation) for word in number_free.split(" ")]
4 filtered = [f for f in words if f and f.lower() not in stop_words]
5 undo = "".join([" "+i if not i.startswith("’") and i not in string.punctuation else i

↪→ for i in filtered]).strip()
6 punc_free = ’’.join(ch for ch in undo if ch not in punctuations)
7 smallword_free = ’ ’.join([w for w in punc_free.split() if len(w)>word_len])
8 lemmatized = " ".join(lemma.lemmatize(word) for word in smallword_free.split())
9 jargon_free = " " .join([j for j in lemmatized.lower().split() if j not in jargon])

10 for i in jargon_free:
11 jargon_free = re.sub((i+i+i), ’ ’, jargon_free)
12 #jargon_free = jargon_free.replace(’the ’,’ ’) # not needed with proper space

↪→ inserted on merge
13 nonsense = ’ ’.join([w for w in jargon_free.split() if len(w)>1])
14 return nonsense
15
16 corpus_clean = [clean(doc) for doc in corpus] # list of sentence strings
17 corpus_tokenize = [clean(doc).split() for doc in corpus] # list of string words

Listing 3.1: Patent corpus pre-processing cleaning function

function is as follows:

1. Line 2 removes numbers from the text strings while line 3 is intended to parse words and

remove spaces.

2. Lines 4 and 5 remove common low value information words known as stop words. Examples

of stop words include common filler words like “an”, “the” and “to”. A standard stop

word list is included with the NLTK package for Python [78].



58

3. Line 6 strips punctuation while keeping hyphens which is accomplished through modifica-

tion of the standard punctuation list provided by NLTK. Hyphens are retained because

they are common in patent chemical descriptions and inventive language.

4. Line 7 removes small common words that were not removed by line 4 based on an input

parameter for character length. In this case the length parameter value was set to keep all

words greater than 2 characters. Examples of small words that are removed include an

abbreviation like “wt” for weight. Further improvement of this step would be to expand

important abbreviations first. For example words like ”C” for Celsius and “g” for grams

could be expanded via inclusion of patent abbreviation dictionary.

5. Line 8 is a process step referred to as lemmatisation which is a method of grouping inflected

word forms together and is a standard tool in the NLTK package. Lemmatisation removes

inflectional endings while still returning base word forms as it first identifies common

parts of speech (POS) and then replaces the word with its base form. An example of

lemmatisation can be seen in Figure 8 where the term “properties” has been outlined in

red on the left hand side and been converted to the word “property” on the right hand side.

The other approach to reducing inflectional word forms is known as stemming. Stemming

is a faster approach which works by removing word suffixes like “ing” or “ly”. It does not

take into account the context of the word based upon POS and can result in non-words.

For example the word “sitting” can be reduced to “sitt” instead of “sit”. This method was

not integrated into the custom function because it resulted in the generation of non-words

which undermines the ability to identify inventive descriptors.



59

6. Line 9 is intended to remove common legal terms associated with intellectual property

preparation and USPTO filing requirements that are referred to in this research as patent

jargon. A term frequency bar chart comparison of before and after patent jargon removal

can be seen in Figure 9 and Figure 10. The text output on the right side of Figure 8 was

used as the input on the left side of Figure 11. The result of the jargon removal step is

the output on the right hand side of Figure 11. Note that the patent jargon dictionary,

which was created to remove common legal words, reduces the size of the string beyond

what is accomplished by standard pre-processing. The patent jargon dictionary currently

includes the words in Listing 3.2. Improvement of the jargon dictionary is a subject of

future research.

7. Lines 10-13 are the final steps of the function which remove nonsensical terms such as

those related to encoding errors. This is accomplished by removing terms which have a

fixed number of consecutive characters (e.g. “aaa”). The number of repeating characters

is set by the domain expert. In this case terms that contain three or more repeating

characters were removed.

8. Lines 16 and 17 of 3.1 are commands to clean each patent document string and also parse

words for frequency analysis.

Figure 12 is a word-cloud visualization based upon the output from line 17 of Listing 3.1 which

shows the highest frequency words from the patent corpus. An illustration of the effectiveness

of the patent pre-processing function in removing low value information terms can be seen

in Figure 8 where it was applied to U.S. Patent 6,673,144. The left side of the figure shows



60

Figure 8: Patent 6,673,144: Pre-processing Output of Unstructured Textual Data with Examples of

Lemmatisation Boxed in Red



61

Figure 9: Patent Term Frequency Analysis Pre-Jargon Removal

blue highlighted low value combinations of terms while the right side represents term output

prior to running the jargon removal step. By removing non-value-added terms the size of the

inventive string was reduced by 69%. This includes removal of all numbers, punctuation, and

words shorter than two characters, without losing high value inventive terms or their relative

order within the string. A comparison between pre- and post-jargon removal can be referenced

in Figure 11 where the left hand side of the figure highlights patent jargon in blue that was

removed from the string. The patent jargon removal step reduced the inventive string by an

additional 21% over standard pre-processing. The terms that were automatically generated on



62

Figure 10: Patent Term Frequency Analysis Post-Jargon Removal

Figure 11: U.S. Patent 6673144: Pre-Processing Comparison with Blue Highlighted Legal Jargon Removed



63

Figure 12: Patent Corpus Pre-processing Output Word Cloud

the right hand side of Figure 11 represent core inventive descriptors as validated by a domain

expert. The application of the pre-processing function resulted in an inventive descriptor string

for each patent which was then converted to a vector as described in Section 3.3.4.

3.3.4 Vectorization

The next step in the analysis is to convert the pre-processed strings of text into numerical

vectors using the scikit-learn CountVectorizer package [79]. The count vectorizer algorithm

assigns numerical values, counts terms, and then places the vectors into a sparse document-term

matrix for use in a Vector Space Model (VSM). There are several important parameters in

this model that require domain expert input. These include the maximum and minimum term

frequency threshold values, case sensitivity, and the upper and lower boundaries for n-gram



64

1 jargon = {’according’, ’also’, ’apparatus’, ’assembly’, ’body’, ’claim’,
2 ’claimed’, ’component’, ’composition’, ’comprise’, ’comprises’,
3 ’comprising’, ’consisting’, ’containing’, ’device’, ’disclosed’,
4 ’element’, ’embodying’, ’end’, ’face’, ’first’, ’form’, ’formed’,
5 ’forming’, ’forms’, ’group’, ’include’, ’includes’, ’including’,
6 ’invention’, ’layer’, ’le’, ’least’, ’made’, ’making’, ’material’,
7 ’may’, ’mean’, ’means’, ’member’, ’method’, ’mixture’, ’one’,
8 ’patent’, ’plurality’, ’portion’, ’preferably’, ’present’,
9 ’process’, ’product’, ’provided’, ’provides’, ’providing’, ’relates’,

10 ’resulting’, ’said’, ’second’, ’selected’, ’substantially’,
11 ’substrate’, ’support’, ’surface’, ’system’, ’technology’, ’thereof’,
12 ’third’, ’two’, ’web’, ’weight’, ’wherein’, ’within’, ’wt’}
13

Listing 3.2: Jargon dictionary

range. N-grams are a key part of NLP related to the identification of common sequences of

words which play an important role in contextual meaning. The maximum threshold for term

frequency across the building materials patent corpus was set to 65%. The result of this setting

is that terms that exist across more than 65% of our patent documents will be dropped from the

feature space. The minimum threshold was set to zero, meaning no infrequent or rare terms will

be ignored, even if they exist only in a single patent document. The lowercase parameter was

set to false, meaning that any terms containing capital letters would be converted to lowercase.

Lastly, the n-gram range for feature extraction was set to include uni-gram, bi-gram, and

tri-gram word combinations also known as n-grams. An example of a uni-gram is the chemical

word “sodium” while a bi-gram could contain the words “sodium chloride”. Both example

n-grams are important when trying to compare inventive language between patents as they

clearly denote different contextual chemical meanings. Our n-gram range setting means that our

terms can include one or more word combinations, in this case between one and three words,

based upon how frequently they are co-located across the patent corpus. Optimization of n-gram



65

settings is the subject of future research. The output of the CountVectorizer algorithm is a set

of term frequency document vectors where the term frequency tf (t, d) equals the raw count of

the number of times term t occurs in document d. These vectors are then used as the input for

the transformation step.

3.3.5 Transformation

There are a number of vector transformation techniques available to convert strings of

unstructured text into structured data for analysis. Some example techniques include term

frequency-inverse document frequency (tf-idf) [80–86], Latent Semantic Analysis (LSA) [87–89],

and Latent Dirichlet Allocation (LDA) [90–94]. Tf-idf takes a vector and returns another vector

of the same dimension, while both increasing the value of rarer features and reducing the value of

overly frequent terms. It converts integer-valued vectors into real-valued ones, while leaving the

number of dimensions intact. LSA can take output from tf-idf as input and correlate semantically

related terms that are latent in a collection of text.

Queries, or concept searches, against a set of documents that have undergone LSA

will return results that are conceptually similar in meaning to the search criteria

even if the results don’t share a specific word or words with the search criteria [95].

This method did not appear to enhance outputs when applied to inventive language, especially

when trying to derive semantic relationships between chemical terms. LDA is a generative

statistical model that attempts to associate sets of terms with an unobserved topical group,

then backtracks and tries to figure out what sets of unobserved topics would be required to

create the original documents in the first place. The unobserved topic itself is then left for



66

the human to label. LDA was not pursued as this research was focused on revealing latent

core inventive terms and not unknown topics which have already been identified via CPC. The

analysis presented here uses tf-idf, which weights the importance of a term in proportion to its

use within a document and offsets that importance in proportion to the term’s frequency of

use across all documents. The tf-idf algorithm incorporates the term frequency (tf) aspect of

the count vectorization step previously described. The inverse document frequency part of the

equation is as follows:

idf (t) = log
1 + nd

1 + df (d, t)
+ 1 (3.1)

where nd is the total number of documents in the corpus and df (d, t) is the number of documents

where term t appears. The tf-idf is then calculated by multiplying the term frequency by the

inverse document frequency as follows:

tf -idf (t, d) = tf (t, d) · idf (t) (3.2)

where tf (t, d) is the number of times term t appears in document d . The output of the

transformation step is a set of real-valued numerical vectors representing each patent within the

corpus which can then be placed into a document term matrix (DTM). Table XV is a small

example of a document term matrix with the individual rows representing the patent vectors and

the columns representing each word vector. The actual dimensions of the DTM for this research

are given by the number of features (34,695 terms) across our patent corpus (5,651 patents).



67

The next step is to measure patent document vector relatedness using cosine similarity, which

Terms

shaft s-shaped sulfate
P

at
en

ts

8,323,429 0 0 1

7,887,230 1 1 0

6,673,144 0 0 1

TABLE XV: Example Document Term Matrix

measures the closeness of two non-zero vectors of an inner product space by calculating the

angle between them.

3.3.5.1 Cosine Similarity

Cosine similarity is an extensively used measurement in the field of information retrieval

and text analysis as well as a fundamental component of many ML clustering algorithms

[5, 76,83,96–100]. Figure 13 provides a simple three-dimensional representation of the cosine

angle between patent vectors a and b, which is calculated as follows:

sim(a, b) = cos(θ) =
a · b
||a|| ||b||

=

∑n
i=1 aibi√∑n

i=1 a
2
i

√∑n
i=1 b

2
i

(3.3)

where sim(a, b) is the similarity between patent vectors a and b, ai and bi are their respective

components, and n is the total number of components. Cosine similarity was chosen over



68

Figure 13: Cosine similarity example

Euclidean distance, see dist(A,B) in Figure 13, because it is agnostic to differences in patent

document length and can be calculated for an arbitrarily large number of dimensions. The cosine

similarity between vectors is then used to create a square pairwise distance matrix of cosine

similarity scores (CSS). This matrix can also be used for clustering, which is an unsupervised

ML discovery technique used to discover relatedness among vectors. All diagonal entries in the

cosine similarity matrix take the value 1, as each patent’s set of terms is identical to itself. The

first step was to measure the CSS for every pair of patent vectors within the patent corpus

and then remove identical document pairs by subtracting the identity matrix. The remaining

vectors are then placed into a patent CSS matrix. There is a wide body of research regarding



69

the importance of removing identical documents from a corpus when attempting to measure

document similarity [96,101–103]. It was discovered that additional patent pairs with a CSS

greater than (.99) existed within the set due to a process known as patent splitting. Patents

can be split during the application review process if they are deemed to lack unity of invention

which simply means they include more the one invention. In such cases the application is turned

into one or more divisional applications which can result in patent documents with almost

indistinguishable textual data (i.e. titles, abstract, and claims) yet different assigned patent

numbers. Many times the resulting assigned patent numbers are consecutive. To ensure that

only identical patents were removed, the code was modified to ensure only deletion of patent

pairs with identical patent numbers.

3.3.5.2 Minimum CSS Threshold

To select for related patents using cosine similarity it is necessary to establish a method of

relatedness. The proposed method is to assign a minimum cosine similarity threshold value.

Specifically, we define a patent document vector space as follows:

1. Each patent document vector vd = {t1, t2, . . . , tm−1 , tm} is an element of the vector space,

where m is the total number of term features, and each component (ti) is the tf -idf of

term (i) for patent document (d).

2. The vector space contains the set of patent document vectors V = {v1, v2, . . . , vn}, where

n is the total number of patents,

3. A similarity function sim(a, b) is defined for any pair of vectors in the vector space with

its value given by the cosine angle cos(θ) between the vectors as described in Equation 3.3.



70

The goal is to select a similarity threshold value (q) so that sim(a, b) ≥ q for all patent pairs

a, b ∈ V such that a and b are related in inventive content, and sim(a, b) < q otherwise. It seems

plausible that the appropriate value of q is dependent on the set of patents under consideration

and on the purpose of the comparison.

One approach to solving this problem is to establish a q through the use of a human-in-

the-loop (HITL) that evaluates cosine similarity scores and provides subject relevance based

upon domain expertise. Requiring human experts to establish a threshold value based upon

subject relevance is counterproductive to developing an automated method of determining patent

relatedness based upon inventive language and fails to exploit the wealth of data in the patent

database. This research proposes a novel approach that relies upon the weighted mean CSS of

known cited patent pairs to establish a reasonable minimum threshold value. This is based on a

hypothesis that backward citations, and in turn forward citations, have some reasonable degree

of relatedness due to patent office citation requirements of prior art and that this reasonable

degree of relatedness could be used to establish a threshold value. A minimum threshold q for a

set of cited patent pairs is shown in the following equation:

q = µ+ α · σ (3.4)



71

where q is the minimum CSS threshold value, µ is the average CSS, α is a parameter, and σ is

the standard deviation. Solving for α gives:

α =
−µ+ q

σ
(3.5)

Note that α indicates how many standard deviations above the mean the CSS value is for a

pair of patents, thus higher values of α indicate greater relatedness. The first question to ask

is whether patent pairs with high α values are likely to also have a citation relationship. The

mean CSS score across all the patent pairs in the corpus is 0.018 with a standard deviation of

0.039, while the mean CSS score among only those patent pairs with a citation connection is

0.265, which is an α value of 6.33. Restricting the calculation to patent pairs in which the cited

patent has a minimum number of citations yields the graph shown in Figure 14. The proposed

approach to comparing cosine similarity scores with citation counts would be to declare a value

of α as the metric by which two patents are declared similar while also minimizing the effect of

potential over-citing within smaller samples. For the data set processed here and the results

shown in Figure 14, a value for α was selected based upon the weighted mean CSS per the

following equation:

q̄ =

nc∑
i=1

wixi

nc∑
i=1

wi

(3.6)

where q̄ represents the weighted mean CSS, nc represents the total number of citations, wi

represents the count of patents with a count of i citations, and xi represents the mean CSS



72

of the set of patents with i citations. The weighted mean CSS of the set of patents shown in

Figure 14 was 0.27 which when substituted for q in Equation 3.5 resulting in an α value of 6.9

which was then set as the declared α value. The set of related patent pairs as determined by

minimum CSS threshold can then be compared to the set of related patent pairs as determined

by citation relationships. Further optimization of the α value based upon known cited patent

pairs is left for future research.

3.3.6 Dimension Reduction

Since we can not directly visualize cosine similarity within the higher dimension vector space

several different dimension-reducing techniques were considered. After evaluating Principal

Component Analysis (PCA) [104–106], Single Value Decomposition (SVD) [83,106–109], and

t-distributed Stochastic Neighbor Embedding (t-SNE) [110–112] it was decided to use both PCA

and t-SNE for visualization.

3.3.6.1 Principal Component Analysis

PCA is the most computationally efficient dimension reduction technique with a minimal

amount of information loss [104–106]. PCA finds optimal lower-dimensional approximations of a

data set by projecting it to linear sub-spaces. A two-dimensional representation of the building

material patent corpus can be seen in Figure 15.



73

Figure 14: Changes in mean CSS for patent citation pairs based on total forward citation count.



74Figure 15: Dimension Reduction via Principal Component Analysis



75

Each dot represents a single patent document with the distance between each pair of dots

representative of their similarity. Darker dots represent overlap of patent documents. The dots

have also been color coded using the CPC main classification to test whether the similarity of

patent documents aligns with assigned technical category. The decision to overlay a known

technical category onto the dimensional reduced data was intended to overcome a lack of clear

patterns using k-means clustering.

3.3.6.1.1 k-means Clustering

This research initially utilized an unsupervised ML technique called k-means clustering to

reveal patterns among similar patents. [104, 113–115]. K-means is a vector quantization method

designed to partition data by placing observations into clusters whose centroid represents the

nearest mean. The result of this early research was inconclusive and the method required

the user to set a somewhat arbitrary parameter for the number of clusters without knowing

what variables make each cluster distinct. To decide on an appropriate cluster value a host of

techniques were used including silhouette [116], Calinski-Harabaz [117], gap statistic [118], and

elbow method [119]. All of these measures assess within-cluster dispersion and between-cluster

dispersion in attempt to find the optimal cluster value. The results of this preliminary research

suggested a cluster parameter of six was appropriate which can be seen in Figure 16. This

figure shows a PCA-reduced two-dimensional plot of the data set with six distinct color coded

clusters; however, there is no clear pattern as to what made each cluster distinct. Figure 15 and

Figure 16 demonstrate a similar problem and highlight one of the drawbacks of using PCA to



76

represent high-dimensional spaces: it has a tendency to tightly cluster outputs, making results

difficult to interpret [120].

3.3.6.2 t-distributed Stochastic Neighbor Embedding

Further research indicated that t-SNE was effective for visualizing higher-dimensional data

associated with document similarity; however due to the high computational cost the author of

the algorithm (van der Matten) recommends the use of another dimension reduction technique

first [110–112]. Based upon this guidance the model was first reduced to fifty dimensions using

PCA and then reduced to a two-dimensional plot using t-SNE. The t-SNE algorithm has a

perplexity parameter that influences the number of nearest neighbors and thus the degree to

which clusters are visualized by expanding dense clusters and contracting sparse ones. The

perplexity parameter was tested from 0 to 100 using a step value of one. A perplexity value of

thirty provided the best visual aesthetic based upon an acceptable balance of dense and sparse

clusters. The resulting t-SNE plot can be referenced in Figure 17 which represents a holistic

2-dimensional visualization of the patent corpus in terms of document similarity.



77

Figure 16: k-means clustering using six clusters



78

Figure 17: t-SNE results: U.S. Building Material Companies Intra-CSS Patent Corpus



79

To assess how well the patent relatedness measure worked the data points were color coded

for each patent document using the USPTO assigned CPC categories. Figure 17 shows clear

clusters aligned with specific CPC technology categories (e.g., physics, human necessities, and

fixed constructions) as well as some areas of category mixing. The match between the relatedness

clusters and CPC classes, while not formal validation, indicates that this approach is aligned

with traditional classication methods. From a domain expert’s perspective these clusters are of

specific interest because they reveal patents with similar inventive knowledge. It is important to

note that a given patent can have more than one CPC category assigned and that assignment is

based upon when a technical category is first listed within an application and not by frequency

or priority. The opportunity to use this method to reveal latent patterns among CPC technical

category assignments is left for future research.

3.3.7 Invention Impact: Intra-CSS Visualization

Figure 6 has been reproduced using intra-CSS related patent counts in place of intra-forward-

citation counts to demonstrate that this method is capable of measuring invention impact. The

output can be seen in Figure 18.



80

Figure 18: U.S. Building Material Patents: Invention Impact Using Intra-Cosine Similarity Threshold (1970 - 2015)



81

Figure 18 was generated by selecting intra-CSS forward related patents that exceeded the

minimum cosine similarity threshold value while removing any intra-CSS related patents that

occurred prior to the focus patent’s application date. The application date of the intra-CSS

related patent was used instead of the grant date because research showed that it can take a

couple of years for a patent to be granted and during that time frame a patent application can

receive forward citations. It is important to note that USPTO began to publish applications 18

months after filing effective November 29, 2000, contents of patents filed prior to this date were

not made public until the actual grant date [121]. Initially, Figure 18 was created using a count

of forward citations after the focus patent’s grant date as it was a clean demarcation of when

the inventive knowledge was made publicly available independent of any USPTO publishing

policy changes; however, it was later discovered that a number of forward citing patents were

dated before the focus patent’s grant date. Prior to November 29, 2000 forward citations that

occurred before the grant date of the focus patent were usually from the same organization or

self-citing. These forward citations are typically a direct result of divisional (patent splitting) or

continuation-in-part applications which are commonly refereed to as family-to-family citations.

Continuation-in-part (CIP) applications occur as inventors iterate on their invention and add

new inventive subject matter beyond what is stated in the original application. CIP’s typically

contain the same inventive content and share the original application date. They can be filed

as long as the original filing application is still under review. The application review period

can be extended by a request for continued examination or RCE. From an inventive knowledge

dissemination perspective the application date is a better representation of when the inventor



82

had enough information to reduce the invention to practice, the only drawback is a lack of

clarity around when that knowledge became publicly available. Both Figure 18 and Figure 6

were changed to use the application date of the focus patent as well as the application date

for all forward citations. In addition, the application date was used for the x-axis instead

of the year which reduced patent bubble overlap and masking that occurred where a single

heavily cited patent could cover up a less cited patent. For comparison purposes the original

forward citation visualization based upon grant year can be referenced in Figure 31. Comparing

Figure 18 to Figure 6 reveals similar patterns in terms of invention impact even though the first

visualization is based upon forward citation counts and the latter is based upon CSS relatedness

counts. There are also differences in the patterns, so it is clear that CSS relatedness is not

equivalent to citation counting. It is not obvious a priori which approach is a more useful

measure of knowledge flow, however, the fact that the intra-CSS patterns are different might be

an indication of latent relationships between documents not revealed using citations. To further

compare CSS relatedness and citations as proxies for knowledge flow the twelve most heavily

cited patents in our corpus were compared.

3.3.8 Invention Knowledge Flow: Intra-CSS vs Intra-CIT

Figure 19 represents a method comparison of intra-CSS versus intra-citation counts over

a 25-year time frame for the most cited patents in the corpus. A time of zero on the x-axis

represents the official application filing date of the patent. Bars marked in orange represent

counts of forward cited patents while bars marked in blue represent counts using the intra-CSS

relatedness method. The difference in years for all forward patent related methods, either CSS



83

Figure 19: Inventive Knowledge Flow: Intra-CSS vs Intra-CIT for Top 12 Most Cited Patents



84

or cited, is calculated by taking the difference between the focus patent’s application date and

the application date of any related patents that follow. Only U.S. Patent 4,647,496 [122] shows

forward related patents that span the entire 25-year time frame, as this patent was granted in

1984 and has since expired. Other patents exhibit truncation as they approach the last year of

the data set which is 2015. For example, U.S. patent 6,432,267 [123] (located on the upper left

of Figure 19) was filed in the year 2000, granted in 2002, and has no citations after 2015 (see

Figure 20). In terms of knowledge flow the intra-CSS related patents demonstrate some similar

patterns to counts of forward cited patents. A good example can be seen in Figure 21 which

is a bar chart comparison between intra-CSS and intra-CIT methods by year. There is also

dissimilarity between the methods. For example Figure 21 shows intra-CSS related counts in the

years 1985, 1990-92, and 2013 with no corresponding forward citations in those years. There are

also dissimilarity patterns that may be suggestive of anomalous citing behavior. For example,

an interesting forward citation pattern exists within the top 12 cited patents, sans U.S. Patent

4,647,496 [122], that is not evident with intra-CSS related counts. This repeating pattern is

marked by a large citation count spike followed by a two year lull and then another large spike.

Figure 22 shows an example of this horn-like pattern in the years from 2012 through 2015 which

is absent in the intra-CSS relatedness method, The same horn-like pattern exists for the years

2012 through 2015 for all the top cited patents except U.S. patent 4,647,496 [122]. Figure 25 is a

heat map of the same top cited patents as shown in Figure 19. The x-axis lists both relatedness

methods, intra-CSS and intra-CIT, for each patent while the y-axis shows elapsed years since

the application filing date in reverse chronological order. The heat map shows heavy citation



85

Figure 20: Inventive Knowledge Flow Comparison: U.S. Patent 4,647,496



86

Figure 21: Inventive Knowledge Flow Comparison: U.S. Patent 4,647,496



87

Figure 22: Inventive Knowledge Flow Comparison: U.S. Patent 7,588,660



88

Figure 23: Inventive Knowledge Flow Comparison: U.S. Patent 6,432,267



89

Figure 24: Inventive Knowledge Flow Comparison: U.S. Patent 7,662,257



90

activity in the last four years of many top cited patents with little corresponding intra-CSS

activity. Areas marked in white represent when the patent reached the end of the data set which

is the year 2015. Further investigation revealed that the top 12 most cited patents were all from

Figure 25: Inventive Knowledge Flow: Heat Map of Intra-CSS vs Intra-CIT for Top 12 Cited Patents



91

Georgia Pacific and that high citation counts in 2012 and 2015 were all family-to-family citations

from the same subsidiary, Georgia Pacific Consumer Products (GPCP). Most of these forward

citations were a result of divisional and/or continuation-in-part applications. The exception

was U.S. Patent 4,647,496 [122] which was from a different subsidiary called Georgia Pacific

Gypsum. This does raise the question as to why the intra-CSS method did not show a similar

pattern as one would expect if the inventive language was similar enough.

3.3.9 Latent Relatedness: Intra-CSS Relatedness

To assess whether intra-CSS relatedness was in fact revealing latent relationships between

patent documents the intersection between the two methods was measured. Figure 26 shows the

intersection between intra-CSS and intra-CIT methods for the same top cited patents. Despite

demonstrating some similar patterns in knowledge flow the methods clearly reveal different

sets of forward related patents. For example only 17% of patents overlap for U.S. Patent

4,647,496 [122] between methods despite showing similar knowledge flow trends. Figure 27

shows a closer look at the overlap between methods for one of the top cited patents, U.S. Patent

7,588,660 [124] titled “Wet-pressed Tissue and Towel Products with Elevated CD Stretch and

Low Tensile Ratios Made with High Solids Fabric Crepe Process”. This patent was filed on

April 12, 2005 and granted on September 15, 2009. Note that U.S. Patent 7,588,661 [125] titled

“Absorbent Sheet Made by Fabric Crepe Process” is listed on the left hand side of the Venn

diagram as being intra-CSS related but does not show up on the right hand side as being forward

cited. The application date of this patent is June 5, 2008 and it was granted on the same day

as U.S. Patent 7,588,660 [124]. Closer scrutiny of the patent confirms that it does not cite



92

Figure 26: Inventive Knowledge Flow: VENN Intra-CSS vs Intra-CIT Top 12 Cited Patents



93

Figure 27: Method Comparison Venn Diagram: U.S. Patent 7,588,660



94

7,588,660 despite having consecutive patent numbers and a later application filing date. Patent

7,588,661 [125] does cite the patent application number of 7,5888,660 [124] and they both cite a

common parent application for which one was a divisional and the other a continuation-in-part

respectively. To further confirm that the intra-CSS related method is discovering related patents

based on inventive language a patent was chosen that demonstrated only intra-CSS related

counts with no citations. For example patent 6,500,493 [126] (Figure 28) from Saint-Gobain

(SG) shows clear forward intra-CSS relatedness with no actual cited patents. The patent title

and abstract are as follows:

Patent US 6,500,493 - Electrostatic deposition process - Fine abrasive powders can

be made more free-flowing and better adapted to electrostatic upward projection

deposition in the production of coated abrasives by the control of the volume

resistivity of the powder to a level that is not greater than 1014 ohms.cm by

incorporation of a silica powder. [126]

The USPTO lists three citations for this patent all of which are assigned to 3M Corporation

(3M). Note 3M is not part of the original set of building material companies selected for this

analysis which explains why it did not show up in the citation count. The patent number, title,

and abstract from the 3M patents are as follows:

Patent US 8,551,577 - Method of electrostatic deposition of particles, abrasive grain

and articles; Disclosed is a method of applying particles to a coated backing. A

first layer of particles is created over a second layer of particles on a support surface

and the first layer of particles is different in at least one property from the second



95

Figure 28: Method comparison Venn diagram: U.S. Patent 6,500,493



96

layer of particles. A coated backing is positioned above the first and second layer

of particles. An electrostatic field is applied simultaneously to the first and second

layer of particles such that the first layer of particles closer to the coated backing

are preferentially attracted to the coated backing first before the second layer of

particles. [127]

Patent US 8,869,740 - Layered particle electrostatic deposition process for making

a coated abrasive article; Disclosed is a method of applying particles to a coated

backing. A first layer of particles is created over a second layer of particles on a

support surface and the first layer of particles is different in at least one property

from the second layer of particles. A coated backing is positioned above the first and

second layer of particles. An electrostatic field is applied simultaneously to the first

and second layer of particles such that the first layer of particles closer to the coated

backing are preferentially attracted to the coated backing first before the second

layer of particles. [128]

Patent US 8,894,466 - Method of electrostatic deposition of particles, abrasive grain

and articles; Presently described are methods of making an article via electrostatic

deposition of particles, abrasive grains and articles, as well as a method of repairing a

painted surface. The abrasive grain comprises a plurality of abrasive particles having

a median primary particle size of less than 75 microns, and discrete hydrophobic

nanoparticles. [129]



97

It is clear that the 3M patents are related to the focus patent and that the technology at hand

is related to the manufacture of what appears to be sandpaper (i.e., coated abrasive article)

using an electrostatic process with specific sizes of abrasive particles like silica powder.

The following are the top three intra-CSS related patents from our set including the patent

number, CSS, title, and abstract:

Patent US 9,221,151 (CSS 0.476) - Abrasive articles including a blend of abrasive

grains and method of forming same, An abrasive article comprising a backing material

and an abrasive layer disposed on the backing material, wherein the abrasive layer

comprises a blend of abrasive particles comprising a first plurality of abrasive particles

and a second plurality of abrasive particles. [130]

Patent US 8,105,135 (CSS 0.449) - A polishing slurry includes liquid medium and

particulate abrasive. The particulate abrasive includes soft abrasive particles, hard

abrasive particles, and colloidal silica particles, wherein the soft abrasive particles

have a Mohs hardness of not greater than 8 and the hard abrasive particles have a

Mohs hardness of not less than 8, and wherein the soft abrasive particles and the

hard abrasive particles are present at a weight ratio of not less than 2:1. [131]

Patent US 8,944,893 (CSS 0.445) - Addressable bonded abrasive article has a body

that includes a bond material comprising an organic material and a blend of abrasive

particles. The particles include a first type of abrasive particle comprising an oxide

and having a first hardness and a first toughness; a second type of abrasive particle



98

comprising an oxide and having a second hardness greater than the first hardness,

and the second type of abrasive particle has a second toughness less than the first

toughness; and a third type of abrasive particle comprising an oxide and having a

third hardness greater than the first hardness and less than the second hardness,

and the third type of abrasive particle has a third toughness less than the first

toughness. [132]

Based upon the title and abstract information of the intra-CSS related patents it does appear

that Patent US 9,221,151 [130] and 8,944,893 [132] are similar as they both discuss creation

of an abrasive article using abrasive grains (note the contextual similarity between abrasive

powder, particles, and grain). Patent US 8,105,135 [131] seems to be focused on the creation of

an abrasive polishing slurry. Nonetheless, the intra-CSS method has revealed patents that from

an inventive knowledge perspective could be related and thus demonstrated the ability to reveal

latent relationships between inventive documents that were not evident via citation analysis

alone.

This research has shown that new computational techniques can be used to convert unstruc-

tured patent textual data into actionable knowledge by revealing latent relationships between

patents. It accomplishes this by relying upon the language used by inventors to describe their

inventions and in doing so lays the ground work to study inventiveness and knowledge flow

with less dependence on domain expertise and metrics derived from patent counts and citation

analysis. This approach began by extracting unstructured abstract, title, and claim textual

data from a subset of patent documents selected from a competitive group of companies. Term



99

frequency-inverse document frequency (tf-idf) was used to convert the strings of inventive

descriptors associated with each patent into a representative numerical vectors within a vector

space model. The cosine angle between patent vectors pairs within the higher-dimension vector

space was measured. A cosine similarity threshold value was chosen to select for CSS-related

patents based upon the weighted mean CSS between known cited patents. The selection of an

appropriate threshold is usually dependent upon a human. This research has shown that the

existing patent record can be used to establish a threshold value using statistical analysis applied

to known forward cited patent pairs. To visualize patent cosine relatedness the higher-dimension

vector space was reduced to a two-dimensional plot first by using principal component analysis

and then t-distributed stochastic neighbor embedding. The resulting visualization was then

color coded using patent office technical classifications to reveal some discrete technology class

clusters. Lastly, a comparison of invention impact and inventive knowledge flow was demon-

strated by by plotting patent citation data alongside cosine relatedness outputs to reveal both

similar and dissimilar inventive patterns. The comparison also revealed that CSS-relatedness

could potentially be used to reveal anomalous patent patterns through direct comparison of

CSS-relatedness and forward citations.

3.3.10 Latent Relatedness: Google Patent Search Method Comparison

To further understand whether the CSS relatedness method was revealing latent relationships

between patent documents a comparison was made of forward related patents outputs between

CSS-relatedness, Forward Citations, and Google Patents. The focus patent for this analysis was



100

Patent US 3,935,021 for Water-resistant gypsum products [133]. The following is taken from the

patent’s abstract:

Patent US 3,935,021 - The water resistance of gypsum products, such as gypsum

wallboard, is improved by incorporating in the composition from which the gypsum

product is made polyvinyl alcohol and wax-asphalt emulsion.

The intellectual property of this patent is focused on using additives, for example polyvinyl

alcohol and wax-asphalt emulsions, to impart water resistance to gypsum drywall. The Venn

diagram for this analysis can be referenced in Figure 29 where a third colored green set has

been added for patents identified by Google Patents. Google Patents is a search engine

from Google that indexes patents and patent applications from around the world [134]. It also

includes related technical documents indexed from Google Scholar which is a broad search tool

for scholarly literature [135].

Figure 29 lists all forward related patents using the various methods taken from the patent

corpus of building product companies. Note that the Google set includes both Cited by

patents and Similar documents. Similar documents is a method used by Google to to

find substantially similar patents which is described in U.S. Patent 9,189,482 titled Similar

document search [136].

The following is taken from the similar document search patent’s abstract:

Patent US 9,189,482 - Described herein are methods for finding substantially simi-

lar/different sources (files and documents), and estimating similarity or difference



101

Figure 29: Method comparison Venn diagram: U.S. Patent 3,935,021



102

between given sources. Similarity and difference may be found across a variety of

formats. Sources may be in one or more languages such that similarity and difference

may be found across any number and types of languages. A variety of characteristics

may be used to arrive at an overall measure of similarity or difference including

determining or identifying syntactic roles, semantic roles and semantic classes in

reference to sources.

The patent authors compare document sentences via a method called language-independent

semantic structure (LISS). The application for this patent mentions the use of cosine similarity

but states that “such similarity measures have a drawback in that they do not actually capture

the semantics”

Google similar document search identifies two patents as being similar to Patent U.S.

3,935,021. The first is Patent U.S. 5,718,759 [137] and the second is U.S. 5,858,083 [138].

Patent U.S. 5,718,759 - A cementitious composition useful for water-resistant con-

struction materials, including floor underlayments, backing boards, self-leveling

floor materials, road patching materials, fiberboard, fire-proofing sprays, and fire-

stopping materials includes about 20 wt. % to about 75 wt. % calcium sulfate

beta-hemihydrate, about 10 wt. % to about 50 wt. % Portland cement, about 4 wt.

% to about 20 wt. % silica fume and about 1 wt. % to about 50 wt. % pozzolanic

aggregate. The Portland cement component may also be a blend of Portland cement

with fly ash and/or ground blast slag.



103

The intellectual property of this patent is focused on using additives, for example calcium

sulfate beta-hemihydrate (plaster), portland cement, and silica fume to make water-resistant

materials like underlayments and self leveling floors. This patent does not cite Patent U.S.

3,935,021. The only inventive commonality between the two patents is the desire to impart

water-resistance to construction materials. The key inventive descriptors of polyvinyl alcohol

and wax-asphalt emulsions listed in Patent U.S. 3,935,021 are not mentioned in Patent U.S.

5,718,759.

Patent U.S. 5,858,083 - Cementitious binders include calcium sulfate beta-hemihydrate,

a cement component comprising Portland cement, and either silica fume or rice-husk

ash. The silica fume or rice-husk ash component is at least about 92 wt % amorphous

silica and has an alumina content of about 0.6 wt % or less.

The intellectual property of this patent focuses on the use of calcium sulfate beta-hemihydrate

(plaster), portland cement, and silica fume to make water-resistant materials like underlayments

and self leveling floors. It does list an additional ingredient of rice-husk ash. It does not cite

Patent U.S. 3,935,021 but it does cite Patent U.S. 5,718,759 for which it has significant inventive

commonality including the same assignee and authors. The key inventive descriptors used in

3,935,021 of polyvinyl alcohol and wax-asphalt emulsions are not mentioned in Patent U.S.

5,858,083.

As you can see in Figure 29 there were a number of common cited patents between those

listed as forward cited by Google and those actually cited on Patent U.S. 3,935,021. In fact,

all the patents listed by Google as forward cited fall within our USPTO PatentsView data set



104

as being cited. Note that Google Patents did not list 27 patents that were actually forward

citations of Patent U.S. 3,935,021.

Figure 30 lists the seventy-four forward related patents shown in Figure 29. Each patent

was manually searched by a subject matter expert for any references to U.S. 3,935,021. This

includes any references within the cited section as well as the body of the patent. The results of

the manual review are listed under the table column marked “human”. The CSS-relatedness

method identified six patents, highlighted in red font, that were verified as listed within the

forward related patent text. This six patent are not listed as forward cited by either our USPTO

Patentsview database or Google Patents. A possible explanation for this discrepancy, in other

words, a reason as to why they were not listed by USPTO or Google Patents as being “cited by”

when querying Patent U.S. 3,935,021, could be a mistake in the optical character recognition

process or forward cited look-up function used by the USPTO to identify forward cited patents.

Nonetheless, the CSS-Relatedness method was able to correctly identify forward cited patents

that Google Patents and USPTO PatentsView had not.



105

patent_id app_date grant_date organization css google human cited title abstract

3935021 11/5/1973 1/27/1976 Georgia Pacific
Water-resistant gypsum
products

The water resistance of gypsum products, such as gypsum wallboard, is improved by incorporating in the composition from which the gypsum product is made polyvinyl alcohol
and wax-asphalt emulsion.

3944698 11/14/1973 3/16/1976 USG Corporation Y N N N
Gypsum wallboard and process
for making same

A specially prepared fiber reinforcement and improved gypsum wallboard are disclosed. The fiber reinforcement includes a multiplicity of relatively long fibers which are
disposed at the interface of the core and cover sheets of the wallboard and are adhesively bonded to the cover sheets and incorporated predominantly into the portion of the
core immediately adjacent to the cover sheets.

4042409 4/1/1976 8/16/1977 Yoshino Gypsum Y N Y Y
Water repellent gypsum
composition

A water repellent gypsum composition comprising a gypsum, and a paraffin emulsion prepared by emulsifying (a) paraffin hydrocarbon having a melting point of 40.degree.-
80.degree. C and (b) an oxidized paraffin having an acid value of 10-70 at a ratio of from 97:3 to 50:50 by weight, respectively, in the presence of a water soluble alkali
compound. Optionally, a polymer emulsion or solution may be added.

4094694 5/16/1977 6/13/1978 USG Corporation Y N Y Y
Water-resistant gypsum
composition and products, and
process of making same

An improved water-resistant cementitious composition and products made therefrom are provided by forming an aqueous cementitious slurry, as for example of calcined
gypsum and adding to the slurry a composition in the form an aqueous emulsion of asphalt and wax, a minor proportion of polyvinyl alcohol and a minor proportion of a borate
compound, that is, one having an anion comprising boron and oxygen, as for example borax. The slurry is set in conventional manner by heating and drying. The resulting product
has a high degree of water-resistance while utilizing less asphalt and wax composition than required with conventional asphalt-wax emulsions thereby accomplishing a large
savings in raw material costs. Additionally, the use of a small amount of the borate compound permits a smaller amount of the relatively expensive polyvinyl alcohol to be used
without a reduction in the water-resistance of the final product. Alternatively, an amount of asphalt and wax composition may be utilized equal to or greater than that
conventionally used, but obtaining a much greater degree of water-resistance.

4117070 3/14/1977 9/26/1978 USG Corporation Y N N N
Process for preparing calcined
gypsum

An improved process for producing calcined gypsum which comprises continuously treating a mass of calcined gypsum by adding, with thorough blending agitation, small
metered portions of water to result in the incorporation of about 1-8% free water in the mass by weight of the gypsum, allowing the blended mass to heal the calcium sulfate
hemihydrate surface fissures and thereafter continuously supplying the treated gypsum mass into gypsum board production.

4140536 3/1/1978 2/20/1979 Gypsum Industries Limited N N Y Y Gypsum products
This invention relates to a method of making a gypsum product wherein a hot homogeneous mixture of pitch and a suitable organic material are mixed with gypsum and water to
form a slurry. This slurry is then formed, allowed to set and then heated to a temperature above the melting points of both constituents of the mixture but below the temperature
at which there is any significant deterioration of the product.

4201595 9/5/1978 5/6/1980 USG Corporation Y N N N
Process for preparing calcined
gypsum and gypsum board

A process for preparing calcined gypsum (stucco) which comprises treating a mass of calcined gypsum by adding, with thorough blending, small portions of water (about 1-10%
by weight) to the calcined gypsum, allowing it to heal, and grinding the healed stucco to recapture the rate of strength development and the ultimate strength which are
adversely affected by the water addition. The principal advantage provided by the addition of small portions of water is a reduction in water demand which is retained despite the
grinding and optional drying of the healed stucco. If the treated calcined gypsum is not used shortly after the healing procedure, it should be dried to provide storage stability.
The reduced water demand is particularly useful in gypsum board manufacture.

4238445 7/2/1979 12/9/1980 USG Corporation Y N N N
Process for manufacturing
gypsum board

A process and apparatus for producing a healed stucco having lowered water demand without loss of normal strength development potential which comprises, while blending a
small amount of water with the calcined gypsum, simultaneously or substantially simultaneously grinding the calcined gypsum so as to increase the surface area of the calcined
gypsum particles while incorporating about 1-10% by weight of the calcined gypsum of free water.

4327146 10/27/1980 4/27/1982 National Gypsum Y N N N
High density interface gypsum
board and method for making
same

A gypsum wallboard, and the method of manufacture, wherein a defoamer is disposed at the gypsum-paper interface during manufacture, causing the foam, present in the core
forming gypsum slurry, to break down at the gypsum-paper interface, increasing substantially the density of the gypsum at the interface, relative to the density throughout the
center portion of the gypsum core.

4372814 5/13/1981 2/8/1983 USG Corporation Y N N N
Paper having mineral filler for
use in the production of
gypsum wallboard

A composite paper particularly adapted for use as cover sheets in the production of gypsum wallboard, the paper being sufficiently porous to permit better drainage and more
rapid drying in the production of the paper, and when applied to the surfaces of a gypsum slurry for forming wallboard, permits less heat to be utilized in the wallboard
conversion, thereby saving energy in the board production required for drying the board. The paper comprises in weight percent: PA1 (A) fibers in an amount of from about 65%
to about 90% and having a fiber freeness of from about 350 to 550 ml. Canadian Standard Freeness, PA1 (B) a mineral filler in an amount from about 10% to about 35%, PA1 (C)
a binder in an amount from about 1% to about 31/2%, PA1 (D) a flocculant in an amount of from about 2 to about 4 lb./ton, and PA1 (E) a sizing agent in an effective amount to
prevent water penetration. In an preferred embodiment the paper is treated with an internal sizing agent during its formation, and subsequently treated with a surface sizing
agent after formation, in order to provide better adhesion to the gypsum core.

