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SUMMARY

Breast cancer intratumor heterogeneity challenges our ability to predict patients’ outcomes

or responses to targeted therapy; yet, available methods are limited to measure intratumor

heterogeneity quantitatively. The goal of this research is to develop statistical methodologies

for high dimensional PAM50 gene expression data to characterize the intratumor heterogeneity

for better treatment option. In this dissertation, I propose two approaches for classification

of intratumor heterogeneity: non-parametric clustering methods and finite mixture Gaussian

method. For non-parametric clustering methods, I use Mahalanobis distance for classification.

For finite mixture Gaussian method, as the parameters of these Gaussian mixtures cannot be

estimated in closed form, so estimates are typically obtained via an iterative process, e.g. EM

algorithm. However, finite mixture modeling can suffer from locally optimal solutions because

of poor initial starting values. I improve EM in mixture Gaussian model by applying a simple

and efficient initialization strategy based on Mahalanobis distance. This improved method

allows the model to borrow information from data without any distributional assumption. The

proposed model is illustrated with two real datasets from breast cancer patients, and also

evaluated using simulated datasets.

xiv



CHAPTER 1

INTRODUCTION

Breast cancer is the first and foremost common cancer in female. Every year, 1.7 million

women are newly diagnosed with breast cancer all over the world (80). It can cause huge

health and economic burden in developed countries and developing countries (214). The 5-year

survival rate for breast cancer has wide variation (185), largely due to the heterogeneity in the

nature of breast cancer. In an era of personalized medicine, patients with different types of

breast cancer may response differently to certain types of treatments, in addition, within the

same type of breast cancer, patients may react differently and have different risks of death or

relapse (136).

Currently, breast cancer is recognized as a heterogeneous disease, mainly due to clinical

and morphologic variation between patients (intertumor heterogeneity), and also due to the

morphologic and genomic variation within a single patient (intratumor heterogeneity) (172;

138). The tumor heterogeneity in breast cancer creates diagnostic and therapeutic challenges,

thus becoming an obstacle for the development of precision treatment for women with breast

cancer (86).

A classification mechanism for capturing biological features of breast cancer heterogene-

ity may provide a guidance of treatment administration strategies. Intertumor heterogeneity,

defined as heterogeneity between patients, has long been recognized by clinicians and patholo-

gists. The distinct character of breast cancer intertumor heterogeneity can be realized through

1
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various methods. Traditionally, pathological examination at the morphological level can pro-

vide a histological grade, which includes the information of differentiation level and nuclear

pleomorphism (178; 28). The subtype of breast cancer based on morphological characters can

be further divided based on molecular signatures, for example, expressions of protein biomark-

ers or immunohistochemical classification (232; 151). Differential expressions of these protein

biomarkers, i.e. estrogen receptor (ER), progesterone receptor (PR), and human epidermal

growth receptor 2(HER2), provide a clinically meaningful classification for breast cancer and

direct underlying treatment application strategy (94; 233). Rapid advancement in gene se-

quencing and microarray analysis lead to gene expression based classification. One of the most

widely used approaches in the clinical assessment of breast cancer is PAM50 method from

ARUP Laboratories (174; 162). Five distinct subtypes were defined: Basal, Luminal A, Lumi-

nal B, human epidermal growth factor receptor 2 related (HER2), and Normal. Each subtype

will have distinct prognosis and will receive different treatment.

The aforementioned methods focus on intertumor heterogeneity, assuming that each pa-

tient belongs to a single discrete class, even though intratumor heterogeneity is acknowledged

with evidences (6; 149; 115). Current method to define intratumor heterogeneity is not com-

pletely understood (163; 38; 47). Current methods to measure intratumor heterogeneity include

genome-wide measurements of gene expression or chromosome copy number in tumors. These

methods can provide quantitative data that is capable of capturing global genomic intratumor

heterogeneity. However, these methods require comprehensive sequencing of the tumor genome,
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but the costs and time required for whole genome single cell sequencing of tumors restrict its

wide clinical application (18; 164; 8; 161).

The objectives of this dissertation are to provide statistical methodologies including anal-

ysis, inferences and model selection for intratumor heterogeneity identification based on gene

expression data. I would like to develop a statistical model for evaluating the intratumor het-

erogeneity by the PAM50 gene expression profile. In this work, I first apply a non-parametric

clustering method on PAM50 gene expression data. I implement Mahalanobis distance to mea-

sure the level of purity in breast cancers designed as Luminal A. The reason for focusing on

Luminal A cases is as hypothetically, admixture with any other intrinsic (Luminal B, HER2-

enriched, Basal) would be connected to more aggressive disease and worse outcomes. I classify

subjects based on their purity and then compare the differences of clinical characteristics and

overall survival time.

Besides the non-parametric method, I would like to apply a formal statistical model to

study the nature of intratumor heterogeneity, as it can provide a robust statistical procedure

that allows the selection of optimum model, thus eliminating the ambiguity associated with

non-parametric model. One of the most widely used parametric methods for clusters analysis is

finite mixture Gaussian method. For finite mixture Gaussian model, there exists latent variable,

thus the parameter can not be estimated numerically, I carry out the Expectation-Maximization

(EM) algorithm for parameter estimation. To implement EM algorithm in mixture Gaussian

model, one critical issue is: choose initial parameter values to pass on to the EM algorithm. It

is critical for EM algorithm, as EM does not necessarily guarantee by convergence to the global
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maximum, and the ability of finding global optimum depends on the initialization point of EM

algorithm (127; 234; 90). Besides, the initial point of EM will determine how fast EM con-

verges (127; 234; 90). Traditionally, one way to start EM is to use randomly generated value,

and search the whole landscape, without using any prior information from data (116; 112).

However, this strategy is too time consuming to apply to high-dimensional datasets. Another

initialization strategy is to choose the starting value suggested by the data, for example, the

agglomerative hierarchical clustering proposed by Fraley and Raftery (81; 190).This initializa-

tion strategy in general is more efficient than uninformed technique; unfortunately, this method

has been criticized for using just one set of starting value, which restricts the search for global

optimum. Furthermore, certain strategy tends to favor specific shapes or patterns. To overcome

these limitations, I plan a semi-parametric way to initialize EM algorithm. The method can

incorporate the information from data, but not imposing any restrictions on the form of the

distribution of data. Moreover, this method is able to provide multiple initial values, such that

we will have better chance of finding the global optimum.

Another area of research related to finite mixture Gaussian is model selection to find the

number of clusters (components) and the optimum model structure. Selection of optimum

number of components is one of the most critical problems of mixture model. One unique

feature for finite mixture Gaussian is that we need to select variance covariance structure.

To achieve the parsimony for variance covariance matrices, constraints are imposed such that

different constraints on the covariance matrix provide distinct models with similar geometric

properties. One of the most widely used constraints come from Banfield and Raftery (12); there
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are three types of variance covariance structure, namely: spherical family, diagonal family and

general family. I use model selection technique to determine the optimal number of components

and covariance structure simultaneously, by finding the besting fitting model. I study four

most commonly used model selection techniques: Akaike Information Criteria (AIC), Bayesian

Information Criteria (BIC), Integrated Completed Likelihood criterion (ICL) and likelihood

ratio test statistic (LRTS).

The remainder of this thesis is organized as follows: In Chapter 2, I describe the concept of

breast cancer heterogeneity and the causes of cancer heterogeneity. I also introduce different

methods to classify intertumor heterogeneity and intratumor heterogeneity, in the last section

of chapter 2, I provide details about subject recruitment, data collection, data reprocessing as

well as the data structure. In Chapter 3, I first present the non-parametric cluster method

and its application to real data. In second part of Chapter 3, I describe a procedure for fitting

mixture Gaussian model and introduce the initialization strategy I proposed. I also describe

the model selection techniques used for finite mixture model. In Chapter 4, the proposed

method is evaluated with other methods in simulated data. In Chapter 5, I present the results

obtained from real data analysis, the proposed method is evaluated by model fitting and clinical

outcomes. Finally, in Chapter 6, I summarize the work and discuss its limitations and future

applications.



CHAPTER 2

BACKGROUND

Breast cancer is a major health problem in the United States and worldwide. There are

249260 new cases of invasive breast cancer and 40890 deaths caused by breast cancer in 2016

based on The American Cancer Society estimation (157; 221; 196; 223). Breast cancer is the

second cause of cancer-related death in the United States,with approximately 39620 deaths

among women, constituting about 14% of all cancer-related deaths among women. It has

become clear that breast cancer can display astonishingly distinct morphological, behavioral

and genetic variability, based on accumulating evidences of heterogeneity in breast cancers

(145; 147; 28).

The heterogeneity in breast cancer can be mainly divided into intertumor and intratumor

heterogeneity. Intertumor heterogeneity, by definition, refers to variation between patients with

the same histological type. Intertumor heterogeneity has been recognized by physicians and

researchers long time ago, the cause of intertumor heterogeneity is believed to be patient-specific

characteristics such as genetic mutation, somatic expression profile and environmental factors

(137; 49; 206; 155).

Intertumor heterogeneity can be illustrated by clinical disease staging based on physical

examination and imaging (178; 228). The classification of malignant tumors (TNM) system

proposed by the American Joint Committee on Cancer (AJCC)/Union for International Cancer

Control (UICC) incorporates the size of the primary tumor, the nearby regional lymph nodes,

6
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and the spread of cancer from one part to the other part of body (207; 70).Traditional, breast

cancer treatment decision is made based on the tumor characteristics, such as histopathologic

features and biomarker profile. Treatment decision can be affected by patients age, menopausal

status, and general health as well (166). The aforementioned demographic characteristics have

a profound impact on patients’ response to treatment, and contribute significantly to clinical

outcome differences (73).

2.1 Breast cancer intratumor heterogeneity

Intratumor heterogeneity, referring to variations within a single patient, was first observed

by histopathologists as sections of different morphology or staining behavior (79; 220). How-

ever, intratumor heterogeneity is relatively unexplored compared to intertumor heterogeneity,

partially due to the challenges in quantitatively characterizing and measuring intratumor het-

erogeneity.

In the past decades, there have been increasing reports of intratumor heterogeneity of gene

expression and DNA mutations (24; 187). In 1800s, Rudolf Virchow reported the morphoogical

heterogeneity of malignant cells within individual tumor (36). The development and progress

of model techniques such as cell-staining and gene sequencing methods, subsequently made it

possible for scientists to characterize intratumor heterogeneity (77; 215). Currently, intratumor

heterogeneity is defined at the molecular level by the genetic profile differences observed among

individual malignant cells. Cancer cells within a given patient may differ in phenotype, as well

as in genotype (205).
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Breast caner intratumor heterogeneity can materialize as morphologic and biochemical vari-

ation. This variation in tumor phenotype provides the evidence for tumor evolution. The evo-

lution of tumor was shown to play a significant role in disease progression and resistance to

therapy (11; 71).

Intratumor heterogeneity can exist either between different geographical regions of a tumor

(spatial intratumor heterogeneity), or as the evolution of a tumor over period of time (temporal

intratumor heterogeneity). See in Figure 1.

Figure 1. Spatial and Temporal intratumour heterogeneity.
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2.1.1 Spatial heterogeneity

Spatial heterogeneity is the variation across different regions within a patient. In addition

to the spatial heterogeneity with respect to histological features, genetic spatial heterogeneity

has also been frequently observed. Comparative genomic hybridization (CGH) analysis of

geographically separate regions of primary breast cancers has revealed various levels of genetic

heterogeneity within a single tumor (144). Monogenomic tumor means the presence of one major

subpopulation with a stable genome, while polygenomic cancer are characterized by presence

of multiple genetically distinct subpopulations at the same or different locations (88). Another

evidence for the existence of spatial heterogeneity comes from single cell sequencing analysis

(143). The study involves multi-region sampling of tumors and indicated that many irregularly

distributed passenger mutations are not expressed. This expression pattern affects the use of

gene expression signatures, as biomarkers associated with better prognosis and other biomarkers

associated with worse prognosis may be present in geographically distinct sub-regions within

the same tumor (153; 144).

The characteristics of cancer cells at different sites within a tumor can be distinct, owing to

the influences of micro-environment factors and site specific characteristics. Selective pressures

lead to genetic evolution; thus spatial heterogeneity may be observed among the cells present

within a tumor in a single anatomical region.

2.1.2 Temporal heterogeneity

Temporal heterogeneity is a term that refers to the variation in genetic diversity of a tu-

mor over a period of time. Data from numerous studies that investigated biopsy sampling to
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characterize tumors evolution has demonstrated that chemotherapy treatment can alter the

molecular characteristics of tumor over time (146; 78). In particular, gene mutations are the

foundation of cell replication and cycle regulation, and can contribute significantly to temporal

heterogeneity. In one study, researchers found that treating glioblastomas using temozolomide

can turn on transition mutations in MMR genes and lead to the development of a hypermutated

phenotype (146). Precise medicine may bring more selective pressures on cancer cells than non-

specific therapies such as chemotherapy. Because of that, many of the temporal heterogeneity

are observed in the context of targeted therapies.

Tumors evolve over time between the primary tumor before a treatment and local or distant

recurrences after treatment. Genomic analysis of the differences between primary breast tumors

and their metastases have been systematically documented (215; 158; 31). While metastases

tend to be substantially similar to their primaries in terms of genetic alterations, 31% of primary

breast cancers and their metachronous metastases displayed significant differences in gene copy

number, as revealed in the study by CGH and FISH (111; 158).

A recent study suggested that the primary tumor appeared to have more clonal diversity

than the distant metastasis regarding the mutations frequencies and gene expression structures,

suggesting chemotherapy treatment and micro-environment may lead to the temporal hetero-

geneity (62). Several studies suggest that metastases may evolve from a small number of clones

at primary tumor (86; 193). These studies also suggest that the abnormal growth of primary

tumors and their metastases may go through parallel and independent evolution (126).
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2.2 Causations of intertumor and intratumor heterogeneity

Two major theories have been proposed to explain the intratumor heterogeneity: clonal

evolution and cancer stem cells (CSC) (131; 89). These two theories were originally thought

to be mutually exclusive, but now they are considered complementary (192). Both theories ac-

knowledge that tumor is initiated from single cell with multiple molecular alterations that allow

potentially unlimited proliferation; these two theories also assume that the micro-environment

has a significant contribution to tumor evolution (126). Despite that, these theories have im-

portant differences and will be discussed below.

