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Summary 

This dissertation aims to gain a fundamental understanding of how machine-based 

statistical learning (ML) can contribute and be applied to the realm of urban metabolism. 

Along with substantial computational advances, a deluge of ML algorithms has been 

successfully applied to many domains—although most applications at the time of this 

writing have focused on the processing of images and sounds. In the realm of urban 

planning and urban engineering, ML approaches have often been viewed as “mystical.” 

As acknowledged by many, the use of ML has received some reluctance in domains such 

as transportation due to their current limitations, often related to poor or lack of 

interpretability. In this sense, this dissertation fills knowledge gaps in the application of 

ML. In particular, the efforts are put into addressing interpretability (i.e., explainability), 

incorporating domain knowledge, and handling uncertainty to better capture patterns in 

resources use and human behaviors, providing more realistic conclusions in decision-

making systems for urban metabolism. Furthermore, this dissertation also contributes to 

various domains in urban energy and resources consumption studies as these fields have 

not been exposed extensively to the realm of ML at the time of this writing. 

Chapter 2 primarily focuses on investigating the capability and applicability of 

ML—that is, artificial neural networks (ANN) for the application of discrete choice 

models in the field of transportation. Four different types of ANN models are used to 

model, predict, and evaluate the behaviors, and compare modeling performances with 

traditional modeling methods such as MNL. These models are also used to interpret 

behavioral shifts based on sensitivity analysis. In particular, the series of analysis 

conducted in this chapter aimed to answer the question about how to learn and validate 

ML models for minimizing overfitting issues.  
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Summary (continued) 

Chapter 3 aims to provide useful insights on several technical challenges, 

including a selection of modeling methods and data availability in modeling tasks, for 

the case of end-use water consumption. Specifically, 12 modeling methods grouped into 

two general categories—parametric models and non-parametric ML models—are 

adopted to model and predict household water use, based on two different data scenarios. 

The results reveal that the algorithmic properties of rule-based methods with boosting 

machines (i.e., gradient boosting machine (GBM)) are more suitable to analyze data that 

may include unobserved heterogeneity between users, partly thanks to their 

discriminative nature. Thus, this chapter provides useful technical insights into modeling 

techniques through a thorough review of modeling techniques and a technical discussion 

(see details in 3.4 and 3.7). The interpretability of ML techniques (e.g., GBM) is not 

discussed in this chapter, but it is studied in another article from the author of this 

dissertation—not included in this dissertation—that aimed to investigate attitudes and 

behaviors toward autonomous vehicles by using boosting machine. In general, ML 

models are interpreted based on the model-agnostic or model-specific method—e.g., 

feature importance, partial dependence. 

Chapter 4 adopts different ways to enhance the interpretability of ML models not 

only to incorporate domain knowledge but also to handle uncertainties in modeling tasks. 

Specifically, the key concept of this chapter is to separate knowledge, model, and 

inference (e.g., probabilistic reasoning) in constructing decision-making systems (a.k.a., 

reasoning systems).  
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Summary (continued) 

Toward this goal, this chapter uses probabilistic graphical models (PGM) with Bayesian 

inference (PGM-B) that coherently manipulate and quantify uncertainties through the use 

of probability theory and graph theory. The PGM-B can be adapted to any modeling 

technique to infer the full distributions of interest based on the PGM used. Specifically, 

variational inference (VI) is used to approximate probability densities, based on ML 

algorithms. To investigate applicability, this chapter also derives a way to develop a 

PGM-B to address travel mode choice behaviors based on several assumptions and under 

different specifications (i.e., level of pooling). In particular, these frameworks are derived 

to capture unobserved heterogeneity and quantify uncertainty by inferring the full 

posterior distributions. Prediction performances are also validated and compared with 

existing random utility models (RUM). 

The last chapter concludes this dissertation and offers some future work directions. 

Overall, the chapters in this dissertation fill important theoretical and technical 

knowledge gaps in the realm of urban metabolism and urban modeling in the era of 

Artificial Intelligence (AI). In particular, the chapters focused not only on providing ways 

to take advantage of ML approaches, but also to address some of their limitations—e.g., 

interpretability, uncertainties. The principles and practical applications of Data Science 

can be further used to develop novel and creative approaches to gain a fundamental 

understanding of many other characteristics of cities that are not related to urban 

metabolism. Simultaneously, the ability to understand these other characteristics can 

shed lights into making cities more sustainable and resilient.  
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1 Introduction 

 

“A set of things working together as part of a mechanism or an interconnecting network; a complex whole.” 

(Definition of System, Oxford Dictionary)  

 

The term “system” is commonly used in the research realm on cities or urban areas. The 

definition of a system from the Oxford Dictionary contains two key terms for the research 

presented in this dissertation: an interconnecting network and a complex whole. Broadly, a city is 

treated here as a complex system, as the collection of interconnected components (i.e., parts) 

that are fundamentally utilized by people living in this system. In particular, examples of 

interconnected components include infrastructure (e.g., transport and water networks; parks; 

buildings) as well as resources (e.g., electricity, water, fuel, vehicles, electronic devices) that 

make use of infrastructure. In addtion to these components, human behaviors associated with 

the interconnected components are a key aspect of this dissertation.  

To illustrate this point, smartphones have become ubiquitous and they even guide our 

lives in many respects such as by recommending where and how to make a trip. In fact, they 

require interconnected infrastructure systems that integrate telecommunication infrastructure 

with the power grid that themselves depend on other infrastructure systems to generate 

electricity such as transportation and water systems. Moreover, transportation also relies on 

the water system, since contingencies on water systems such as floods will make it impossible 

to use it. As seen in these examples, an urban system is formed by multiple interdependent 

infrastructure systems that often function simultaneously (Derrible 2019).  
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As a result, the focus of studying infrastructure includes the study of flows of resources 

in cities that characterize the functioning infrastructure and that are fundamentally associated 

with human behavior. Providing the necessary resources and energy for a growing population 

that also has a growing appetite for resources and energy represents a major challenge for 

today’s engineers, planners, and policymakers. This is particularly relevant as cities are 

already the sites of tremendous flows of energy and materials (Beloin-Saint-Pierre et al. 2017). 

In addition, cities are continuously evolving, and over the half of the world’s population now 

resides in cities and that number is expected to be increased to around 70% by 2050 (“2018 

Revision of World Urbanization Prospects” 2018). Naturally, the production and 

consumption of resources by people to meet their own needs and desires is also interrelated 

and interconnected.  

 

1.1 Urban Metabolism: Resources Consumption Behaviors and Flows 

1.1.1 Definition of Urban Metabolism 

The concept of urban metabolism has inspired new ways of thinking to understand 

how materials and energy are used to meet peoples’ needs. Wolman (1965) conceived the 

metabolism of cities assessing the environmental impacts of urban development (Wolman 

1965). In particular, Wolman estimated the footprints of interconnected urban infrastructure 

systems by quantifying the overall flow of resources and wastes for a hypothetical urban area 

of one million people. More recently and formally, Kennedy et al. (2007) define urban 

metabolism as “the sum total of the technical and socio-economic processes that occur in 

cities, resulting in growth, production of energy, and elimination of waste.” In particular, the 
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definition presented by Kennedy et al. (2007) encompasses most of the components and flows 

in urban systems that can be analyzed in urban studies. Thus, more practically, this definition 

suggests that urban metabolism can be seen as a series of models for individual or multiple 

components of cities to explore resource consumption behaviors and their flows in urban 

systems. 

 

1.1.2 Interdisciplinary Perspectives of Urban Metabolism and Sustainability 

Many studies have analyzed the interdisciplinary nature of urban metabolism (Barles 

2010; Beloin-Saint-Pierre et al. 2017; Broto et al. 2012; Kennedy et al. 2011). Partly because 

they are from different fields (e.g., industrial ecology, economics), these studies used diverse 

modeling methods to measure various components of urban metabolism. Generally, studies 

disaggregate the entire urban systems into separate components (i.e., infrastructure; resources 

supply and demand) and develop individual models to address single or multiple issues across 

disciplines (Kennedy et al. 2011). Despite the differences in disciplines, they share common 

goals such as minimizing resources consumption that partly depends on human behavior.   

The field of industrial ecology mostly focuses on describing and evaluating material 

resources flows and related environmental impacts (e.g., GHG emissions) on large systems, 

called Material Flow Analysis (MFA), later expanded to Material and Energy Flow Analysis 

(MEFA). MEFA is used for the integrated assessment of mass and energy flows in urban 

systems (Beloin-Saint-Pierre et al. 2017; Kennedy et al. 2011). From an analogous, although 

different, perspective, numerous analyses were conducted in economics (e.g., environmental, 

political, urban economics), using loosely similar approaches to industrial ecology, to explore 
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the relationships between human behavior and related impacts on urban systems (e.g., 

negative externalities). The purpose of these studies is often virtually identical to the field of 

urban metabolism, such as to minimize social costs (e.g., resources consumption). 

Nonetheless, and using economic theory, these studies are generally not classified as urban 

metabolism studies (Beloin-Saint-Pierre et al. 2017). This is in part because they used different 

terminologies and perspectives while pushing themselves into their own boundaries of the 

economic realm (Broto et al. 2012).  

By and large, and regardless of the discipline and theoretical background, urban 

metabolism studies tend to share common concerns, and among these concerns, resource 

consumption often comes first. 

 

1.1.3 Challenges in Urban Resources Consumption Modeling   

Accurately modeling resource consumption behaviors is key to determining how 

infrastructure systems are used and how they can perform better. This is particularly the case 

now as cities are expanding and as urban systems tend to be highly interdependent (Derrible 

2016b). In addition, we are living in the era of Big Data, and enormous amounts of data are 

generated from virtually everything everywhere. When it comes to cities, millions of data 

points about most urban systems are simultaneously collected and stored. This collected 

information is often used to guide our everyday decisions, and it is also utilized to predict 

future activities. For example, smart metering devices for urban infrastructure resources (e.g., 

water, electricity, fuel) can not only provide information about resource consumption 

behaviors in real time, but they also suggest and guide users on how to consume less. 
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Nevertheless, this deluge of data is useless until relevant knowledge is extracted or unknown 

quantities are inferred (Robert 2014a).  

 

1.1.4 Dilemmas in statistical learning 

The field of statistical learning—that includes machine learning (ML)—has often 

focused on supplementing and tailoring algorithms for a certain problem or phenomenon to 

output accurate predictions. In general, there is a trade-off between modeling performance 

(e.g., prediction accuracy) and interpretability when selecting a learning algorithm and an 

approach. Some models such as parametric models are often considered more easily 

interpretable than nonparametric models that use complex algorithms (a.k.a., black box). In 

predicting and modeling discrete choice problems, for instance, parametric approaches (e.g., 

the family of logit models) have been predominantly used since they are intuitive and more 

easily interpretable based on strong theoretical backgrounds (e.g., random utility theory). 

Specifically, these approaches yield parameters that may be used to evaluate the impact of 

policies, economic changes, and technological adaptation. Nonetheless, the predetermined 

assumptions in traditional parametric models (e.g., conditional logit) can lead to biased 

estimations and misleading predictions. Moreover, interactions between the explanatory 

variables (e.g., the nonlinearity of attributes) are often neglected since it is difficult to represent 

them in a linear function (e.g., conditional and threshold effects). One way to take this issue 

into account is by introducing additional variables (e.g., polynomial and interaction terms) 

either by considering all possible combinations of explanatory variables or by measuring 

empirical relationships. Nonetheless, it is practically impossible to identify all the interactions 

between all the variables as well as to identify the necessary variables. Although flexible 
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modeling methods (e.g., mixed logit) can have better modeling performances than others by 

relaxing IIA assumptions, predetermined structures and assumed linearity in the underlying 

functions still make it difficult to capture or infer high degrees of nonlinearity in a dataset.  

Over the last decade, in particular, the application of ML has rapidly increased and 

proven to be successful in many real-world applications. This success was partly driven by the 

vast expansion of computational means, by the development of improved ML algorithms (e.g., 

deep neural network), and by the availability of extensive information (a.k.a., Big Data) 

(Bishop 2013). Besides, the convergence of multi-disciplinary efforts in the realm of modeling 

has contributed to enhancing the level performance and applicability of ML, and show 

relatively high performance to analyze a wide variety of modeling tasks compared to 

parametric approaches (Lee et al. 2018b; Wang and Ross 2018). In part, it is due to the fact 

that ML models possess fewer predetermined assumptions than the parametric models while 

adopting complex algorithms and myriads of sub-models (e.g., local nonparametric 

estimators) thanks to significant advancement in computational ability. Despite a high degree 

of predictive power, the general criticism about many ML techniques is their lack of 

interpretability due to their reliance on machine-based repetitive computation. This 

interpretable issue makes it difficult to incorporate domain knowledge. Future approaches 

should try to possess the advantages of both modeling approaches, especially for 

interpretability and prediction performances in parametric and ML model, respectively. 
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1.2 Machine-based Statistical Learning  

1.2.1 Machine-based Statistical Learning 

Due to the interdisciplinary nature and breadth of the general realm of machine 

learning, this dissertation purposedly uses machine-based statistical learning—the same 

acronym ML is used. Broady, statistical learning refers to a set of statistical tools for modeling 

and understanding data. Statistical learning can be classified into two main categories of 

learning: supervised and unsupervised. Supervised statistical learning involves developing 

statistical models to infer or predict output(s) based on a set of inputs. In contrast, 

unsupervised statistical learning is used to explore relationships and structure from data, 

without supervising output(s). In addition to these main categories, four types of learning 

methods exist that combine supervised and unsupervised learning features: (1) semi-

supervised learning, (2) active learning, (3) reinforced learning, and (4) transfer learning. The 

first two learning methods can be applied to a particular case in which possible output values 

are limited or missing. Reinforced learning is also called goal-oriented learning, which output 

values are given in the form of reward for a set of actions in an environment. Lastly, transfer 

learning refers to a model developed for a certain problem (i.e., either the same or different 

domain) that can be used as a starting point for a model on a different by the dependent 

problem. Recently, these statistical learning methods have increasingly been adopted in many 

disciplines thanks to the addition of machine-based automation; i.e., ML.  

ML is a set of self-adaptive methods that blend probabilistic and nonparametric 

features, that can automatically capture patterns in data, and that then use hidden machines 

(e.g., hidden layers in artificial neural networks) to infer or predict unknown quantities 

(Bishop 2006a; Robert 2014a). In particular, probabilistic features are used to explain 
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uncertainty in modeling (Robert 2014a). For instance, it is possible that a statistical learning 

model returns a prediction for some unseen information that may lie outside of given data 

distribution. Naturally, this is an unreasonable prediction, which then becomes an error in 

the model. Nonetheless, the model may provide a different prediction while having the same 

information. This is but one example of uncertainty in modeling, and there are other forms of 

uncertainty, including: (1) noise in the observed data (e.g., measurement or sampling errors), 

(2) model parameters (e.g., the coefficient of regression models), and (3) model selection (e.g., 

modeling techniques or structure of model). As datasets about urban systems become more 

complex, and combined with human behaviors, addressing uncertainty issues in statistical 

modeling becomes fundamental.  

In addition to probabilistic features, nonparametric features in ML are used to infer 

unknown information while making as few predetermined assumptions as possible (Friedman 

et al. 2001; Ghahramani 2015; Robert 2014a). Put differently, nonparametric approaches can 

be inherently adapted to the data without assuming the parametric function form such as 

/(1|3) is linear in the inputs (3) to predict the output (Y) or that the linear model reasonably 

fits along with a flat hyperplane (Hastie et al. 2009; James et al. 2013; Kuhn and Johnson 

2013). This also means that ML models use infinite-dimension to infer unknown information 

(Friedman et al. 2001). For instance, ML models including nonparametric features (e.g., 

kernel density estimation) perform stochastic local optimization rather than single global 

optimization. Thus, they are likely to decrease biases while balancing variances (i.e., trade-

off bias and variance), and they can provide more accurate predictions than traditional 

statistical models.  

1.2.2 Limitation of Machine-based Statistical Learning 
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While the most relevant property of statistical modeling is to produce accurate 

predictions, the second most relevant may be how the model generates results. In other words, 

how interpretable a model is. When models adopt a more complex structure, their structures 

become less interpretable. This is particularly relevant for ML models that often face this issue 

because of their complex and “unknown” structures. For instance, deep neural networks 

(a.k.a deep learning) contain a set of automated features (e.g., hidden layers) that aim to 

capture and infer unknown quantities.  

Interpretability refers to “the degree of which human can understand the cause of a 

decision” (Doshi-Velez and Kim 2017a; Miller 2017). Specifically, stating that a model has 

better interpretability than another model means that humans can more easily comprehend 

why certain decisions (inference or prediction) were made. That being said, a model does not 

need to be interpretable to make accurate predictions; however, only an accurate prediction 

may not be enough information that solves the given problem (Doshi-Velez and Kim 2017a; 

Miller 2017). In other words, predictions produced by a model should inform as much 

information (e.g., through causal latent variables) as possible to solve real-world problems, 

and it is fundamental to other important goals in the realm of statistical learning such as 

unbiasedness, reliability, causality, and usability (Doshi-Velez and Kim 2017a; Kim et al. 

2014). 

As for the application of ML to address real-world problems, researchers typically try 

to select a suitable method among existing ML techniques and map their problem onto it—

often influenced by their knowledge and familiarity with a specific method. The selected 

method often requires some kind of modifications that correspondingly require in-depth 

technical understanding of the algorithm and its application. In this sense, methodological 
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concepts and techniques that involve these tailored algorithms often become more 

complicated than already existing models, and researchers are left with a deluge of modeling 

algorithms. As mentioned earlier, the era of Big Data is creating unprecedented opportunities 

for researchers—especially in the ML community—to exploit the power of data-driven 

approaches, but few are able to apply and adapt ML algorithms properly. In the application 

of discrete choice models (DCM) in the field of transport, for instance, rarely do the models 

and inference techniques for DCM exactly correspond to some existing ML techniques. In 

addition, despite having been successful at its particular task, built models are often not 

applicable to other use cases. As a result, if a problem and a corresponding application change, 

the built model will have poor accuracy and it will have to be substantially modified.  

 

1.3 Objectives 

The main goal of this dissertation is to gain a fundamental understanding of how 

machine-based statistical learning (ML) can contribute and be applied to urban 

metabolism. As a by-product, this dissertation fills knowledge gaps in the application of ML. 

In particular, the efforts are put into addressing interpretability (i.e., explainability), 

incorporating domain knowledge, and handling uncertainty to better capture patterns in 

resources use and human behaviors, providing more realistic conclusions in decision-making 

systems for urban metabolism. Furthermore, this dissertation also contributes to various 

domains in urban behavior studies as these fields have not been exposed extensively to the 

realm of ML at the time of this writing. More specifically, the objectives of this dissertation 

are to:  
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• Investigate the capability and applicability of ML methods such as ANNs to 

predict mode choice behaviors and compare modeling performances with traditional 

modeling methods such as MNL, and also interpret behavioral shifts based on 

sensitivity analysis, 

• Address two technical dilemmas of modeling resource use and behavior: (1) data 

availability and (2) selection of modeling methods, and provide useful technical 

insights into modeling techniques, 

• Suggest a modular probabilistic ML modeling framework that can be adapted with 

any algorithms and enhance the interpretability of ML models not only to 

incorporate domain knowledge but also handle uncertainties in modeling tasks. 

These objectives are achieved sequentially in chapters 2, 3, and 4 that are summarized below. 

 

Chapter 2 investigates the capability and applicability of ML models to the field of 

transportation. Specifically, discrete mode choice modeling is a fundamental part of travel 

demand forecasting. To date, this field has been dominated by parametric approaches (e.g., 

logit models), but non-parametric approaches such as Artificial Neural Networks (ANN) 

possess much potential since choice problems can be assimilated to pattern recognition 

problems. In particular, ANN models are easily applicable with the higher capability to 

identify nonlinear relationships between inputs and designated outputs to predict choice 

behaviors. This chapter investigates the capability of four types of ANN models and compares 

their prediction performances with a conventional multinomial logit model (MNL) for mode 
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choice problems. The four ANN models are: Backpropagation Neural Network (BPNN), 

Radial Basis Function Networks (RBFN), Probabilistic Neural Network (PNN), and 

Clustered PNN. To compare the modeling techniques, we present algorithmic differences of 

each ANN technique, and we assess their prediction accuracy with 10-fold cross-validation 

method. As for interpreting ANN models, we evaluate the contribution of explanatory 

variables by conducting sensitivity analyses on significant variables.   

Chapter 3 aims to explore technical challenges when modeling resource consumption 

behaviors, with a focus on residential water consumption. Specifically, predicting residential 

water demand is challenging because of two technical questions: (1) which data and variables 

should be used and (2) which modeling technique is most appropriate for high prediction 

accuracy. To address these issues, this chapter investigates twelve statistical techniques, 

including parametric models and machine learning (ML) models, to predict daily household 

water use. In addition, two data scenarios are adopted: (1) one with only six variables, 

generally available to cities and water utilities (general scenario), and (2) one with all 19 

variables available from the Residential End-Use 2016 database (REU 2016). The results for 

REU 2016 indicate that ML models outperform linear models. In particular, gradient 

boosting regression (GBR) regression performs best with an 45678  of 0.69 compared to 0.54 

for linear regression. The performance gap between ML and linear models becomes even 

wider for the general scenario with an 45678  of 0.60 for GBR compared to 0.33 for linear 

regression. The finding in this chapter can be useful to researchers, municipalities, and utilities 

who are seeking novel modeling techniques that can provide consistent modeling 

performances—i.e., high prediction accuracy—depending on data availability. Future work 

could include the development of new measures to increase the interpretability of ML models 
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to better understand causal relationships between the independent variables and daily 

household water use. 

Chapter 4 provides a flexible probabilistic ML modeling framework for DCM in the 

field of transportation. Toward this goal, this chapter uses the concept of probabilistic 

graphical models (PGM) and Bayesian inference (PGM-B) that coherently tackle uncertainty 

issues through the use of probability theory. The framework can be adapted to any ML 

algorithm and can infer the full distributions of the model’s parameters. In particular, PGM-

B can be separated into three sub-processes: representation, modeling, and inference. 

Modeling tasks begin with considering all kinds of quantities governing the problem, and 

these are treated as random variables. Complex relationships between the random variables 

are intuitively and compactly represented as a graphical structure within the generative 

process of the algorithm. Once the PGM framework is constructed, the goal is to infer the full 

posterior distributions of interest through Bayesian inference. Specifically, this chapter uses 

variational inference (VI) that leverages techniques from ML to approximate probability 

densities. To investigate the applicability of PGM-B, this chapter mainly derives a way to 

develop a PGM-B to address travel mode choice behaviors. In particular, three different 

PGM-B frameworks are derived to represent mode choice behaviors based on our 

assumptions and under different specifications (i.e., level of pooling), which can capture 

unobserved heterogeneity and quantify uncertainty by inferring the full posterior distributions. 

In addition, prediction performances are validated and compared with existing random utility 

models (RUM). 
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The last chapter, “Conclusion and Future Work,” proposes future research 

opportunities for machine-based statistical learning of urban metabolism, which leverages 

unprecedented opportunities brought by the era of Big Data and Data Science. 
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2 Comparison of Four Types of Artificial Neural Networks and a 

Multinomial Logit Model for Travel Mode Choice Modeling 

 

(previously published as Lee, D., Derrible, S., & Pereira, F., 2018 “Comparison of Four 
Types of Artificial Neural Networks and Multinomial Logit Model for Travel Mode 
Choice Modeling”, Transportation Research Record, doi.org/10.1177/0361198118796971) 

 

 

2.1 INTRODUCTION 

In travel mode choice modeling, and based on a set of given attributes, the objective is 

to model the choice processes and behaviors of travelers faced with several travel mode 

alternatives. Being able to model mode choice and predict future trends is critical to 

transportation planners and policy makers. Travel behaviors are typically examined by using 

statistical survey techniques such as Reveal Preference (RP) and Stated Preference (SP), in 

which respondents are asked to present their choices and preferable scenarios, respectively 

(De Carvalho et al. 1998). The surveys yield discrete choice data that can then be used to 

calibrate travel mode choice models that are fundamental components of disaggregate travel 

demand modeling approaches, e.g., for activity-based modeling (ABM).  