4533528 7/15/1983 8/6/1985 USG Corporation Y N N N
Process for continuously
calcining gypsum to low
dispersed consistency stucco

Wet chemical gypsum cake may be directly fed to a continuous kettle calciner to produce a stucco having lowered dispersed consistency. Pre-drying of the chemical gypsum is
eliminated and the thus produced stucco may be used in the formulation of building plasters and in gypsum wallboard manufacture that will use less fuel for drying excess
gauging water.

4533697 2/18/1983 8/6/1985 Saint Gobain Y N N N
Process for preparing polyvinyl
butyral

The invention relates to a process for preparing polyvinyl butyral comprising simultaneously introducing into a reaction medium containing a mixture of water and a portion of
reactive polyvinyl alcohol, maintained initially at a temperature below about 20.degree. C., a stream of an aqueous solution of polyvinyl alcohol corresponding to the complement
of the reactive polyvinyl alcohol and a stream of butyraldehyde and cooling the reaction mixture during the introduction of the polyvinyl alcohol and butyraldehyde. The reaction
is also carried out in the presence of an acid catalyst and an emulsifying agent. The polyvinyl butyral obtained is used, after plasticizing, as an interlayer in laminated glass.

4564544 12/1/1983 1/14/1986 National Gypsum Y N N N Fire-resistant gypsum board
A fire-retardant gypsum wallboard having, in the gypsum core, about 2% by weight of a feldspar-free muscovite, in combination with other minor additives including 1/2 inch
long glass fibers.

4647496 2/27/1984 3/3/1987 Georgia Pacific Y N Y N
Use of fibrous mat-faced
gypsum board in exterior
finishing systems for buildings

An exterior finishing system for a building, including particularly an exterior insulation system, which includes a fibrous mat-faced gypsum board, preferably a board in which the
set gypsum core thereof is water resistant, and preferably one in which the set gypsum core is sandwiched between two sheets of porous glass mat, with the outer surface of at
least one of said mats being substantially free of set gypsum, and means for preparing the board, including control of the viscosity of the aqueous gypsum slurry from which the
set gypsum core of the board is formed. Also, the use of fibrous mat-faced gypsum board as the shaft liner panel in a shaft wall assembly.

4652320 5/13/1985 3/24/1987 Saint Gobain Y N N N
Process for making polyvinyl
butyral glass laminates

The invention relates to a process for preparing polyvinyl butyral comprising simultaneously introducing into a reaction medium containing a mixture of water and a portion of
reactive polyvinyl alcohol, maintained initially at a temperature below about 20.degree. C., a stream of an aqueous solution of polyvinyl alcohol corresponding to the complement
of the reactive polyvinyl alcohol and a stream of butyraldehyde and cooling the reaction mixture during the introduction of the polyvinyl alcohol and butyraldehyde. The reaction
is also carried out in the presence of an acid catalyst and an emulsifying agent. The polyvinyl butyral obtained is used, after plasticizing, as an interlayer in laminated glass.

4810569 3/2/1987 3/7/1989 Georgia Pacific N Y Y Y
Fibrous mat-faced gypsum
board

An exterior finishing system for a building. including particularly an exterior insulation system, which includes a fibrous mat-faced gypsum board, preferably a board in which the
set gypsum core thereof is water resistant, and preferably one in which the set gypsum core is sandwiched between two sheets of porous glass mat, with the outer surface of at
least one of said mats being substantially free of set gypsum, and means for preparing the board, including control of the viscosity of the aqueous gypsum slurry from which the
set gypsum core of the board is formed. Also, the use of fibrous mat-faced gypsum board as the shaft liner panel in a shaft wall assembly.

5135805 7/27/1990 8/4/1992 Georgia Pacific Y Y Y Y
Method of manufacturing a
water-resistant gypsum
composition

A method for incorporating siloxane into a water-resistant, gypsum-based article is disclosed, comprising, (A) adding said siloxane to water; (B) mixing said siloxane/water
mixture with calcined gypsum to form an aqueous slurry; and (C) allowing said slurry to set to form a set gypsum-based, water-resistant article.

Figure 30: All forward related patents to U.S. 3,935,021



106

patent_id app_date grant_date organization css google human cited title abstract

5148645 8/6/1991 9/22/1992 Georgia Pacific Y Y Y Y

Use of fibrous mat-faced
gypsum board in shaft wall
assemblies and improved fire
resistant board

Glass mat-faced gypsum boards having a set core containing gypsum dihydrate and at least a minimum amount of chopped fibers, as well as other optional fire-resistant
additives, are provided. The resulting boards obtain superior fire resistance properties over conventional paper-faced boards of like thickness which include a similar amount of
chopped glass fibers.

5319900 5/6/1993 6/14/1994 Georgia Pacific Y Y Y Y
Finishing and roof deck systems
containing fibrous mat-faced
gypsum boards

Finishing systems and roof decks are provided which include a gypsum board having a set gypsum core faced with a fibrous mat. The gypsum core includes one or more additives
which are effective in simultaneously improving the water and fire resistance of the board. In preferred embodiments, the board has sufficient water-resistant additive for
absorbing less than about 10% water in an ASTM C-473 test.

5342680 10/15/1993 8/30/1994 Georgia Pacific N Y Y Y
Glass mat with reinforcing
binder

In gypsum board faced with a fibrous mat, for example, a mat of glass filaments adhesively bound together, improvements are realized by the use of a reinforcing resinous binder
in the mat.

5371989 2/19/1992 12/13/1994 Georgia Pacific Y N Y Y

Use of fibrous mat-faced
gypsum board in exterior
finishing systems for buildings
and shaft wall assemblies

An exterior finishing system for a building, including particularly an exterior insulation system, which includes a fibrous mat-faced gypsum board, preferably a board in which the
set gypsum core thereof is water resistant, and preferably one in which the set gypsum core is sandwiched between two sheets of porous glass mat, with the outer surface of at
least one of said mats being substantially free of set gypsum, and means for preparing the board, including control of the viscosity of the aqueous gypsum slurry from which the
set gypsum core of the board is formed. Also, the use of fibrous mat-faced gypsum board as the shaft liner panel in a shaft wall assembly.

5397631 7/19/1993 3/14/1995 Georgia Pacific N Y Y Y
Coated fibrous mat faced
gypsum board resistant to
water and humidity

A fibrous mat-faced gypsum board is coated with a water-resistant resinous coating.

5637362 6/7/1995 6/10/1997 Louisiana Pacific N Y Y Y
Thin, sealant-coated, fiber-
reinforced gypsum panel

A process for making a thin, sealant-coated, fire and indentation resistant gypsum panel. A layer of a mixture of cellulosic fibers moistened with water and an additive to restrict
the adhesion of cellulosic fibers to one another, is deposited on at least two separate conveyors to form a fibrous matt on each conveyor. A layer of dry calcined gypsum
containing set accelerator is deposited on the fibrous matt on each conveyor which contains, by weight on a dry weight basis, about 70-90% gypsum, about 10%-19% cellulosic
fiber and about 1%-9% of combined additive and set accelerator. Each layer on each conveyor is directed to a mixing station to form a homogeneous layer, and the formed
homogeneous layers on separate conveyors are placed atop one another on a single conveyor to form a combined homogeneous layer. Water is added to the layer or layers to
rehydrate calcined gypsum. The combined homogeneous layer is subjected to pressure to form a pressed, homogeneous fiber-reinforced gypsum panel, and dried. The surface of
the dried panel is sealed with wax-free, water resistant sealant. Sealant-coated, fire resistant, indentation resistant gypsum panels having a thickness of about 0.25 inch and a
density of about 60 to 80 lbs./ft..sup.3 are made from 2 homogeneous layers of fiber-reinforced gypsum.

5644880 6/7/1995 7/8/1997 Georgia Pacific Y Y Y Y
Gypsum board and systems
containing same

Finishing systems and roof decks are provided which include a gypsum board having a set gypsum core faced with a fibrous mat. The gypsum core includes one or more additives
which are effective in simultaneously improving the water and fire resistance of the board. In preferred embodiments, the board has sufficient water-resistant additive for
absorbing less than about 10% water in an ASTM C-473 test.

5704179 1/26/1994 1/6/1998 Georgia Pacific Y N Y N
Finishing and roof deck systems
containing fibrous mat-faced
gypsum boards

Finishing systems and roof decks are provided which include a gypsum board having a set gypsum core faced with a fibrous mat. The gypsum core includes one or more additives
which are effective in simultaneously improving the water and fire resistance of the board. In preferred embodiments, the board has sufficient water-resistant additive for
absorbing less than about 10% water in an ASTM C-473 test.

5718759 10/18/1996 2/17/1998 National Gypsum N Y N N
Cementitious gypsum-
containing compositions and
materials made therefrom

A cementitious composition useful for water-resistant construction materials, including floor underlayments, backing boards, self-leveling floor materials, road patching
materials, fiberboard, fire-proofing sprays, and fire-stopping materials includes about 20 wt. % to about 75 wt. % calcium sulfate beta-hemihydrate, about 10 wt. % to about 50
wt. % Portland cement, about 4 wt. % to about 20 wt. % silica fume and about 1 wt. % to about 50 wt. % pozzolanic aggregate. The Portland cement component may also be a
blend of Portland cement with fly ash and/or ground blast slag.

5791109 11/6/1996 8/11/1998 Georgia Pacific Y N Y N
Gypsum board and finishing
system containing same

Finishing systems and roof decks are provided which include a gypsum board having a set gypsum core faced with a fibrous mat. The gypsum core includes one or more additives
which are effective in simultaneously improving the water and fire resistance of the board. In preferred embodiments, the board has sufficient water-resistant additive for
absorbing less than about 10% water in an ASTM C-473 test.

5858083 5/19/1997 1/12/1999 National Gypsum N Y N N

Cementitious gypsum-
containing binders and
compositions and materials
made therefrom

Cementitious binders include calcium sulfate beta-hemihydrate, a cement component comprising Portland cement, and either silica fume or rice-husk ash. The silica fume or rice-
husk ash component is at least about 92 wt % amorphous silica and has an alumina content of about 0.6 wt % or less.

5981406 1/23/1998 11/9/1999 Georgia Pacific N N Y Y
Glass mat with reinforcing
binder

In a gypsum board faced with a fibrous mat, for example, a mat of glass filaments adhesively bound together, improvements are realized by the use of a reinforcing binder in the
mat.

6001496 8/16/1996 12/14/1999 Georgia Pacific Y N N N
Mat-faced gypsum board and
method of manufacturing same

Disclosed is a mat-faced gypsum board of the general type having a gypsum-based core formed from a gypsum slurry compressed through an extrusion ratio of at least about 3:1
wherein the fibrous mat facing on at least one side of the board has a weight per unit surface area of greater than about 1.85 lb./100 ft..sup.2 and consists essentially of
inorganic fibers having a diameter of less than about 15 microns. Also disclosed are methods for manufacturing such a gypsum board and the use of such a gypsum board in
exterior finishing systems, interior lath systems and as a door core.

6387172 4/25/2000 5/14/2002 USG Corporation Y N N N
Gypsum compositions and
related methods

A set gypsum composition and methods for the preparation thereof are disclosed. The set gypsum composition comprises a continuous phase of interlocking set gypsum matrix
having an enhanced water voids volume and/or is prepared from a mixture (e.g., slurry) comprising an elevated ratio of water to calcined gypsum. Also disclosed is an article
comprising the set gypsum composition.

6481171 11/1/2001 11/19/2002 USG Corporation Y N N N
Gypsum compositions and
related methods

A set gypsum composition and methods for the preparation thereof are disclosed. The set gypsum composition comprises a continuous phase of interlocking set gypsum matrix
having an enhanced water voids volume and/or is prepared from a mixture (e.g., slurry) comprising an elevated ratio of water to calcined gypsum. Also disclosed is an article
comprising the set gypsum composition.

6632550 2/16/1999 10/14/2003 USG Corporation Y N N N

Gypsum-containing product
having increased resistance to
permanent deformation and
method and composition for
producing it

The invention provides a set gypsum-containing product having increased resistance to permanent deformation and a method for preparing it comprising forming a mixture of a
calcium sulfate material, water, and an appropriate amount of one or more enhancing materials chosen from condensed phosphoric acids, each of which comprises 2 or more
phosphoric acid units; and salts or ions of condensed phosphates, each of which comprises 2 or more phosphate units. The mixture is then maintained under conditions sufficient
for the calcium sulfate material to form a set gypsum material.

6699426 5/10/2000 3/2/2004 National Gypsum Y N N N
Gypsum wallboard core, and
method and apparatus for
making the same

A gypsum wallboard core, and methods and apparatus for making the same are disclosed. Methods of making a gypsum wallboard core include extruding a gypsum slurry
containing water, gypsum, slip agents, water-reducing agents, surfactants and, optional additives, through a die and onto a substantially flat, smooth, moving surface. The die has
provisions at its outer sides for the introduction of slip agents into the slurry, and provisions at its lateral outer edges for the introduction of a strength-enhancing agent. Once
extruded onto the conveyor belt, the slurry is chemically-activated to set and form a hardened board core which then may be easily removed from the conveyor belt and dried.

6737156 9/18/2002 5/18/2004 Georgia Pacific Y N Y N
Interior wallboard and method
of making same

A gypsum wallboard may have a paper-covered first face with shaped regions formed along side portions near the wallboard edges, and a fibrous mat-covered second face. The
fibrous mat material covering the second face extends around the wallboard edges and is overlapped by portions of the paper on the first face. The wallboard can be
manufactured by depositing a gypsum slurry onto a moving web of the fibrous mat material, applying a web of the paper to the deposited gypsum slurry, and forming shaped
regions in the side portions of the top surface.

Figure 30: Continued: All forward related patents to U.S. 3,935,021



107

patent_id app_date grant_date organization css google human cited title abstract

6746781 8/21/2002 6/8/2004 Georgia Pacific Y N Y N

Gypsum board having polyvinyl
alcohol binder in interface layer
and method for making the
same

Paper and/or mat-faced gypsum board is prepared by applying a relatively thin coating of aqueous gypsum slurry containing a polyvinyl alcohol binder to one or two facer sheets.
The polyvinyl alcohol binder provides adequate adhesion between the set gypsum core and the adjacent facer sheet(s) without the need for starch or other conventional binders.
In one embodiment, polyvinyl alcohol is concentrated in one or more regions of the core adjacent to the facer sheet(s). In another embodiment, polyvinyl alcohol is applied to an
aqueous gypsum slurry used to form the bulk core, such that the polyvinyl alcohol is present throughout the core.

6770354 4/19/2001 8/3/2004 Georgia Pacific N N Y Y Mat-faced gypsum board

A moisture-tolerant structural panel comprising a gypsum board comprising a set gypsum core sandwiched between and faced with mats of glass fibers, wherein a free surface
of one of said mats is coated with a combination of a mineral pigment, an inorganic adhesive binder and a polymer latex adhesive binder applied to said surface as an aqueous
coating composition, said aqueous coating composition upon drying and setting, covering said mat to the extent that substantially none of the fibers of said mat protrude from
said coating.

6808793 2/21/2003 10/26/2004 Georgia Pacific N N Y Y
Pre-coated mat-faced gypsum
board

A moisture-tolerant structural panel comprising a gypsum board comprising a set gypsum core sandwiched between and faced with mats of glass fibers, wherein a free surface
of one of said mats is coated with a combination of a mineral pigment, an inorganic adhesive binder and a polymer latex adhesive binder applied to said surface as an aqueous
coating composition, said aqueous coating composition upon drying and setting, covering said mat to the extent that substantially none of the fibers of said mat protrude from
said coating.

6893752 6/28/2002 5/17/2005 USG Corporation Y N N N
Mold-resistant gypsum panel
and method of making same

A mold-resistant gypsum panel includes a core of an interlocking matrix of calcium sulfate dihydrate crystals, a facing material on at least one side of the panel and a salt of
pyrithione dispersed through both the core and the facing materials. A method of making a mold-resistant gypsum product is also provided. A slurry of calcined gypsum, water
and a water-soluble pyrithione salt is formed, then deposited on a sheet of facing material. The slurry on the facing material is shaped into a panel and maintained under
conditions sufficient for the calcined gypsum to react with the water to form a core comprising an interlocking matrix of set gypsum crystals. Heating of the panel causes
evaporation of the water that did not react with the calcined gypsum.

7028436 11/5/2002 4/18/2006 CertainTeed N N Y Y
Cementitious exterior
sheathing product with rigid
support member

Cementitious exterior sheathing products are provided which include a rigid support member affixed to a cementitious layer. The rigid support member includes at least one
nailing flange disposed along one of its lateral sides for allowing the sheathing product to be affixed to an exterior wall of a building. Preferred mechanical and adhesive bonding
techniques are suggested for combining the cementitious layer and rigid support member together to form an integrated product. Such products are lighter in weight and are
more crack resistant than currently available fiber cement trim boards.

7049251 1/21/2003 5/23/2006 Saint Gobain N N Y Y
Facing material with controlled
porosity for construction
boards

This invention provides facing materials for cementitious boards such as those including Portland cement or gypsum cores. The preferred facing material includes, in a first
embodiment, a facing layer having an areal weight of about 300 grams/M, and an air permeability rating of no greater than about 300 CFM/ft(FG 436-910 test method). The
facing layer reduces the penetration of a slurry of cementitious material during the manufacture of a cementitious board, while permitting the water vapor from the slurry to
pass therethrough. The facing materials of this invention can be designed to substantially eliminate the fouling of rolls used in continuous processing of such boards without the
use, or with greatly reduced use, of costly viscosity control agents in the slurry. In addition, further embodiments of this invention can include binders, coatings or saturants
which are designed to decrease pore size, increase or decrease the contact angle of liquids, or promote greater adhesion to cementitious cores, greater adhesion to other layers
in the facing material, or greater adhesion or affinity to various types of adhesive compositions used to join cementitious boards to insulation and exterior finishing systems (EIS
or EIFS).

7155866 1/15/2003 1/2/2007 CertainTeed N Y Y Y

Cementitious exterior
sheathing product having
improved interlaminar bond
strength

The present invention provides exterior building products, such as roofing and siding, shake, shingles, siding, sheathing, panels, planks, vertical siding, soffit panels, fencing,
decking, fascia, corner posts, column corners and trim boards in which a plurality of cementitious layers are provided with an improved interlaminar bond by employing a
resinous bond promoter, a rheological agent, mechanical means to distribute fibers in a direction which is perpendicular to the machine direction so as to bridge between layers
in the product, or a combination thereof. These techniques help to increase interlaminar bond strength to improve the mechanical properties of the product. When certain
resinous bond promoters are used, the additional benefits of water absorption resistance and pigmentation throughout the product can be provided with minimal expense.
Improvements in interlaminar bond strength of about 10ÃƒÂƒÃ‚ÂƒÃƒÂ‚Ã‚ÂƒÃƒÂƒÃ‚Â‚ÃƒÂ‚Ã‚Â‚ÃƒÂƒÃ‚ÂƒÃƒÂ‚Ã‚Â‚ÃƒÂƒÃ‚Â‚ÃƒÂ‚Ã‚Â–46% were observed with a percent elongation
improvement of about 7%.

7300515 11/16/2005 11/27/2007 Saint Gobain N N Y Y
Facing material with controlled
porosity for construction
boards

This invention provides facing materials for cementitious boards such as those including Portland cement or gypsum cores. The preferred facing material includes, in a first
embodiment, a facing layer having an areal weight of about 300 grams/M, and an air permeability rating of no greater than about 300 CFM/ft(FG 436-910 test method). The
facing layer reduces the penetration of a slurry of cementitious material during the manufacture of a cementitious board, while permitting the water vapor from the slurry to
pass therethrough. The facing materials of this invention can be designed to substantially eliminate the fouling of rolls used in continuous processing of such boards without the
use, or with greatly reduced use, of costly viscosity control agents in the slurry. In addition, further embodiments of this invention can include binders, coatings or saturants
which are designed to decrease pore size, increase or decrease the contact angle of liquids, or promote greater adhesion to cementitious cores, greater adhesion to other layers
in the facing material, or greater adhesion or affinity to various types of adhesive compositions used to join cementitious boards to insulation and exterior finishing systems (EIS
or EIFS).

7300892 11/16/2005 11/27/2007 Saint Gobain N N Y Y
Facing material with controlled
porosity for construction
boards

This invention provides facing materials for cementitious boards such as those including Portland cement or gypsum cores. The preferred facing material includes, in a first
embodiment, a facing layer having an areal weight of about 300 grams/M, and an air permeability rating of no greater than about 300 CFM/ft(FG 436-910 test method). The
facing layer reduces the penetration of a slurry of cementitious material during the manufacture of a cementitious board, while permitting the water vapor from the slurry to
pass therethrough. The facing materials of this invention can be designed to substantially eliminate the fouling of rolls used in continuous processing of such boards without the
use, or with greatly reduced use, of costly viscosity control agents in the slurry. In addition, further embodiments of this invention can include binders, coatings or saturants
which are designed to decrease pore size, increase or decrease the contact angle of liquids, or promote greater adhesion to cementitious cores, greater adhesion to other layers
in the facing material, or greater adhesion or affinity to various types of adhesive compositions used to join cementitious boards to insulation and exterior finishing systems (EIS
or EIFS).

7498014 1/12/2007 3/3/2009 CertainTeed Y N N N
System and method for the
production of alpha type
gypsum using heat recovery

The present invention relates to a system and associated method for the production of gypsum in manufacturing plant. More specifically, the invention relates to the production
of alpha-type gypsum in a gypsum board manufacturing plant. The system yields increased efficiencies by capturing heat given off during processing steps and using that heat to
reduce the energy needed for calcination. The invention finds particular application in the production alpha-type gypsum. The present invention is described in greater detail
hereinafter in conjunction with the following specific embodiments.

7553780 12/12/2003 6/30/2009 Georgia Pacific Y N Y N
Gypsum panel having UV-cured
moisture resistant coating and
method for making the same

A fibrous mat faced gypsum panel having on at least one of the facing sheets a moisture resistant, cured coating of a radiation curable, e.g., UV curable, polymer.

7608347 6/9/2006 10/27/2009 USG Corporation Y N N N
Modifiers for gypsum slurries
and method of using them

An improved gypsum slurry that includes water, calcium sulfate hemihydrate, a polycarboxylate dispersant and a modifier. The modifier is chemically configured to improve the
efficacy of the polycarboxylate dispersant. Preferred modifiers include cement, lime, slaked lime, soda ash, carbonates, silicates and phosphates.

7635657 4/25/2005 12/22/2009 Georgia Pacific N N Y Y
Interior wallboard and method
of making same

A gypsum wallboard suitable for Level 4 finishing having a coated non-woven first glass fiber mat facing material on one major surface and an optionally coated second glass
fiber mat where on the other major surface. The first glass fiber mat has a majority of fibers of a nominal fiber diameter between 8 and 11 microns and a fiber length between
and Ãinch and has a basis weight between about 1.7 lb./100 ft.and about 2.0 lb./100; the second glass fiber mat has a majority of fibers of a nominal fiber diameter of at least 13
microns but no greater than about 16 microns and a fiber length between and 1 inch and has a basis weight between about 1.8 lb./100 ft.and about 2.2 lb./100, and wherein the
fibers in both of the non-woven glass fiber mats are bound together with an acrylic-type adhesive binder.

Figure 30: Continued: All forward related patents to U.S. 3,935,021



108

patent_id app_date grant_date organization css google human cited title abstract

7712276 3/30/2005 5/11/2010 CertainTeed N N Y Y
Moisture diverting insulated
siding panel

A siding panel product is provided comprising a first polymeric siding panel having a butt end and a top end, a front surface comprising a plurality of front faces defined between
the top and butt ends and separated by at least one shoulder surface to define a stepped contour, and a rear surface. An insulation backing is coupled to the rear surface of the
siding panel. The insulation backing comprises at least first and second insulation members coupled to the rear surface of said siding panel. The first insulation member has a
bottom edge thereof coupled proximate to the stepped contour and the second insulation member has a top edge thereof coupled proximate to the stepped contour.

7745357 3/12/2004 6/29/2010 Georgia Pacific N N Y Y
Use of pre-coated mat for
preparing gypsum board

A gypsum board which comprises a set gypsum core sandwiched between and faced with fibrous mats, wherein a free surface of one of said mats is pre-coated with a
combination of a mineral pigment, optionally an inorganic adhesive binder and an organic binder, preferably a hydrophobic, UV resistant polymer latex adhesive binder applied
to said surface as an aqueous coating composition, said aqueous coating composition upon drying and setting providing a pre-coated mat satisfying certain morphology
requirements.

7749928 4/22/2009 7/6/2010 Georgia Pacific N N Y Y
Use of pre-coated mat for
preparing gypsum board

A gypsum board which comprises a set gypsum core sandwiched between and faced with fibrous mats, wherein a free surface of one of said mats is pre-coated with a
combination of a mineral pigment, optionally an inorganic adhesive binder and an organic binder, preferably a hydrophobic, UV resistant polymer latex adhesive binder applied
to said surface as an aqueous coating composition, said aqueous coating composition upon drying and setting providing a pre-coated mat satisfying certain morphology
requirements.

7758980 8/12/2008 7/20/2010 USG Corporation Y N N N
Gypsum-containing board and
tile, and method for producing
same

The invention provides a set gypsum-containing product having increased resistance to permanent deformation and a method for preparing it comprising forming a mixture of a
calcium sulfate material, water, and an appropriate amount of one or more enhancing materials chosen from condensed phosphoric acids, each of which comprises 2 or more
phosphoric acid units; and salts or ions of condensed phosphates, each of which comprises 2 or more phosphate units. The mixture is then maintained under conditions sufficient
for the calcium sulfate material to form a set gypsum material.

7803226 7/29/2005 9/28/2010 USG Corporation N N Y Y
Siloxane polymerization in
wallboard

Polymerization of siloxane is improved using a gypsum-based slurry that includes stucco, Class C fly ash, magnesium oxide and an emulsion of siloxane and water. This slurry is
used in a method of making water-resistant gypsum articles that includes making an emulsion of siloxane and water, then combining the slurry with a dry mixture of stucco,
magnesium oxide and Class C fly ash. The slurry is then shaped as desired and the stucco is allowed to set and the siloxane polymerizes. The resulting product is useful for making
a water-resistant gypsum panel having a core that includes interwoven matrices of calcium sulfate dihydrate crystals and a silicone resin, where the interwoven matrices have
dispersed throughout them a catalyst comprising magnesium oxide and components from a Class C fly ash.

7807592 10/28/2009 10/5/2010 Georgia Pacific N N Y Y
Interior wallboard and method
of making same

A gypsum wallboard suitable for Level 4 finishing having a coated non-woven first glass fiber mat facing material on one major surface and an optionally coated second glass
fiber mat where on the other major surface. The first glass fiber mat has a majority of fibers of a nominal fiber diameter between 8 and 11 microns and a fiber length between
and inch and has a basis weight between about 1.7 lb./100 ft.and about 2.0 lb./100; the second glass fiber mat has a majority of fibers of a nominal fiber diameter of at least 13
microns but no greater than about 16 microns and a fiber length between ¾ and 1 inch and has a basis weight between about 1.8 lb./100 ft.and about 2.2 lb./100, and wherein
the fibers in both of the non-woven glass fiber mats are bound together with an acrylic-type adhesive binder.

7811685 11/12/2009 10/12/2010 USG Corporation N N Y Y
Siloxane polymerization in
wallboard

Polymerization of siloxane is improved using a gypsum-based slurry that includes stucco, Class C fly ash, magnesium oxide and an emulsion of siloxane and water. This slurry is
used in a method of making water-resistant gypsum articles that includes making an emulsion of siloxane and water, then combining the slurry with a dry mixture of stucco,
magnesium oxide and Class C fly ash. The slurry is then shaped as desired and the stucco is allowed to set and the siloxane polymerizes. The resulting product is useful for making
a water-resistant gypsum panel having a core that includes interwoven matrices of calcium sulfate dihydrate crystals and a silicone resin, where the interwoven matrices have
dispersed throughout them a catalyst comprising magnesium oxide and components from a Class C fly ash.

7846278 10/29/2003 12/7/2010 Saint Gobain N N Y Y
Methods of making smooth
reinforced cementitious boards

A composite fabric for use in reinforcement of cementitious boards and similar prefabricated building wall panels. The fabric includes an open mesh first component of
continuously coated, high modulus of elasticity strands and a nonwoven second component fabricated from alkali resistant thermoplastic material. The high modulus strands of
the first component are preferably bundled glass fibers encapsulated by alkali and water resistant thermoplastic material. The composite fabric also has suitable physical
characteristics for embedment within the cement matrix of the panels or boards closely adjacent the opposed faces thereof. The reinforcement provides long-lasting, high
strength tensile reinforcement and impact resistance for the panels or boards. The reinforcement also enables the boards to have smooth outer faces suitable for painting,
papering, tiling or other finishing treatment. Included as part of the invention are methods for making the reinforcement, cementitious boards and panels including the
reinforcement, and methods for manufacturing such boards and panels.

7861476 9/19/2005 1/4/2011 CertainTeed N N Y Y
Cementitious exterior
sheathing product with rigid
support member

Cementitious exterior sheathing products are provided which include a rigid support member affixed to a cementitious layer. The rigid support member includes at least one
nailing flange disposed along one of its lateral sides for allowing the sheathing product to be affixed to an exterior wall of a building. Preferred mechanical and adhesive bonding
techniques are suggested for combining the cementitious layer and rigid support member together to form an integrated product. Such products are lighter in weight and are
more crack resistant than currently available fiber cement trim boards.

7892472 8/12/2004 2/22/2011 USG Corporation N N Y Y
Method of making water-
resistant gypsum-based article

A moisture resistant gypsum-based product, e.g., a gypsum board, is made by adding a small amount of a siloxane to the aqueous slurry used to make the gypsum-based product
along with a small amount of a dead burned magnesium oxide catalyst to enhance the curing of the siloxane. In the preferred embodiment, the siloxane is formed into an
aqueous emulsion in situ with no chemical emulsifier.

7932195 5/17/2010 4/26/2011 Georgia Pacific N N Y Y
Use of pre-coated mat for
preparing gypsum board

A gypsum board which comprises a set gypsum core sandwiched between and faced with fibrous mats, wherein a free surface of one of said mats is pre-coated with a
combination of a mineral pigment, optionally an inorganic adhesive binder and an organic binder, preferably a hydrophobic, UV resistant polymer latex adhesive binder applied
to said surface as an aqueous coating composition, said aqueous coating composition upon drying and setting providing a pre-coated mat satisfying certain morphology
requirements.

7989370 10/5/2004 8/2/2011 Georgia Pacific N N Y Y
Interior wallboard and method
of making same

A gypsum wallboard suitable for Level 4 finishing having a coated non-woven glass fiber mat facing material where the glass fiber mat has a majority of fibers of a fiber diameter
between 8 and 11 microns and a fiber length between  and  inch and preferably between  and  inch and preferably has a basis weight between about 0.8 lb./100 ft.and about 2.2
lb./100, and wherein the fibers in the non-woven glass fiber are bound together with an acrylic adhesive binder and wherein the non-woven glass mat has a coating of a dried
aqueous mixture of (i) a mineral pigment, (ii) a polymer latex adhesive binder and optionally (iii) an inorganic adhesive binder such that the coated non-woven glass mat facing
material has a porosity which allows water to evaporate through said coated mat from the gypsum core during preparation of the wallboard.

8070895 4/20/2007 12/6/2011 USG Corporation N Y Y Y
Water resistant cementitious
article and method for
preparing same

A fibrous mat-faced cementitious article comprising (a) a cementitious core, and (b) a first fibrous mat comprising polymer or mineral fibers and a hydrophobic finish on at least
one surface thereof, wherein the hydrophobic finish is in contact with the cementitious core, and a method of preparing a fibrous mat-faced cementitious article, as well as a
method of preparing a water-resistant cementitious article comprising (a) preparing an aqueous siloxane dispersion, wherein the dispersion comprises about 4 wt. % to about 8
wt. % siloxane, (b) combining the siloxane dispersion with a cementitious mixture to provide a cementitious slurry, (c) depositing the cementitious slurry onto a substrate, and (d)
allowing the cementitious slurry to harden, thereby providing a cementitious article.

8133600 9/22/2010 3/13/2012 USG Corporation N N Y Y
Siloxane polymerization in
wallboard

Polymerization of siloxane is improved using a gypsum-based slurry that includes stucco, Class C fly ash, magnesium oxide and an emulsion of siloxane and water. This slurry is
used in a method of making water-resistant gypsum articles that includes making an emulsion of siloxane and water, then combining the slurry with a dry mixture of stucco,
magnesium oxide and Class C fly ash. The slurry is then shaped as desired and the stucco is allowed to set and the siloxane polymerizes. The resulting product is useful for making
a water-resistant gypsum panel having a core that includes interwoven matrices of calcium sulfate dihydrate crystals and a silicone resin, where the interwoven matrices have
dispersed throughout them a catalyst comprising magnesium oxide and components from a Class C fly ash.

Figure 30: Continued: All forward related patents to U.S. 3,935,021



109

patent_id app_date grant_date organization css google human cited title abstract

8142914 2/15/2011 3/27/2012 USG Corporation Y N N N
Gypsum-containing product
and gypsum board

The invention provides a set gypsum-containing product having increased resistance to permanent deformation and a method for preparing it comprising forming a mixture of a
calcium sulfate material, water, and an appropriate amount of one or more enhancing materials chosen from condensed phosphoric acids, each of which comprises 2 or more
phosphoric acid units; and salts or ions of condensed phosphates, each of which comprises 2 or more phosphate units. The mixture is then maintained under conditions sufficient
for the calcium sulfate material to form a set gypsum material.

8192658 11/29/2006 6/5/2012 CertainTeed N N Y Y

Cementitious exterior
sheathing product having
improved interlaminar bond
strength

The present invention provides exterior building products, such as roofing and siding, shake, shingles, siding, sheathing, panels, planks, vertical siding, soffit panels, fencing,
decking, fascia, corner posts, column corners and trim boards in which a plurality of cementitious layers are provided with an improved interlaminar bond by employing a
resinous bond promoter, a rheological agent, mechanical means to distribute fibers in a direction which is perpendicular to the machine direction so as to bridge between layers
in the product, or a combination thereof. These techniques help to increase interlaminar bond strength to improve the mechanical properties of the product. When certain
resinous bond promoters are used, the additional benefits of water absorption resistance and pigmentation throughout the product can be provided with minimal expense.
Improvements in interlaminar bond strength of about 10 46% were observed with a percent elongation improvement of about 7%.

8323785 2/17/2012 12/4/2012 USG Corporation Y N N N
Lightweight, reduced density
fire rated gypsum panels

A reduced weight, reduced density gypsum panel that includes high expansion vermiculite with fire resistance capabilities that are at least comparable to (if not better than)
commercial fire rated gypsum panels with a much greater gypsum content, weight and density.

8329308 3/31/2009 12/11/2012 USG Corporation N N Y Y
Cementitious article and
method for preparing the same

A cementitious article and a method of making a cementitious article are disclosed. The cementitious article comprises a cementitious component that comprises a polyvinyl
acetate type polymer, a monobasic phosphate, and optionally boric acid. Cementitious articles, such as board, are prepared such that the polyvinyl acetate type polymer, the
monobasic phosphate, and optionally boric acid can be present in the cementitious core, and/or in dense layers if present. The concentration of the polyvinyl acetate type
polymer, monobasic phosphate, and optionally boric acid in the cementitious article can increase from a central region A to peripheral regions B and C, respectively. In some
embodiments, the polyvinyl acetate type polymer is a polyvinyl alcohol and the monobasic phosphate is monoammonium phosphate.

8461067 4/22/2011 6/11/2013 Georgia Pacific N N Y Y
Use of pre-coated mat for
preparing gypsum board

A gypsum board which comprises a set gypsum core sandwiched between and faced with fibrous mats, wherein a free surface of one of said mats is pre-coated with a
combination of a mineral pigment, optionally an inorganic adhesive binder and an organic binder, preferably a hydrophobic, UV resistant polymer latex adhesive binder applied
to said surface as an aqueous coating composition, said aqueous coating composition upon drying and setting providing a pre-coated mat satisfying certain morphology
requirements.

8470461 6/11/2012 6/25/2013 USG Corporation Y N N N Light weight gypsum board

The invention generally provides gypsum-containing slurries including stucco, naphthalenesulfonate dispersant, and pregelatinized starch. The naphthalenesulfonate dispersant is
present in an amount of about 0.1%-3.0% by weight based on the weight of dry stucco. The pregelatinized starch is present in an amount of at least about 0.5% by weight up to
about 10% by weight of pregelatinized starch by weight based on the weight of dry stucco in the formulation. Other slurry additives can include trimetaphosphate salts,
accelerators, binders, paper fiber, glass fiber, and other known ingredients. The invention also comprises the gypsum-containing products made with such slurries, for example,
gypsum wallboard, and a method of making gypsum wallboard.

8501074 4/21/2011 8/6/2013 USG Corporation Y N Y Y
Siloxane polymerization in
wallboard

Polymerization of siloxane is improved using a gypsum-based slurry that includes stucco, Class C fly ash, magnesium oxide and an emulsion of siloxane and water. This slurry is
used in a method of making water-resistant gypsum articles that includes making an emulsion of siloxane and water, then combining the slurry with a dry mixture of stucco,
magnesium oxide and Class C fly ash. The slurry is then shaped as desired and the stucco is allowed to set and the siloxane polymerizes. The resulting product is useful for making
a water-resistant gypsum panel having a core that includes interwoven matrices of calcium sulfate dihydrate crystals and a silicone resin, where the interwoven matrices have
dispersed throughout them a catalyst comprising magnesium oxide and components from a Class C fly ash.

8563139 4/22/2008 10/22/2013 USG Corporation N N Y Y
Non-hydrating plaster
composition and method

A method of finishing an interior wall includes the steps of preparing a substrate of building panels comprising gypsum, cement or combinations thereof, said substrate having a
surface, followed by applying a coating to the substrate, said coating comprising 5-20% by weight of a latex emulsion binder, 40-80% by weight calcium sulfate hemihydrate, 0.05-
2% by weight of a set preventer and 20-60% by weight water.

8568544 10/28/2011 10/29/2013 USG Corporation N N Y Y
Water resistant cementitious
article and method for
preparing same

A fibrous mat-faced cementitious article comprising (a) a cementitious core, and (b) a first fibrous mat comprising polymer or mineral fibers and a hydrophobic finish on at least
one surface thereof, wherein the hydrophobic finish is in contact with the cementitious core, and a method of preparing a fibrous mat-faced cementitious article, as well as a
method of preparing a water-resistant cementitious article comprising (a) preparing an aqueous siloxane dispersion, wherein the dispersion comprises about 4 wt. % to about 8
wt. % siloxane, (b) combining the siloxane dispersion with a cementitious mixture to provide a cementitious slurry, (c) depositing the cementitious slurry onto a substrate, and (d)
allowing the cementitious slurry to harden, thereby providing a cementitious article.

8945462 4/16/2007 2/3/2015 Yoshino Gypsum Y N N N
Methods for manufacturing a
calcined gypsum and a gypsum
board

The present invention provides a method for manufacturing a calcined gypsum wherein the mixing water amount is reduced and the setting time does not increase. As a raw
gypsum is compounded with a carboxylic acid-type material and calcined, a calcined gypsum can be manufactured wherein the mixing water amount is small and the setting time
does not increase. Furthermore, a regular gypsum board can be manufactured without reducing the productivity of the gypsum board even if a large quantity of recycled gypsum
causing increase of the mixing water amount is used as a raw gypsum, because the mixing water amount is small and the setting time does not increase for the calcined gypsum
manufactured as described above.

9017495 11/10/2010 4/28/2015 Saint Gobain N N Y N
Methods of making smooth
reinforced cementitious boards

Methods and a reinforcement fabric are disclosed for making a reinforced smooth cementitious board having a cement skin adjacent to an outer face, by depositing a
reinforcement fabric and a layer of hydraulic cementitious material, one on the other, wherein the reinforcement fabric comprises an open mesh united with a thin, porous
nonwoven web.

9221719 2/23/2012 12/29/2015 National Gypsum Y N N N
Gypsum wallboard slurry and
method for making the same

A slurry for manufacturing gypsum board is disclosed. The slurry comprises calcined gypsum, water, a foaming agent, and a thickening agent. The thickening agent of the present
disclosure acts to improve the cohesiveness of the slurry without adversely affecting the setting time of the slurry, the paper-to-core bond (wet and dry), or the head of the slurry
by acting as a defoaming agent or coalescing agent. Examples of suitable thickening agents include cellulose ether and co-polymers containing varying degrees of polyacrylamide
and acrylic acid. A gypsum board and method of forming the slurry and the gypsum board are also disclosed. The gypsum board comprises a gypsum layer formed from the
slurry.

9321685 5/21/2013 4/26/2016 Yoshino Gypsum Y N N N

Gypsum composition, gypsum
slurry, gypsum hardened body,
gypsum-based building
material, gypsum board, and
manufacturing method for a
gypsum-based building
material

A gypsum composition includes a calcined gypsum and a starch urea phosphate.

Figure 30: Continued: All forward related patents to U.S. 3,935,021



CHAPTER 4

DISCUSSION

The purpose of this research is to understand if ML techniques and natural language

processing (NLP) can be applied to patent data to help answer questions about inventiveness

and how inventive knowledge disseminates over time. There is good reason to believe that

historical methods using numerical metrics such as patent counts and citation analysis cannot

completely capture inventive knowledge flow. This research has shown that ML computational

techniques can be used to convert unstructured patent textual data into actionable knowledge,

and in doing so, laid the ground work to study inventiveness and knowledge flow based upon how

inventors describe their inventions over time. The potential exists to use both methods to reveal

interesting and perhaps anomalous patenting behavior through direct comparison. For example

an an interesting anomalous pattern was revealed in Section 3.3.8 when a distinct divergence

of forward citation counts occurred over a four-year time frame for a majority of the top cited

patents that was not seen with CSS-related counts. This approach is not unlike the use of ML to

scan and detect potential fraudulent financial transactions within the credit card industry and

bring those alerts to the attention of security experts so that they can further investigate only

high probability events [139–141]. More research is needed to determine if CSS-relatedness or

other ML approaches to determine inventive similarity among patents are better measures than

citation counts alone. There is significant opportunity for continued use of these techniques to

explore the USPTO patent data set and perhaps the World Intellectual Property Organization

110



111

(WIPO) data set. The approach presented here also holds forth the possibility of tools that could

be applied to locally held corporate proprietary databases of inventive records to identify which

inventions are suited for patent protection. There are also opportunities to further refine and

improve upon the methods used in this research. This includes further exploration of the n-gram

parameter and its effect on identification of inventive descriptors, optimization of the maximum

term frequency threshold parameter during the vector transformation step, and feeding the

output of the tf-idf step into latest language modeling and feature learning techniques such as

word and phrase embedding [142] and tensors [143]. Opportunities to further explore and build

upon this research are many and beyond the scope of what can be accomplished in a single

thesis. Nonetheless, the sections that follow reflect on some potential areas of exploration.

4.1 Inventive Descriptors

There is an opportunity for an improved process to enhance how domain experts determine

the core inventive aspects of any patented invention. This is not a matter of finding broad

technical topics or using common word searches. In today’s hyper-competitive environment

it is important for domain experts to be able to distill these lengthy intellectual property

documents down to core combinations of words that capture the essence of the invention. This is

becoming increasingly difficult as the number of intellectual property documents grow worldwide.

Currently, without using any ML tools, a domain expert who is concerned about technological

disruption or a competitor infringing upon their intellectual property would conduct a patent

search by first filtering for competitor names and then sorting in reverse chronological order.

This would be followed by a quick review of the patent title and abstract for some number of



112

patents that meet the search criteria, with a deeper dive into the patent claims for inventions

of interest. The domain expert may never read the unstructured textual data that is key to

deciphering the core aspects of the invention if the patent does not pass their initial screening.