2.2.1 Clonal evolution theory

The clonal evolution theory was proposed by Nowell in 1976 (154), stating that a single

cell can lead to tumor growth through an accumulation of mutations. The continuous change

in the genetic instability results in a sequential selection of diverse subpopulations with the

presence of more aggressive phenotypes (131). Further more, each subpopulation can mutate

separately, thus contributing to intratumor heterogeneity (37; 154; 126). Two types of clonal

evolution have been established: linear evolution and branched evolution; see in Figure 2. In

linear evolution, a sequential acquisition of mutations leads to clones that are more adjusted

to the environment than their predecessors (225; 30). The heterogeneity level through linear

evolution is relatively low: heterogeneity happens only when a new clone has not completely

outgrown its predecessor. Contrary to linear evolution, the branched evolution assumes that

different sub-clones coexist and evolve simultaneously. This evolution can be related to a

tree growing branch, where the root is the original clone and various tree branches represent
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Figure 2. Clonal evolution theory
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different sub-clones with diverse accumulated mutations that are separated geographically. The

newly arising subpopulations conserve the founder cells’ nature and acquire new phenotypic and

genetic features that help them to survive better under selective pressures. One thing worth

mentioning is that mutational, environmental, and selective pressures can affect the clonal

evolution by selecting the fittest clones, thus leading to clonal expansions. Since branching

evolution generates greater diversity, hence it may have more contribution to heterogeneity

compared to linear evolution. Breast cancer intratumor heterogeneity through clonal evolution

has been observed, for HER2-positive tumors; different patterns of HER2 gene amplification

have been observed in different regions of a tumor (88).

Furthermore, following Darwinian rules that the most fit clones will progress, tumor progres-

sion depends on population size, mutation rate, and selective pressures from micro-environment

and/or external factors (217). During tumor growth, subpopulations evolve and acquire mu-

tations that may increase drug resistance to specific therapies. Once this happens, specific

subpopulations become the prevalent proportion of the tumor since they are better fitted to

the environment (87; 237). In breast cancer, mutations in gene expression due to neoadjuvant

treatment with the aromatase inhibitor have been explored (140). This study illustrates that

neoadjuvant affects proliferation and expression patterns of ER-related genes (139). In another

study, Miller sampled from two time points: before and after treatment with letrozole (171; 170).

From the results of whole-genome sequencing, Miller demonstrated that the inhibitor treatment

induces evolving of the clonal populations with the acquisition of new enrichments compared

with the pre-existing ones.



14

2.2.2 Cancer stem cell theory

The assumption of clonal evolution model is that all cells within the tumor have the same

potential to promote tumor progression. On the contrast, the assumption for Cancer stem cell

(CSC) theory is that a tumor evolves from a rare small population of CSCs that are capable of

self-renewal, and the CSCs lose stemness ability by differentiating into non-CSC, thus ending

with several subpopulations with new characteristics as shown in Figure 3.

Figure 3. Cancer stem cell theory

This abnormal differentiation capacity of CSCs is considered to be responsible for intratumor

heterogeneity (171). The CSC theory was first observed in hematopoietic tumors; later, it was

identified in solid tumors such as breast and brain cancers. The combination of cell-surface
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markers (CD44+/CD24-/low) was used in the identification of CSCs in several researches. The

existence of CSCs in breast cancer was supported by a study, after injection CD44+/CD24-/low

cells in a xenograft; this small amount of stem cells have been isolated from cultured breast

cancer cell lines and were able to form a tumor (4).

In the CSC theory, the tumor is hierarchically structured; cells with high capacity of prolif-

eration and self-renewal are placed in the highest order and named as CSCs (132). The CSCs

have the ability to differentiate into a non-CSC cell, to promote uncontrollable tumor growth.

Non-CSCs represent the majority of the tumor, but have less contribution to tumor growth

(68). Drug resistance has been explained by CSCs theory: the CSCs provide the ability to

resist cancer therapy, targeted therapies in turn, will induce the transformation of cancer cells

into CSCs. It is supposed to have a balance between the CSCs and Non-CSCs, any imbalance

may cause a shift to an enriched CSC that will likely result in an aggressive phenotype and

poor prognosis (5).

Furthermore, several researches have demonstrated that epithelial-mesenchymal transition

(EMT) contribute to the development of CSCs (107). The EMT has been comprehensively

studied since EMT is one of the critical steps during tumor metastasis. During the process of

EMT, the epithelial cells present reorganization of their cytoskeleton, losing their tight junction

proteins and apicobasal polarity. The loss of epithelial markers is one of the main milestone of

EMT: decreased expression of E-cadherin, claudins and occludins, and concomitantly increased

expression of mesenchymal markers like N-cadherin, small muscle actin, and vimentin (93).

Several studies have demonstrated the participation of these transcription factors in the process
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of changes in cell migration and stem cell formation (123; 43). There are large number of

evidences showing that the EMT is connected with the CSC phenotype, and EMT together

with CSCs contribute to an aggressive phenotype (45; 141).

2.3 Methods to classify breast cancer intertumor heterogeneity

For many decades, breast cancer heterogeneity has been recognized by pathologists, who

have classified tumors into variant histological subtypes (72).The heterogeneity observed from

breast cancers introduces the concept that there is not just one disease, but a collection of

distinct diseases of the breast and the cells composing the breast. The distinct nature and

characteristics of these diseases can be identified and classified through traditional pathological

examination at the morphological level, biomarker level as well as gene expression level.

2.3.1 Subtypes of breast cancer by histopathology

The morphologic heterogeneity of breast cancer constitutes the fundamental elements of

the histopathologic classification of breast cancer. The most common subtype is invasive duc-

tal carcinoma, not otherwise specified (IDC NOS), representing 80% of invasive breast cancers.

However, IDC NOS is not well defined; the 2012 World Health Organization (WHO) classifica-

tion defines IDC NOS by exclusion, as the heterogeneous group of tumors that fail to exhibit

sufficient characteristics to achieve classification as a specific histological type (198). Inva-

sive lobular carcinoma (ILC) is the second most common subtype, representing approximately

10% of invasive breast cancers. The less common subtypes include mucinous, cribriform, mi-

cropapillary, papillary, tubular, medullary, metaplastic, and inflammatory carcinomas (156; 48).

Tubular, mucinous, and papillary carcinomas usually have superior clinical outcome compared
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to IDC and ILC (183; 177). In contrast. metaplastic carcinoma and poorly differentiated IDC

NOS have significantly worse clinical outcome (198).

2.3.2 Subtypes of breast cancer by IHC markers

These subtypes of breast cancer can be further classified based on their molecular signatures,

i.e, expression of protein biomarkers or immunohistochemical classification. The expression of

estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor recep-

tor 2 (HER2) is assessed routinely in all invasive breast carcinomas by immunohistochemistry

(IHC) according to the recommendations by American Society of Clinical Oncology/College of

American Pathologist (ASCO/ CAP) (95; 233). The biomarkers provide a practical classifi-

cation for breast cancer with clinical meaning, and there are well established prognostic and

predictive factors; their expression in breast carcinomas is critical in guiding patient treatment

(91; 97).

The HER2 biomarker is overly expressed in about 15-20% of primary breast cancer de-

tected by IHC staining(198). HER2-positive breast cancers have the worst prognosis among all

subtypes of breast cancers, however, HER2-positive patients show well response to anti-HER2

therapy (e.g., trastuzumab, lapatinib) (59; 50).

Breast cancers that have no PR, ER or HER2 expression, are defined as triple-negative

breast cancers, usually represent the extremely heterogeneous groups histologically, genetically

and prognostically. Arising evidences suggest that nuclear expression of the androgen receptor

(AR) can be detected in approximately 12-55% of triple-negative breast cancer (175; 92; 16).
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The prognostic significance of AR expression in triple-negative cancers is contentious, but it

was shown to be associated with improved survival in other tumor subtypes (159).

Hundreds of newly developed biomarkers have been introduced into breast cancer for po-

tential diagnostic, prognostic, and therapeutic implications. However, the association between

tumor heterogeneity and biomarker expression remains unclear. A systematic approach and

standardized biomarkers are required to better guide therapeutic decisions.

2.3.3 Subtypes of breast cancer by gene expression

The rapid developments in technology and data processing have yielded increasing knowl-

edge about the molecular heterogeneity in cancer cells. The most highly cited gene expression

studies targeted at identifying the mutations that are capable of prognosis prediction (221)

or propensity to metastasize (226). Other studies, such as Sorlie (200), provide tumor clas-

sification based on expression of a group of “predefined intrinsic genes” (168). In these kind

of studies, five distinct subtypes were identified: Luminal A (LumA), Luminal B (LumB),

Basal, Human epidermal growth factor receptor 2-related (HER2-related), and Normal, each

with distinct prognosis and response differently to certain type of therapies. This classification

system is now introduced to clinical use, as there are well developed sequencing techniques

(167; 199; 229).

These classification methods are not mutually exclusive (232). The biomarkers classification

are frequently used as surrogates indicator for the intrinsic subtypes based on gene expression

(151). The Luminal A and Luminal B subtypes demonstrate tumor heterogeneity within ER-

positive breast cancers and usually have more positive survival outcome than HER2-enriched
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and basal-like subtypes. Luminal A and Luminal A subtype both express ER, but Luminal

B are characterized by increased expression of proliferation-associated genes and have worse

prognosis than Luminal A (201). The HER2-enriched subtype has increased expression of

HER2 and proliferation genes. The Basal subtype is characterized by increased genes expressed

in Basal epithelial cells, and has triple-negative in 70% of its cases (200). Additional proposed

subtypes include claudin-low tumors with stem-like signature (173) and AR-positive molecular

apocrine tumors(75).

A variety of gene expression classification systems have been developed for the past several

years: Oncotype Dx (52; 106), MammaPrint(5), PAM50 (Prosigna) (162; 152; 150), EndoPre-

dict (64), and Breast Cancer Index (BCI) (191). The differences come from different gene

expression platforms. Among all commercially available gene expression panels (GEPs), the

PAM50 is so far the most widely used GEP in clinical practices, as it has clinical validation

(46) and received Europe’s approval in 2012, and it was approved by U.S. Food and Drug

Administration one year later in 2013.The PAM50 derived its classification algorithm using an

independent training set and was aimed at classification for independent single-sample (162).

The validation of PAM50 is still ongoing, and a gold standard for subgroup classification by

gene expression is yet to come (150).

Among all the aforementioned methods, breast cancer subtypes share some overlapping char-

acteristics. As displayed in Figure 4, histopathological types, for example, medullary cancers,

are correlated with ER/HER2 receptor status and also with Luminal A and Basal subtypes.
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Figure 4. Subtype of breast cancer
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2.4 Methods to classify breast cancer intratumor heterogeneity

The aforementioned breast cancer classification methods, by IHC or by gene expression

profiling, focuses on intertumor heterogeneity. To characterize intratumor genetic heterogeneity,

microarray technologies and massive gene sequencing have made it possible to generate genome-

wide gene expression profile and chromosome copy number, offering quantitative information

that can capture global intratumor heterogeneity.

2.4.1 Tumor bulk sequencing

Tumor bulk sequencing approach provides an integrated measurement of the underlying

clonal complexity and copy number alterations through statistical inference, using certain al-

gorithms such as ABSOLUTE (41) or PyClone (194). However, both methods require prior

information of the specific features of the tumors to obtain optimal results. For example, AB-

SOLUTE method can integrate recurrent cancer karyotype models to identify the most common

karyotype that would fit the data. However, more meaningful results will be attained by setting

up appropriate prior knowledge on either tumor purity or on the number of complete sets of

chromosomes in a cell. Furthermore, to draw inferences on the architecture of cancers based

on tumor bulk sequencing, it requires comprehensive sequencing of whole genome, which is not

practical at present due to the cost and time required for comprehensive sequencing.

2.4.2 Single-molecule sequencing

Single-molecule sequencing technology is another way to perform bulk sequencing. Com-

pared to massively parallel sequencing (MPS), single-molecule sequencing no longer requires

PCR amplification, thus eliminating biases coming with PCR amplification.



22

Single-molecule sequencing requires less starting information, has faster turnaround time,

and can better identify genomic rearrangements (180). However, to capture intratumor hetero-

geneity, single-molecule sequencing has the similar challenges as bulk sequencing. As it is not a

direct measure of intratumor heterogeneity, the subclonal architecture can only be statistically

validated. Finally, the current method of single-molecule sequencing is not large enough for

heterogeneity studies. Advanced technologies are needed for the application of single-molecule

sequencing in intratumor genetic heterogeneity.

2.4.3 Single-cell sequencing

Single-cell sequencing is a relatively objective method to measure intratumor heterogeneity.

Compared to bulk sequencing such as MPS or single-molecule sequencing, single-cell sequencing

provide direct information of clonal genotypes by identifying lists of genetic alterations in each

tumor cell that composes a tumor (9). One example comes from Navin in 2011 (143), they

have successfully developed and applied MPS to single nucleus sequencing, and indicated that

many breast cancers are constituted of multiple subclones with different genetic characteristics.

However, the cost and time required for whole exome or whole genome single cell sequencing of

tumors are prohibitive for clinical use. Furthermore, this method collects data from single cell;

it cannot provide any comprehensive information on whole tumor cell population. Furthermore,

although single-cell sequencing can correctly identify architecture variations, the genome-wide

assessment of mutations in single cells is still challenging due to whole genome amplification

(222).
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2.5 Clinical implications of intratumor heterogeneity

Despite better understanding of phenotypic and genetic aspects of tumor heterogeneity, no

significant clinical improvement has been made with respect to effective diagnostic, prognostic,

or therapeutic strategies for breast cancer (18).

Heterogeneity adds the energy for resistance; thus, an accurate and meaningful measurement

of tumor heterogeneity is critical for the development of effective breast cancer therapies. Breast

cancer heterogeneity impinges on patients’ prognosis and response to target therapy. Because

of this, heterogeneity is one of the most fundamental and clinically relevant topics in cancer

research.

Intratumor heterogeneity adds another layer of complexity to the problem. Intratumor het-

erogeneity is potentially to play an important role in responsiveness to chemotherapy (155; 87;

135). It may explain why some patients who initially respond well to certain cancer treatment

but eventually relapse, as the new tumors will no longer response to the therapy. The greater

diversity of tumor cells, the more likely that an occasional cell may develop to adapt to the

stress imposed by drug.

Some subtypes seem to have greater intratumor heterogeneity than others (160). An op-

timal diagnostic test will require the identification of even minor subpopulations of cells with

alterations related to increased aggressiveness or therapy resistance.

Currently, patients are treated based on the ER/PR/HER2 status of the primary tumor,

and metastatic sites may not always biopsied for histologic confirmation due to the cost (7).

However, mutations in the initial tumor may not be responsible for tumor progression, it is
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critical to identify the dominant local clones driving metastatic disease (9). In ideal situations,

sequencing technologies should be used to assess intratumor heterogeneity for each patient at

diagnose stage, then monitor clonal dynamics during the whole period of disease progression

and treatment. This will allow the identification of genetic changes driving resistance and

can provide insights about therapy adjustments as disease progresses (200; 109; 19). Single

cells sequencing has presented promising insight into breast cancer intratumor heterogeneity.