As the main parametric modeling approach, random utility modeling has been the 

dominant technique used in the literature since the 1980s to investigate parametric 

relationships between mode choice and its possible determinants. In particular, logit 

models—one of the random utility models—gained popularity in the travel mode choice 

realm because they are based on simple mathematical formulations while accounting for 
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unobserved variables (i.e., stochasticity). Logit models (e.g., multinomial logit (MNL)), 

however, assume that each choice is independent and identically distributed (IID), which can 

lead to biased estimations and misleading predictions. Moreover, interactions between the 

explanatory variables (e.g., the nonlinearity of attributes) are often neglected since it is 

difficult to represent them in the utility function (e.g., conditional and threshold effects). One 

way to take this issue into account in the linear utility function is by introducing additional 

variables (e.g., polynomial and interaction terms) either through considering all possible 

combinations of explanatory variables or by measuring empirical relationships (Bentz and 

Merunka 2000). Nonetheless, it is practically impossible to identify all the interactions 

between all the variables as well as to identify the necessary variables. MNL tries to overcome 

this issue by using domain knowledge as much as possible. Although the flexible Random 

Utility Model (RUM) methods such as mixed logit (Bhat 2001; Shen 2009; Train 2009) can 

have better modeling performance than MNL by relaxing IIA assumptions, predetermined 

structures and linear characteristics of underlying functions still make it difficult to capture or 

infer high degrees of nonlinearity in a dataset (James et al. 2013; Kuhn and Johnson 2013; 

Train 2009). 

In contrast, algorithmic non-parametric approaches have proven to be incredibly 

powerful to study urban systems (Ahmad et al. 2016, 2017; Ahmad and Derrible 2015a; 

Cottrill and Derrible 2015; Derrible 2016a; b; Derrible and Ahmad 2015; Karduni et al. 2016). 

Specifically, Artificial Neural Networks (ANN) present higher adaptability in identifying 

nonlinear interactions (Bengio and Bengio 2000; Wong et al. 2017). Contrary to the logit 

model that deals with nonlinearity issue by reducing the “complexity” of the dataset, ANN 

can capture nonlinear properties more easily through additional units (e.g., hidden layers) 
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without assuming predetermined functional forms (De Carvalho et al. 1998; Dougherty 1995; 

Sayed and Razavi 2000; Xie et al. 2003).  Nonetheless, a commonly acknowledged 

disadvantage of ANN is their lack of interpretability, and they are often associated to black 

boxes. Another disadvantage is their relative incapability to use previously acquired 

knowledge (i.e., domain knowledge). Despite these challenges, ANN tends to outperform 

logit models (from the multinomial to nested logit models (Hensher and Ton 2000; 

Mohammadian and Miller 2002; Xie et al. 2003). Among different types of ANN models, 

several studies have used backpropagation neural networks (BPNN) to model mode choice 

(Golshani et al. 2017; Hensher and Ton 2000; Sayed and Razavi 2000). BPNN tend to achieve 

high prediction accuracy and are easy to apply. Nonetheless, many different types of ANN 

models exist, often superior to BPNN, combining both a strong statistical background with 

machine learning features. Probabilistic neural networks (PNN), for example, are derived by 

incorporating statistical features (e.g., Bayesian decision rule and kernel density estimation 

(KDE)) into the structure of the neural network. In addition, additional treatments on the 

dataset or network structure are applied to obtain more efficient and reliable models. 

In this chapter, we investigate the feasibility and capability of four ANN to model 

discrete mode choice behaviors and compare their prediction performance with a MNL. 

Specifically, there have been a limited number of articles that conduct comprehensive 

analyses on different types of ANN algorithms to model discrete choice in the field of 

transportation. In this study, we focus on four types of ANN: Backpropagation Neural 

Network (BPNN), Radial Basis Function Networks (RBFN), Probabilistic Neural Network 

(PNN), and Clustered PNN (CPNN). As a typical travel survey, the Chicago Metropolitan 

Area for Planning (CMAP) Travel Tracker Survey dataset collected from 2007 to 2008 is used. 
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This study consists of six sections. After this introduction, section 2.2 presents the five 

methods for discrete choice modeling. Section 2.3 explains how the data was prepared. 

Section 2.4 provides the model specifications for MNL and ANN models. Section 2.5 presents 

the results and a discussion. Section 2.6 is the conclusion.  

 

2.2 METHODOLOGIES: DISCRETE CHOICE PROBLEMS 

2.2.1 Random utility model: Logit models 

The logit model is the most popular type of random utility model derived from 

consumer economics theory, and it was initially developed by McFadden (Domencich and 

McFadden 1975; Train 2009). In utility maximization behavior, an individual 9  makes a 

decision to select one choice among discrete alternatives, by evaluating their associated 

attributes 	;. The individual 9 chooses the alternative < that provides the largest utility: 

=>? 	> 	=>A	∀	< ≠ 	D          (1)  

In reality, researchers do not observe the complete utility of the individual. Thus, the 

utility can be classified into two parts: an observed utility E>?  and an unobserved utility 

F>?.	The observed utility generally contains two sets of attributes: 1) covariates associated with 

both the individual and the alternative 3>? and 2) decision maker characteristics, H> (Train 

2009). The observed (stated) utility (E) is a value determine from a linear combination of the 

attributes used, which captures the attractiveness of an alternative bounded to the given model 

specification as follows: 

E>? = E(3>?, H>)		          (2) 
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In contrast, the unobserved utility 	F>?  cannot be observed by researchers. This 

unobserved part mainly results from the specification of the observed utility E>?. In practice, 

it is impossible for statistical approaches to include all possible attributes. Therefore, 

researchers treat the unobserved terms as a stochastic element. Specifically, the logit model is 

derived by assuming that each unobserved terms, FK?  are independently and identically 

distributed extreme values—i.e., Gumbel and type 1 extreme values. By combining two 

utilities, we can get the probability of individual 9  choosing alternative L  by solving the 

mathematical formulation: 

M>7	 = 	
NO

PQRS

∑ NOPQRUV
UWX

         (3) 

where ;>A is a vector of observed explanatory variables to choose a given alternative, and Y′ 

is parameters for the observed utility. For more technical details about logit models, see 

(Train 2009). 

 

2.2.2 Artificial Neural Networks 

Artificial Neural Networks (ANN) essentially emulate decision-making processes 

occurring in the brain. As opposed to logit models that assume linearity in the estimation, 

ANN can algorithmically construct models that are based on nonlinear relationships between 

determinants. Figure 2-1 (b) shows multi-layer perceptron, MLP that has been widely adopted 

in most neural network models. In Figure 2-1 (a), the process of predicting output using a 

single neuron (i.e., a basis function) is similar to the logit model, since it is based on a linear 
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function. ANN, however, are constructed by combining multiple neurons to identify 

nonlinear relationships between a choice and its associated explanatory variables.  

 

 

Figure 2-1. Structure of Artificial Neural Network – (a) single neuron (perceptron) network, 
(b) MLP with backpropagation process (a.k.a., backpropagation neural network, BPNN) (c) 
feed-forward MLP with radial basis function (a.k.a., radial basis function neural network, 
RBFN) (d) feed-forward MLP with radial basis function and Bayesian classifier (i.e., Parzen’s 
window classifier) (a.k.a., probabilistic neural network, PNN) 

 

Several types of neural networks exist, and the differences between them mainly come 

from the nature of the basis function for each model. In the following subsections, we review 
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methodological details about four different types of neural networks, especially in their  

structural and mathematical differences. Table 2-1 compares these four ANN techniques 

including the main characteristics, advantages, and disadvantages of the four ANN models. 

 

Backpropagation Neural Network (BPNN) 

Backpropagation Neural Network (BPNN) is the most popular and simplest algorithm of 

MLP. The backpropagation process usually minimizes the error function (Equation 4) of the 

MLP by changing the value of the weights using a gradient descent method (GDM).  

/ = 	∑ ‖\′> −	\>	‖8^
>_`        (4) 

where E is the error, i is the number of training samples, y’ is the predicted values through the 

training, and \ is the actual values from the training dataset. Each neuron follows the same 

activation process as shown for a single neuron. Typical activation functions include the step, 

sigmoid, tanh, Rectified Linear Unit (ReLU), and the identity functions (Bishop 2006a). 

The hidden neurons are “activated” by receiving the sum products of input vectors a 

and their associated weights b. The output layer also obtains information from the hidden 

layer in the same manner. The final output, \′	is: 

\′(a,b) = 	c	(∑ d7
(8) ∙ ℎ	(∑ g>d>

(`) +	di
(`)) +	di

(8))	j
>_`

j
7_`    (5) 

Where a is input vector, b is the vector of associated weights, d(`) are the weights between 

the input layer and the hidden layer,  d(8) is the weights between the hidden layer and the 

output layer, and the ℎ(	) and c(	) functions are the activation functions (see Figure 2-1 (b)).  
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The drawbacks of the backpropagation process notably come from the GDM that does 

not guarantee a global minimum is reached when local minima exist. Thus, the results usually 

vary each time the BPNN is trained. Second, no “optimal” rule exists to set the structural 

parameters of BPNN such as the number of hidden layers and their associated number of 

neurons; although it is generally believed that a larger number of neurons per hidden layer 

increases the accuracy of the model estimation up to a point (Bishop 2006a). Nonetheless, in 

general, one or few hidden layers are sufficient. Despite these limitations, it worth mentions 

that the BPNN is still the most dominant type of ANN used because it is simple to apply and 

it ensures relatively high accuracy.  

 

Radial Basis Function Networks (RBFN) 

A radial basis function network (RBFN) is also a feedforward network with three layers: an 

input, an RBF hidden, and an output layer (see Figure 2-1 (c)). In contrast to the BPNN, the 

RBFN is formulated by a linear combination of Gaussian basis functions g(x) as the outputs 

of the hidden layer: 

Output Score =	∑d ℎ(g(x))       (6) 

where ℎ(	) is an activation function, d is a weight between a hidden neuron and an output 

neuron, and mnopno	qr)st  is an output for each given class. The basis function g(x)  is 

conceptually obtained by calculating the distance between two vectors based on the Gaussian 

function whose outputs are inversely proportional to the distance from the mean: 

g(x) = 	 `

u(8v)
X
w
exp z− ‖a{|}‖w

8uw
~ = 	exp	(−Y‖a − |}‖8)   (7) 



24 
 

where a is input vector with � variables (vector to be classified) and | is a “prototype” vector. 

To be specific, this equation represents the function of the Euclidean distance between the 

new input vector and the prototype vector. Essentially, the term Y determines the width of 

the Gaussian curve, which controls the decision boundaries. The prototype vector, |} , is 

prestored in each hidden neuron, and it is a preselected data point from the training set, 

whether randomly or not (discussed later). Each hidden neuron compares the input vector to 

its prototype vector to measure how “similar” they are.  

The neurons in the output layer are the sum (linear combination) of the weighted 

hidden layer neurons (i.e., output score), and the final output, \′ is determined by activation 

functions such as sigmoid function. 

\′ = Ä(∑ d> ∙ exp	(−Y‖a − |}‖8^
>_` ))     (8) 

To calibrate the weights, the GDM is also used. By using the outputs (i.e., activations) 

from each RBF hidden neuron as inputs, the gradient descent process is separately conducted 

for each output class. Although it tends to be superior to BPNN network structure, similar to 

BPNN, there is no guarantee that a global minimum in found when optimizing the weights 

in RBFN.  

The performance of an RBFN depends on the number of neurons in the RBFN hidden 

layer and their prototype vectors. The simplest way to determine the k prototypes is to select 

them randomly. While it can improve the accuracy of the model, using more prototypes 

increases the computational costs of the algorithm, and it may generate overfitting issues as 

well. Another approach to select the prototypes is first to use a clustering algorithm (discussed 

later).  
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Probabilistic Neural Networks (PNN) 

Probabilistic Neural Networks (PNN) add a Bayesian decision rule into the framework of 

RBFN (see Figure 2-1 (d)). Technically, PNN is derived from Bayes-Parzen classifiers 

(Masters 1995), which include Bayesian classification and classical estimators for probabilistic 

density function (PDF) (Specht 1988, 1990). Essentially, Parzen’s method (Parzen 1962) is 

first used to estimate the PDF of each class (i.e., travel modes) from the provided training 

samples based on a certain type of kernel. These estimated PDF can then go through a 

Bayesian decision rule in order to find a final decision.  

For any classification problem, a sample vector a is taken from a group of samples, 

and these samples are classified to the number of classes (i.e., alternatives). Specifically, we  

assume that the prior probability of a sample that belongs to class i is ℎ>, the loss associated 

with misclassifying that sample is r>, and the PDF for each of the populations ÄA(g) is known. 

Bayesian decision rule for classifying an unknown sample into the ith class can be applied as: 

ℎ>r>Ä>(g) > ℎ7r7Ä7(g)			∀	L ≠ 9      (9) 

The PDF for class 9, Ä>(g), represents the concentration of class i samples around the 

unknown sample. That is, the Bayesian decision rule chooses a class whether it has high 

density adjacent to the unseen (i.e., new) sample or misclassification cost or prior probability 

is high. However, in the Bayesian decision, the PDF for each class is usually known. 

Therefore, the Parzen’s method (Parzen 1962) is usually used to estimate the PDF. The 

univariate KDE was developed by Parzen and it then was extended to the multivariate case 
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by Cacoullos (Cacoullos 1966). The multivariate KDE for � random (independent) variables 

can be defined as: 

∅>(aÇ) = 	
`
^É
∑ Ñ^R
A_` (Ö{ÖRU

É
)       (10) 

where aÜ is the vector of independent variables with �	numbers, and aA	is kth training vector 

choosing class i; á> is the total number of observations in the training dataset for class i; à 

represents all kernel width for the number of variables (n),	à = [c̀ , c8,⋯ , cÜ]; c is a smoothing 

parameters representing kernel width (standard deviation; 	c is important to obtain an optimal 

PNN); W is the weight function, and the most popular type of weight function is Gaussian 

Kernel, which is mainly derived from the concept of Euclidean distance as:  

Ñzg − g>A àå ~ = t({
‖a{aRU‖w

8uw
ç )	      (11) 

By employing a Gaussian weight function, the PDF for choosing class 9 in the given 

multivariate input vector	a can be expressed as follows: 

∅é(a) = 	
`

èê(8v)
ë
wíë

∑ expèê
ì_` (− ‖a − g>A‖

8

2σ8å )    (12) 

The final classification decision for the input vector a can be obtained by applying 

Bayes decision rule as follows: 

ñ(g) = ós*max
>_	

(∅é(ö))       (13) 
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Clustered PNN 

The ANN using Gaussian KDE such as the PNN may encounter issues related to the size of 

the network. Specifically, without any pretreatment of the input dataset, the number of pattern 

neurons containing the prototype vectors is determined either by the number of training 

samples or by random selection during the training. Since each prototype vector plays a role 

in KDE by locating the center of the Gaussian distribution for measuring Euclidean distance, 

the number of pattern neuron can affect the model performance. As the number of pattern 

neurons gets larger, the structure of PNN will become more complicated and more 

computationally expensive. In previous studies, two feasible methods have been applied to 

the conventional PNN: 1) K-means clustering to determine the number of pattern neurons, 

and 2) self-adaptive learning for smoothing parameter (σ) (Kim et al. 2007; Monfort et al. 

2015; Yi et al. 2016). Here, this study employs the K-means clustering method. Although 

determining σ is directly related to the decision boundaries, this study simply assigns a certain 

value according to the knowledge of dataset and values selected in other studies.  

As an unsupervised learning technique, K-means clustering has been widely used to 

classify the data set into the number of clusters (Park and Jun 2009). Then, the centroid of a 

cluster (i.e., the mean value of the observations within the cluster) is defined by minimizing 

the distance between the observations belonging to a cluster and the center of the cluster (for 

details about K-means, see (Park and Jun 2009)). The centroids represent the centers of 

clusters in the Euclidean space, and they become new prototype vectors to measure a 

Euclidean distance in the pattern neurons. The K-means clustering process is separately 

applied to each choice alternatives. 
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2.3 Data 

The data used to test the four models comes from the Chicago Metropolitan Agency 

for Planning (CMAP) Travel Tracker Survey that was collected in 2007 and 2008. The Reveal 

Preference (RP) survey includes travel diary information as well as detailed individual and 

household socio-demographic information, for 10,500 households. The original database 

consists of four interconnected datasets containing household, person, place, and vehicle 

information. The first three datasets are consolidated to make dataset. 

Table 2-1. Description of Statistics 

Variable Description Mean Std.1) 

HHSIZ Number of household members 2.80 1.43 
HHWK Number of workers in household 1.49 0.92 
HHSTU Number of students in household 0.87 1.14 
FEMALE 1: if traveler is female, 0: otherwise 0.52 0.50 
EMPLY Employment status for traveler 1.59 1.05 
EDUCA** Education Level  3.77 1.91 
STUDE Student grade 2.64 0.74 
HHVEH** Number of vehicles in household 1.66 1.06 
BIKES** Number of bikes in household 1.48 1.76 
CAPINCOME** Capita income of household  0.75 0.37 
WalkTT Travel time for walk mode (hour) 4.76 3.92 
BikeTT Travel time for bike mode (hour) 1.32 1.53 
AutoTT Travel time for auto mode (hour) 0.88 0.91 
TransitTT Travel time for CTA mode (hour) 0.90 1.30 
AUTO_COST Total trip cost for auto (gas, toll, parking / $) 0.90 1.11 
Transit_COST Total trip cost for CTA ($) 0.96 1.12 
AGE** Traveler’s age 44.02 21.20 
ACT_DUR Actual activity duration (hours) 3.48 3.58 
WALK_ACC. 1: if the walking accessibility is within 0.30 miles, 0: 

otherwise 
0.08 0.28 

* Std.= Standard deviation 
** Employed with either the type of dummy or nominal or categorical 
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To merge the datasets, the ESRI ArcGIS package is used to identify interrelated 

geographical and travel information such as the location of the origins (O) and the 

destinations (D), walk accessibility, and the actual distance between ODs.  Since our focus is 

on the comparison of the five models, we only look at home-based trips. Other trips, such as 

the access and egress trips, transfer trips, and other nonhome-based trips are excluded in the 

dataset used for this study.  

In addition, the alternatives for the home-based trip are classified into four classes: 

walk, bike, transit (CTA bus and train), and auto. The original database contains only 2 to 3% 

of transit observations, which is an issue since the proportion of transit observations in the 

training and testing datasets can be significantly different (e.g., one of the two could have 0 

transit observations). To be able to fairly compare the model accuracies, we select to instead 

use a sub-sample of the original dataset to include more transit observations. Nonetheless, to 

assess the performance of each model to select poorly represented modes, we left the bike 

observations intact, which only account for about 4% of all observations. In the end, the 

dataset used includes 4,764 observations. It includes two sets of attributes as independent 

variables: (1) individual/household socio-demographic attributes and (2) travel attributes (e.g., 

travel time, cost, accessibility) (see Table 2-2).  
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Table 2-2. Comparison of Four Types of Neural Networks  

 BPNN RBFN PNN Clustered PNN 

Application Scope Classification/Regression Classification/ Regression Classification  Classification 

Classification Process Minimize sum squared 
errors by updating weights 

RBF and BPNN process  
Parzen PDF classifier 
(KDE and Bayesian 
decision rule) 

Use clustering methods 
and PNN process 

Advantages 

● Simple application to 
predict the patterns 

● Does not require any 
statistical features in the 
learning process 

● Easy to identify the 
magnitude of attributes 
based on weights 
(relative importance) 

● A variety of applications 
are available 

 

● Simpler format of 
Gaussian function 
enables to faster learning 
process than other 
Gaussian models 

● Radial basis function 
nodes can be substituted 
with different functional 
forms 

● Relatively performs well 
in both smaller and 
larger dataset 

 

● Simple architecture (no 
backpropagation)  

● More way to manage the 
algorithm by determining 
the shape of bell curve, 
specifically width (σ) 
(more specific than 
RBFN) 

● Relatively good accuracy 
in classification problem 

● Insensitive to the noise 
points 

 

● Smaller network size 
than ordinary PNN 

● Can avoid saturation of 
Parzen window that 
leads to misclassification 

● May be more applicable 
because it provides 
knowledge of relative 
importance between 
explanatory variables 

● Faster training time  

Disadvantages 

● Easily get stuck in local 
minima, resulting in 
suboptimal solution 

● Like a black box (not 
sure how to estimate the 
model) 

● Need sufficient 
observations 

● Prone to overfitting 

● Difficult to determine the 
σ values  

● Constructing network 
architecture is 
complicating. 

● Long training time  
 

● More computationally 
expensive than BPNN 
(prestored pattern 
neurons) 

● Saturated Gaussian 
function can lead some 
misclassification 

 

● May not provide higher 
prediction accuracy than 
PNN for discrete choice 
data 

● Varied by number of 
clusters determined in K-
means clustering 
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2.4 MODEL SPECIFICATION 

2.4.1 Variable scaling 

Discrete choice data contain a variety set of variables with varying scales and ranges. 

The different numerical properties among variables may result in estimation biases. 

Specifically, the PDF for the Gaussian kernel-based ANN (i.e., RBFN and PNN) cannot be 

estimated without any pretreatment of the input dataset. Moreover, it is preferable to 

normalize the input data when the sigmoid function is used in BPNN. Therefore, we 

normalize all values of attributes in the input dataset before training (estimating) the neural 

networks specifically; the non-normalized data was used for the MNL as is common in 

practice. The max-min normalization allows all attributes to be located ranging from 0 to 1:  

!" = 	 %&'()*
'+,*&'()*

	        (14) 

where x’ is the new value of the attribute, x is the original value of the attribute; A is the set 

of all values for a variable from entire data set (training and testing), and min0 and max0 

represent the minimum and maximum value of a variable respectively. 

 

2.4.2 Cross-validation  

Cross-validation is a technique used to evaluate model accuracy to prevent overfitting. 

To evaluate the performance, this study used both k-fold cross-validation method and holdout 

method. The holdout method consists of simply separating the dataset into a training (60%) 

and a testing (40%) set. Although the holdout method has been widely used for evaluating 

model performance, by its nature, it may lead to overfitting since only one dataset is used for 
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training. To overcome this issue, the 10-fold cross-validation is also employed, which ensures 

reliable model performance while minimizing overfitting problems common in machine 

learning.  

The 10-fold cross-validation process functions as follows. The data set is divided into 

ten subsets, and the ANN is trained 10 times. For each training (i.e., model estimation), one 

of the ten subsets is left for validating the trained model (a.k.a., test set), and the rest of nine 

subsets are used to form a training set. The cross-validation process is conducted for 10 times 

for 10 subsets, and the average accuracy is measured. In this chapter, the 10-fold cross-

validation is applied to the four ANN, and the MNL used to measure the overall model 

accuracy.  