The approach presented here would allow the domain expert to replace this screening with on a

ML approach that would search the entire patent corpus for similar inventive content supplied

by the domain expert, whether or not the authors of the original patents used helpful keywords

or chose to cite relevant patents. In this workflow, the domain expert would still need to read in

detail some number of patents identified as of potential interest, but the list of patents for review

would be generated by a ML step. Ideally, this would reduce or eliminate some time-consuming

aspects of manual patent searches so that valuable expert time can be used more efficiently. This

would require improvements to our current method especially the importation, pre-processing,

and transformation steps. For example, additional textual data from the patent should be

imported beyond the title, abstract, and claims which would be an obvious next step for future

research. This includes the body of the patent which contains the technical field, background,

summary of the invention, brief description of drawings, and detailed description. In addition,

the pre-processing step should include a chemical dictionary to expand element names such

as “Fe” for iron, convert chemical nomenclature to common names such a “CaSO4” to calcium

sulfate, and be able to differentiate between important preferred usage amounts and general

numerical measures. There is specific language that typically precedes a best mode description

which can be used to differentiate an important range of values. An example of such language

would be “the preferred process includes at least” which is distinctly different from stating “the



113

invention improves efficiency by 30%”. The former is an indication of key aspect of the invention

more akin to a recipe while the latter says nothing about core invention itself.

4.2 Patent Jargon and Enabling Language - “Start Words”

A key part of our pre-processing function was a step to remove common low-value intellectual

property language through comparison of text to a dictionary called patent jargon. The selection

of words was based upon both domain expertise and term frequency analysis. Close scrutiny of

the patent jargon dictionary revealed that some terms were consistently proximate to inventive

terms and that the potential existed to use these words as proximate indicators or start words of

inventive descriptors close by. Some examples of start words would be “according”, “claim”, and

“consisting” in the phrase “The absorbent sheet according to claim 1, consisting of predominately

hardwood fiber”. In this example we would want the inventive descriptors “absorbent sheet”

and “hardwood fiber” to be weighted higher because they fall within a certain proximity of a

start word. The hypothesis is that specific patent phrases, while having no intrinsic domain

content, can be used to identify other terms that are intended to satisfy the patent office general

and description requirements and thus contain significant domain content.

4.3 Weighted Patent Claims

Claims are intended to define the exclusivity zone of an invention by delineating, using

an ordered list of detailed text statements, what inventors are seeking to prevent others from

making or selling. Patent claims are considered the heart of an invention which is why they

are one of the first areas studied by domain experts when trying to understand key inventive

elements. [144] discussed how the evolution of the written requirement has resulted in placing



114

emphasis on clear invention definition in the claims section while the patent detail is used to

discuss prior art, invention rationale, and inventive contemplation that can be broader than

the claims. It is not uncommon to have generic title descriptions and obfuscating language

used in the abstract that makes it difficult to understand the nature of the invention, however,

since the claims represent what the inventor seeks to have exclusivity over there is a strong

incentive to avoid misunderstandings. It is therefore quite clear that the textual data in the

patent claims have greater importance than the title and abstract. This research treated textual

data equally, but it is possible to weight claims higher than text from other sections. Tong and

Frame [145] recognized the importance of claims when they posed that the number of patent

claims was a better indicator of “inventiveness” than patent counts when measuring relative

global technological performance of countries. In their research each claim was treated as an

individual unit of inventiveness, and in turn, the total number of claims was used to measure

the overall inventiveness of a patent. There are some important considerations that need to be

made when it comes to treating claims as individual units of inventiveness. First, not all claims

are created equal in terms of importance and scope. For example, claim order is relevant with

the most important claim of the broadest scope being listed first. Second, there are two different

types of claims, independent and dependent. Independent claims represent core inventive pieces

that are necessary to practice the invention while dependent claims help expand and clarify

their respective independent claim. An independent patent claim typically stands by itself as

a discrete inventive step while dependent claims include all of the features of their respective

independent claims with some degree of additional specificity. Thus dependent claims should not



115

be treated as inventive steps, instead it would be more appropriate to use them to numerically

weight their corresponding independent claims. These considerations make numerical counts

of claims less appealing as a metric for inventiveness, however, the importance of claims in

delineating the boundaries of an invention make them ripe for numerical weighting by using

the counts of dependent claims as a multiplier on the corresponding independent claim. It is

relatively trivial to determine the type of claim by assessing whether it refers to another claim,

this is typically marked by a distinct combination of words, for example, a claim beginning with

the words, “The method of Claim 1”. A weighted approach to the number of independent claims

would be appropriate when assessing term frequency of inventive descriptors contained within a

patent because each dependent claim is considered to have all the word features of its original

claim even if not stated. Therefore, from a textual analysis perspective the inventive descriptors

contained within an independent claim would be weighted by the number of dependent claims

because those terms are assumed to be repeated.

4.4 Predictive models

This research explored the potential to use ML to predict the CPC technical category of

patents using both Decision Trees and ANN in Chapter 2. This raises questions as to whether

ML predicative capabilities can be used to model inventiveness and inventive knowledge flow. For

example, a number of citation-based calculated metrics were introduced in Section 2.2, including

number of citations made & received, backward & forward citation lag, percent citation total

and self-citation, and measure of generality and originality. The number of forward citations

received metric is a direct proxy for “inventiveness” while the mean forward citation lag, the



116

average time between the application date of the originating patent and those that cite it, is

directly related to the diffusion of inventive knowledge over time. It would be interesting to

explore whether these metrics can be modeled as dependent variables using a ML classification

technique such as k-nearest neighbors (k-NN) [76,85,108,146]. If so, this can be used to create

a useful predictive model for future behavior. It will be necessary to identify the appropriate

independent variables that can be evaluated using ML from a host of numerical data that

are already available in the patent record. Both independent and dependent variables can

make use of cosine similarity measures of the patent in question against the extant corpus

and thus provide potentially new predictive models for inventiveness and knowledge flow. For

example, substitution of CSS-relatedness counts for forward citations could be used to assess

both similarity and dissimilarity of inventiveness prediction outcomes between the two methods.

Note that cosine similarity could augment or even entirely replace actual citation counts as

a measure of mean citation lag. The dependent variable that measures knowledge flow or

commercial success can likewise incorporate cosine similarity as well as citation lag, but will only

be measurable for patents if there is a sufficient patent corpus following them in time. It may also

be interesting to investigate inter-industry versus intra-industry knowledge flow by looking at

whether high cosine similarity documents occur within or outside a given CPC technology area.

The research outlined in this thesis suggests the possible adaptation of generality and originality

to use cosine similarity between inventive descriptors rather than citations. Furthermore, metrics

based upon CSS-relatedness counts could provide a timelier and more complete measure of

technological impact that could be applied to corporate invention record filings and trade secrets



117

prior to the decision to publicly disclose an invention. The ultimate goal of this research would

be to predict the impact and dissemination time of a given invention by exploiting the wealth

of technical data within the patent record. This knowledge would invaluable when making

intellectual property decisions related to competitive market behavior. For example, a spike

in CSS-relatedness counts for a patent within a given CPC technological category could be

indicative of competitive fast follower behavior and that this sudden increase would occur when

competitors have developed an alternative means to achieve the same inventive purpose as

the original patent even though there may not be direct citations. The time it takes to reach

this “sudden increase” may be indicative of the strength of the patent related to the difficulty

of others to circumvent its original protective claims without infringement; that increases in

citations upon and after a patent’s expiration is more representative of knowledge flow; that

what defines a “sudden increase” is unique to a given industry or technology area; and that it is

based upon a user-defined suitable threshold related to the expected rate of technology change

common for that industry.



CHAPTER 5

CONCLUSION

This research has presented the use of computational techniques from ML and NLP to

convert unstructured patent textual data into structured actionable knowledge that can be used

to study inventiveness and knowledge flow. This approach differs from historical techniques

used to assess the “quality”and “impact” of patents, such as counting of citations [43], total

cost and willingness over time to pay patent maintenance fees [147], or counting the number of

countries in which patents are filed [148] or the number of claims listed [145]. The approach

was twofold. First, develop an improved computational process to enhance how domain experts

determine the core inventive aspects of any patented invention. Ideally, this process could

be used to reduce the time-consuming aspects of manual patent searches by culling out core

inventive knowledge quickly, so that valuable expert time can be used more efficiently. Second,

develop new techniques to measure inventiveness and knowledge flow through the application

of supervised ML using newly constructed text-based cosine similarity values as dependent

variables for patent relatedness selection. To demonstrate the application of these techniques

several visualizations were created to compare and contrast intra-CSS-relatedness measures with

a more traditional method based on citation analysis. These two ways of measuring inventiveness

and inventive knowledge flow show both similarities and differences. There is good reason to

believe that citation counts cannot completely capture knowledge flow. More research is needed

to determine if CSS-relatedness or other ML approaches to determine inventive similarity among

118



119

patents are better measures than citation counts alone. The potential exists to use both methods

to reveal interesting and perhaps anomalous patenting behavior by comparing core inventive

language to numerical data. The conclusion here is that ML techniques are ready to be used in

such research. Jaffe and de Rassenfosse [1] provided an elegant geometric interpretation of the

relationship between inventive language in the form of patent claims, technological innovation,

and the purpose of citations which was prescient to this research and repeated below.

“First, we can think of all possible technologies as mapping onto a high-dimensional technology

space, such that a given invention can be located in that space, and a patent represents

the right to exclude others from marketing products that impinge upon specific region (or

regions) of that space. Second, the invention process is cumulative, that is, inventions build

on those that came before and, in turn, facilitate those that come after. In this geometric

interpretation, the patent claims delineate the metes and bounds of the region of technology

space over which exclusivity is being granted, while the citations indicate previously marked

off areas that are in some sense built upon by or connected to the invention being granted.”

(7)

This research has shown that ML techniques can be used to create this geometric inter-

pretation by converting patent title, abstract, and claim textual data into numerical vectors

that can be placed into a higher-dimensional technology space. Furthermore, the metes and

bounds between these vectors can be delineated by measuring the cosine angle between them

and thus establishing relatedness. Lastly, the patent application filing dates can be used to

define previously marked off areas. This was achieved using the following steps.

First, unstructured abstract, title, and claim textual data from a subset of patent documents

from a competitive group of companies were extracted. This included the application of NLP



120

techniques to convert the unstructured textural data into term frequency based numerical

vectors. A key part of this first step was a pre-processing function that removed common

legal language called patent jargon as well as steps to retain n-gram inventive word pairs. A

statistical method called term frequency-inverse document frequency (tf-idf) was then used to

convert the sets of numerical vectors into real-valued numerical vectors within a vector space

model. The transformation was modified to ensure that all rare inventive terms were captured

no matter how infrequent, while at the same time removing common low value information

words associated with intellectual property language. Selecting for core inventive terms diverges

from standard NLP methodology in that we choose to seek out rare combinations of words.

Second, the cosine angle between all patent vectors within the higher-dimension vector space was

measured. A parameter α was selected to screen for patent relatedness based upon a minimum

cosine threshold value. This value was selected based upon the weighted mean cosine similarity

score of known cited patent pairs. In doing so, this research utilized the existing patent record

to establish a minimum threshold value using forward cited patent pairs instead of a domain

expert’s subjective assessment of relatedness.

Third, to visualize patent cosine relatedness the higher-dimension vector space was reduced

to a two-dimensional plot using principal component analysis and then t-distributed stochastic

neighbor embedding. The resulting visualization was then color coded using patent office

technical classifications to reveal some discrete technology class clusters. The match between

the CSS relatedness clusters and CPC classes, while not formal validation, indicates that this

approach is aligned with traditional classication methods.



121

Lastly, a comparison of invention impact and inventive knowledge flow is demonstrated by

plotting patent citation data alongside cosine relatedness outputs to reveal both similar and

dissimilar inventive patterns. Knowing that CSS-relatedness is based upon the similarity of

core inventive terms and that formal backward citing is based upon inventor compliance with

USPTO prior art requirements raises some interesting opportunities to detect anomalous citation

behavior. Advances in computational power and ML tools have opened the door to investigate

a number of interesting questions in intellectual property decision modeling. This research has

shown that new computational techniques can be used to convert unstructured patent textual

data into actionable knowledge, and in doing so, laid the groundwork to study inventiveness

and knowledge flow with less dependence on numerical metrics such as patent counts and

citation analysis. The increased understanding can be used to study inventive knowledge flow

which has both scientific and practical applications. The conversion of unstructured patent

textual data into structured data that can be used for intellectual property decision modeling,

and the methodological enhancements provided to researchers in the field, provide increased

understanding of the nature of inventiveness & inventive knowledge flow. There is also significant

potential to reduce the most time-consuming and tedious aspects of patent searches, not only to

free up valuable domain expert time, but also provide them with more actionable knowledge to

make informed intellectual property decisions. Going forward these techniques could be used

in a number of applications including novelty assessment of patent applications prior to filing,

competitive surveillance to monitor published patent applications, an automated patentability



122

assessment tool, or as a means to suggest new inventive steps by combining inventive descriptors

between CSS related patents.



CITED LITERATURE

1. Jaffe, A. B. and de Rassenfosse, G.: Patent Citation Data in Social Science Research:
Overview and Best Practices. Working Paper 21868, National Bureau of Economic
Research, January 2016.

2. World Intellectual Property Organization: Directory of Intellectual Property Offices.
http://www.wipo.int/directory/en/urls.jsp, April 2018.

3. World Intellectual Property Organization: Member States.
http://www.wipo.int/members/en/index.jsp, February 2018.

4. International Bureau of WIPO: What is Intellectual Property? WIPO Pub. No. 450 ,
2003.

5. Tseng, Y.-H., Lin, C.-J., and Lin, Y.-I.: Text mining techniques for patent analysis.
Information Processing & Management , 43(5):1216–1247, September 2007.

6. United States Patent and Trademark Office: Utility Patent Counts
By Country, State, and Year (December 2015) — USPTO.
https://www.uspto.gov/web/offices/ac/ido/oeip/taf/cst utl.htm, March 2018.

7. Schmookler, J.: Invention and Economic Growth . Cambridge, Mass., Harvard University
Press, first edition edition, January 1966.

8. Schiffel, D. and Kitti, C.: Rates of invention: International patent comparisons. Research
Policy , 7(4):324–340, October 1978.

9. Pavitt, K. and Soete, L.: International differences in economic growth and the international
location of innovation. Emerging Technologies: The Consequences for Economic
Growth, Structural Change and Employment , pages 105–133, 1982.

10. Chakrabarti, A. K.: Competition in high technology: Analysis of patents of US, Japan,
UK, France, West Germany, and Canada. IEEE Transactions on Engineering
Management , 38(1):78–84, February 1991.

123



124

11. Griliches, Z.: Patent statistics as economic indicators: A survey. In R&D and Productivity:
The Econometric Evidence , pages 287–343. University of Chicago Press, 1998.

12. Chakrabarti, A. K., Dror, I., and Eakabuse, N.: Interorganizational transfer of knowledge:
An analysis of patent citations of a defense firm. IEEE Transactions on Engineering
Management , 40(1):91–94, 1993.

13. Crépon, B., Duguet, E., et al.: Estimating the innovation function from patent numbers:
GMM on count panel data. Journal of Applied Econometrics , 12(3):243–263, 1997.

14. Grandjean, N., Charpiot, B., Pena, C. A., and Peitsch, M. C.: Competitive intelligence
and patent analysis in drug discovery: Mining the competitive knowledge bases
and patents. Drug Discovery Today: Technologies , 2(3):211–215, 2005.

15. Xu, K., Liao, S. S., Li, J., and Song, Y.: Mining comparative opinions from customer
reviews for Competitive Intelligence. Decision support systems , 50(4):743–754,
2011.

16. Canongia, C.: Synergy between Competitive Intelligence (CI), Knowledge Management
(KM) and Technological Foresight (TF) as a strategic model of prospecting — The
use of biotechnology in the development of drugs against breast cancer. Biotechnol-
ogy Advances , 25(1):57–74, January 2007.

17. Hall, B. H., Jaffe, A. B., and Trajtenberg, M.: The NBER patent citation data file: Lessons,
insights and methodological tools. Technical report, National Bureau of Economic
Research, 2001.

18. Crépon, B., Duguet, E., and Mairessec, J.: Research, Innovation And Productivity: An
Econometric Analysis At The Firm Level. Economics of Innovation and new
Technology , 7(2):115–158, 1998.

19. Albert, M. B., Avery, D., Narin, F., and McAllister, P.: Direct validation of citation counts
as indicators of industrially important patents. Research Policy , 20(3):251–259,
June 1991.

20. Breitzman, A. F. and Mogee, M. E.: The many applications of patent analysis. Journal of
Information Science , 28(3):187–205, 2002.

21. Lemley, M. A. and Sampat, B.: Examiner characteristics and patent office outcomes.
Review of Economics and Statistics , 94(3):817–827, 2012.



125

22. Keller, R. T.: Job involvement and organizational commitment as longitudinal predictors of
job performance: A study of scientists and engineers. Journal of Applied Psychology
, 82(4):539, 1997.

23. Wang, X., Zhang, X., and Xu, S.: Patent co-citation networks of Fortune 500 companies.
Scientometrics , 88(3):761–770, 2011.

24. Hibben, Mark: The Difference Between Apple And Google.
http://seekingalpha.com/article/4051172-difference-apple-google, January
2017.

25. Audretsch, B.: Agglomeration and the location of innovative activity. Oxford review of
economic policy , 14(2):18–29, 1998.

26. Jaffe, A. B., Trajtenberg, M., and Henderson, R.: Geographic localization of knowledge
spillovers as evidenced by patent citations. the Quarterly journal of Economics ,
108(3):577–598, 1993.

27. Li, G.-C., Lai, R., D’Amour, A., Doolin, D. M., Sun, Y., Torvik, V. I., Amy, Z. Y., and
Fleming, L.: Disambiguation and co-authorship networks of the US patent inventor
database (1975–2010). Research Policy , 43(6):941–955, 2014.

28. Castaldi, C. and Los, B.: Geographical patterns in US inventive activity 1977–1998:
The “regional inversion” was underestimated. Research Policy , 46(7):1187–1197,
September 2017.

29. Statista: Total number of plant patents issued in the U.S. FY 1997-FY 2018 — Statis-
tic. https://www.statista.com/statistics/256586/number-of-plant-patent-grants-in-
the-us/, 2018.

30. Statista: Patents in the United States. https://www.statista.com/study/14876/patents-in-
the-united-states-statista-dossier/, 2016.

31. Trajtenberg, M., Henderson, R., and Jaffe, A.: University versus corporate patents: A
window on the basicness of invention. Economics of Innovation and new technology
, 5(1):19–50, 1997.

32. Foglia, P.: Patentability search strategies and the reformed IPC: A patent office perspective.
World Patent Information , 29(1):33–53, March 2007.



126

33. Vijvers, W. G.: The international patent classification as a search tool. World Patent
Information , 12(1):26–30, January 1990.

34. Kisliuk, B.: Introduction to the Cooperative Patent Classification (CPC) . United States
Patent and Trademark Office, 2010.

35. Montecchi, T., Russo, D., and Liu, Y.: Searching in Cooperative Patent Classification:
Comparison between keyword and concept-based search. Advanced Engineering
Informatics , 27(3):335–345, August 2013.

36. United States Patent and Trademark Office: Manual of Patent Examining Proce-
dure (MPEP) Ninth Edition, Revision 08.2017, Last Revised January 2018.
https://www.uspto.gov/web/offices/pac/mpep/index.html, 2018.

37. Heckadon, D.: New Ways to Challenge Patents Both Before and After They Is-
sue. https://www.gordonrees.com/newsroom/2012/new-ways-to-challenge-patents-
both-before-and-after-they-issue, November 2012.

38. Acs, Z. J. and Audretsch, D. B.: Patents as a measure of innovative activity. Kyklos ,
42(2):171–180, 1989.

39. Acs, Z. J., Anselin, L., and Varga, A.: Patents and innovation counts as measures of regional
production of new knowledge. Research Policy , 31(7):1069–1085, September 2002.

40. Jaffe, A. B. and Trajtenberg, M.: International knowledge flows: Evidence from patent
citations. Economics of Innovation and New Technology , 8(1-2):105–136, 1999.

41. Agrawal, A., Cockburn, I., and McHale, J.: Gone but not forgotten: Knowledge flows,
labor mobility, and enduring social relationships. Journal of Economic Geography ,
6(5):571–591, 2006.

42. Archibugi, D. and Planta, M.: Measuring technological change through patents and
innovation surveys. Technovation , 16(9):451–519, September 1996.

43. Trajtenberg, M.: A penny for your quotes: Patent citations and the value of innovations.
The Rand Journal of Economics , pages 172–187, 1990.

44. Caballero, R. J. and Jaffe, A. B.: How high are the giants’ shoulders: An empirical
assessment of knowledge spillovers and creative destruction in a model of economic
growth. NBER macroeconomics annual , 8:15–74, 1993.



127

45. He, Z.-L. and Deng, M.: The evidence of systematic noise in non-patent references: A
study of New Zealand companies’ patents. Scientometrics , 72(1):149–166, 2007.

46. Rosenzweig, S. and Mazursky, D.: Constraints of internally and externally derived
knowledge and the innovativeness of technological output: The case of the United
States. Journal of Product Innovation Management , 31(2):231–246, 2014.

47. Cooper, M. J., Knott, A. M., and Yang, W.: Measuring Innovation. Available at SSRN
2631655 , 2015.

48. Mello, J. P.: Technology Licensing and Patent Trolls. BUJ Sci. & Tech. L. , 12:388, 2006.

49. Frost, G. E.: The 1967 patent law debate: First-to-invent vs. first-to-file. Duke Law
Journal , pages 923–942, 1967.

50. DeBari, V. J.: International Harmonization of Patent Law: A Proposed Solution to the
United States’ First-to-File Debate. Fordham Int’l LJ , 16:687, 1992.

51. Kortum, S. and Lerner, J.: Stronger protection or technological revolution: What is behind
the recent surge in patenting? Carnegie-Rochester Conference Series on Public
Policy , 48:247–304, June 1998.

52. Kortum, S. and Lerner, J.: What is behind the recent surge in patenting? Research policy
, 28(1):1–22, 1999.

53. Pedersen, B. and Braginsky, V.: The Rush to the First-to-File Patent System in the
United States: Is a Globally Standardized Patent Reward System Really Beneficial
to Patent Quality and Administrative Efficiency. Minn. JL Sci. & Tech. , 7:757,
2005.

54. Meridith, John and Grzelak, K.: Letter to House and Senate Leaders and Judiciary
Committee Members Opposing Adoption of the Patent Reform Act of 2007 (S.
1145/H.R. 1908)., August 2007.

55. Lo, S.-t. and Sutthiphisal, D.: Does it matter who has the right to patent: First-to-invent or
first-to-file? Lessons from Canada. Technical report, National Bureau of Economic
Research, 2009.

56. World Trade Organization: Trade-Related Aspects of Intellectual Property Rights.
https://www.wto.org/english/tratop e/trips e/trips e.htm#WhatAre, April 2018.



128

57. Cambia: What is the difference between a filing date and a priority date?
http://www.bios.net/daisy/patentlens/2343.html, 2018.

58. Standard and Poor’s Global: S&P Global Market Intelligence.
https://www.spglobal.com/marketintelligence/en/?product=compustat-research-
insight, 2018.

59. Hirschman, A. O.: National Power and the Structure of Foreign Trade , volume 105. Univ
of California Press, 1980.

60. Hirschman, A. O.: The paternity of an index. The American Economic Review , 54(5):761–
762, 1964.

61. Herfindahl, O. C.: Concentration in the Steel Industry. PhD Thesis, Columbia University
New York, 1950.

62. Omiecinski, E. R.: Alternative interest measures for mining associations in databases.
IEEE Transactions on Knowledge and Data Engineering , 15(1):57–69, January
2003.

63. Kannan, S. and Bhaskaran, R.: Association rule pruning based on interestingness measures
with clustering. arXiv preprint arXiv:0912.1822 , 2009.

64. Ian, H.: Witten, Eibe Frank and Mark A. Hall Data Mining: Practical Machine Learning
Tools and Techniques.-. 3rd Edition. Morgan Kaufmann , page 664, 2011.

65. Quinn: The Best Mode Requirement: Not disclosing preferences in a patent application
still a big mistake— Patents & Patent Law, February 2016.

66. United States Patent and Trademark Office: Patent Examiner Count System.
https://www.uspto.gov/patent/initiatives/patent-examiner-count-system, March
2010.

67. United States Patent and Trademark Office: Recently Announced Changes to USPTO’s
Examiner Count System Go Into Effect. https://www.uspto.gov/about-us/news-
updates/recently-announced-changes-usptos-examiner-count-system-go-effect,
February 2010.

68. Mueller, J. M.: The Evolving Application of the Written Description Requirement to
Biotechnological Inventions. Berkeley Tech. LJ , 13:615, 1998.



129

69. United States Patent and Trademark Office: New USPTO Tool Allows Exploration of 40
Years of Patent Data. https://www.uspto.gov/about-us/news-updates/new-uspto-
tool-allows-exploration-40-years-patent-data, September 2015.

70. United States Patent and Trademark Office: PatentsView. https://www.uspto.gov/learning-
and-resources/ip-policy/economic-research/patentsview, February 2017.

71. United States Patent and Trademark Office, P.: Data Download Tables — PatentsView.
http://www.patentsview.org/download/, 2016.

72. Van Rossum, G. and Drake Jr, F. L.: Python Tutorial . Centrum voor Wiskunde en
Informatica Amsterdam, The Netherlands, 1995.

73. Immordino Jr, S. C. and Stevens, R. B.: Joint compound providing low dusting and good
gloss retention, January 2004. U.S. 9,388,534 (C04B26/02), 10/093,771, 8 Mar
2002; 14 pp, 6 Jan 2004.

74. United States Patent and Trademark Office: Patent Classification.
https://www.uspto.gov/patents-application-process/patent-search/classification-
standards-and-development, 2019.

75. United States Patent and Trademark Office: Cooperative Patent Classfication.
https://www.uspto.gov/web/patents/classification/cpc.html, April 2013.

76. Tseng, C.-Y.: Technological innovation and knowledge network in Asia: Evidence from
comparison of information and communication technologies among six countries.
Technological Forecasting and Social Change , 76(5):654–663, 2009.

77. Wang, W. M. and Cheung, C. F.: A Semantic-based Intellectual Property Management
System (SIPMS) for supporting patent analysis. Engineering Applications of
Artificial Intelligence , 24(8):1510–1520, December 2011.

78. Bird, S., Klein, E., and Loper, E.: Natural Language Processing with Python . ” O’Reilly
Media, Inc.”, 2009.

79. scikit-learn: Sklearn.feature extraction.text.CountVectorizer. http://scikit-
learn.org/stable/modules/generated/sklearn.feature extraction.text.CountVectorizer.html,
2017.



130

80. Luhn, H. P.: A Statistical Approach to Mechanized Encoding and Searching of Literary
Information. IBM Journal of Research and Development , 1(4):309–317, October
1957.

81. Sparck Jones, K.: A statistical interpretation of term specificity and its application in
retrieval. Journal of documentation , 28(1):11–21, 1972.

82. Manning, C. D., Raghavan, P., and Schütze, H.: Scoring, term weighting and the vector
space model. Introduction to information retrieval , 100:2–4, 2008.

83. Gomaa, W. H. and Fahmy, A. A.: A survey of text similarity approaches. International
Journal of Computer Applications , 68(13):13–18, 2013.

84. Stack Overflow: Systematic threshold for cosine similarity with TF-IDF
weights. https://stackoverflow.com/questions/28882302/systematic-threshold-for-
cosine-similarity-with-tf-idf-weights, 2016.

85. Trstenjak, B., Mikac, S., and Donko, D.: KNN with TF-IDF based Framework for Text
Categorization. Procedia Engineering , 69:1356–1364, January 2014.

86. Perone, Christian: Machine Learning :: Text feature extraction (tf-idf) – Part I — Terra
Incognita, September 2011.

87. Dumais, S. T.: Latent semantic analysis. Annual review of information science and
technology , 38(1):188–230, 2004.

88. Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K., and Harshman, R.: Indexing
by latent semantic analysis. Journal of the American society for information science
, 41(6):391, 1990.

89. Deerwester, S. C., Dumais, S. T., Furnas, G. W., Harshman, R. A., CA, Landauer, T. K.,
Lochbaum, K. E., and Streeter, L. A.: United States Patent: 4839853 - Computer
information retrieval using latent semantic structure, June 1989. U.S. 4839853
(G06F17/21), 07/244,349 , 15 Sep 1988; 11 pp, 13 Jun 1989.

90. Blei, D. M., Ng, A. Y., and Jordan, M. I.: Latent dirichlet allocation. Journal of machine
Learning research , 3(Jan):993–1022, 2003.

91. Blei, D. and Hoffman, M.: Online Learning for Latent Dirichlet Allocation. In Neural
Information Processing Systems , 2010.



131

92. Sievert, C. and Shirley, K. E.: LDAvis: A method for visualizing and interpreting topics.
In Proceedings of the Workshop on Interactive Language Learning, Visualization,
and Interfaces , pages 63–70, 2014.

93. Lu, Y., Mei, Q., and Zhai, C.: Investigating task performance of probabilistic topic models:
An empirical study of PLSA and LDA. Information Retrieval , 14(2):178–203,
2011.

94. Anaya, L. A.: Comparing Latent Dirichlet Allocation and Latent Semantic Analysis as
Classifiers. University of North Texas, 2011. Doctoral dissertation, University of
North Texas, 2011.

95. Latent semantic analysis - Wikipedia. https://en.wikipedia.org/wiki/Latent semantic analysis.

96. Bayardo, R. J., Ma, Y., and Srikant, R.: Scaling Up All Pairs Similarity Search. In
Proceedings of the 16th International Conference on World Wide Web , WWW ’07,
pages 131–140, New York, NY, USA, 2007. ACM.

97. Sidorov, G., Gelbukh, A., Gómez-Adorno, H., and Pinto, D.: Soft similarity and soft cosine
measure: Similarity of features in vector space model. Computación y Sistemas ,
18(3):491–504, 2014.

98. Huang, A.: Similarity measures for text document clustering. In Proceedings of the Sixth
New Zealand Computer Science Research Student Conference (NZCSRSC2008),
Christchurch, New Zealand , volume 4, pages 9–56, 2008.

99. Salton, G.: Developments in automatic text retrieval. science , 253(5023):974–980, 1991.

100. Sahami, M. and Heilman, T. D.: A web-based kernel function for measuring the similarity
of short text snippets. In Proceedings of the 15th International Conference on
World Wide Web , pages 377–386. AcM, 2006.

101. Raveena.S, N, and ini.V: Near Duplicate Document Detection Using Document-Level
Features and Supervised Learning. International Journal of Innovative Research in
Computer and Communication Engineering , 2(1), January 1970.

102. Alsulami, B. S., Abulkhair, M. F., and Eassa, F. E.: Near duplicate document detection
survey. International Journal of Computer Science and Communications Networks
, 2(2):147–151, 2012.



132

103. Ren, L. and Xu, Q.: Near Duplicate Document Detection: Mathematical Modeling and
Algorithms. ResearchGate , 2012.

104. Han, J., Kamber, M., and Pei, J.: Data Mining: Concepts and Techniques . Elsevier, 2011.

105. Kaur, M. and Sapra, R.: Classification of Patents by Using the Text Mining Approach
Based On PCA and Logistics. International Journal of Engineering and Advanced
Technology , 2013.

106. Sorzano, C. O. S., Vargas, J., and Montano, A. P.: A survey of dimensionality reduction
techniques. arXiv preprint arXiv:1403.2877 , 2014.

107. Alghamdi, R. and Alfalqi, K.: A Survey of Topic Modeling in Text Mining. International
Journal of Advanced Computer Science and Applications (IJACSA) , 6(1), 2015.

108. Navigli, R.: Word Sense Disambiguation: A Survey. ACM Comput. Surv. , 41(2):10:1–10:69,
February 2009.

109. Box, G. E. and Cox, D. R.: An analysis of transformations. Journal of the Royal Statistical
Society. Series B (Methodological) , pages 211–252, 1964.

110. van der Maaten, L. and Hinton, G.: Visualizing data using t-SNE. Journal of machine
learning research , 9(Nov):2579–2605, 2008.

111. van der Maaten, L.: Accelerating t-SNE using tree-based algorithms. The Journal of
Machine Learning Research , 15(1):3221–3245, 2014.

112. van der Maaten, L.: T-SNE. https://lvdmaaten.github.io/tsne/, 2019.

113. Lloyd, S. P.: Least square quantization in PCM. Bell Telephone Laboratories Paper.
Published in journal much later: Lloyd, SP: Least squares quantization in PCM.
IEEE Trans. Inform. Theor.(1957/1982) , 18, 1957.

114. Sculley, D.: Web-scale k-means clustering. In Proceedings of the 19th International
Conference on World Wide Web , pages 1177–1178. ACM, 2010.

115. Buchta, C., Kober, M., Feinerer, I., and Hornik, K.: Spherical k-Means Clustering. Journal
of Statistical Software , 50:1–22, September 2012.



133

116. Rousseeuw, P. J.: Silhouettes: A graphical aid to the interpretation and validation of
cluster analysis. Journal of Computational and Applied Mathematics , 20:53–65,
November 1987.

117. Caliński, T. and Harabasz, J.: A dendrite method for cluster analysis. Communications in
Statistics-theory and Methods , 3(1):1–27, 1974.

118. Tibshirani, R., Walther, G., and Hastie, T.: Estimating the number of clusters in a data set
via the gap statistic. Journal of the Royal Statistical Society: Series B (Statistical
Methodology) , 63(2):411–423, 2001.

119. Thorndike, R. L.: Who belongs in the family? Psychometrika , 18(4):267–276, 1953.

120. Lee, Y. K., Lee, E. R., and Park, B. U.: Principal Component Analysis In Very High-
Dimensional Spaces. Statistica Sinica , 22(3):933–956, 2012.

121. United States Patent and Trademark Office: 1120 Eighteen-Month Publication of Patent Ap-
plications [R-07.2015]. https://www.uspto.gov/web/offices/pac/mpep/s1120.html,
2015.

122. Lehnert, C. W. and Randall, B. G.: Use of fibrous mat-faced gypsum board in exte-
rior finishing systems for buildings, March 1987. U.S. 4,647,496 (B32B13/14),
US06/583,874, 27 Feb 1984; 13 pp, 3 March 1987.

123. Watson, G. M.: Wet crepe, impingement-air dry process for making absorbent sheet,
August 2002. U.S. 6,432,267 (D21F5/181 ), 60/171,070, 16 Dec 1999; 28 pp, 13
Aug 2002.

124. Edwards, S. L. and McCullough, S. J.: Wet-pressed tissue and towel products with elevated
CD stretch and low tensile ratios made with a high solids fabric crepe process,
September 2009. U.S. 7,588,660 (C04B26/02), 11/104,014, 12 Apr 2005; 31 pp, 15
Sep 2009.

125. Edwards, S. L., Super, G. H., McCullough, S. J., Baumgartner, D. J., Eggen, R. W.,
Duggan, D. P., Krueger, J. E., Lomax, D. W., and Jones, C. A.: Absorbent
sheet made by fabric crepe process, September 2009. U.S. 7,558,661 (D21F11/145),
112/156,820 , 5 Jun 2008; 67 pp, 15 Sep 2009.

126. Swei, G. S. and Petigny, S.: Electrostatic deposition process, December 2002. U.S. 6,500,493
(C09K3/1409), 9/810,857 , 16 Mar 2001; 14 pp, 31 Dec 2002.



134

127. Moren, L. S., Koethe, B. G., and Thurber, E. L.: Layered particle electrostatic deposi-
tion process for making a coated abrasive article, October 2013. U.S. 8,551,577
(B24D11/005 ), 12/786,622 , 25 May 2010; 12 pp, 8 Oct 2013.

128. Moren, L. S., Koethe, B. G., and Thurber, E. L.: Layered particle electrostatic deposi-
tion process for making a coated abrasive article, October 2014. U.S. 8,869,740
(B24D11/005), 14/016,368 , 3 Sep 2013; 12 pp, 28 Oct 2014.

129. Jungbauer, K., Jr, J. R. B., and Boehmer, R. A.: Method of electrostatic deposition of
particles, abrasive grain and articles, November 2014. U.S. 8,894,466 (B24D11/005
), C09K3/1436 , 20 Jun 2012; 11 pp, 25 Nov 2014.

130. Seth, A.: Abrasive articles including a blend of abrasive grains and method of forming
same, December 2015. U.S. 9,221,151 (B24D3/001), 14/145,900 , 31 Dec 2013; 15
pp, 29 Dec 2015.

131. Laconto, R. W. and Haerle, A. G.: Polishing slurries, January 2012. U.S. 8,105,135
(C09K3/1409), 11/541,431 , 29 Sep 2006; 11 pp, 31 Jan 2012.

132. Francois, E. C.: Dressable bonded abrasive article, February 2015. U.S. 8,994,893
(B24D3/04), 13/598,855 , 30 Aug 2012; 11 pp, 3 Feb 2015.

133. Greve, D. R. and O’Neill, E. D.: Water-resistant gypsum products, January 1976.

134. Coverage - Google Help. https://support.google.com/faqs/answer/7049585.

135. About Google Scholar. https://scholar.google.com/intl/en/scholar/about.html.

136. Danielyan, T. and Zuev, K.: Similar document search, November 2015.

137. Stav, E., Burkard, E. A., and Finkelstein, R. S.: Cementitious gypsum-containing compo-
sitions and materials made therefrom, February 1998.

138. Stav, E., Burkard, E. A., Finkelstein, R. S., Winkowski, D. A., Metz, L. J., and Mudd,
P. J.: Cementitious gypsum-containing binders and compositions and materials
made therefrom, January 1999.

139. Bezerra, F. and Wainer, J.: Anomaly detection algorithms in logs of process aware systems.
In Proceedings of the 2008 ACM Symposium on Applied Computing , pages 951–952.
ACM, 2008.



135

140. Bezerra, F. and Wainer, J.: Fraud detection in process aware systems. International
Journal of Business Process Integration and Management , 5(2):121–129, 2011.

141. Bezerra, F. and Wainer, J.: Algorithms for anomaly detection of traces in logs of process
aware information systems. Information Systems , 38(1):33–44, 2013.

142. Lilleberg, J., Zhu, Y., and Zhang, Y.: Support vector machines and word2vec for text clas-
sification with semantic features. In Cognitive Informatics & Cognitive Computing
(ICCI* CC), 2015 IEEE 14th International Conference On , pages 136–140. IEEE,
2015.

143. McClure, N.: TensorFlow Machine Learning Cookbook: Explore Machine Learning Concepts
Using the Latest Numerical Computing Library - TensorFlow - with the Help of
This Comprehensive Cookbook . s.l, Packt Publishing - ebooks Account, February
2017.

144. Sampson, M.: The Evolution of the Enablement and Written Description Requirements
Under 35 U.S.C. § 112 in the Area of Biotechnology. Berkeley Technology Law
Journal , 15(3):1233–1274, 2000.

145. Tong, X. and Frame, J. D.: Measuring national technological performance with patent
claims data. Research Policy , 23(2):133–141, March 1994.

146. Caruana, R. and Niculescu-Mizil, A.: An Empirical Comparison of Supervised Learning
Algorithms. Proceedings of the 23rd International Conference on Machine Learning
, pages 161–168, 2006.

147. Pakes, A., Simpson, M., Judd, K., and Mansfield, E.: Patent renewal data. Brookings
papers on economic activity. Microeconomics , 1989:331–410, 1989.

148. Schmoch, U. and Kirsch, N.: Analysis of international patent flows. Final report , 1993.



VITA

136



VITA

NAME: Salvatore Charles Immordino Jr.

EDUCATION: Ph.D., Industrial Engineering, University of Illinois at Chicago,
Chicago, Illinois, 2019

M.S., Engineering Management, Marquette University,
Milwaukee, Wisconsin, 2002

B.S., Chemistry, Northern Illinois University,
Dekalb, Illinois, 1992

EMPLOYMENT: Director, Futuring & Digital Innovation, USG Corporation,
2018 - present

Director, Performance Surfaces & Analytical Laboratory, USG
Corporation, 2012 - 2018

Program Manager, Performance Surfaces Laboratory, USG
Corporation, 2008 - 2012

Group Leader, Specialty Finishes Laboratory, USG Corpora-
tion, 2006 - 2008

Senior Researcher, Interior Finishes Laboratory, USG Corpo-
ration, 2001 - 2006

Researcher, Industrial Gypsum Products Laboratory, USG
Corporation, 1995 - 1998

Staff Researcher, Construction Plasters Laboratory, USG
Corporation, 1992 - 1995

HONORS: Beta Gamma Sigma Honor Society, Marquette University,
Milwaukee, Wisconsin, 2002

AWARDS: Chicago Innovation Award - SHEETROCK R© Lightweight
All Purpose Joint Compound with Dust Control, Chicago, Il,
2006

137



138

PATENTS: U.S. Patent 10,150,603: “Package for delivery of additives for
powdered compositions”, December 11, 2018

U.S. Patent 9,944,443: “Water soluble package for delivery of
additives for powdered compositions”, April 17, 2018

U.S. Patent 9,849,649:“Magnet receptive panels and methods”,
December 26, 2017

U.S. Patent 9,783,998:“Nonwoven joint tape having low mois-
ture expansion properties and method for using same”, Octo-
ber 10, 2017

U.S. Patent 9,376,824:“Nonwoven joint tape having low mois-
ture expansion properties and method for using same”, June
28, 2016

U.S. Patent 9,334,410:“Use of aldehyde scavengers in interior
building products”, May 10, 2016

U.S. Patent 9,328,023:“Low water drying type joint com-
pound”, May 3, 2016

U.S. Patent 9,174,881:“Ready mixed setting type joint com-
pound and set initiator in chambered pouch”, November 3,
2015

U.S. Patent 8,642,346:“Tagged joint compound and method
of identification”, February 4, 2014

U.S. Patent 8,323,429:“Method for preparing three-
dimensional plaster objects”, December 4, 2012

U.S. Patent 7,887,230:“Mixer having S-shaped paddles for
mixing viscous materials”, February 15, 2011

U.S. Patent 7,543,708:“Plastic bag for fine powders”, June 9,
2009

U.S. Patent 7,516,909:“Continuous slurry dispenser appara-
tus”, April 14, 2009



139

U.S. Patent 7,503,430:“Reduced dust acoustic panel”, March
17, 2009

U.S. Patent D576,186:“Mixer for viscous materials”, Septem-
ber 2, 2008

U.S. Patent 7,374,611:“Sprayable machinable media”, May
20, 2008

U.S. Patent D566,143:“Mixer for viscous materials”, April 8,
2008

U.S. Patent 6,673,144:“Joint compound providing low dusting
and good gloss retention”, January 6, 2004

U.S. Patent 6,545,066:“Lightweight ready-mix joint com-
pound”, April 8, 2003

U.S. Patent 6,409,823:“Hydration Enhancing Additives”, June
25, 2002

U.S. Patent 6,406,537:“High-strength joint compound”, June
18, 2002

U.S. Patent 6,398,864:“Pottery plaster formulations for the
manufacture of plaster molds”, June 4, 2002

U.S. Patent 6,355,099:“Plaster mixture for forming a machin-
able composition”, March 12, 2002

U.S. Patent 6,273,345:“High performance slurry spray ma-
chine”, August 14, 2001

U.S. Patent 5,534,059:“Machinable plaster”, July 9, 1996

PROFESSIONAL
MEMBERSHIPS:

American Chemical Society

Industrial Research Institute

Product Development and Management Association



140

SELECTED
PRESENTATIONS:

Immordino, S (November, 2017). Comparing Similarity of
Patent Textual Data Through the Application of Unsurpervised
Machine Learning. Presented to attendees of the PDMA
Research Forum at the PDMA annual conference, Swissotel
Chicago, Chicago, IL.

SELECTED
PUBLICATIONS:

Immordino, S. C., and Scott, M. J.: Comparing Similarity
of Patent Textual Data Through the Application of Machine
Learning. In preparation.