However, the technique is still impractical because it requires large numbers of genome-wide

amplification. In addition, mapping and exclusion is of challenging nature; the development

of methods for data analysis and interpretation is still in an early phase. In contrast to these

aforementioned efforts at characterizing global genomic intratumor heterogeneity, in this thesis,

I will focuses on subtype heterogeneity and the potential coexistence of multiple subtypes within

a patient.

Our purpose in this thesis is to develop a quantitative measure to evaluate the purity of

certain subgroup in breast cancers Luminal A patients based on PAM50 algorithm. We initially

focus on Luminal A cases because hypothetically, Luminal A admixture with any other intrinsic

subtypes (Luminal B, HER2-enriched, Basal) would be connected to more aggressive disease

and worse survival outcome.

2.6 Dataset

We developed and validated our proposed intratumor heterogeneity quantification meth-

ods, using two independent and publicly available cohorts: the Molecular Taxonomy of Breast

Cancer International Consortium (METABRIC) cohort containing 17814 gene expression pro-
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files from 1980 patients, and The Cancer Genome Atlas (TCGA) BRCA provisional cohort

containing 20532 gene expression profiles from 1081 patients.

2.6.1 METABRIC clinical and histopathological data

In 2012, the Breast Cancer Prognostic Challenge (BCC) organizers released the METABRIC

dataset (53). The study is the largest global study of breast cancer; it integrated genomic

analysis of breast cancers as well as long-term clinical information.

The tumors in the initial METABRIC cohort were collected from 1977 to 2005 based on five

centers located in UK and Canada. METABRIC assembled a collection of over 2000 clinically

annotated fresh frozen breast cancer specimens and a subset of normals specimens. The nucleic

acids were isolated from frozen tissue and were reviewed to assess the presence of invasive

tumour, pre-malignant or benign changes, tumour cellularity, and lymphocytic infiltration in

specific subgroups. Cases were included from the METABRIC cohort if they met the criteria:

the histology slides were available from central pathology review together with corresponding

clinical and gene expression analyses data. After applying this criteria, there are 1980 subjects

in METABRIC cohort.

All primary data were deposited at the Genome-phenome Archive(EGAS00000000083) and

could be downloaded after the request was approved by METABRIC Data Access Committee.

Gene expression data, copy number data from the original METABRIC publication can also

be found on the freely available cBioPortal.

Tumors in METABRIC were primary invasive breast cancers for which clinical information

could be linked to DNA and RNA specimens. Tumor clinical related information was included
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in METABRIC, such as overall survival, grade, tumor size, age at diagnosis, number of lymph

nodes positive, ER status, PR status, HER2 status and PAM50 subtypes.

2.6.2 METABRIC gene expression data

Messenger RNA (mRNA) were extracted from each specimen and subject to copy number

and genotype analysis on the Affymetrix SNP 6.0 platform and transcriptional profiling on the

Illumina HT-12 v3 platform(Illumina Human WG-v3).

DNA and RNA samples from UK were extracted from fresh frozen tumors using the DNeasy

Blood and Tissue Kit and the miRNeasy Kit (Qiagen, Crawley, UK) on the QIAcube (Qiagen)

following the manufacturers instructions. Samples from Canadian site were extracted from 10

um sections from fresh frozen tumors using the MagAttract DNA Mini M48 Kit and miRNeasy

96 Kit (Qiagen) following the manufacturers instructions. Nucleic acids were quantified assessed

with NanoDrop ND-8000 spectrophotometer (NanoDrop Technologies, Wilmington, DE, USA).

RNA quality was examined using the Agilent 2100 Bioanalyser Nanochip (Agilent Technolo-

gies, Wokingham, UK). Tumour samples for which the RNA had an RNA Integrity Number

(RIN) > 7 were hybridized to expression arrays, a less stringent RIN > 5 was required for nor-

mal RNA. Random DNA and RNA samples were kept for genotyping purposes to ensure sample

uniqueness using the AmpFlSTRIdentifiler PCR Amplification Kit (Applied Biosystems, Foster

City, CA, USA).

Total RNA was used to generate cRNA using the Illumina Totalprep RNA amplification

kit (Ambion, Warrington, UK) and hybridized onto Illumina Human HT-12 v3 Expression
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Beadchips per the manufacturers instructions and was scanned on the Illumina BeadArray

Reader.

2.6.3 METABRIC data pre-processing and normalisation

A custom R package was used to process each BeadChip once scanning was complete and

raw data were available (67). The process included the generation of quality assessment (QA)

information and adjustment for spatial artifacts with the BASH (40). Once all arrays on the

chip had been processed, the bead-level data were summarized, yielding a series of 48803×12

matrices of log2 intensities, standard errors, and number of observations. After all chips had

been processed, the summarized matrices were combined.

Potential outlier arrays were removed by comparing with the bead-level QA scores derived

using the control probes on each array. Arrays with P95 scan metric less than 200 were excluded

as they were considered to have failed hybridisation. These arrays then were removed from the

dataset so as not to influence the following QA. A testing procedure that detects multivariate

outlier in the arrayMvout package was used to identify poor quality arrays based on the QA

scores (10). Additionally, this approach was applied to bead-level QA information for each

location separately. All arrays that remained after this three-step procedure were retained in

the subsequent analysis.

In order to avoid the influence of certain specific probes on the normalization, the compre-

hensive re-annotation of the Illumina HT-12 v3 platform is applied here (13). In the final data,

a single target distribution was generated using the list of suitable probes. The ER-positive

and ER-negative samples were normalized separately and the final target distribution comes
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from average. Each array was then normalized to the target by quantile normalizing probes

belonging to the target distribution, while the values for the remaining probes were obtained

using the weighted normalized probability of the target distribution probes with most similar

intensities prior to normalization. A linear model was then fit using the limma Bioconductor

package to remove any batch effects associated with the position of an array on the Illumina

BeadChip (181). In METABRIC mRNA data,I impute missing, zero or negative values using

real numbers randomly sampled from a uniform distribution in the range [.05,.95].

2.6.4 METABRIC PAM50 classification

Samples were classified into the five intrinsic subtypes based on PAM50 (162; 200). As

probe annotation is an important consideration in sample classification using microarray data

(66), the PAM50 gene-list was refined such that genes with perfect annotation on the Illumina

HT-12 v3 BeadChip (40) were kept for classification. As a result, 3 genes were not included

in the classification. For genes with more than one probe, probes were selected on the basis of

their annotation. As previously recommended (199), all probes were median centered prior to

classification. Due to the imbalance in ER status, 100 random reference distributions consisting

of all ER-negative samples were defined, ER-positive samples were randomly selected during

the median centering step.This resulted in 100 different classifications and the final subtype

calls were derived by taking a consensus across all 100 trials. Samples were then assigned to

one of the five intrinsic subtypes using the Spearman correlation to the published centroids and

the transformed intensities, where samples with correlations < 0.1 for all subtypes were not

classified (NC) (0 samples in the discovery set, 6 samples in the validation set).
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Zhao indiated that PAM50 classification accuracy may be affected by extreme differences in

the prevalence of ER-positive cases between a study cohort and the benchmark training cohort

(195). However, their simulation results indicate acceptably low error rates throughout an ER-

positive prevalence range of about 60-80%, and in METABRIC, the ER-positive prevalence was

75.6% . Our re-generated PAM50 classifications labels were identical to those recorded in the

downloaded datasets (20). Figure 6 is a heat map displaying the hierarchical clustering, based

on expression of individual PAM50 genes for METABRIC data.

2.6.5 TCGA data

Another large genomics data consortia is the Cancer Genome Atlas (TCGA). The TCGA

BRCA provisional cohort we used in this thesis contains 20532 unique genes from 1081 patients.

The datasets include annotated somatic mutation, raw simple somatic mutation, gene expres-

sion quantification, copy number segment, masked copy number segment, isoform expression

quantification, and microRNA (miRNA) expression quantification. The mRND data in TCGA

was obtained using the Illumina HiSeq platform. The clinical information in TCGA includes

the case identifier, disease type, gender, age at diagnosis, overall survival, grade, number of

lymph nodes positive, ER status, PR status, HER2 status and PAM50 subtypes, except tumor

size.

All clinical and genomic data for the TCGA cohorts can be downloaded from cBioportal.

The mRNDA data from TCGA was log2(X + 1) transformed to standardize the data before

analysis.
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Figure 5. PAM50 gene heatmap for METABRIC data



CHAPTER 3

METHODOLOGY

Cluster Analysis attempts to solve the problem of finding meaningful subgroups of interest

within heterogeneous data. In general, cluster analysis seeks to identify homogeneous subgroups

such that each subgroup corresponds to a distinct set of characteristics and can be well separated

from others (96; 216). Homogeneity means that subjects within the same cluster should resemble

one another, Clustering is the procedure of grouping a set of data points such that subjects

belonging to the same cluster share some similarities and subjects belonging to different clusters

are different in the same sense (104).

3.1 Non-parametric cluster method

In this section, we focus on using non-parametric unsupervised cluster method to identify

the homogeneous clusters within the heterogeneous data sets. These non-parametric approaches

do not require any prior information about the datasets; these approaches consider the data as

forming a static distribution and determines the most remote points, which are used as criteria

to assign a point to cluster. Various methods for unsupervised clustering have been studied

(184; 15; 114; 125; 14).

31
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3.1.1 Mahalanobis distance method

One straightforward method to identify a cluster is to calculate a ’distance’ of each point

from a “center” of the data points and define the clusters accordingly. Next, we will describe a

distance based cluster method.

To answer this kind of question, a measure of distance between clusters in terms of multiple

characteristics is used. The most often used measure is the Mahalanobis distance; Mahalanobis

proposed this distance measure in 1930 (122) in his studies on racial likeness. After that, Maha-

lanobis distance has been used as an important tool in data analysis with multiple dimensions;

it has found applications in many fields, such as classification, statistical pattern recognition,

medical diagnosis or remote sensing.

In practice, we are primarily interested in measuring how “distant” an observation is from

the center of a distribution. For example, given a data matrix A with n rows of observations

and each observation has m measured features.

A =



x11 x12 . . . x1m

x21 x22 . . . x2m

...
...

. . .
...

xn1 xn2 . . . xnm


n×m

(3.1)

The Mahalanobis distance D2 for each observation vector xi = [xi1, xi2, . . . , xim] is calcu-

lated as a function of a m-dimensional vector x̄ containing the means for each column, and
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a (nonsingular) variance covariance matrix Σ of dimensions m ×m that the diagonal element

contains variances and pair-wise column covariance values elsewhere.

D2(xi) = (xi − x̄)
TΣ−1(xi − x̄) (3.2)

When applied to n=47 points in m=2 dimensions, the calculated D2 values follow a char-

acteristic elliptical pattern with D2 radiating out from the central location of the distribution.

In the following Figure 6, given a set of points distributed in two-dimensional space, the Ma-

halanobis distance D2 for each point has been calculated. The D2 values asymptotically follow

chi-squared distribution (?; 39). In this example, there are two points that are highly possible

of not belonging to the distribution and can be classified as outliers when α = 0.975 as they

are above that probability threshold.

Under the assumption of multivariate normality of the underlying quantitative measure-

ments, Mahalanobis distance measure D2 may be interpreted as the sum of m independent

standard normal variables, thus following a chi-squared distribution with degrees of freedom

equal to the number of dimensions i.e. m (179; 44). The centering of x and scaling of Σ are

needed to arrive at the above distributional property of D2.

Although a large number of distance measures of similarity between groups have been pro-

posed, the Mahalanobis distance D2 has been found to be the most suitable in a majority of

applications. It is now known that many standard distance measures, such as Kolmogorov’s
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Figure 6. Illustrative example of Mahalanobis distance in two dimensions

variational distance, the Hellinger distance, Rao’s distance, are extended functions of Maha-

lanobis distance under assumptions of normality (230; 63; 17).

To capture the intratumor heterogeneity based on gene expression, we use Mahalanobis

distance to measure how far away an individual subject lies with respect to the centroid of a

specific subgroup. For a sample of 47 genes, we first calculate the centroid of the subgroup,

which is the mean of 47 genes; then we calculate the covariance matrix of 47 genes within this

specific subgroup. For each patient, we calculate five distances, the distance of this subject

to the centroid of its own group (LumA), and the distances of this subject to the centroids of

other four subgroups (LumB, HER2, Basal, Normal). Then, we use 10 fold cross validation to

find the optimum threshold α to assign subject to cluster. In this thesis. we assume there may

be 2 or 3 clusters within the LumA group. When there are 2 clusters, one cluster contains the
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“pure” LumA patients, another cluster contains the “admixed” LumA patients. When there are

3 clusters, similarly, one cluster contains the “pure” patients, one cluster contains the “neither”

patients and the last cluster contains the “admixed” patients. The definition of “pure” patient

is as follows:

1. Mahalanobis distance to centroid of its own group ≤ α % of Mahalanobis distance of its

own group And

2. Mahalanobis distance to centroid of other group A ≥ α % of Mahalanobis distance of

subgroup A And

3. Mahalanobis distance to centroid of other group B ≥ α % of Mahalanobis distance of

subgroup B And

4. Mahalanobis distance to centroid of other group C ≥ α % of Mahalanobis distance of

subgroup C And

5. Mahalanobis distance to centroid of other group D ≥ α % of Mahalanobis distance of

subgroup D

3.1.2 Distance ratio method

Next, we describe another non-parametric method for cluster analysis. For each subject,

we have five distances, the distances of this subject to the centroid of its own group, and the

distances of this subject to the centroids of other four subgroups, among the four non-assigned

distance, we pick up the smallest distance, and then calculate a score, which is the ratio of
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the Mahalanobis distance from its own group to the Mahalanobis distance to the nearest non-

assigned group. Then a subject is assigned to a cluster by tertiling this ratio into three clusters.

3.1.3 Overall survival based on Mahalanobis distance method

Figure 7 and Figure 8 show the Kaplan-Meier plots of overall survival (OS) for METABRIC

Luminal A cases stratified according to Mahalanobis distance assuming two clusters and three

clusters separately. There is a statistically significant difference between different clusters at

both scenarios. When there are three clusters (Figure 8), the “pure” subjects have much better

long term chance of survival compared with “admixed” subjects.

3.2 Finite mixture model cluster

Non-parametric cluster algorithm is limited by lack of statistical inference to determine

the goodness of fit with respect to the number of clusters (65; 213). In addition, the results

of non-parametric cluster algorithm can be influenced by the order of data input (202; 219).

There is a number of concerns about the validity of non-parametric cluster algorithm as it is

capable of producing clusters even when there are no true clusters (224). A number of methods

have been proposed to resolve this weakness, such as re-sampling technique (213). However,

these methods are ad-hoc, time consuming and would be impractical to implement in high

dimensional datasets.

