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If you face situations that you do not know how to deal with, there are many

possibilities. That’s when you can really explore life.
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SUMMARY

Biologists believe that visual markings of eggs shells produced by related birds will be

similar. Studies suggests that along with the odour, visual markings or signatures helps birds

distinguish their own brood and avoid brood parasitism. The relation between similarity of coat

markings on animals, similarity of features in humans with respect to genetic relatedness has

been asked many times before but a conclusive answer is still not found. While biologists asserts

that visual patterns indicates genetic heritability, accurately quantifying genetic heritability

with respect to visual signatures has not been possible until recently. With the advent of

machine learning and computer vision algorithms, we would like to use these algorithms and

ask a question in the context of bird eggs images, whether given a pair of eggs, if they are

genetically related based on visual patterns or not.

While microsatellite loci [4] are widely used to estimate the genetic relatedness between

individuals in wild, outbred, vertebrate populations, we would still like to ask a question - Is

there a relationship between visual markings of living organisms and genetics? Being able to

answer this question can identify, just based on images, if genetic relatedness exists or not.

In this work we use a dataset of images of eggs of the same species, with known nest relations

to test various machine learning and computer vision approaches for their ability to identify

eggs from the same nest purely by their visual patter similarities. The results have shown that

dataset is more unyielding in terms of features used for computer vision techniques and calls

out for more detailed feature preparation. In the future work, we decided to construct more

x



SUMMARY (Continued)

advanced features from the dataset, apply the computer vision algorithms used in the current

research and compare the new features and old features and their results.
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CHAPTER 1

INTRODUCTION

Whom does the baby look like more, the father or mother? How does a bird reject brood

parasitism? Does a patterned coat on mammals suggest heredity? What is the relationship

between the visual markings of living organisms and genetics?

The connection between genetic relatedness and visual similarity has been previously ex-

plored from various perspectives in several studies. For example, previous studies into mother-

offspring recognition by facial-visual characteristics [36] showed that when mothers of newborn

infants within 33 hours of post-partum are asked to identify their babies by showing pho-

tographs, they were able to distinguish their offsprings from those of unrelated ones based on

facial visual features in photographs. A study on mammalian coat patterns within mammals

such as leopards (Panthera pardus), domestic cats (Felis catus) and tigers (Panthera tigris) [11]

shows that the spots and stripes on these mammals play an important role in social commu-

nication. A research study was conducted to understand what parameters of eggs would help

the bird species in recognizing brood parasitism [39] and experiments were performed within

various species such as North American Passerines and American Robins to identify whether

these species identify their brood based on the parameters of eggs under observation. The

study showed that birds of various species responded to their brood eggs and avoided brood

parasitism based on egg coloration, size and visual parameters. Yet, the biological mechanisms

used in animals’ visual recognition of their kin are to be explained. Moreover, even the basic
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task of accurately quantifying the connection between genetic relatedness and visual similarity

markings had not been possible until the advent of machine learning and computer vision.

The problem of searching for patterns in data is a fundamental one and has an evolving

history. For instance, the problem of recognizing handwritten digits and identify them between

0-9 can be solved using handcrafted rules based on strokes and variability of handwriting [24].

Far better results can be obtained using machine learning work. With the advent of Computer

Vision and Machine Learning for image analysis, a variety of research work has been done,

and visual similarity is quantified [13], [27]. In computer vision, kinship (lower-order pedigree)

recognition is a process of identifying whether two organisms are closely related based on fea-

tures extracted from digital images. Many previous works focused on automatic visual kinship

recognition [13], [37], [27] and applications include missing child search, social media informa-

tion analysis and family photo annotation [54]. Machines consistently performed well in visual

kinship recognition of facial attributes of humans.

Biologist Mark Hauber hypothesized that patterns developed on eggshells of a bird’s brood

of Grey Capped social weaver(Pseudonigrita arnaudi) are visually similar [19] and further aims

to understand to what extent a bird recognizes these patterns and accept an egg as its brood or

rejects it. Thus, the primary motivation for this study is understanding how birds discriminate

their brood eggs from unrelated eggs based on visual cues or patterns. Genotype by Sequencing

(GBS) [12], [48], a genetic screening method for performing genotyping studies to determine

the kinship relation using genetic data, is the most reliable and efficient way; birds, clearly are

not collecting genetic samples of the eggs. Thus, to understand the mechanism of how birds
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identify their own eggs and whether they use visual marking’s similarity as a proxy, we must

establish a connection between visual markings and genetic inheritance. Besides, if we could

identify the genetic relatedness from images, we could avoid the problem of collecting DNA

samples in wild animals, which is a highly difficult and occasionally dangerous task.