APPENDICES

141



142

Appendix A

PATENT DATA IMPORTATION

Listing A.1: Patent data importation python code

1 #!/usr/bin/env python3
2 # -*- coding: utf-8 -*-
3 #==============================================================================
4 ’’’
5 title :1_20190220_patent_data_import.py
6 description :Patent Analysis Machine Learning
7 author :Salvatore Immordino
8 date created :Mon Apr 18 19:04:13 2016
9 date last modified :Wed Feb 20 18:07:29 2019

10 version :0.1
11 python_version :3.7.1
12 ’’’
13 #==============================================================================
14 """Big data analysis of patent documents on python. The aim of this research
15 was to determine if machine learning could be used to study inventiveness and
16 inventive knowledge flow independent of historical methods like citation
17 analysis. Using natural language processing and network analysis, this research
18 aimed to identify relatedness between patents based on the inventive language
19 used by patent seekers to describe their inventions.
20
21 Data files were downloaded from the United States Patent Office PatensView Data

↪→ Download located at www.patentsview.org.
22
23 This file uses the patent.tsv and raw_assignee.tsv files and merges the datasets

↪→ and saves it to ’input_data1.csv’. Due to the large size of the patent.
↪→ tsv file, this may take a few minutes to run

24 """
25 #==============================================================================
26 # IMPORT STATEMENTS
27 #==============================================================================
28 import pandas as pd
29
30 # find out your current working directory
31 import os
32 print(os.getcwd())
33 working = (os.getcwd())
34 working = working.replace(’\\’, ’/’) # replaced all instances of \ with \\
35
36 #==============================================================================
37 # METHODS
38 #==============================================================================
39
40 # set the file path
41 path = ’/Box/SAM_IMMORDINO_THESIS_WORK/LaTeX_THESIS/Immordino Paper 1/bin/’
42
43 # date parser for pandas import
44 parser = lambda x : pd.to_datetime(x, format=’%Y-%m-%d %H:%M:%S’,
45 errors=’coerce’)
46
47 # load the data; type ’patent_data.dtypes’ to show dtypes
48 patent_data = pd.read_csv(working + path + ’patent.tsv’,
49 sep=’\t’, # for tab delimited
50 header=0, # set header columns row 0



143

Appendix A (Continued)

51 usecols = [’id’,’number’,’date’], # select columns
52 dtype = {’id’:object,
53 ’number’:object,
54 ’abstract’:object,
55 ’title’:object,
56 ’num_claims’:float}, # sets dtype
57 index_col=[’id’], # sets index column
58 na_values = [’no info’, ’.’],
59 parse_dates = [’date’],
60 date_parser=parser,
61 encoding = "iso-8859-1")
62
63 raw_assignee_data = pd.read_csv(working + path + ’rawassignee.tsv’,
64 sep=’\t’,
65 header=0,
66 usecols = [’uuid’,
67 ’patent_id’,
68 ’organization’], # selects columns
69 dtype = {’uuid’:object,
70 ’patent_id’:object,
71 ’organization’:object}, # sets dtype
72 index_col=[’uuid’], # sets index column
73 na_values = [’no info’, ’.’],
74 encoding = "iso-8859-1")
75
76 # clean date columns in the patent table and select year only
77 patent_data[’pat_year’] = patent_data[’date’].dt.year
78 patent_data = patent_data.drop(’date’, 1)
79
80 # rename number column to patent_id
81 patent_data = patent_data.rename(index=str, columns={"number": "patent_id"})
82
83 # join the patent data with raw assignee data using patent number as key
84 merged = pd.merge(left=patent_data,
85 right=raw_assignee_data,
86 how=’left’,
87 left_on=’patent_id’,
88 right_on=’patent_id’,
89 sort=True,
90 left_index=True)
91
92 # save the data as a csv to the working directory
93 merged.to_csv(working + path + ’input_data1.csv’, index=False)



144

Appendix B

PATENT DATA SELECTION

Listing B.1: Patent data selection python code

1 #!/usr/bin/env python3
2 # -*- coding: utf-8 -*-
3 #==============================================================================
4 ’’’
5 title :2_20190220_patent_data_select.py
6 description :Patent Analysis Machine Learning
7 author :Salvatore Immordino
8 date created :Mon Apr 18 19:04:13 2016
9 date last modified :Wed Feb 20 18:07:29 2019

10 version :0.1
11 python_version :3.7.1
12 ’’’
13 #==============================================================================
14 """Big data analysis of patent documents on python. The aim of this research
15 was to determine if machine learning could be used to study inventiveness and
16 inventive knowledge flow independent of historical methods like citation
17 analysis. Using natural language processing and network analysis, this research
18 aimed to identify relatedness between patents based on the inventive language
19 used by patent seekers to describe their inventions.
20
21 Data files were downloaded from the United States Patent Office PatensView Data

↪→ Download located at www.patentsview.org.
22
23 This file uses the ’input_data1.csv’ file from step 1 and the ’cpc_current.tsv’

↪→ files. You can then create a list of organizations and then select only
↪→ patents held by those organizations and save that to ’input_data2.csv"""

24 #==============================================================================
25 # IMPORT STATEMENTS
26 #==============================================================================
27 import pandas as pd
28
29 # find out your current working directory
30 import os
31 print(os.getcwd())
32 working = (os.getcwd())
33 working = working.replace(’\\’, ’/’) # replaced all instances of \ with \\
34
35 #==============================================================================
36 # METHODS
37 #==============================================================================
38
39 # set the file path
40 path = ’/Box/SAM_IMMORDINO_THESIS_WORK/LaTeX_THESIS/Immordino Paper 1/bin/’
41
42 # load the data; type ’patent_data.dtypes’ to show dtypes
43 input_data1 = pd.read_csv(working + path + ’input_data1.csv’,
44 header=0, # set header columns row 0
45 usecols = [’patent_id’,
46 ’pat_year’,
47 ’organization’],
48 dtype = {’patent_id’:object,
49 ’abstract’:object,
50 ’title’:object,



145

Appendix B (Continued)

51 ’num_claims’:float},
52 na_values = [’no info’, ’.’],
53 converters={’organization’: str},
54 encoding = "iso-8859-1")
55
56 cpc_current = pd.read_csv(working + path + ’cpc_current.tsv’,
57 sep=’\t’,
58 header=0,
59 usecols = [’uuid’,
60 ’patent_id’,
61 ’section_id’,
62 ’sequence’],
63 dtype = {’uuid’:object,
64 ’patent_id’:object,
65 ’citation_id’:object,
66 ’sequence’:float}, # sets dtype
67 index_col=[’uuid’], # sets index column
68 na_values = [’no info’, ’.’],
69 iterator = True,
70 chunksize = 10000,
71 encoding = "iso-8859-1")
72
73 # select first listed CPC code to manage memory we do iterator and chunks
74 cpc_current = pd.concat([chunk[chunk[’sequence’] == 1] for chunk in cpc_current

↪→ ])
75 cpc_current.head(10) # worked
76
77 # coloumn names & data types
78 list(input_data1)
79 input_data1.dtypes
80
81 # create org search for list, look for any that contain "armstrong"
82 organizations = input_data1[’organization’].unique().tolist()
83 sub = ’Armstrong’
84 print ("\n".join(s for s in organizations if sub.lower() in s.lower()))
85
86 #==============================================================================
87 # search merged for construction orgs that contain gypsum or known competitors
88 # USG Corporation Competitors = https://www.nasdaq.com/symbol/usg/competitors
89 # regex expressions, e.g. ’^(?=.*Saint)(?=.*Gobain)’, anything that contains
90 #==============================================================================
91 mylist = [’gypsum’,
92 ’Eagle Materials’,
93 ’^(?=.*Armstrong)(?=.*World)’,
94 ’USG Interiors, LLC’,
95 ’USG Acoustical Products Company’,
96 ’USG Industries, Inc.’,
97 ’USG Corporation’,
98 ’^(?=.*Lafarge)’,
99 ’Continental Building’,

100 ’^(?=.*Saint)(?=.*Gobain)’,
101 ’^(?=.*James)(?=.*Hardie)’,
102 ’^(?=.*Certain)(?=.*Teed)’,
103 ’^(?=.*Georgia)(?=.*Pacific)’,
104 ’^(?=.*Louisiana)(?=.*Pacific)’]
105
106 # note: don’t forget to screen patent citations for other competitors
107 # note: Saint Gobain has acquired both Hardie and Certainteed
108 pattern = ’|’.join(mylist) # parse list of building companies
109
110 # first - count total patents from pattern organizations



146

Appendix B (Continued)

111 patent_count = input_data1[input_data1[’organization’].str.contains(pattern,case
↪→ =False)==True].count()

112
113 # second - select only patents from the competitive list
114 input_data2 = input_data1[input_data1[’organization’].str.contains(pattern, case

↪→ =False)==True]
115
116 # third - join the selected patent data with cpc data using patent number as key
117 input_data2 = pd.merge(left=input_data2,
118 right=cpc_current,
119 how=’left’,
120 left_on=’patent_id’,
121 right_on=’patent_id’,
122 sort=True,
123 left_index=True)
124
125 # design patents don’t have claims or section ID, remove them for now
126 input_data2 = input_data2[input_data2[’patent_id’].str.contains(’D’, case=False)

↪→ ==False]
127
128 # reissue patents exsist, e.g. RE45923 in 2016 is from U.S. Pat. No. 6,645,612,

↪→ remove for now
129 input_data2 = input_data2[input_data2[’patent_id’].str.contains(’RE’, case=False

↪→ )==False]
130
131 # fourth rename number patent_year column to grant_date_year
132 input_data2 = input_data2.rename(index=str, columns={"pat_year": "

↪→ grant_date_year"})
133
134 # fifth - save the data as a csv to the working directory
135 input_data2.to_csv(working + path + ’input_data2.csv’, index=False)



147

Appendix C

PATENT DATA ORGANIZATION DISAMBIGUATION

Listing C.1: Patent data organization disambiguate python code

1 #!/usr/bin/env python3
2 # -*- coding: utf-8 -*-
3 #==============================================================================
4 ’’’
5 title :3_20190220_patent_data_disambiguate.py
6 description :Patent Analysis Machine Learning
7 author :Salvatore Immordino
8 date created :Sat Apr 30 09:36:03 2016
9 date last modified :Wed Feb 20 19:12:17 2019

10 version :0.1
11 python_version :3.7.1
12 ’’’
13 #==============================================================================
14 """Big data analysis of patent documents on python. The aim of this research
15 was to determine if machine learning could be used to study inventiveness and
16 inventive knowledge flow independent of historical methods like citation
17 analysis. Using natural language processing and network analysis, this research
18 aimed to identify relatedness between patents based on the inventive language
19 used by patent seekers to describe their inventions.
20
21 Data files were downloaded from the United States Patent Office PatensView Data

↪→ Download located at www.patentsview.org.
22
23 ’input_data2’ from the previous step is copied as ’input_data3’. Some patents

↪→ held by a company are registered under different permutations of the
↪→ organization’s name (ex: United States Gypsum Corporation, U.S., both for
↪→ USG Corporation). This file renames all those to make them uniform (ex:
↪→ under ’U.S.G. Corporation) and saves it to ’input_data4.csv’."""

24 #==============================================================================
25 # IMPORT STATEMENTS
26 #==============================================================================
27 import pandas as pd
28
29 # find out your current working directory
30 import os
31 print(os.getcwd())
32 working = (os.getcwd())
33 working = working.replace(’\\’, ’/’) # replaced all instances of \ with \\
34
35 # extensions; conda install -c conda-forge ipython-autotime
36 # ’%load_ext autotime’ in header to show time
37
38 #==============================================================================
39 # METHODS
40 #==============================================================================
41 # set the file path
42 path = ’/Box/SAM_IMMORDINO_THESIS_WORK/LaTeX_THESIS/Immordino Paper 1/bin/’
43
44 # =============================================================================
45 #load the patent data files
46 input_data3 = pd.read_csv(working + path + ’input_data2.csv’,
47 header=0, # set header columns row 0
48 usecols = [’patent_id’,



148

Appendix C (Continued)

49 ’grant_date_year’,
50 ’organization’,
51 ’section_id’],
52 dtype = {’patent_id’:object,
53 ’abstract’:object,
54 ’title’:object,
55 ’section_id’:object}, # set dtype
56 na_values = [’no info’, ’.’],
57 converters={’organization’: str},
58 encoding = "iso-8859-1")
59 # =============================================================================
60 unique_org = input_data3[’organization’].unique()
61
62 # merge the same companies or aquired assets, order matters!
63 disambiguate_before = input_data3.groupby(’organization’).count()
64
65 input_data3.loc[input_data3[’organization’].str.contains(’^(?=.*Armstrong)(?=.*

↪→ World)’,
66 case=False)==True,’organization’] = ’Armstrong World Industries’
67
68 input_data3.loc[input_data3[’organization’].str.contains(’^(?=.*Saint)(?=.*

↪→ Gobain)’,
69 case=False)==True, ’organization’] = ’Saint Gobain’
70
71 input_data3.loc[input_data3[’organization’].str.contains(’^(?=.*James)(?=.*

↪→ Hardie)’,
72 case=False)==True, ’organization’] = ’James Hardie’
73
74 input_data3.loc[input_data3[’organization’].str.contains(’^(?=.*Certain)(?=.*

↪→ Teed)’,
75 case=False)==True, ’organization’] = ’CertainTeed’
76
77 input_data3.loc[input_data3[’organization’].str.contains(’^(?=.*Georgia)(?=.*

↪→ Pacific*)’,
78 case=False)==True, ’organization’] = ’Georgia Pacific’
79
80 input_data3.loc[input_data3[’organization’].str.contains(’^(?=.*National)(?=.*

↪→ Gypsum)’,
81 case=False)==True, ’organization’] = ’National Gypsum’
82
83 input_data3.loc[input_data3[’organization’].str.contains(’^(?=.*Louisiana)(?=.*

↪→ Pacific)’,
84 case=False)==True, ’organization’] = ’Louisiana Pacific’
85
86 input_data3.loc[input_data3[’organization’].str.contains(’^(?=.*United)’,
87 case=False)==True, ’organization’] = ’USG Corporation’
88
89 input_data3.loc[input_data3[’organization’].str.contains(’^(?=.*USG)’,
90 case=False)==True, ’organization’] = ’USG Corporation’
91
92 input_data3.loc[input_data3[’organization’].str.contains(’^(?=.*Yoshino)’,
93 case=False)==True, ’organization’] = ’Yoshino Gypsum’
94
95 input_data3.loc[input_data3[’organization’].str.contains(’^(?=.*Kaiser)’,
96 case=False)==True, ’organization’] = ’Kaiser Gypsum’
97
98 input_data3.loc[input_data3[’organization’].str.contains(’^(?=.*Lafarge)’,
99 case=False)==True, ’organization’] = ’Lafarge’

100
101 input_data3 = input_data3.replace(
102 {’Unites States Gypsum Company’: ’USG Corporation’},regex=True)
103



149

Appendix C (Continued)

104 input_data3 = input_data3.replace(
105 {’U.S.’: ’USG Corporation’}, regex=True)
106
107 input_data3 = input_data3.replace(
108 {’USG Corporation Gypsum Company’: ’USG Corporation’}, regex=True)
109
110 input_data3 = input_data3.replace(
111 {’G-P Gypsum Corporation’: ’Georgia Pacific.’}, regex=True)
112
113 input_data3 = input_data3.replace(
114 {’GP Gypsum Corp.’: ’Georgia Pacific’}, regex=True)
115
116 input_data3 = input_data3.replace(
117 {’Gypsum Management.’: ’Gypsum Management and Supply, Inc.’},
118 regex=True)
119
120 input_data3 = input_data3.replace(
121 {’GYPSUM MANAGEMENT AND SUPPLY, INC.’: ’Gypsum Management and Supply,

↪→ Inc.’},
122 regex=True)
123
124 input_data3.loc[input_data3[’organization’].str.contains(’^(?=.*Geor)’,
125 case=False)==True, ’organization’] = ’Georgia Pacific’
126
127 disambiguate_after = input_data3.groupby(’organization’).count()
128
129 # save the merged data with cpc classification data
130 input_data3.to_csv(working + path + ’input_data3.csv’, index=False)



150

Appendix D

PATENT DATA FORWARD CITATION LOOKUP

Listing D.1: Patent data forward citation lookup python code

1 #!/usr/bin/env python3
2 # -*- coding: utf-8 -*-
3 #==============================================================================
4 ’’’
5 title :4_20190220_patent_data_cit.py
6 description :Patent Analysis Machine Learning
7 author :Salvatore Immordino
8 date created :Sat Apr 30 09:36:03 2016
9 date last modified :Wed Feb 20 19:12:17 2019

10 version :0.1
11 python_version :3.7.1
12 ’’’
13 #==============================================================================
14 """Big data analysis of patent documents on python. The aim of this research
15 was to determine if machine learning could be used to study inventiveness and
16 inventive knowledge flow independent of historical methods like citation
17 analysis. Using natural language processing and network analysis, this research
18 aimed to identify relatedness between patents based on the inventive language
19 used by patent seekers to describe their inventions.
20
21 Data files were downloaded from the United States Patent Office PatensView Data

↪→ Download located at www.patentsview.org.
22
23 This file creates a copy of input_data3 is created as ’input_data4’, and also

↪→ uses ’uspatentcitations.tsv’ and ’applications.tsv’. A list of cross
↪→ citations and counts the selected patents from the citation table. It
↪→ then goes through the patent numbers and finds every patent that
↪→ backwards cites throught the entire patent database *(Note: this section
↪→ takes a long time to run, I let it run overnight and saved the
↪→ resulting file so it wouldn’t have to be repeated)* and then looks up
↪→ the application date for these patents. - This is then saved as ’
↪→ internal_citations.csv’. This data-frame is then combined with ’
↪→ input_data4’ and saved as ’input_data4.csv

24 """
25 #==============================================================================
26 # IMPORT STATEMENTS
27 #==============================================================================
28 # Libraries needed to run the tool; analysis:ignore
29 import pandas as pd
30 import numpy as np
31 import sys # needed for patent search loop status print
32
33 # find out your current working directory
34 import os
35 print(os.getcwd())
36 working = (os.getcwd())
37 working = working.replace(’\\’, ’/’) # replaced all instances of \ with \\
38
39 # extensions; conda install -c conda-forge ipython-autotime
40 # ’%load_ext autotime’ in header to show time
41
42 #==============================================================================
43 # METHODS



151

Appendix D (Continued)

44 #==============================================================================
45 # set the file path
46 path = ’/Box/SAM_IMMORDINO_THESIS_WORK/LaTeX_THESIS/Immordino Paper 1/bin/’
47
48 # =============================================================================
49
50 parser = lambda x : pd.to_datetime(x,format=’%Y-%m-%d %H:%M:%S’,errors=’coerce’)
51
52 #load the patent data files
53 input_data4 = pd.read_csv(working + path + ’input_data3.csv’,
54 header=0,
55 usecols = [’patent_id’,
56 ’grant_date_year’,
57 ’organization’,
58 ’section_id’],
59 dtype = {’patent_id’:object,
60 ’abstract’:object,
61 ’title’:object,
62 ’section_id’:object},
63 na_values = [’no info’, ’.’],
64 converters={’organization’: str},
65 encoding = "iso-8859-1")
66
67 citations = pd.read_csv(working + path + ’uspatentcitation.tsv’,
68 sep=’\t’,
69 header=0,
70 usecols = [’uuid’,
71 ’patent_id’,
72 ’citation_id’,
73 ’date’],
74 dtype = {’uuid’:object,
75 ’patent_id’:object,
76 ’citation_id’:object},
77 index_col=[’uuid’],
78 na_values = [’no info’, ’.’],
79 parse_dates = [’date’],
80 iterator = True,
81 chunksize = 10000,
82 date_parser=parser,
83 encoding = "iso-8859-1")
84
85 # citations to manage memory (81 million citations) we do iterator and chunks
86 citations = pd.concat(chunk for chunk in citations)
87
88 applications = pd.read_csv(working + path + ’application.tsv’,
89 sep=’\t’,
90 header=0,
91 usecols = [’id’,’patent_id’,’date’], # select columns
92 dtype = {’id’:object,’patent_id’:object}, # set dtype
93 index_col=[’id’], # sets index column
94 na_values = [’no info’, ’.’],
95 parse_dates = [’date’],
96 date_parser=parser,
97 encoding = "iso-8859-1")
98 # =============================================================================
99

100 # First create list for cross citations within the building companies selected
101 patent_list = input_data4[’patent_id’].unique().tolist()
102
103 # Second - count selected patents from citations table
104 citation_count = citations.loc[citations[’citation_id’].isin(patent_list)].count

↪→ ()



152

Appendix D (Continued)

105
106 # Third - select only cross citations from our patent list of 5K+ patents only
107 citations_cross = citations.loc[citations[’patent_id’].isin(patent_list)]
108
109 #===============================================================================
110 ’’’
111 Below function to look up unique patents in the citation file
112 ’’’
113
114 ## create empty dataframe
115 total_records = len(patent_list)
116
117 df = pd.DataFrame()
118
119 for i in range(0,total_records):
120 df_temp = citations_cross.loc[citations_cross[’citation_id’].astype(str)

↪→ == str(patent_list[i])]
121 df = pd.concat([df, df_temp], ignore_index=True)
122 sys.stdout.write(’\rUpdated record: ’ + str(i) + ’ of ’ + str(

↪→ total_records))
123 sys.stdout.flush()
124
125 df.to_csv(working + path + ’immo_cit_no_date2.csv’, index=False)
126 df[’cit_pat_date’] = ""
127
128 for i in range(len(df)):
129 print (’\r’), # \r no line increment and overwrite of previous print
130 sys.stdout.write("Cross matching citations to application dates: {0}%

↪→ complete".format(np.float64(float(i)/len(df)*100).round(2)))
131 sys.stdout.flush()
132 df_temp = applications.loc[applications[’patent_id’].astype(str) == df[’

↪→ patent_id’].iloc[i]]
133 if df_temp.empty == False:
134 df[’cit_pat_date’].iloc[i] = df_temp[’date’].iloc[0]
135
136 internal_citations = df
137 internal_citations.rename(columns={’patent_id’:’citing_patent’,
138 ’citation_id’:’patent_id’,
139 ’cit_pat_date’:’cit_pat_year’},inplace=True)
140 internal_citations[’cit_pat_year’] = internal_citations[’cit_pat_year’].dt.year
141 internal_citations.drop([’date’])
142
143 list(internal_citations) # list column headers
144 internal_citations.to_csv(working + path + ’internal_citations.csv’,index=False)
145
146 # =============================================================================
147 ## why are the lists different?
148 ## turns out some patents were never cited!
149 unique_patents = set(patent_list)
150 unique_patents_count = len(unique_patents)
151 unique_citations = set(df[’citation_id’])
152 unique_citations_count = len(unique_citations)
153 set(unique_patents).intersection(unique_citations)
154 set(unique_patents)!=set(unique_citations)
155 no_citations = list(set(unique_patents)-set(unique_citations))
156 df.groupby(’citation_id’).count()
157 #==============================================================================
158
159 # load internal citations
160 internal_citations = pd.read_csv(working + path + ’internal_citations.csv’,
161 header=0, # set header columns row 0
162 usecols = [’citing_patent’,



153

Appendix D (Continued)

163 ’patent_id’,
164 ’cit_pat_year’], # selects desired

↪→ columns
165 dtype = {’patent_id’:object,
166 ’citing_patent’:object}, # sets dtype
167 na_values = [’no info’, ’.’],
168 encoding = "iso-8859-1")
169
170 ## join merged data with cited data, use the disambiguated input_data2
171 input_data4 = pd.merge(left=input_data4,
172 right=internal_citations,
173 how=’left’,
174 left_on=’patent_id’,
175 right_on=’patent_id’,
176 sort=True,
177 left_index=True)
178
179 ## save the merged data with cited by data
180 input_data4.to_csv(working + path + ’input_data4.csv’, index=False)



154

Appendix E

PATENT DATA TABLE CREATION

Listing E.1: Patent data table creation python code

1 #!/usr/bin/env python3
2 # -*- coding: utf-8 -*-
3 #==============================================================================
4 ’’’
5 title :5_20190220_patent_data_table.py
6 description :Patent Analysis Machine Learning
7 author :Salvatore Immordino
8 date created :Sun May 01 15:32:06 2016
9 date last modified :Wed Feb 20 19:12:17 2019

10 version :0.1
11 python_version :3.7.1
12 ’’’
13 #==============================================================================
14 """Big data analysis of patent documents on python. The aim of this research
15 was to determine if machine learning could be used to study inventiveness and
16 inventive knowledge flow independent of historical methods like citation
17 analysis. Using natural language processing and network analysis, this research
18 aimed to identify relatedness between patents based on the inventive language
19 used by patent seekers to describe their inventions.
20
21 Data files were downloaded from the United States Patent Office PatensView Data

↪→ Download located at www.patentsview.org.
22
23 This file uses ’input_data3.csv’ and ’input_data4.csv’ from the previous steps

↪→ and merges patent data with CPC (Cooperative Patent Classification
↪→ system) using patent number as key, and saves it to ’input_data5.csv’."""
↪→

24 #==============================================================================
25 # IMPORT STATEMENTS
26 #==============================================================================
27 # Libraries needed to run the tool; analysis:ignore
28 import pandas as pd
29
30 # find out your current working directory
31 import os
32 print(os.getcwd())
33 working = (os.getcwd())
34 working = working.replace(’\\’, ’/’) # replaced all instances of \ with \\
35
36 # drop the warnings
37 import warnings
38 warnings.filterwarnings("ignore", category=DeprecationWarning)
39
40 # extensions; conda install -c conda-forge ipython-autotime
41 # ’%load_ext autotime’ in header to show time
42
43 #==============================================================================
44 # METHODS
45 #==============================================================================
46 # set the file path
47 path = ’/Box/SAM_IMMORDINO_THESIS_WORK/LaTeX_THESIS/Immordino Paper 1/bin/’
48
49 # =============================================================================



155

Appendix E (Continued)

50 # load the patent data files
51 org_lookup = pd.read_csv(working + path + ’input_data3.csv’,
52 header=0, # set header columns row 0
53 usecols = [’patent_id’,
54 ’organization’], # selects desired columns
55 dtype = {’patent_id’:object}, # sets dtype
56 na_values = [’no info’, ’.’],
57 converters={’organization’: str},
58 encoding = "iso-8859-1")
59
60 # note: remember that cit_pat_date is the application year cited
61 org_lookup = org_lookup.rename(index=str,
62 columns={"patent_id": "citing_patent",
63 "organization":"citing_org"})
64
65 input_data5 = pd.read_csv(working + path + ’input_data4.csv’,
66 dtype = {’patent_id’:object,
67 ’citing_patent’:object},
68 header=0,
69 encoding = "iso-8859-1")
70
71 # join selected patent data with cpc data using patent number as key
72 input_data5 = pd.merge(left=input_data5,
73 right=org_lookup,
74 how=’left’,
75 left_on=’citing_patent’,
76 right_on=’citing_patent’,
77 sort=True,
78 left_index=True)
79
80 input_data5.dtypes
81 input_data5[’organization’].nunique()
82
83 ## save the merged data with cited by data
84 input_data5.to_csv(working + path + ’input_data5.csv’, index=False)



156

Appendix F

PATENT DATA LABEL ENCODING

Listing F.1: Patent data label encoding python code

1 #!/usr/bin/env python3
2 # -*- coding: utf-8 -*-
3 #==============================================================================
4 ’’’
5 title :5_20190220_patent_data_encoding.py
6 description :Patent Analysis Machine Learning
7 author :Salvatore Immordino
8 date created :Thu Nov 08 14:00:06 2018
9 date last modified :Wed Feb 20 19:12:17 2019

10 version :0.1
11 python_version :3.7.1
12 ’’’
13 #==============================================================================
14 """Big data analysis of patent documents on python. The aim of this research
15 was to determine if machine learning could be used to study inventiveness and
16 inventive knowledge flow independent of historical methods like citation
17 analysis. Using natural language processing and network analysis, this research
18 aimed to identify relatedness between patents based on the inventive language
19 used by patent seekers to describe their inventions.
20
21 Data files were downloaded from the United States Patent Office PatensView Data

↪→ Download located at www.patentsview.org.
22
23 This file uses ’input_data5.csv’ and creates an encoding for the ’organization’

↪→ and ’section_id’ column using the LabelEncoder from scikit-learn. It
↪→ creates another dataframe with the CPC definition list and encoded
↪→ labels. Three files are saved at the end of this, ’input_data6.csv’, ’
↪→ labels_cpc.csv’ and ’labels_org.csv’"""

24 #==============================================================================
25 # IMPORT STATEMENTS
26 #==============================================================================
27 # Libraries needed to run the tool; analysis:ignore
28 import pandas as pd
29
30 # switch categorical letters to numbers
31 from sklearn.preprocessing import LabelEncoder
32
33 # find out your current working directory
34 import os
35 print(os.getcwd())
36 working = (os.getcwd())
37 working = working.replace(’\\’, ’/’) # replaced all instances of \ with \\
38
39 # drop the warnings
40 import warnings
41 warnings.filterwarnings("ignore", category=DeprecationWarning)
42
43 # extensions; conda install -c conda-forge ipython-autotime
44 # ’%load_ext autotime’ in header to show time
45
46 #==============================================================================
47 # METHODS
48 #==============================================================================



157

Appendix F (Continued)

49 # set the file path
50 path = ’/Box/SAM_IMMORDINO_THESIS_WORK/LaTeX_THESIS/Immordino Paper 1/bin/’
51
52 #==============================================================================
53 # load the patent data files
54 input_data6 = pd.read_csv(working + path + ’input_data5’ + ’.csv’,
55 header=0, # set header columns row 0
56 dtype = {’patent_id’:object,
57 ’citing_patent’:object}, # sets dtype
58 na_values = [’no info’, ’.’],
59 converters={’organization’: str},
60 encoding = "iso-8859-1")
61
62 # =============================================================================
63 # encode organizations for y axis
64 le = LabelEncoder() #used to turn categorical letters to numbers
65 le.fit(input_data6.organization)
66 input_data6[’org_number’] = (le.transform(input_data6.organization))
67
68 # create organization encoded table
69 labels_org = pd.DataFrame(list(le.classes_))
70 labels_org.columns = [’organization’]
71 labels_org # there should be 20 (0-19) sans 3M
72
73 # replace the NaN with None in CPC
74 input_data6[’section_id’] = input_data6[’section_id’].fillna(’0’)
75
76 # encode section_id for colors
77 le = LabelEncoder() #used to turn categorical letters to numbers
78 le.fit(input_data6.section_id)
79 input_data6[’class_number’] = (le.transform(input_data6.section_id))*1.0
80 input_data6[’class_number’].unique()
81
82 # create class encoded dataframe
83 labels_cpc = pd.DataFrame(list(le.classes_))
84 labels_cpc.columns = [’patent_class’]
85
86 cpc_definition_list = pd.DataFrame({’patent_class’:[’0’,’A’,’B’,’C’,’D’,’E’,
87 ’F’,’G’,’H’,’Y’],
88 ’definition’:[’X = Not Marked’,
89 ’A = Human Necessitites’,
90 ’B = Performing Operations’,
91 ’C = Chemistry; Metallurgy’,
92 ’D = Textiles; Paper’,
93 ’E = Fixed Constructions’,
94 ’F = Mechanical Engineering’,
95 ’G = Physics’,
96 ’H = Electricity’,
97 ’Y = New Technology’]})
98
99 labels_cpc = pd.merge(labels_cpc, cpc_definition_list, on=[’patent_class’])

100
101 input_data6.info(verbose=True) # tell me all the things
102
103 input_data6 = input_data6[[’patent_id’, # organize the table
104 ’title’,
105 ’abstract’,
106 ’grant_date_year’,
107 ’organization’,
108 ’org_number’,
109 ’section_id’,
110 ’class_number’,



158

Appendix F (Continued)

111 ’citing_patent’,
112 ’cit_pat_year’,
113 ’citing_org’]]
114
115 input_data6.to_csv(working + path + ’input_data6.csv’, index=False)
116 labels_cpc.to_csv(working + path + ’labels_cpc.csv’, index=False)
117 labels_org.to_csv(working + path + ’labels_org.csv’, index=False)



159

Appendix G

PATENT DATA TF-IDF & CSS MATRIX

Listing G.1: Patent data tf-idf and CSS matrix creation python code

1 #!/usr/bin/env python3
2 # -*- coding: utf-8 -*-
3 #==============================================================================
4 ’’’
5 title :7_20190311_TFIDF_Cosine_Sim.py
6 description :Patent Analysis Machine Learning
7 author :Salvatore Immordino
8 date created :Sun Nov 13 11:26:06 2018
9 date last modified :Fri Mar 22 19:12:17 2019

10 version :0.1
11 python_version :3.7.1
12 ’’’
13 #==============================================================================
14 """Big data analysis of patent documents on python. The aim of this research
15 was to determine if machine learning could be used to study inventiveness and
16 inventive knowledge flow independent of historical methods like citation
17 analysis. Using natural language processing and network analysis, this research
18 aimed to identify relatedness between patents based on the inventive language
19 used by patent seekers to describe their inventions.
20
21 Data files were downloaded from the United States Patent Office PatensView Data

↪→ Download located at www.patentsview.org.
22
23 This file uses input_data6.csv and adds which claims were made to this dataframe.

↪→ It also adds when the patent was granted, and saves the new csv as ’
↪→ input_data7.csv’. Lines 145 to 167 aims to fix data and encoding errors
↪→ and 168 on-wards performs some prepossessing such as removing
↪→ punctuation, lemmatization and defines a function to clean the corpus to
↪→ create a jargon free doc. Line 317 on-wards performs some
↪→ visualizations using seaborn and wordclouds. 372 on-wards is the TFIDF
↪→ Vectorizer and Cosine similarity analysis, with some more visualizations
↪→ towards the end"""

24 #==============================================================================
25 # IMPORT STATEMENTS
26 #==============================================================================
27 # basic libraries needed to run the tool
28 import pandas as pd
29 import numpy as np
30
31 # time stamping
32 import time
33
34 # create strings and fix encoding errors
35 import string
36
37 # graphing functions
38 import matplotlib.pyplot as plt
39 from wordcloud import WordCloud
40
41 # drop the warnings
42 import warnings
43 warnings.filterwarnings("ignore") # supress all warnings
44



160

Appendix G (Continued)

45 # natural language tools - clean and preprocess
46 from nltk.corpus import stopwords
47 from nltk import FreqDist
48
49 # find out your current working directory
50 import os
51 print(os.getcwd())
52 working = (os.getcwd())
53 working = working.replace(’\\’, ’/’) # replaced all instances of \ with \\
54
55 # needed for this code
56 import seaborn as sns
57
58 # need to remove multiple letter nonsense words like ’aaa’
59 import re
60
61 # set the file path
62 path = ’/Box/SAM_IMMORDINO_THESIS_WORK/LaTeX_THESIS/Immordino Paper 1/bin/’
63 filename = ’7_20190311_TFIDF_cosine_sim’
64
65
66 # =============================================================================
67 # Data importation
68 # =============================================================================
69 # load the patent data files sans textual data
70 input_data7 = pd.read_csv(working + path + ’input_data6’ + ’.csv’, header=0,
71 usecols = [’patent_id’,
72 ’title’,
73 ’abstract’,
74 ’grant_date_year’,
75 ’organization’,
76 ’org_number’,
77 ’section_id’,
78 ’class_number’],
79 dtype = {’patent_id’:object})
80
81 # drop duplicates (5651)
82 input_data7 = input_data7.drop_duplicates()
83 input_data7.info(verbose=True) # tell me all the things
84
85 # =============================================================================
86 # Import full claims text from patentsview
87 # =============================================================================
88 # iterate through claims data to avoid memory error
89 # iter_csv = pd.read_csv(’claim.tsv’,
90 # sep=’\t’,
91 # header=0,
92 # usecols = [’patent_id’,
93 # ’text’,
94 # ’sequence’],
95 # dtype = {’patent_id’:object,
96 # ’text’:object,
97 # ’sequence’:object},
98 # na_values = [’no info’, ’.’],
99 # iterator = True,

100 # chunksize = 10000,
101 # encoding = "iso-8859-1")
102 #
103 # claims = pd.concat(chunk for chunk in iter_csv)
104 #
105 # patent_local_claims = claims[claims[’patent_id’].isin(input_data7[’patent_id’].

↪→ tolist())]



161

Appendix G (Continued)

106 #
107 # patent_local_claims = patent_local_claims[[’patent_id’,
108 # ’sequence’,
109 # ’text’]]
110 #
111 # patent_local_claims["sequence"] = pd.to_numeric(claims["sequence"])
112 #
113 # patent_local_claims = patent_local_claims.sort_values([’patent_id’,
114 # ’sequence’,
115 # ’text’],
116 # ascending=[True,
117 # True,
118 # False])
119 #
120 # patent_local_claims = patent_local_claims.rename(columns={’text’:’claims’})
121 #
122 # patent_local_claims.to_csv(working + path + ’patent_local_claims.csv’,
123 # index=False)
124 #
125 # patent_local_claims.info(verbose=True)
126 # =============================================================================
127 patent_local_claims = pd.read_csv(working + path + ’patent_local_claims.csv’,
128 header=0,
129 dtype = {’patent_id’:object,
130 ’sequence’:int,
131 ’claims’:object})
132 # =============================================================================
133 patent_claims_combined = patent_local_claims.groupby(
134 [’patent_id’])[’claims’].apply(’, ’.join).reset_index()
135
136 input_data7 = pd.merge(left=input_data7,
137 right=patent_claims_combined,
138 how=’left’,
139 left_on=’patent_id’,
140 right_on=’patent_id’,
141 sort=True,
142 left_index=True)
143
144 input_data7[’combined’] = input_data7[[’title’,’abstract’,’claims’]].apply(
145 lambda x: ’ ’.join(x.astype(str)), axis=1)
146
147 # =============================================================================
148 # Import full grant data from patentsview patents.tsv
149 # =============================================================================
150 # parser = lambda x : pd.to_datetime(x, format=’%Y-%m-%d %H:%M:%S’, errors=’

↪→ coerce’)
151
152 # grant_dates = pd.read_csv(working + path + ’patent’ + ’.tsv’,
153 # #nrows=10000, # this just takes the top 20 rows for

↪→ speed
154 # sep=’\t’, # for tab delimited
155 # header=0, # set header columns row 0
156 # usecols = [’id’,’number’,’date’], # selects desired

↪→ columns
157 # dtype = {’id’:object,
158 # ’number’:object,
159 # ’abstract’:object,
160 # ’title’:object,
161 # ’num_claims’:float}, # sets dtype
162 # index_col=[’id’], # sets index column
163 # na_values = [’no info’, ’.’],
164 # parse_dates = [’date’],



162

Appendix G (Continued)

165 # date_parser=parser,
166 # encoding = "iso-8859-1")
167
168 # grant_dates = grant_dates.rename(columns={’number’:’patent_id’})
169 # grant_dates = grant_dates.rename(columns={’date’:’grant_date’})
170 # grant_dates = grant_dates[grant_dates[’patent_id’].isin(input_data7[’patent_id

↪→ ’].tolist())]
171 # grant_dates.to_csv(working + path + ’grant_dates.csv’, index=False)
172 # grant_dates.info(verbose=True)
173 # =============================================================================
174 grant_dates = pd.read_csv(working + path + ’grant_dates.csv’,
175 header=0,
176 dtype = {’patent_id’:object},
177 parse_dates = [’grant_date’])
178 # =============================================================================
179 input_data7 = pd.merge(left=input_data7,
180 right=grant_dates,
181 how=’left’,
182 left_on=’patent_id’,
183 right_on=’patent_id’,
184 sort=True,
185 left_index=True)
186
187 # -----------------------------------------------------------------------------
188 # Fix data and encoding errors
189 # -----------------------------------------------------------------------------
190 ’’’
191 https://stackoverflow.com/questions/16467479/normalizing-unicode
192 https://stackoverflow.com/questions/49891778/conversion-utf-to-ascii-in-python-

↪→ with-pandas-dataframe
193 ’’’
194
195 import unicodedata # to fix encoding errors
196 input_data7[’combined’] = input_data7[’combined’].apply(
197 lambda val: unicodedata.normalize(’NFKD’, val).encode(
198 ’ascii’, ’ignore’).decode())
199
200 # remove encoding replacements for subscript, superscript, and degrees
201 input_data7[’combined’] = input_data7[’combined’].str.replace(".sub.", "") #

↪→ removes subset
202 input_data7[’combined’] = input_data7[’combined’].str.replace(".sup.", "") #

↪→ removes superscript
203 input_data7[’combined’] = input_data7[’combined’].str.replace(".degree",
204 " degrees")
205
206 ## get unique list of patent #’s from patent_text and parse the list
207 # input_data7.patent_id.nunique() # count number of patents (5651)
208 my_columns = input_data7[’patent_id’].tolist() # create patent list
209 corpus = input_data7[’combined’].tolist()
210 patent_numbers = ’|’.join(my_columns)
211
212 # =============================================================================
213 # Preprocessing
214 # =============================================================================
215 ’’’
216 https://stackoverflow.com/questions/40568948/load-local-resources-with-nltk
217 https://pythonprogramming.net/nltk-corpus-corpora-tutorial/
218 https://stackoverflow.com/questions/10467024/how-do-i-create-my-own-nltk-text-

↪→ from-a-text-file
219 https://stackoverflow.com/questions/22350879/removing-single-quotation-marks-

↪→ while-preserving-apostrophes-python-nltk
220 ’’’



163

Appendix G (Continued)

221 # -----------------------------------------------------------------------------
222 # Create jargon lexical
223 # -----------------------------------------------------------------------------
224 # jargon removes word "containing", we want to weigh lignosulfonate that
225 # follows, this proximity is important for future research’’’
226
227 # Created a list of common patent terms
228
229 #jargon == {} # for pre-jargon bar plot
230 jargon = {’according’, ’also’, ’apparatus’, ’assembly’, ’body’, ’claim’,
231 ’claimed’, ’component’, ’composition’, ’comprise’, ’comprises’,
232 ’comprising’, ’consisting’, ’containing’, ’device’, ’disclosed’,
233 ’element’, ’embodying’, ’end’, ’face’, ’first’, ’form’, ’formed’,
234 ’forming’, ’forms’, ’group’, ’include’, ’includes’, ’including’,
235 ’invention’, ’layer’, ’le’, ’least’, ’made’, ’making’, ’material’,
236 ’may’, ’mean’, ’means’, ’member’, ’method’, ’mixture’, ’one’,
237 ’patent’, ’plurality’, ’portion’, ’preferably’, ’present’,
238 ’process’, ’product’, ’provided’, ’provides’, ’providing’, ’relates’,
239 ’resulting’, ’said’, ’second’, ’selected’, ’substantially’,
240 ’substrate’, ’support’, ’surface’, ’system’, ’technology’, ’thereof’,
241 ’third’, ’two’, ’web’, ’weight’, ’wherein’, ’within’, ’wt’}
242
243 # -----------------------------------------------------------------------------
244 # Stop words, punctuation, lemmatization, and word length steps
245 # -----------------------------------------------------------------------------
246
247 # natural language tool kit
248 #import nltk
249
250 # stop words - a list of low value words
251 #nltk.download("stopwords") # download list’
252 stop_words = set(stopwords.words(’english’))
253
254 # -----------------------------------------------------------------------------
255 # we may wish to remove the word ’to’ from stop_words because it is
256 # commonly used to define the best mode invention boundaries
257 # -----------------------------------------------------------------------------
258
259 # Punctuation
260 #nltk.download(’punkt’)
261 punctuations = set(string.punctuation)
262 punctuations.remove(’-’) # maybe remove hyphens
263 #punctuations.remove(’/’)
264
265 # Lemmatization
266 from nltk.stem.wordnet import WordNetLemmatizer
267 lemma = WordNetLemmatizer()
268
269 # -----------------------------------------------------------------------------
270 # attempt to find closest noun, this seemed to reduce the unique valued added
271 # nouns and makes me question whether we should use parts of speech (POS) at all
272 # -----------------------------------------------------------------------------
273
274 # set minimum word length to include
275 ’’’word_len = ? to set length of words, undesired, removes chemical elements
276 like fe for ’iron or’ c for ’carbon’; mgo ’magnesium oxide’, ca = calcium’’’
277 word_len = 2
278
279 # =============================================================================
280 # Spelling Auto-correct
281 # =============================================================================
282 ’’’



164

Appendix G (Continued)

283 https://www.analyticsvidhya.com/blog/2018/02/the-different-methods-deal-text-
↪→ data-predictive-python/

284 https://www.analyticsvidhya.com/blog/2018/02/natural-language-processing-for-
↪→ beginners-using-textblob/