Unlike non-parametric cluster, model-based cluster analysis provides classical statistical in-

ference naturally, it is a sound statistical procedure that allows the comparison of non-nested

models. This approach can penalize model complexity and reward for parsimony when com-

paring different models (116). Model-based cluster analysis would eliminate the ambiguity
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Figure 7. KM curve based on Mahalanobis distance assuming 2 components
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Figure 8. KM curve based on Mahalanobis distance assuming 3 components
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associated with subjective criteria (82; 83; 238); thus it is an important tool for cluster analysis

(12; 58; 176).

3.2.1 Motivational example

We frequently encounter data from heterogeneous sources. For example, while measuring

weights of all people in a town, we can use a mixture of two Gaussian distributions for the data,

since by common sense, men and women have quite different weights genetically. Therefore, it

can be considered as two different sources of data. Another example comes from mixture of

Poisson distribution. Insurance companies receive tremendous number and amounts of claims

each year. Studies indicated that a mixture of Poisson distribution is appropriate for the number

of claims made by each individual (197). Majority of people have very few claims each year;

which can be represented by a Poisson distribution with a small rate, while minority of people

make a lot of claims each year, for them a Poisson distribution with a high rate can be used. In

the insurance example, we have a sample consisting of heterogeneous subjects, and a mixture of

Poisson model is appropriate here. Mixture model has another application in image processing.

An image can be seen as a composition of different textures, brightness and colors. Mixture

model has shown to be a powerful tool for image reconstruction, classification and segmentation

(118; 189).

Mixture model is commonly used to model data generated by mixed sources in many ar-

eas. Hartigan (98) gives a nice summary of mixture model theory as well as many possible

applications of mixture in real life; see Table I.
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TABLE I

DIFFERENT TYPES OF MIXTURE DATA
Data type Distribution family Example

Discrete Possion Insurance claim
Discrete Binomial Patients responding to a treatment

Continuous Normal Genome data; Image data
Heavy tail Cauchy Stock

3.2.2 Finite mixture model based cluster

Under the assumption that observed data comes from a population consisting of several

sub-populations, finite mixture model fits each sub-populations separately, and the overall pop-

ulation is a weighted sum of these sub-populations (176; 82). A mixture model can be written as

a convex combination of multiple distribution functions; The pioneering work on finite mixture

model can be found in (76; 209). Recent comprehensive reviews of mixture model can be found

in (119; 130; 128; 186; 134). Mixture models are widely used in statistical modeling because of

the flexibility and the potential interpretation of the mixing process (74; 85).

3.2.2.1 Set-up of finite mixture model

Define χ as a measurable space, more specifically, χ is a subset of Rr equipped with Borel set

all through this thesis. Φθ is the probability measures on χ indexed by parameter θ, θ ∈ Rm.

The parametric family is denoted by:

G = Φθ, θ ∈ Rm, (3.3)
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In addition, we assume that each Φθ has a density function φθ(x),x ∈ χ with respect to a

common dominating measure λ. φ(x, θ) is denoted as a density function or a kernel function.

A finite mixture model with K components is defined as:

f(x;φ) =

K∑
k=1

τkφ(x, θk), τk > 0,

K∑
k=1

τk = 1, (3.4)

In finite mixture model, we are particularly interested in three sets of parameters. They

are:

1 K: the number of components;

2 τk,k = 1,2,...,K: weight of each component;

3 θk,k = 1,2,...,K: parameter vectors of each component.

In most applications of finite mixture model, the value of K is unknown, but considered to be

a fixed value, and has to be determined from observed data, along with the mixing proportions

and the component parameters.

An important issue arising from a finite mixture model is identifiability, which can be seen

as the foundation for parameter estimation in finite mixture model. The estimation of φ will

become pointless if the parameters in φ are not distinguishable. By definition, a parametric

distribution is indicated to be identifiable if different parametric values lead to different members
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of the family. The identifiability for finite mixture model is similarly defined (208; 211). The

finite mixture model is said to be identifiable if for any two members f(x;φ) and f(x;φ∗),

K∑
k=1

τkφ(x, θk) =

K∗∑
k=1

τ∗kφ(x, θ
∗
k), (3.5)

if and only if K = K∗, (τ1, τ2, ..., τK)=(τ∗1, τ
∗
2, ..., τ

∗
K) and (θ1, θ2, ..., θK)=(θ∗1, θ

∗
2, ..., θ

∗
K)(236; 208).

3.2.2.2 The Gaussian mixture model

Cluster analysis using finite Gaussian mixtures model has a long history dating back to the

detection of outliers by Newcomb (148) and modeling unobserved classes in biological specimens

from Pearson (165). Finite Gaussian mixture model now has been widely used in many areas,

such as marketing, medicine, physics, and economics. More recently, with the advancement in

computer processing power, Gaussian mixture model has been commonly used in genetics (60)

and imaging processing (110).

The Gaussian mixture model is a powerful tool for mixed sources of continuous data by

modeling a mixture normal probability density function, thus allowing use of formal statistical

procedures for parameter estimation and model optimization. When datasets are high dimen-

sional, i.e., each observation has various features, mixture Gaussian can been naturally extended

to deal with multivariate continuous observations, x1, ..., xn, where xi is an r-dimensional vec-

tor, and r represents the number of features. Typically, the elements xi1, ..., xir of xi measure

r features for a subject labeled i sampled from a population. A common assumption for finite

mixture model is that the observations, i.e., x = (x1, ..., xn), are i.i.d. realizations from a mul-
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tivariate random variable drawn from a mixture with K components. The probability density

of x is:

f(x; θ) = τ1φ(x;u1,Σ1) + ...+ τKφ(x;uK,ΣK), (3.6)

The model is parameterized in terms of distinct model parameters θ and τ. θ=(u,Σ), is the

parameter of a multivariate normal distribution with mean u and variance-covariance matrix Σ

. τ is the proportion of each component. Yakowitz proved that finite mixtures of multivariate

normal distributions is generically identifiable (236).

3.2.2.3 Variance Covariance matrix decomposition

A multivariate mixture Gaussian model with unconstrained variance covariance matrices Σ

is highly parameterized, the total number of parameters to be estimated is K(r+r(r+1)/2+1)−1

(12). For example, when modeling a mixture of 5 multivariate Gaussian distributions with 10-

dimensional observations, one has to estimate as many as 329 parameters. When it comes to

high dimensional datasets, the number of parameters increases exponentially in the general

variance-covariance setting.

With general variance covariance matrices model, one disadvantage is that, there will be

a large number of parameters to be estimated, each additional parameter means longer com-

putational time. Another disadvantage is that lack of parsimony will cause the difficulty of

interpretation. This causes more severe concern, since a statistical model always requires easy

and meaningful interpretation.

An unconstrained multivariate mixture may be too general; to achieve parsimony, we can

put certain constraints on the variance–covariance matrices. Various authors inspected different
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constrained models, one of the most widely used model comes from Banfield and Raftery (12).

They suggested using the eigenvalue decomposition of the covariance matrix Σk:

Σk = λkDkAkD
′
k, (3.7)

where λk is the largest eigenvalue of Σk. It is a scale parameter which can control the volume

of cluster in the sample space, the volume is proportional to the standard deviation ellipsoid.

Dk is an orthogonal matrix with each column corresponding to the normalized eigenvectors of

Σk. Dk determines the orientation of each cluster with respect to the coordinate axes. Dk = Ir

representing the case where principal components are aligned with the coordinate axes. Ak is

a diagonal matrix with decreasing eigenvalues of Σk, divided by the maximum eigenvalue. The

elements of diagonal matrix Ak control the shape of variance covariance structure, when Ak =

Diag (1, ..., 1), it corresponds to a spherical structure, whereas a cluster with Ak = Diag (1,

Ak2, ..., Akr ), where Akj � 1, is concentrated around a line in the sample space.

Therefore when clusters share similar parameters λk, Dk, and Ak, they share similar ge-

ometric properties. By imposing constraints on λk, Dk, and Ak, the parsimony for variance-

covariance matrix is achieved. Different constraints on the variance covariance matrix provide

distinct models that are capable to capture the structure of datasets. Allowing the parameters

in (5.5) to vary between clusters provides easily interpretable models that can be used to infer

the structure of different clusters. The most important advantage for constrained variance-

covariance structure is the smaller number of unknown parameters. For example, in the most
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general model ([VVV]), the parameters to be estimated is α+ Kβ, where α = Kr+ K− 1, con-

tains the information of number of components and the number of dimension, β = r(r + 1)/2,

contains the information of number of dimension.

Celeux (42) and Bensmail (21; 22) defined three major variance covariance structures: spher-

ical, diagonal and general families. Spherical family is the simplest structure, in which each

variable has the same variance such that the distribution is spherical. Diagonal family leads

to axis-paralleled elliptical components as the variances in each dimension may vary. General

family has the least constrained structure, in which variances covariance matrices are not re-

quired to be diagonal. The table below summarizes the characteristics of nine commonly used

structures.

TABLE II

PARAMETERIZATIONS OF THE COVARIANCE MATRIX ΣK
Model Covariances Family Volume Shape Orientation

EII λI Spherical Equal Equal NA
VII λkI Spherical Variable Equal NA
EEI λB Diagonal Equal Equal Axes
EVI λBk Diagonal Equal Variable Axes
VVI λkBk Diagonal Variable Variable Axes
EEE λDAD ′ General Equal Equal Equal
EEV λDkAD

′
k General Equal Equal Variable

EVV λDkAkD
′
k General Equal Variable Variable

VVV λkDkAkD
′
k General Variable Variable Variable
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3.2.2.3.1 Spherical Family Variance Covariance Structure

Spherical family is the most constrained model where variables of all components have

the same variance. Spherical family corresponds to the diagonal matrices with same diagonal

elements. There are two structures in this family.

1 Model EII (λI). This is the most parsimonious model with all components having same

volume and same shape. The covariance matrix is a diagonal matrix, where I denotes the

r× r identity matrix. The number of parameters needs to be estimated is α+ 1.

2 Model VII (λKI). The volume of spherical model is not equal, allowing the volume to vary

while constraining the shape to be the same. In this case, the covariance are diagonal

matrices with equal diagonal elements, but λ is allowed to change for each component.

The number of parameters needs to be estimated is α + K.

3.2.2.3.2 Diagonal Family Variance Covariance Structure

The diagonal family allows the variance of each variable to vary within clusters. This

structure is obtained by constraining B = λDAD ′ , where B is a diagonal matrix satisfying |B|

= 1. λ and B determine the volume and shape of the clusters respectively. Different models are

achieved by changing the volume and shape between clusters. One point to be noted is that

this structure is invariant under any scaling of variables but not under linear transformations

(42).

3 Model EEI ( λDAD ′). The common diagonal covariance corresponds to cluster with

fixed volume and shape. The number of parameters to be estimated is α + r.



47

4 Model EVI (λBk ). This model allows the shape to be different, and the volume is fixed.

In other words, the volume parameter λ is same for all components; the diagonal matrix B

are allowed to be different for each component. The number of parameters to be estimated

is α + Kr-K+1.

5 Model VVI (λKBk ). This model allows the volume and shape to vary, while the orientation

is fixed. The number of parameters to be estimated is α + Kr.

3.2.2.3.3 General Family Variance Covariance Structure

The general family has more general structure, allowing off-diagonal elements to be different.

The most unconstrained model ([VVV]) allows volume, shape and orientation to vary between

clusters. Other models with fewer parameters are achieved by either fixing the volume, shape

or the orientation. All structures in this family are rotationally and scale invariant.

6 Model EEE ( λB). This model assumes all clusters have fixed volume, shape and ori-

entation. which means all components have same covariance matrices with nonzero off-

diagonal elements. The number of parameters need to be estimated is α + β.

7 Model EEV ( λDkAD
′
k). This model assumes the orientation of components can vary,

while keeping shape and volume fixed. The number of parameters to be estimated is α +

Kβ-(K-1)r.

8 Model EVV (λDkAkD
′
k). This model assumes both the orientation and shape to be

different among equal volume clusters. The number of parameters need to be estimated

is α + Kβ-(K-1).
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9 Model VVV (λkDkAkD
′
k). The most general, unconstrained model, allowing all geometric

features to be different. It has the maximum number of unknown parameters compared

to other structures. The number of parameters to be estimated is α + Kβ.

3.2.3 Parameter estimation

In this section, we describe the procedures of parameter estimation in mixture Gaussian

model. In multivariate Gaussian mixture model, we assume x = (x1, ..., xn) consists of n i.i.d.

observations from a random variable x of dimension r, coming from a mixture of K components.

Each component follows a Gaussian distribution:

φk(x;uk,Σk) = (2π)−
r
2 |Σk|

− 1
2 exp{−

1

2
(x− uk)

TΣ−1
k (x− uk)}, (3.8)

In mixture Gaussian model, there is one latent variable: the indicator function of each

observation’s unique component membership belonging, 1i, 1ik = 1 if xi belongs to the kth

component mixture. After incorporating the latent variable, the complete loglikelihood will be:

logL(θk, τk,1ik|x) =

n∑
i=1

K∑
k=1

1iklog[τkφk(xi|uk,Σk)], (3.9)

To estimate parameters of the mixture Gaussian model, we need to maximize the com-

plete loglikelihood; however, because of the unobserved variable 1ik, we can not directly take

derivative of loglikelihood and numerically get the estimations. For the numerical optimization

with unobserved variables, the Expectation-Maximization (EM) algorithm (61; 127) is a general

method. In addition to the EM algorithm, some other methods can be used for parameters
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estimation in mixture Gaussian model, such as method of moments (165; 102; 23). However,

method of moments was shown to be inefficient in finite Gaussian mixture as compared to the

EM algorithm (56). The EM algorithm is an iterative procedure, starting from certain ini-

tial estimators, then proceeds to successively update the loglikelihood of model until converge

criteria is met. In EM algorithm, instead of maximizing the complete loglikelihood, at each

iteration, the observed loglikelihood is improving. Under relatively mild conditions, the EM

algorithm is known to converge to local maximum (61; 32; 234; 127).

The EM algorithm requires two steps at each iteration; at the “E-step”, given the “observed”

data at this iteration, the conditional expectation of complete loglikelihood is computed; at the

“M-step”, parameter estimation is updated to maximize the expected loglikelihood from E-step.

Although in real world, the regularity conditions for EM might not always hold, EM has been

widely used for mixture Gaussian model parameter estimation with good results (83).