Table 2-3. Multinomial logit model estimation for mode choice 

Variable Coefficient t-stat 

Alternative specific constant (Auto is base) 
  Walk 2.442 3.48 
  Bike -2.033 -11.41 
  Transit -1.097 -3.85 
Travel time × Auto -0.92 -2.06 
Travel time × Transit -1.51 -3.71 
Travel time × Bike -0.05 13.87 
Auto operating cost × Auto -1.25 -12.931 
Transit fare × Transit -2.229 -16.71 
Walk Accessibility × Transit -0.755 -8.12 
Walk Accessibility × Bike 0.424 2.74 
Bikes in HH × Bike 1.794 13.18 
Number of vehicles in HH × Walk -0.941 -2.08 
Number of vehicles in HH × Transit -1.131 -1.98 
Age over 75 × Walk -0.358 -4.91 
Age over 75 × Bike -1.224 -11.94 
Loglikelihood at constant: -4822.92 
Loglikelihood at final convergence: -4121.61 
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2.4.3 Logit model  

The same training dataset was used to calibrate the MNL, adding two extra dummy variables. 

The MNL is calibrated with SPSS and Biogeme (Bierlaire 2003a). The results suggest that 

household size, age, walk availability, vehicle fleets, travel time, and travel costs (i.e., gas 

price and transit fare) are statistically significant (Table 2-3).  

 

2.4.4 ANN Model  

The input dataset for the ANN consists of 14 input values (i.e., explanatory variables) 

and 4 target values (i.e., mode alternatives). The process of data transmission in the neural 

networks differs by ANN type.  For the BPNN model, we adopt the sigmoid activation 

function. We also use one single hidden layer (using multiple hidden layers did not improve 

the model performance). The number of hidden neurons was determined through the training 

process, and we used 21 neurons in the hidden layer. 

To run the kernel-based ANN (i.e., RBFN and PNN), the number of hidden neurons 

and activation function have to be determined. For the RBFN, the hidden neurons are 

activated by the Gaussian function, and the sigmoid function is applied to the output neurons. 

The number of hidden neurons is generally determined based on the size of data or in a 

random manner during the training process. In this study, the number of hidden neurons is 

optimally selected by the algorithm. We set the width of Gaussian function β to 0.2 based on 

the knowledge of the data and on previous values selected in other studies. For the PNN 

models, most modeling parameters are similar to RBFN, except for the activation function of 

the output neurons, which is not required in PNN because it is determined by the Bayesian 
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decision rule. For the Clustered PNN, 10 clusters for each alternative are partitioned with K-

means clustering.    

The ANNs are trained using the following four Python open source packages: Scikit-

learn (Pedregosa et al. 2011) for BPNN and 10-fold cross-validation, a combination of Theano 

(Al-Rfou et al. 2016) and Neupy (Shevchuk 2015) for PNN and RBFN, and a combination 

of Scikit-learn (Pedregosa et al. 2011) and Neupy (Shevchuk 2015) for Clustered PNN. In 

addition, all ANN models were run on a laptop computer with an average hardware 

specification (i.e., 6th generation inter processor with 8GB of RAM). Specifically, 

computational runtimes for ANN models were similar except for PNN that took 15% longer 

because of the KDE (specifically for the pattern layer). However, this extra time can be 

reduced with better hardware specification. In addition, it can be cut down by selecting a 

limited number of neurons in the pattern layer. 

 

Figure 2-2. (a) 10-fold cross-validation result for the models (b) comparison of accuracy 
between the models 

 

2.5 RESULT AND DISCUSSION 
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The results of the 10-fold cross-validation for the ANN model are presented in Figure 

2-2 (a). The results indicate that the CPNN model is relatively less sensible over each 

validation iteration than the BPNN and RBFN. This is because the BPNN and RBFN models 

are trained with GDM, which may find slightly different minimum values during cross-

validation. Furthermore, we compare the average model accuracy between all five models in 

Figure 2-2 (b). The results show that the four ANN models achieve better prediction 

accuracies than the MNL model. 

Table 2-4 presents the confusion matrix, in which each row and each column indicates 

the observed and predicted the number of travelers for each mode respectively. The overall 

model accuracy of the four ANN is around 80%, thus higher than the accuracy of the MNL 

with 70.5%. While the four ANN present similar accuracies, the prediction accuracies of each 

individual mode differ by ANN type. The PNN and CPNN notably show better prediction 

performance for poorly represented modes. Specifically, the CPNN has slightly better 

matching rates for the walk and bike modes, in part thanks to the preprocessing with K-means 

clustering.  

In addition to the overall accuracy, this study identifies the sensitivity of mode choice 

decisions from the two most important explanatory attributes: transit costs and auto costs. 

Unlike traditional regression models, ANN models cannot estimate the impact of explanatory 

variables on an outcome variable. Thus, sensitivity analysis can be exploited as a sensible 

option for examining the impact of explanatory variables. Figure 2-3 (a) and (b) present the 

result of sensitivity analysis and compare the results by the models for two different variables: 

auto cost and transit cost. In particular, we can see that the BPNN and MNL model are 

relatively more sensitive to the variations in two variables. As expected, transit users are more 
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likely to change their mode to auto when the gas price decreases. In contrast, auto users are 

relatively insensitive to increase in auto costs of 15% or lower.  

Table 2-4. Confusion matrix for model accuracy 

Test	Dataset	
(BPNN)	

Predicted	Choice	
Walk	
(114)	

Bike	
(44)	

Auto	
(958)	

CTA	
(473)	

Mode	
Accuracy	

Overall	
Accuracy	

O
bs
er
ve
d	

Ch
oi
ce
	 Walk	(187)	 68	 13	 73	 33	 36.4%	

79.4%	
Bike	(64)	 22	 17	 11	 14	 26.6%	
Auto	(824)	 7	 3	 781	 33	 94.8%	
Transit	(514)	 17	 11	 93	 393	 76.5%	

Test	Dataset	
(RBFN)	

Predicted	Choice	
Walk	
(93)	

Bike	
(27)	

Auto	
(859)	

CTA	
(610)	

Mode	
Accuracy	

Overall	
Accuracy	

O
bs
er
ve
d	

Ch
oi
ce
	 Walk	(187)	 64	 13	 67	 43	 34.2%	

78.4%	
Bike	(64)	 2	 10	 23	 29	 15.6%	
Auto	(824)	 17	 3	 719	 85	 87.3%	
Transit	(514)	 10	 1	 50	 453	 88.1%	

Test	Dataset	
(PNN)	

Predicted	Choice	
Walk	
(115)	

Bike	
(45)	

Auto	
(804)	

CTA	
(625)	

Mode	
Accuracy	

Overall	
Accuracy	

O
bs
er
ve
d	

Ch
oi
ce
	 Walk	(187)	 94	 7	 36	 50	 50.3%	

82.9%	
Bike	(64)	 6	 27	 23	 8	 42.2%	
Auto	(824)	 2	 5	 723	 94	 87.7%	
Transit	(514)	 13	 6	 22	 473	 92.0%	

Test	Dataset	
(CPNN)	

Predicted	Choice	
Walk	
(140)	

Bike	
(48)	

Auto	
(819)	

CTA	
(582)	

Mode	
Accuracy	

Overall	
Accuracy	

O
bs
er
ve
d	

Ch
oi
ce
	 Walk	(187)	 97	 11	 45	 34	 51.9%	

83.3%	
Bike	(64)	 9	 31	 10	 14	 48.4%	
Auto	(824)	 16	 4	 733	 71	 89.0%	
Transit	(514)	 18	 2	 31	 463	 90.1%	

Test	Dataset	
(MNL)	

Predicted	Choice	
Walk	
(108)	

Bike	
(114)	

Auto	
(990)	

CTA	
(377)	

Mode	
Accuracy	

Overall	
Accuracy	

O
bs
er
ve
d 	

Ch
oi
ce
	 Walk	(187)	 55	 41	 67	 24	 29.4%	

70.5%	
Bike	(64)	 2	 21	 33	 8	 32.8%	
Auto	(824)	 28	 13	 729	 54	 88.5%	
Transit	(514)	 11	 27	 160	 316	 61.5%	
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Figure 2-3. Result of sensitivity analysis - comparison between models based on two scenarios: 
(a) percent changes in auto cost and (b) percent changes in transit cost 
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2.6 CONCLUSION 

This chapter investigated the feasibility, capability, and performance of four ANN 

methods in dealing with travel mode choice modeling. The prediction performance of ANN 

and MNL are evaluated by conducting cross-validation tests with the 10-fold cross-validation 

method. In addition, a confusion matrix was used to evaluate the matching accuracy between 

the models. The cross-validation results revealed that the four ANN achieve better prediction 

accuracies (around 80%) than the MNL (around 70%). In particular, the CPNN showed the 

highest performance among the ANN models in part thanks to the K-means clustering 

procedure used. The confusion matrix also showed that the matching rates for bike and walk 

modes were relatively poor since they were poorly represented in the dataset, although the 

PNN and CPNN performed best. We suggest that this phenomenon is linked to the fact that 

ANNs are better able to identify nonlinear relationships in a multivariate survey dataset. 

Nonetheless, although the model accuracy of the ANN outperformed the MNL in mode 

choice modeling, we must acknowledge that ANN suffers from a lack of interpretability. As 

a partial strategy to remediate this issue, we conducted a sensitivity analysis for two significant 

attributes (i.e., transit costs and auto costs) when choosing a mode.  

Both the MNL and ANN have advantages and disadvantages. As a parametric 

approach, logit models are generally used for extracting parameters based on given behavioral 

patterns. However, when the behaviors being modeled are complex, it becomes difficult to 

design an accurate logit model. For instance, the MNL is susceptible to unobserved biases, 

and it is often impractical to identify the relationship and configuration of explanatory 

variables. In contrast, ANNs are able to capture nonlinearity and biases in the data by using 
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additional information processing units (e.g., hidden layers). Although ANN is often 

assimilated to a “black box,” its relatively easy applicability and its ability to capture complex 

patterns make it particularly powerful and promising for the future of mode choice modeling. 

For future work, novel non-parametric models have emerged recently (Wong et al. 

2017). For instance, deep learning (DL) generally require more complex algorithmic features, 

and they are computationally more expensive than ANN, but in theory, they should be able 

to even better capture complex and nonlinear relationships in a dataset. Advanced data 

mining methods such as DL may, therefore, possess a bright future in mode choice modeling 

in particular, and in travel demand forecasting in general. 
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3 Predicting Residential Water Consumption: Modeling Techniques 

and Data Perspectives 

 

(will be published as Lee, D., Derrible, S., “Predicting Residential Water Demand with 

Machine-Based Statistical Learning”, ASCE Journal: Journal of Water Resources Planning 

and Management) 

 

3.1 INTRODUCTION 

Being able to adequately model water demand is essential for municipalities and utilities 

to effectively meet their customers’ demand while managing the available supply of water 

(House-Peters et al. 2010). In fact, modeling water demand has been integral not only for 

water resources planning but also for urban infrastructure planning and policy decision 

making. This is especially the case now as cities are expanding while simultaneously pursuing 

to consume less energy and fewer resources (Derrible 2016a; b, 2018). Specifically for the 

water realm, effort should be put into effectively modeling water demand of single-family 

households since they are the primary consumers of public supply water use in North America 

(DeOreo et al. 2016). 

Determining the right modeling approach (i.e., modeling algorithm) to predict 

household water demand is a challenging task because water demand can be affected by 

numerous factors, including technological, demographic, social, economic, and climate 

characteristics, and public policies (Donkor et al. 2012; Fricke 2014; House-Peters and Chang 

2011). A wide variety of statistical techniques exist and can be used to model household end-



42 
 

use water demand. In general, parametric statistical models (a.k.a. parametric models such as 

linear regression) have been dominantly applied to predict household water use. Recently, 

with the advent of Data Science and Big Data, the capabilities of available data mining 

techniques (a.k.a. machine-based statistical learning such as neural networks) seem virtually 

limitless (Ahmad et al. 2016, 2017; Ahmad and Derrible 2015b; Derrible and Ahmad 2015; 

Golshani et al. 2018; Lee et al. 2018), and they offer new opportunities to model household 

water use, especially as they can capture unobserved patterns and nonlinear relationships 

(Friedman et al. 2001; Lee et al. 2018b; “Pattern Recognition and Machine Learning” 2007). 

Both families of algorithms (parametric and ML models) have their own technical 

characteristics and methodological advantages (e.g., interpretability versus the ability to 

capturing nonlinearities) that need to be leveraged based on the context around which they 

are applied. For instance, although attractively more intuitive and interpretable than other 

models, parametric models (e.g., linear regression) tend to generate more prediction errors 

than ML models. Furthermore, parametric models require a high degree of domain 

knowledge to construct and adjust a model’s configuration, while taking into account the 

underlying relationships between factors (e.g., to avoid collinearity issues). In contrast, ML 

models show a high degree of predictive accuracy with most datasets thanks to their ability to 

capture nonlinear and complex characteristics in the data, but many ML models are less 

interpretable than parametric models due to their reliance on machine-based computation 

process. Thus, selecting the right modeling algorithms is not trivial. In this chapter, 12 

statistical learning algorithms are tested, including 4 parametric statistical models and 8 ML 

models listed in Table 1. To validate the models, a 5-fold cross-validation process (5-fold CV) 
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is applied (detailed later) (Friedman et al. 2001; Kohavi 1995; Zhou 2012), which is generally 

used to check the performance of ML models. 

Beyond modeling, data availability can also be an issue. For example, in the US, most 

municipalities and utilities do not have access to detailed water use datasets such as 

longitudinal (i.e., multi-level) or time-series (e.g., smart metered data) datasets, although they 

have access to general individual or household level information from publicly accessible 

microdata. In this context, this chapter is purposely designed to investigate the role of data 

availability on modeling performance. For this, two data scenarios are elaborated: (1) one 

that intentionally only includes commonly available variables (i.e., general scenario), and (2) 

one that contains many variables from the Residential End-Use of water survey (i.e., REU 

2016 scenario) carried out by the Water Research Foundation (WRF). Specifically, the 

general scenario only includes six variables on the demographic and economic characteristics 

of households and climate. These six variables were selected because they are mostly 

accessible to all US municipalities and utilities from micro-level public data sources or other 

city-level microdata sample. In contrast, the REU 2016 scenario includes 19 cross-sectional 

variables (i.e., for one single “typical” day) including variables related to water-saving 

behavior and detailed water-use patterns; technical details on how the REU 2016 dataset is 

used in this study is provided the data preprocessing section. 

Overall, this study is useful to researchers, municipalities, and utilities who are seeking 

to model and forecast residential water use, especially when only limited data are available. 

The lessons from this study can be used for short and long term planning, especially in areas 

of rapid growth, and for routine operations by utilities. Moreover—although only partly done 
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in this work—the models developed can also be used to infer the impact of individual variables 

on residential water use (e.g., determine which variables impact water use the most). 

This study contains six sections. After this section, section 2 briefly reviews the 

literature on the two technical aspects central to this work. Section 3 details the data and the 

analysis process. Section 4 defines the 12 statistical learning algorithms and performance 

indicators selected for this chapter. In section 5, the overall findings of the study are presented 

and discussed, and several future tasks are suggested. Finally, section 6 concludes the chapter. 

 

Table 3-1. Statistical methodologies used for two scenarios 

Category Regression methodologies 

Parametric-  
statistical learning algorithm 
(Parametric models) 

· Ordinary Least Squares regression (Linear regression) 
· Penalized: Ridge regression (Ridge) 
· Penalized: Lasso regression (Lasso) 
· Bayesian Ridge Regression (BRR) 

Nonparametric- 
statistical learning algorithm  
(ML models) 

· SVM with Radial Basis Function (RBF) kernel (RBF-SVM) 
· SVM with linear kernel (linear-SVM) 
· Kernel Ridge Regression (KRR) 
· Gradient Boosting Regression (GBR) 
· Random Forest regression (RF) 
· K-Nearest Neighbor regression (KNN)  
· Multi-Layer Perceptron regression (MLP) 
· Generalized Regression Neural Network (GRNN) 

 

3.2 LITERATURE REVIEW 

As mentioned, statistical algorithms can be broadly categorized into two families: 

parametric statistical models and ML models. Numerous studies focus on modeling 

household end-use water demand. In particular, parametric models have been dominantly 

applied to predict household water use since they tend to be more interpretable than ML 
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models due to their strong predetermined (parametric) assumptions (Arbués et al. 2010; 

Arbues and Villanua 2006; Brentan et al. 2017; Donkor et al. 2012; Goodchild 2003; 

Guhathakurta and Gober 2007; House-Peters et al. 2010; House-Peters and Chang 2011; 

Kenney et al. 2008; Kontokosta and Jain 2015). While parametric models are theoretically 

intuitive and easy to interpret (i.e., since they yield parameters), they also possess serious 

statistical issues.  

First, parametric models have predetermined structures (e.g., residuals are assumed to 

follow a normal distribution), and a hypothetical test is performed to statistically validate the 

relationship (Hastie et al. 2009). Furthermore, a single parametric equation is globally 

employed and is supposed to hold over the entire dataset (i.e., the same relationships are 

assumed to apply to everyone), while it is notoriously difficult for a linear parametric model 

to find a best-fitting mathematical function (Friedman et al. 2001; Hensher et al. 2005; Kuhn 

and Johnson 2013). To partially alleviate this issue, modeling algorithms incorporating 

clusters (i.e., generalized mixed-effect model) have been used by controlling detrimental 

effects (e.g., random, fixed) (House-Peters and Chang 2011; Wooldridge 2010). Nonetheless, 

these modeling algorithms are preferably applied to multi-level data (e.g., longitudinal) that 

may not be accessible to many cities. Furthermore, finding the best-fitted model specification 

and configuration while taking into account all possible interactions and relationships 

between variables (e.g., nonlinearity) is not trivial (Breiman et al. 1984; De’ath 2002; Elith et 

al. 2008). 

As an alternative to parametric models, ML models also have been widely used in the 

urban infrastructure literature in general (Akbarzadeh et al. 2017; Derrible and Ahmad 2015; 

Golshani et al. 2018; Lee et al. 2018a; Wisetjindawat et al. 2018) and specifically for 
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household water use (Adamowski et al. 2012; Altunkaynak and Nigussie 2017; Al-Zahrani 

and Abo-Monasar 2015; Bai et al. 2014; Donkor et al. 2012; Firat et al. 2009, 2010; House-

Peters and Chang 2011; Vitter and Webber 2018; Yurdusev et al. 2010). In general, ML 

models have been shown to have high predictive performances on a wide range of modeling 

applications thanks to significant advances in computational ability. Specifically, ML models 

can recognize non-trivial patterns from a dataset that often result in high prediction accuracies.  

In particular, Artificial Neural Network (ANN) models have been widely applied to 

predict or forecast water consumption (Altunkaynak and Nigussie 2017; Firat et al. 2009, 

2010). For instance, Firat et al. (Firat et al. 2009, 2010) used six different ANN models to 

forecast monthly water consumption by using time-series data and found that Generalized 

Regression Neural Networks (GRNN) models performed best. Apart from ANN, Bai et al. 

(2014) used a step-wise support vector machine (SVM) regression to forecast daily water 

consumption by using time-series data, which is called a variable structure SVM. Instead of 

using ML to model water demand directly, ML models are also applied to facilitate water 

demand analysis. For example, Vitter and Webber (2018) used SVM classifier to classify 

specific water use events (e.g., shower, clothes wash) in households by incorporating 

electricity consumption information that correlates to water consumption. Numerous other 

ML models have been applied to predict other urban resources (e.g., electricity, energy), 

including kernel-based methods, boosting methods, and bagging methods (Bansal et al. 2015; 

Kusiak et al. 2010; Lozano and Gutiérrez 2008; Robinson et al. 2017; Tso and Yau 2007). 

In general, ML models include nonparametric (e.g., kernel) and complex structure 

(e.g., network) models that can capture nonlinear or complex relationships between various 

factors and target values (e.g., household water use). Furthermore, they generally provide 
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higher predictive performances than parametric models in resources demand modeling (Al-

Zahrani and Abo-Monasar 2015; Firat et al. 2009, 2010; Robinson et al. 2017) since 

nonparametric features in the model are trained by machine-based repetitive computation. 

Due to their machine-based computation, however, ML models can face overfitting problems 

more easily, and they are also generally less interpretable than parametric models (e.g., neural 

networks are often described as “black-box” models). To address the interpretability issues in 

ML models, several useful statistical measures exist. For instance, rule-based ensemble 

methods (e.g., boosting and bagging) are able to examine the marginal effect of a given factor 

on the predicted values of a learned model (a.k.a., partial dependence plot) (Doshi-Velez and 

Kim 2017b; Friedman et al. 2001; Natekin and Knoll 2013). 

In addition to modeling methodologies, the performance of water demand models 

largely depends on the quality of the data available that properly capture the relationship 

between water demand and the factors affecting the demand. Previous studies on household 

water demand modeling found that the most significant factors affecting water use include 

household demographic factors (e.g., size, income, type) (Arbués et al. 2010; Arbues and 

Villanua 2006; DeOreo et al. 2016; Domene and Saurí 2006; Grafton et al. 2011; House-

Peters et al. 2010; Mayer et al. 1999; Mazzanti and Montini 2006; Schleich and Hillenbrand 

2009), climate factors (e.g., precipitation, temperature) (Donkor et al. 2012; Froukh 2001; 

Goodchild 2003; Guhathakurta and Gober 2007; House-Peters et al. 2010; House-Peters and 

Chang 2011; Jentgen et al. 2007; Kontokosta and Jain 2015; Lee et al. 2010, 2015; Schleich 

and Hillenbrand 2009), price, and detailed water use and associated attitudinal information 

related to the households (Arbués et al. 2010; Arbues and Villanua 2006; Cominola et al. 2018; 

DeOreo et al. 2016; Fricke 2014; Ghimire et al. 2015; Grafton et al. 2011; House-Peters et al. 
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2010; Kontokosta and Jain 2015; Vitter and Webber 2018; Willis et al. 2011). The first two 

factors (i.e., household demographics and climate factors) are generally available to cities and 

water utilities in the United States, which is not the case for detailed information on water 

use and its behavioral characteristics that is rarely available. 

 

3.3 RESEARCH DESIGN AND DATA PREPARATION 

3.3.1 Research Design 

This chapter is designed to examine two common technical issues and investigate the 

modeling performances of twelve techniques under two data scenarios; see the research 

framework in Figure 3-1. Before the main analysis, this study conducts a thorough descriptive 

analysis to detect the presence of statistical issues in the dataset, which is often the case for 

data that relate to resource consumption (e.g., water, electricity). Then, the main analysis is 

to train twelve statistical learning algorithms (see Table 3-1) on 70% of the data (i.e., train set) 

under two data scenarios (i.e., general and REU scenario). A 5-fold cross-validation (CV) 

process is also applied to the train set. The learned models are then validated on the remaining 

30% of the data (i.e., test set). The next section offers details on the data and the two modeling 

scenarios. 

 

3.3.2 Data preprocessing 

This chapter uses the 2016 Residential End Use of water survey (REU 2016) database 

(DeOreo et al. 2016) released by the Water Research Foundation (WRF). The REU 2016 
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study contains extensive household water use information from 24 water utility companies 

across the United States and Canada. The REU database consists of four main datasets that 

come from two main sources: (1) household water use (e.g., 12 days of metered consumption) 

and billing information (e.g., annual water consumption) and (2) household survey responses 

(DeOreo et al. 2016). In particular, the metered consumption was originally measured every 

10 seconds for two weeks, but it was subsequently aggregated by day for 12 days (DeOreo et 

al. 2016).   

 

Figure 3-1. Research Design 

 

This study mainly uses two datasets from the REU 2016 database: (1) daily household 

water use (“REU2016_Daily_Use_Main”) and (2) mailed household survey information 

about demographics and water consumption behaviors (“REU2016_End_Use_Sample”). 