285 conda install -c conda-forge textblob
286 ’’’
287 # =============================================================================
288 # from textblob import TextBlob
289 # from textblob import Word
290 #
291 # def spell_correct(word_list):
292 # try:
293 # corrected = []
294 # for word in word_list:
295 # w = Word(word)
296 # corrected.append(w.correct())
297 # return corrected
298 # except UnicodeDecodeError:
299 # return None
300 #
301 # test = [spell_correct(x) for x in corpus]
302 #
303 # lines = input_data7[’combined’]
304 #
305 # line1 = TextBlob(lines[0])
306 # print(line1.correct())
307 #
308 # for line in lines:
309 # # TextBlob is providing correct method
310 # print(TextBlob(line).correct())
311 # =============================================================================
312
313 #----------------------------------------------------------------------------
314 # Tokenize words
315 # -----------------------------------------------------------------------------
316 ’’’
317 https://machinelearningmastery.com/clean-text-machine-learning-python/
318 https://stackoverflow.com/questions/24695092/how-to-not-remove-apostrophe-only-

↪→ for-some-words-in-text-file-in-python
319 https://machinelearningmastery.com/clean-text-machine-learning-python/
320 http://dsgeek.com/2018/02/19/tfidf_vectors.html
321 https://stackoverflow.com/questions/8897593/similarity-between-two-text-

↪→ documents?rq=1
322 https://stackoverflow.com/questions/43451906/load-column-in-csv-file-into-spacy
323 https://spacy.io/usage/linguistic-features#tokenization
324 https://stackoverflow.com/questions/45547568/how-can-i-prevent-tfidfvectorizer-

↪→ to-get-numbers-as-vocabulary
325 https://www.oreilly.com/learning/how-can-i-tokenize-a-sentence-with-python
326 https://spacy.io/usage/linguistic-features#tokenization
327 https://stackoverflow.com/questions/43451906/load-column-in-csv-file-into-spacy
328 https://spacy.io/api/tokenizer
329 https://stackoverflow.com/questions/46981137/tokenizing-using-pandas-and-spacy
330 https://spacy.io/usage/spacy-101
331 https://www.kaggle.com/zackakil/nlp-using-word-vectors-with-spacy-cldspn
332 https://explosion.ai/blog/sense2vec-with-spacy
333 https://towardsdatascience.com/machine-learning-for-text-classification-using-

↪→ spacy-in-python-b276b4051a49
334 ’’’
335 def clean(doc):
336 number_free = ’’.join([c for c in doc if c not in "1234567890"])
337 words = [word.strip(string.punctuation) for word in number_free.split(" ")]
338 filtered = [f for f in words if f and f.lower() not in stop_words]



165

Appendix G (Continued)

339 undo = "".join([" "+i if not i.startswith("’") and i not in string.
↪→ punctuation else i for i in filtered]).strip()

340 punc_free = ’’.join(ch for ch in undo if ch not in punctuations)
341 smallword_free = ’ ’.join([w for w in punc_free.split() if len(w)>word_len])
342 lemmatized = " ".join(lemma.lemmatize(word) for word in smallword_free.split

↪→ ())
343 jargon_free = " " .join([j for j in lemmatized.lower().split() if j not in

↪→ jargon])
344 for i in jargon_free:
345 jargon_free = re.sub((i+i+i), ’ ’, jargon_free)
346 #jargon_free = jargon_free.replace(’the ’,’ ’) # not need with proper

↪→ space inserted on merge
347 nonsense = ’ ’.join([w for w in jargon_free.split() if len(w)>1])
348 return nonsense
349
350 corpus_clean = [clean(doc) for doc in corpus] # list of sentance strings
351 corpus_tokenize = [clean(doc).split() for doc in corpus] # list of string words
352
353 # bool(set(corpus_clean).intersection(corpus_clean1)) # compare same = true
354 # need to remove ’the’ & ’a’ from end of words - fixed via claim merge step with

↪→ space
355 # dust_control_after = dust_control_after.replace(’the ’,’ ’)
356
357 # =============================================================================
358 # Word Frequency analysis
359 # =============================================================================
360 ’’’https://stackoverflow.com/questions/46486157/how-to-remove-every-word-with-

↪→ non-alphabetic-characters’’’
361 ’’’https://stackoverflow.com/questions/44810269/the-wordcloud-formed-is-showing-

↪→ apostrophe-sign?noredirect=1&lq=1’’’
362 ’’’http://www.dzhaworks.com/blog/visualizing-a-cloud-of-skills-with-python/’’’
363 ’’’https://stackoverflow.com/questions/32313206/force-wordcloud-python-module-to

↪→ -include-all-words’’’
364
365 documents = corpus_clean
366 documents_words = ’ ’.join(corpus_clean).split()
367
368 from collections import Counter
369 info_counts = Counter(documents_words)
370
371 info_common_words = [word[0] for word in info_counts.most_common(30)]
372 info_common_counts = [word[1] for word in info_counts.most_common(30)]
373
374 # use to find words
375 # input_data7[’combined’].str.contains(’le’)
376
377 # -----------------------------------------------------------------------------
378 # Bar plot of wards prior to jargon removal - use empty set
379 # -----------------------------------------------------------------------------
380 # =============================================================================
381 # plt.figure(figsize=(15,8))
382 # sns.barplot(x=info_common_words, y=info_common_counts)
383 # sns.set(font_scale=.90)
384 # plt.xticks(rotation=60, ha="right")
385 # plt.title(’Most common words used in patents for building industry without

↪→ jargon removal’)
386 # plt.savefig(working + path + ’img/common_words pre-jargon’,bbox_inches=’tight

↪→ ’,dpi=300)
387 # plt.show()
388 # =============================================================================
389
390 # -----------------------------------------------------------------------------



166

Appendix G (Continued)

391 # Bar plot of words after jargon removal
392 # -----------------------------------------------------------------------------
393 ’’’’https://www.kdnuggets.com/2018/09/machine-learning-text-classification-using

↪→ -spacy-python.html’’’
394
395 plt.figure(figsize=(15,8))
396 sns.barplot(x=info_common_words, y=info_common_counts)
397 sns.set(font_scale=.90)
398 plt.xticks(rotation=60, ha="right")
399 plt.title(’Most common words used in patents for building industry after jargon

↪→ removal’)
400 plt.savefig(working + path + (’img/’ + time.strftime("%Y%m%d-%H%M%S") + ’_’) +

↪→ filename + ’_’ + ’common_words_post_jargon’, bbox_inches=’tight’, dpi
↪→ =300)

401 plt.show()
402
403 # -----------------------------------------------------------------------------
404 # Frequency distribution
405 # -----------------------------------------------------------------------------
406 tokens = documents_words
407
408 fd = FreqDist(tokens)
409 fd.most_common(100)
410
411 # frequency of top 100 words
412 fd.plot(35)
413 #plt.savefig(working + path + ’img/word frequency plot’,bbox_inches=’tight’,dpi

↪→ =300)
414
415 # adds cummulative count from left to right
416 fd.plot(35, cumulative=True)
417 #plt.savefig(working + path + ’img/word frequency cummulative’,bbox_inches=’

↪→ tight’,dpi=300)
418
419 # -----------------------------------------------------------------------------
420 # Wordcloud visualization
421 # -----------------------------------------------------------------------------
422 wordcloud = WordCloud(width=800,
423 height=400,
424 max_font_size=100,
425 #max_words=100,
426 ranks_only = True,
427 background_color="white",
428 stopwords=set()).generate_from_frequencies(fd)
429
430 plt.figure(figsize=(20,10), facecolor=’k’)
431 plt.imshow(wordcloud, interpolation="bilinear")
432 plt.axis("off")
433 plt.tight_layout(pad=0)
434 plt.savefig(working + path + (’img/’ + time.strftime("%Y%m%d-%H%M%S") + ’_’) +

↪→ filename + ’_’ + ’wordcloud.png’, facecolor=’k’, bbox_inches=’tight’)
435
436 # -----------------------------------------------------------------------------
437 # Patent abstract before and after
438 # -----------------------------------------------------------------------------
439 ’’’https://text-compare.com/’’’ # used this to compare text output
440
441 #dust_control_before = input_data7.loc[input_data7[’patent_id’] == ’6673144’ ] #

↪→ index 2780
442 #print (corpus_clean[2780])
443 #dust_control_before = input_data7.loc[input_data7[’patent_id’] == ’8323429’ ] #

↪→ index 2780



167

Appendix G (Continued)

444
445 # need to remove multiple of letters like ’aaaaaaaaaaaaaaaa’
446
447 #dust_control_after = corpus_clean[2780]
448
449 #for i in dust_control_after:
450 # dust_control_after = re.sub((i+i+i), ’ ’, dust_control_after)
451 # dust_control_after = ’ ’.join([w for w in dust_control_after.split() if len

↪→ (w)>1])
452
453 # need to remove ’the’ & ’a’ from end of words - fixed via claim merge step with

↪→ space
454 #dust_control_after = dust_control_after.replace(’the ’,’ ’)
455
456
457 #==============================================================================
458 # Term Frequency * Inverse Document Frequency, Tf-Idf
459 #==============================================================================
460 ’’’https://stackoverflow.com/questions/12118720/python-tf-idf-cosine-to-find-

↪→ document-similarity?rq=1’’’
461 ’’’https://radimrehurek.com/gensim/tut2.html’’’
462
463 from sklearn.feature_extraction.text import TfidfVectorizer
464
465 tfidf_vect = TfidfVectorizer(max_features=None, # use all the word terms
466 max_df=0.65, # ignore used everywhere
467 min_df=0.0, # ignore no rares words
468 ngram_range=(1, 3), # unigram thru trigram
469 analyzer=lambda x:[w for w in x if w not in

↪→ stop_words],
470 strip_accents=’unicode’) # remove accents
471
472 tfidf = tfidf_vect.fit_transform(corpus_tokenize)
473 tfidf
474
475 feature_names = tfidf_vect.get_feature_names()
476
477 #==============================================================================
478 # Document Term Matrix (dtm)
479 #==============================================================================
480 # Convert sparse matrix (DTM) to dataframe to see word frequencies.
481 dtm = tfidf.todense() # doc_term_matrix (dtm)
482 df_dtm = pd.DataFrame(dtm, columns=feature_names, index=[input_data7.patent_id])
483 df_dtm.head(5)
484
485 #==============================================================================
486 # Cosine Similarity Matrix
487 #==============================================================================
488 ’’’https://www.machinelearningplus.com/nlp/cosine-similarity/’’’
489
490 from sklearn.metrics.pairwise import linear_kernel
491 cosine_similarities_row_1 = linear_kernel(tfidf[0:1], tfidf).flatten()
492 cosine_similarities_row_1 # this is just the first row patent
493
494 # Compute CSS (Cosine Similarity Scores)
495 from sklearn.metrics.pairwise import cosine_similarity
496 print(cosine_similarity(tfidf, tfidf))
497 cosine_similarities = cosine_similarity(tfidf, tfidf)
498
499 # show top 5 (-6) related patents (-1 = index #) to first patent based on CSS
500 related_docs_indices = cosine_similarities_row_1.argsort()[:-20:-1]
501 related_docs_indices



168

Appendix G (Continued)

502
503 print (documents[0])
504 print (documents[25])
505 print (documents[226])
506 print (documents[3761])
507 print (documents[3693])
508 print (documents[28])
509 print (documents[1235])
510 print (documents[5635])
511 print (documents[1485])
512 print (documents[3995])
513 print (documents[281])
514
515 # ==============================================================================
516 # Cosine Similarity Score Statistics & Histrogram
517 # ==============================================================================
518 ’’’https://stackoverflow.com/questions/33203645/how-to-plot-a-histogram-using-

↪→ matplotlib-in-python-with-a-list-of-data’’’
519
520 # -----------------------------------------------------------------------------
521 # remove identity matrix
522 # -----------------------------------------------------------------------------
523 def identity(n):
524 m=[[0 for x in range(n)] for y in range(n)]
525 for i in range(0,n):
526 m[i][i] = 1
527 return m
528
529 n = np.size(cosine_similarities,0) # count size
530
531 z = identity(n) # create identity
532 np.mean(z) # verify
533
534 # decided to remove self pairs instead
535 y = cosine_similarities - z # subtract identity’’’
536 #y = cosine_similarities # no longer subtract identity
537
538 data = y.flatten() # flatten the array to the set of cosine similarities
539 ’’’is_zero = np.absolute(data) < np.finfo(float).eps # change floating point’’’
540 ’’’data[is_zero] = np.nan # replace zero’s with nans’’’
541
542 # -----------------------------------------------------------------------------
543 # mu is the mean
544 # median is the middle value
545 # mode is the number that is repeated more often than any other
546 # -----------------------------------------------------------------------------
547 # -----------------------------------------------------------------------------
548 # histogram(s) of css for patent data
549 # -----------------------------------------------------------------------------
550 plt.figure(figsize=(20,10))
551 #plt.hist(data[~np.isnan(data)], bins=’auto’)
552 plt.hist(data[~np.isnan(data)], 1000)
553 plt.xlim(0, 0.2)
554 #plt.ylim(0, 3000000)
555 plt.savefig(working + path + (’img/’ + time.strftime("%Y%m%d-%H%M%S") + ’_’) +

↪→ filename + ’_’ + ’css_hist_plt.png’, facecolor=’k’, bbox_inches=’tight’)
556
557 #------------------------------------------------------------------------------
558 plt.figure(figsize=(20,10))
559 sns.set_style(’darkgrid’)
560 sns.distplot(data[~np.isnan(data)])
561 #sns.countplot(data[~np.isnan(data)])



169

Appendix G (Continued)

562 plt.set_xlim(0, 0.1)
563 #plt.set_ylim(0, 100)
564 plt.savefig(working + path + (’img/’ + time.strftime("%Y%m%d-%H%M%S") + ’_’) +

↪→ filename + ’_’ + ’css_hist_sea.png’, facecolor=’k’, bbox_inches=’tight’)
565
566 #------------------------------------------------------------------------------
567 # best fit of data
568 from scipy.stats import norm
569 import matplotlib.mlab as mlab
570
571 (mu, sigma) = norm.fit(data[~np.isnan(data)]) # np.isnana to ignore nans stats
572
573 mean = np.mean(data[~np.isnan(data)])
574 median = np.median(data[~np.isnan(data)])
575 minimum = np.min(data[~np.isnan(data)])
576 maximum = np.max(data[~np.isnan(data)])
577
578 fig = plt.figure(figsize=(20,10))
579 ax = fig.add_subplot(111)
580
581 #the histogram of the data
582 n, bins, patches = ax.hist(
583 data[~np.isnan(data)], 500, density=1, facecolor=’green’, alpha=0.75)
584
585 bincenters = 0.5*(bins[1:]+bins[:-1])
586
587 # add a ’best fit’ line for the normal PDF
588 z = mlab.normpdf( bincenters, mu, sigma)
589 l = ax.plot(bincenters, z, ’r--’, linewidth=1)
590
591 # plot
592 ax.set_xlabel(’Cosine Similarities’)
593 ax.set_ylabel(’Probability’)
594
595 #title = r’$\mathrm{Histogram\ of\ Patents:}\ \mu=%.2f,\ \sigma=%.2f’ % (mu,

↪→ sigma)
596 title = "Fit results: mu = %.3f, std = %.3f" % (mu, sigma)
597 ax.set_title(title)
598 ax.set_xlim(0, 0.1)
599 ax.set_ylim(0, 100)
600 ax.grid(True)
601 plt.axvline(mu, color=’b’, linestyle=’dashed’, linewidth=2)
602 plt.axvline(median, color=’orange’, linestyle=’dashed’, linewidth=2)
603
604 plt.savefig(working + path + (’img/’ + time.strftime("%Y%m%d-%H%M%S") + ’_’) +

↪→ filename + ’_’ + ’css_histogram.png’, facecolor=’k’, bbox_inches=’tight’)
↪→

605
606 # -----------------------------------------------------------------------------
607 # Create Cosine Similarity Score (CSS) Dataframe
608 # ----------------------------------------------------------------------------
609 df_css = pd.DataFrame(cosine_similarities) # convert css matrix to datafram
610 df_css.columns = my_columns # change columns names to patent numbers
611 df_css.index = my_columns # set index to patent_id before stack
612 df_css_stack = df_css
613 df_css = df_css.stack().reset_index() # stack & reset index
614 df_css.columns = [’patent_id’,’css_patent_id’,’css’] # rename columns
615 df_css = df_css[df_css[’patent_id’] != df_css[’css_patent_id’]] # remove self
616 df_css = df_css.sort_values(
617 [’patent_id’,’css’,],ascending=[True, False]).reset_index(drop=True)
618 df_css.to_csv(working + path + ’df_css.csv’, index=False) # save css df
619 #------------------------------------------------------------------------------



170

Appendix G (Continued)

620 df_css = pd.read_csv(working + path + ’df_css.csv’, header=0,
621 dtype = {’patent_id’:object,
622 ’css_patent_id’:object})
623
624 # working data frame
625 # keeping zero’s now too
626 df_css_zero = df_css
627 #df_css = df_css[df_css[’css’] != 0] # remove css zero
628 df_css.head(20) # sans zero
629
630 #==============================================================================
631 # Minimum Cosine Similarity Score (CSS) Threshold
632 #==============================================================================
633 ’’’
634 https://www.researchgate.net/post/

↪→ Determination_of_threshold_for_cosine_similarity_score
635 https://stackoverflow.com/questions/30089675/clustering-cosine-similarity-matrix

↪→ ?rq=1
636 http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.95.9729&rep=rep1&type=

↪→ pdf
637 https://stackoverflow.com/questions/21374375/semantic-relatedness-algorithms-

↪→ python/21377351#21377351
638 ’’’
639 # -----------------------------------------------------------------------------
640 # Cosine Similarity Score (CSS)
641 # when working on a corpus of documents, we use a threshold formula:
642 # average(cosine_similarities)+alpha*standard_deviation(cosine_similarities)
643 # where lpha is a parameter and sigma is the standard deviation.
644 # -----------------------------------------------------------------------------
645
646 np.mean(df_css[’css’]) # matches mu
647 np.std(df_css[’css’])
648 np.mean(df_css_zero[’css’]) # matches mu
649 np.std(df_css_zero[’css’])
650 ave_css = mu # average(cos_similarity_matrix)
651 std_css = sigma # standard_deviation(cos_similarity_matrix)
652 med_css = median # is the middle of the list
653 alpha = 6 # alpha parameter
654
655 # CSS minimum threshold
656 t = (ave_css + (alpha * std_css)) #
657
658 # -----------------------------------------------------------------------------
659 # calculate alpha and threshold value plot
660 # -----------------------------------------------------------------------------
661
662 def xfrange(start, stop, step):
663 i = 0
664 while start + i * step < stop:
665 yield start + i * step
666 i += 1
667
668 threshold = []
669 alphas = []
670
671 for i in xfrange(0, 25, 0.1):
672 alpha = ("{0:.2f}".format(round((i),2)))
673 css_t = ave_css + (i * std_css)
674 css_t = round(css_t,3)
675 alphas.append(alpha)
676 threshold.append(css_t)
677



171

Appendix G (Continued)

678 alphas_df = pd.DataFrame(np.column_stack([alphas, threshold]),
679 columns=[’alphas’,’threshold’])
680
681 alphas_df = alphas_df.apply(pd.to_numeric)
682
683 sns.set_style("darkgrid")
684
685 xticks = np.arange(0,26,1).tolist()
686
687 yticks_list = np.arange(0,1.1,0.05).tolist()
688 yticks = [ round(elem, 2) for elem in yticks_list ]
689
690 g = sns.lmplot(x=’alphas’, # Horizontal axis
691 y=’threshold’, # Vertical axis
692 data=alphas_df, # Data source
693 fit_reg=True, # Regression line
694 size=10)
695 #aspect=2) # Size and dimension
696
697 g = (g.set_axis_labels("Alpha values", "Threshold").set(xlim=(0, 25),
698 ylim=(0, 1),
699 xticks=xticks,
700 yticks=yticks))
701
702 plt.title("Alpha values versus threshold")
703
704 #plt.savefig(working + path + ’img/alpha_threshold_plot’, bbox_inches=’tight’,

↪→ dpi=300)
705 plt.savefig(working + path + (’img/’ + time.strftime("%Y%m%d-%H%M%S") + ’_’) +

↪→ filename + ’_’ + ’alpha_threshold_plot.png’, facecolor=’k’, bbox_inches=’
↪→ tight’)

706
707 # -----------------------------------------------------------------------------
708 # create a datafram to compare css counts over different threshold values
709 # -----------------------------------------------------------------------------
710 # Opportunity to use loop function here to generate table
711 # -----------------------------------------------------------------------------
712 df_css_0 = df_css
713 df_css_count_0_threshold = df_css_0.groupby(
714 ’patent_id’)[’css_patent_id’].nunique()
715
716 t = ave_css + (0.75*std_css)
717 df_css_75 = df_css[df_css[’css’] >= t] #0.75 alpha
718 df_css_count_75_threshold = df_css_75.groupby(
719 ’patent_id’)[’css_patent_id’].nunique()
720
721 t = ave_css + (0.85*std_css)
722 df_css_85 = df_css[df_css[’css’] >= t] #0.85 alpha
723 df_css_count_85_threshold = df_css_85.groupby(
724 ’patent_id’)[’css_patent_id’].nunique()
725
726 t = ave_css + (0.95*std_css)
727 df_css_95 = df_css[df_css[’css’] >= t] #0.95 alpha
728 df_css_count_95_threshold = df_css_95.groupby(
729 ’patent_id’)[’css_patent_id’].nunique()
730
731 t = ave_css + (0.99*std_css)
732 df_css_99 = df_css[df_css[’css’] >= t] #0.99 alpha
733 df_css_count_99_threshold = df_css_99.groupby(
734 ’patent_id’)[’css_patent_id’].nunique()
735
736 t = ave_css + (2*std_css)



172

Appendix G (Continued)

737 df_css_2 = df_css[df_css[’css’] >= t] #2 alpha
738 df_css_count_2_threshold = df_css_2.groupby(
739 ’patent_id’)[’css_patent_id’].nunique()
740
741 t = ave_css + (3*std_css)
742 df_css_3 = df_css[df_css[’css’] >= t] #3 alpha
743 df_css_count_3_threshold = df_css_3.groupby(
744 ’patent_id’)[’css_patent_id’].nunique()
745
746 t = ave_css + (4*std_css)
747 df_css_4 = df_css[df_css[’css’] >= t] #4 alpha
748 df_css_count_4_threshold = df_css_4.groupby(
749 ’patent_id’)[’css_patent_id’].nunique()
750
751 t = ave_css + (5*std_css)
752 df_css_5 = df_css[df_css[’css’] >= t] #5 alpha
753 df_css_count_5_threshold = df_css_5.groupby(
754 ’patent_id’)[’css_patent_id’].nunique()
755
756 t = ave_css + (6*std_css)
757 df_css_6 = df_css[df_css[’css’] >= t] #6 alpha
758 df_css_count_6_threshold = df_css_6.groupby(
759 ’patent_id’)[’css_patent_id’].nunique()
760
761 #==============================================================================
762 # Minimum CSS Threshold Alpha Table
763 #==============================================================================
764 ’’’https://stackoverflow.com/questions/21374375/semantic-relatedness-algorithms-

↪→ python/21377351#21377351’’’
765 ’’’https://stackoverflow.com/questions/21374375/semantic-relatedness-algorithms-

↪→ python’’’
766 # -----------------------------------------------------------------------------
767
768 # these are all css to each other however it has not been filtered by foward css

↪→ dates
769 df_css_counts = pd.DataFrame({’alpha.0’:df_css_count_0_threshold,
770 ’alpha.75’:df_css_count_75_threshold,
771 ’alpha.85’:df_css_count_85_threshold,
772 ’alpha.95’:df_css_count_95_threshold,
773 ’alpha.99’:df_css_count_99_threshold,
774 ’alpha.2X’:df_css_count_2_threshold,
775 ’alpha.3X’:df_css_count_3_threshold,
776 ’alpha.4X’:df_css_count_4_threshold,
777 ’alpha.5X’:df_css_count_5_threshold,
778 ’alpha.6X’:df_css_count_6_threshold})
779
780 df_css_counts = df_css_counts.fillna(0) # fill NaNs with zero
781 df_css_counts[’patent_id’] = df_css_counts.index
782 df_css_counts.to_csv(working + path + ’df_css_counts.csv’, index=False)
783 df_css_counts.info(verbose=True)
784
785 #==============================================================================
786 # CSS Cited Application Dates
787 #==============================================================================
788 # note cite_pat_year is the application filing year
789 parser = lambda x : pd.to_datetime(x, format=’%Y-%m-%d %H:%M:%S’,
790 errors=’coerce’)
791
792 applications = pd.read_csv(working + path + ’application’ + ’.tsv’, sep=’\t’,
793 header=0,
794 usecols = [’patent_id’,’date’],
795 dtype = {’patent_id’:object},



173

Appendix G (Continued)

796 na_values = [’no info’, ’.’],
797 parse_dates = [’date’],
798 date_parser=parser,
799 encoding = "iso-8859-1")
800
801 application_dates = applications[applications[’patent_id’].isin(
802 input_data7[’patent_id’].tolist())]
803
804 application_dates = application_dates.rename(columns={’date’:’app_date’})
805 application_dates[’app_year’] = application_dates[’app_date’].dt.year
806 application_dates.to_csv(working + path + ’application_dates.csv’, index=False)
807 application_dates.info(verbose=True)
808 #------------------------------------------------------------------------------
809 application_dates = pd.read_csv(working + path + ’application_dates.csv’,
810 header=0,
811 dtype = {’patent_id’:object,
812 ’css_patent_id’:object,
813 ’css’:int})
814
815 # =============================================================================
816 # Creation of final table
817 # ==============================================================================
818 input_data7 = input_data7[[’patent_id’,
819 ’title’,
820 ’abstract’,
821 ’claims’,
822 ’combined’,
823 ’grant_date’,
824 ’grant_date_year’,
825 ’organization’,
826 ’org_number’,
827 ’section_id’,
828 ’class_number’]]
829
830 input_data7.to_csv(working + path + ’input_data7.csv’, index=False)
831 #==============================================================================



174

Appendix H

PATENT DATA BUBBLE CITATION VISUALIZATION

Listing H.1: Patent data bubble citation visualization python code

1 #!/usr/bin/env python3
2 # -*- coding: utf-8 -*-
3 #==============================================================================
4 ’’’
5 title :8_20190310_patent_data_bubble_cit3.py
6 description :Patent Analysis Machine Learning
7 author :Salvatore Immordino
8 date created :Sun Dec 09 09:20:00 2018
9 date last modified :Fri Mar 22 19:12:17 2019

10 version :0.1
11 python_version :3.7.1
12 ’’’
13 #==============================================================================
14 """Big data analysis of patent documents on python. The aim of this research
15 was to determine if machine learning could be used to study inventiveness and
16 inventive knowledge flow independent of historical methods like citation
17 analysis. Using natural language processing and network analysis, this research
18 aimed to identify relatedness between patents based on the inventive language
19 used by patent seekers to describe their inventions.
20
21 Data files were downloaded from the United States Patent Office PatensView Data

↪→ Download located at www.patentsview.org.
22
23 Files used: input_data6.csv, df_css.csv (cosine similarity scores from step 7),

↪→ labels_cpc.csv, labels_org.csv, application_dates.csv and grant_dates.csv
↪→

24 - Patent application time data and patent grant time data is merged with citing
↪→ patents and saved as ’input_data8.csv’. Line 150 on-wards uses seaborn
↪→ and matplotlib to create the following charts:

25 1) Change in average cosine similarity score different minimum citation
↪→ counts

26 2) Histogram of mean cosine similarity scores for cited patents within the
↪→ building industry

27 3) Probability distribution function of the mean cosine similarity scores
28 4) Scatter plot of U.S. building materials companies intra-citing patents"""
29 #==============================================================================
30 # IMPORT STATEMENTS
31 #==============================================================================
32
33 # basic libraries needed to run the tool
34 import pandas as pd
35 import numpy as np
36
37 # graphing functions
38 import matplotlib.pyplot as plt
39 import matplotlib as mpl
40 from matplotlib import rcParams
41
42 # drop the warnings
43 import warnings
44 warnings.filterwarnings("ignore", category=DeprecationWarning)
45
46 # time stamping



175

Appendix H (Continued)

47 import time
48
49 # find out your current working directory
50 import os
51 print(os.getcwd())
52 working = (os.getcwd())
53 working = working.replace(’\\’, ’/’) # replaced all instances of \ with \\
54
55 # set the file path
56 path = ’/Box/SAM_IMMORDINO_THESIS_WORK/LaTeX_THESIS/Immordino Paper 1/bin/’
57 filename = ’8_20190310_patent_data_bubble_cit3’
58
59 # =============================================================================
60 # Data importation
61 # =============================================================================
62 input_data8 = pd.read_csv(working + path + ’input_data6.csv’, header=0,
63 dtype = {’patent_id’:object,
64 ’citing_patent’:object},
65 na_values = [’no info’, ’.’],
66 converters={’organization’: str},
67 encoding = "iso-8859-1")
68
69 df_css = pd.read_csv(working + path + ’df_css.csv’, header=0,
70 dtype = {’patent_id’:object, ’css_patent_id’:object})
71
72 labels_cpc = pd.read_csv(working + path + ’labels_cpc.csv’, header=0)
73 labels_org = pd.read_csv(working + path + ’labels_org.csv’, header=0)
74
75 application_dates = pd.read_csv(working + path + ’application_dates.csv’,
76 header=0,
77 dtype = {’patent_id’:object},
78 parse_dates = [’app_date’])
79
80 grant_dates = pd.read_csv(working + path + ’grant_dates.csv’, header=0,
81 dtype = {’patent_id’:object},
82 parse_dates = [’grant_date’])
83
84 # -----------------------------------------------------------------------------
85 # Merge patent grant time data with patents
86 # -----------------------------------------------------------------------------
87 input_data8 = pd.merge(left=input_data8,
88 right=grant_dates,
89 how=’left’,
90 left_on=[’patent_id’],
91 right_on=[’patent_id’,],
92 sort=True,
93 left_index=True)
94
95 input_data8 = input_data8.rename(columns = {’grant_date_year’:’grant_year’})
96
97 # -----------------------------------------------------------------------------
98 # Merge patent application time data with patents
99 # -----------------------------------------------------------------------------

100 input_data8 = pd.merge(left=input_data8,
101 right=application_dates,
102 how=’left’,
103 left_on=[’patent_id’],
104 right_on=[’patent_id’],
105 sort=True,
106 left_index=True)
107
108 input_data8 = input_data8.rename(columns = {’app_year’:’pat_app_year’})



176

Appendix H (Continued)

109 input_data8 = input_data8.rename(columns = {’app_date’:’pat_app_date’})
110
111 # -----------------------------------------------------------------------------
112 # Merge patent application time data with citing patents
113 # -----------------------------------------------------------------------------
114 application_dates = application_dates.rename(columns = \
115 {’patent_id’:’citing_patent’})
116
117 input_data8 = pd.merge(left=input_data8,
118 right=application_dates,
119 how=’left’,
120 left_on=[’citing_patent’],
121 right_on=[’citing_patent’],
122 sort=True,
123 left_index=True)
124
125 # -----------------------------------------------------------------------------
126 # Merge css data onto patent & citing patent pairs
127 # -----------------------------------------------------------------------------
128 df_css = df_css.rename(columns = {’css_patent_id’:’citing_patent’})
129
130 input_data8 = pd.merge(left=input_data8,
131 right=df_css,
132 how=’left’,
133 left_on=[’patent_id’,’citing_patent’],
134 right_on=[’patent_id’, ’citing_patent’],
135 sort=True,
136 left_index=True)
137
138 # -----------------------------------------------------------------------------
139 # Sort, rename,and save clean citation data table
140 # -----------------------------------------------------------------------------
141 input_data8.info(verbose=True) # tell me all the things
142 input_data8 = input_data8.rename(columns = {’cit_pat_year’:’cit_app_year’})
143 input_data8 = input_data8.rename(columns = {’app_date’:’cit_app_date’})
144 input_data8 = input_data8.drop(’app_year’, 1) # redundant
145
146 input_data8 = input_data8[[’patent_id’,
147 ’title’,
148 ’abstract’,
149 ’grant_year’,
150 ’grant_date’,
151 ’pat_app_year’,
152 ’pat_app_date’,
153 ’organization’,
154 ’org_number’,
155 ’section_id’,
156 ’class_number’,
157 ’citing_patent’,
158 ’cit_app_year’,
159 ’cit_app_date’,
160 ’css’]]
161
162 #input_data8.to_csv(working + path + ’input_data8.csv’, index=False)
163
164 #==============================================================================
165 # Load previously saved table
166 #==============================================================================
167 ’’’
168 input_data8 = pd.read_csv(working + path + ’input_data8.csv’, header=0,
169 dtype = {’patent_id’:object,
170 ’citing_patent’:object},



177

Appendix H (Continued)

171 parse_dates = [’grant_date’,’cit_app_date’],
172 na_values = [’no info’, ’.’],
173 encoding = "iso-8859-1")
174
175 input_data8.info(verbose=True) # tell me all the things
176 ’’’
177 #==============================================================================
178 # Create citation dataframe
179 #==============================================================================
180 X0 = input_data8.groupby(’patent_id’)[’pat_app_date’].unique()
181 X1 = input_data8.groupby(’patent_id’)[’cit_app_year’].unique().apply(list)
182 X2 = input_data8.groupby(’patent_id’)[’organization’].unique().apply(list)
183 X3 = input_data8.groupby(’patent_id’)[’section_id’].unique()
184 X4 = input_data8.groupby(’patent_id’)[’citing_patent’].nunique() # count cited
185 X5 = input_data8.groupby(’patent_id’)[’grant_year’].unique()
186 X6 = input_data8.groupby(’patent_id’)[’org_number’].unique().str[0]
187 X7 = input_data8.groupby(’patent_id’)[’class_number’].unique().str[0]
188 X8 = input_data8.groupby(’patent_id’)[’css’].mean() # mean citation css
189 X9 = input_data8.groupby(’patent_id’)[’grant_date’].unique()
190 X10 = input_data8.groupby(’patent_id’)[’css’].std()
191 # -----------------------------------------------------------------------------
192 # marginal mean css versus patent citation counts versus average css
193 # -----------------------------------------------------------------------------
194 import seaborn as sns
195 from scipy import stats
196
197 stats.describe(X4) # count of cited patents per patent
198 stats.describe(X8[~np.isnan(X8)]) # average css for cited patents
199
200 X8.std()
201
202 np.mean(X8)
203 np.mean(X8[~np.isnan(X8)])
204 np.std(X8[~np.isnan(X8)])
205 np.std(X8[np.isnan(X8)])
206 np.min(X8[~np.isnan(X8)])
207 np.max(X8[~np.isnan(X8)])
208
209 df_counts_css = pd.DataFrame({’citation_count’:X4,’mean_css’:X8,’std_css’:X10})
210
211 # Don’t drop. Just take rows where css is finite
212 df_counts_css = df_counts_css[np.isfinite(df_counts_css[’mean_css’])]
213
214 # Don’t drop. Just take css for cited counts looking at just 10
215 df_counts_css_gt = df_counts_css[df_counts_css[’citation_count’] >= 1]
216 df_counts_css_gt.info(verbose=True) # tell me all the things
217 df_counts_css_gt[’mean_css’].mean() # 0.20 vs 0.26
218
219 # -----------------------------------------------------------------------------
220 # calculate the average css for different minimum required citation counts
221 # -----------------------------------------------------------------------------
222 def xfrange(start, stop, step):
223 i = 0
224 while start + i * step < stop:
225 yield start + i * step
226 i += 1
227
228 average_css = []
229 citation_count = []
230 size = []
231 std_css = []
232



178

Appendix H (Continued)

233 for i in xfrange(1, 85, 1):
234 df_counts_css_gt = df_counts_css[df_counts_css[’citation_count’] >= [i]]
235 average_css.append(df_counts_css_gt[’mean_css’].mean())
236 std_css.append(df_counts_css_gt[’std_css’].std())
237 citation_count.append(i)
238 count = len(df_counts_css_gt.index)
239 size.append(count)
240
241 citation_count_df = pd.DataFrame(np.column_stack([citation_count, average_css,

↪→ size, std_css]),
242 columns=[’citation_count’,’average_css’, ’size’, ’

↪→ std_css’])
243
244 citation_count_df = citation_count_df.apply(pd.to_numeric)
245
246 (citation_count_df[’average_css’] * citation_count_df[’citation_count’]).sum()

↪→ / citation_count_df[’citation_count’].sum()
247
248 # -------------------------------------------
249 # plot
250 # -------------------------------------------
251
252 plt.rcParams[’figure.figsize’]=(10,10)
253 sns.set_style("darkgrid")
254
255 cmap = sns.diverging_palette(240, 10, l=65, center="dark", as_cmap=True)
256
257 g = plt.scatter(citation_count_df["citation_count"],
258 citation_count_df["average_css"],
259 c=citation_count_df["size"],
260 cmap = ’jet’,
261 s=30)
262
263 cbar = plt.colorbar(g, pad=0.025)
264 cbar.set_label(’# CSS Cited Pairs’, rotation=270, labelpad=15)
265
266 cbar_labels = np.arange(0, int(cbar.vmax) + 198, 100)
267 loc = cbar_labels + .5
268 cbar.set_ticks(loc)
269 cbar.set_ticklabels(cbar_labels)
270
271 #sns.scatterplot(x =’citation_count’,
272 # y =’average_css’, # vertical axis
273 # data = citation_count_df, # data source
274 # #size = "size",
275 # #sizes = (10, 250),
276 # palette= ’jet’,
277 # hue = "size",
278 # legend = False)
279
280 g = sns.regplot("citation_count",
281 "average_css",
282 data = citation_count_df,
283 scatter=False,
284 color=".1")
285
286 xticks = np.arange(0,95,5).tolist()
287 yticks = np.arange(0.15,0.35, 0.01).tolist()
288
289 g.set(xlim=(0,90), xticks = xticks)
290 g.set(ylim=(0.15,0.30), yticks = yticks)
291



179

Appendix H (Continued)

292 plt.title("Average CSS per Minimum Citation Count", fontsize=14)
293 plt.xlabel("Minimum Citation Count", fontsize=14) #Adding axis labels
294 plt.ylabel("Average CSS", fontsize=14)
295
296 plt.savefig(working + path + (
297 ’img/’ + time.strftime("%Y%m%d-%H%M%S")+ ’_’) + filename + ’

↪→ _mean_css_by_cit_count’,
298 bbox_inches=’tight’,dpi=300)
299
300 plt.show()
301 plt.clf()
302
303
304 # -----------------------------------------------------------------------------
305 # histogram and KDE of mean css of all patent/citing patent pairs
306 # -----------------------------------------------------------------------------
307 ’’’https://realpython.com/python-histograms/’’’
308 # A kernel density estimation (KDE) is a way to estimate the probability
309 # density function (PDF) of the random variable that underlies our sample.
310 # KDE is a means of data smoothing.
311 fig = plt.figure(figsize=(18,6))
312 plt.title(’Mean CSS for cited patents within building industry’)
313 sns.set_style(’darkgrid’)
314 d = X8[~np.isnan(X8)]
315 sns.distplot(d)
316 plt.savefig(working + path + (’img/’ + time.strftime("%Y%m%d-%H%M%S")+ ’_’) +

↪→ filename + ’_mean_css_for_cited_patents_within_building_industry_kde’,
↪→ bbox_inches=’tight’,dpi=300)

317 plt.show()
318
319 fig = plt.figure(figsize=(18,6))
320 plt.title(’Mean CSS for cited patents within building industry’)
321 sns.set_style(’darkgrid’)
322 d = X8[~np.isnan(X8)]
323 sns.distplot(d, fit=stats.laplace, kde=False)
324 plt.savefig(working + path + (’img/’ + time.strftime("%Y%m%d-%H%M%S")+ ’_’) +

↪→ filename + ’_mean_css_for_cited_patents_within_building_industry_laplace’
↪→ ,bbox_inches=’tight’,dpi=300)

325 plt.show()
326 # -----------------------------------------------------------------------------
327 # sns joint plots
328 # -----------------------------------------------------------------------------
329 x = df_counts_css[’citation_count’]
330 y = df_counts_css[’mean_css’]
331
332 sns.set() # default settings
333
334 # figure size in inches
335 g = sns.jointplot(x=x, y=y, kind=’scatter’, height=15)
336 g = sns.set(font_scale=2.5)
337 #g = g.annotate(stats.pearsonr, fontsize=18)
338 plt.savefig(working + path + (’img/’ + time.strftime("%Y%m%d-%H%M%S") + ’_’) +

↪→ filename + ’_cit_counts_mean_css_scatter_scatter’, bbox_inches=’tight’,
↪→ dpi=300)

339 sns.jointplot(x=x, y=y, kind=’hex’, height=15, xlim=(0, 90))
340 plt.savefig(working + path + (’img/’ + time.strftime("%Y%m%d-%H%M%S") + ’_’) +

↪→ filename + ’_cit_counts_mean_css_plot_hex’, bbox_inches=’tight’,dpi=300)
↪→

341 sns.jointplot(x=x, y=y, kind=’kde’, height=15, xlim=(0, 90), ylim=(0, 1.2))
342 plt.savefig(working + path + (’img/’ + time.strftime("%Y%m%d-%H%M%S") + ’_’) +

↪→ filename + ’_cit_counts_mean_css_kde’, bbox_inches=’tight’,dpi=300)



180

Appendix H (Continued)

343 sns.jointplot(x=x, y=y, kind=’scatter’, s=200, color=’m’, edgecolor="skyblue",
↪→ linewidth=2, height=15)

344 #plt.savefig(working + path + (’img/’ + time.strftime("%Y%m%d-%H%M%S") + ’_’) +
↪→ ’cit_counts_mean_css_plot_edge’, bbox_inches=’tight’,dpi=300)

345
346
347 sns.set(style="white", color_codes=True)
348 sns.set(font_scale=2.5)
349 sns.jointplot(x=x, y=y, kind=’kde’, color="skyblue", height=15, xlim=(0, 40),

↪→ ylim=(0, None))
350 #sns.jointplot(x=x, y=y, kind=’kde’, color="skyblue", height=15, xlim=(0, 100),

↪→ ylim=(0, None))
351 #plt.savefig(working + path + (’img/’ + time.strftime("%Y%m%d-%H%M%S") + ’_’) +

↪→ ’cit_counts_mean_css_plot’, bbox_inches=’tight’,dpi=300)
352
353 # -----------------------------------------------------------------------------
354 dist = stats.norm()
355
356 x = np.linspace(start=stats.norm.ppf(0.01),
357 stop=stats.norm.ppf(0.99), num=250)
358
359 gkde = stats.gaussian_kde(dataset=y)
360
361 # ‘gkde.evaluate()‘ estimates the PDF itself.
362 fig, ax = plt.subplots(figsize=(18, 10))
363 ax.plot(x, dist.pdf(x), linestyle=’solid’, c=’red’, lw=3,
364 alpha=0.8, label=’Analytical (True) PDF’)
365 ax.plot(x, gkde.evaluate(x), linestyle=’dashed’, c=’black’, lw=2,
366 label=’PDF Estimated via KDE’)
367 ax.legend(loc=’best’, frameon=False)
368 ax.set_title(’Analytical vs. Estimated PDF’)
369 ax.set_ylabel(’Probability’)
370 ax.text(-2., 0.35, r’$f(x) = \frac{\exp(-x^2/2)}{\sqrt{2*\pi}}$’,
371 fontsize=12)
372 plt.savefig(working + path + (’img/’ + time.strftime("%Y%m%d-%H%M%S") + ’_’) +

↪→ filename + ’_probability_density_function_mean_css_plot’, bbox_inches=’
↪→ tight’,dpi=300)

373
374 # -----------------------------------------------------------------------------
375
376 df_citation_data = pd.DataFrame({’cit_app_year’:X1,
377 ’organization’:X2,
378 ’section_id’:X3,
379 ’citation_count’:X4,
380 ’grant_year’:X5,
381 ’org_number’:X6,
382 ’class_number’:X7,
383 ’mean_css’:X8})
384
385 #df_citation_data = df_citation_data.fillna(0) # fill NaNs with zero
386 #df_citation_data.to_csv(working + path + (time.strftime("%Y%m%d-%H%M%S") + ’_’)

↪→ + ’df_cit_data.csv’, index=False)
387 df_citation_data.to_csv(working + path + ’df_cit_data.csv’, index=False)
388 #==============================================================================
389 # Create the citation analysis visualization
390 #==============================================================================
391
392 import datetime
393 import matplotlib.dates as mdates
394
395 warnings.filterwarnings(
396 action=’ignore’, module=’matplotlib.figure’, category=UserWarning,



181

Appendix H (Continued)

397 message=(’This figure includes Axes that are not compatible with
↪→ tight_layout, ’

398 ’so results might be incorrect.’))
399
400 years = mdates.YearLocator() # every year
401 months = mdates.MonthLocator() # every month
402 yearsFmt = mdates.DateFormatter(’%Y’)
403 mpl.style.use(’classic’)
404
405 # define the data
406 s = X4.astype(float).values**1.35 # citing patent
407 #x = X5.astype(float).values**1.0 # grant date year
408 x = X0 # X9 is grant date; X0 is application date
409 y = X6.astype(float).values**1.0 # organization number
410 z = X7.astype(float).values**1.0 # CPC number
411
412 rcParams.update({’figure.autolayout’: True})
413 #plt.rcParams[’axes.facecolor’] = ’white’
414
415 # setup the plot
416 fig, ax = plt.subplots(1,1, figsize=(15,10))
417
418 # setup limits
419 # plt.xlim([datetime.date(1975, 1, 1), datetime.date(2017, 1, 1)])
420 plt.ylim([-1,21])
421
422 # define the colormap
423 cmap = plt.cm.jet
424 cmap.set_under(’gray’)
425
426 # extract all colors from the .jet map
427 cmaplist = [cmap(i) for i in range(cmap.N)]
428
429 # force the first color entry to be grey
430 cmaplist[0] = (.5,.5,.5,1.0)
431
432 # create the new map
433 cmap = cmap.from_list(’Custom cmap’, cmaplist, cmap.N)
434
435 # define the bins and normalize
436 bounds = np.linspace(0,10,11)
437 norm = mpl.colors.BoundaryNorm(bounds, cmap.N)
438 loc = bounds + .5
439
440 # make the scatter
441 scat = ax.scatter(x, y, c=z, s=s, cmap=cmap, norm=norm, lw = 0)
442
443 # create a second axes for the colorbar
444 ax2 = fig.add_axes([1.02, 0.04, 0.04, 0.92])
445 cb = mpl.colorbar.ColorbarBase(ax2,
446 cmap=cmap,
447 norm=norm,
448 spacing=’proportional’,
449 ticks=bounds,
450 boundaries=bounds,
451 format=’%1i’)
452 cb.set_ticks(loc)
453 ax.set_title(’U.S. Building Materials Companies Intra-Citing Patents’, size=18)
454
455 # major & minor ticks
456 y_ticks_major = np.arange(0, 21, 1)
457 ax.set_yticks(y_ticks_major)



182

Appendix H (Continued)

458
459 # format the ticks
460 #ax.xaxis.set_major_locator(years)
461 ax.xaxis.set_major_formatter(yearsFmt)
462 ax.xaxis.set_minor_locator(years)
463
464 datemin = datetime.date(1970, 1, 1)
465 datemax = datetime.date(2017, 1, 1)
466 ax.set_xlim(datemin, datemax)
467
468 # and a corresponding grid
469 #ax.grid(which=’both’, color=’white’)
470
471 # or if you want differnet settings for the grids:
472 ax.grid(which=’minor’, alpha=0.5)
473 ax.grid(which=’major’, alpha=0.6)
474
475 # set tick labels
476 ax.set_yticklabels(labels_org[’organization’])
477
478 ax2.yaxis.set_label_coords(-0.40, 0.50)
479 ax2.set_ylabel(’Cooperative Patent Classification (CPC) [-]’,
480 size=12,
481 labelpad=-20)
482
483 ax2.set_yticklabels(labels_cpc[’definition’])
484 ax2.tick_params(axis=u’both’, which=u’both’,length=0)
485
486 plt.savefig(working + path + (’img/’ + time.strftime("%Y%m%d-%H%M%S") + ’_’) +

↪→ filename + ’_visualization_intra_cit.png’, bbox_inches=’tight’,dpi=300)
487
488 # beautify the x-labels
489 plt.gcf().autofmt_xdate()
490 plt.show()



183

Appendix I

PATENT DATA BUBBLE CSS VISUALIZATION

Listing I.1: Patent data bubble CSS visualization python code

1 #!/usr/bin/env python3
2 # -*- coding: utf-8 -*-
3 #==============================================================================
4 ’’’
5 title :9_20190310_patent_data_bubble_css.py
6 description :Patent Analysis Machine Learning
7 author :Salvatore Immordino
8 date created :Sun Dec 09 09:20:00 2018
9 date last modified :Fri Feb 22 19:12:17 2019

10 version :0.1
11 python_version :3.7.1
12 ’’’
13 #==============================================================================
14 """Big data analysis of patent documents on python. The aim of this research
15 was to determine if machine learning could be used to study inventiveness and
16 inventive knowledge flow independent of historical methods like citation
17 analysis. Using natural language processing and network analysis, this research
18 aimed to identify relatedness between patents based on the inventive language
19 used by patent seekers to describe their inventions. Creates a scatter plot of U.