For multivariate Gaussian mixtures, the EM algorithm procedures can be summarized as

follows:

1. Start with initial guess of component membership for each observation;

2. Alternate between E-step and M-step at each iteration, at iteration t+1:

• At E-step, given the current estimates, the posterior probability, l̂ik, of the ith ob-

servation belongs to the kth component is computed:

l̂ik =

^
τ
(t)
k φk(xi|

^
u
(t)
k ,

^
Σ
(t)
k )∑K

k=1
^
τ
(t)
k φk(xi|

^
u
(t)
k ,

^
Σ
(t)
k )
, (3.10)
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• At M-step, given the posterior probabilities from E-step, update the parameter esti-

mation of τk, µk and Σk using the following equations:

τ̂k
(t+1) =

1

n

n∑
i=1

l̂ik, (3.11)

µ̂k
(t+1) =

1

nτ̂k
(t+1)

n∑
i=1

xil̂ik, (3.12)

Σ̂k
(t+1)

=
1

nτ̂k
(t+1)

n∑
i=1

(xi − µ̂k
(t+1)) ′(xi − µ̂k

(t+1))l̂ik, (3.13)

3 Iterate the second step until the algorithm convergences.

After we estimate model parameters, we want to infer, given a data point x, which compo-

nent it belongs to. The posterior probability of the observation belonging to the kth component

is used to assign membership. If K is the number of components, pk(.) is the probability dis-

tribution of kth component; and τk is the proportion of members in component k, according to

Bayes’ theorem, the posterior probability that an observation x belongs to kth component is:

p(x ∈ k) = τkfk(x)∑K
k=1 τkfk(x)

, (3.14)

The posterior probability is calculated for each component; the final membership assignment

is then done by assigning the observation to the component with highest posterior probability.
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3.2.4 Initialization strategies for EM in multivariate Gaussian mixture

To implement the EM algorithm in mixture Gaussian model, two critical issues have to be

addressed: choose the initial estimation for EM, and select the optimum model. In mixture

Gaussian, optimum model includes determining the number of components K, and the selection

of covariance matrices structure (spherical, diagonal, general) as discussed in aforementioned

Section 5.3.2.

Determining the number of components is one of the essential problems of mixture Gaussian;

however, there is still no unquestionable conclusion. In model-based clustering, the general pro-

cedure is to fit the model to a range of components, k = 1, 2, ..., K. By doing so, determination

of the number of components can be simplified to finding the maximum number of components,

K. We use model selection technique to determine the optimal number of components and se-

lect covariance structure simultaneously. Since every combination of covariance structure and

number of components correspond to a probability model, we can apply model section and find

the optimum fitting model. More details will be provided in the next section.

Determining initial strategy to pass on to the EM algorithm is as challenging as choosing the

number of components. EM algorithm has a nice property that observed likelihood is improved

at each iteration until a stationary point is achieved. However, there are some criticisms of EM:

one major concern is that the stationary point in EM does not necessarily guarantee to be the

global maximum, and the ability of finding global optimum depends on the initialization point

of EM algorithm (127; 234; 90). Another disadvantage of EM is that it may converge slowly in
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some situations, including “bad” initial point, or when the proportion of latent variable is high

(101; 133).

The EM is a deterministic algorithm: given a particular initial input, it always reaches the

same output (113; 142; 218). Therefore, selection of an appropriate starting value is of great

importance for EM, as it can substantially determine the convergence speed and locate the

global maximum. Existing initialization methods for EM can be categorized into two distinct

branches. The first category is “uninformed” from data. Without using any information from

observed data, it performs a grid search and uses the randomly generated values as initial-

ization for EM, hoping to find global optimal by examining the whole landscape (116; 112).

The uninformed starting strategy has a good chance of locating the optimum estimation if the

number of initialization is sufficient to ensure the examination of full space. However, this

strategy is time consuming, thus not always practical for high-dimensional datasets. The other

initialization strategy chooses the starting values informed by the data. It directly searches

the global optimal using the initial value that already incorporates the information from data.

For example, Bradley (35) proposed using k-means as initialization, another common method

is agglomerative hierarchical clustering, proposed by Fraley and Raftery (81; 190). This ini-

tialization strategy in general is more efficient than uninformed technique; unfortunately, this

method has been criticized for using just one set of starting values, as it restricts the search

for the global optimum; furthermore, certain strategy tends to favor specific shapes or patterns

(12; 81).
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To overcome these limitations, we develop a new initialization strategy aiming at using

information from data without putting any prior distributional assumption. We would like to

choose the initial values that can incorporate the information from data, but not impose any

restrictions on the form of distribution; in the mean time, we would like to provide multiple

initial values to have better chance of finding the global optimum. The details of our proposed

method are presented in Section 3.2.4.1; the proposed method is compared with two most

commonly used methods: random starting value and agglomerative hierarchical clustering, the

descriptions of these two follow in Section 3.2.4.2 and 3.2.4.3.

3.2.4.1 Mahalanobis distance based method

In this section, we describe our proposed method using the Mahalanobis distance (MD) as

initial value for our EM, inspired by what are described in Chapter 3.1.1. We first calculate

the centroid and covariance matrix of each subgroup. For each observation, five Mahalanobis

distances are computed, the Mahalanobis distance of the observation to its own subgroup, and

the Mahalanobis distances of the observation to the other four subgroups. Then, we set up a

threshold; for a particular threshold, we assign the “pure” membership based on the following

rules:

1. Mahalanobis distance to centroid of its own group ≤ α % of Mahalanobis distance of its

own group And

2. Mahalanobis distance to centroid of group A ≥ α % of Mahalanobis distance of subgroup

A And
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3. Mahalanobis distance to centroid of group B ≥ α % of Mahalanobis distance of subgroup

B And

4. Mahalanobis distance to centroid of group C ≥ α % of Mahalanobis distance of subgroup

C And

5. Mahalanobis distance to centroid of group D ≥ α % of Mahalanobis distance of subgroup

D

The membership assignment based on MD is used as an initialization value for EM. The

threshold α is within a range of [0.05,0.95], we set up the threshold by grid searching the

whole range, thus get multiple sets of initialization values. By doing so, we first obtain multiple

initialization membership settings, thereby avoiding the search for a solution to only one possible

result. Second, Mahalanobis distance for membership assignment doesn’t require any arbitrary

parameter set-up, in addition, it doesn’t put any constraints on distribution of data. In the

meantime, the MD calculation is based on the observed datasets, allowing us to initialize the

EM incorporating the information from data.

3.2.4.2 Random starting method

In the context of initialization for EM in mixture Gaussian model, random starting value

means classifying each observation to one of kth component randomly. We assume that each

component will have an equal number of observations. For mixture Gaussian models, it is

highly possible that one set of initial value may lead to a local optimum. For this reason, it is

suggested to initialize a mixture model with different random values many times (204; 99) and

select the best solution using the likelihood function.
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It has been shown that random starting method has similar or better performance than other

initialization techniques (27; 29; 235). However, the main disadvantage of this initialization is

that a large number of random starts should be examined before a solution can be claimed. In

addition, there is still no conclusion about the sufficient number of initialization sets to ensure

a full examination of whole likelihood space (57; 105).

3.2.4.3 Agglomerative hierarchical cluster

Another common way to generate starting values is agglomerative hierarchical clustering.

Hierarchical clusters are achieved by merging two clusters that provide the smallest decrease

in classification likelihood function recursively (81). Given a chosen number of clusters, hi-

erarchical cluster analysis is performed and it generates the membership assignment for each

observation. More details of agglomerative hierarchical clustering can be found in Everitt (74).

Hierarchical clustering may be an accurate way to describe data that are structured hierar-

chically, but studies have controversy conclusions about the classifications accuracy relying on

cluster analysis (69). It has been validated that hierarchical clustering classifications initializa-

tion strategy perform similarly as in a k-means cluster analysis (55; 81). Furthermore, the use

of single set of initialization strategy can have negative influences in certain cases, as it restricts

the search for only one possible solution.

3.2.5 Model selection

Each variance covariance structure described in Section 3.2.2.3 corresponds to the geomet-

ric features of data. Besides that, we have to determine the number of components in mixture

Gaussian model. However, we don’t have any prior knowledge about the true covariance struc-
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ture or the number of components; therefore, model selection technique is used to determine

the optimal number of components and covariance structure simultaneously, by finding the best

fitting model.

Model selection, especially the optimum number of components selection, is one of the most

basic problems of mixture model. In general, too many components may cause over-fitting and

difficulty in interpretation; while too few components may not be adequate to approximate

the true underlying structure. Many non-parametric cluster analysis techniques use subjective

judgment and arbitrarily determine the number of components. In model-based cluster analysis,

the procedure for model selection is to fit different models with different number of components

along with certain covariance structure, and then choose the best fitting model by certain

criteria. There is a large body of research which has proposed to solve this problem, such as

information criteria based method, likelihood ratio test. We will start with the description of

information criteria based method.

3.2.5.1 Information criteria based method

There are enormous number of methodological developments to address the issue of deter-

mination of K using the information criteria. Information criteria method is parsimony-based

and it is the most widely used; a comprehensive review for information criteria applied in finite

mixture model can be found in McLachlan (128).

The theoretical justification for information criteria approach is to select K that can mini-

mize the negative log-likelihood blended with a penalty function. As the likelihood is a measure

of the quality of model fitting, it tends to select more complex model with more parameters
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systematically. To avoid over fitting, information criteria approach imposes a penalty function

to balance the increase in model fitting against the complexity of the model. The general form

for information criteria is:

IC(k,Σ) = −2lnL+ ds(k,Σ) (3.15)

where s(k,Σ) is the number of parameters associated to a solution with K components and a

specific covariance structure Σ, d being the marginal cost per parameter (33).

Most conventional information criteria methods include Akaike Information Criterion (AIC)

(3), Bayes Information Criterion (BIC) (188), the Integrated Classification Likelihood criterion

(ICL) (26), and their various modifications, such as Minimum Information Ratio criterion (MIR)

(231) and Laplace-Empirical Criterion (LEC) (128). Next, we will review three most widely

used techniques: AIC, BIC and ICL.

3.2.5.1.1 Akaike information criteria

The well known information criteria used for model selection of mixture Gaussian is AIC.

The AIC is calculated as:

AIC(K,Σ) = −2logp(x|K, |Σ) + 2d, (3.16)

where d is the number of free parameters in the model. AIC chooses the model that asymp-

totically minimizes the mean Kullback-Leibler information (34) for discrimination between the

proposed model and the true model.
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3.2.5.1.2 Bayesian information criteria

The BIC (188) selects model with the highest posterior probability among competing mod-

els. It has been widely used for mixture models and for cluster analysis (182; 55; 128). BIC is

defined as

BIC(K,Σ) = 2p(x|K, |Σ) − dlog(n), (3.17)

where d is the number of free parameters in the model.

The BIC uses an approximation of twice the log integrated likelihood (210), although the

regularity conditions do not hold for mixture Gaussian models in general (2). It has been shown

that BIC has consistent performance of choosing the optimum number of components (182) and

leads to consistent estimation (182).

3.2.5.1.3 Integrated completed likelihood criterion

Biernacki (25) noted that the integrated likelihood cannot provide an evidence for a density

structure, they suggested the alternative use of the Integrated Completed likelihood. The

integral likelihood:

p(x,1i|K,Σ) =

∫
p(x,1|K,Σ,φ)p(φ)dφ, (3.18)

where p(φ)is a non informative prior distribution on φ for this model, 1 is the indicator function

for membership assignment. Rewriting (3.18), we can get:

p(x|1, K, Σ)p(1|K,Σ) =

∫
p(x|1, K, Σ,φ)p(1|K,Σ,φ)p(φ)dφ, (3.19)
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Biernacki (25) suggested that the integration of p(x|1, K, Σ,φ) over p(φ) is in closed form,

as long as the prior distribution of 1 is independent of φ; thus he proposed the use of BIC

approximation for log(p(x|1, K, Σ,φ)) (25; 26):

logp(x|1, φ̂∗, K, Σ) −
1

2
log(n), (3.20)

where φ̂∗ = argmaxφ p(x|1, φ, K, Σ), which is not necessarily the same as φ̂ from maximum

likelihood estimation. Then, ICL can be defined as:

ICL = −2 ∗ log(p(x|1̂ ′, φ̂∗, K, Σ)) + d− (K− 1)

K
∗ log(n) − 2 ∗

∫
p(1|τ, K, Σ)p(τ|K,Σ), (3.21)

where d is the total number of free parameters of the model, 1̂ ′ is the MAP estimation of 1

given φ̂∗.

Biernacki (25) also pointed out that by dropping the O(1) using a Stirlings approximation

(54), the approximation for
∫
p(1|τ, K, Σ)p(τ|K,Σ) can be written as:

p(1|τ, K, Σ)p(τ|K,Σ) ≈ n
K∑
k=1

τ̂klog(τ̂k) −
1

2
(K− 1) ∗ log(n), (3.22)

Substituting BIC into (3.21), ICL can be approximated by:

ICL = BIC− 2 ∗ log(p(x, 1̂ ′|φ̂∗, K, Σ)) + d ∗ log(n), (3.23)
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The ICL is the standard likelihood penalized by a measure of the quality of partition; thus

compromising between the fitting of model and the mixture model classification ability.

In general, the criteria-based methods are easy to implement, but have the disadvantage

of obtaining a meaningful comparison from one solution to another. Kass (108) suggested

differences in BIC less than 2 as insignificant, while improvements greater than 10 are often a

strong evidence. In other words, reductions in BIC score of more than ten should suggest a

strong improvement in the model with increasing number of components. However, it is unclear

how this score should be calibrated in different situations regarding to variations in sample sizes.

This is where testing-based approaches have greater appeal, because testing-based approaches

specify evidence in favor of a complex model against a simpler model with respect to the easily

understood p-value.

3.2.5.2 Bootstrap LRTS approach

Another way to decide the number of components of a mixture model is to conduct successive

hypothesis tests, using the likelihood ratio test statistic (LRTS). Consider the null hypothesis

H0 of k0 classes against the alternative hypothesis H1 of k1 segments:

H0 : K = ko, H1 : K = k1 (3.24)
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where k1 > ko, k1 = k0+1. Under certain regularity conditions, the likelihood ratio test statistic

(LRTS) provides the necessary information to choose between these two models (51; 129):

−2logλ = −2log[
L((̂θk0))

L((̂θk1))
] = 2{logL((̂θk1) − logL((̂θk0)}, (3.25)

Unfortunately, in the case of mixture Gaussian model, the regularity conditions do not hold

for (3.25) to asymptotically follow a chi-squared distribution with degrees of freedom equal

to the difference of parameters under the null and alternative hypothesis (2; 120; 117; 212).

The lack of theoretical null distribution of LRTS has stimulated the development of resampling

approach to produce p-value. One methodology is bootstrap method proposed by McLachlan

(129) to obtain the null distribution of the LRTS; other methodologies include Monte Carlo

procedure applied to mixture model (100; 1; 227).