The daily household water use dataset includes nine utilities for a total of 771 households 
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over 12 days. In total, the number of observations available is around 9,300 (some households 

include more than 12 days). Furthermore, the mailed survey dataset contains detailed 

information on household demographic and economic characteristics as well as water 

consumption behaviors in the form of RP (revealed preference) and SP (stated preference).  

Table 3-2. Variables used in two scenarios: General and REU 2016 specific 

General Scenario: 6 variables 

 Independent var. (5)  Description N Mean Std. 
 Capita Number of people in household 531 2.73 1.44 
 HDD Heating degree days 531 4098.92 2432.28 
 Employed adults Number of workers in household  531 1.32 0.9 
 Income Household income (ten thousand dollars) 531 8.17 5.26 
 Parcel area Size of parcel area (m2) 531 809.08 496.0 

 Dummy outdoor  
Existence of outdoor properties is 1; 
otherwise is 0 (e.g., garden, tree, lawn, pool) 

531 0.6 0.49 

REU 2016 Scenario: general scenario (6 variables) + 13 variables  

 Independent var. (5)  Description N Mean Std. 
 Bedrooms Number of bedrooms in household 531 3.38 0.87 
 Outdoor Area Size of outdoor area (m2)  531 320.98 330.14 
 Pool Area Size of pool area (m2)  531 15.72 17 
 Homies Person usually stay in the house  531 1.01 0.85 
 Vintage Vintage of home 531 34.59 19.44 
 Fixed Charges Fixed rates for water  531 17.6 9.57 
 Marginal Rate Marginal rates for water  531 4.98 2.24 

 Dummy Treatment 
treatment system in household is 1; 
otherwise 0 (e.g., water softener or reverse osmosis 
system) 

531 0.12 0.33 

 Dummy pool 
Household with pool (indoor or outdoor) is 1;  
otherwise is 0 

531 0.11 0.32 

 Dummy toilet flush 
Average toilet flush is less than 7.58 liters per flush is 1;  
otherwise is 0  

531 0.45 0.5 

 Dummy shower flow 
Average shower flow is less than 7.58 liters per min. 1;  
otherwise is 0 

531 0.51 0.5 

 Dummy clothes load 
Average washer load is less than 11 liters per load is 1;  
otherwise is 0 

531 0.51 0.5 

 Dummy Hot water  
Hot water wait in master bathroom is 1;  
otherwise is 0 

531 0.45 0.5 

Dependent var. (6)   N Mean Std. 
 Trace Daily 1) Daily water consumption (liters per day, lpd) 531 714.98 428.72 
1) Daily water consumption is transformed into 789:;6. See details in section, Descriptive analysis and Figure 3-3.  
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From this database, this study purposely creates cross-sectional data by combining 

average daily household water use with household survey information, based on the given 

identification codes (KEYCODES). To calculate the average daily water use, the 12 recorded 

days of household daily water use are averaged. In essence, this dataset is transformed into 

cross-sectional information to model one single “typical” day for the 771 households.  

Subsequently, the combined data contained numerous missing values, and some 

variables contained redundant or inter-related information that can bias the results (i.e., 

collinearity issues). Therefore, multiple cleaning and variable selection processes were 

initially conducted. In particular, variables with a very low response rate (< 10~20 %) were 

eliminated and some variables having redundant or inter-related information were merged. 

In addition, household water demand also depends on climate conditions, which must be 

taken into account since all households are not located in the same geographic location. For 

this study, the number of heating degree days (HDD), the number of cooling degree days 

(CDD), and the climate zone (CZ) of each household was added to the dataset from 

www.degreeday.net and from maps provided by the American Society of Heating, 

Refrigeration, and Air-Conditioning Engineers (ASHRAE).  

To further study the relationship between the variables, Figure 3-2 shows the 

correlation matrix between all independent variables. Specifically, no significant collinearity 

issues can be detected that can lead to biased estimation; i.e., Spearman coefficient = 1.0. 

Nonetheless, as expected, HDD, CDD, and climate zone are strongly correlated, and the 

pairs between outdoor properties (e.g., pool) and climate conditions also show some 

correlation. Moreover, variables related to household size also show some correlation, such 

as a number of toilets and bedrooms. In each case, only one of the variables that show some 
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correlations was selected; for instance, only HDD was selected. In the end, the dataset 

contains 24 variables and 531 observations (i.e., single-family households). The full list of 

variables used is shown in Table 3-2.  

 

 

Figure 3-2. Correlation of independent variables (predictors) 

 

Overall, the general scenario includes six variables: the number of workers, household 

size, income, type, areas, and HDD. In particular, in the United States, these variables are 

available from publicly accessible micro datasets such as the American Community Survey 
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(ACS), the Public Use Microdata Sample (PUMS), and from community-level household 

surveys. Although public micro datasets are mostly anonymous and only contain a limited 

number of samples, utilities and municipalities can use this information based on existing 

statistical approaches that are widely used in resources planning process—see details in 

Farooq et al. (2013), Guo and Bhat (2007), and Rosca et al. (2018). In contrast, the REU 2016 

scenario includes all information in the general scenario and more detailed household level 

water use information that describe household water consumption from RP and SP responses. 

For both scenarios, daily total household water consumption in Liters per day is predicted, 

expressed as TraceDaily, that includes both indoor and outdoor water consumption (although 

only a limited number of households report outdoor properties (e.g., garden, lawn, pool, etc.)). 

 

3.3.3 Descriptive Analysis 

An early investigation of the distribution of household water use (i.e., TraceDaily) 

reveals that the variable is not normally distributed. Using Ordinary Least Squares (OLS) 

regression, Figure 3-3 (a) shows that the distribution of household water use (6) is skewed to 

the right, which is common in lognormal distributions. Furthermore, the residual plots show 

the presence of a funnel-shaped pattern, suggesting a non-constant variance in the error 

terms—i.e., heteroscedasticity—which violates the predetermined assumption in linear 

models (e.g., linear regression). To solve this heteroscedasticity issue, the actual 6 can be 

transformed using a concave function such as the logarithm function (log:; 6) or the square 

root of the actual 6 (√6) (James et al. 2013; Kuhn and Johnson 2013). This transformation 

shrinks the responses, which can alleviate the heteroscedasticity issue. In the literature, the 
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log-transformed is most commonly used (Keene 1995; Kuhn and Johnson 2013; Robinson et 

al. 2017). As shown in Figure 3-3 (b), taking the log-transformed of TraceDaily results in a 

normal distribution and randomly scattered residuals. As a result, log:; 6  is used as the 

dependent variable instead of 6. 

 

 

Figure 3-3. Comparison of error plots for REU 2016 specific scenario (the horizontal is the 
logarithm of normalized actual water consumption (@ABCD E) and the vertical axis is that of 
predicted consumption values) 
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3.4 METHODOLOGIES 

Parametric linear models (i.e., linear and penalized regression) either assume that the 

regression function G(6|5) is linear in the inputs (5) to predict the output (Y) or that the linear 

model reasonably fits along with a flat hyperplane (Hastie et al. 2009; James et al. 2013; Kuhn 

and Johnson 2013). Thus, parametric linear models are simple and they can sometimes 

outperform nonlinear models, especially for small and sparse data (Hastie et al. 2009). In 

addition to the conventional linear regression technique (i.e., Ordinary Least Squares), several 

parametric linear models introduce additional information or statistical assumptions, such as 

partial least squares (PLS), two-staged least squares (2LS) and least squares with panalized 

terms such as lasso and ridge regression to decrease the level of biases while preserving the 

predetermined assumptions (i.e., linearity). In contrast, numerous nonparametric learning 

models or ML models exist that can be inherently adapted to the data without assuming a 

linear regression function in G(6|5) is linear. Due to differences between the two modeling 

categories, it is difficult to simply conclude which modeling technique is superior to the others. 

Specifically, it largely depends on the purpose of the research and the intrinsic characteristics 

of the data used in the model. 

Regardless of the algorithm, all have several common features. In particular, most 

statistical models estimate the relationship between a set of independent variables 5 with a 

dependent variable J while minimizing a loss function. For example, many models minimize 

the sum of squared errors (KKG), and they are then evaluated by measuring how much they 

managed to minimize SSE; e.g., by using the mean of the squared errors (LKG): 

LKG = 	 :
M
∑ (JO − Q(RO))ST
OU:        (1) 
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where V is the total number of observations, RO is a vector of an independent variable, and JO 

a dependent variable for WXY observation. In fact, the LKG can be decomposed into three parts:  

G[LKG] = 	 \S + (^W_`)S + a_bW_cde     (2) 

The first part (\S) consists of the unobserved errors that are impossible to eliminate in 

modeling. The “Bias” in the second term illustrates how well the estimated model can explain 

the relationship between !  and J. The last term is the variance. Generally, the aim is to 

control the level of bias and variance when estimating a model. Specifically, more complex 

models (e.g., artificial neural networks) can have higher variances than models based on the 

linear assumption (e.g., linear regression), which can lead to overfitting. In contrast, simpler 

models can have lower variances, but they may not be able to fully infer the relationship 

between 5 and J, thus resulting in underfitting. This trade-off between the two families of 

techniques is often referred to as the variance-bias trade-off (James et al. 2013; Kuhn and 

Johnson 2013). The following sections detail the 12 statistical learning selected in this study. 

 

3.4.1 Parametric statistical learning algorithms 

3.4.1.1 Linear regression model  

Linear regression aims to explain the relationship between a set of independent variables and 

a dependent variable (J) based on the linear function:  

J = 	Q(5) = 	f; + ∑ fg5g
h
gU:        (3) 

where 5g is a vector for the iXY independent variable, and fg and f; are unknown parameters 

(coefficients and an intercept), respectively. This linear combination is estimated by 
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minimizing the sum of the squared errors (KKG) between 5 and J (see equation 1), and it is 

also known as the standard Ordinary Least Squares (OLS) regression.  

 

3.4.1.2 Penalized models: Ridge and Lasso regression 

Penalized models aim to mitigate problems related to model variance when the number of 

independent variables increases in the standard OLS regression. Specifically, it is possible that 

highly correlated variables (i.e., collinearity) can greatly increase the variance, and such 

variance issues can increase the overall LKG. Thus, the family of penalized models, including 

Ridge and Lasso regressions, regulate the estimation process by adding a penalty to the KKG. 

Ridge regression adds the jS penalty in the KKG, which controls the trade-off between the 

variance and the bias. Specifically, this penalty sacrifices some bias, and it can reduce the 

variance that provide a lower LKG: 

KKGkl = 	∑ (JO − Q(RO))ST
OU:  + m ∑ fgSn

gU:      (4) 

where m  regulates the inflation of coefficient, and it is required to be calibrated through 

validation process.  

In addition to the lasso regression, ridge regression has a j: penalty that substitutes the 

jS penalty in the ridge regression.  

KKGko = 	∑ (JO − Q(RO))ST
OU:  + m ∑ pfgpn

gU:      (5) 

 

3.4.1.3 Modified ridge regression: Kernel and Bayesian ridge regression 
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Ridge regression is the simplest algorithm that can be kernelized or combined with 

probabilistic features (e.g., Bayesian). Specifically, R in equation (5) is substituted with the 

kernel function, ∅:  

KKGkl = 	∑ (JO − Q(∅O))ST
OU:  + m∑ fgSn

gU:      (6) 

It is termed kernel ridge regression since it uses the same loss function used in ridge 

regression. Alternatively, the context of Bayesian statistics can also be applied to ridge 

regression. Specifically, the prior information and the posterior mean of a model for the 

parameter (fg) follow:  

Prior: fg, ~	V(0,1/λ);  posterior: fg, ~	V(0, uS/m),  for all i  (7) 

All the modeling parameters are jointly estimated by maximizing the marginal log-likelihood 

(LL) function. 

 

3.4.2 Non-parametric machine-based statistical learning algorithms 

3.4.2.1 Rule-based ensemble models: Random Forest and Gradient Boosting Regression 

Rule-based (a.k.a., tree-based) models estimate the relationship between 5  and J  by 

partitioning the input based on specific rules. In particular, they provide a set of conditions 

and results that are highly interpretable, and they also easily include different types of 

variables without any assumptions and preprocessing. However, simple trees can have highly 

unstable performances and they tend to have higher variances than linear models (e.g., linear 

regression). Therefore, ensemble methods are generally preferred as they can reduce the 
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variance (James et al. 2013; Kuhn and Johnson 2013). This chapter adopts two popular 

ensemble methods: (1) Random Forest (RF) and (2) Gradient Boosting Regression (GBR).  

Bagging algorithms, also called bootstrap aggregation techniques, build a large number 

of de-correlated trees by using bootstrapping, and they then average them. Specifically, the 

bagging process in RF is as follows (Friedman et al. 2001):  

 

(1) Draw bootstrapped samples (size V) from the original dataset  
(2) Grow a regression tree for the bootstrapped samples and a subset of independent variables, 

and then recursively repeat tree growing process until the stopping criteria are reached (i.e., 
minimum node size).     

(3) Average all regression tree (size V) while reducing the overall model variance, which is also 
called bagging.  

(4) Random forest model predicts y given RO  
J	(RO) = 	QwxyT (!O) = 	

:
T
∑ z{(!O)T
{U:          

where, !O is a vector of independent variable. z{(!O) represents a single regression tree grown 
by bootstrapped samples and a subset of variables. V represents the total number of regression 
trees.  

 

GBR uses another tree ensemble technique, known as a boosting algorithm. Although 

bagging algorithms (i.e., RF) also uses multiple trees through sampling processes (e.g., 

bootstrapping), boosting algorithms sequentially grow the trees. Specifically, each tree is 

grown by using information (i.e., poorly fitted observations) from previously grown trees, and 

different weights are assigned at each step (James et al. 2013). The general boosting process 

for GBR is as follows:  

 

(1) Initially set number of trees (estimators), V, and number of split (tree depth), | (stopping 
criteria)  

(2) A target (dependent) variable, Qw(!) = 0, is initially set as zero, and residual (bO) and target 
(dependent) variable (JO) are assumed to be identical for all observation (W).  

(3) During the boosting process for each tree estimator (V number of trees), the following steps 
are repeatedly and sequentially conducted:  
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- Estimate a tree and compute the residual for each observation (computing negative 
gradient, r)  

- Fit a regression tree Qw{  to the data (R,r ); } denotes a single regression tree 

- Compute a new target value, Qw, by adding in a regularized new tree, 

Qw(!) 	← 	Qw(!) + 	mQw{(!)         
- Update the residuals,  

bO 	← 	 bO − 	mQw{(!O)          
(4) Sum up sequential trees that predicts y given R, 

Q�(R) =	 ∑ mQw{(!)T
{U:         

 
  

3.4.2.2 Support Vector Machine  

Support Vector Machine (SVM) is a kernel-based method to find the optimal generalization 

boundaries for fitting J based on 5. In fact, when used for regression, SVM inherits some 

properties from the SVM algorithm used for classification. Specifically, SVM adopts different 

kernel functions (∅) to capture the relationship between 5 and J:  

J	(R) = ∑ fÄ∅Ä(!)Å
ÄU: +	f;      (8) 

where ∅  is kernel function (also called basis function) with 	L  numbers. To estimate 

parameters (f and f;), the following kernel function is minimized:  

min 	∅( f, f;) = ∑ aÇÉ +
:
S
‖f‖S	T

OU: 	= 	∑ a(JO − Q(!O)) +	
Ö
S
	∑fÄST

OU:  (9) 

  (where, aÜÉ = 0	(if |b| ≤ 	\),  |b| − 	\, otherwise)    

where aÜÉ measures the general errors from the support vectors selected by the model. The 

element \ is the threshold to manage the number of support vectors used for finding optimal 

bound, and m is called the penalty parameter determining the flexibility of the model. Both \ 

and m are required to be tuned to balance the variance-bias trade-off. 
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3.4.2.3 ANN models: multi-layer perceptron and generalized regression neural network 

Artificial Neural Networks (ANN) algorithmically construct a simplified model of the human 

brain to explain or infer the relationship between 5 and J. The Multi-Layer Perceptron neural 

network (MLP) has been widely adopted and it consists of three layers: input, hidden, and 

output. It is also called the Backpropagation Neural Network (BPNN). In MLP, the hidden 

layer is able to capture nonlinear relationships between 5 (input layer) and J (output layer). 

For regression problems, the MLP takes input data and computes an output result 

based on the value of inputs (R)  and the corresponding weights (à ) using an internal 

activation function (Q). The activation function is used to transfer inputs to outputs according 

to the functional form of the activation function. The weights are scaled values associated 

with the connections between neurons. We can express that MLP predicts y given R as: 

J	(R,à) = â; + 	Q	ä∑ âO∅OM
O (R)ã = 	â; + 	Q	(∑ âO!OM

O )	   (10) 

where R is a vector of input factors, à is the vector of associated weights, and the ∅% denotes 

basis functions. Here, the function (Q) takes R as the basis function in the form of a linear 

combination. To estimate the weights, a backpropagation process is applied to minimize the 

loss function (KKG) for the MLP by generally using the gradient descent method (GDM).  

 Generalized regression neural network (GRNN) is a feed-forward network that is 

physically identical to the architecture of BPNN (i.e., MLP)—three layers consisting of an 

input layer, a hidden layer (radial basis function layer), and an output layer. In contrast to the 

BPNN model, GRNN is formulated by a linear combination of input (R) and associated 

weights (à) through radial basis function (RBF) such as Gaussian density function, g(x). For 

predicting y given R, GRNN can be expressed as: 
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J	(R,à) = â; + 	Q	(∑ âOgOM
O (R))      (11) 

where à is the vector of associated weights between output and hidden layers. The main 

difference between equations 10 and 11 is the basis function that is changed from a linear to 

a Gaussian basis function.  

Specifically, the basis function g(x)  is conceptually obtained by calculating the 

distance between two vectors based on the Gaussian function whose outputs are inversely 

proportional to the distance from the mean: 

g(x) = 	 :

å(Sç)
o
l
exp ê− ‖R&ëí‖l

Sål
ì~	exp	(−f‖R − ëí‖S)   (12) 

where R indicates new input data samples to be classified with c variables and ë is a mean of 

Gaussian distribution, which is also known as “prototype” vector. To be specific, this 

equation computes the geometric distance between the new input vector and the prototype 

vector (i.e., mean of Gaussian distribution), thus, the similarity of the input vector and 

prototype vector is measured.  

 

3.5 MODEL SPECIFICATION AND EVALUATION 

3.5.1 Variable scaling 

A set of variables in the data set is recorded based on varying scales and ranges. These 

numerical differences among variables may result in the biased estimation, especially for some 

nonparametric models that are sensitive to scales (e.g., ANN, SVR). Therefore, scaled values 

(îO) are preferred for both the independent and dependent variables in all models. Although 

variables do not need to be scaled for linear models, the same values are used in all models 
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for consistency. In this study, the conventional min-max scaling technique is adopted; it is 

defined as: 

îO =
%ï&'()(%)

'+,(%)&'()(%)
        (13) 

where, îO is the scaled value of the Wth sample, !O is the original value of the Wth sample, and 

max(!) and min(!) represent the minimum and maximum value of !.  

As mentioned above and as is common in data mining, all models are trained on 70% 

of the data and tested on the remaining 30% of the data. Furthermore, to detect any overfitting 

issues, a 5-fold cross-validation (CV) analysis is conducted. Namely, the train set (i.e., 70% of 

the data) is divided into 5 partitions, 4 of the 5 partitions are used for model training, and the 

1 remaining partition is used for evaluating the model. This process gives us 5 trained models, 

and the average and standard deviation of the performance of each model are calculated. Each 

model is then trained again on the full train set and tested against the test set. Although this 

two-step process adds some redundancy, it offers a statistically robust method to validate the 

results. 

 

3.5.2 Model evaluation metrics 

To evaluate the models, three metrics are used: mean absolute error (MAE), mean squared 

error (MSE), and adjusted r-squared (ñóògS ). MAE and MSE are primarily used to measure 

the deviation between the actual and predicted water consumption values.  

L0G =	 :
M
∑ |JO − JôO|M
OU: 	       (14) 

LKG = 	 :
M
∑ (JO − JôO)SM
OU:        (15) 
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where, JôO is the predicted value for WXY household. In addition, ñóògS  is calculated to see how 

close the predicted values are to a fitted line or curve to overcome the limitations of the 

traditional ñS indicator. In particular, ñS increases whenever more independent variables are 

added; thus, more variables may appear to better fit the data, while this is not necessarily the 

case. ñS can also be affected by the “noise” in the data. The traditional ñS is defined as: 

ñS = 1 −	∑ (õï&õôï)lú
ïùo

∑ (õï&õûï)lú
ïùo

        (16) 

where	c is number of observations. In contrast, the ñóògS  is adjusted by the number of variables 

in the model, and it can control the increase of ñS (Hastie et al. 2009). ñóògS  is therefore lower 

or equal to ñS, and it is defined as 

ñóògS = 1 −	ä:&x
lã(M&:)

M&ü&:
         (17) 

where,	† is number of independent variables, and JûO is the mean of actual values. 

 

3.6 MODEL RESULT AND DISCUSSION 

This section contains the model validation results for the REU 2016 scenario first and 

then for the general scenario.  

3.6.1 REU 2016 Scenario: including 19 variables   

The performance of the 12 statistical models using the 5-fold cross-validation for the 

REU 2016 scenario is shown in Table 3-3. The table includes the MAE, MSE, and ñóògS  values. 

The first value in the table is the average performance, and the uncertainty value after the ‘±’ 



65 
 

is the standard deviation. All models use normalized data and predict the log-transformed of 

househodl water use. All are implemented with the Scikit-learn library built in Python 

(Pedregosa et al. 2011).   

The results show that GBR outperforms the other models with an MAE of 0.098 and 	

RóògS  of 0.69. Furthermore, models containing probabilistic or nonparametric features such as 

KRR, RBF-SVR, RF, and GRNN achieve better performance than other models. Parametric 

(linear) models such as Ridge, linear-SVM, and linear regression also perform relatively well 

with a MAE of approximately 0.113 and RóògS  of 0.55). On average, parametric models 

performed worse than ML models with a drop in RóògS  of about 0.14. In addition to Table 3-

3, Figure 3-4 shows error plots, comparing the predicted and the actual water consumption 

values. In particular, the predicted values for GBR are more closely scattered to the standard 

regression line than the other models. Moreover, the scattered values of the other models 

(especially parametric models) have a slightly lower tangent to the fitted line than GBR—i.e., 

most models overestimate low consumption values and underestimate high consumption 

values. For instance, the linear regression model tends to overestimate lower values 

(approximately bottom 30% in actual water consumption) and underestimate higher values 

(approximately ranging from the median to below the top 10%). This is partly because linear 

parametric models have strict assumptions of the error terms and the relations between 

independent variables. In general, they assume that covariance between independent 

variables are zero, and they also assume that the error terms follow normal distributions with 

a mean of zero. These assumptions are likely to partly account for the poor prediction, 

especially when the dimensionality of variables is high (i.e., a large number of independent 

variables). 
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Figure 3-4. Comparison of error plots for REU 2016 specific scenario (the horizontal is the 

normalized 78910  of actual water consumption and the vertical axis is that of predicted 
consumption values)  
 

In addition, MLP shows comparatively poor predictive performance as many values 

are underestimated or overestimated across the entire range of consumption values. Although 

similar patterns are seen in other models, MLP shows to be more sensitive. It may due to the 

fact that MLP with a backpropagation process generally requires large datasets, preferably at 

least 10 times larger than the number of weights in the network structure (Anthony and 



67 
 

Bartlett 2009; Iyer and Rhinehart 1999). In this study, the MLP model only has 531 

observations, while there are 19 independent variables. Furthermore, the MLP model shows 

the largest variation during the CV (standard deviation with ± 0.18 in RóògS ), and it implies 

that it may not be optimized to the global minimum because of the algorithmic characteristics 

of GDM.  