↪→ S. building materials companies intra-css of patents. Data files were
↪→ downloaded from the United States Patent Office PatensView Data Download
↪→ located at www.patentsview.org."""

20 #==============================================================================
21 # IMPORT STATEMENTS
22 #==============================================================================
23 # basic libraries needed to run the tool
24 import pandas as pd
25 import numpy as np
26
27 # graphing functions
28 import matplotlib.pyplot as plt
29 import matplotlib as mpl
30 from matplotlib import rcParams
31
32 # drop the warnings
33 import warnings
34 warnings.filterwarnings("ignore", category=DeprecationWarning)
35
36 # time stamping
37 import time
38
39 # find out your current working directory
40 import os
41 print(os.getcwd())
42 working = (os.getcwd())
43 working = working.replace(’\\’, ’/’) # replaced all instances of \ with \\
44
45 # set the file path
46 path = ’/Box/SAM_IMMORDINO_THESIS_WORK/LaTeX_THESIS/Immordino Paper 1/bin/’
47 filename = ’9_20190310_patent_data_bubble_css’
48 # =============================================================================
49 # Data importation
50 # =============================================================================



184

Appendix I (Continued)

51 input_data9 = pd.read_csv(working + path + ’input_data8.csv’, header=0,
52 usecols = [’patent_id’,
53 ’title’,
54 ’abstract’,
55 ’grant_year’,
56 ’grant_date’,
57 ’pat_app_year’,
58 ’pat_app_date’,
59 ’organization’,
60 ’org_number’,
61 ’section_id’,
62 ’class_number’],
63 dtype = {’patent_id’:object},
64 parse_dates = [’grant_date’,’pat_app_date’],
65 na_values = [’no info’, ’.’],
66 converters={’organization’: str},
67 encoding = "iso-8859-1")
68
69 input_data9.info(verbose=True) # tell me all the things
70
71 labels_cpc = pd.read_csv(working + path + ’labels_cpc.csv’, header=0)
72 labels_org = pd.read_csv(working + path + ’labels_org.csv’, header=0)
73
74 df_css = pd.read_csv(working + path + ’df_css.csv’, header=0,
75 dtype = {’patent_id’:object, ’css_patent_id’:object})
76
77 application_dates = pd.read_csv(working + path + ’application_dates.csv’,
78 header=0,
79 dtype = {’patent_id’:object},
80 parse_dates = [’app_date’])
81 # -----------------------------------------------------------------------------
82 # Merge css data onto patent data
83 # -----------------------------------------------------------------------------
84 ave_css = np.mean(df_css[’css’]) # average(cos_similarity_matrix)
85 std_css = np.std(df_css[’css’]) # standard_deviation(cos_similarity_matrix)
86 alpha = 6 # alpha parameter
87
88 # CSS minimum threshold
89 t = (ave_css + (alpha * std_css)) #
90
91 intra_css = df_css[df_css[’css’] >= t] # select only intra_css > t
92
93 input_data9 = pd.merge(left=input_data9,
94 right=intra_css,
95 how=’left’,
96 left_on=[’patent_id’],
97 right_on=[’patent_id’],
98 sort=True,
99 left_index=True)

100
101 input_data9.info(verbose=True) # tell me all the things
102 input_data9.head(20)
103
104 # -----------------------------------------------------------------------------
105 # Merge patent application time data with citing patents
106 # -----------------------------------------------------------------------------
107 application_dates = application_dates.rename(columns = \
108 {’patent_id’:’css_patent_id’})
109
110 input_data9 = pd.merge(left=input_data9,
111 right=application_dates,
112 how=’left’,



185

Appendix I (Continued)

113 left_on=[’css_patent_id’],
114 right_on=[’css_patent_id’],
115 sort=True,
116 left_index=True)
117
118 # sort by patent_id
119 input_data9 = input_data9.sort_values(by=[’patent_id’])
120
121 # css patent app_date must be after orginal patent_id grant date
122 #input_data9x = input_data9[input_data9[’app_date’] >= input_data9[’grant_date

↪→ ’]]
123
124 # same as above except switching to filing date
125 input_data9x = input_data9[input_data9[’app_date’] >= input_data9[’pat_app_date’

↪→ ]]
126 input_data9x = input_data9x[[’patent_id’,’css_patent_id’,’css’,’app_date’,’

↪→ app_year’]]
127
128 # kind of a hack but we lose patent_id’s so need to merge it back
129 input_data9 = input_data9.drop([’css_patent_id’,’css’,’app_date’,’app_year’],

↪→ axis=1).drop_duplicates()
130
131 input_data9 = pd.merge(left=input_data9,
132 right=input_data9x,
133 how=’left’,
134 left_on=[’patent_id’],
135 right_on=[’patent_id’],
136 sort=True,
137 left_index=True)
138
139 # -----------------------------------------------------------------------------
140 # Sort, rename,and save clean citation data table
141 # -----------------------------------------------------------------------------
142 input_data9 = input_data9.rename(columns = {’app_date’:’css_app_date’})
143 input_data9 = input_data9.rename(columns = {’app_year’:’css_app_year’})
144 input_data9.to_csv(working + path + ’input_data9.csv’, index=False)
145 input_data9.to_csv(working + path + (time.strftime("%Y%m%d-%H%M%S") + ’_’) + ’

↪→ input_data9.csv’, index=False)
146 input_data9.info(verbose=True) # tell me all the things
147
148 #==============================================================================
149 # Load previously saved table
150 #==============================================================================
151 #input_data9 = pd.read_csv(working + path + ’input_data9.csv’, header=0,
152 # dtype = {’patent_id’:object,
153 # ’css_patent_id’:object},
154 # parse_dates = [’grant_date’,’css_app_date’],
155 # na_values = [’no info’, ’.’],
156 # encoding = "iso-8859-1")
157 #
158 #input_data9.info(verbose=True) # tell me all the things
159 #==============================================================================
160 # Create citation dataframe
161 #==============================================================================
162 Y0 = input_data9.groupby(’patent_id’)[’pat_app_date’].unique()
163 Y1 = input_data9.groupby(’patent_id’)[’css_app_year’].unique().apply(list)
164 Y2 = input_data9.groupby(’patent_id’)[’organization’].unique().apply(list)
165 Y3 = input_data9.groupby(’patent_id’)[’section_id’].unique()
166 Y4 = input_data9.groupby(’patent_id’)[’css_patent_id’].nunique() # count css
167 Y5 = input_data9.groupby(’patent_id’)[’grant_year’].unique()
168 Y6 = input_data9.groupby(’patent_id’)[’org_number’].unique().str[0]
169 Y7 = input_data9.groupby(’patent_id’)[’class_number’].unique().str[0]



186

Appendix I (Continued)

170 Y8 = input_data9.groupby(’patent_id’)[’css’].mean() # mean citation css
171 Y9 = input_data9.groupby(’patent_id’)[’grant_date’].unique()
172 #==============================================================================
173 # Create CSS dataframe
174 #==============================================================================
175 df_css_data = pd.DataFrame({’css_app_year’:Y1,
176 ’organization’:Y2,
177 ’section_id’:Y3,
178 ’css_count’:Y4,
179 ’grant_year’:Y5,
180 ’org_number’:Y6,
181 ’class_number’:Y7,
182 ’mean_css’:Y8})
183
184 #df_citation_data = df_citation_data.fillna(0) # fill NaNs with zero
185 #df_css_data.to_csv(working + path + (time.strftime("%Y%m%d-%H%M%S")+ ’_’) + ’

↪→ df_css_data.csv’, index=False)
186 df_css_data.to_csv(working + path + ’df_css_data.csv’, index=False)
187 #==============================================================================
188 # Create the citation analysis visualization
189 #==============================================================================
190 import datetime
191 import matplotlib.dates as mdates
192
193 warnings.filterwarnings(
194 action=’ignore’, module=’matplotlib.figure’, category=UserWarning,
195 message=(’This figure includes Axes that are not compatible with

↪→ tight_layout, ’
196 ’so results might be incorrect.’))
197
198 mpl.style.use(’classic’)
199
200 years = mdates.YearLocator() # every year
201 months = mdates.MonthLocator() # every month
202 yearsFmt = mdates.DateFormatter(’%Y’)
203
204 # define the data
205 s = Y4.astype(float).values**1.2 # citing patent
206 x = Y0 # X9 is grant date; X0 is application date
207 y = Y6.astype(float).values**1.0 # organization number
208 z = Y7.astype(float).values**1.0 # CPC number
209
210 rcParams.update({’figure.autolayout’: True})
211 #plt.rcParams[’axes.facecolor’] = ’white’
212
213 # setup the plot
214 fig, ax = plt.subplots(1,1, figsize=(15,10))
215
216 # setup limits
217 plt.ylim([-1,21])
218
219 # define the colormap
220 cmap = plt.cm.jet
221 cmap.set_under(’gray’)
222
223 # extract all colors from the .jet map
224 cmaplist = [cmap(i) for i in range(cmap.N)]
225
226 # force the first color entry to be grey
227 cmaplist[0] = (.5,.5,.5,1.0)
228
229 # create the new map



187

Appendix I (Continued)

230 cmap = cmap.from_list(’Custom cmap’, cmaplist, cmap.N)
231
232 # define the bins and normalize
233 bounds = np.linspace(0,10,11)
234 norm = mpl.colors.BoundaryNorm(bounds, cmap.N)
235 loc = bounds + .5
236
237 # make the scatter
238 scat = ax.scatter(x, y, c=z, s=s, cmap=cmap, norm=norm, lw = 0)
239
240 # create a second axes for the colorbar
241 ax2 = fig.add_axes([1.02, 0.04, 0.04, 0.92])
242 cb = mpl.colorbar.ColorbarBase(ax2,
243 cmap=cmap,
244 norm=norm,
245 spacing=’proportional’,
246 ticks=bounds,
247 boundaries=bounds,
248 format=’%1i’)
249 cb.set_ticks(loc)
250 ax.set_title(’U.S. Building Materials Companies Intra-CSS Patents’, size=18)
251
252 # major & minor ticks
253 y_ticks_major = np.arange(0, 21, 1)
254 ax.set_yticks(y_ticks_major)
255
256 # format the ticks
257 #ax.xaxis.set_major_locator(years)
258 ax.xaxis.set_major_formatter(yearsFmt)
259 ax.xaxis.set_minor_locator(years)
260
261 datemin = datetime.date(1970, 1, 1)
262 datemax = datetime.date(2017, 1, 1)
263 ax.set_xlim(datemin, datemax)
264
265 # and a corresponding grid
266 #ax.grid(which=’both’, color=’white’)
267
268 # or if you want differnet settings for the grids:
269 ax.grid(which=’minor’, alpha=0.5)
270 ax.grid(which=’major’, alpha=0.6)
271
272 # set tick labels
273 ax.set_yticklabels(labels_org[’organization’])
274
275 ax2.yaxis.set_label_coords(-0.40, 0.50)
276 ax2.set_ylabel(’Cooperative Patent Classification (CPC) [-]’,
277 size=12,
278 labelpad=-20)
279
280 ax2.set_yticklabels(labels_cpc[’definition’])
281 ax2.tick_params(axis=u’both’, which=u’both’,length=0)
282
283 plt.savefig(working + path + (’img/’ + time.strftime("%Y%m%d-%H%M%S") + ’_’) +

↪→ filename + ’_visualization_intra_css.png’,
284 bbox_inches=’tight’, dpi=300)
285
286 # beautify the x-labels
287 plt.gcf().autofmt_xdate()
288 plt.show()



188

Appendix J

PATENT DATA INTERSECTION & KNOWLEDGE FLOW

Listing J.1: Patent data citation CSS intersection python code

1 #!/usr/bin/env python3
2 # -*- coding: utf-8 -*-
3 #==============================================================================
4 ’’’
5 title :10_20190110_patent_data_bubble_css.py
6 description :Patent Analysis Machine Learning
7 author :Salvatore Immordino
8 date created :Wed Jan 02 17:37:51 2019
9 date last modified :Wed Feb 20 19:12:17 2019

10 version :0.1
11 python_version :3.7.1
12 ’’’
13 #==============================================================================
14 """Big data analysis of patent documents on python. The aim of this research
15 was to determine if machine learning could be used to study inventiveness and
16 inventive knowledge flow independent of historical methods like citation
17 analysis. Using natural language processing and network analysis, this research
18 aimed to identify relatedness between patents based on the inventive language
19 used by patent seekers to describe their inventions.
20
21 Data files were downloaded from the United States Patent Office PatensView Data

↪→ Download located at www.patentsview.org.
22
23 This file uses input_data8.csv, input_data9.csv and application_dates.csv mainly

↪→ as well as the ’3935021_Google_Sim_Docs.csv’ and aims to track
↪→ similarity between patent number 3935021 (info acquired via google
↪→ search). After some cleaning and restructuring, it merges a dataframe
↪→ containing patent_id, css_patent_id and citing_patent and plots the
↪→ intersection between CSS, CIT and results from google and proceedes to
↪→ create a histogram counting the citation over time for selected patents.
↪→ """

24 #==============================================================================
25 # IMPORT STATEMENTS
26 #==============================================================================
27 # basic libraries needed to run the tool
28 import pandas as pd
29 import numpy as np
30
31 # graphing functions
32 import matplotlib.pyplot as plt
33 import matplotlib.mlab as mlab
34 import matplotlib.ticker as ticker
35
36 # drop the warnings
37 import warnings
38 warnings.filterwarnings("ignore", category=DeprecationWarning)
39
40 # time stamping
41 import time
42
43 # find out your current working directory
44 import os
45 print(os.getcwd())



189

Appendix J (Continued)

46 working = (os.getcwd())
47 working = working.replace(’\\’, ’/’) # replaced all instances of \ with \\
48
49 # needed for this code
50 import seaborn as sns
51 from scipy import stats
52 from scipy.stats import norm
53
54 # legend
55 import matplotlib.patches as mpatches
56
57 # set filename and path
58 path = ’/Box/SAM_IMMORDINO_THESIS_WORK/LaTeX_THESIS/Immordino Paper 1/bin/’
59 filename = ’10_20190311_patent_cit_css_intersection’
60
61 # set palette orange, green, red, purple, brown, pink, grey, tan, lblue, blue
62 color_list = sns.set_palette(palette=sns.color_palette("muted"))
63 muted_colors = palette=sns.color_palette("muted")
64 muted_list = (muted_colors.as_hex())
65 print(muted_colors.as_hex())
66
67 # =============================================================================
68 # Data importation
69 # =============================================================================
70 application_dates = pd.read_csv(working + path + ’application_dates.csv’,
71 header=0,
72 dtype = {’patent_id’:object},
73 parse_dates = [’app_date’])
74
75 input_data8 = pd.read_csv(working + path + ’input_data8.csv’, header=0,
76 dtype = {’patent_id’:object,
77 ’citing_patent’:object},
78 parse_dates = [’grant_date’,’cit_app_date’, ’

↪→ pat_app_date’],
79 na_values = [’no info’, ’.’],
80 encoding = "iso-8859-1")
81
82 input_data9 = pd.read_csv(working + path + ’input_data9.csv’, header=0,
83 dtype = {’patent_id’:object,
84 ’css_patent_id’:object},
85 parse_dates = [’grant_date’,’css_app_date’, ’

↪→ pat_app_date’],
86 na_values = [’no info’, ’.’],
87 encoding = "iso-8859-1")
88
89 input_data9.info(verbose=True) # tell me all the things
90 input_data9.head(10)
91
92 # =============================================================================
93 # Create Intersection Tables
94 # =============================================================================
95 df_intra_css = input_data9[[’patent_id’,’css_patent_id’]].copy()
96 df_intra_css = df_intra_css.rename(columns = {’css_patent_id’:’citing_patent’})
97 df_intra_css = df_intra_css.drop_duplicates()
98 df_intra_css.info(verbose=True) # tell me all the things
99 df_intra_css.head(20)

100
101 df_intra_cit = input_data8[[’patent_id’,’citing_patent’]].copy()
102 df_intra_cit.info(verbose=True) # tell me all the things
103 df_intra_cit = df_intra_cit.drop_duplicates()
104 df_intra_cit.head(20)
105



190

Appendix J (Continued)

106 df_intersection = pd.merge(df_intra_cit,
107 df_intra_css,
108 how=’inner’,
109 on=[’patent_id’, ’citing_patent’])
110
111 df_intersection = df_intersection.drop_duplicates()
112 df_intersection.head(10)
113
114 # remember to reload input tables 8 & 9
115 Z0 = input_data8.groupby(’patent_id’)[’citing_patent’].nunique().nlargest(12).

↪→ reset_index() # count cited
116 Z1 = df_intersection.groupby(’patent_id’)[’citing_patent’].nunique() #

↪→ intersection counts
117 Z2 = df_intra_css[df_intra_css[’patent_id’] == ’3935021’] # list intra css
118 Z3 = df_intra_cit[df_intra_cit[’patent_id’] == ’3935021’] # list intra cit
119
120 # grap 12 random patents
121 Z4 = input_data8.groupby(’patent_id’)[’citing_patent’].nunique().sample(12).

↪→ reset_index() # count cited
122
123 # range function that allows non-integer steps
124 def xfrange(start, stop, step):
125 i = 0
126 while start + i * step < stop:
127 yield start + i * step
128 i += 1
129
130 ## loop function to compare patents by method
131 new_index = pd.Series(xfrange(0, 26, 1))
132 #patents = [’3935021’, ’6673144’, ’6432267’,’7585388’]
133 patents = Z0[(’patent_id’)].tolist()
134 patent = 0
135 data = pd.DataFrame([])
136
137 for i, patent in enumerate(patents):
138 # css related patents
139 css_data_cited = input_data9.loc[input_data9[’patent_id’] == patent].

↪→ drop_duplicates()
140 css_data_cited = css_data_cited[[’patent_id’, ’css_patent_id’, ’pat_app_year

↪→ ’, ’css_app_year’]]
141 css_data_cited[’css_years_past’] = css_data_cited[’css_app_year’] -

↪→ css_data_cited[’pat_app_year’]
142 css_data_cited = css_data_cited[[’patent_id’,’css_years_past’]]
143
144 # cit related patents
145 cit_data_cited = input_data8.loc[input_data8[’patent_id’] == patent].

↪→ drop_duplicates()
146 cit_data_cited = cit_data_cited[[’patent_id’, ’citing_patent’, ’pat_app_year

↪→ ’, ’cit_app_year’]]
147 cit_data_cited[’cit_years_past’] = cit_data_cited[’cit_app_year’] -

↪→ cit_data_cited[’pat_app_year’]
148 cit_data_cited = cit_data_cited[[’patent_id’,’cit_years_past’]]
149
150 # inputs
151 css = css_data_cited[’css_years_past’].groupby(css_data_cited[’

↪→ css_years_past’]).count()
152 cit = cit_data_cited[’cit_years_past’].groupby(cit_data_cited[’

↪→ cit_years_past’]).count()
153
154 combined = (pd.concat([css, cit], axis = 1)).reindex(new_index, fill_value

↪→ =0).fillna(0)



191

Appendix J (Continued)

155 combined = combined.rename(columns={combined.columns[0]: patent + ’_’ + "css
↪→ ",

156 combined.columns[1]: patent + ’_’ + "cit
↪→ "})

157
158 data = pd.concat([data, combined], axis=1)
159
160 print ("patent {} = {}".format(i, patent))
161
162 if i == len(patents) - 1:
163 print ("stacking and rename patent columns")
164 data_wide = data
165 data = data.stack().reset_index()
166 data.columns = [’years_past’,’related_method’,’related_count’]
167
168 # =============================================================================
169 # Bar charts, make sure to run all three as they are interdependent
170 # =============================================================================
171 import matplotlib as mpl #set defaults
172 mpl.rcdefaults()
173
174 desired_patent_bar = ’6500493’
175 filename = ’code_10_’
176
177 # css related bar chart pick a patent
178 css_data_cited = input_data9.loc[input_data9[’patent_id’] == desired_patent_bar].

↪→ drop_duplicates()
179 css_data_cited = css_data_cited[[’patent_id’,’css_app_date’]]
180 plt.figure(figsize=(8,6), dpi=100)
181 plt.ylim([0,25])
182 plt.title(’US’+ desired_patent_bar + ’ Intra-CSS’, fontsize=16)
183 plt.xlabel(’Year’, fontsize=12)
184 plt.ylabel(’CSS-related Count’, fontsize=12)
185 css_data_cited[’css_app_date’].groupby(
186 css_data_cited[’css_app_date’].dt.year).count().plot(
187 kind="bar",
188 color=’C0’)
189
190 plt.savefig(working + path + (’img/’ + time.strftime("%Y%m%d-%H%M%S") + ’_’
191 ) + filename + ’_’ + ’css_related_bar_us’ + str(

↪→ desired_patent_bar) + ’.png’,
192 bbox_inches=’tight’, dpi=300)
193
194 # citation bar plot, pick a patent
195 cit_data_cited = input_data8.loc[input_data8[’patent_id’] == desired_patent_bar].

↪→ drop_duplicates()
196 cit_data_cited = cit_data_cited[[’patent_id’,’cit_app_date’]]
197 plt.figure(figsize=(8,6), dpi=100)
198 plt.ylim([0,25])
199 plt.title(’US’+ desired_patent_bar + ’ Intra-CIT’, fontsize=16)
200 plt.xlabel(’Year’, fontsize=12)
201 plt.ylabel(’Citation Count’, fontsize=12)
202 cit_data_cited[’cit_app_date’].groupby(
203 cit_data_cited[’cit_app_date’].dt.year).count().plot(
204 kind="bar",
205 color=’C1’)
206
207 plt.savefig(working + path + (’img/’ + time.strftime("%Y%m%d-%H%M%S") + ’_’
208 ) + filename + ’_’ + ’cit_related_bar_us’ + str(

↪→ desired_patent_bar) + ’.png’,
209 bbox_inches=’tight’, dpi=300)
210



192

Appendix J (Continued)

211 css_data_cited.info(verbose=True) # tell me all the things
212 css_data_cited.head(10)
213
214 # Combined bar
215
216 P0 = css_data_cited[’css_app_date’].groupby(css_data_cited[’css_app_date’].dt.

↪→ year).count()
217 P1 = cit_data_cited[’cit_app_date’].groupby(cit_data_cited[’cit_app_date’].dt.

↪→ year).count()
218 P2 = pd.concat([P0, P1], axis=1).reset_index()
219 P2 = P2.rename(columns={P2.columns[0]: "year" })
220
221 P2max = max(P2.year) + 1
222 P2min = min(P2.year)
223
224 def xfrange(start, stop, step):
225 i = 0
226 while start + i * step < stop:
227 yield start + i * step
228 i += 1
229
230 P3 = pd.DataFrame(xfrange(P2min, P2max, 1))
231 P3 = P3.rename(columns={P3.columns[0]: "year" })
232 P4 = pd.merge(P3, P2, how =’left’, on=[’year’]).fillna(0)
233 P4.set_index(’year’, inplace=True)
234
235 P4.plot.bar(figsize=(8, 6), color=muted_colors, width=0.9)
236 plt.ylim([0,25])
237 plt.title(’ Method Comparison:’ + ’ US’ + desired_patent_bar, fontsize=16)
238 plt.xlabel(’Year’, fontsize=12)
239 plt.ylabel(’Method Count’, fontsize=12)
240 plt.legend(title="Method")
241 plt.grid(False)
242
243 plt.savefig(working + path + (’img/’ + time.strftime("%Y%m%d-%H%M%S") + ’_’
244 ) + filename + ’_’ + ’methods_year_bar_us’ + str(

↪→ desired_patent_bar) + ’.png’,
245 bbox_inches=’tight’, dpi=300)
246
247 # =============================================================================
248 # heat map
249 # =============================================================================
250 fig = plt.figure(figsize=(8,6), dpi=100)
251 sns.heatmap(data_wide, annot=True)
252 plt.savefig(working + path + (’img/’ + time.strftime("%Y%m%d-%H%M%S") + ’_’
253 ) + filename + ’_’ + ’heat_map_top_12_cited’ + ’.

↪→ png’,
254 bbox_inches=’tight’, dpi=300)
255
256 # =============================================================================
257 # distribution plot KDE estimation
258 # =============================================================================
259
260 desired_patent_kde = ’4647496’
261
262 css_kde = data.loc[data.related_method == str(desired_patent_kde) + "_css"]
263 cit_kde = data.loc[data.related_method == str(desired_patent_kde) + "_cit"]
264
265 xmin = 0 # m1.min()
266 xmax = 35 # m1.max()
267 ymin = 0 # m2.min()
268 ymax = 25 # m2.max()



193

Appendix J (Continued)

269
270 # -----------------------------------------------------------------------------
271 # method 1: distribution plot KDE estimation
272 # -----------------------------------------------------------------------------
273 # ----------------------------------
274 # css kde
275 # ----------------------------------
276 plt.figure(figsize=(8,6), dpi=100)
277 ax = sns.kdeplot(css_kde.years_past,
278 css_kde.related_count,
279 cmap="Blues",
280 shade=True,
281 shade_lowest=False,
282 clip=(0.0, 35.0))
283
284 ax.set_xlim([xmin, xmax])
285 ax.set_ylim([ymin, ymax])
286
287 plt.suptitle(’Kernel Density Estimation’, y=.95, fontsize=14)
288 plt.title(’Method: Intra-CSS’ + ’ US’ + desired_patent_kde, fontsize=12, x

↪→ =0.47)
289 plt.xlabel(’Years’, fontsize=12)
290 plt.ylabel(’Relatedness Method Counts’, fontsize=12)
291
292 plt.savefig(working + path + (’img/’ + time.strftime("%Y%m%d-%H%M%S") + ’_’
293 ) + filename + ’_’ + ’css_kde_hist_us’ + str(

↪→ desired_patent_kde) + ’.png’,
294 bbox_inches=’tight’, dpi=300)
295 # ----------------------------------
296 # cit kde
297 # ----------------------------------
298 plt.figure(figsize=(8,6), dpi=100)
299 ax = sns.kdeplot(cit_kde.years_past,
300 cit_kde.related_count,
301 cmap="Oranges",
302 shade=True,
303 shade_lowest=False,
304 clip=(0.0, 35.0))
305
306 ax.set_xlim([xmin, xmax])
307 ax.set_ylim([ymin, ymax])
308
309 plt.suptitle(’Kernel Density Estimation’, y=.95, fontsize=14)
310 plt.title(’Method: Intra-Citation’ + ’ US’ + desired_patent_kde, fontsize=12, x

↪→ =0.47)
311 plt.xlabel(’Years’, fontsize=12)
312 plt.ylabel(’Relatedness Method Counts’, fontsize=12)
313
314 plt.savefig(working + path + (’img/’ + time.strftime("%Y%m%d-%H%M%S") + ’_’
315 ) + filename + ’_’ + ’cit_kde_hist_us’ + str(

↪→ desired_patent_kde) + ’.png’,
316 bbox_inches=’tight’, dpi=300)
317
318 # -----------------------------------------------------------------------------
319 # method 2: distribution plot guassian kde estimation
320 # -----------------------------------------------------------------------------
321
322 # ----------------------------------
323 # css kde
324 # ----------------------------------
325 css1 = css_kde.years_past
326 css2 = css_kde.related_count



194

Appendix J (Continued)

327
328 # Perform a kernel density estimate on the data:
329 X, Y = np.mgrid[xmin:xmax:100j, ymin:ymax:100j]
330 positions = np.vstack([X.ravel(), Y.ravel()])
331 values = np.vstack([css1, css2])
332 kernel = stats.gaussian_kde(values)
333 Z = np.reshape(kernel(positions).T, X.shape)
334
335 # Plot the results:
336 fig, ax = plt.subplots(figsize=(8,6), dpi=100)
337 ax.imshow(np.rot90(Z), cmap=plt.cm.gist_earth_r,
338 extent=[xmin, xmax, ymin, ymax])
339 ax.plot(css1, css2, ’k.’, markersize=2)
340 ax.set_xlim([xmin, xmax])
341 ax.set_ylim([ymin, ymax])
342 plt.suptitle(’Kernel Density Estimation’, y=0.95, fontsize=14,)
343 plt.title(’Method: Intra-CSS’ + ’ US’ + desired_patent_kde, fontsize=12, x

↪→ =0.47)
344 plt.xlabel(’Years’, fontsize=12)
345 plt.ylabel(’Relatedness Method Counts’, fontsize=12)
346
347 plt.savefig(working + path + (’img/’ + time.strftime("%Y%m%d-%H%M%S") + ’_’
348 ) + filename + ’_’ + ’color_css_kde_hist_us’ +

↪→ str(desired_patent_kde) + ’.png’,
349 bbox_inches=’tight’, dpi=300)
350
351 # ----------------------------------
352 # cit kde
353 # ----------------------------------
354 cit1 = cit_kde.years_past
355 cit2 = cit_kde.related_count
356
357 xmin = 0 # m1.min()
358 xmax = 35 # m1.max()
359 ymin = 0 # m2.min()
360 ymax = 25 # m2.max()
361
362 # Perform a kernel density estimate on the data:
363 X, Y = np.mgrid[xmin:xmax:100j, ymin:ymax:100j]
364 positions = np.vstack([X.ravel(), Y.ravel()])
365 values = np.vstack([cit1, cit2])
366 kernel = stats.gaussian_kde(values)
367 Z = np.reshape(kernel(positions).T, X.shape)
368
369 # Plot the results:
370 fig, ax = plt.subplots(figsize=(8,6), dpi=100)
371 ax.imshow(np.rot90(Z), cmap=plt.cm.gist_earth_r,
372 extent=[xmin, xmax, ymin, ymax])
373 ax.plot(cit1, cit2, ’k.’, markersize=2)
374 ax.set_xlim([xmin, xmax])
375 ax.set_ylim([ymin, ymax])
376 plt.suptitle(’Kernel Density Estimation’, y=0.95, fontsize=14)
377 plt.title(’Method: Intra-Citation’ + ’ US’ + desired_patent_kde, fontsize=12, x

↪→ =0.47)
378 plt.xlabel(’Years’, fontsize=12)
379 plt.ylabel(’Relatedness Method Counts’, fontsize=12)
380
381 plt.savefig(working + path + (’img/’ + time.strftime("%Y%m%d-%H%M%S") + ’_’
382 ) + filename + ’_’ + ’color_cit_kde_hist_us’ +

↪→ str(desired_patent_kde) + ’.png’,
383 bbox_inches=’tight’, dpi=300)
384



195

Appendix J (Continued)

385 # =============================================================================
386 # histogram
387 # =============================================================================
388 # ----------------------------------
389 # css matplotlib histogram method 1
390 # ----------------------------------
391 (mu, sigma) = norm.fit(css_kde.related_count.values)
392
393 plt.cla() # clear the axis
394 plt.figure(figsize=(8,6), dpi=100)
395
396 # the histogram of the NBERdata
397 n, bins, patches = plt.hist(css_kde.related_count, 10, normed=1, facecolor=

↪→ muted_list[0], alpha=0.75)
398
399 bincenters = 0.5*(bins[1:]+bins[:-1])
400 bin_width = bins[1]-bins[0]
401
402 # add a ’best fit’ line
403 y = mlab.normpdf(bins, mu, sigma)
404 l = plt.plot(bins, y, ’r--’, linewidth=2)
405
406 #plot
407 plt.tight_layout()
408 plt.subplots_adjust(top=0.9)
409 plt.xlabel(’# CSS-Related’)
410 plt.ylabel(’Probability Density’)
411 plt.suptitle(’PDF & Histogram: Intra-CSS’ + ’ US’ + desired_patent_kde, y=1.00,

↪→ fontsize=16)
412 plt.title(r’$\mathrm{Statistics:}\ \mu=%.0f,\ \sigma=%.0f$’ %(mu, sigma),

↪→ fontsize=14)
413
414 mean = plt.axvline(css_kde.related_count.mean(), color=’C2’, linestyle=’dashed’,

↪→ linewidth=2)
415 median = plt.axvline(css_kde.related_count.median(), color=’C5’, linestyle=’

↪→ dashed’, linewidth=2)
416
417 red_line = mpatches.Patch(color=’red’, label=’Normal Distribution’)
418 green_line = mpatches.Patch(color=’C2’, label=’Mean’)
419 brown_line = mpatches.Patch(color=’C5’, label=’Median’)
420
421 plt.xlim(0, 11)
422 plt.ylim(0, 0.5)
423 plt.legend(handles=[red_line, green_line, brown_line])
424 plt.grid(True)
425
426 plt.savefig(working + path + (’img/’ + time.strftime("%Y%m%d-%H%M%S") + ’_’
427 ) + filename + ’_’ + ’css_pdf_hist_us’ + str(desired_patent_kde) +

↪→ ’.png’,
428 bbox_inches=’tight’, dpi=300)
429
430 # ----------------------------------
431 # cit matplotlib histogram method 1
432 #
433 (mu, sigma) = norm.fit(cit_kde.related_count.values)
434
435 plt.cla() # clear the axis
436 plt.figure(figsize=(8,6), dpi=100)
437
438 # the histogram of the NBERdata
439 n, bins, patches = plt.hist(cit_kde.related_count, 10, normed=1, facecolor=’C1’,

↪→ alpha=0.75)



196

Appendix J (Continued)

440
441 bincenters = 0.5*(bins[1:]+bins[:-1])
442 bin_width = bins[1]-bins[0]
443
444 # add a ’best fit’ line
445 y = mlab.normpdf(bins, mu, sigma)
446 l = plt.plot(bins, y, ’r--’, linewidth=2)
447
448 #plot
449 plt.tight_layout()
450 plt.subplots_adjust(top=0.9)
451 plt.xlabel(’# CIT-Related’)
452 plt.ylabel(’Probability Density’)
453 plt.suptitle(’PDF & Histogram: Intra-CIT’ + ’ US’ + desired_patent_kde, y=1.00,

↪→ fontsize=16)
454 plt.title(r’$\mathrm{Stats}\ \mu=%.0f,\ \sigma=%.0f$’ %(mu, sigma), fontsize=14)
455
456 mean = plt.axvline(css_kde.related_count.mean(), color=’C2’, linestyle=’dashed’,

↪→ linewidth=2)
457 median = plt.axvline(css_kde.related_count.median(), color=’C5’, linestyle=’

↪→ dashed’, linewidth=2)
458
459 red_line = mpatches.Patch(color=’red’, label=’Normal Distribution’)
460 green_line = mpatches.Patch(color=’C2’, label=’Mean’)
461 brown_line = mpatches.Patch(color=’C5’, label=’Median’)
462
463 plt.xlim(0, 11)
464 plt.ylim(0, 0.5)
465 plt.legend(handles=[red_line, green_line, brown_line])
466 plt.grid(True)
467
468 plt.savefig(working + path + (’img/’ + time.strftime("%Y%m%d-%H%M%S") + ’_’
469 ) + filename + ’_’ + ’cit_pdf_hist_us’ + str(desired_patent_kde) +

↪→ ’.png’,
470 bbox_inches=’tight’, dpi=300)
471
472 # ----------------------------------
473 # css seaborn histogram method 2
474 # ----------------------------------
475 #plt.cla() # clear the axis
476 plt.figure(figsize=(8,6), dpi=100)
477 sns.distplot(css_kde.related_count, hist=True, kde=True, bins=int(10), color = ’

↪→ C0’, hist_kws={’edgecolor’:’black’})
478 plt.title(’PDF: Intra-CSS’ + ’ US’ + desired_patent_kde, fontsize=12, x =0.47)
479 plt.xlabel(’# CSS-Related’, fontsize=12)
480 plt.ylabel(’Probability’, fontsize=12)
481 plt.ylim(0, 0.5)
482 plt.savefig(working + path + (’img/’ + time.strftime("%Y%m%d-%H%M%S") + ’_’
483 ) + filename + ’_’ + ’css_pdf_us’ + str(desired_patent_kde) + ’.png

↪→ ’,
484 bbox_inches=’tight’, dpi=300)
485
486 # ----------------------------------
487 # cit seaborn histogram method 2
488 # ----------------------------------
489 #plt.cla() # clear the axis
490 plt.figure(figsize=(8,6), dpi=100)
491 sns.distplot(cit_kde.related_count, hist=True, kde=True, bins=int(10), color = ’

↪→ C1’, hist_kws={’edgecolor’:’black’})
492 plt.title(’PDF: Intra-Citation’ + ’ US’ + desired_patent_kde, fontsize=12, x

↪→ =0.47)
493 plt.xlabel(’# Citations’, fontsize=12)



197

Appendix J (Continued)

494 plt.ylabel(’Probability’, fontsize=12)
495 plt.ylim(0, 0.5)
496 plt.savefig(working + path + (’img/’ + time.strftime("%Y%m%d-%H%M%S") + ’_’
497 ) + filename + ’_’ + ’cit_pdf_us’ + str(desired_patent_kde) + ’.png

↪→ ’,
498 bbox_inches=’tight’, dpi=300)
499
500 # =============================================================================
501 # find peaks
502 # =============================================================================
503 ’’’
504 This function takes a one-dimensional array and finds all local maxima
505 by simple comparison of neighbouring values.
506 ’’’
507
508 from scipy.signal import find_peaks
509
510 fig = plt.figure(figsize=(8,6), dpi=100)
511
512 x1 = cit_kde.related_count.reset_index(drop=True).apply(pd.to_numeric)
513 peaks, _ = find_peaks(x1, height=0)
514
515 plt.plot(x1, color = ’C1’)
516 plt.plot(peaks, x1[peaks], "x", color = ’C1’)
517 plt.plot(np.zeros_like(x1), "--", color="gray")
518
519 x2 = css_kde.related_count.reset_index(drop=True).apply(pd.to_numeric)
520 peaks, _ = find_peaks(x2, height=0)
521
522 plt.plot(x2, color = ’C0’)
523 plt.plot(peaks, x2[peaks], "x", color = ’C0’)
524 plt.plot(np.zeros_like(x2), "--", color="gray")
525
526 plt.xlim([0,35])
527 plt.ylim([0,25])
528 plt.title(’Find Local Maxima:’ + ’ Patent US’ + desired_patent_kde, fontsize=14,

↪→ x =0.47)
529 plt.xlabel(’Years’, fontsize=12)
530 plt.ylabel(’Relatedness Method Counts’, fontsize=12)
531 L = plt.legend(fontsize=10)
532 L.get_texts()[0].set_text(’Citation Count’)
533 L.get_texts()[1].set_text(’Citation Peak’)
534 L.get_texts()[2].set_text(’CSS Count’)
535 L.get_texts()[3].set_text(’CSS Peak’)
536
537 plt.savefig(working + path + (’img/’ + time.strftime("%Y%m%d-%H%M%S") + ’_’
538 ) + filename + ’_’ + ’method_count_peaks__us’ +

↪→ str(desired_patent_kde) + ’.png’,
539 bbox_inches=’tight’, dpi=300)
540
541 # =============================================================================
542 # intra-relatedness over time
543 # =============================================================================
544 # plotting resources used
545 ’’’
546 https://stackoverflow.com/questions/48204780/how-to-plot-multiple-figures-in-a-

↪→ row-using-seaborn
547 https://seaborn.pydata.org/generated/seaborn.catplot.html
548 http://seaborn.pydata.org/tutorial/categorical.html?highlight=bar%20plot
549 https://stackoverflow.com/questions/33049884/how-to-plot-2-seaborn-lmplots-side-

↪→ by-side



198

Appendix J (Continued)

550 https://stackoverflow.com/questions/41659188/how-to-adjust-subplot-size-in-
↪→ seaborn

551 https://stackoverflow.com/questions/41329789/populating-seaborn-subplots-using-
↪→ an-array

552 ’’’
553 # set fig parameters
554 num_cols = 3
555 num_rows = 4
556 num_plots = len(patents)
557
558 # set figsize here
559 fig, axs = plt.subplots(figsize=(13,10),
560 sharey=True,
561 sharex=True,
562 ncols=num_cols,
563 nrows=num_rows)
564
565 # iterate through all axes and create a plot
566 for i, ax in enumerate(axs.flatten()):
567 sns.set_context("paper", rc={"font.size":5,
568 "axes.titlesize":8,
569 "axes.labelsize":10})
570 sns.catplot(x=’years_past’,
571 y=’related_count’,
572 hue=’related_method’,
573 data = data[data.related_method.str.contains(patents[i])],
574 kind=’bar’,
575 palette="muted",
576 legend=False,
577 ax=ax)
578 ax.xaxis.set_major_locator(ticker.MultipleLocator(5))
579 ax.xaxis.set_major_formatter(ticker.ScalarFormatter())
580 ax.xaxis.set_minor_locator(ticker.MultipleLocator())
581 ax.yaxis.set_minor_locator(ticker.MultipleLocator())
582 plt.close(2) # need to close empty sns plots
583
584 plt.tight_layout()
585
586 plt.savefig(
587 working + path + (’img/’ + time.strftime("%Y%m%d-%H%M%S") + ’_’
588 ) + filename + ’_’ + ’patent_relationships_over_time

↪→ ’ + ’.png’,
589 bbox_inches=’tight’, dpi=300)
590 plt.show()



199

Appendix K

PATENT DATA DIMENSION REDUCTION

Listing K.1: Patent data dimension reduction

1 #!/usr/bin/env python3
2 # -*- coding: utf-8 -*-
3 #==============================================================================
4 ’’’
5 title :11_20190311_dimension_reduction.py
6 description :Patent Analysis Machine Learning
7 author :Salvatore Immordino
8 date created :Wed Jan 13 16:00:36 2019
9 date last modified :Fri Mar 22 19:12:17 2019

10 version :0.1
11 python_version :3.7.1
12 ’’’
13 #==============================================================================
14 """Big data analysis of patent documents on python. The aim of this research
15 was to determine if machine learning could be used to study inventiveness and
16 inventive knowledge flow independent of historical methods like citation
17 analysis. Using natural language processing and network analysis, this research
18 aimed to identify relatedness between patents based on the inventive language
19 used by patent seekers to describe their inventions.
20
21 Data files were downloaded from the United States Patent Office PatensView Data

↪→ Download located at www.patentsview.org.
22
23 This file uses input_data6.csv and patent_local_claims.csv and merges with

↪→ claims.csv and grant_dates.csv. Fixes data and encoding errors, and
↪→ preprocessing to clean the data. Since tSNE is computationally expensive,
↪→ a simpler decomposition method, PCA is used first and then performs
↪→ tSNE on its output.