In the resampling procedure, the LRTS from real data is compared with the test statistics

that are generated from a set of bootstrapped samples, under the null hypothesis. The bootstrap

procedure is:

1 Simulated a bootstrap sample x∗b from the model under the null hypothesis with k0 com-

ponents, i.e. from the mixture Gaussian with the vector of unknown parameters replaced

by MLEs obtained from the original data under H0;

2 Compute the test statistic LRTS∗b for the bootstrap sample x∗b from step 1 following mixture

Gaussian with k0 and k1 number of components;
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3 Repeat steps 1 and 2 many times, e.g. 1000 times, to obtain the bootstrap null distribution

of LRTS*.

A p-value from bootstrap can then be approximated as:

p− value ≈ 1+
1+

∑M
i=1 I(LRTS

∗
b) ≥ LRTSobs

M+ 1
(3.26)

where LRTSobs denotes the test statistic from the observed sample x, I is the indicator function,

I= 1 if its argument is true, M is the number of repeats.

One obvious advantage of LRTS method is that it tells us when exactly to favor H0 over H1,

and it performs better for small sample sizes. It was advocated by McLachlan as a necessary

tool for assessing p-values (128). However, the main limitation of the LRTS relates to its

computational demand because of the resampling procedure (130; 227)



CHAPTER 4

HYPOTHETICAL DATA

In this chapter, we examine the performance of finite mixture model with simulated datasets.

The objectives are, first, to investigate how different model selection criteria can effectively cap-

ture the characteristics of multivariate Gaussian distribution, and second, to examine the effect

of initialization strategies on the performance of EM algorithm in Gaussian mixture modeling,

thereby, identifying the heterogeneity existing in the data. Two examples are presented in

this section. The first example is to show the ability of different model selection techniques

to capture the true variance-covariance structure and the number of components. The second

example is to compare the performance of different initialization strategies, i.e. Mahalanobis

Distance (MD), Random variable (RV), and AHC. Working with simulation data is effective in

illustrating the theoretical prospective of finite mixture models as we can generate and analyze

with model characteristics already known.

4.1 The performance of model selection criteria

The first simulation is used to illustrate how model selection techniques can provide infor-

mation regarding variance covariance structure and the number of components. The effects of

sample size and the number of components are examined.

63



64

4.1.1 Simulation setting

Data is simulated from multivariates normal mixture model:

f(x; θ) = τ1φN(x;u1,Σ1) + ...+ τKφN(x;uK,ΣK) (4.1)

where for a fixed and given K, τ1, ..., τK are the mixing proportions for each component, u1, ...uK

and Σ1, ...,ΣK are the mean vectors and dispersion matrices respectively. We consider two

scenarios, K = 2 and K = 3. In both scenarios, for illustrative purpose, the number of features

for each observation equals to 47, same as the number of features in real datasets. In order to

examine the influence of sample sizes, different sample sizes are evaluated (n = 674, n = 1500,

n=2000 and n=4000). We simulate the data assuming covariance structure follows a general

family (VVV). The purpose of this simulation is to see whether model selection techniques can

correctly select the true variance covariance structure and the true number of components, and

what factors can influence the performance of model selection.

4.1.2 Simulation results

Table III and Table IV present the simulation results for BIC. When the simulated data

has two components with general structure(Table III), we can see that BIC can correctly select

the correct variance-covariance structure, no matter how small the sample size is. Regarding

the number of components, the BIC favors K=2 over K=3 regardless of the sample size. In

general, BIC scores are relatively close when comparing K=2 vs K=3. When the true number

of components equals to 3 with the general structure(Table IV), BIC can still correctly identify
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the correct variacne-covariance structure; however, BIC still favors K=2 over K=3, even when

the sample size is large, eg, n=4000.

When examining the performance of ICL (Table V and Table VI), we notice that it has very

similar results like BIC; at different scenarios, ICL can identify the right variance-covariance

structure. However, it favors K=2 over K=3, when the true number of components equals to

3.

The results of LRTS are presented in Table VII and Table VIII. The LRTS is performed to

assess the number of components for a specific variance covariance structure. In this simulation,

our purpose is to evaluate LRTS under the general family (VVV) assumption. The first scenario

when K=2: the null hypothesis is that K=1, and alternative hypothesis is that K=2. When

sample size is small, e.g, n=674, we are not in a position to reject the null hypothesis, when

sample size increases, the p-value becomes small, when n=4000, the model can reject the null

and correctly claim the number of components. Similar performance is observed for true K=3.

When sample size is large, the model is able to correctly identity the number of components.

4.2 The performance of different initialization strategies

The second simulation in this section is to compare our proposed MD-based initialization

method with existing methods. It is observed that our proposed method can effectively capture

the sub-populations, and thereby emphasize the disadvantages of using a single initial value or

random initial value.
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TABLE III

PERFORMANCES OF BIC ASSUMING GENERAL FAMILY (VVV) AND 2
COMPONENTS

K n Spherical Family (VII) Diagonal Family (VVI) General Family (VVV)

2 674 -169123.0 -165198.8 -103626.3
1200 -300044.3 -292568.3 -174975.9
2000 -498455.9 -484961.9 -283227.4
4000 -999151.2 -971286.9 -551215.9

3 674 -169650.0 -165512.9 -103997.2
1200 -280933.2 -276232.0 -182805.2
2000 -466854.3 -458900.9 -291083.9
4000 -937666.8 -919483.6 -560232.3

TABLE IV

PERFORMANCES OF BIC ASSUMING GENERAL FAMILY (VVV) AND 3
COMPONENTS

K n Spherical Family (VII) Diagonal Family (VVI) General Family (VVV)

2 674 -169123.0 -165198.8 -103626.3
1200 -299940.9 -291691.1 -175281.4
2000 -506206.5 -491789.5 -283767.5
4000 -999533.0 -971462.5 -551520.9

3 674 -169650.0 -165512.9 -103997.2
1200 -280933.2 -276502.2 -182335.6
2000 -473605.0 -464914.3 -291271.8
4000 -936515.2 -918863.3 -560365.4
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TABLE V

PERFORMANCES OF ICL ASSUMING GENERAL FAMILY (VVV) AND 2
COMPONENTS

K n Spherical Family (VII) Diagonal Family (VVI) General Family (VVV)

2 674 -169655.8 -165202.5 -102837.5
1200 -300051.1 -292404.8 -174308.6
2000 -498475.4 -484868.9 -282686.0
4000 -999151.2 -971286.9 -551215.9

3 674 -158112.6 -155628.0 -109012.2
1200 -280944.7 -275861.2 -180935.7
2000 -466876.0 -458686.7 -289876.9
4000 -937666.8 -919483.6 -560232.3

TABLE VI

PERFORMANCES OF ICL ASSUMING GENERAL FAMILY (VVV) AND 3
COMPONENTS

K n Spherical Family (VII) Diagonal Family (VVI) General Family (VVV)

2 674 -169655.8 -165202.5 -102837.5
1200 -299953.7 -291530.9 -174125.9
2000 -506223.7 -491700.3 -282947.8
4000 -999533.0 -971462.5 -551520.9

3 674 -158112.6 -155628.0 -109012.2
1200 -281253.3 -276127.3 -180846.8
2000 -473634.5 -464714.0 -289875.2
4000 -936515.2 -918863.3 -560365.4
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TABLE VII

LRTS FOR NUMBER OF COMPONENTS ASSUMING 2 COMPONENTS
n=674 n=1200 n=2000 n=4000

1 vs 2 LRTS 1537.849 1731.284 2070.059 2060.015
p-value 0.725 0.993 0.097 0.02

TABLE VIII

LRTS FOR NUMBER OF COMPONENTS ASSUMING 3 COMPONENTS
n=674 n=1200 n=2000 n=4000

2 vs 3 LRTS 1483.865 1624.753 2074.921 2153.313
p-value 0.639 0.682 0.008 0.001

4.2.1 Simulation setting

We simulate two parts of data sets separately. One part is to simulate multivariate Gaussian

distribution, as the genome data. Another part is the survival data. In this simulation, the

result from pure MD is used as ground truth. By doing so, we know the true membership

assignment for each observation. To simulate the multivariate Gaussian distribution data, we

use the similar setting as described in previous section. Two scenarios will be considered: K=2

and K=3, representing two components, and three components. To mimic the real data, sample

size is set to 674, and the dimension of multivariate Gaussian is 47.
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The survival time is generated based on exponential distribution. The median survival time

is estimated based on pure MD classification using K-M method, and the dropout rate is based

on real data as well.

4.2.2 Simulation results

TABLE IX

RESULTS FROM DIFFERENT INITIALIZATION STRATEGIES FOR THE SIMULATED
DATASETS

K Initialization Ln(L) o ARI π P-value System Time

2 MD 37114.08 21 0.5783 0.1928 0.0000468 67.63
RV 36956.33 31 0.0716 0.4822 0.0012 102.95

AHC 36987.86 26 0.2719 0.3397 0.0018 247.42

3 MD 37753.96 16 0.6215 0.2196 0.0034 64.73
RV 37554.67 26 0.0258 0.3724 0.0064 192.84

AHC 37585.22 22 0.1498 0.2953 0.19 250.64

From Table IX, we can compare our method with other existing methods. First of all,

the likelihood function from the proposed method is slightly higher, suggesting a better model

fitting. In addition, the number of iterations needed for our proposed method is smallest,

which means our initialization methods converge faster, the total running time is the smallest

compared to other methods. Further more, our proposed method has the highest ARI; it

indicates that our proposed method can better identify the individual membership, and it can

be validated by the OS separation, as our proposed method leads to better OS separation, i.e.
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smaller p-value from log rank test. The KM curve for OS separation based on different methods

is shown below.
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Figure 9. KM curve of true assignment assuming 2 components
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Figure 10. KM curve based on MD initialization assuming 2 components
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Figure 11. KM curve based on Random Variable initialization assuming 2 components
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Figure 12. KM curve based on AHC initialization assuming 2 components
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Figure 13. KM curve based on MD initialization assuming 3 components
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Figure 14. KM curve based on Random Variable initialization assuming 3 components
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Figure 15. KM curve based on AHC initialization assuming 3 components



CHAPTER 5

EMPIRICAL DATA

5.1 Data representation

To satisfy the key assumption that x follows a normal distribution, the METABRIC gene

expression datasets were previously median-centered and log-transformed; any missing, zero

or negative gene expression values in METABRIC are replaced by real numbers randomly

generated from a uniform distribution in the range of [.05,.95]. As regards TCGA, we apply

the log2(x + 1) transformation for the centered TCGA gene expression data before analysis.

In this thesis, METABRIC datasets are used for model development, and TCGA datasets are

used for model validation, independently.

As an illustrative example for validity of the assumption, Figure 16 displays the empirical

distribution of two genes from PAM50 gene expression profile. From both histogram and QQ

plot, we see that x roughly follows a normal distribution. The Q-Q plot also confirms that the

normal distribution assumption is valid.

To visualize the cluster patterns of different subtypes for high-dimensional gene expres-

sion data, we create a two-dimensional t-distributed Stochastic Neighbor Embedding (t-SNE)

plots(121).

Figure 17 is the t-SNE plot using METABRICS PAM50 gene expression data; it models

each subject with high dimensional features, (i.e. 47 genes) into a two-dimensional point, such

78
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Figure 16. Histogram and QQ plot for PAM50 gene expression (UBE2T, CXXCS)
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Figure 17. t-SNE plot for all subtypes in METABRIC cohort
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that similar subjects are modeled as nearby points and distinct subjects are modeled as far

away points with high probability. From Figure 17, we can see significant overlap between

subtypes, for example, LumA are closely mixed with LumB and HER2, only Basal forms a

relatively distinct subtype. In general, LumA is a relatively loose subtype; it has substantial

admixed pattern across different subtypes.

5.2 Model selection results

In this section, we evaluate the performance of different model selection criteria and present

how model selection techniques can determine the optimum number of components (K) and

identify the variance-covariance structure (spherical,diagonal and general) for multivariate Gaus-

sian mixture. To simplify the options of variance-covariance structure, we select the most flex-

ible structure to represent each category, i.e. VII to represent the spherical family, VVI to

represent the diagonal family and VVV to represent the general family. After this, we narrow

down the number of variance covariance structure from previously mentioned 9 to 3. For the

number of components K, we want to compare 2 components vs 3 components. When K=2,

we assume one component contains the “pure” patients, another component contains the “ad-

mixed” patients. When K=3, one component contains the “pure” patients, one component

contains the “neither” patients and the last component contains the “admixed” patients.

The results of AIC, BIC, ILC and log-likelihood for METABRIC datasets are shown in

Table X, the results of Bootstrap LRTS for the number of mixture components for METABRIC

are shown in Table XI.
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TABLE X

COMPARISON OF MODEL SELECTION CRITERIA FOR METABRICAS DATA
Criteria K VII VVI VVV

AIC 2 37243.88 50444.25 66708.35
3 37479.48 50562.86 64741.42

BIC 2 36803.09 49591.25 56097.749
3 36820.55 53068.22 56823.259

ICL 2 41354.02 49813.25 56861.57
3 34935.62 54916.93 57980.37

In(L) 2 21018 28175 37047
3 21007 28208 37072

TABLE XI

LRTS FOR 2 COMPONENTS VS 3 COMPONENTS FOR METABRICS DATA
VII VVI VVV

2 vs 3 LRTS 2900.748 2391.25 1472.073
p-value 0.001 0.001 0.001
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Table X shows the model section scores under different number of components and co-

variance structures. AIC, BIC and ICL all select the unconstrained structure (model VVV)

over spherical (model VII) or diagonal (VVI), for both the cases of K=2 and K=3. The log-

likelihoods based on unconstrained structure are the largest compared to other two structures,

suggesting unconstrained structure can better represent the METABRIC data structure.

When the number of components are compared, i.e. K=2 vs. K=3, AIC favors K=2, while

BIC and ICL favor K=3. However, when we compare the model selection scores of 2 and 3,

AIC, BIC and ICL scores are all very close. Comparing the log-likelihood of 2 components and

3 components, log-likelihood of 3 components are slightly larger than 2 components. Unlike

information criteria methods, the results of LRTS consistently favor 3 components, with p-

value=0.001 under different variance-covariance structure assumptions. Model selection are

conducted for TCGA datasets as well, the results are shown in Appendix A, Table XVI and

Table XVII.

The results of model selection suggests that AIC, BIC and ICL all support the assumption

of unconstrained structure (model VVV) in different scenarios. Regarding the number of com-

ponents, information criteria based methods and LRTS have inconsistent results. However for

both METABRIC and TCGA, the information criteria scores of K=2 compared to the score of

K=3 are relatively close to each.