Table 3-3. Cross-validation results of all models using all variables available in the REU 
2016 

Statistical regression techniques MAE N * MSE N £§•¶ß  

GBM regression (GBR) 0.098 ± 0.01  0.017 ± 0.01 0.69 ± 0.09 
Random Forest regression (RF) 0.099 ± 0.02 0.017 ± 0.01 0.64 ± 0.10 
SVM with rbf kernel (RBF-SVM) 0.110 ± 0.02 0.018 ± 0.00 0.62 ± 0.08 
Bayesian Ridge regression (BRR) 0.111 ± 0.02 0.018 ± 0.02 0.61 ± 0.10 
GRNN regression (GRNN) 0.111 ± 0.01  0.019 ± 0.01 0.60 ± 0.11 
Kernel Ridge regression (KRR)  0.112 ± 0.01 0.021 ± 0.00 0.58 ± 0.07 
Ridge regression (Ridge) 0.113 ± 0.01 0.021 ± 0.01 0.55 ± 0.07 
SVM with linear kernel(linear-SVM) 0.113 ± 0.02 0.021 ± 0.00 0.55 ± 0.07 
Linear regression  0.113 ± 0.02 0.021 ± 0.01 0.54 ± 0.07 
MLP regression (MLP) 0.115 ± 0.03 0.023 ± 0.02 0.52 ± 0.18 
Lasso regression (Lasso) 0.116 ± 0.02 0.025 ± 0.01 0.49 ± 0.05 
KNN regression (KNN) 0.119 ± 0.02 0.029 ± 0.01 0.41 ± 0.06 
* MAE N, MSE N, and R2 are calculated from the standardized data. 

 

3.6.2 General Scenario: including 6 variables 

Similar to Table 3-3 for the REU 2016 scenario, the performance of the 12 statistical 

models for the general scenario is shown in Table 3-4. The model performances are 

systematically lower for the general scenario compared to the REU 2016 scenario, which is 

expected since fewer variables are used. The results also show that the performance gaps 

between the ML and parametric models increased significantly. For instance, the ñóògS  values 

for the linear regression decreased from 0.54 to 0.33 (a 41% decrease) in contrast to the ñóògS  

values for GBR that only decreased from 0.69 to 0.60 (a 13% decrease). In addition, the error 
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plots in Figure 3-5 show that GBR shows similar patterns with Figure 3-4, and the number of 

under- and overestimated samples have only increased marginally. Consequently, these 

results suggest that the independent variables can still explain residential end-use water 

consumption behaviors relatively well. In particular, household type and size, and climate 

factors appear to significantly affect water consumption. The results also show that MLP now 

performs relatively well in the general scenario, with only a 0.04 decrease in ñóògS  and a 0.016 

increase in MAE. This is partially because the general scenario includes fewer variables than 

the REU 2016 scenario, thus requiring the training of fewer weights (which is important as 

mentioned before). 

Table 3-4. Cross validation result for the general scenario that only includes publicly 
available variables (7 variables) 

Statistical regression techniques MAE N MSE N ®§•¶ß  

GBM regression 0.128 ± 0.01  0.026 ± 0.01 0.60 ± 0.13 

Random Forest regression 0.130 ± 0.01 0.029 ± 0.01 0.51 ± 0.18 

GRNN regression 0.131 ± 0.02 0.030 ± 0.01 0.50 ± 0.11 

Kernel Ridge regression 0.131 ± 0.02 0.030 ± 0.01 0.49 ± 0.12 

MLP regression 0.132 ± 0.02 0.031 ± 0.01 0.48 ± 0.14 

SVM regression (linear-SVM) 0.134 ± 0.02 0.033 ± 0.01 0.44 ± 0.10 

KNN regression 0.135 ± 0.02 0.034 ± 0.01 0.43 ± 0.10 

Ridge regression 0.137 ± 0.02 0.036 ± 0.00 0.39 ± 0.11 

Bayesian Ridge regression 0.137 ± 0.02 0.036 ± 0.00 0.37 ± 0.11 

SVM regression (RBF-SVM) 0.139 ± 0.02 0.037 ± 0.00 0.34 ± 0.11 

Linear regression 0.140 ± 0.02 0.037 ± 0.01 0.33 ± 0.11 

Lasso regression 0.140 ± 0.02 0.037 ± 0.01 0.33 ± 0.08 

 

Finally, in predictive modeling, it is generally desirable to gain an appreciation for the 

contribution of each variable; i.e., which independent variable contributes the most to explain 

the dependent variables? For instance, the top-ranked model, GBR, has the potential to 

measure the relative importance of each variable, generally referred to as the variable 
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importance (VI). The results of VI can be explained as the predictive power of independent 

variables. Based on the VI in GBR, income, household size, parcel area, the existence of 

outdoor properties, and climate factor possess a higher contribution to predicting household 

water consumption. This also implies that the variables used in the general scenario are 

sufficient to provide an acceptable prediction performance.  

 

 

Figure 3-5. Comparison of error plots for general scenario 
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3.7 TECHNICAL DISCUSSION 

Generally, the results demonstrate that ML models outperform parametric linear 

models such as linear regression, which is greatly thanks to the algorithmic differences 

between the two families of techniques. For instance, GBR, SVM, KRR, RF, and ANN 

models are primarily designed to capture nonlinear and complex relationships between 

variables in regression problems. For that, they perform stochastic local optimization (e.g., 

kernel, boosting, bagging) rather than single global optimization (Friedman et al. 2001). Thus, 

they are likely to decrease biases during the estimation process, and they can provide more 

accurate predictions than linear models.  

Nonetheless, this local nonparametric learning process may generate overfitted models 

that can have high variances. For instance, ANN models using a high-dimensional input 

dataset tend to be overfitted since they have too many weights that need to be optimized. 

These overfitting issues can be seen in any ML models. The simplest way to mitigate them is 

to set an early stopping rule that is widely used to interrupt the repetitive learning of a machine 

(Robert 2014b). When it comes to algorithmic features, regularization and shrinkage methods 

are added to the ML models to avoid overfitting (Friedman et al. 2001). Specifically, a 

regularization term within some models (e.g., GBR, Lasso, Ridge, KRR) alleviates problems 

related to outliers (e.g., high biases) and high-dimensional inputs (e.g., high correlation) by 

introducing penalties, while balancing the trade-off between the variance and bias. In addition 

to the regularization, GBR and ANN models contain a shrinkage parameter that can also 

control variances by sacrificing some biases. For example, this is applied to hyperparameters 
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(i.e., weights) that can control skewed variables and outliers. These algorithmic features partly 

substantiate the performance gaps between ML models and parametric models used in this 

study, and GBR, in particular, possesses all the features mentioned above. In other words, 

ML models can be more appropriate for predicting residential water use, especially for data 

such as REU 2016 that inherently exhibit high-variance (i.e., detrimental outliers).  

In predictive modeling, the applicability of a model is also an important performance 

criterion; i.e., whether a model can easily be applied for other municipalities or utilities. The 

availability of data on daily water use can vary dramatically across geographical locations, 

however. For instance, some cities may have access to longer time-series daily water use than 

the REU 2016 datasets that are only available for 12 days. This longer data may include 

unobserved heterogeneity across households and other unobserved effects. To enhance future 

applicability, our modeling approaches are designed to alleviate these effects by controlling 

variables (a.k.a., covariates) that can incorporate seasonal and climate-related effects that 

affect water use. In addition, the top-ranked model, gradient boosting machine (GBM), 

possesses an algorithmic ability to handle heterogeneity issues, which is initially built in rule-

based models (see details in “Methodology” section). Due to its algorithmic properties (e.g., 

nonparametric and rule-based properties), it is fundamentally suitable to handle multi-level 

data (i.e., panel data) to incorporate mixed effects (e.g., heterogeneity across observation) 

(Friedman 2001; Friedman et al. 2001). In addition to this algorithmic characteristic, GBM 

includes boosting machine processes that continuously “forgive” poorly learned observations 

or samples in a single estimator (e.g., tree) by using multiple estimators. This is one of the 

main technical reasons why GBM performs best among all modeling methods tested in this 
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study. Therefore, the modeling performance will be consistent when the data even gets longer 

than what is used in this chapter.  

Despite a high degree of prediction performances, the acknowledged drawback of 

many machine-based algorithms is their lack of interpretability, unlike parametric models in 

which a domain expert can validate the parameters estimated. To address this interpretable 

issue in ML models, several statistical measures exist (Doshi-Velez and Kim 2017b; Samek et 

al. 2017). Among numerous measures, a model-agnostic approach (i.e., not specific to a 

particular algorithm) is generally preferred since it can be applied to any predictive modeling 

process using ML models (Friedman et al. 2001; Lundberg and Lee 2017; Molnar 2019; 

Ribeiro et al. 2016). For example, and as provided in this chapter, GBR is able to identify the 

magnitude of the contribution of each variable by measuring the reduction in the overall error 

(i.e., bias and variance), called Variable Importance (VI). Nonetheless, VI cannot represent 

the sensitivity of variables on the dependent variables. In contrast, the marginal effect of an 

independent variable on the predicted values of a learned model can also be examined with 

ML models and is generally referred to as “partial dependence” (Friedman et al. 2001; 

Natekin and Knoll 2013; Semanjski and Gautama 2015). Although out of the scope of this 

chapter, these interpretable features are straightforward. Not only do they provide valuable 

insights into the performance of a model, but they can also help determine effective policies 

by assessing the contribution of individual variables and therefore help municipalities and 

utilities make better long term and short-term decisions. 

 

3.8 CONCLUSION 
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This chapter aimed to test two technical challenges in water demand modeling: (1) 

which modeling technique is most appropriate and (2) how much data and what variables are 

required for learning an acceptable model. Specifically, the performance of 12 statistical 

learning algorithms including parametric and nonparametric models was investigated to 

model household end-use water demand (i.e., the cross-section of average daily water use), 

while taking into account two data scenarios. For the general scenario, only selected 6 

variables were intentionally kept because they are commonly available in public micro 

databases, thus accessible to all cities and water utilities. 

The results for the REU 2016 scenario indicate that nonparametric machine learning 

models (ML models) perform better than parametric linear models; specifically, GBR 

performed best. Furthermore, MLP showed relatively poor accuracy and the largest variation 

during the CV, although it reportedly performed well in previous studies. This is likely due to 

the fact that GDM may have issues finding optimal solutions while minimizing loss functions 

when the dimensionality of the input data (i.e., the number of variables) is small. In the 

general scenario, ML models perform adequately as well despite the data constraints (i.e., 6 

variables), and GBR, here again, performed best. In contrast to the REU 2016 scenario, the 

performance gaps between the ML models and the linear models were even wider. In addition, 

linear models less accurately predicted under- and overestimated samples compared to the 

REU 2016 scenario. 

The findings in this study can fill important technical knowledge gaps in predicting 

household water demand. Moreover, this study can be useful to municipalities and utilities 

that can adopt the same techniques (e.g., gradient boosting) on their own dataset to predict 

water demand and to infer the importance of individual variables in their area. In order to 
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further improve water demand prediction accuracy, future work can focus on simulating 

datasets that can provide more information with utilities to better capture household and 

individual water consumption behavior. In addition, as mentioned in the technical discussion, 

a single metric, such as predictive accuracy, is often not enough to be able to develop effective 

policies. Instead, learned models should have both predictive power and be interpretable to 

fully take advantage of the usability and adaptability of models in the future.  
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4 Modeling Discrete Choice Behavior in the Framework of 

Probabilistic Graphical Models  

 

4.1 INTRODUCTION 

Choice behavior is statistically random in modeling, containing a significant amount of 

uncertainty that is a consequence of several factors (Kahneman and Tversky 2013; Koller and 

Friedman 2009; Tversky and Kahneman 1974). The real-world problems can be rarely 

determined with certainty based on our limited information since the ability to observe 

problems and world is limited. Uncertainties are therefore prevalent in an individual decision-

making process, and these become worse from the viewpoint of researchers when modeling 

choice behaviors for population or sub-population. Uncertainty is required to be investigated 

in modeling tasks not only to build a more realistic model but also to obtain more meaning 

conclusion—e.g., confidence about the models’ predictions. To handle uncertainty issues in 

modeling tasks, recent machine learning (ML) techniques, in particular, are adopting the 

concept of probability theories to quantifying, handling, and manipulating uncertainty. In this 

sense, this chapter aims to provide a modular probabilistic modeling framework that can be 

complied with any modeling techniques, which is also being able to not only capture 

uncertainty related unobserved factors (e.g., heterogeneity between individuals) but also 

quantify uncertainty in behaviors (e.g., level of confidence for conclusions). Toward this goal, 

we adopt the concept of probabilistic graphical models (PGM) and Bayesian inference that 

leverage potential opportunities by combining data-driven likelihood in the era of Big data, 

prior beliefs, and machine-based repetitive computation.  
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The core interest of modeling tasks has been the development of modeling techniques, 

including algorithmic and technical components, to handle and minimize uncertainty (e.g., 

heterogeneity) about given problems with higher flexibility (Bishop 2013; Train 2009). In this 

sense, methodological concepts and techniques that involve these tailored algorithms often 

become more complicated than already existing models, and researchers are left with a deluge 

of modeling algorithms, as well as various nomenclature. As a consequence, the traditional 

paradigm in modeling begins with selecting an appropriate method, then adapting the selected 

method to a given problem and relevant data to learn patterns (Bishop 2013; Olson et al. 2017). 

Selecting an algorithm is therefore far from trivial and even challenging for researchers, 

especially for whom have few backgrounds in learning approaches such as parametric and 

nonparametric (e.g., ML techniques). Furthermore, the selection of algorithm becomes more 

challenging since dilemmas are prevalent among the modeling techniques in both 

approaches—e.g., interpretability and prediction accuracy (see details in Lee et al., 2018). In 

these circumstances, it is useful to have a modular framework that enables to accommodate 

various algorithms in modeling design to effectively not only address uncertainty issues but 

also alleviate the existing dilemmas for researchers.    

In addition, the estimation process applied to a family of random utility model (RUM) 

has been dominantly based on the likelihood principle that can be certainly fallen with the 

probabilistic paradigm, but it is not completely probabilistic approaches for the application of 

probabilistic reasoning to some extent (Jordan 2003; Murphy 2012). In particular, the 

inference based on maximum likelihood estimation (MLE) and maximum a posteriori (MAP) 

is a point estimate (a.k.a., frequentist statistics) instead of returning interval estimation of 

unknown quantities—i.e., quantifying uncertainty. Although the frequentist statistics are 
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conceptually and computationally appealing and have proven to be successful in several 

applications, it is somehow limited in measuring uncertainty about any outcomes from the 

estimation. Probabilistic approaches based on Bayesian perspectives primarily aims to 

quantify uncertainty in modeling through the estimation of probability distribution by 

adopting probability theory (Murphy 2012). Specifically, Bayesian approaches are to estimate 

a joint probability distribution over a set of random variables (Friedman et al. 2001; Ng and 

Jordan 2002). In Bayesian settings, all unknown quantities are treated as random variables 

(Jordan 2003). Accordingly, probabilistic approaches inherently include the stochasticity of 

each variable, which can be powerful to measure uncertainty. In real-world cases, however, 

it is often impossible to explicitly represent all possible relations when the given behavior 

information is high-dimensional. Put differently, although one may be able to specify the joint 

distribution through intense computing, the process would be inefficient since many relations 

are trivial and not considered by people contemplating to make decisions (Koller and 

Friedman 2009). Instead, to efficiently estimate the joint distribution for high-dimensional 

data, declarative representations will be useful for identifying some probabilistic relationships 

between random variables as well as other modeling components (e.g., Markov properties) to 

reduce the number of possible combinations with the application of probability theory (Jordan 

2004; Koller and Friedman 2009).  

One way to do this is by representing complex probabilistic models and their 

distributions compactly under a graphical structure and effectively utilizing this structure to 

answer queries. This declarative and diagrammatic representation of modeling tasks is 

commonly called probabilistic graphical models (PGM) (Bishop 2006b; Jordan 2003, 2004; 

Koller and Friedman 2009). PGM uses a graph-based representation to compactly and 
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intuitively express the given modeling problems that combines probability theory and graph 

theory, and the PGM has highly advantageous to represent complex distributions over high-

dimensional information and spaces. Specifically, the fundamental idea of PGM enables to 

build a versatile module for dealing with two common problems that often occur during the 

real-world application of complex tasks—uncertainty and complexity (i.e., a high-

dimensional data). PGM framework (e.g., directed acyclic graph, DAG), in particular, 

describes the probabilistic relationships between random variables, and this graph is useful to 

define a high-dimensional joint distribution as a product of distributions over smaller subset 

of random variables—i.e., factorized joint distribution using probability theory such as 

product and sum rules (Bishop 2006b; Jordan 1998). The factorized joint distribution using 

probability theory can yield any probabilistic distributions by taking advantage of Bayesian 

statistics.  

The aim of this chapter is to provide a flexible modeling framework that takes 

advantages of the power of data-driven approaches by using probability theory (i.e., Bayesian 

statistics) and declarative graphical representation (i.e., PGM) to address uncertainty issues 

in modeling. Thus, this chapter mainly adopts the PGM framework with Bayesian inference 

(PGM-B), which can be classified as model-based approach to machine learning (MBML). 

Modeling in PGM-B is antithetical to the traditional modeling paradigm, where it generally 

starts with the dilemma of selecting an algorithm when learning and recognizing patterns 

revealed from the data (Olson et al. 2017). Specifically, the modeling in PGM framework can 

provide modeling palette that represents our given information and knowledge, which can be 

separated from algorithms used in inference. Thanks to this separation, we can even include 

any algorithms to make inference in this framework such as the RUM and ML techniques. 
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Furthermore, we can improve this modeling palette for a specific domain without 

modification of probabilistic reasoning algorithms continuously. In this chapter, we mainly 

focus on the applicability of the PGM framework with Bayesian inference to discrete choice 

model (DCM) based random utility maximization theory. Although Bayesian statistics have 

adopted in few studies, the combination of PGM and Bayesian inferences is very limited in 

the realm of transportation. To infer intractable probability distribution (i.e., posterior 

distribution of interest), we adopt variational inference (VI) algorithm that leverages ML for 

approximating probability distributions (Jordan et al. 1999). To demonstrate the applicability 

of PGM, we theoretically review popular RUMs and convert these models into compatible 

PGM framework. These converted models are further used to infer travel mode choice 

behaviors and also validated through cross-validation method.  

After this introduction, the theoretical and technical motivation of our studies are 

discussed, and the key theoretical components in PGM and Bayesian inference will be 

reviewed in section 3. Also, we will review five RUMs in section 4. In section 5, the 

application of PGM framework for RUM will be discussed. Section 6 will show the results of 

the Bayesian inference of PGM. Lastly, some discussions and conclusion will be discussed.  

 

4.2 THEORETICAL MOTIVATION 

4.2.1 Uncertainty in modeling  

Most modeling tasks aim to learn users’ (can be also agents’, decision-makers’) 

behaviors from the observable information (i.e., partial evidence), and algorithms (e.g., 

statistical learning including machine) are used to investigate reasons for a certain specific 
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case. The built model from the evidences and complied algorithms is further used to predict 

the corresponding actions and conclusions that a person or a system possibly make. This series 

of modeling tasks can be called “reasoning” or “reasoning system”. When reasoning 

behaviors, uncertainty is a significant issue that has placed burdens on the researchers. 

Uncertainty has been widely acknowledged to the fundamental issue that is required to be 

addressed somehow since it may lead us to make false conclusions. There are different forms 

of uncertainty, including (1) noise in the observed data (i.e., errors and unobserved 

information), (2) model parameters, and (3) model structure (e.g., relationships between 

variables), which are inevitable in modeling real-world problems. The formal uncertainty can 

be alleviated by accommodating more knowledge (e.g., prior domain beliefs and assumptions) 

and data as well as tailoring modeling techniques. The latter two uncertainties can be 

addressed by adopting the concept of probability theory—i.e., infer the distribution of 

parameters based on the assumed structure. As problems and given data that are combined 

with human behaviors become more complex (e.g., high-dimensional), addressing 

uncertainty issues in modeling becomes critical. Thus, the history of modeling development 

can also be viewed as a series of efforts overcoming the amount of uncertainty issues, which 

aim to build more realistic models.  

 

4.2.2 Dilemmas in modeling 

In general, a reasoning system based on statistical learning is required to be built with 

flexible model structure and algorithms to address uncertainties—i.e., demystify users’ 

behaviors from partial evidence. In particular, heterogeneity in users’ behavior is one of the 

imperative issues in field of DCM, which is usually resulted from variations among individual 
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preferences, attitudes, and other sentimental factors. For instance, if heterogeneity in users’ 

behavior is ignored in behavior model, it can cause biased estimation and misleading 

conclusions (e.g., policy impacts) (Yuan et al. 2015). Even this issue is far from trivial, since 

these behavioral variations among users are not easily noticeable and handled. In this context, 

researchers have been focused on developing and supplementing modeling techniques to 

better investigate hidden patterns by enhancing the flexibility of the models and their 

estimation.  

In the realm of transportation field, for instance, uncertainty about choices such as 

inter-individual taste heterogeneity has been a key concern in modeling tasks (Bhat 1998; 

Train 2009; Vij and Krueger 2017), which has been dominantly addressed by the family of 

RUM (i.e., parametric approaches). The early models in RUM had some limitations, which 

generally simplify the real-world problems for mathematical convenience (e.g., constraints). 

Thus, it was not flexible enough to reason real-world problems (Train 2009). Although some 

limitations resulted from mathematical simplifications were already recognized at the time, it 

is either not feasible or possible to overcome them—e.g., approximating intractable likelihood. 

Thanks to the advancement in computational ability, it is becoming increasingly feasible to 

learn more information from given data by addressing unapproachable components before 

such as the family of mixed logit and probit. In particular, these algorithmic and technical 

advancements alleviate some aspects of uncertainties not only about unobserved information 

from the given information (e.g., latent structures) but also about stochastic properties in 

models’ predictions (e.g., random coefficients). Although these parametric approaches are 

intuitive and more easily interpretable based on strong theoretical backgrounds—i.e., random 

utility maximization, it is limited to identify hidden interactions between variable and 
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assumptions for capturing high degrees of complexity (e.g., nonlinearity) in the given 

information.  

In the era of Data science and Big data, many opportunities are available for us to 

exploit that relatively hassle-free to demystify problems from given information (i.e., data), 

and their applications have proven to be successful in many real-world problems. Specifically, 

machine learning (ML), mostly nonparametric approaches, have recently adopted in many 

domains to handle uncertainty issues since the power of data-driven approaches enables to 

possess flexible algorithmic properties (e.g., fewer predetermined assumptions) than the 

parametric models and myriads of local optimization processes thanks to their machine-based 

repetitive computation process. Many ML models, however, are less interpretable than 

parametric approaches such as RUM due to their reliance on repetitive computation process, 

and it is also difficult to incorporate domain knowledge. In these circumstances, researchers 

face a variety of technical dilemmas when selecting modeling techniques. The dilemma has 

been the most pressing issues to the researchers since the traditional paradigm in modeling 

tasks generally starts with selecting a technique.  