24 - The next section performs a tSNE perplexity study at four different levels and
↪→ plots for each level are saved.

25 - The next section performs a visualization of t-SNE followed by normal PCA
↪→ reduction followed by visualization of it, scale adjusted, for
↪→ comparison."""

26 #==============================================================================
27 # IMPORT STATEMENTS
28 #==============================================================================
29 # basic libraries needed to run the tool
30 import pandas as pd
31 import numpy as np
32
33 # graphing functionsxxx
34 import matplotlib as mpl
35 import matplotlib.pyplot as plt
36 from matplotlib import rcParams
37
38 # time stamping
39 import time
40
41 # drop the warnings
42 import warnings
43 warnings.filterwarnings("ignore") # supress all warnings
44
45 # natural language tools - clean and preprocess



200

Appendix K (Continued)

46 from nltk.corpus import stopwords
47
48 # find out your current working directory
49 import os
50 print(os.getcwd())
51 working = (os.getcwd())
52 os.chdir(working)
53 working = working.replace(’\\’, ’/’) # replaced all instances of \ with \\
54
55 # needed for this code
56 #import seaborn as sns
57 import string
58
59 # need to remove multiple letter words like ’aaaaaaaaaaaaaaaa’
60 import re
61
62 # set the file path
63 path = ’/Box/SAM_IMMORDINO_THESIS_WORK/LaTeX_THESIS/Immordino Paper 1/bin/’
64 filename = ’11_20190311_dimension_reduction’
65
66 # =============================================================================
67 # Data importation
68 # =============================================================================
69 # load the patent data files sans textual data
70 input_data7 = pd.read_csv(working + path + ’input_data7’ + ’.csv’, header=0,
71 # usecols = [’patent_id’,
72 # ’title’,
73 # ’abstract’,
74 # ’grant_date_year’,
75 # ’organization’,
76 # ’org_number’,
77 # ’section_id’,
78 # ’class_number’],
79 dtype = {’patent_id’:object})
80
81 # drop duplicates (5651)
82 input_data7 = input_data7.drop_duplicates()
83 input_data7.info(verbose=True) # tell me all the things
84
85 # =============================================================================
86 # Import full claims text from patentsview
87 # =============================================================================
88 patent_local_claims = pd.read_csv(working + path + ’patent_local_claims.csv’,
89 header=0,
90 dtype = {’patent_id’:object,
91 ’sequence’:int,
92 ’claims’:object})
93 # =============================================================================
94 patent_claims_combined = patent_local_claims.groupby(
95 [’patent_id’])[’claims’].apply(’,’.join).reset_index()
96
97 input_data7 = pd.merge(left=input_data7,
98 right=patent_claims_combined,
99 how=’left’,

100 left_on=’patent_id’,
101 right_on=’patent_id’,
102 sort=True,
103 left_index=True)
104
105 input_data7[’combined’] = input_data7[[’title’,’abstract’,’claims’]].apply(
106 lambda x: ’’.join(x.astype(str)), axis=1)
107



201

Appendix K (Continued)

108 # =============================================================================
109 # Import full grant data from patentsview patents.tsv
110 # =============================================================================
111 grant_dates = pd.read_csv(working + path + ’grant_dates.csv’,
112 header=0,
113 dtype = {’patent_id’:object},
114 parse_dates = [’grant_date’])
115 # =============================================================================
116 input_data7 = pd.merge(left=input_data7,
117 right=grant_dates,
118 how=’left’,
119 left_on=’patent_id’,
120 right_on=’patent_id’,
121 sort=True,
122 left_index=True)
123
124 # -----------------------------------------------------------------------------
125 # Fix data and encoding errors
126 # -----------------------------------------------------------------------------
127 import unicodedata # to fix encoding errors
128
129 input_data7[’combined’] = input_data7[’combined’].apply(
130 lambda val: unicodedata.normalize(’NFKD’, val).encode(
131 ’ascii’, ’ignore’).decode())
132
133 # remove encoding replacements for subscript, superscript, and degrees
134 input_data7[’combined’] = input_data7[’combined’].str.replace(".sub.", "") #

↪→ removes subset
135 input_data7[’combined’] = input_data7[’combined’].str.replace(".sup.", "") #

↪→ removes superscript
136 input_data7[’combined’] = input_data7[’combined’].str.replace(".degree", "

↪→ degrees")
137
138 ## get unique list of patent #’s from patent_text and parse the list
139 # input_data7.patent_id.nunique() # count number of patents (5651)
140 # =============================================================================
141 # Split the data to train and test set
142 # =============================================================================
143 #from sklearn.model_selection import train_test_split
144 #train, test = train_test_split(input_data7, test_size=0.33, random_state=42)
145
146 train = input_data7
147
148 # =============================================================================
149 # Create lists
150 # =============================================================================
151 ’’’https://scikit-learn.org/stable/auto_examples/decomposition/plot_pca_vs_lda.

↪→ html’’’
152
153 corpus = train.combined # title, abstract, claims list
154 labels_cpc = pd.read_csv(working + path + ’labels_cpc.csv’, header=0)
155 #my_columns = train[’patent_id’].tolist() # patent numbers
156 #patent_numbers = ’|’.join(my_columns) # patent number list
157
158
159 # =============================================================================
160 # Create jargon lexical
161 # =============================================================================
162 # Created a list of common patent terms
163 #patent_terms = pd.read_csv(working + path + ’patent_terms.csv’)
164 jargon = {’according’, ’also’, ’apparatus’, ’assembly’, ’body’, ’claim’,
165 ’claimed’, ’component’, ’composition’, ’comprise’, ’comprises’,



202

Appendix K (Continued)

166 ’comprising’, ’consisting’, ’containing’, ’device’, ’disclosed’,
167 ’element’, ’embodying’, ’end’, ’face’, ’first’, ’form’, ’formed’,
168 ’forming’, ’forms’, ’group’, ’include’, ’includes’, ’including’,
169 ’invention’, ’layer’, ’le’, ’least’, ’made’, ’making’, ’material’,
170 ’may’, ’mean’, ’means’, ’member’, ’method’, ’mixture’, ’one’,
171 ’patent’, ’plurality’, ’portion’, ’preferably’, ’present’,
172 ’process’, ’product’, ’provided’, ’provides’, ’providing’, ’relates’,
173 ’resulting’, ’said’, ’second’, ’selected’, ’substantially’,
174 ’substrate’, ’support’, ’surface’, ’system’, ’technology’, ’thereof’,
175 ’third’, ’two’, ’web’, ’weight’, ’wherein’, ’within’, ’wt’}
176
177 # -----------------------------------------------------------------------------
178 # Stop words, punctuation, lemmatization, and word length steps
179 # -----------------------------------------------------------------------------
180 # create stop words
181 stop_words = set(stopwords.words(’english’))
182
183 # punctuation
184 punctuations = set(string.punctuation)
185 punctuations.remove(’-’) # remove hyphens
186 #punctuations.remove(’/’)
187
188 # lemmatization
189 from nltk.stem.wordnet import WordNetLemmatizer
190 lemma = WordNetLemmatizer()
191
192 # set minimum word length
193 word_len = 2
194
195 # ----------------------------------------------------------------------------
196 # Tokenize word function
197 # -----------------------------------------------------------------------------
198
199 def clean(doc):
200 number_free = ’’.join([c for c in doc if c not in "1234567890"])
201 words = [word.strip(string.punctuation) for word in number_free.split(" ")]
202 filtered = [f for f in words if f and f.lower() not in stop_words]
203 undo = "".join([" "+i if not i.startswith("’") and i not in string.

↪→ punctuation else i for i in filtered]).strip()
204 punc_free = ’’.join(ch for ch in undo if ch not in punctuations)
205 smallword_free = ’ ’.join([w for w in punc_free.split() if len(w)>word_len])
206 lemmatized = " ".join(lemma.lemmatize(word) for word in smallword_free.split

↪→ ())
207 jargon_free = " " .join([j for j in lemmatized.lower().split() if j not in

↪→ jargon])
208 for i in jargon_free:
209 jargon_free = re.sub((i+i+i), ’ ’, jargon_free)
210 #jargon_free = jargon_free.replace(’the ’,’ ’) # not need with proper

↪→ space inserted on merge
211 nonsense = ’ ’.join([w for w in jargon_free.split() if len(w)>1])
212 return nonsense
213
214 corpus_clean = [clean(doc) for doc in corpus] # list of sentance strings
215 corpus_tokenize = [clean(doc).split() for doc in corpus] # list of string words
216
217 #==============================================================================
218 # Term Frequency * Inverse Document Frequency, Tf-Idf
219 #==============================================================================
220 ’’’https://stackoverflow.com/questions/12118720/python-tf-idf-cosine-to-find-

↪→ document-similarity?rq=1’’’
221 ’’’https://radimrehurek.com/gensim/tut2.html’’’
222 ’’’http://dsgeek.com/2018/02/19/tfidf_vectors.html’’’



203

Appendix K (Continued)

223
224 #------------------------------------------------------------------------------
225 # create a dictionary (’conda install -c anaconda gensim’)
226 #------------------------------------------------------------------------------
227 from gensim.corpora import Dictionary
228 from gensim.models.tfidfmodel import TfidfModel
229 from gensim.matutils import sparse2full
230
231 #documents_words = ’ ’.join(corpus_clean).split()
232 docs_dict = Dictionary(corpus_tokenize)
233
234 #docs_dict.filter_extremes(no_below=20, no_above=0.2)
235 docs_dict.compactify()
236
237 docs_corpus = [docs_dict.doc2bow(doc) for doc in corpus_tokenize]
238 model_tfidf = TfidfModel(docs_corpus, id2word=docs_dict)
239 docs_tfidf = model_tfidf[docs_corpus]
240 docs_vecs = np.vstack([sparse2full(c, len(docs_dict)) for c in docs_tfidf])
241
242 #==============================================================================
243 # Dimension reduction
244 #==============================================================================
245 ’’’https://scikit-learn.org/stable/auto_examples/decomposition/plot_pca_vs_lda.

↪→ html’’’
246 ’’’https://github.com/aviolante/sas-python-work/blob/master/tSneExampleBlogPost.

↪→ ipynb’’’
247
248 from sklearn.decomposition import PCA
249 docs_pca = PCA(n_components=50).fit_transform(docs_vecs)
250
251 ’’’http://www.scikit-yb.org/en/latest/api/text/tsne.html’’’
252 ’’’https://distill.pub/2016/misread-tsne/’’’
253 ’’’https://stats.stackexchange.com/questions/263539/clustering-on-the-output-of-

↪→ t-sne’’’
254
255 # Visualize ’http://dsgeek.com/2018/02/19/tfidf_vectors.html’
256 ’’’https://www.kdnuggets.com/2018/08/introduction-t-sne-python.html’’’
257 # above ^ has some papers to reference...
258 ’’’https://www.datacamp.com/community/tutorials/introduction-t-sne’’’
259
260 #==============================================================================
261 # t-SNE perplexity study at differing levels
262 #==============================================================================
263 #import seaborn as sns
264 from sklearn import manifold
265
266 warnings.filterwarnings(
267 action=’ignore’, module=’matplotlib.figure’, category=UserWarning,
268 message=(’This figure includes Axes that are not compatible with tight_layout, ’
269 ’so results might be incorrect.’))
270
271 perplexities = [i for i in np.arange(0,101,1)]
272 #perplexities = [0,5,10,15,100]
273 #perplexities = [30]
274
275 #==============================================================================
276 # Create the t-SNE visualization
277 #==============================================================================
278 for i, perplexity in enumerate(perplexities):
279
280 tsne = manifold.TSNE(n_components=2,
281 init=’random’,



204

Appendix K (Continued)

282 random_state=0,
283 perplexity=perplexity)
284
285 viz = tsne.fit_transform(docs_pca)
286 # create new ’data’ df using tsne values and orginal data
287 tsne_corpus_out = pd.DataFrame(viz, columns=[’x’,’y’])
288 data = tsne_corpus_out.join(train)
289
290 a4_dims = (11.7, 8.27)
291
292 # define the data
293 s = 30 # point size
294 x = data.x
295 y = data.y
296 z = data.class_number
297
298 rcParams.update({’figure.autolayout’: True})
299 plt.rcParams[’axes.facecolor’] = ’white’
300
301 # setup the plot
302 fig, ax = plt.subplots(1,1, figsize=a4_dims)
303
304 # define the colormap
305 cmap = plt.cm.jet
306 cmap.set_under(’gray’)
307
308 # extract all colors from the .jet map
309 cmaplist = [cmap(i) for i in range(cmap.N)]
310
311 # force the first color entry to be grey
312 cmaplist[0] = (.5,.5,.5,1.0)
313
314 # create the new map
315 cmap = cmap.from_list(’Custom cmap’, cmaplist, cmap.N)
316
317 # define the bins and normalize
318 bounds = np.linspace(0,10,11)
319 norm = mpl.colors.BoundaryNorm(bounds, cmap.N)
320 loc = bounds + .5
321
322 # make the scatter
323 scat = ax.scatter(x,
324 y,
325 c=z,
326 s=s,
327 cmap=cmap,
328 norm=norm,
329 lw = 0,
330 alpha=0.20)
331
332 # create a second axes for the colorbar
333 ax2 = fig.add_axes([1.02, 0.04, 0.04, 0.92])
334 cb = mpl.colorbar.ColorbarBase(ax2,
335 cmap=cmap,
336 norm=norm,
337 spacing=’proportional’,
338 ticks=bounds,
339 boundaries=bounds,
340 format=’%1i’)
341 cb.set_ticks(loc)
342



205

Appendix K (Continued)

343 ax.set_title(’t-SNE Results: U.S. Building Material Companies Intra-CSS
↪→ Patent Corpus’, weight=’bold’, size=18)

344 ax.set_xlabel(’Dimension 1’, weight=’bold’).set_fontsize(’14’)
345 ax.set_ylabel(’Dimension 2’, weight=’bold’).set_fontsize(’14’)
346
347 # axis scale
348 ax.set_xlim(-100, 100)
349 ax.set_ylim(-100, 100)
350
351 # major & minor ticks
352 ticks_major = np.arange(-100, 125, 25)
353 ax.set_yticks(ticks_major)
354 ax.set_xticks(ticks_major)
355
356 # annotate
357 ax.annotate(’Perplexity = ’ + str(perplexity) ,
358 xy=(0.02, 0.95),
359 fontsize = 14,
360 xycoords=’axes fraction’)
361
362 ax2.yaxis.set_label_coords(-0.40, 0.50)
363 ax2.set_ylabel(’Cooperative Patent Classification (CPC) [-]’,
364 size=12,
365 labelpad=-20)
366
367 ax2.set_yticklabels(labels_cpc[’definition’])
368 ax2.tick_params(axis=u’both’, which=u’both’,length=0)
369
370 plt.savefig(working + path + (’img/’ + time.strftime("%Y%m%d-%H%M%S") + ’_’
371 ) + filename + ’

↪→ _visualization_tnse_perplexity_’ + str(
372 perplexity) + ’.png’,
373 bbox_inches=’tight’, dpi=300)
374
375 plt.show()
376
377 #==============================================================================
378 # Create perplexity animation of dimension reduction
379 #==============================================================================
380 # grab file_names
381 import glob, os
382
383 # create gifs
384 import imageio
385
386 png_dir = working + path + ’img/’
387 save = (time.strftime("%Y%m%d-%H%M%S") + ’_’) + filename + ’_animation_’
388
389 images = []
390 os.chdir(png_dir)
391 for file_name in glob.glob("*313*_perplexity_*"): # find pics to animate
392 file_path = os.path.join(png_dir, file_name) # set file path
393 images.append(imageio.imread(file_path)) # append pics
394 imageio.mimsave(save + ’tnse_perplexity.gif’, images, duration = 1.0)
395 #print (images)
396
397 # -----------------------------------------------------------------------------
398 # re-sizing gif functions (change default to 1/4 size, also duration
399 # -----------------------------------------------------------------------------
400 ’’’https://stackoverflow.com/questions/41718892/pillow-resizing-a-gif’’’
401 # -----------------------------------------------------------------------------
402 from PIL import Image



206

Appendix K (Continued)

403
404
405 def resize_gif(path, save_as=None, resize_to=None):
406 """
407 Resizes the GIF to a given length:
408
409 Args:
410 path: the path to the GIF file
411 save_as (optional): Path of the resized gif. If not set, the original

↪→ gif will be overwritten.
412 resize_to (optional): new size of the gif. Format: (int, int). If not

↪→ set, the original GIF will be resized to
413 half of its size.
414 """
415 all_frames = extract_and_resize_frames(path, resize_to)
416
417 if not save_as:
418 save_as = path
419
420 if len(all_frames) == 1:
421 print("Warning: only 1 frame found")
422 all_frames[0].save(save_as, optimize=True)
423 else:
424 all_frames[0].save(save_as,
425 optimize=True,
426 save_all=True,
427 append_images=all_frames[1:],
428 duration=100,
429 loop=1)
430
431
432 def analyseImage(path):
433 """
434 Pre-process pass over the image to determine the mode (full or additive).
435 Necessary as assessing single frames isn’t reliable. Need to know the mode
436 before processing all frames.
437 """
438 im = Image.open(path)
439 results = {
440 ’size’: im.size,
441 ’mode’: ’full’,
442 }
443 try:
444 while True:
445 if im.tile:
446 tile = im.tile[0]
447 update_region = tile[1]
448 update_region_dimensions = update_region[2:]
449 if update_region_dimensions != im.size:
450 results[’mode’] = ’partial’
451 break
452 im.seek(im.tell() + 1)
453 except EOFError:
454 pass
455 return results
456
457
458 def extract_and_resize_frames(path, resize_to=None):
459 """
460 Iterate the GIF, extracting each frame and resizing them
461
462 Returns:



207

Appendix K (Continued)

463 An array of all frames
464 """
465 mode = analyseImage(path)[’mode’]
466
467 im = Image.open(path)
468
469 if not resize_to:
470 resize_to = (im.size[0] // 5, im.size[1] // 5)
471
472 i = 0
473 p = im.getpalette()
474 last_frame = im.convert(’RGBA’)
475
476 all_frames = []
477
478 try:
479 while True:
480 # print("saving %s (%s) frame %d, %s %s" % (path, mode, i, im.size,

↪→ im.tile))
481
482 ’’’
483 If the GIF uses local colour tables, each frame will have its own

↪→ palette.
484 If not, we need to apply the global palette to the new frame.
485 ’’’
486 if not im.getpalette():
487 im.putpalette(p)
488
489 new_frame = Image.new(’RGBA’, im.size)
490
491 ’’’
492 Is this file a "partial"-mode GIF where frames update a region of a

↪→ different size to the entire image?
493 If so, we need to construct the new frame by pasting it on top of

↪→ the preceding frames.
494 ’’’
495 if mode == ’partial’:
496 new_frame.paste(last_frame)
497
498 new_frame.paste(im, (0, 0), im.convert(’RGBA’))
499
500 new_frame.thumbnail(resize_to, Image.ANTIALIAS)
501 all_frames.append(new_frame)
502
503 i += 1
504 last_frame = new_frame
505 im.seek(im.tell() + 1)
506 except EOFError:
507 pass
508
509 return all_frames
510
511 # -----------------------------------------------------------------------------
512
513 resize_gif(png_dir + ’20190313-222456

↪→ _11_20190311_dimension_reduction_animation_tnse_perplexity.gif’,
514 save_as = png_dir + save + ’.gif’)
515
516 #==============================================================================
517 # PCA Dimension reduction
518 #==============================================================================



208

Appendix K (Continued)

519 ’’’https://scikit-learn.org/stable/auto_examples/decomposition/plot_pca_vs_lda.
↪→ html’’’

520 ’’’https://github.com/aviolante/sas-python-work/blob/master/tSneExampleBlogPost.
↪→ ipynb’’’

521
522 from sklearn.decomposition import PCA
523 docs_pca = PCA(n_components=2).fit_transform(docs_vecs)
524
525 # create new ’data’ df using tsne values and orginal data
526 pca_corpus_out = pd.DataFrame(docs_pca, columns=[’x’,’y’])
527 data = pca_corpus_out.join(train)
528
529 # Visualize ’http://dsgeek.com/2018/02/19/tfidf_vectors.html’
530 ’’’https://www.kdnuggets.com/2018/08/introduction-t-sne-python.html’’’
531 # above ^ has some papers to reference...
532 ’’’https://www.datacamp.com/community/tutorials/introduction-t-sne’’’
533
534 #==============================================================================
535 # Create the PCA visualization
536 #==============================================================================
537
538 warnings.filterwarnings(
539 action=’ignore’, module=’matplotlib.figure’, category=UserWarning,
540 message=(’This figure includes Axes that are not compatible with

↪→ tight_layout, ’
541 ’so results might be incorrect.’))
542
543 a4_dims = (11.7, 8.27)
544
545 # define the data
546 s = 25 # point size
547 x = ((data.x)*250)
548 y = ((data.y)*250)
549 z = data.class_number
550
551 max(x)
552 min(x)
553
554 rcParams.update({’figure.autolayout’: True})
555 plt.rcParams[’axes.facecolor’] = ’white’
556
557 # setup the plot
558 fig, ax = plt.subplots(1,1, figsize=a4_dims)
559
560 # define the colormap
561 cmap = plt.cm.jet
562 cmap.set_under(’gray’)
563
564 # extract all colors from the .jet map
565 cmaplist = [cmap(i) for i in range(cmap.N)]
566
567 # force the first color entry to be grey
568 cmaplist[0] = (.5,.5,.5,1.0)
569
570 # create the new map
571 cmap = cmap.from_list(’Custom cmap’, cmaplist, cmap.N)
572
573 # define the bins and normalize
574 bounds = np.linspace(0,10,11)
575 norm = mpl.colors.BoundaryNorm(bounds, cmap.N)
576 loc = bounds + .5
577



209

Appendix K (Continued)

578 # make the scatter
579 scat = ax.scatter(x,
580 y,
581 c=z,
582 s=s,
583 cmap=cmap,
584 norm=norm,
585 lw = 0,
586 alpha=0.25)
587
588 # create a second axes for the colorbar
589 ax2 = fig.add_axes([1.02, 0.04, 0.04, 0.92])
590 cb = mpl.colorbar.ColorbarBase(ax2,
591 cmap=cmap,
592 norm=norm,
593 spacing=’proportional’,
594 ticks=bounds,
595 boundaries=bounds,
596 format=’%1i’)
597 cb.set_ticks(loc)
598
599 ax.set_title(’PCA Results: U.S. Building Material Companies Intra-CSS Patent

↪→ Corpus’, weight=’bold’, size=18)
600 ax.set_xlabel(’Dimension 1’, weight=’bold’).set_fontsize(’14’)
601 ax.set_ylabel(’Dimension 2’, weight=’bold’).set_fontsize(’14’)
602
603 # axis scale
604 ax.set_xlim(-50, 150)
605 ax.set_ylim(-75, 125)
606
607 # major & minor ticks
608 ticks_major_x = np.arange(-50, 175, 25)
609 ticks_major_y = np.arange(-75, 150, 25)
610 ax.set_xticks(ticks_major_x)
611 ax.set_yticks(ticks_major_y)
612
613 ax2.yaxis.set_label_coords(-0.40, 0.50)
614 ax2.set_ylabel(’Cooperative Patent Classification (CPC) [-]’,
615 size=12,
616 labelpad=-20)
617
618 ax2.set_yticklabels(labels_cpc[’definition’])
619 ax2.tick_params(axis=u’both’, which=u’both’,length=0)
620
621 plt.savefig(working + path + (’img/’ + time.strftime("%Y%m%d-%H%M%S") + ’_’
622 ) + filename + ’_visualization_pca.png’,
623 bbox_inches=’tight’, dpi=300)
624
625 plt.show()



210

Appendix L

NBER DATA STATISTICAL ANALYSIS

Listing L.1: Statistical analysis of NBER data

1 #!/usr/bin/env python3
2 # -*- coding: utf-8 -*-
3 #==============================================================================
4 ’’’
5 title :20190208_Paper_Immordino_Updated.py
6 description :Patent Analysis Machine Learning
7 author :Salvatore Immordino
8 date created :Fri Feb 08 19:36:00 2019
9 date last modified :Wed Feb 20 19:12:17 2019

10 version :0.1
11 python_version :3.7.1
12 ’’’
13 #==============================================================================
14 """Big data analysis of patent documents on python. The aim of this research
15 was to determine if machine learning could be used to study inventiveness and
16 inventive knowledge flow independent of historical methods like citation
17 analysis. Using natural language processing and network analysis, this research
18 aimed to identify relatedness between patents based on the inventive language
19 used by patent seekers to describe their inventions. """
20
21 Data files were downloaded from the United States Patent Office PatensView Data

↪→ Download located at www.patentsview.org.
22 #==============================================================================
23 # IMPORT STATEMENTS
24 #==============================================================================
25 ## Libraries needed to run the tool
26 import numpy as np
27 import pandas as pd
28 import math
29 import statsmodels.formula.api as sm
30 import matplotlib as mp
31 import matplotlib.mlab as mlab
32 import matplotlib.pyplot as plt
33 from scipy.stats import norm
34 from scipy import stats
35
36 # =============================================================================
37 # Data importation
38 # =============================================================================
39 file_name = ’C:\\Users\\DAD\\Box\\SAM_IMMORDINO_THESIS_WORK\\

↪→ CME594_MACHINE_LEARNING\\Midterm\\apat63_99.csv’
40
41 ## Read the csv file accounting for two-row header and three-column index values
42 input_data = pd.read_csv(file_name, header=0)
43 #input_data = pd.read_csv(file_name + ’.csv’, header=0)
44 data = input_data.apply(pd.to_numeric, errors=’coerce’)
45 size = float(len(data.index))
46
47 ## Print number of rows and colums read
48 print("{0} rows and {1} columns".format(len(data.index), len(data.columns)))
49
50 data.head(n=10)
51



211

Appendix L (Continued)

52 #number_patents = pd.DataFrame(input_data.groupby(’GYEAR’).PATENT.count())
53 #number_patents = input_data[[’PATENT’, ’GYEAR’, ’COUNTRY’]].groupby([’GYEAR’,’

↪→ COUNTRY’]).agg([’count’])
54 #number_patents = input_data[[’PATENT’, ’GYEAR’]].groupby([’GYEAR’]).agg([’count

↪→ ’])
55 number_patents = input_data[[’PATENT’, ’GYEAR’]].groupby([’GYEAR’]).count()
56 number_patents = number_patents.rename(columns = {’PATENT’:’PATENTS’})
57 number_patents.plot()
58
59 min(number_patents.PATENTS)
60 max(number_patents.PATENTS)
61
62 x = number_patents.index
63 y = number_patents.PATENTS
64 fit = np.polyfit(x,y,3)
65
66 plt.scatter(x,y)
67 plt.show()
68
69 # time stamping
70 import time
71
72 # fit_fn is now a function which takes in x and returns an estimate for y
73 fit_fn = np.poly1d(fit)
74 plt.plot(x,y, ’yo’, x, fit_fn(x), ’--k’)
75 plt.ylim(40000, 160000)
76 plt.xlabel(’Grant Year’)
77 plt.ylabel(’Number Patents’)
78
79 save_loc = ’C:/Users/simmordino/Box/SAM_IMMORDINO_THESIS_WORK/LaTeX_THESIS/

↪→ Immordino Paper 1/fig/’
80
81 plt.savefig(save_loc + (time.strftime("%Y%m%d-%H%M%S") + ’_’) + ’

↪→ USPTO_issued_patents_Count.png’,
82 bbox_inches=’tight’,dpi=600)
83
84 print("Average number of total patents per year: {0}".format(int(np.nanmean(

↪→ number_patents))))
85 print("Median number of total patents per year: {0}".format(int(np.nanmedian(

↪→ number_patents))))
86 print("The standard deviation of total patents per year: {0}".format(int(np.std(

↪→ number_patents, ddof=1))))
87
88 #slope, intercept, r_value, p_value, std_err = stats.linregress(x,y)
89 #print("r-squared:", r_value**2)
90 #==============================================================================
91 # best fit of data
92 # find out your current working directory
93 import os
94 print(os.getcwd())
95 working = (os.getcwd())
96 working = working.replace(’\\’, ’/’) # replaced all instances of \ with \\
97
98 # set the file path
99 #path = ’/Box/SAM_IMMORDINO_THESIS_WORK/LaTeX_THESIS/Immordino Paper 1/bin/’

100 path = ’/Users/DAD/Box/SAM_IMMORDINO_THESIS_WORK/LaTeX_THESIS/Immordino Paper 1/
↪→ bin/’

101 # time stamping
102 import time
103
104 # legend
105 import matplotlib.patches as mpatches



212

Appendix L (Continued)

106
107 datos = number_patents[’PATENTS’].values
108
109 (mu, sigma) = norm.fit(datos)
110
111 # the histogram of the data
112 n, bins, patches = plt.hist(data, 36, normed=1, facecolor=’green’, alpha=0.75)
113
114 bincenters = 0.5*(bins[1:]+bins[:-1])
115 bin_width = bins[1]-bins[0]
116
117 # add a ’best fit’ line
118 y = mlab.normpdf(bins, mu, sigma)
119 l = plt.plot(bins, y, ’r--’, linewidth=2)
120
121 #plot
122 plt.xlabel(’Patents Issued Yearly’)
123 plt.ylabel(’Probability Density’)
124 plt.suptitle(’Density Plot & Histogram of Patents Issued’, y=1.0, fontsize=16)
125 plt.title(r’$\mathrm{Histogram\ of\ IQ:}\ \mu=%.0f,\ \sigma=%.0f$’ %(mu, sigma),

↪→ fontsize=12)
126
127 mean = plt.axvline(number_patents[’PATENTS’].mean(), color=’b’, linestyle=’

↪→ dashed’, linewidth=2)
128 median = plt.axvline(number_patents[’PATENTS’].median(), color=’orange’,

↪→ linestyle=’dashed’, linewidth=2)
129
130 red_line = mpatches.Patch(color=’red’, label=’Normal Distribution’)
131 blue_line = mpatches.Patch(color=’blue’, label=’Mean’)
132 orange_line = mpatches.Patch(color=’orange’, label=’Median’)
133
134 plt.xlim(40000, 160000)
135 plt.ylim(0, 0.00005)
136 plt.legend(handles=[red_line, blue_line, orange_line])
137 plt.grid(True)
138
139 plt.savefig(path + (’img/’ + time.strftime("%Y%m%d-%H%M%S") + ’_’) + ’

↪→ NBER_density_histrogram.png’, bbox_inches=’tight’, dpi=300)
140
141 plt.show()
142
143 #==============================================================================
144 import matplotlib.pyplot as plt
145 import seaborn as sns
146
147 # matplotlib histogram
148 plt.hist(data, color = ’green’, edgecolor = ’black’, bins = int(180/5))
149
150 # seaborn histogram
151 sns.distplot(data, hist=True, kde=False,
152 bins=int(180/5), color = ’blue’,
153 hist_kws={’edgecolor’:’black’})
154 # Add labels
155 plt.title(’Density Plot \& Histogram of Patents Issued’)
156 plt.xlabel(’Patents’)
157 plt.ylabel(’Probability’)
158
159
160
161 #==============================================================================
162
163 A = (data.GYEAR) # Year patent granted



213

Appendix L (Continued)

164 B = (data.APPYEAR) # Year patent applied
165 C = (data.CAT) # Patent Technological Categories
166 D = (data.ASSCODE) # Types of Assignees
167 P = 2 # Perecent threshold for counting
168
169 cat_1 = ’Chemical’
170 cat_2 = ’Computers & Communications’
171 cat_3 = ’Drugs & Medical’
172 cat_4 = ’Electrical & Electronic’
173 cat_5 = ’Mechanical’
174 cat_6 = ’Others’
175 cat_7 = ’patents’
176
177 ass_1 = ’Unassigned’
178 ass_2 = ’U.S. non-government organizations (mostly corporations)’
179 ass_3 = ’None U.S. non-government organizations (mostly corporations)’
180 ass_4 = ’U.S. Indivduals’
181 ass_5 = ’Non U.S. Indviduals’
182 ass_6 = ’Feds’
183 ass_7 = ’Non U.S. Government’
184
185 ## Print the proportion
186 print("Proportion of {1} who filed patents from 1963 through 1999: {0}%".format(

↪→ np.float64(100.0*(list(D).count(1) / (size))).round(1), ass_1))
187 print("Proportion of {1} who filed patents from 1963 through 1999: {0}%".format(

↪→ np.float64(100.0*(list(D).count(2) / (size))).round(1), ass_2))
188 print("Proportion of {1} who filed patents from 1963 through 1999: {0}%".format(

↪→ np.float64(100.0*(list(D).count(3) / (size))).round(1), ass_3))
189 print("Proportion of {1} who filed patents from 1963 through 1999: {0}%".format(

↪→ np.float64(100.0*(list(D).count(4) / (size))).round(1), ass_4))
190 print("Proportion of {1} who filed patents from 1963 through 1999: {0}%".format(

↪→ np.float64(100.0*(list(D).count(5) / (size))).round(1), ass_5))
191 print("Proportion of {1} who filed patents from 1963 through 1999: {0}%".format(

↪→ np.float64(100.0*(list(D).count(6) / (size))).round(1), ass_6))
192 print("Proportion of {1} who filed patents from 1963 through 1999: {0}%".format(

↪→ np.float64(100.0*(list(D).count(7) / (size))).round(1), ass_7))
193
194 np.float64(100.0*(list(C).count(6) / (size)))
195
196 max(D)
197 min(D)
198
199 # Lag between application & granted
200 L = (data[’GYEAR’] - data[’APPYEAR’].shift())
201 L = ((A - B).shift()).values
202
203 plt.hist(((A-B) >=0).values, 10, normed=1, facecolor=’green’, alpha=0.75)
204
205
206 #==============================================================================
207 # list(L).count(1)
208 # list(L).count(2)
209 # list(L).count(3)
210 # list(L).count(4)
211 #
212 # elements, repeats = np.unique(L, return_counts=True)
213 # index = repeats.argmax()
214 # elem = elements[index]
215 #
216 # print "Max elem is " + str(elem) + " with " + str(repeats[index]) + "

↪→ repetitions."
217 #==============================================================================



214

Appendix L (Continued)

218
219
220 # Average lag between application & granted
221 lag = (np.nanmean(L))
222 np.float64(np.std(L))
223
224
225 print("Average lag between patent file and granted is {} years".format(np.

↪→ float64(lag).round(2)))
226
227 ((data[’GYEAR’] - data[’APPYEAR’]).values)
228
229
230 ## Count the sets
231 count_all_instances = ((A)>=0).sum()*1.0
232 a = count_over_2_years = ((data[’GYEAR’] - data[’APPYEAR’].shift()) > 2).sum()
233 b = count_drugs_medical = (C.shift() == 3).sum()
234 a_b = count_over_2_years_cat_3 = (((data[’GYEAR’] - data[’APPYEAR’].shift()) >

↪→ 2) & (C.shift() == 3)).sum()
235
236 ## Print Support: {0}% of all instances were both A & B
237 support = ((100.0*(a_b) / (count_all_instances)))
238 print("Support: {0}% of all {1} took over {2} years and were classified as {3}."
239 .format(np.float64(support).round(1), cat_7, P, cat_3))
240
241 ##Print Confidence: {0}% of A were also of B
242 confidence = ((100.0*(a_b) / (a)))
243 print("Confidence: {0}% of {1} that took over {2} years were also classified as

↪→ {3}."
244 .format(np.float64(confidence).round(1), cat_7, P, cat_3))
245
246 ## Print Lift: Given A it is {0} times more likely to have B
247 lift = ((confidence) / (100.0*(b) / (count_all_instances)))
248 # lift = (100.0*sup_AUB) / (sup_A * sup_B) # alternate lift calculation
249 print("Lift: Given {1} that take over {2} years it is {0} times more likely they

↪→ are classified as {3}."
250 .format(np.float64(lift).round(2), cat_7, P, cat_3))
251
252 ## lift(A,B) = sup(A U B) / sup(A) * sup(B) = P(A|B) / P(A) * P(B)
253 sup_A = (100.0*(a) / (count_all_instances)) #P(A)
254 sup_B = (100.0*(b) / (count_all_instances)) #P(B)
255 sup_AUB = ((100.0*(a_b) / (count_all_instances))) #P(A U B)
256
257 ## The probability that event A occurs, given that event B has already occurred
258 ## is P_A_given_B = P(A|B) = P(A and B) / P(B)
259 P_A_given_B = (100.0*(sup_AUB / sup_B)) #P(A|B) or All_Conf
260 ## P_B_given_A = P(B|A) = P(A and B) / P(A)
261 P_B_given_A = (100.0*(sup_AUB / sup_A)) #P(B|A) or Confidence
262
263 ## all_conf(A,B) = sup(A U B) / max{sup(A),sup(B)}
264 all_conf = ((100.0*sup_AUB) / max(sup_A,sup_B))/100
265 print("all_conf: The smallest confidence of the two assocation rules: {0}"
266 .format(np.float64(all_conf).round(2)))
267
268 ## max_conf(A,B) = max{P(A|B),P(B|A)}
269 max_conf = (max(P_A_given_B,P_B_given_A))/100.0
270 print("max_conf: The maximum confidence of the two assocation rules: {0}"
271 .format(np.float64(max_conf).round(2)))
272
273 ## Kulc(A,B) = 1/2(P(A|B)+P(B|A))
274 kulc = 0.5*((P_A_given_B + P_B_given_A)/100)
275 print("kulc: The average confidence between the two assocation rules: {0}"



215

Appendix L (Continued)

276 .format(np.float64(kulc).round(2)))
277
278 ## cosine(A,B) = P(A U B) /SQRT(P(A)*P(B)) = sup(AUB) / SQRT(sup(A)*sup(B))
279 cosine = sup_AUB / math.sqrt(sup_A*sup_B)
280 print("cosine: The cosine value between the two rules {0}"
281 .format(np.float64(cosine).round(2)))



216

Appendix M

NBER DATA NEURAL NETWORK

Listing M.1: Neural network prediction of patent technical category using NBER data

1 #!/usr/bin/env python3
2 # -*- coding: utf-8 -*-
3 #==============================================================================
4 ’’’
5 title :NBER_Neural_Networks_and_Deep_Learning.py
6 description :Patent Analysis Machine Learning
7 author :Salvatore Immordino
8 date created :Mon Apr 04 12:40:00 2016
9 date last modified :Wed Feb 20 19:12:17 2019

10 version :0.1
11 python_version :3.7.1
12 ’’’
13 #==============================================================================
14 """Big data analysis of patent documents on python. The aim of this research
15 was to determine if machine learning could be used to study inventiveness and
16 inventive knowledge flow independent of historical methods like citation
17 analysis. Using natural language processing and network analysis, this research
18 aimed to identify relatedness between patents based on the inventive language
19 used by patent seekers to describe their inventions. """
20
21 Data files were downloaded from the United States Patent Office PatensView Data

↪→ Download located at www.patentsview.org.
22 #==============================================================================
23 # IMPORT STATEMENTS
24 #==============================================================================
25 #Libraries needed to run the tool
26 import numpy as np
27 import pandas as pd
28 from sklearn.neural_network import MLPRegressor
29 from sklearn.neural_network import MLPClassifier
30 from sklearn import preprocessing #to normalize the values
31 from sklearn.model_selection import train_test_split #new for version 0.18 but

↪→ seems to be out soon
32 import matplotlib.pyplot as plt
33 from sklearn.preprocessing import Imputer
34
35 # =============================================================================
36 # Data importation
37 # =============================================================================
38 #Ask for file name and read the file
39 #file_name = raw_input("Name of file:")
40 #file_name = ’C:/Users/DAD/Desktop/CME_594/HW9/test_apat63_99’
41 file_name = ’C:/Users/simmordino/Desktop/CME_594/HW9/test_apat63_99’
42 input_data = pd.read_csv(file_name + ’.csv’, header=0, index_col=0)
43 input_data = input_data.sample(n=5000)
44
45 #analysis_type = raw_input("Analysis Type ’R’ or ’C’: ")
46 analysis_type = ’C’
47
48 #Print number of rows and colums read
49 print("{0} rows and {1} columns".format(len(input_data.index), len(input_data.

↪→ columns)))
50 print("")



217

Appendix M (Continued)

51
52 #Defining X1, X2, and all the data X
53 #Defining X1 thru X7, and all the data X
54 X1 = input_data.GYEAR.values
55 X2 = input_data.GDATE.values
56 X3 = input_data.APPYEAR.values
57 X4 = input_data.SUBCAT.values
58 X5 = input_data.ASSCODE.values
59 X6 = input_data.NCLASS.values
60 X7 = pd.get_dummies(input_data["COUNTRY"])
61
62 X_raw = np.column_stack((X1, X2, X3, X4, X5, X6, X7))
63
64 #Normalizing or not the data
65 #X =preprocessing.normalize(X_raw) #does not seem to improve the accuracy
66 X = X_raw
67
68 imp = Imputer(missing_values=’NaN’, strategy=’most_frequent’, axis=0)
69 X = imp.fit_transform(X)
70
71 if analysis_type == ’R’:
72 Y = input_data.area.values.astype(float)
73 else:
74 Y = input_data.CAT.values
75
76 #Using Built in train test split function in sklearn
77 X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size = 0.2)
78
79 if analysis_type == ’R’:
80 #Fit the neural network for Regression purposes (i.e., you expect a continuous

↪→ variable out)
81 #Note that ’sgd’ and ’adam’ require a batch_size and the function is not as

↪→ clear
82 # http://scikit-learn.org/dev/modules/generated/sklearn.neural_network.

↪→ MLPRegressor.html
83 acti = [’logistic’, ’tanh’, ’relu’] #activation..sklearn.neural_network.