5.3 Comparison of the performances of different initialization strategies

Next, we compare the performance of different initialization strategies for EM in finite mix-

ture Gaussian model. Three different initialization strategies are evaluated here: (a) Herein
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proposed Mahalanobis distance (MD) based method for initialization; (b) 100 sets of random

assignment for initialization, assuming the mixing proportions are equal for each component,

and each individual is equally likely to be assigned to each component; (c) Agglomerative

hierarchical clustering (AHC) initialization (84). The AHC provides only one set of initializa-

tion assignment. The threshold for assessing the convergence of log-likelihood during at EM

algorithm is set to be 10−5.

To examine the performance of different initialization strategies, the following criteria are

used: (a) The log likelihood function (Ln(L)): higher log-likelihood means the stationary point

of EM algorithm is more likely to be global optimum; (b) The number of iterations until EM

algorithm converges (o): it can be seen as a measurement for good initialization, usually good

initialization point requires less number of iterations; (c) total system time(seconds): includes

the time for the techniques to provide the initial assignment and the time EM algorithm needs

to converge, total system time is an indication of the computational efficiency.

Further more, we would like to compare abilities of different initialization strategies to cluster

the experimental subjects. Overall survival (OS) separation among different components is used

as validation for the clustering results. Our assumption is that a better initializing strategies can

better identify the membership belonging of each individual, and thus has better OS separation.

Here are the steps we used for OS comparison:

1. Assign Initial membership: apply different initializing strategies (MD, randome variable,

AHC);

2. Parameter Estimation using EM:
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• Use current values for parameters to evaluate posterior probabilities, for each data

point;

• Use these probabilities to re-estimate means, covariance, and mixing coefficients;

• Repeat the algorithm until relative change in the likelihood is less than the threshold.

3. Final membership assignment: using the parameters estimated from EM, assign each

subject to a cluster with highest posterior probability.

The following three criteria are used to evaluate the OS comparison: (a) The p-value from

unstratified log-rank test for comparing OS of different components (124; 169); (b) The adjusted

Rand index (ARI) (103). The ARI is a measure of membership assignment agreement between

two methods. We would like to compare the membership agreement between different initial

strategies with the classifications based on pure MD method proposed in Chapter 4. The ARI

ranges between [-1,1]; when the assignment is completely random, ARI has zero expected value;

when two assignments are identical, ARI equals to 1 (203). Note that the true membership

assignment status is unknown; therefore, we use the membership assignment based on pure MD

in Section 3.1.1 as reference; (c) The proportion of pure objects (τ).

Results of different EM initialization strategies for METABRICA are shown in Table XII.

From model fitting perspective, the final models from different initialization strategies have a

very similar log-likelihood. The highest log-likelihood function comes from AHC initialization,

which makes sense, since the AHC initializes EM with the assignment that can provide the

smallest decrease in the classification likelihood. In general, the likelihood results are compa-

rable across different initialization strategies. For computational efficiency point of view, AHC
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TABLE XII

RESULTS FROM DIFFERENT INITIALIZATION STRATEGIES FOR THE METABRICS
Initialization K Ln(L) o ARI π P-value System time (s)

MD 2 36831 22 0.2784 0.2418 0.0000479 73.08
RV 2 36910 29 -0.0101 0.6157 0.0001834 134.72
AHC 2 36822 20 0.0499 0.4896 0.0015 273.99

MD 3 37723 15 0.4521 0.1884 0.0000113 55.13
RV 3 37463 24 0.0011 0.3249 0.0000181 115.79
AHC 3 38004 19 0.0539 0.2300 0.0012 255.036

takes much longer time to find the starting assignment and run EM until converges. Because

AHC is a parametric method, at the initialization step, every time to make the decision of

merging individual, the likelihood function has to be evaluated, it is a huge disadvantage for

large sample size datasets. When judging the algorithm efficiency for random variable, it takes

more iterations for the EM algorithm to converge, however the total system is shorter than

AHC. Because random variable initialization uses uninformed starting assignment, the EM al-

gorithm needs more iterations to find the optimum, but it takes less time to choose the initial

value. Our proposed method, MD based EM, has the shortest system running time (73.08s vs

134.72s or 273.99s). It also requires less number of iterations compared to random variable.

Two factors can contribute to this: first, MD based initialization is a non-parametric method,

time can be saved significantly since no need to do model fitting at initialization step; second,

MD based initialization utilizes the information from data to assign individual experimental

units into a meaningful cluster; provides a good initialization point and thus needs less number

of iterations to converge.
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In addition, when OS separation is compared, the unstratified log rank test from MD based

EM has the smallest p-value; it means better separation for two components with respect

to the survival time. The MD based initialization has relatively smaller proportion of pure

components, random variable based initialization has a larger proportion of pure component.

The ARI for random variable initialization is considered low, indicating the classifications agree

poorly between the random variable initialization and pure MD. The AHC initialization has

low ARI as well, indicates a poor agreement with pure MD method. In contrast, MD based

initialization has relatively better agreement with pure MD method; for the present data set,

assuming three, the ARI of MD based method is 0.4521.

The results of different EM initialization strategies for TCGA is shown in the Appendex A,

Table XVIII.

5.4 Clinical and molecular characteristics result

In this section, we present clinical characteristic results based on our proposed MD initial-

ization, including: hazard ratio for the overall mortality of METABRIC, the Kaplan-Meier plots

of overall survival, and clinical characteristics comparison for “pure” vs “admixed”, including

age, tumor size and tumor stage.

Results of unadjusted Cox model are presented in Table XIII and Table XIV. We also

present adjusted Cox model results, adjusting for age, grade, stage and tumor size, both with

2-sided 95% CIs.

In the unadjusted model with 3 components, the hazard ratio for admixed cases relative to

pure cases is 2.2461; it means the risk of death event for admixed subjects is 2.25 times higher
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TABLE XIII

HR AND 95 % CI FOR OVERALL MORTALITY FOR METABRICS K=2
Criteria Subgroups HR 95% CI HR 95% CI

(unadjusted) (unadjusted) (adjusted) (adjusted)

EM-MD pure 1 - 1 -
admixed 1.7580 (1.335,2.316) 1.2880 ( 0.9755,1.701)

EM-RV pure 1 - 1 -
admixed 1.5007 (1.218 ,1.849) 1.195621 (0.969 ,1.475)

EM-AHC pure 1 - 1 -
admixed 1.5701 (1.274,1.935) 0.9609 (0.7724,1.195)

TABLE XIV

HR AND 95 % CI FOR OVERALL MORTALITY FOR METABRICS K=3
Criteria Subgroups HR 95% CI HR 95% CI

(unadjusted) (unadjusted) (adjusted) (adjusted)

EM-MD pure 1 - 1 -
neither 1.5959 (1.162,2.192) 1.1597 (0.8414,1.598)

admixed 2.2461 (1.593,3.167) 1.4027 (0.9873,1.993)

EM-RV pure 1 - 1 -
neither 1.5317 (1.174,1.998) 1.1597 (0.8414,1.598)

admixed 1.8051 (1.400,2.327) 1.4027 (0.9873,1.993)

EM-AHC pure 1 - 1 -
neither 1.3148 (1.031,1.677) 1.0811 (0.8455,1.328)

admixed 1.6197 (1.246,2.106) 1.1195 (0.8567,1.463)
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than the pure subjects, with 95% CI: (1.1593,3.167), and that for neither to pure was 1.5959,

with 95% CI: 1.162,2.192). After adjusting for age, grade, stage and tumor size, the hazard

ratio for admixed was 1.4027, but not statistically significant.

TABLE XV

CLINICAL CHARACTERISTIC OF LUMA PATIENTS IN METABRICS, CLASSIFIED BY
MD INITIALIZATION

Variables Pure Neither Admixed

Age (years) 58.5 62.8 65.8

Pre-Menopausal(%) 31% 16% 16%
post-Menopausal(%) 69%% 84% 84%

ER+(%) 78% 77% 74%
PR+(%) 54% 53% 55%
HER2+(%) 9% 15% 13%

Tumor Size(mm) 21.2 24.7 23.8

Grade(score) 1.5 1.7 1.4

Node positive (%) 40% 41% 46%

Tumor Stage I(%) 38% 31% 27%

Proliferation Score 8.99 9.05 9.05

Recurrence Score 28.8 58.7 62.7

Mutational load 5.29 5.36 5.64

From Table XV, admixed subjects are on an average 7.3 years older and more likely to be

post-menopausal (84% vs 69%). While no differences are observed for clinically ER, PR or

HER2 status, admixed subjects are more likely to have larger tumors (23.8 vs. 21.1), and a

higher prevalence of node positivity (46% vs. 40%). Finally, pure subjects are more likely to
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be at stage I at diagnosis (38% vs.27%). In general, neither subjects tend to have intermediate

results for these clinical features.

Next, we present the KM plots for comparing different initialization methods assuming K=2,

and K=3. The KM curves based on our proposed MD-based method display obvious survival

separation from the very beginning, in addition, the pure subjects have much higher survival

probability when they are followed for a long period of time. When K=2, the median survival

time for pure subjects is 220 months compared to 169 months for admixed subjects. When

K=3, the median survival time for pure subjects is 254 months, and 151 months for admixed

subjects.
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Figure 18. KM curve based on MD initialization assuming 2 components
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Figure 19. KM curve based on Random Variable initialization assuming 2 components
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Figure 20. KM curve based on AHC initialization assuming 2 components
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Figure 21. KM curve based on MD initialization assuming 3 components
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Figure 22. KM curve based on Random Variable initialization assuming 3 components
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Figure 23. KM curve based on AHC initialization assuming 3 components



CHAPTER 6

CONCLUSION AND FUTURE WORK

Breast cancer poses a major threat to public health. Ample evidences suggest intratumor

heterogeneity of breast cancer impedes our ability to predict response of targeted therapy for

individual patients. A detailed understanding of how to capture intratumor heterogeneity

of breast cancer is fundamental to the development and application of treatments for these

conditions.

A critically important objective in intratumor heterogeneity research is the development of

quantitative measures for intratumor heterogeneity in order to get optimal therapeutic benefit.

As one of the modern gene sequencing techniques, gene expression profile, particularly, PAM50

has gained immense popularity in clinical practices due to its capacity to provide clinical infor-

mation regarding prognosis and treatment response.

However, PAM50 assumes that each patient belongs to a single discrete subtype and provides

no further information regarding intratumor heterogeneity. Statistical method for analysis of

intratumor heterogeneity based on PAM50 is underdeveloped. There are three major method-

ological challenges in intratumor heterogeneity studies. First, as the gene expression data is

high dimensional, appropriate methods need to be developed to address the issues of curse of

dimensionality. Second, since the the finite mixture Gaussian model has latent variable, to im-

plement EM for parameter estimations, an appropriate initialization strategy is needed. Last

but not the least, the optimum model being unknown, model selection methodology should

97
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be developed to determine the best fitting model. In this work, we proposed an innovative

approach including data analysis, statistical inference and model selection for high dimensional

gene expression data and applied it to real datasets.

In Chapter 5, we compared our proposed method with other two major initialization strate-

gies in real datasets. Our results indicate that the proposed method can incorporate the infor-

mation from data, but does not impose any restrictions on the form of the distribution of data;

in the mean time, our model is able to provide multiple initial values, thus the model is more

likely to locate the global optimum. Our proposed method improves the computation efficacy,

as it does no need to do model fitting or grid search at initialization step; in addition, our

method utilizes the information from data to assign each individual patient into a meaningful

cluster, thus need less iterations to converge; more importantly, our method is more likely to

locate the global optimum. A number of initialization strategies have been proposed in the past

two decades. It is still challenging to choose the one that suits multivariate Gaussian mixture

model.

Regarding the optimum model determination, the model selection techniques are able to

identify the variance covariance structure. However, with respect to the number of components,

there is no conclusive suggestion to make. In the simulated study, we showed that when

the sample size is large enough, LRTS method is able to correctly identity the number of

components.

Upon completion of this thesis, there remains a number of potential areas for future re-

search. Indeed, the development of model-based methods for clustering analysis presents many
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possibilities for future work. For example, the optimum number of components, in the future,

we may incorporate prior information using Bayesian method and select the optimum model

using Bayesian criteria. In addition, a larger and sufficiently informative dataset would be nec-

essary to identify the optimum number of components and parameter estimation. Finally, our

method requires the sample size to be large enough to avoid the curse of dimension, however, if

we want to extend our proposed method to very-high-dimension data with relative small sample

size, this cannot be easily done. Therefore, it will be very helpful to inspect the use of other

optimization methods that can be implemented in very-high-dimension data.
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Appendix A

TCGA RESULTS

TABLE XVI

COMPARISON OF MODEL SELECTION CRITERIA FOR TCGA DATA
Criteria K VII VVI VVV

AIC 2 -106540.7 -95710.55 -72948.35
3 -102253.4 -93595.71 -73604.22

BIC 2 -106999.1 -96605.09 -84746.55
3 -102943.2 -94939.75 -91303.74

ICL 2 -107004.707 -96213.531 -82672.697
3 -102952.9 -94025.67 -88314.917

In(L) 2 -132782.7 -124158.6 -109126.4
3 -138760.0 -126098.6 -107812.9

TABLE XVII

LRT FOR 2 COMPONENTS VS 3 COMPONENTS FOR TCGA DATA
VII VVI VVV

2 vs 3 LRTS 4392.305 2839.264 2912.216
p-value 0.001 0.001 0.001
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Appendix A (Continued)

TABLE XVIII

RESULTS FROM DIFFERENT INITIALIZATION STRATEGIES FOR THE TCGA
Initialization K Ln(L) o ARI π P-value System time (s)

MD 2 -25722.94 21 0.0202 0.5603 0.0034 48.83
RV 2 -28417.74 31 -0.0345 0.6990 0.0014 100.76
AHC 2 -27745.32 23 0.01766 0.4396 0.0480 104.03

MD 3 -26908.45 16 0.4554 0.4139 0.01283 39.89
RV 3 -26580.13 26 0.0479 0.4554 0.01236 115.79
AHC 3 NA NA NA NA NA 120.60
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Appendix B

R CODE

plot . em . run <− function ( run , x )

{

z <− apply ( run$ e s t ep$z , 1 , function ( x ) which .max( x ) )

plot . mixture ( l o c s=t ( run$mstep$parameters$mean) , z=z , obs=x)

}

plot . mixture <− function ( l o c s , z , obs )

{

#s t o p i f n o t (dim( obs )[2]==2)

z <− as . factor ( z )

df1 <− data . frame ( x=obs [ , 1 ] , y=obs [ , 2 ] , z=z )

df2 <− data . frame ( x=l o c s [ , 1 ] , y=l o c s [ , 2 ] )

p <− ggp lot ( )

p <− p + geom point (data=df1 , aes ( x=x , y=y , co l our=z ) , shape=16, s i z e =2, alpha =0.75)

p <− p + geom point (data=df2 , aes ( x=x , y=y ) , shape=16, s i z e =3)