 

4.2.3 Probabilistic modeling 

Probabilistic approaches based on Bayesian statistics aims to address uncertainty 

issues in modeling by the coherent use of probability theory through the estimation of 

probability distribution (Murphy 2012). The model estimation with likelihood principle that 

has been dominantly used in the field of transportation can be certainly categorized into the 

probabilistic paradigm, but it is not completely probabilistic reasoning (Jordan 2003; Murphy 
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2012). In particular, the inference in the likelihood principle such as maximum likelihood 

estimation (MLE) and maximum a posteriori (MAP) is a point estimate of an unknown 

quantity by computing fixed parameters (e.g., fixed mode and variance in random coefficients 

distribution) for the predetermined distribution (a.k.a., frequentist statistics). These ways of 

inference are somehow limited in representing and manipulating uncertainty about 

outcomes—i.e., full posterior distributions. This limitation may sometimes result in 

overfitting issues that make our predictive distribution to be overconfident (Murphy 2012).  

As mentioned above, uncertainty has been acknowledged to an inevitable aspect of 

modeling tasks, and it is a consequence of various factors. Nonetheless, it is practically 

impossible to handle all uncertain aspects in modeling tasks, since the real-world problems 

can be rarely determined with certainty based on our limited information. Therefore, we need 

reasoning systems that must not only handle prevalent uncertainty from unobserved factors, 

but also measure the amount of uncertainty to be able to obtain more meaningful conclusion 

such as probable outcomes (Koller and Friedman 2009). This is due to the facts that the true 

answers of the world and related phenomena are inherently not deterministic, and it is not 

simply provided with discriminative values. In other words, models of real-world must not 

only handle prevalent uncertainty from unobserved factors, but also measure the amount of 

uncertainty to be able to obtain more meaningful conclusion—not only what is possible, but 

also what is probable. (Koller and Friedman 2009).  

To handle any uncertainty in the application, Bayesian statistics has been widely 

adopted in many fields, however, the majority of applications for travel choice modeling are 

derived from frequentist statistics (Daziano et al. 2013). Although there are few excellent 

applications of Bayesian approaches (Daziano and Bolduc 2013), some studies applied 
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pseudo-Bayesian statistics. It may due to the fact that the goal of frequentist approaches 

prefers to have an “objective” statistical outcome for the estimation, thus, they avoid to using 

Bayes rule by simultaneously considering prior probabilities and likelihood to calculate 

posterior (Jordan 2003). Put it differently, probabilistic reasoning for inferential problems (i.e., 

probabilistic approaches) can be completely fulfilled by Bayesian statistics involving the 

notion of “subjective”. This concept of subjective probabilities, however, is loosely analogous 

to the behavioral assumption of RUM that assumes choices and associated utilities are 

random (Train 2009) (Daziano 2013). Put it differently, if the goal of a model does not merely 

focus on the discriminative outcome (e.g., predicted choice), Bayesian statistics are preferred 

to fully measure uncertainty issues in travel choice behaviors because it bridges frequentists 

and Bayesian through Bayes rule (Jordan 2003). In particular, the joint distribution with 

Bayesian statistics provides consistent quantification of uncertainty by coherently updating 

prior distribution and evidence (i.e., likelihood from given data), and evaluating the posterior 

distribution. Conversely, Bayesian statistics can also be manipulated and calculate the 

quantities that are the interest of frequentist.  

During the estimation of the joint distribution with Bayesian statistics, however, it is 

often challenging to explicitly represent all possible probabilistic relationships between 

variables and estimate associated distributions. This challenge becomes exacerbated when the 

given behavior information is high-dimensional.  

 

4.2.4 Proposed modeling approach 
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This chapter aims to provide a flexible probabilistic modeling framework that is able 

to accommodate a wide range of existing algorithms, in which uncertainty is intuitively 

represented as well as addressed, and quantified. In addition, this framework can give useful 

insights into modeling DCM in the field of transportation, while tackling the dilemmas in the 

era of Big Data and artificial intelligence (AI). Toward this goal, we use the combination of 

two solid probabilistic modeling concepts: (1) probabilistic graphical models (PGM) and (2) 

Bayesian inference (PGM-B). This combination is also called model-based approach to 

machine learning (MBML) that is antithetical to the traditional modeling paradigm, where it 

generally starts with the dilemma of selecting an algorithm when learning and recognizing 

patterns in the data (Olson et al. 2017). The following sections will discuss methodological 

backgrounds related to PGM framework and Bayesian inference in this framework.  

 

 
Figure 4-1. General modeling process of PGM-B 
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4.3 METHODOLOGICAL BACKGROUND OF PGM-B 

PGM-B can be separated into two sub-process: models and inference (a.k.a., reasoning 

systems) (Koller and Friedman 2009) that can be fulfilled by the framework of PGM. For 

given decision-making problems, for instance, a process in constructing models begins with 

considering all kinds of quantities governing the data and possible modeling components 

based on our belief and domain knowledge (i.e., priors, clusters, hierarchies), and these are 

treated as random variables. Then, these variables are intuitively represented as a declarative 

graphical structure and our beliefs (e.g., assumptions and domain knowledge) about how the 

observed data generated is also explicitly described along with the graphical structure—i.e., 

generative process. Once the models (i.e., PGM framework) are constructed, now the goal is 

to answer any probabilistic queries of interests (e.g., parameters). Specifically, we infer the 

posterior distribution of model parameters (unknown quantities of our interests) after 

observing the new evidence (e.g., observed responses, J) through the notion of Bayesian 

statistics. Figure 4-1 presents the overall modeling process of PGM-B. Specifically, the 

optional process, structure learning, is used to learn the causality of a set of variables by using 

algorithms with domain knowledge. This will not be covered in this chapter, however, it will 

be discussed in the later sections (i.e., see details in section 7).   

In this section, we will discuss the theoretical background of PGM framework: (1) 

representation, (2) factorization of joint distribution, and (3) generative process. As for the 

inference process, (4) variational inference (VI) method (i.e., mean-field approximation) will 

be discussed, used to approximate posterior distribution.  
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4.3.1 PGM framework 

4.3.1.1 Representation in PGM  

PGM is a modular modeling framework that represents statistical modeling problems that 

connect graph theory to probability theory and that provide effective ways to handle 

uncertainty with Bayesian inference (Jordan 1998, 2003; Pearl 2014). The PGM framework 

provides an intuitive and compact way of representing the structure of a probabilistic model, 

which give us insights about the properties of the model. With the PGM, for instance, 

researchers can clearly articulate what kinds of quantities (e.g., variables, errors, hidden 

structures) are governing the data and embody complex modeling process from simpler 

components such as hierarchies, clusters, sequences, and others. The PGM can have many 

different types of graph structures, however, and this chapter focuses on the Directed Acyclic 

Graph (DAG) structure that represents conditional dependencies (i.e., causal relations) 

between variables with directional edges (also called a Bayesian network). PGM (©) consists 

of a set of nodes (a) and a corresponding edge sets (G), that can be expressed as follows: 

© = (a, G)         (1)  

In the graph, the nodes (large circles) represent random variables, and the 

corresponding directional edges depict probabilistic dependencies between the variables, 

which correspond to conditional probability distributions. In Figure 4-2 (b), shaded nodes 

(black circles) indicates observed variables, whereas unshaded nodes (white circles) represent 

unobserved (a.k.a., latent) variables. Moreover, the outer box (harnessing !M and îM) marked 

with N in the lower corner of the plate defines the repeated applications that depict the 

relationship between two random variables for N times (i.e., from 1 to N). Lastly, small black 
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circles describe the pre-fixed parameter (a.k.a., hyperparameters), which is optional to be 

presented in the graph to concise visualization.  

 

4.3.1.2 Factorized joint probability distribution  

Theoretically, PGM enables the compact representation of joint probability distributions 

between random variables by means of network structure in a factorized way, while taking 

advantages of independence properties (Koller and Friedman 2009; Sucar 2015). Accordingly, 

the graph structure gives us an intuitive and comprehensive framework to solve the modeling 

problems at hand, and probability theory is employed to quantify the uncertainty (e.g., 

inherent stochasticity) that comes with the problems themselves and relevant data. Based on 

the graph ©, probability theory (i.e., sum and product rules) and linear algebra are required 

to specify a joint distribution and infer different probabilistic queries (i.e., marginal or 

conditional probabilities) based on the structure for a graph (Bishop 2006b; Sucar 2015). For 

example, a joint probability for a certain behavior problem given a set of variables is presented 

in Figure 4-2 (a) and it can be expressed as the follows:  

™	(î:, îS, î´, î¨, !≠, !Æ, !Ø) = ∞(î:)∞(îS)∞(î´)∞(î¨|î:, îS, î´) × 

∞(!≠|î:, î´)∞(!Æ|î¨)∞(!Ø|î¨, !≠)      (2) 

Equation (2) factorizes variables according to the given graph structure in Figure 4-2 

(a). In particular, it gives intuitive and effective ways to answer any specific queries within 

this graph such as conditional probabilities (e.g., ∞(J|!´, !¨)) and marginal probabilities (e.g., 

∞(J)) by determining the probability of any given assignment to the set of variables (Bishop 
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2006b; Koller and Friedman 2009; Sucar 2015). The general case of the joint distribution with 

V number of nodes can be factorized as follows:  

™	(!:, … , !T) = 	∏ ™(!M|∞_(!M))T
MU: 	     (3) 

where, !O  is a variable and ∞_(!O)  are the parents of !O . Specifically, each variable is a 

probabilistic (i.e., stochastic) function of its parents, which is inherently encoded with a 

generative process. Specifically, the value (i.e., distribution) for each variable is determined 

by using a distribution that depends only on its parents.  

 

4.3.1.3 Generative process 

The generative process is to specify how data might have been generated from the model. The 

combination of factorized joint distribution encoded in the PGM, and the generative process 

is intuitively way to understand the given problem and data while incorporating our domain 

knowledge.  

PGM representation in Figure 4-2 (b) describes a simplified Bayesian Gaussian 

mixture model as an example, which is defined by V numbers of observations, c	 ∈ {1, … , V} 

that are distributed over ∂ mixture components (i.e., clusters), †	 ∈ {1, … , ∂}. Each cluster is 

characterized by the center of Gaussian distribution ∑ü  with the variance of prior on the 

clusters u;S. The latent variable îM controls the allocation of each observation (i.e., îM = †), 

thus,  îM is a realization (a.k.a., mixture assignment in mixture models) from a multinomial 

distribution with parameter ∏ (a.k.a., mixture proportions in mixture models). In particular, 

∏ is assumed to be fixed in this case but it can be also characterized by a certain distribution 
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and related parameters (e.g., Dirichlet process and concentration parameter) (Blei et al. 2003). 

The generative process of this model is succinctly expressed as follows:  

∑ü~	π(0, u;S)     † = 	1, … , ∂,    (4) 

îM~	d_∫e98bWd_7(∏)    c = 	1, … , V,    (5) 

!M~	π(∑ªú, u
S)    c = 	1, … , V.    (6) 

where u;S, uS, and ∏ are assumed to be fixed. This process with PGM also helps us to identify 

variables that operate globally and locally. For instance, the cluster center (∑ü) and mixture 

proportion ∏ is globally governing this model, whereas cluster assignment (îM) only indicates 

the assignment of each observation, which is locally governing the model.  

 

 

Figure 4-2 (a) graphical representation of variable (b) graphical representation of Bayesian 
Gaussian mixture model in PGM (shaded circles indicate observed variables; unshaded 
circles are unobserved (latent) variables and the square represents repetitive applications—
i.e., a plate) 
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4.3.2 Inference in PGM framework 

4.3.2.1 Bayesian inference 

The goal of the model in the example of Figure 4-2 (b) is to compute the posterior distribution 

over ∑  and î , based on the joint distribution of all of given variables, assumptions, and 

parameters. This computation process is also known as Bayesian inference in modeling on 

PGM framework. In addition to quantifying uncertainty (mentioned in section 2.2.1), 

Bayesian inference is technically preferred than the classical procedure such as frequentist 

approaches (e.g., MLE and MAP). In particular, Bayesian inference is not necessary to 

maximize of any function (Bishop 2006b; Train 2009). For instance, maximum simulated 

likelihood (MSL) function is often difficult to be computed in numerically since the maximum 

values are prone to be affected by starting values and can be reached to local maxima instead 

of global maximum. Without using frequentist approaches, Bayesian inference can provide 

inference results that can be examined and interpreted in the viewpoint of frequentist. This 

dual interpretation can be conducted by Bayes’ rule:  

∞(î|!) = h(%,ª)
h(%)

= 	 h(ª)h(%|ª)
h(%)

	       (7)  

where the ∞(î) is prior distribution of our interest (î) and ∞(!|î) is likelihood distribution that 

is explained by data. The nominator in this equation is typically easy to evaluate for any 

configuration of the latent variable î. The model evidence ∞(!) is normalization constant, 

which is the sum of the nominator over all possible configurations of the latent variable î. 

This can be also expressed:  

 ∞(!) = ∫ ∞(!, î)ª        (8) 
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This is the marginal likelihood of !. For example, if we specify the marginal likelihood of the 

example in Figure 4-2 (b) by taking advantage of the factorization, the marginal likelihood 

∞(!) is:  

∞(!) = ∫ (∏ ∞(∑ü)Ω
üU: )æ ∏ ∑ ∞(îM|∏)∞(ªú !M|îM, ø)¿∑T

MU:    (9) 

To fully make inference on posterior distribution, the marginal likelihood is required 

to be evaluated. Specifically, the marginal likelihood is an integral over all possible values of 

model parameters that we are interested in, and this integral is often intractable (i.e., non-

closed form).  

 

4.3.2.2 Approximate inference: variational inference 

Posterior distribution of our interest may not have closed-forms and need to be approximated 

by approximation inference methods. There are various approximation inference methods to 

solve non-closed form integration, in particular, Markov Chain Monte Carlo (MCMC) or 

Variational Inference (VI) are widely adopted in Bayesian inference. For instance, one of the 

core research questions of DCM is to approximate intractable probability densities (e.g., 

random parameters) and predict future choice behaviors. In PGM-B, this approximation 

problem becomes especially important, which modules all inference about unknown 

quantities through posterior estimation.  

This chapter mainly uses VI, which leverages techniques from the machine learning to 

approximate probability densities for approximating probability densities (Wainwright and 

Jordan 2008). As an alternative strategy to MCMC sampling, VI has been widely used to 
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large-scale data analysis since VI is more computationally efficient than MCMC, which is 

particularly important when data sets become large. As a loose analog to VI, the expectation-

maximization (EM) algorithm has been widely used for approximation problems in DCM, 

which provides a point estimate rather than a probability density (i.e., posterior 

distribution)—which is the interest of Bayesian statistics (see details in this section later). 

Despite the difference in results between EM and VI, the fundamental approximation method 

is almost similar by minimizing the distance between the true values and approximated values 

(i.e., the closeness between two distributions)—e.g., Kullback-Leibler (¡¬ ) divergence 

(Kullback and Leibler 1951).  

VI is generally adapted to approximate the (conditional) probability densities of latent 

variables (î) given observed data (!), ∞(î|!), using a simpler distribution. The main idea is to 

introduce a tractable variational distribution √(î|ƒ), with variational parameters (ƒ), and to 

find the values of (ƒ) that make √(î|ƒ) as close as possible to the true posterior ∞(î|!). The 

goal of VI is to find the best approximation of  √(î|ƒ), the one closest in ¡¬ divergence to 

∞(î|!) . Specifically, ¡¬  divergence is asymmetrical measure of proximity between two 

distributions: 

¡¬	(√‖∞) 	≠ ¡¬	(∞‖√)       (10) 

that is minimized when √(∙) ≈ 	∞(∙) . Based on the criteria of ¡¬  divergence, posterior 

inference can be expressed as:  

√*(z)= arg min
q(z)

¡¬ (√(î)‖∞(î|!))      (11) 

Unfortunately, the above equation cannot be directly minimized due to the model evidence 

term—i.e., the denominator in Bayes’ theorem that requires marginalizing over the latent 
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variables (i.e., unknown parameters of interests) to be computed (Wainwright and Jordan 

2008). In particular, the ¡¬ is represented by:  

¡¬	(√(î)‖∞(î|!)) = »[log √(î)] − 	»[log	∞(î|!)]	    (12) 

where all the expectations are with respect to √(î). Making use of the conditional probability 

formula, we can rewrite equation (12) as: 

¡¬(√(î)‖∞(î|!)) = »[log √(î)] − 	»[log	∞(î, !)] +	 log ∞(!)	  (13)  

where the model evidence term log ∞(!)  becomes constant with respect to √ . Therefore, 

instead of minimizing the ¡¬  (intractable), an alternative (tractable) function can be 

minimized:  

ELBO	(√) = 	»[log	∞(î, !)] − 	»[log √(î)]     (14) 

This is the negative ¡¬ without an additive constant log ∞(!)—i.e., the (log) evidence, 

which is called the evidence lower bound (ELBO). As its name suggests, ELBO indicates the 

lower-bound of the (log) evidence (see Figure 4-3), i.e. log ∞(!) ≥ 	ELBO	(√) for any √(î). 

With the ELBO, we can geometrically interpret the relations between ¡¬, ELBO, and the (log) 

evidence. The  ELBO is getting tight when √(∙) ≈ 	∞(∙), in which case ELBO ≈ 	log	∞(∙).  

As mentioned earlier, EM and VI are loosely analogous to each other. In particular, 

the first term in equation (14) is the expected log-likelihood in the EM algorithm that is 

designed to solve maximum likelihood estimates for point estimation with latent features (Blei 

et al. 2016). In contrast to the VI, EM assumes that »[∞(log	∞(î|!)] can be calculated and 

uses it to further parameter estimation problems.  
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Figure 4-3. Geometric relationships between ¡¬, ELBO, and the (log) evidence (see details 
in Bishop 2006) 

 

4.4 REVIEW OF MODELING IN DISCRETE CHOICE BEHAVIOR 

In the previous sections, the theoretical background of key components for PGM-B is 

discussed. This section will investigate how does the framework of PGM-B modularize 

discrete choice problems, especially for travel choice behaviors. Although various kinds of 

modeling techniques are available to address discrete choice behaviors—e.g., parametric and 

nonparametric approaches, this chapter primarily derives PGM-B as for the application of 

random utility models (RUM) that are derived from the assumption of random utility 

maximization behavior. Specifically, modeling components (e.g., coefficients) in PGM-B are 

somewhat similar to the RUM, but the ways to define variables and their structures (e.g., 

relations) are different from each other. Besides, there are some discrepancies in the 

estimation process and results—i.e., frequentist and Bayesian. Thus, the following section will 

briefly review methodological backgrounds of DCM, especially for the family of RUM, and 

closely modularize those into PGM-B.  
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4.4.1 Discrete choice modeling with random utility maximization  

Discrete choice models (DCM) fundamentally describe users’ choice behaviors among 

available alternatives (i.e., set of options) (Train 2009), thus, the primary goal is to learn the 

users’ decision-making process from the data (R) that leads to the user’s choice (J). Although 

detailed specification and terminology are different from the modeling purpose and associated 

data, behavior models can be expressed as the following function:  

J = Q(R) + 	\         (15) 

where R is a vector of observed variables (i.e., attributes, factors). Moreover, in practice, data 

itself is not perfect, and there exists unobserved data and some noise, which is presented by 

the error term, \, in the model. 

In DCM, observed and unobserved factors relate to the user’s choice through the 

function expressed in equation (15). Due to the existence of the error term, \, the user’s choice 

cannot be predicted exactly (i.e., the choice is not deterministic). Instead of an exact 

prediction, DCM derives the probability of available choice by considering the error term as 

random with specific density. This derivation of choice probability can be expressed in a more 

useable form by entailing an indicator function, Œ[∙]:  

™	(J|!) = ∫ Œ[J]Q(\)¿\       (16) 

where the indicator function, Œ[∙], returns binary values, either 0 and 1. For instance, Œ[∙] takes 

1 if the value of ! and \ induces the user to choose a specific outcome, J, and 0 otherwise. 

Then, the conditional probability that the user chooses J becomes the expected value of this 

indicator function over all possible values of the error terms. 
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4.4.1.1 Random utility Theory 

Discrete choice modeling under random utility theory (a.k.a., random utility model, RUM) 

is one of the dominant methodologies applied to address discrete choice behaviors, and it is 

derived from the assumption of utility-maximizing behavior by the decision-maker (Marschak 

1950; Train 2009). In utility-maximization theory, a decision-maker, c, chooses an alternative, 

W, among œ alternatives since the alternative W provides the greatest level of utility U with a 

decision-maker (Train 2009). In equation form: 

–MO 	> 	–Mg	∀	i ≠ 	W         (17) 

Although RUMs are derived from the utility-maximization theory, the representation 

of models is analogous to any other models that describe users’ behavioral process. Therefore, 

RUMs can also be represented by relating explanatory variables to the outcome (see equation 

(15)). Based on equation (16), this utility function, –, can be also classified into two parts: an 

observed and an unobserved utility. Similar to the form of equation (15), the utility function 

can be expressed as follows: 

–MO = aMO(R, ”) + 	\MO       (18) 

where the observed (stated) utility, aMO, is a value determined by a linear combination of the 

observed variables, which include covariates associated with both a decision-maker and the 

alternative presented to the decision maker. The unobserved utility (i.e., errors) for all 

alternatives, \M, on the other hand, cannot be observed by researchers but by decision-makers 

since data is incomplete, and there inherently exists the level of stochasticity— i.e., 

uncertainty. Therefore, researchers treat the unobserved terms as a random variable that 
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follows an assumed probability density function (e.g., independently, identically distributed 

with extreme value).  

For this random variable, the joint density of this unobserved utility for the cXY 

decision-maker (\M) can be denoted as Q(\M). This joint density function is also known as a 

“mixing distribution” in transportation discrete choice modeling studies. Technically, 

however, there are some misconceptions about the mixing distribution (see details later). In 

general, the probability that decision-maker c choose alternative W can be expressed as: 

™MO = ∫‘Œä\Mg − \MO < 	aMO −	aMg	∀	i ≠ 	Wã÷Q(\MO) ¿\MO   (19) 

This is a marginalization over the unobserved utility (\), which is the way of calculating the 

weighted average over different \ for each alternative. Similar to the unobserved utility, some 

observed utilities can be treated as random variables Q(f) , which is known as random 

coefficients in a way of addressing random tastes heterogeneity. In this sense, the different 

types of RUMs largely depend on how these random variables and corresponding mixing 

distribution is specified and estimated (i.e., marginalization).  

Each RUM has different assumptions about the mixing distribution— i.e., Q(\), Q(f). 

Put differently, these assumptions are generally used to overcome the two modeling issues, 

but it is also made to achieve mathematical convenience for the calculation of integral. Logit 

and generalized extreme value (GEV) models (e.g., nested logit) intentionally make 

assumptions on the unobserved terms, which enables the integral in equation (19) to have a 

closed-form solution, so that the model parameters can be determined using maximum 

likelihood estimation (MLE). On the other hand, probit and mixed-logit have more flexible 

assumptions than the two previous models. For instance, probit assumes that Q(\) takes a 
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normal distribution. Mixed logit is derived by classifying the unobserved term \ into two 

components and assumes that one represents random tastes variation that follows a certain 

distribution determined by researchers, while the other follows an independently, identically 

distributed (iid) extreme value distribution.  

The following sections discuss the different types of RUMs and their specifications. In 

particular, the family of mixed logit that addresses random tastes heterogeneity is discussed 

based on the types of mixing distribution.  