Hence, in this thesis, we set out to answer a question of whether genetic relatedness is

correlated to visual markings of bird eggs from images. We used various machine learning and

computer vision techniques to learn visual pattern similarities of bird egg images. Given a

collection of digital photos of eggs with known broods, we aim to use machine learning and

deep learning approaches to answer whether any two eggs are coming from the same brood or

not. Figure 1 shows an example of images of eggs coming from a set of nests. Each of these

images has recognizable patterns which are used by birds to identify its brood.

The rest of the thesis is organized as follows:

• Chapter 2: We state the precise problem that we are trying to solve within the scope of

this thesis. We also describe the dataset used for all the experiments.

• Chapter 3: We discuss the work relating to identifying genetic relatedness based on

visual markings, using machine learning and computer vision.

• Chapter 4: We describe the supervised learning methods architecture for identifying

image similarity and instantiate the architecture for the problem of egg similarity inference

from images.
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Figure 1: Images of blunt ends of eggs from different nests are shown. The labels are in the

format YEAR-LOCATION-NEST IDENTITY-BLUNT END PHOTO AND EGG IDENTITY.

For example, 2002-Army-08-02-R-bluntend-1 (Egg A).jpg, 2002-Army-08-02-R-bluntend-1 (Egg

B).jpg are eggs A and B from same nest Army-08-02-R, collected in 2002.
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• Chapter 5: We describe the unsupervised learning method’s architecture, the motiva-

tion behind choosing this method and explain how this setting will learn the problem of

inferring nest relations within bird egg images.

• Chapter 6: We describe the implementation details and in-depth parameter settings of

methods we presented in Chapters 4 and 5. We state and discuss the results from applying

supervised and unsupervised methods on the dataset we have used.

• Chapter 7: In this final chapter, we conclude our findings and comment on genetic

signatures within visual markings of bird eggs. We describe the future scope by our

results and present the enhancements to our research on identifying genetic relatedness

in birds using visual egg patterns.



CHAPTER 2

PROBLEM DESCRIPTION

The aim of this research is to understand whether birds use visual cues on egg shells in

identifying their brood. In order to answer this question we need to design a way to recognize

eggs belonging to the same brood, relying only on the eggs’ appearance. With known brood

relations, given a pair of eggs, one way to state the problem formally is: Can we determine

whether a pair of eggs are from the same brood, using only the visual pattern on the eggs.

In the scope of this thesis, we focus on the eggs from a species called Grey Capped social

weaver(Pseudonigrita arnaudi). These eggs have distinguishable patterns as shown in Figure 1.

We investigate in this thesis, whether there is any genetic signature within these patterns,

specific to mother birds. We develop computer vision and machine learning algorithms, rather

than relying on human judgment since human vision and perception is prone to bias because

of the following reasons:

• Birds can perceive visible as well as ultraviolet spectrum and hence their color receptors

are different from human colour receptors. Therefore we cannot directly rely on human

observation to completely mimic a bird’s vision.

• A study on birds vision compared to primate’s vision [28] showed that, birds perceive

patterns differently when compared to primates. Hence relying on humans’ vision in

6
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identifying visual patterns may lead to mammalian bias. To avoid this, we use computer

vision to learn the visual patterns and infer genetic relatedness within eggs laid by birds.

Moreover, computational approaches rely on features that are not explicitly specified and,

therefore, may find hidden cues in the visual similarity signal.

2.1 Dataset and Preprocessing

The dataset of eggs used in this work was provided by Dr. Mark Hauber of the University

of Illinois at Urbana-Champaign. It consists of 297 blunt end images of bird eggs and their

brood identities. These are the eggs laid by females of a cooperatively nesting species in Kenya

of Grey Capped social weaver (Pseudonigrita arnaudi). The egg identities and brood relations

are accurately established based on the DNA samples collected by our collaborator [1]. The file

names of these eggs are encoded with nest (brood) identities and egg identities. Eggs within

each brood are hypothesized to have similar visual patterns.

The labels are given in the formal ’Year-Location–bluntend-Eggidentity’ encode the infor-

mation of bluntend images of eggs such as:

• Year - 2002, 2003 etc.,

• Location - Army, CLFM, SBB etc.,

• Egg Identity - Egg A, Egg B, Egg C etc.,

For example, eggs 2002-Army-08-02-R-bluntend-1 (Egg A) and 2002-Army-08-02-R-

bluntend-1 (Egg B) belong to same brood Army-08-02-R of the year 2002.
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Table I shows the overall structure of the dataset of birds eggs images we have extensively

used for our training purposes. Figure 2 shows the distribution of the number of eggs per nest

and number of nests containing those number of eggs.