#p <− p + opts ( l egend . po s i t i on=”none”)

p

}

run . em. VII <− function (k , x , i n i t )

{

# compute the number o f data po in t s

n <− dim( x ) [ 1 ]

# i n i t i a l i z e each data po in t to a random c l u s t e r
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Appendix B (Continued)

i n i t . z<− i n i t

#i n i t . z <− unmap( sample (1 : k , n , r ep l ace=T))

# compute the f i r s t ”m s tep ” with those p o s t e r i o r s

mstep <− mstep (modelName=”VII” , data = x , z = i n i t . z )

e s t ep <− e s t ep (modelName=”VII” , data=x , parameters=mstep$parameters )

i t e r <− 1

lhood <− data . frame ( i t e r=i t e r , lhood=es tep$ l o g l i k )

repeat

{

i t e r <− i t e r + 1

mstep <− mstep (modelName=”VII” , data=x , z=es tep$z )

e s t ep <− e s t ep (modelName=”VII” , data=x , parameters=mstep$parameters )

lhood <− rbind ( lhood , c ( i t e r=i t e r , lhood=es tep$ l o g l i k ) )

conv <− abs ( ( lhood [ i t e r , ” lhood” ] − lhood [ i t e r −1 ,” lhood” ] ) / lhood [ i t e r −1 ,” lhood” ] )

# cat ( s p r i n t f (”%03d : %02.3g\n” , i t e r , conv ))

i f ( conv < 1e−5) break

}

l i s t ( e s t ep=estep , mstep=mstep , lhood=lhood )

}

run . em.VVI <− function (k , x , i n i t )

{

# compute the number o f data po in t s

n <− dim( x ) [ 1 ]

# i n i t i a l i z e each data po in t to a random c l u s t e r

i n i t . z<− i n i t

#i n i t . z <− unmap( sample (1 : k , n , r ep l ace=T))

# compute the f i r s t ”m s tep ” with those p o s t e r i o r s

mstep <− mstep (modelName=”VVI” , data = x , z = i n i t . z )
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Appendix B (Continued)

e s t ep <− e s t ep (modelName=”VVI” , data=x , parameters=mstep$parameters )

i t e r <− 1

lhood <− data . frame ( i t e r=i t e r , lhood=es tep$ l o g l i k )

repeat

{

i t e r <− i t e r + 1

mstep <− mstep (modelName=”VVI” , data=x , z=es tep$z )

e s t ep <− e s t ep (modelName=”VVI” , data=x , parameters=mstep$parameters )

lhood <− rbind ( lhood , c ( i t e r=i t e r , lhood=es tep$ l o g l i k ) )

conv <− abs ( ( lhood [ i t e r , ” lhood” ] − lhood [ i t e r −1 ,” lhood” ] ) / lhood [ i t e r −1 ,” lhood” ] )

# cat ( s p r i n t f (”%03d : %02.3g\n” , i t e r , conv ))

i f ( conv < 1e−5) break

}

l i s t ( e s t ep=estep , mstep=mstep , lhood=lhood )

}

run . em.VVV <− function (k , x , i n i t )

{

# compute the number o f data po in t s

n <− dim( x ) [ 1 ]

# i n i t i a l i z e each data po in t to a random c l u s t e r

i n i t . z<− i n i t

#i n i t . z <− unmap( sample (1 : k , n , r ep l ace=T))

# compute the f i r s t ”m s tep ” with those p o s t e r i o r s

mstep <− mstep (modelName=”VVV” , data = x , z = i n i t . z )

e s t ep <− e s t ep (modelName=”VVV” , data=x , parameters=mstep$parameters )

i t e r <− 1

lhood <− data . frame ( i t e r=i t e r , lhood=es tep$ l o g l i k )
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Appendix B (Continued)

repeat

{

i t e r <− i t e r + 1

mstep <− mstep (modelName=”VVV” , data=x , z=es tep$z )

e s t ep <− e s t ep (modelName=”VVV” , data=x , parameters=mstep$parameters )

lhood <− rbind ( lhood , c ( i t e r=i t e r , lhood=es tep$ l o g l i k ) )

conv <− abs ( ( lhood [ i t e r , ” lhood” ] − lhood [ i t e r −1 ,” lhood” ] ) / lhood [ i t e r −1 ,” lhood” ] )

# cat ( s p r i n t f (”%03d : %02.3g\n” , i t e r , conv ))

i f ( conv < 1e−5) break

}

l i s t ( e s t ep=estep , mstep=mstep , lhood=lhood , i t e r=i t e r )

}

# compare KM curve , ge t P va lue from pure MD

th r e sho ld=seq ( 0 . 0 1 , 0 . 9 5 , length=95)

luma thresh<−matrix (NA,nrow=95,ncol=4)

for ( i in 1 : 95 ){

thresh = thre sho ld [ i ]

thre sh basa l = quantile ( Basal MD$Basal , thresh )

thresh her2 = quantile (Her2 MD$Her2 , thresh )

thresh l a = quantile (LumA a l l $LumA, thresh )

thresh lb = quantile (LumB MD$LumB, thresh )

thresh normal = quantile (Normal MD$Normal , thresh )

pidx <− which(LumA a l l $LumA<= thresh l a

& LumA a l l $Basal >= thresh basa l

& LumA a l l $Her2 >= thresh her2

& LumA a l l $LumB >= thresh lb
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Appendix B (Continued)

& LumA a l l $Normal >= thresh normal )

LumA a l l $pureMD index<−”admixed”

LumA a l l $pureMD index [ pidx ] <− ”pure”

f i t <− s u r v f i t ( Surv (time = LumA a l l $OS MONTHS, event = LumA a l l $OS STATUS == ”DECEASED” ) ˜

LumA a l l $pureMD index ,

data = LumA a l l )

luma thresh [ i , 1 ] <− thresh

luma thresh [ i , 2 ] = surv pvalue ( f i t , LumA a l l )$pval

luma thresh [ i , 3 ] <− length ( pidx )

luma thresh [ i , 4 ] <− dim(LumA a l l ) [1 ] − length ( pidx )

i=i+1

}

lumaBIC 1 <− mclustBIC (LumA, p r i o r = pr i o rCont ro l ( ) , c ( ”VII” , ”VVI” , ”VVV” ) ,G=seq ( from=2, to=5,by=1))

lumaBIC 1

plot ( lumaBIC 1)

#AIC

IC <− Mclust (data=LumA, c ( ”VII” ) , p r i o r = pr i o rCont ro l ( ) ,G=2)

IC1 <− Mclust (data=LumA, c ( ”VII” ) , p r i o r = pr i o rCont ro l ( ) ,G=3)

a i c VII <− 2∗IC$df − 2∗IC$ l o g l i k

a i c VII

a i c1 VII <− 2∗IC1$df − 2∗IC1$ l o g l i k

a i c1 VII
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Appendix B (Continued)

IC VVI <− Mclust (data=LumA, c ( ”VVI” ) , p r i o r = pr i o rCont ro l ( ) ,G=2)

IC1 VVI <− Mclust (data=LumA, c ( ”VVI” ) , p r i o r = pr i o rCont ro l ( ) ,G=3)

a i c VVI <− 2∗IC VVI$df − 2∗IC VVI$ l o g l i k

a i c VVI

a i c1 VVI <− 2∗IC1 VVI$df − 2∗IC1 VVI$ l o g l i k

a i c1 VVI

IC VVV <− Mclust (data=LumA, c ( ”VVV” ) , p r i o r = pr i o rCont ro l ( ) ,G=2)

IC1 VVV <− Mclust (data=LumA, c ( ”VVV” ) , p r i o r = pr i o rCont ro l ( ) ,G=3)

a i c VVV <− 2∗IC VVV$df − 2∗IC VVV$ l o g l i k

a i c VVV

a i c1 VVV <− 2∗IC1 VVV$df − 2∗IC1 VVV$ l o g l i k

a i c1 VVV

# LRT

VII boot = mclustBootstrapLRT (LumA, model = ”VII” ,maxG=5)

VII boot

plot ( EII boot , G = 2)

plot (EEV boot , G = 2)

plot (EEV boot , G = 3)

VVI boot = mclustBootstrapLRT (LumA, model = ”VVI” ,maxG=5)

VVI boot
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Appendix B (Continued)

VVV boot = mclustBootstrapLRT (LumA, model = ”VVV” , maxG=5)

VVV boot

ICL VII <− mclustICL (LumA, modelNames=c ( ”VII” ) )

summary( ICL VII )

ICL VVI <− mclustICL (LumA, modelNames=c ( ”VVI” ) )

summary( ICL VVI)

ICL VVV <− mclustICL (LumA, modelNames=c ( ”VVV” ) )

summary( ICL VVV)

plot ( ICL VVV)

thresh = 0.74∗100

temp<− LumA thresh 2 [ , thresh+1]

temp neg<−1−temp

i n i t<−as .matrix (cbind ( temp , temp neg ) )

VVV <− run . em.VVV(k=2, x=LumA, i n i t=i n i t )

VVV$ i t e r

z .VVV <− apply (VVV$ e s t ep$z , 1 , function ( x ) which .max( x ) )

l l s .VVV <− VVV$ e s t ep$ l o g l i k

l l s .VVV

LumA a l l $EM MD 2=as . factor ( z .VVV)

# EM r e s u l t s v i r i l i z a t i o n

plot . em . run (VVV, LumA)

plot . mixture ( l o c s=t (VVV$mstep$parameters$mean) , z=z .VVV, obs=x)
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Appendix B (Continued)

#the b e s t model ’ s KM p l o t f o r EM MD assuming 2 components , s i z e 672∗672

MD KM<−Surv (time = LumA a l l $OS MONTHS, event = LumA a l l $OS STATUS==”DECEASED” )

MD kmfit = s u r v f i t (MD KM ˜ LumA a l l $EM MD 2)

summary(MD kmfit , t imes = c ( seq (0 , 150 , by = 10) ) )

f i t MD <− s u r v f i t ( Surv (time = LumA a l l $OS MONTHS, event = LumA a l l $OS STATUS == ”DECEASED” ) ˜ LumA a l l $EM MD 2 ,

data =LumA a l l )

ggsurvp lo t ( f i t MD, data = LumA al l , r i s k . table = TRUE, pval = TRUE, palette = c ( ” s i enna1 ” , ” s t e e l b l u e 1 ” ) , legend . l ab s = c ( ”EM MD=Admixed” , ”EM MD=Pure” ) , t i t l e = ”KM Curve f o r TCGA data us ing MD i n i t i a l i z a t i o n f o r EM assuming K=2” , f ont . main = c (14 , ” bold ” ) )

x<−LumA

la mixture thresh<−matrix (NA,nrow=95,ncol=3)

ptm<−proc . time ( )

for ( i in 1 : 95 )

{

n <− dim( x ) [ 1 ]

set . seed ( i +3000)

# i n i t i a l i z e each data po in t to a random c l u s t e r

i n i t<− unmap(sample ( 1 : 2 , n , replace=T))

VVV <− run . em.VVV(k=2, x=LumA, i n i t=i n i t )

z .VVV <− apply (VVV$ e s t ep$z , 1 , function ( x ) which .max( x ) )

l l s .VVV <− VVV$ e s t ep$ l o g l i k

LumA a l l $EM RV 2=z .VVV

f i t .VVV <− s u r v f i t ( Surv (time = LumA a l l $OS MONTHS, event = LumA a l l $OS STATUS == ”DECEASED” ) ˜ LumA a l l $EM RV 2 ,data = LumA a l l )
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Appendix B (Continued)

#la mixture th re sh [ i , 1 ] <− t h re sh

l a mixture thresh [ i , 1 ] <− surv pvalue ( f i t .VVV, LumA a l l )$pval

l a mixture thresh [ i , 2 ] <− sum( z .VVV==2)

l a mixture thresh [ i , 3 ] <− l l s .VVV

i=i+1

}

RV time<−proc . time()−ptm

#simula t ion

pure<−subset (LumA combo new,LumA combo new$MD d i s t==”0” )

admixed<−subset (LumA combo new,LumA combo new$MD d i s t==”1” )

pure gene<−pure [ , 2 : 4 8 ]

admixed gene<−admixed [ , 2 : 4 8 ]

#mu pure <− colMeans ( pure gene )

sigma pure<− cov ( pure gene )

i s . p o s i t i v e . d e f i n i t e ( sigma pure )

#mu admixed <− colMeans ( admixed gene )

sigma admixed<− cov ( admixed gene )

i s . p o s i t i v e . d e f i n i t e ( sigma admixed )

r e d i s t . fun <− function ( x ){ ( x−min( x ) )/d i f f (range ( x ) )}

pure s c a l ed<−apply ( pure gene , 2 , r e d i s t . fun )

pure mu sca l ed<−colMeans ( pure s c a l ed )

admixed s ca l ed<−apply ( admixed gene , 2 , r e d i s t . fun )

admixed mu sca l ed<−colMeans ( admixed s ca l ed )

hist ( pure mu sca l ed )
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Appendix B (Continued)

hist ( admixed mu sca l ed )

mu 2<−cbind ( pure mu sca led , admixed mu sca l ed )

# se t up mu for 3 components

pure 3<−subset (LumA combo new3 ,LumA combo new3$MD d i s t==”0” )

n e i t h e r 3<−subset (LumA combo new3 ,LumA combo new3$MD d i s t==”1” )

admixed 3<−subset (LumA combo new3 ,LumA combo new3$MD d i s t==”2” )

pure gene 3<−pure 3 [ , 2 : 4 8 ]

n e i t h e r gene 3<−ne i t h e r 3 [ , 2 : 4 8 ]

admixed gene 3<−admixed 3 [ , 2 : 4 8 ]

#rescha l e between 0 and 1

r e d i s t . fun <− function ( x ){ ( x−min( x ) )/d i f f (range ( x ) )}

pure s ca l ed3<−apply ( pure gene 3 ,2 , r e d i s t . fun )

pure mu sca l ed3<−colMeans ( pure s ca l ed3 )

n e i t h e r s ca l ed3<−apply ( n e i t h e r gene 3 ,2 , r e d i s t . fun )

n e i t h e r mu sca l ed3<−colMeans ( n e i t h e r s ca l ed3 )

admixed s ca l ed3<−apply ( admixed gene 3 ,2 , r e d i s t . fun )

admixed mu sca l ed3<−colMeans ( admixed s ca l ed3 )

set . seed (7888)

d <− 47

G <− 2

cova VVI 2<−mclustVariance (modelName=”VVI” , d = 47 , G = 2)
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