 

4.4.1.2 Standard logit (conditional logit)  

The simplest and easiest way to address a discrete choice problem is to adopt a logit model, 

which was developed to achieve tractable calculation. In particular, the logit model is derived 

by assuming a specific density distribution for the unobserved term (\). This specific iid 

extreme value distribution is also called Gumbel and type Ι extreme value (i.e., zero mean 

and scale one). The density (Q) and cumulative distribution (ÿ) of the unobserved term in 

equation (19) are assumed to be: 

Qä\Mgã = e&ÇúŸe&⁄
¤‹úŸ

       (20) 

ÿä\Mgã = e&⁄
¤‹úŸ

        (21) 

With the iid extreme value on the unobserved term, the equation (19) can be expressed as:  

™MO = ∫ ›∏ e&⁄
¤(‹úŸfi	flúï¤	flúŸ)

g‡	O · e&Çúïe&⁄¤‹úï ¿\MO    (22) 
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This logit choice probability of a decision-maker (c) choosing an alternative (W) results in a 

closed-form expression by using some algebraic manipulation:  

™MO	 = 	
⁄flúï

∑ ⁄flúŸ‚
Ÿùo

         (23) 

Since this choice probability is limited to the specific case when unobserved terms are 

independent for repeated choice situations over time, it is generally not flexible enough to 

address real-world situations such as when unobserved factors are correlated. To alleviate 

correlation issues in logit specification, GEV models such as nested logit can be used. 

Furthermore, if the tastes of decision-makers are random over the population (i.e., 

heterogeneity between individuals), it is difficult for logit models to incorporate random taste 

variation under the specification of fixed coefficients. To enhance the flexibility of RUMs, a 

mixed logit or a probit can be adopted to address random tastes heterogeneity.  

 

4.4.1.3 Mixed logit 

Mixed logit models make relatively more flexible assumptions than other RUMs, and they 

are designed to relax random tastes heterogeneity, substitution patterns, and other correlation 

issues (i.e., correlation with choices over time) (McFadden and Train 2000; Train 2009). 

Thanks to its more flexible nature—i.e., relaxing constraints—mixed logit is also widely 

adopted not only to analyze cross-sectional data, but also multi-level data sets (e.g., panel 

data). Technically, mixed logit can be approximated to any RUMs (e.g., GEV, probit, logit), 

based on how observed and unobserved terms are specified, interacted, and assumed 

(McFadden and Train 2000; Train 2009). Since mixed logit models have widely adopted to 
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the multi-level data (i.e., panel data), the specification of the model in the below considers 

choice situations for each individual traveler. The utility of person c can be expressed from 

alternative i in choice situation ∫, which is the extension of equation (18) by considering 

repetitive choice situations for decision-maker:  

–MgX = fM„!MgX + \MgX        (24)  

where fM„ is a vector of person’s coefficients within the population, !MgX is a vector of variables 

of alternative i over choice situation ∫ for person c, and \MgX  is the stochastic component, 

assumed to be iid extreme values across all persons, choice situations, and alternatives. As 

presented above (equation 23), the conditional probability of standard logit that person c 

chooses alternative i can be derived based on utility-maximization behavior:  

jMO(JMX|fM) = ‰ ⁄Âú
ÊÁúŸË

∑ ⁄
ÂÈÁúŸÈ

ŸÈ∈ÍúË

Î      (25) 

where ÏMX  indicates the choice set of given choice situations and person. For the iterative 

choice of alternatives over choice situations (i.e., JM = [JM:,⋯ , JM„] ), the conditional 

probability of a vector of choices  JM for person c can be expressed as follows: 

™(JM|	fM) = ∏ jMX(JMX|fM)„
XU:       (26) 

A vector of person’s coefficients fM  is not known, which can be represented by a 

certain density distribution (i.e., mixing distribution). In particular, this mixing distribution is 

the key element that determines the ways of specification and estimation process in addressing 

heterogeneity issues in mixed logit.  
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In this section, for instance, a parametric probability density distribution is assumed, 

and the marginal probability of the person’s iterative choices can be derived by the integration 

of ™(JM|	fM) over the assumed distribution of fM: 

™(JM|!M, Ó) = 	Qõ(JM|!M, Ó) = ∫Qõ(JM|!M, fM)QÔ(fM|Ó)¿fM	  (27)  

This probability can be simulated by estimating the unknown parameters Ó  (a.k.a., 

hyperparameters) that assumes the function form of fM . The most common approach for 

parametric continuous mixing distribution is the maximum simulated likelihood since this 

marginalization over fM cannot be performed in closed-form. The following section discuss 

random tastes heterogeneity issues and mixing distributions that capture random tastes 

heterogeneity.  

The most common type of mixed logit assumes a predetermined parametric 

continuous distribution such as normal and log-normal, which generally has a single mode 

(i.e., univariate Gaussian). Although there are many different kinds of mixing distributions 

that can be assumed in principle, only a limited number of mixing distributions have been 

used in empirical applications. This is mainly due to the facts that there exist several technical 

and algorithmic dilemmas when determining different types of mixing distributions—e.g., 

parametric and nonparametric; continuous and discrete (see details in (Train 2016; Yuan et 

al. 2015)). 

 

4.5 Application of PGM framework in travel discrete choice behavior 
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In several centuries, progressions in modeling—e.g., the family of RUM and ML, have 

often focused on supplementing and tailoring algorithms for a certain (or specific) problem 

and phenomenon to not only output accurate predictions but also examined associated 

behaviors. As a consequence, a variety of different modeling specifications are developed to 

more realistic models while addressing some challenges in data, estimation process, and 

predetermined assumptions—e.g., the family of RUMs ranging from MNL to mixed models. 

In this sense, methodological concepts and techniques that involve these tailored algorithms 

often become more complicated than already existing models, and researchers are left with a 

deluge of modeling algorithms, as well as various nomenclature. When it comes to modeling 

the given real-world problems, therefore, researchers typically try to select a suitable method 

among existing modeling techniques and map their problem onto it—often influenced by their 

knowledge and familiarity with a specific method (Bishop 2013; Olson et al. 2017). As the era 

of Big Data and Data Science is creating unprecedented opportunities for researchers, 

selecting a suitable algorithm becomes more challenging than before, especially for those 

without a strong background in a certain modeling technique. In addition, despite having 

been selecting appropriate techniques and successful at its particular task, built models are 

often not applicable to other use cases. As a result, if a problem and a corresponding 

application change, the built model will have a poor accuracy and it will have to be 

substantially modified.  

PGM framework in this section aims to address discrete mode choice behaviors to 

alleviate the existing dilemmas and challenges (e.g., data availability, familiarity of modeling 

techniques) for researchers, which is antithetical to the traditional paradigm that begins with 

selecting an appropriate modeling technique based on given conditions. PGM framework, for 
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instance, begins with focusing on the given problems (see details in the previous section 3.1) 

while accommodating various modeling methods with less technical background in the 

algorithms selected. In this section, the major specifications of RUMs ranging from MNL to 

mixed logit models will be modularized into PGM framework with the level of 

pooling/shrinkage (a.k.a., hierarchical modeling). Specifically, pooling/shrinkage aims to 

handle unobserved detrimental effects in modeling behaviors (e.g., heterogeneity across 

individuals) while leveraging useful information for data structure (e.g., information across 

individuals or groups). Generative process is also presented which are powerful to handle 

missing or inadequate information required to model through providing stories about how 

the data has been generated.  

In addition, the observations can be different from the types of data such as cross-

sectional and panel data. To provide generalized modeling specification, the observation (c) 

indicates each sampled individual (†) whose making repeated choice occasions (∫). Complete 

pooling, in particular, observation is considered as identical to individual since complete 

pooling model assumes that a single parameter vector is shared by all individuals.  

 

4.5.1 PGM-complete pooling (PGM-CP) 

PGM-complete pooling (PGM-CP) globally shares a single parameter vector within 

each choice alternative (” ), where W  indicates the choice alternative. The distribution of 

parameter vector for each choice alternative (”) is linearly combined with the distribution of 

variable vector (R), and this combination enters the utility function that is converted to the 
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exponential distribution family (i.e., categorical) through a softmax function. In general, this 

modeling specification can also belong to the class of a generalized linear models (GLM).  

Figure 4-4 presents a graphical representation that compactly depicts the relationships 

between random variables (Ò, Ú, ”) in the form of PGM-CP specification. The generative 

process of PGM-CP is also presented in Figure 4-4 (on the right panel), defined by V 

observations, c	 ∈ {1, … , V}  and Ï  choice alternatives, W	 ∈ {1, … , Ï} . Based on the PGM 

framework in Figure 4, the joint probability distribution of given Û and ” can be factorized as:  

∞	(Ú, ”:, … , ”Ù|Ò, m) = 	 ä∏ ∞(”|D,Ù
OU: 	mı)ã 	×  

											(∏ ∞(T
MU: JM|”:„RM, … , 	”Ù„RM))   (28)  

where ” indicates a column vector of parameters for an alternative d,  Ú is a column vector 

of response (i.e., choice), Ò is a matrix of variables, and D and ı indicates a zero vector and 

an identity matrix, respectively. Moreover, m is scale parameter for the variance of random 

parameter distributions, which often assumed to be constant under this setting (i.e., same 

variation for every mode). To find 	”, the equation (28) can be expressed by Bayes’ rule:  

∞	(”:, … , ”Ù|Ú, R, m) = 	
ä∏ h(”ˆ|D,Í

ˆùo 	Öı)ã×ê∏ óX(˜
úùo õú|¯˘˙XÄó%(%ú,Ôo,…,Ôˆ)ì

∫ ä∏ h(”ˆ)Í
ˆùo ã×ê∏ h(˜

úùo õú|,Ôo,…,Ôˆ)ì”ˆ

 (29)  

The last factorization term in the nominator is the likelihood that is the main interest 

of MNL from the perspectives of frequentist approaches. Thus, this term gives deterministic 

values for the coefficients (i.e., point estimate) by MLE. Without maximizing the likelihood 

function, Bayesian inference can make predictions by using prior, posterior, and normalizing 

constant in the denominator. The estimation of posterior distribution in equation (29) is not 
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closed-form due to the denominator, thus, approximate inference methods are required, and 

this article primarily uses VI, as described in the previous section.    

 

 

Figure 4-4 Graphical representation and generative process for PGM-CP 

 

4.5.2 PGM-no pooling (PGM-NP) 

The previous model in Figure 4-4 is that all individuals share a single set of parameter 

vector for each class (”). In other word, the model is strongly pooled (i.e., complete pooling), 

and it is difficult to accommodate unobserved heterogeneity issues (e.g., heterogeneity 

between individuals or level of sub-groups) in choice behaviors (Wooldridge, 2010). To 

capture unobserved fixed and random effects, the previous model can be revised by 

constructing more hierarchies, which is loosely generalized to the modularization of mixed 

logit models with different mixing distribution—e.g., parametric and nonparametric mixing 

distribution (Guo et al., 2018; McFadden and Train, 2000; Train, 2016, 2009). In PGM, 

hierarchical modeling structures can be designed to address these unobserved random effects 

(Robert, 2014; I and Jordan, 2010). For instance, mode choice behavior may be different from 
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each observation or the number of distinct sub-groups (a.k.a., no pooling and partial pooling, 

respectively) since different individuals or sub-groups could have different preferences.  

∞(J, ”::, … , ”Ù: , … , ”:Ω, … , ”ÙΩ|Ò, m) 	= ä∏ ∏ ∞(Ω
üU: fü|D, mı)Ù

OU: ã ×    

    ∏ ∞(T
MU: JM|	!M, †M, ”::, … , ”Ù: , … , ”:Ω, … , fÙΩ)  (30) 

where c  is each trip made by a certain individual † . ä∏ ∏ ∞(Ω
üU: fÙü|D, mı)Ù

OU: ã  is the 

hierarchical prior and ∏ ∞(T
MU: JM|	!M, †M, ”::, … , ”Ù: , … , ”:Ω, … , fÙΩ) is the likelihood term.  

 

Figure 4-5 Graphical representation and generative process for (a) PGM-NP where every 
individual has own parameter vector (b) PGM-NP with group allocation (PGM-NPG) 
model where each grouped individuals has own parameter vector 
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Individuals in PGM-NP models can be categorized into the groups or collections of 

individuals that shares similar characteristics (i.e., constant over choice situations or time). 

By introducing group allocation variables 9M, PGM-NP with group allocation (PGM-NPG) 

can capture inter-group taste heterogeneity, while each group has homogenous tastes (i.e., 

own set of parameters). The segmentation of individuals can be determined by the given 

evidence (information) from the samples. Otherwise, it can be treated as unobserved random 

variables whereas it is predetermined from observed variable (e.g., categorical information).  

In particular, individuals are probabilistically assigned to finite- or infinite number of 

groups, and the number of groups (a.k.a., mixing components) can be inferred by heuristically. 

This is widely known as the family of latent class (mixed) multinomial logit. For example, 

latent class model using Dirichlet process priors is one of a popular way to approximate the 

number of unobserved groups, which can be also viewed as the combination of mixture 

modeling with logistic regression under the PGM framework. This article is not focusing on 

methodological details about the latent class cases, thus, more details can be found in (Blei et 

al., 2016; Teh and Jordan, 2010). 

In our case, the information of group (i.e., degree of pooling) is pre-determined by the 

given data and domain knowledge—i.e., observed random variables (shaded circle). For 

example, individual mode choice behavior can be significantly affected (clustered) by 

geographical categories, trip purpose, and other categorical features, researchers therefore use 

these observed features as a group. Under this specification, the joint posterior distribution in 

Figure 4-5 (b) can be expressed: 
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∞(J, ”:…Ù˚ , ø:…Ù˚ , ¸:…Ù˚ pÒ, ˝) = ä∏ ∏ ∞(ø
˛)∞ä¸

˛ã	˚
˛U:

Ù
U: ∏ ∏ ∞(f

˛|ø
˛, ¸O

˛)˚
˛U:

Ù
U: ã 	×

																														∏ ∞(T
MU: JM|	!M, 9M, ”::, … , ”Ù: , … , ”:˚, … , ”Ù˚)    (31) 

where 9M indicates the allocation of observation c to a certain group 9.  

 

 

Figure 4-6. Two level hierarchical no-pooling model (HML-NP2) where all parameters are 
assumed to be drawn from the same parametric distribution 

 

4.5.3 PGM-partial pooling (PGM-PP) 

The previous two models indicate two extreme cases of pooling. Specifically, one 

extreme, PGM-CP, assumes that all the observations globally share a single set of parameters 

(i.e., complete pooling). On the other extreme, PGM-NP and -NPG assumes that each 

individual/group has its own set of parameters (i.e., no pooling). For example, PGM-NP and 

-NPG models are likely to have overfitting issue because the longitudinal data set contains 

fewer number of observations (trips) per individual than the number of variables. This 

overfitting issue might be exacerbated when accommodating ML algorithms in the PGM 
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framework. To alleviate this overfitting, another level of a pooling/hierarchies can be 

specified. 

As for compromising two extreme cases, PGM-PP introduces two level hierarchies for 

the parameters of our interests. Specifically, PGM-PP shared global prior (i.e., hyper-prior) 

ties together the parameters of each individual (see Figure 4-6). The joint posterior distribution 

can be expressed as: 

∞äJ, ”
˛, ø, upÒ, ˝) = ä∏ ∞(Ù

U: ø)∞(u)∏ ∞(˚
˛U: ”

˛|ø, u)ã 	×

																														∏ ∞(T
MU: JM|	!M, 9M, ”::, … , ”Ù: , … , ”:˚, … , ”Ù˚)    (32) 

where c is each observation.ä∏ ∞(Ù
U: ø)∞(u)∏ ∞(˚

˛U: ”
˛|ø, u)ã	 is the hierarchical prior 

and ∏ ∞(T
MU: JM|	!M, 9M, ”::, … , ”Ù: , … , ”:˚, … , ”Ù˚) is the likelihood term. Specifically, øÙ  and 

uÙ	are globally drawn by the assumed prior parametric distribution (i.e., hyper-prior) for each 

class, then we draw coefficients (”) for each individual/group. Although u is theoretically 

follows the conjugate prior (i.e., Inverse Gamma) instead of exp( u ) with Gaussian 

distribution, we applied the exp(u ) with Gaussian since the differences between two 

specifications are marginal when testing two difference specifications.  

 

4.6 CASE STUDIES: TRAVEL MODE CHOICE BEHAVIOR 

4.6.1 Data  

4.6.1.1 National Household Travel Survey 2017 
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This chapter mainly uses the 2017 National Household Travel Survey (NHTS) database to 

investigate the applicability of PGM-B. The NHTS data sets contain the nation’s travel diary 

information across all 50 US states and the District of Columbia (“2017 NHTS Data User 

Guide” 2018). Specifically, survey respondents are collected directly from a geographically 

stratified random sample of U.S. households (i.e., 129,112 households), which includes a 

national sample of 26,000 households and 103,112 additional samples from state departments 

of transportation (see details in (“2017 NHTS Data User Guide” 2018)). Based on the samples, 

the NHTS database mainly provides daily travel for all members of households linked to 

individual personal and household characteristics including demographics, vehicle, and other 

attitudinal information.  

 

Table 4-1. Descriptive statistics of variables 

Variables Description mean Std. min max 

Dependent choice alternatives  

 CHOICE 1: AUTO 2: TRANSIT 3: BIKE 4: WALK 

Independent variable  

TRPMILES Travel miles  5.05 5.11 0.2 20.941 

TRACCTM Transit access time 2.66 5.17 0 30 

R_AGE Respondent ages 45.20 19.26 5 92 

VEH_DUMMY Existence of private vehicle  0 1 

BIGPOPDEN 
Household located in high population density (>10000 per 
square miles) 

0 1 

EDUC Education level of respondent 1 5 

TRIPPURP1 Identifier for trip purpose (home-based work, shopping, others, recreation) 

STATES Identifier for U.S. States 
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To obtain all of this information and variables from the NHTS database (i.e., 4 

different data sets), the different data sets are combined based on each household, person, and 

trip identifier (i.e., HOUSEID, PERSONID, VEHICLEID, TRIPID). After obtaining a 

merged data set, variables with very low response rate (< 10%), some variables containing 

and redundant and missing values (e.g., “not as certain”, “avoid to answering”) are 

eliminated, and inter-related information is merged into smaller discretized values (i.e., 

dummy). Moreover, the original database contains only 2 to 3 % of transit (e.g., bus, subway) 

since the database is collected from random U.S. samples. To be able to fairly investigate 

travel mode choice behaviors, we only select regions that are accessible to transit and use only 

these selected observations in our analysis.  

 

4.6.1.2 Balancing in minority modes 

This case study is to investigate the applicability and feasibility of PGM-B, thus, the original 

datasets are statistically modified to test our PGM-B models. For instance, samples for transit 

are significantly fewer than other modes, accounting for only 1,248 observations compared 

to 93,192 for auto, and observations using transit are generally sampled from the urban areas. 

This imbalanced samples may cause biased estimation and provide unreasonable modeling 

predictions. To address this imbalanced issue, we intentionally balance the original 

observations by using under-sampling methods. Specifically, the nearest neighbor method and 

random sampling methods (Lindenbaum et al. 2004) are used as an under-sampling method 

to obtain well-balanced observation throughout the States of U.S. After both sampling 
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processes and removing some inadequate information, we obtain 258 samples for each choice 

alternatives (i.e., auto, transit, walk, bike).  

 

4.6.1.3  Selection of variables  

Table 4-1 presents the descriptive statistics of the selected variables used in this case study. 

These variables are selected through the variable importance (VI) that shows the relative 

contribution of variables (i.e., reduction in errors) during the estimation of the rule-based 

model such as gradient boosting machine (Friedman 2001). Variables in Table 4-1 are most 

influential for individual mode choice. Thus, this analysis reduces the dimensionality of the 

original NHTS data. In addition to the information from VI, we intentionally add some 

variables based on our domain knowledge of mode choice behavior (Golshani et al. 2018; Lee 

et al. 2018a).  

 

4.6.2 Model specification  

4.6.2.1 PGM-B models 

PGM-CP, NP, and PP are used to model discrete mode choice behaviors. Specifically, PGM-

NP specifies each individual has its own set of parameters. In addition, PGM-PP specifies 

that each group (i.e., the State of U.S.) have its own set of parameters that globally drawn by 

the assumed prior parametric distribution (i.e., hyper-prior) for each choice alternative. For 

instance, individuals are grouped into each region to capture inter-regional taste variations, 

while each group has homogenous tastes (i.e., own set of parameters). 
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In addition, variables in data contain varying scales and ranges. The different 

numerical scales may cause biased estimation since ML models are generally susceptible to 

the scales and ranges of values. Therefore, we scale all values of variables ranging from 0 to 1 

by using the min-max normalization.    

!" = 	 %&'()*
'+,*&'()*

	        (33) 

 

4.6.2.2 RUM models 

To make a comparison of modeling performances, multinomial logit and mixed logit models 

are also estimated. The baseline modeling specification for MNL is as follows:  

–Mg = ˇMg + fMg	!Mg + \Mg       (34) 

The utility maximization behavior of person c is assumed to follow the equation above. ˇMg 

denotes alternative-specific constant. fMg are a vector of coefficients of alternative i for person 

c, and !Mg is a vector of variables. \Mg is the stochastic error component that is assumed to be 

iid extreme values (i.e., Gumbel) across all persons and alternatives.  

To address heterogeneity issues across entities (e.g., individuals), MNL model is 

further specified to incorporate fixed effects and random parameters on mode choice 

behaviors. Specifically, variables representing individual characteristics are constant among 

different choice situations within an individual, thus, parameters for these variables are 

assumed to be fixed. On the other hand, time-variant variables (e.g., alternative-specific 

constant and variables) are assumed to have random parameters to incorporate heterogeneity 

issues across individuals. The modeling specification of mixed logit is as follows: 
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–MgX = fM,OM!óÉOóMX	!Mg +	fM,!óÉOóMX	!MgX + \MgX    (35) 

\MgX = ˇMg +	∑MgX        (36) 

where fM,OM!óÉOóMX is a vector of fixed parameters representing individual-specific information 

such as age, gender, and education level that are constant among choice situations (∫ ). 

fM,!óÉOóMX include time-variant information minimize implausible values for parameters such 

as travel time, we also tried lognormal distributions for parameters related travel time and 

cost instead of normal distributions. In addition, \MgX , are specified into two random 

components. The first component, ˇMg , is fixed over choice situations but varied by 

individuals for each choice alternative to incorporate unobserved detrimental effects that are 

correlated with other variables. The second term, ∑MgX, is stochastic error component with 

Gumbel distribution.  

The estimation results of MNL and mixed logit is presented in Table 4-2. Both models 

are estimated with Python Biogeme (Bierlaire 2003b). The prediction accuracy in Table 4-3 

and 4-4 are evaluated by the test dataset (40%).  
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Table 4-2 Estimation of multinomial and mixed logit models  

 

Variable Multinomial logit 
Mixed logit b) 

Coefficients Std. 