TABLE I: Training dataset summary - number of images, nests, Egg id example, Nest id code

Parameters

Bird Species Grey Capped Social Weaver(Pseudonigrita arnaudi)

Number of egg images 297

Number of nests 81

Egg id example 2002-Army-08-02-R-bluntend-1 (Egg A)

Nest identity code Year-Location-NestIdentity-bluntend-egg-identity

We will use machine learning approaches to establish whether visual similarity correlates

with genetic relatedness in this dataset. We formulate two different version of the machine

learning problem: 1) as a multiclass classification problem, where each class is a brood and 2)

a pairwise binary classification problem of whether a pair of egg images belong to the same

brood or not. We consider both supervised and unsupervised approaches.
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Figure 2: Distribution histogram of the number of eggs per nest

There are 81 different broods in the dataset, each containing eggs with visual patterns.

Although a straight forward approach to identifying brood relations seems to be classifying each

of the eggs into one of the 81 different broods, typical of a multiclass classification problem, many

machine learning algorithms are inherently binary i.e, they are able to discriminate between

two classes. Hence to establish a genetic connection within eggs using machine learning, a more

appropriate direction would be to analyze each pair of images and assess if they belong to the

same brood or not. Thus the problem now is, given a pair of images from the bird eggs dataset

and asked if they belong to same brood or not, the machine learning model should be able to

answer Yes or No. This process of mapping a multiclass classification problem to several two-

class classification problems is called class binarization [3]. In order to binarize the problem,

we use a supervised approach where we obtain positive training examples - those pairs of eggs
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coming from the same brood and, negative training examples - pairs formed by the union of

images from all other broods.

Since training a machine learning model requires considerably large amount of data and

given the relatively small size of our dataset (297 images), we have performed data augmenta-

tion [46] to boost up the data. We want to augment the data using standard approaches for

data transformation while preserving salient features. The goal of the data augmentation is to:

• Increase the size of the data. This can be achieved by rotating the images. Hence, we

have rotated every image twice by an arbitrary randomly chosen angle between 0 - 180

degrees.

• Highlight the most salient and complex points of the texture/pattern. For this, we have

applied Gabor filter [29]. Gabor filter is used in texture analysis to analyze whether there

is any frequency content in an image in specific direction. When a Gabor filter is applied

to an image, it gives the highest response at crucial edges of an image. Figure 3 and

Figure 4 shows a test image and transformation of image after applying Gabor filter.

The total number of images has then become 1188. Table II shows the tabular form of

augmentation techniques performed.
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Figure 3: Raw Image Figure 4: Gabor Filter

TABLE II: Data Augmentation Statistics

Parameters

Augmentation Rotation(0-180 degrees)

Filters Grey Scale, Garbor filters

Number of images after augmentation 1485

Nest identity code Year-Location-NestIdentity-bluntend-egg-identity



CHAPTER 3

RELATED WORK

3.1 Computer vision for kinship recognition

The first attempt in using computer vision to detect genetic signatures within visual mark-

ings was published in the form of kinship verification [13]. This research used feature extraction

and selection methods on pairs of human face images of public personalities and automatically

classified whether these pairs were related or unrelated. The human kinship verification prob-

lem has since gathered attention and been an active research topic in the area of computer

vision. An improved model of automatic kinship verification based on facial image analysis

of human celebrity images was performed in [55] [56]. These models used descriptors such as

spatial pyramid learning and Gabor-based gradient orientation pyramid to effectively learn the

facial representations and integrate with support vector machine classifier for automatic kinship

verification. CornelKin [13] with 150 pairs of images of parents and children faces is the first

ever kin-based dataset available for research in 2010 . UB KinFace [31] was then made public

for kinship recognition task with images of parents and children at young and old ages. These

are popular datasets that use computer vision and machine learning to answer whether genetic

relatedness can be identified based on the discriminative features or visual patterns.