↪→ MLPRegressor
84 algo = [’l-bfgs’, ’sgd’, ’adam’] # preffers l-bfgs
85 learn = [’constant’, ’invscaling’, ’adaptive’]
86 # All selections from above
87 neural = MLPRegressor(activation=acti[0], algorithm=algo[0], batch_size = 1,

↪→ learning_rate = learn[0], hidden_layer_sizes=(7,))
88 neural.fit(X_train, Y_train) # THIS IS YOUR FIT SET IT EQUAL TO SOMETHING AND

↪→ APPLY TO A DATA SET IT WILL GIVE YOUR y’S
89 neural_score = neural.score(X_test, Y_test)
90 #List parameters settings
91 #neural.get_params(deep=TRUE)
92 #print list_params
93 print("Analysis Type: {0}".format(analysis_type))
94 print("Algorithm Type: {0}".format(neural.algorithm))
95 print("Learning Type: {0}".format(neural.learning_rate))
96 print("Activation Type: {0}".format(neural.activation))
97 print("Shape of neural network: {0}".format([coef.shape for coef in neural.

↪→ coefs_]))
98 print("")
99 print("Coefs: ")

100 print(neural.coefs_[0].round(2))
101 print(neural.coefs_[1].round(2))
102 print("Intercepts: {0}".format(neural.intercepts_))
103 print("Iteration: {0}".format(neural.n_iter_))
104 print("Layers: {0} - always 3 seems wrong".format(neural.n_layers_))
105 print("Outputs: {0}".format(neural.n_outputs_))



218

Appendix M (Continued)

106 print("Activation: {0}".format(neural.out_activation_))
107
108 #Assess the fitted Neural Network
109 print("Y test and predicted")
110 print(Y_test.round(1))
111 print(neural.predict(X_test).round(1))
112
113 print("Accuracy as Pearson’s R2: {0}".format(neural_score.round(4)))
114
115 else:
116
117 #Setting up neorode fitting loop the model with training data
118 accuracy = []
119 k = range(1,51)
120 for i in range(0, len(k)):
121 #Fit the neural network for Classification purposes (i.e., you expect a

↪→ continuous variable out)
122 #Note that ’sgd’ and ’adam’ require a batch_size and the function is not as

↪→ clear
123 acti = [’logistic’, ’tanh’, ’relu’]
124 algo = [’l-bfgs’, ’sgd’, ’adam’]
125 learn = [’constant’, ’invscaling’, ’adaptive’]
126 # increasing the hidden layers has a big impact hidden_layer_sizes=(7,,3,) 7

↪→ is input, hidden 3...shows (7,7), (7,3), (3,1)
127 neural = MLPClassifier(activation=acti[0], algorithm=algo[0], batch_size = 1,

↪→ learning_rate = learn[2], hidden_layer_sizes=(k[i],))
128 # the above seven needs to go from 7 - 50 with for loop and show accuracy chart.
129 neural.fit(X_train, Y_train)
130 neural_score = neural.score(X_test, Y_test)
131 #List parameters settings
132 #neural.get_params(deep=TRUE)
133 #print list_params
134 #==============================================================================
135 # print("Analysis Type: {0}".format(analysis_type))
136 # print("Activation Type: {0}".format(neural.activation))
137 # print("Algorithm Type: {0}".format(neural.algorithm))
138 # print("Learning Type: {0}".format(neural.learning_rate))
139 # print("Classes: {0}".format(neural.classes_))
140 # print("Shape of neural network: {0}".format([coef.shape for coef in

↪→ neural.coefs_]))
141 # print("")
142 # print("Coefs: ")
143 # print(neural.coefs_[0].round(2))
144 # print(neural.coefs_[1].round(2))
145 # print("Intercepts: {0}".format(neural.intercepts_))
146 # print("Iteration: {0}".format(neural.n_iter_))
147 # print("Layers: {0} - always 3 seems wrong".format(neural.n_layers_))
148 # print("Outputs: {0}".format(neural.n_outputs_))
149 # print("Activation: {0}".format(neural.out_activation_))
150 #
151 # #Assess the fitted Neural Network
152 # print("Y test and predicted")
153 # print(Y_test)
154 # print(neural.predict(X_test))
155 # print("")
156 # print("Mean Accuracy: {0}".format(neural_score.round(4)))
157 #==============================================================================
158
159 accuracy.append(neural_score.round(4))
160
161 best_accuracy = accuracy.index(max(accuracy)) + 1 #this gives the neurode count

↪→ that gave the highest accuracy



219

Appendix M (Continued)

162
163 plt.figure(figsize=(15,10))
164 plt.plot(k, accuracy)
165 plt.title("Value of k is " + str(best_accuracy), fontsize=16)
166 plt.xlabel("neurode count (k)", fontsize=16) #Adding axis labels
167 plt.ylabel("neural score - accuracy", fontsize=16)
168 plt.xlim(0, 50) #Setting limits of axes
169 plt.ylim(0, 1)
170 plt.annotate("Analysis Type = " + str(analysis_type), xy=(0.01, 0.99), xycoords=

↪→ ’axes fraction’,
171 fontsize=12, horizontalalignment=’left’, verticalalignment=’top’)
172 plt.annotate("Activation Type = " + str(neural.activation), xy=(0.01, 0.96),

↪→ xycoords=’axes fraction’,
173 fontsize=12, horizontalalignment=’left’, verticalalignment=’top’)
174 plt.annotate("Algorithm Type = " + str(neural.algorithm), xy=(0.01, 0.93),

↪→ xycoords=’axes fraction’,
175 fontsize=12, horizontalalignment=’left’, verticalalignment=’top’)
176 plt.annotate("Learning Type = " + str(neural.learning_rate), xy=(0.01, 0.90),

↪→ xycoords=’axes fraction’,
177 fontsize=12, horizontalalignment=’left’, verticalalignment=’top’)
178 plt.annotate("Maximum Accuracy = " + str(max(accuracy).round(2)), xy=(0.01,

↪→ 0.87), xycoords=’axes fraction’,
179 fontsize=12, horizontalalignment=’left’, verticalalignment=’top’)
180 #==============================================================================
181 #Saving plots
182 plt.savefig(file_name +’_’+ str(neural.activation) +’_’+ str(neural.algorithm) +

↪→ ’_’+ str(neural.learning_rate) + ’_ANN_loop.png’, dpi=300)
183 plt.savefig(file_name +’_’+ str(neural.activation) +’_’+ str(neural.algorithm) +

↪→ ’_’+ str(neural.learning_rate) + ’_ANN_loop.pdf’, format=’pdf’, dpi=300)
184 #plt.savefig(file_name + ’_plot.png’) #Saving the plot
185 plt.show()
186 #==============================================================================
187
188 plt.clf()



220

Appendix N

NBER DATA RANDOM FOREST

Listing N.1: Random forest prediction of patent technical category using NBER data

1 #!/usr/bin/env python3
2 # -*- coding: utf-8 -*-
3 #==============================================================================
4 ’’’
5 title :NBER_Random_Forest.py
6 description :Patent Analysis Machine Learning
7 author :Salvatore Immordino
8 date created :Sun Mar 13 18:49:20 2016
9 date last modified :Wed Feb 20 19:12:17 2019

10 version :0.1
11 python_version :3.7.1
12 ’’’
13 #==============================================================================
14 """Big data analysis of patent documents on python. The aim of this research
15 was to determine if machine learning could be used to study inventiveness and
16 inventive knowledge flow independent of historical methods like citation
17 analysis. Using natural language processing and network analysis, this research
18 aimed to identify relatedness between patents based on the inventive language
19 used by patent seekers to describe their inventions. """
20
21 Data files were downloaded from the United States Patent Office PatensView Data

↪→ Download located at www.patentsview.org.
22 #==============================================================================
23 # IMPORT STATEMENTS
24 #==============================================================================
25 #Libraries needed to run the tool
26 import numpy as np
27 import pandas as pd
28 from sklearn import tree
29 from sklearn.ensemble import RandomForestClassifier
30 from sklearn import metrics
31 from sklearn.cross_validation import train_test_split
32 import matplotlib.pyplot as plt
33
34 from os import system
35 import matplotlib.image as mpimg
36 from sklearn import preprocessing
37 from sklearn.preprocessing import Imputer
38 from sklearn.preprocessing import LabelEncoder
39
40 # =============================================================================
41 # Data importation
42 # =============================================================================
43 #file_name = raw_input("Name of file:")
44 file_name = ’test_apat63_99’
45 input_data = pd.read_csv(file_name + ’.csv’, header=0, index_col=0)
46 input_data = input_data.sample(n=1000)
47
48 #Print number of rows and colums read
49 print("{0} rows and {1} columns".format(len(input_data.index), len(input_data.

↪→ columns)))
50 print("")
51



221

Appendix N (Continued)

52 #Defining X1 thru X7, and all the data X
53 X1 = input_data.GYEAR.values
54 X2 = input_data.GDATE.values
55 X3 = input_data.APPYEAR.values
56 X4 = input_data.SUBCAT.values
57 X5 = input_data.ASSCODE.values
58 X6 = input_data.NCLASS.values
59 X7 = input_data.COUNTRY
60
61 le = preprocessing.LabelEncoder()
62 le.fit(input_data.COUNTRY)
63 # list(le.classes_) #show the unique classes
64 X7 = le.transform(X7)
65 # list(le.inverse_transform([22])) #check to figure out what 22 = U.S.
66
67 X = np.column_stack((X1, X2, X3, X4, X5, X6, X7))
68
69 imp = Imputer(missing_values=’NaN’, strategy=’most_frequent’, axis=0)
70 X = imp.fit_transform(X)
71
72 Y = input_data.CAT.values
73
74 #Define model parameters
75 crit_choice = [’gini’, ’entropy’]
76 crit = crit_choice[0]
77 n_estimators = 5
78 test_size = 0.15
79
80 #Using Built in train test split function in sklearn
81 X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size = test_size)
82
83 x_min, x_max = X[:,0].min() - 1, X[:,0].max() + 1 #Defines min and max on the x-

↪→ axis
84 y_min, y_max = X[:,1].min() - 1, X[:,1].max() + 1 #Defines min and max on the y-

↪→ axis
85
86 plot_step = (x_max - x_min)/300 #step size in the mesh to plot entire areas
87
88 xx, yy = np.meshgrid(np.arange(x_min, x_max, plot_step),
89 np.arange(y_min, y_max, plot_step)) #Defines meshgrid
90
91 decitree = tree.DecisionTreeClassifier(criterion=crit).fit(X_train, Y_train) #

↪→ Decision Tree
92 decitree_predict = decitree.predict(X_test)
93 decitree_score = metrics.accuracy_score(decitree_predict, Y_test)
94
95 randfor = RandomForestClassifier(n_estimators = n_estimators, criterion=crit).

↪→ fit(X_train, Y_train) #Random Forest
96 randfor_predict = randfor.predict(X_test)
97 randfor_score = metrics.accuracy_score(randfor_predict, Y_test)
98
99 #Export tree properties in graph format

100 #http://stackoverflow.com/questions/27817994/visualizing-decision-tree-in-scikit
↪→ -learn

101 #http://stackoverflow.com/questions/19613239/make-a-graph-in-pydot-from-decision
↪→ -tree-in-sklearn-python?rq=1

102
103 dotfile = open("HW9_bonus.dot", ’w’)
104 tree.export_graphviz(decitree, out_file = dotfile)
105 dotfile.close()
106



222

Appendix N (Continued)

107 #to see the graph need to use ’dot -Tpng HW9_data.dot -o HW9_data.png’ in
↪→ command prompt

108 system("dot -Tpng HW9_bonus.dot -o HW9_bonus.png")
109 plt.figure(figsize=(15,10))
110 img = mpimg.imread(’HW9_bonus.png’)
111 plt.xticks([])
112 plt.yticks([])
113 plt.imshow(img)
114 plt.show()
115
116 print (Y_test)
117 print("Decision Tree")
118 print (decitree_predict)
119 print (decitree_score)
120 print("Random Forest")
121 print (randfor_predict)
122 print (randfor_score)



223

Appendix O

PATENT DATA PREDICTION

Listing O.1: Patent data predicition

1 #!/usr/bin/env python3
2 # -*- coding: utf-8 -*-
3 #==============================================================================
4 ’’’
5 title :12_20190311_prediction.py
6 description :Patent Analysis Machine Learning
7 author :Salvatore Immordino
8 date created :Wed Jan 13 16:00:36 2019
9 date last modified :Fri Mar 22 19:12:17 2019

10 version :0.1
11 python_version :3.7.1
12 ’’’
13 #==============================================================================
14 """Big data analysis of patent documents on python. The aim of this research
15 was to determine if machine learning could be used to study inventiveness and
16 inventive knowledge flow independent of historical methods like citation
17 analysis. Using natural language processing and network analysis, this research
18 aimed to identify relatedness between patents based on the inventive language
19 used by patent seekers to describe their inventions.
20
21 Data files were downloaded from the United States Patent Office PatensView Data

↪→ Download located at www.patentsview.org.
22 #==============================================================================
23 # IMPORT STATEMENTS
24 #==============================================================================
25 # basic libraries needed to run the tool
26 import pandas as pd
27 import numpy as np
28
29 # graphing functions
30 import matplotlib.pyplot as plt
31 import matplotlib as mpl
32 from matplotlib import rcParams
33
34 # drop the warnings
35 import warnings
36 warnings.filterwarnings("ignore", category=DeprecationWarning)
37
38 # time stamping
39 import time
40
41 # find out your current working directory
42 import os
43 print(os.getcwd())
44 working = (os.getcwd())
45 working = working.replace(’\\’, ’/’) # replaced all instances of \ with \\
46
47 # set the file path
48 path = ’/Box/SAM_IMMORDINO_THESIS_WORK/LaTeX_THESIS/Immordino Paper 1/bin/’
49
50 # =============================================================================
51 # Data importation
52 # =============================================================================



224

Appendix O (Continued)

53 input_data12 = pd.read_csv(working + path + ’input_data7.csv’, header=0,
54 usecols = [’patent_id’,
55 ’title’,
56 ’abstract’,
57 ’claims’,
58 ’combined’,
59 ’grant_date’,
60 ’grant_date_year’,
61 ’organization’,
62 ’org_number’,
63 ’section_id’,
64 ’class_number’],
65 dtype = {’patent_id’:object},
66 parse_dates = [’grant_date’],
67 na_values = [’no info’, ’.’],
68 converters={’organization’: str},
69 encoding = "iso-8859-1")
70
71 #==============================================================================
72 # Group statistics
73 #==============================================================================
74 prediction = pd.DataFrame({’cit_count’:X4, ’css_count’:Y4, ’mean_css’:Y8})
75 prediction.reset_index()
76
77 input_data12 = pd.merge(left=input_data12,
78 right=prediction,
79 how=’left’,
80 left_on=[’patent_id’],
81 right_on=[’patent_id’],
82 sort=True,
83 left_index=True)
84
85 input_data12.to_csv(working + path + ’input_data12.csv’, index=False)
86
87 input_data12 = input_data12.drop([’title’,’abstract’,’organization’,’section_id

↪→ ’,’claims’,’combined’], axis=1)
88
89 #==============================================================================
90 # Document Term Matrix (dtm)
91 #==============================================================================
92 # Convert sparse matrix (DTM) to dataframe to see word frequencies.
93 dtm = tfidf.todense() # doc_term_matrix (dtm)
94 #patent_vectors = pd.DataFrame(dtm, columns=feature_names, index=[input_data12.

↪→ patent_id])
95 patent_vectors = pd.DataFrame(dtm, index=[input_data12.patent_id])
96 patent_vectors.reset_index()
97 patent_vectors.head(5)
98 #==============================================================================
99 input_data12 = pd.merge(left=input_data12,

100 right=patent_vectors,
101 how=’left’,
102 left_on=[’patent_id’],
103 right_on=[’patent_id’],
104 sort=True,
105 left_index=True)
106
107
108 #input_data12.info(verbose=True) # tell me all the things
109
110 ’’’https://stackoverflow.com/questions/13187778/convert-pandas-dataframe-to-

↪→ numpy-array-preserving-index’’’
111



225

Appendix O (Continued)

112 numpy_matrix = input_data12.as_matrix()
113 X = numpy_matrix
114
115
116 #Print number of rows and colums read
117 print("{0} rows and {1} columns".format(len(input_data12.index), len(

↪→ input_data12.columns)))
118 print("")
119
120 #Defining X1, X2, and all the data X
121 #Defining X1 thru X7, and all the data X
122 X1 = data.x # tnse x0
123 X2 = data.y # tnse x2
124 X3 = data.patent_id
125 X4 = data.grant_date
126 X5 = data.grant_date_year
127 X6 = data.org_number
128 X7 = input_data12.cit_count
129 X8 = input_data12.css_count
130 X9 = input_data12.mean_css
131 X10 = input_data12.class_number
132
133 ’’’https://stackoverflow.com/questions/13187778/convert-pandas-dataframe-to-

↪→ numpy-array-preserving-index’’’
134
135 #X_raw = np.column_stack((X1, X2, X3, X4, X5, X6, X8, X9, X10))
136 #
137 #from sklearn.preprocessing import Imputer
138 #imp = Imputer(missing_values=’NaN’, strategy=’most_frequent’, axis=0)
139 #
140 #X = imp.fit_transform(X_raw)
141 #X = X_raw
142
143 #y = X10 # predict cpc class
144 #y = ?? # predict mean time to peak citation
145 y = X7 # predict citation
146
147 #==============================================================================
148 # Plot the ANN dataset for CPC Code
149 #==============================================================================
150 ’’’https://medium.com/ml-algorithms/neural-networks-for-decision-boundary-in-

↪→ python-b243440fb7d1’’’
151 plt.scatter(X[:,0], X[:,1], s=40, c=y, cmap=cmap)
152 plt.show()
153
154 # -----------------------------------------------------------------------------
155 #labels_cpc = pd.read_csv(working + path + ’labels_cpc.csv’, header=0)
156 #
157 #warnings.filterwarnings(
158 # action=’ignore’, module=’matplotlib.figure’, category=UserWarning,
159 # message=(’This figure includes Axes that are not compatible with

↪→ tight_layout, ’
160 # ’so results might be incorrect.’))
161 #
162 #rcParams.update({’figure.autolayout’: True})
163 #plt.rcParams[’axes.facecolor’] = ’white’
164 #
165 ## setup the plot
166 #fig, ax = plt.subplots(1,1, figsize=(15,10))
167 #
168 # define the colormap
169 cmap = plt.cm.jet



226

Appendix O (Continued)

170 cmap.set_under(’gray’)
171
172 # extract all colors from the .jet map
173 cmaplist = [cmap(i) for i in range(cmap.N)]
174
175 # force the first color entry to be grey
176 cmaplist[0] = (.5,.5,.5,1.0)
177
178 # create the new map
179 cmap = cmap.from_list(’Custom cmap’, cmaplist, cmap.N)
180 #
181 ## define the bins and normalize
182 #bounds = np.linspace(0,10,11)
183 #norm = mpl.colors.BoundaryNorm(bounds, cmap.N)
184 #loc = bounds + .5
185 #
186 ## make the scatter
187 #scat = ax.scatter(X[:,0], X[:,1], s=40, c=y, cmap=cmap)
188 #
189 ## create a second axes for the colorbar
190 #ax2 = fig.add_axes([1.02, 0.04, 0.04, 0.92])
191 #cb = mpl.colorbar.ColorbarBase(ax2,
192 # cmap=cmap,
193 # norm=norm,
194 # spacing=’proportional’,
195 # ticks=bounds,
196 # boundaries=bounds,
197 # format=’%1i’)
198 #cb.set_ticks(loc)
199 #
200 #ax.set_title(’ANN Scatter: U.S. Building Material Companies Intra-CSS Patent

↪→ Corpus’, weight=’bold’, size=18)
201 #ax.set_xlabel(’Dimension 1’, weight=’bold’).set_fontsize(’14’)
202 #ax.set_ylabel(’Dimension 2’, weight=’bold’).set_fontsize(’14’)
203 #
204 ### axis scale
205 #ax.set_xlim(-100, 100)
206 #ax.set_ylim(-100, 100)
207 #
208 ## major & minor ticks
209 #ticks_major = np.arange(-100, 125, 25)
210 #ax.set_yticks(ticks_major)
211 #ax.set_xticks(ticks_major)
212 #
213 #ax2.yaxis.set_label_coords(-0.40, 0.50)
214 #ax2.set_ylabel(’Cooperative Patent Classification (CPC) [-]’,
215 # size=12,
216 # labelpad=-20)
217 #
218 #ax2.set_yticklabels(labels_cpc[’definition’])
219 #ax2.tick_params(axis=u’both’, which=u’both’,length=0)
220 #
221 ##plt.savefig(working + path + (’img/’ + time.strftime("%Y%m%d-%H%M%S") + ’_’
222 ## ) + ’visualization_tnse.png’,
223 ## bbox_inches=’tight’, dpi=300)
224 #
225 #plt.show()
226 ###############################################################################
227
228 # Train the logistic regression classifier
229 import sklearn.linear_model
230 clf = sklearn.linear_model.LogisticRegressionCV()



227

Appendix O (Continued)

231 clf.fit(X, y)
232
233 # using Built in train test split function in sklearn
234 from sklearn.model_selection import train_test_split
235 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.20)
236
237 from sklearn.preprocessing import StandardScaler
238 scaler = StandardScaler()
239 scaler.fit(X_train)
240
241 X_train = scaler.transform(X_train)
242 X_test = scaler.transform(X_test)
243
244 from sklearn.neural_network import MLPClassifier
245 mlp = MLPClassifier(hidden_layer_sizes=(10, 10, 10), max_iter=1000)
246 mlp.fit(X_train, y_train.values.ravel())
247
248 predictions = mlp.predict(X_test)
249
250 from sklearn.metrics import classification_report, confusion_matrix
251 print(confusion_matrix(y_test,predictions))
252 print(classification_report(y_test,predictions))



228

Appendix P

PATENT CIATATION CSS VENN

Listing P.1: Patent CIatation CSS Venn

1 #!/usr/bin/env python3
2 # -*- coding: utf-8 -*-
3 #==============================================================================
4 ’’’
5 title :13_2019023_patent_cit_css_venn.py
6 description :Patent Analysis Machine Learning
7 author :Salvatore Immordino
8 date created :Sun May 01 15:32:06 2018
9 date last modified :Wed Feb 20 19:12:17 2019

10 version :0.1
11 python_version :3.7.1
12 ’’’
13 #==============================================================================
14 """Big data analysis of patent documents on python. The aim of this research
15 was to determine if machine learning could be used to study inventiveness and
16 inventive knowledge flow independent of historical methods like citation
17 analysis. Using natural language processing and network analysis, this research
18 aimed to identify relatedness between patents based on the inventive language
19 used by patent seekers to describe their inventions. """
20 #==============================================================================
21 # IMPORT STATEMENTS
22 #==============================================================================
23 # basic libraries needed to run the tool
24 import pandas as pd
25 import numpy as np
26 import re
27
28 # graphing functions
29 import matplotlib.pyplot as plt
30 #import matplotlib.mlab as mlab
31 #import matplotlib.ticker as ticker
32
33 # drop the warnings
34 import warnings
35 warnings.filterwarnings("ignore", category=DeprecationWarning)
36
37 # time stamping
38 import time
39
40 # find out your current working directory
41 import os
42 print(os.getcwd())
43 working = (os.getcwd())
44 working = working.replace(’\\’, ’/’) # replaced all instances of \ with \\
45
46 # needed for this code
47 import seaborn as sns
48 #from scipy import stats
49 #from scipy.stats import norm
50
51 # venn imports
52 from matplotlib_venn import venn3 #venn3_circles
53 from matplotlib_venn import venn2



229

Appendix P (Continued)

54
55 # legend
56 #import matplotlib.patches as mpatches
57
58 # set filename and path
59 path = ’/Box/SAM_IMMORDINO_THESIS_WORK/LaTeX_THESIS/Immordino Paper 1/bin/’
60 filename = ’13_20190311_patent_cit_css_venn’
61
62 # set palette orange, green, red, purple, brown, pink, grey, tan, lblue, blue
63 color_list = sns.set_palette(palette=sns.color_palette("muted"))
64 muted_colors = palette=sns.color_palette("muted")
65 muted_list = (muted_colors.as_hex())
66 print(muted_colors.as_hex())
67
68 # =============================================================================
69 # Data importation
70 # =============================================================================
71
72 application_dates = pd.read_csv(working + path + ’application_dates.csv’,
73 header=0,
74 dtype = {’patent_id’:object},
75 parse_dates = [’app_date’])
76
77 input_data8 = pd.read_csv(working + path + ’input_data8.csv’, header=0,
78 dtype = {’patent_id’:object,
79 ’citing_patent’:object},
80 parse_dates = [’grant_date’,’cit_app_date’, ’

↪→ pat_app_date’],
81 na_values = [’no info’, ’.’],
82 encoding = "iso-8859-1")
83
84 input_data9 = pd.read_csv(working + path + ’input_data9.csv’, header=0,
85 dtype = {’patent_id’:object,
86 ’css_patent_id’:object},
87 parse_dates = [’grant_date’,’css_app_date’, ’

↪→ pat_app_date’],
88 na_values = [’no info’, ’.’],
89 encoding = "iso-8859-1")
90
91 input_data9.info(verbose=True) # tell me all the things
92 input_data9.head(10)
93
94 # =============================================================================
95 # Create Intersection Tables
96 # =============================================================================
97
98 df_intra_css = input_data9[[’patent_id’,’css_patent_id’]].copy()
99 df_intra_css = df_intra_css.rename(columns = {’css_patent_id’:’citing_patent’})

100 df_intra_css = df_intra_css.drop_duplicates()
101 df_intra_css.info(verbose=True) # tell me all the things
102 df_intra_css.head(20)
103
104 df_intra_cit = input_data8[[’patent_id’,’citing_patent’]].copy()
105 df_intra_cit.info(verbose=True) # tell me all the things
106 df_intra_cit = df_intra_cit.drop_duplicates()
107 df_intra_cit.head(20)
108
109 df_intersection = pd.merge(df_intra_cit,
110 df_intra_css,
111 how=’inner’,
112 on=[’patent_id’, ’citing_patent’])
113



230

Appendix P (Continued)

114 df_intersection = df_intersection.drop_duplicates()
115 df_intersection.head(10)
116
117 # remeber to reload inpot tables 8 & 9
118 Z0 = input_data8.groupby(’patent_id’)[’citing_patent’].nunique().nlargest(12).

↪→ reset_index() # count cited
119 Z1 = df_intersection.groupby(’patent_id’)[’citing_patent’].nunique() #

↪→ intersection counts
120 Z2 = df_intra_css[df_intra_css[’patent_id’] == ’3935021’] # list intra css
121 Z3 = df_intra_cit[df_intra_cit[’patent_id’] == ’3935021’] # list intra cit
122
123 # grap 12 random patents
124 Z4 = input_data8.groupby(’patent_id’)[’citing_patent’].nunique().sample(12).

↪→ reset_index() # count cited
125
126 # range function that allows non-integer steps
127 def xfrange(start, stop, step):
128 i = 0
129 while start + i * step < stop:
130 yield start + i * step
131 i += 1
132
133 ## loop function to compare patents by method
134 new_index = pd.Series(xfrange(0, 26, 1))
135 #patents = [’3935021’, ’6673144’, ’6432267’,’7585388’]
136 patents = Z0[(’patent_id’)].tolist()
137 patent = 0
138 data = pd.DataFrame([])
139
140 for i, patent in enumerate(patents):
141 # css related patents
142 css_data_cited = input_data9.loc[input_data9[’patent_id’] == patent].

↪→ drop_duplicates()
143 css_data_cited = css_data_cited[[’patent_id’, ’css_patent_id’, ’pat_app_year

↪→ ’, ’css_app_year’]]
144 css_data_cited[’css_years_past’] = css_data_cited[’css_app_year’] -

↪→ css_data_cited[’pat_app_year’]
145 css_data_cited = css_data_cited[[’patent_id’,’css_years_past’]]
146
147 # cit related patents
148 cit_data_cited = input_data8.loc[input_data8[’patent_id’] == patent].

↪→ drop_duplicates()
149 cit_data_cited = cit_data_cited[[’patent_id’, ’citing_patent’, ’pat_app_year

↪→ ’, ’cit_app_year’]]
150 cit_data_cited[’cit_years_past’] = cit_data_cited[’cit_app_year’] -

↪→ cit_data_cited[’pat_app_year’]
151 cit_data_cited = cit_data_cited[[’patent_id’,’cit_years_past’]]
152
153 # inputs
154 css = css_data_cited[’css_years_past’].groupby(css_data_cited[’

↪→ css_years_past’]).count()
155 cit = cit_data_cited[’cit_years_past’].groupby(cit_data_cited[’

↪→ cit_years_past’]).count()
156
157 combined = (pd.concat([css, cit], axis = 1)).reindex(new_index, fill_value

↪→ =0).fillna(0)
158 combined = combined.rename(columns={combined.columns[0]: patent + ’_’ + "css

↪→ ",
159 combined.columns[1]: patent + ’_’ + "cit

↪→ "})
160
161 data = pd.concat([data, combined], axis=1)



231

Appendix P (Continued)

162
163 print ("patent {} = {}".format(i, patent))
164
165 if i == len(patents) - 1:
166 print ("stacking and rename patent columns")
167 data_wide = data
168 data = data.stack().reset_index()
169 data.columns = [’years_past’,’related_method’,’related_count’]
170
171 # =============================================================================
172 # Create Intersection Tables
173 # =============================================================================
174
175 df_intra_css = input_data9[[’patent_id’,’css_patent_id’]].copy()
176 df_intra_css = df_intra_css.rename(columns = {’css_patent_id’:’citing_patent’})
177 df_intra_css = df_intra_css.drop_duplicates()
178 df_intra_css.info(verbose=True) # tell me all the things
179 df_intra_css.head(20)
180
181 df_intra_cit = input_data8[[’patent_id’,’citing_patent’]].copy()
182 df_intra_cit.info(verbose=True) # tell me all the things
183 df_intra_cit = df_intra_cit.drop_duplicates()
184 df_intra_cit.head(20)
185
186 df_intersection = pd.merge(df_intra_cit,
187 df_intra_css,
188 how=’inner’,
189 on=[’patent_id’, ’citing_patent’])
190
191 df_intersection = df_intersection.drop_duplicates()
192 df_intersection.head(10)
193
194 # grab some patents; top 12
195 Z0 = input_data8.groupby(’patent_id’)[’citing_patent’].nunique().nlargest(12).

↪→ reset_index() # count cited
196 Z1 = df_intersection.groupby(’patent_id’)[’citing_patent’].nunique() #

↪→ intersection counts
197
198 # a single patent by number
199 Z_NUM = ’3935021’
200
201 Z2 = df_intra_css[df_intra_css[’patent_id’] == Z_NUM] # list intra css
202 Z2.count()
203
204 Z3 = df_intra_cit[df_intra_cit[’patent_id’] == Z_NUM] # list intra cit
205 Z3.count()
206
207 # 12 random patents
208 Z4 = input_data8.groupby(’patent_id’)[’citing_patent’].nunique().sample(12).

↪→ reset_index() # count cited
209
210 # =============================================================================
211 # intra-citations over time create data table
212 # =============================================================================
213
214 # googgle calls them family to family citations
215
216 ## loop function to compare patents by method
217 #patents = [’3935021’, ’6673144’, ’6432267’,’7585388’]
218 patents = Z0[(’patent_id’)].tolist() #from input_data8 which was cited patents
219 patent = 0
220 data_venn = pd.DataFrame([])



232

Appendix P (Continued)

221
222 for i, patent in enumerate(patents):
223 # css related patents
224 css_venn = df_intra_css.loc[df_intra_css[’patent_id’] == patent].

↪→ drop_duplicates()
225
226 # cit related patents
227 cit_venn = df_intra_cit.loc[df_intra_cit[’patent_id’] == patent].

↪→ drop_duplicates()
228
229 combined_venn = (pd.concat([css_venn, cit_venn], axis = 1))
230 combined_venn = combined_venn.rename(columns={combined_venn.columns[0]:

↪→ patent + ’_’ + "css", combined_venn.columns[1]: patent + ’_’ + "cit"})
231
232 data_venn = pd.concat([data_venn, combined_venn], axis=1)
233
234 print ("patent {} = {}".format(i, patent))
235
236 if i == len(patents) - 1:
237 print ("stacking and rename patent columns")
238 data_venn_wide = data_venn
239 data_venn = data_venn.stack().reset_index().drop(’level_0’, 1)
240 data_venn.columns = [’related_method’,’related_patents’]
241 data_venn = data_venn.sort_values([’related_method’], ascending=[True])
242
243 # =============================================================================
244 # Google similar patent documents to 3935021
245 # =============================================================================
246 ’’’https://patents.google.com/patent/US3935021A/en’’’
247 ’’’https://www.pcworld.com/article/3049943/software/excel-pro-tips-importing-and

↪→ -parsing-data.html’’’
248
249 # Google Similar Documents
250 google_3935021 = pd.read_csv(working + path + ’3935021_Google_Sim_Docs.csv’,
251 header=0,
252 dtype = {’patent_id’:object},
253 parse_dates = [’publication_date’])
254
255 # select just patent numbers with no letters
256 google_3935021[’patent_id’] = google_3935021[’patent_id’].apply(
257 lambda x: re.search(r’\d+’, x).group())
258
259 # merge google similar documents with application dates table
260 google_3935021 = pd.merge(left=google_3935021,
261 right=application_dates,
262 how=’left’,
263 left_on=[’patent_id’],
264 right_on=[’patent_id’],
265 sort=True,
266 left_index=True)
267
268 # drop any publications greater than 7 numbers long, just real patents
269 google_3935021 = google_3935021[~(google_3935021[’patent_id’].str.len() > 7)]
270
271 # select only patents that came after orginal patent_id grant date
272 google_3935021 = google_3935021[(google_3935021[’publication_date’].dt.year >=

↪→ 1976)]
273
274 # patent drop rows outside of organization group
275 google_3935021 = google_3935021[np.isfinite(google_3935021[’app_year’])]
276
277 ’’’



233

Appendix P (Continued)

278 885 = Henry Clark; 150 = Dow; 341, 744, 987 = WR Grace; 995 = CBI; 288 = SKW;
279 192 = Aqualon; 031, 033 = Celotex; 839 = Rohm & Haas; 550 = Tec Inc;
280 237 = Walker Industries; 903 = National, cement products
281 ’’’
282
283 ’’’prediction go back an train/test on CPC catergory’’’
284
285 # =============================================================================
286 # Patent intersection between CSS, CIT, and Google using VENNN
287 # =============================================================================
288 ’’’ https://pypi.org/project/matplotlib-venn/’’’
289 ’’’https://python-graph-gallery.com/172-custom-venn-diagram/’’’
290
291 patent_intersection_no = ’3935021’
292
293 css_intersection = set(df_intra_css.loc[df_intra_css[’patent_id’] ==

↪→ patent_intersection_no].drop_duplicates()[’citing_patent’])
294 cit_intersection = set(df_intra_cit.loc[df_intra_cit[’patent_id’] ==

↪→ patent_intersection_no].drop_duplicates()[’citing_patent’])
295 google = set(google_3935021[’patent_id’])
296
297 fig = plt.figure(figsize=(20,10))
298 g = venn3([css_intersection, cit_intersection, google], (’CSS’, ’Cited’,’Google’

↪→ ))
299 plt.title(’Method Comparison Venn Diagram: Patent US’ + str(

↪→ patent_intersection_no), fontsize=16)
300
301 g.get_patch_by_id(’100’).set_color(’C0’)
302 g.get_patch_by_id(’110’).set_color(’C5’)
303 g.get_patch_by_id(’010’).set_color(’C1’)
304 g.get_patch_by_id(’001’).set_color(’C4’)
305 g.get_patch_by_id(’100’).set_alpha(0.6)
306 g.get_patch_by_id(’110’).set_alpha(0.6)
307 g.get_patch_by_id(’010’).set_alpha(0.6)
308 g.get_patch_by_id(’100’).set_alpha(0.6)
309
310 for text in g.set_labels:
311 text.set_fontsize(14)
312 for text in g.subset_labels:
313 text.set_fontsize(16)
314
315 plt.savefig(working + path + (’img/’ + time.strftime("%Y%m%d-%H%M%S") + ’_’
316 ) + filename + ’_cssvcitvgoo_patent_’ + patent_intersection_no + ’_venn3.png’,
317 bbox_inches=’tight’,dpi=300)
318
319 # =============================================================================
320 # intra-citations over time venn plot
321 # =============================================================================
322
323 # set fig parameters
324 patents = Z0[(’patent_id’)].tolist()
325 num_cols = 3
326 num_rows = 4
327 num_plots = len(patents)
328
329 # set figsize here
330 fig, axs = plt.subplots(figsize=(13,10),
331 #sharey=True,
332 #sharex=True,
333 ncols=num_cols,
334 nrows=num_rows)
335



234

Appendix P (Continued)

336 plt.suptitle(’Method Comparison: Venn Diagram of Top 12 Most Cited Patents’, y
↪→ =1.02, fontsize=18)

337
338 # iterate through all axes and create a venn plot
339 for i, ax in enumerate(axs.flatten()):
340 css_set = set(df_intra_css.loc[df_intra_css[’patent_id’] == patents[i]].

↪→ drop_duplicates()[’citing_patent’])
341 cit_set = set(df_intra_cit.loc[df_intra_cit[’patent_id’] == patents[i]].

↪→ drop_duplicates()[’citing_patent’])
342
343 c = venn2([css_set, cit_set],
344 (str(patents[i]) + ’_’ + ’css’,
345 str(patents[i]) + ’_’ + ’cit’),
346 ax=ax)
347
348 c.get_patch_by_id(’10’).set_color(’C0’)
349 c.get_patch_by_id(’01’).set_color(’C1’)
350 c.get_patch_by_id(’11’).set_color(’C5’)
351 c.get_patch_by_id(’10’).set_edgecolor(’none’)
352 c.get_patch_by_id(’01’).set_edgecolor(’none’)
353 c.get_patch_by_id(’11’).set_edgecolor(’none’)
354 c.get_patch_by_id(’10’).set_alpha(0.6)
355 c.get_patch_by_id(’01’).set_alpha(0.6)
356 c.get_patch_by_id(’11’).set_alpha(0.6)
357
358 for text in c.set_labels:
359 text.set_fontsize(10)
360 for text in c.subset_labels:
361 text.set_fontsize(12)
362
363 plt.close(2)
364
365 plt.tight_layout()
366
367 plt.savefig(working + path + (’img/’ + time.strftime("%Y%m%d-%H%M%S")
368 + ’_’) + filename + ’_intersection_venn_relationships.png’,
369 bbox_inches=’tight’, dpi=300)
370
371
372 # =============================================================================
373 # venn2 with labels
374 # =============================================================================
375 #patent_intersection_no = ’3935021’
376 patent_intersection_no = ’9303363’
377
378 C1 = set(df_intra_css.loc[df_intra_css[’patent_id’] == patent_intersection_no].

↪→ drop_duplicates()[’citing_patent’])
379 C2 = set(df_intra_cit.loc[df_intra_cit[’patent_id’] == patent_intersection_no].

↪→ drop_duplicates()[’citing_patent’])
380
381 sets = [C1, C2]
382 setLabels = [’CSS’, ’Cited’]
383
384 fig = plt.figure(figsize=(20,10))
385 ax = plt.gca()
386 v = venn2(subsets = sets, set_labels = setLabels, ax = ax)
387
388 v.get_patch_by_id(’10’).set_color(’C0’)
389 v.get_patch_by_id(’01’).set_color(’C1’)
390 v.get_patch_by_id(’11’).set_color(’C5’)
391
392 v.get_patch_by_id(’10’).set_edgecolor(’none’)



235

Appendix P (Continued)

393 v.get_patch_by_id(’01’).set_edgecolor(’none’)
394 v.get_patch_by_id(’11’).set_edgecolor(’none’)
395
396 v.get_patch_by_id(’10’).set_alpha(0.6)
397 v.get_patch_by_id(’01’).set_alpha(0.6)
398 v.get_patch_by_id(’11’).set_alpha(0.6)
399
400 v.get_label_by_id(’10’).set_text(’\n’.join(sorted(C1-C2)))
401 v.get_label_by_id(’01’).set_text(’\n’.join(sorted(C2-C1)))
402 v.get_label_by_id(’11’).set_text(’\n’.join(sorted(C1&C2)))
403
404 A = len(C1.difference(C2))
405 B = len(C1.intersection(C2))
406 C = len(C2.difference(C1))
407
408 h, l = [],[]
409 h.append(v.get_patch_by_id(’10’))
410 h.append(v.get_patch_by_id(’11’))
411 h.append(v.get_patch_by_id(’01’))
412
413 l.append(’ ’ + setLabels[0] + ’-related’ + ’ ’ + ’(’ + str(A) + ’)’)
414 l.append(’ ’ + ’Intersection’ + ’ ’ + ’(’ + str(B) + ’)’)
415 l.append(’ ’ + setLabels[1] + ’ ’ + ’(’ + str(C) + ’)’)
416
417 for text in v.set_labels:
418 text.set_fontsize(17)
419 for text in v.subset_labels:
420 text.set_fontsize(9)
421
422 #create legend from handles and labels
423 ax.legend(handles=h, labels=l, fontsize=14, loc=3)
424
425 plt.title(’Method Comparison Venn Diagram: Patent US’ + str(

↪→ patent_intersection_no), fontsize=20)
426
427 plt.tight_layout()
428
429 plt.savefig(working + path + (
430 ’img/’ + time.strftime("%Y%m%d-%H%M%S") + ’_’
431 ) + filename + ’_cssvcit_patent_’ + patent_intersection_no + ’_venn2.png

↪→ ’,
432 bbox_inches=’tight’,dpi=300)
433
434 dir(v)



236

Appendix Q

ORIGINAL CITATION VISUALIZATION



237

A
p
p
e
n
d
ix

Q
(C

o
n
tin

u
e
d
)

Figure 31: U.S. Building Material Patents: Invention Impact Using Intra-CIT Similarity Threshold (1975 - 2015)


	to12emIntroduction
	 Motivation
	 Background
	 The Study of Inventiveness
	 Patent Requirements
	 Patent Types
	 Provisional Patent
	 Patent Classification
	 United States Patent Classification (USPC)
	 National Bureau of Economic Research (NBER)
	 International Patent Classification (IPC)
	 Cooperative Patent Classification (CPC)

	 Patent Rules
	 General Requirements
	 Description Requirements
	 Citations of Prior Art

	 Patent Exclusivity Period
	 Patent Granting Rights


	to22emResearch: ML Applied to NBER Citation Data
	 Original Fields
	 Assignee Identifier
	 Number of Claims
	 Main U.S. Patent Class

	 Constructed Fields
	 Technological Category
	 Citations Made, Received, and Lag
	 Measures of Generality and Originality

	 Visual Inspection of NBER Data
	 Statistical Analysis
	 Proportion Analysis

	 Association and Pattern Analysis
	 Supervised Machine Learning
	 Principal Component Analysis
	 Decision Tree
	 Artificial Neural Network

	 Preliminary Research Insights
	 Computational Effects
	 Office effects
	 Examiner effects
	 Strategic effects

	 Results from examination of the NBER data file

	to32emResearch: ML Applied to USPTO Textual Data
	 PatentsView Data Tables
	 Patent Table
	 Claims Table
	 Raw Assignee Table
	 Cooperative Patent Classification Table
	 Citation Table
	 Application Table

	 Invention Impact: Intra-Citation Visualization
	 Text Mining
	 Data Selection
	 Data Cleaning
	 Pre-processing
	 Vectorization
	 Transformation
	 Cosine Similarity
	 Minimum CSS Threshold

	 Dimension Reduction
	 Principal Component Analysis
	 t-distributed Stochastic Neighbor Embedding

	 Invention Impact: Intra-CSS Visualization
	 Invention Knowledge Flow: Intra-CSS vs Intra-CIT
	 Latent Relatedness: Intra-CSS Relatedness
	 Latent Relatedness: Google Patent Search Method Comparison


	to42emDiscussion
	 Inventive Descriptors
	 Patent Jargon and Enabling Language - ``Start Words"
	 Weighted Patent Claims
	 Predictive models

	to52emConclusion
	to CITED LITERATURE
	to0VITA
	to APPENDICES
	to      Appendix A
	to      Appendix B
	to      Appendix C
	to      Appendix D
	to      Appendix E
	to      Appendix F
	to      Appendix G
	to      Appendix H
	to      Appendix I
	to      Appendix J
	to      Appendix K
	to      Appendix L
	to      Appendix M
	to      Appendix N
	to      Appendix O
	to      Appendix P
	to      Appendix Q