 Auto a) 

 constant - - 1.226 
 Auto travel time -1.312 (-3.98) -0.267 (-1.92) 1.464 (1.74) 
Transit  

 constant -4.033 (3.05) -0.293 (-3.32) 3.567 (1.91) 
 Transit access/waiting time -4.581 (-3.79) -1.267 (-2.04)  0.629 (4.02) 
 Vehicle dummy [0, 1]  -5.364 (-14.74) -5.422 (-11.56) - 
 High population density  2.403 (3.07) 1.762 (2.48) - 
 Urban indicator [0, 1] 1.268 (3.15) 1.385 (11.44) - 
 Education level  2.306 (2.81) 0.417 (3.84) - 
 Gender of respondent  0.412 (1.45) 0.013 (1.01) - 
 Age of respondent -1.567 (-3.08) -2.356 (-4.71) - 
Walk  

 Constant -2.925 (13.78) 0.767 (5.22) 2.660 (2.21) 
 Walking time -8.617 (-3.09) -5.946 (-20.82) 1.001 (4.13) 
 Vehicle dummy [0, 1] -4.664 (-10.82) -4.477 (-12.81) - 
 High population density 2.554 (2.91) 2.130 (8.52) - 
 Urban indicator [0, 1] -0.916 (-3.67) 1.130 (5.16) - 
 Education level 1.489 (2.32) 2.065 (3.21) - 
 Gender of respondent -0.423 (-2.03) 0.149 (2.41) - 
 Age of respondent -1.443 (-3.06) -2.035 (-4.37) - 
Bike  

 constant -5.562 (3.89) -0.372 (-4.68) 2.010 (5.01) 
 Biking travel time -6.021 (-2.03) -12.818 (-12.11) 0.477 (6.91) 
 Vehicle dummy [0, 1]  -4.715 (-9.29) -3.605 (-7.21) - 
 High population density 1.396 (2.20) 0.170 (3.86) - 
 Urban indicator [0, 1] 0.445 (1.79) -0.048 (-2.81) - 
 Education level  1.940 (3.57) -0.066 (-1.13) - 
 Gender of respondent -1.572 (-1.67) -3.797 (-4.32) - 
 Age of respondent -2.674 (-3.51) -3.663 (-8.41) - 

 Null log-likelihood at constant 
 Final log-likelihood at convergence 

-8,533 
-5,131 

-5,712 
-3,153 

a) Auto is set as a reference alternative.  
b) time-invariant variables (e.g., socio-demographic) are adopted as fixed parameters. Random effects are 
applied to alternative-specific constant and alternative-specific variables that vary by each trip.  
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4.6.3 Posterior inference 

Given the PGM-B frameworks for discrete choice modeling problems, this chapter 

computes full posterior distributions of our interest based on Bayesian perspectives. As 

mentioned above, the posterior distributions in Bayesian inference are generally intractable 

due to the denominator (i.e., normalizing constant). Thus, approximate Bayesian inference 

methods are used to infer the intractable posterior distributions in Bayesian settings. In 

particular, this chapter adopts VI that is designed to find a tractable proxy distribution (e.g., 

exponential family) for the true posterior distributions. All of PGM-B are implemented in 

Pystan that is probabilistic programming tools built in Python. Each PGM-B is manually 

customized to accommodate the specific structure of PGM and specified priors. 

Two specifications of PGM including PGM-NP and PGM-PP (see section 4.2) are 

primarily used to infer the posterior of parameters. Figure 4-7 presents the trace distribution 

of posterior inference process and confidence intervals for the approximated posterior for each 

choice alternative (auto; transit; bike; walk) within a single individual under PGM-NP 

specification. Figure 4-8 presents the example of random parameters (i.e., random biases) for 

a certain regional group (i.e., U.S. State) under PGM-PP specification. Specifically, PGM-PP 

is designed to group individuals into distinct groups (i.e., U.S. States), and groups share 

hierarchical prior of mean and variance for the random biases and parameters to alleviate 

overfitting issue—i.e., two level hierarchies. Posterior distributions of parameters for choice 

alternatives in region 1, for example are separately evaluated by coherently updating prior 

distribution and likelihood from the given observed data, and there are some discrepancies in 

posterior distributions (i.e., mean and variance) between the choice alternatives. In addition, 

the posterior distributions in Bayesian inference, in contrast to frequentist approaches that 
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give point estimates of parameters, can provide the quantification of uncertainty in choice 

behaviors.  

 

 

Figure 4-7 Examples of posterior distribution and trace of random biases through the 
posterior inference process using VI and confidence intervals for the approximated 
posterior distribution for each choice alternative (auto; transit; bike; walk) within a single 
individual (PGM-NP) 

 

The estimation of full posterior distributions can explain uncertainty in modeling 

(Robert, 2014). For instance, it is possible that a model in particular statistical learning returns 

a prediction for the unseen information that may lie outside of the given data distribution. 

Naturally, this is an unreasonable prediction, which then becomes an error in the model. 
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Nonetheless, the model may provide a different prediction for the identical information. In 

this context, Bayesian approaches in modeling travel behaviors have the potentials to be 

useful in addressing complex transportation behaviors in the future, while providing 

uncertainties in analyzing behaviors. 

 

 

Figure 4-8 Examples of posterior distribution and trace of random biases through the 
posterior inference process using VI and confidence intervals for the approximated 
posterior distribution for each choice alternative (auto; transit; bike; walk) within a group 
(PGM-PP) 
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Figure 4-9 Comparison of posterior distributions of random biases for each choice 
alternative in two models PGM-NP and PGM-PP 
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Figure 4-9 presents the comparison of of posterior distributions of random biases for 

each choice alternative in two models PGM-NP and PGM-PP. The series of figures in the left 

panel depicts the random biases that capture inter-individual heterogeneity, and each 

distribution within a figure indicates the distribution for a single individual. Thus, a single 

individual has distinct biases (i.e., intercepts), and transit mode shows the large discrepancies 

among individuals compared to other modes. The one in the right panel shows the random 

biases for every region (i.e., State of U.S.) to capture inter-regional heterogeneity of choice 

behavior within alternative, and each distribution depicts the distribution for a specific State 

of U.S. In particular, there are large discrepancies (i.e., heterogeneities) in choice behaviors 

between regions for every mode.  

 

4.6.4 Prediction performance 

To evaluate the feasibility of PGM-B for DCM in mode choice, we predict mode 

choice behaviors by using the inferred posterior distribution of parameters ”. The data sets 

are divided into two subsets: train (60%) and test (40%) sets. train set is used to fit each model 

and test set is used to obtain predictions based the posterior estimations from the fitted model.  

Table 4-2 and Table 4-3 present the confusion matrix, in which each row and each 

column indicates the observed and predicted individuals for each mode respectively. When it 

comes to the performances between PGM-CP and PGM-NP, unobserved heterogeneity issues 

for inter-individuals or groups are somewhat captured in PGM-NP model compared to PGM-

CP model. The PGM-PP show the highest prediction accuracy among PGM models. It is 

mainly due to the fact that PGM-PP model is non only capture heterogeneous preferences 
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and behaviors across groups/individuals but also alleviate overfitting issue that may cause 

high-variance estimation by specifying additional hierarchies (i.e., hyper-priors).   

 

Table 4-3. Confusion matrix for HML-CP, HML-NP, HML-PP 

Test	Dataset	
(HML-CP)	

Predicted	Choice	
Auto	
(72)	

Transit	
(76)	

Bike	
(32)	

Walk	
(78)	

Mode	
Accuracy	

Overall	
Accuracy	

O
bs
er
ve
d	

Ch
oi
ce
	 Auto	(71)	 51 12 3 5 71.8% 

71.7%	
Transit	(71)	 9 56 4 2 78.9% 
Bike	(46)	 6 3 22 15 47.8% 
Walk	(70)	 6 5 3 56 80.0% 

Test	Dataset	
(HML-NP2)	

Predicted	Choice	
Auto	
(70)	

Transit	
(79)	

Bike	
(37)	

Walk	
(73)	

Mode	
Accuracy	

Overall	
Accuracy	

O
bs
er
ve
d	

Ch
oi
ce
	 Auto	(71)	 56 8 2 5 78.9% 

73.7%	
Transit	(71)	 7 58 4 2 81.7% 
Bike	(46)	 4 5 24 13 52.2% 
Walk	(70)	 3 8 7 53 74.6% 

Test	Dataset	
(HML-PP)	

Predicted	Choice	
Auto	
(67)	

Transit	
(68)	

Bike	
(41)	

Walk	
(82)	

Mode	
Accuracy	

Overall	
Accuracy	

O
bs
er
ve
d	

Ch
oi
ce
	 Auto	(71)	 59 6 1 5 83.1% 

77.5%	
Transit	(71)	 3 58 7 3 81.7% 
Bike	(46)	 1 4 25 16 54.3% 
Walk	(70)	 4 0 8 58 82.9% 

 

 

In addition, the capability of PGM-B with RUM models are also investigated. 

Although the discrepancies in prediction accuracy among mixed logit, PGM- NP, and PGM-

PP are marginal, PGM-PP shows the best performance. In this sense, we may believe that 

Bayesian inference using VI shows compatible or better performances to simulate choice 

behaviors compared to the maximum simulated likelihood (MSL) estimation.  
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Table 4-4. Confusion matrix for the multinomial logit model and mixed logit model 

Test	Dataset	
(multinomial	logit)	

Predicted	Choice	
Auto	
(77)	

Transit	
(63)	

Bike	
(35)	

Walk	
(83)	

Mode	
Accuracy	

Overall	
Accuracy	

O
bs
er
ve
d	

Ch
oi
ce
	 Auto	(71)	 55 6 4 6 77.5% 

70.5%	
Transit	(71)	 11 54 4 2 76.1% 
Bike	(46)	 6 3 15 22 32.6% 
Walk	(70)	 5 4 3 58 82.9% 

Test	Dataset	
(mixed	logit)	

Predicted	Choice	
Auto	
(77)	

Transit	
(63)	

Bike	
(35)	

Walk	
(83)	

Mode	
Accuracy	

Overall	
Accuracy	

O
bs
er
ve
d	

Ch
oi
ce
	 Auto	(71)	 55 8 3 5 77.5% 

74.4%	
Transit	(71)	 18 49 2 2 69.0% 
Bike	(46)	 3 1 27 15 58.7% 
Walk	(70)	 1 5 3 61 87.1% 

 

 

4.7 CONCLUSION 

This article aimed to suggest a way to apply probabilistic modeling approaches to 

transportation behavior through a flexible modeling framework that can be compiled with 

any algorithms. Toward this goal, we used PGM framework to compactly represent all of 

modeling components governing the given problem—e.g., the (causal) structure of data, 

assumptions, and other prior belief based on domain knowledge. This framework is combined 

with Bayesian inference to coherently address uncertainty issues through the use of 

probability theory and infer the full distributions of model’s parameters. In particular, PGM 

and Bayesian inference (PGM-B) can be separated into three sub-processes: representation, 

modeling, and inference. Using a PGM-B framework, modeling tasks begin with considering 

all modeling components that are treated as random variables, which is antithetical to 

traditional paradigm that starts with selecting an algorithm. Then, these high-dimensional 

variables are intuitively and compactly represented as a graphical structure with generative 
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process that clarifies our initial beliefs about the problem. Once the PGM framework is 

constructed, now the goal is to infer the full posterior distributions of our interests through 

Bayesian inference. To infer high-dimensional and intractable posterior distributions, this 

article uses variational inference (VI) that a leverages techniques from ML to approximate 

probability densities for approximating probability densities.  

This article derives three PGM frameworks with the different specifications of priors 

and relationships between modeling components, which include PGM-CP, PGM-NP, PGM-

NPG, and PGM-PP. The posterior distribution of random parameters are approximated 

through the posterior inference process using VI, shown in Figure 8-1, 8-2, and Figure 9. To 

check the applicability of PGM-B, the prediction accuracy of PGM-B models and RUM 

including MNL and mixed logit are evaluated by hold-out method. The results are presented 

in the Table 2-1 and 2-2 by using a confusion matrix. In particular, PGM-PP showed the 

highest performance among other models in part thanks to their specification that is being 

able to non only better capture uncertainties related to heterogeneity but also alleviate 

overfitting issues.   

For future work, the combination of PGM framework and Bayesian inference 

suggested in this article is a way to design probabilistic reasoning system (Spirtes et al., 2000). 

In probabilistic reasoning, understanding causal relations among related factors can be also 

useful to not only better understand decision-making behaviors but also evaluate possible 

subjunctive scenarios such as policy impacts. In particular, structure learning presented in 

Figure 1 aim to explore and evaluate relations among all variables and their probabilistic 

relations from the given problem and its data—i.e., markov properties, ™(!O|∞_(!O)). This 

probabilistic dependency over a set of random variables can contribute to construct more 
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realistic decision-making system that provides the highly-taliored system based on causal 

hypothesis (i.e., subjunctive scenarios). Traditional Functional causal models (FCM) 

methods, however, mostly perform well with discrete information (Pearl, 2009; Rohekar et 

al., 2018; Zhang et al., 2017), and they may not take into account the full information from 

the high-dimensional and observational data (Goudet et al., 2017; Zhang et al., 2017), which 

is built under strong assumptions (e.g., linearity and no additive random noise in the 

relationships between two variables). To overcome several limitations present in traditional 

algorithms, we aim to utilize the power of artificial intelligence that combines the traditional 

causal search algorithm with ML techniques such as a generative neural network are highly 

adaptable to both continuous and discrete data.  

In addition, novel non-parametric models have widely used in many domains (Wong 

et al., 2017). For instance, deep learning (DL) generally require more complex algorithmic 

features, and they are computationally more expensive than other modeling algorithms, but 

in theory, they should be able to even better capture complex and nonlinear relationships in 

a dataset. Nonetheless, they have low interpretability and are limited to incorporate prior and 

domain knowledge. By using PGM framework and Bayesian approaches, it is possible to 

solve problems in the field of transportation by simultaneously taking the advantages of 

different modeling approaches such RUM and ML. PGM-B therefore possess a bright future 

in the realm of transportation modeling during the era of AI and Big data.  
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5 CONCLUSION AND FUTURE WORKS 

5.1 CONCLUSION 

The main goal of this dissertation was to gain a fundamental understanding of how machine-

based statistical learning (ML) can contribute and be applied to urban metabolism. Recently, 

the application of ML approaches has been incredibly successful in many domains. Deep 

learning (DL), for instance, has had unprecedented success in the process of images and 

sounds, but it has not been exposed extensively to resources consumption and users’ behaviors. 

As acknowledged by many, the use of ML has received some reluctance in domains such as 

transportation due to their current limitations often related to poor or lack of interpretability. 

These interpretability issues can lead to difficulties in explaining behaviors, incorporating 

domain knowledge, and providing the level of statistical confidence for the results. In this 

sense, this dissertation not only aimed to contribute to the applicability of ML approaches 

within the urban context but also to address issues resulting from low interpretability of ML 

models. 

As previously mentioned in the introduction (chapter 1), chapters 2 to 4 aimed to 

address limitations regarding the application of ML approaches for urban modeling 

purposes—i.e., applicability, capability, interpretability, flexibility, and uncertainty. Chapter 

2 primarily focused on investigating the capability and applicability of ML—that is, artificial 

neural networks (ANN) for the application of discrete choice models in the field of 

transportation. In particular, four different types of ANN models are used to model, predict, 

and evaluate travel mode choice behaviors—all ANN models are algorithmically different 

from each other. For instance, clustered probabilistic neural network (CPNN) combines that 
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the concept of kernel-based approach (i.e., k-means clustering) and probabilistic decision 

theory (i.e., Bayesian Parzen window classifier). In contrast, backpropagation neural network 

(BPNN) are based on traditional optimization methods (i.e., gradient descent) with the 

assistance of machine-based repetitive computation. In addition, the learned (estimated) 

models are evaluated and validated using k-fold cross-validation, and the prediction 

accuracies of ANN models outperform a multinomial logit model (a traditional modeling 

approach). These models are also used to interpret user behaviors through sensitivity analysis.  

Chapter 3 aimed to provide useful insights on several technical challenges, including 

a selection of modeling methods and data availability in modeling tasks, for the case of end-

use water consumption and behaviors. Specifically, 12 modeling methods grouped into two 

general categories—parametric models and non-parametric ML models—were adopted to 

model and predict household water use, based on two different data scenarios. The results 

revealed that nonparametric ML methods such as gradient boosting machine (GBM) perform 

best thanks to their algorithmic properties. Specifically, the algorithmic properties of rule-

based methods with the boosted machine are more suitable to analyze data that may include 

unobserved heterogeneity between users, partly thanks to their discriminative nature. 

Although the interpretation of GBM is not discussed in this chapter, rule-based methods are 

generally more interpretable than other ML techniques as well. The ways to interpret GBM 

are discussed in another article from this author of this dissertation—not included in this 

dissertation—that aimed to investigate attitudes and behaviors toward autonomous vehicles 

by using boosting machine (Lee et al. 2019). In general, ML models are interpreted based on 

the model-agnostic or model-specific method—e.g., feature importance, partial dependence 

(Friedman et al. 2001; Molnar 2019).  
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Chapter 4 adopted different ways to enhance the interpretability of ML models not 

only to incorporate domain knowledge but also to handle uncertainties in modeling tasks. 

Specifically, the key concept of this chapter is to separate knowledge, model, and inference 

(e.g., probabilistic reasoning) in constructing decision-making systems (a.k.a., reasoning 

systems). Toward this goal, this chapter used probabilistic graphical models (PGM) and 

Bayesian inference that coherently manipulate and quantify uncertainties through the use of 

probability and graph theories. This modular probabilistic modeling framework, PGM-B, can 

be separated into representation and inference processes. In the representation process, we 

begin with considering all kinds of quantities governing the problem, which is antithetical to 

the traditional modeling paradigm that might struggle with selecting algorithms. All 

quantities, treated as random variables, are intuitively and compactly represented as a 

graphical structure based on their relationships between each other. During this 

representation, in particular, we can incorporate domain knowledge—e.g., personal beliefs, 

priors. Then, the PGM-B can be adapted to any modeling techniques to infer the full 

distributions of our interests based on the PGM. Specifically, this chapter used variational 

inference (VI) that leverages techniques from ML to approximate probability densities. To 

investigate applicability, this chapter also derives a way to develop a PGM-B to address travel 

mode choice behaviors based on our assumptions and under different specifications (i.e., level 

of pooling). In particular, these frameworks are derived to capture unobserved heterogeneity 

and quantify uncertainty by inferring the full posterior distributions. Prediction performances 

are also validated and compared with existing random utility models (RUM). 

The chapters in this dissertation fill important theoretical and technical knowledge 

gaps in the realm of urban metabolism and urban modeling in the era of Artificial Intelligence 
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(AI). In particular, the chapters focused not only on providing ways to take advantage of ML 

approaches, but also to address some of their limitations—e.g., interpretability, uncertainties. 

The principles and practical applications of Data Science can be further used to develop novel 

and creative approaches to gain a fundamental understanding of many other characteristics 

of cities that are not related to urban metabolism. Simultaneously, the ability to understand 

these other characteristics can shed lights into making cities more sustainable and resilient.  

 

5.2 FUTURE WORKS 

Cities are shaped by the interconnections between their infrastructure systems and are 

operated by the spatial and temporal interactions between humans and infrastructure systems. 

In particular, over 50% of the world’s population now resides together in cities, and that 

number is expected to be increased to 68% by 2050. As a consequence, cities are the sites of 

tremendous flows of energy and materials. The fact that cities account for over 75% of primary 

energy use worldwide is one example of the enormous responsibility that rests on them. Most 

of this energy is used to provide the necessary services required from infrastructure systems 

that are fundamentally used to meet the needs of people.  

Recently, many of the significant efforts to make urban systems smarter, more 

sustainable, and more resilient have been driven by a wave of advances in technologies. For 

instance, the Internet-of-Things (IoT) global phenomenon that includes smartphones, social 

media, web applications, and crowdsourced environments are changing human behaviors 

and lifestyles. The convergence of technologies, infrastructure, and human behavior make it 

possible to generate a large amount of complex and multi-sourced data in spatiotemporal 

dimensions. Specifically, the recently generated data that were not previously available 



132 
 

contain highly interrelated information about infrastructure and resources use, as well as 

human behaviors, that could very well capture important urban dynamics. These phenomenal 

changes in data-generating systems provide unprecedented opportunities that enable more 

accurate modeling of urban metabolism through the understanding of these urban 

dynamics—e.g., real-time interdependencies and fluctuations of behaviors.  Current stand-

alone sectoral methodologies, however, are limited to explore urban dynamics due to their 

restrictions on multi-dimensional spatiotemporal datasets—e.g., predetermined assumptions. 

A shift in modeling paradigm is required to effectively explore information, and this 

dissertation suggests some novel concepts and methodologies by leveraging the power of data-

driven modeling, closer to the theme of this dissertation. 

 

5.2.1 An integrated urban metabolism modeling platform (Digital Twin) 

A modularized and integrated modeling platform is required through the use of 

extensive data sources (i.e., Big Data), treated with additional machine-oriented computation 

(e.g., data science). This platform offers promising opportunities in the field of urban systems 

analysis such as the concept of Digital Twins. Digital Twins are virtual modeling 

environments that bridge the virtual and physical worlds using iterative feedback workflows 

between data captured by the physical world and behaviors and prediction acquired from the 

virtual world. This pairing of the two worlds allows us to explore, visualize, model, predict, 

and monitor systems with the aim to design them better and head off problems before they 

occur.  
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Toward this goal, the concept of ML can be a promising option that provides a 

modular probabilistic framework, which combines probability theory, logical graph structure, 

and Bayesian inference. Specifically, MBML can be coupled with any modeling algorithms 

and coherently handle uncertainties that are inevitable in the modeling of real-world problems 

as it is impossible to fully observe the world. Digital Twins would directly contribute to the 

general body of work on urban metabolism, not only to more realistically replicate actual 

urban systems and behaviors, but also to evaluate what-if scenarios in terms of future changes 

in the overall urban systems, user behaviors, and enforcement of policies. 

 

Figure 5-1 Flow of Digital Twins of urban metabolism 

 

Digital twins of urban metabolism enable an accurate:  

• Model urban systems including demand (user behaviors) and supply (services) 
modeling environments to evaluate policy impacts, enabled by Big Data and existing 
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evidence (data samples) and leveraged by machine learning and powerful 
computation means  

• Infer (or predict) shifts in resource use patterns and user behaviors, and possible 

impacts on the urban systems—missing or inadequate information required to model 
to enhance prediction accuracy and interpretability of user behaviors (e.g., socio-
demographic information about users) 

• Evaluate the strategies and policies geared toward the development of future urban 

systems (e.g., smart cities) and services to design sustainable and resilient cities   

 

5.2.2 Causal inference in PGM 

As mentioned above, the consequences of digital revolution and relevant shifts in 

human behaviors can increase the interdependencies between urban infrastructure, humans, 

and technologies. Simultaneously, data generated in cities is by nature multi-domain, multi-

dimensional, and spatiotemporal. The increased complexity and diversity of cities and their 

data may further increase uncertainties that would make it even more difficult to manage 

cities. Although reasoning systems-based PGM and Bayesian inference can manipulate and 

quantify uncertainties by using probability theory and by incorporating domain knowledge, 

it is limited to explore fundamentals of interdependencies. In other words, we require 

mathematical language to better express the interdependencies in urban systems and user 

behaviors. Toward this goal, the concept of causality can be adopted to measure the 

interrelationships among the components in urban metabolism, and it can also be viewed as 

the flow of information (i.e., belief propagation) among the components. Causal analysis aims 

to examine the dependencies between variables. It mainly explores conditional independence 

between variables and identifies d-separation segments. At the time of this writing, three 

possible methods exist to learn the structure of dependencies (a.k.a., structure learning): (1) 

domain knowledge, (2) hypothesis testing, and (3) algorithmic learning. In particular, 
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algorithmic learning can be conducted by traditional functional causal models (FCM) (e.g., 

constraint-based method, hybrid method); however, these traditional models mostly perform 

well with discrete information. Thus, they may not take into account the full information 

from high-dimensional and observational data (Goudet et al. 2017; Zhang et al. 2017), which 

is built under strong assumptions. Instead, we can utilize Data Science techniques such as DL 

methods that combine the hybrid causal search algorithm with a generative neural network. 

Overall, the methodologies and approaches presented in this dissertation further 

contributed to laying the foundations for a paradigm of modeling urban metabolism, 

particularly leveraging the unprecedented power of Big Data and ML. Much work remains 

to be accomplished, however, but there is no doubt that machine-based statistical learning 

will be a major role to assess and model the urban metabolism of neighborhoods and cities 

over the world. 
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