12
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3.1.1 Genetic relatedness based on animal markings similarity

To date, the computer vision work on kinship recognition from visual features has been

restricted to human faces. However, there has been work in the biological community demon-

strating the genetic connection between visual animal markings. Hotsotter [10], uses an al-

gorithm to identify the individuals such as Grevy’s and plains zebras, giraffes, leopards, and

lionfish by extracting matching keypoints. In [52], the study attempts to identify the individual

cetaceans from images based on trailing edges of their fins. However, these studies are mostly

restricted to individual identification and a very little progress has been made towards pairwise

kinship recognition in animals. And, to the best of our knowledge, no computer vision and

machine learning approaches have been developed to quantify the relation between the genetic

relatedness and the visual pattern similarity in animal markings.

3.2 Challenges

Despite several attempts by computer scientists to successfully use individual markings and

features to identify an individual [10], [52], [35], the research of identifying genetic relations

based on visual markings still remains challenging due to following reasons:

• Dataset: A critical observation from previous studies showed that face images of younger

parents resembled their children more than those of older parents. In addition, collecting

sufficient amount of training data is increasingly proprietary, requires exhausting data

labelling task and building new models from scratch is very expensive.



14

• Feature based learning: A technique which extracts discriminative features to describe

images. This method seek an overly strict strategy and rules to accurately define the

features which makes it poorly scalable.

• Limitation: Automatic kin recognition performed till now is mostly restricted to hu-

mans and moreover the models developed to investigate genetic relatedness in regards to

visual markings in animals is mostly restricted to mathematical and theoretical models

as explained in 3.1.1.

3.2.1 Similarity learning

To overcome the challenges outlined above, we consider a broader set of techniques, similar-

ity learning [30] and transfer learning [53]. These techniques, unlike previous approaches, use a

relaxed strategy to distinguish the similarity of related pairs and similarity of unrelated pairs.

Similarity learning is a type of distance metric learning task that computes similarities between

images by optimizing an appropriate distance function. This method ensures that similarity of

related pairs remains higher than similarity of unrelated pairs. It has been successfully applied

in information retrieval for learning to rank(example: e-commerce based search results) [25],

face identification [16]. Transfer learning, unlike traditional machine learning task, transfers

the knowledge learned from the previous tasks to the target task. Meaning, a model which

was trained on a task that has plentiful of data, is used to handle a new but similar task, that

contains lesser data. Transfer learning has been successfully applied to sentiment classification,

image classification [57]. Figure 5 shows the difference between learning processes of traditional
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machine learning and transfer learning tasks. We applied these state-of-the-art approaches to

the problem of identifying genetic relatedness based on visual markings of eggs.

3.3 Motivation

As discussed in previous sections, significant amount of research work has been done to

identify the role of visual markings/cues in genetic relations within human beings (kinship

recognition). However, most of the work conducted is primarily either theoretical(in case of

wild animals) or the work is incomplete due to inadequate data and cannot be directly adapted

to our problem of investigating the role of visual markings in identifying genetic relatedness in

bird egg images.

Based on the existing studies and progress on kinship verification, we use current best-

performing models and deep convolutional neural networks(CNNs) to learn the brood identity

based on visual markings similarity on our very unique dataset, explained in 2.1. In our

methods, we use pairs of images from intra-class (same brood) and inter-class (different broods)

relations to train state-of-the-art machine learning algorithms, which we describe in following

sections.
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Figure 5: Transfer Learning Overview



CHAPTER 4

FEATURE REPRESENTATION TECHNIQUES- FOR SUPERVISED

AND UNSUPERVISED LEARNING

In this chapter, we introduce the terminology related both supervised and unsupervised

learning task. We explain the feature representation techniques of images used in our work.

4.1 Algorithms Terminology

Image similarity classification problem [42], [22], [26] is one of the central topics in

supervised machine learning and computer vision areas. It has many applications such as

image retrieval [25], recommender systems [5], classification of object categories [49] and kinship

recognition [13], [37], [27], to mention a few. In this approach, a pair of images are compared

to determine how similar they are and, based on the similarity and the extracted features, to

answer Same or Not Same (typical of a binary supervised task). This task of comparing images

to quantify the similarity generally uses Scale Invariant Feature Transform (SIFT) [26] and

Local Binary Patterns(LBP) [33] feature descriptors to embed the images and learn the image

similarity models on top of these features. Another approach is to use deep convolutional neural

networks(CNNs) to be able to jointly learn the features and similarity models. We have used

both feature-based descriptors models and deep neural networks based learning models in our

approaches to classify whether a pair of images of eggs are from the same brood or not.

17
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Pairwise Classification: In Section 2.1 we introduced two different versions of the prob-

lem, multi-class classification problem and pairwise classification problem. In the following,

we will see what a multi-class classification problem is, how it is converted into a binary class

classification problem and define pairwise classification in detail.

Given n points P = {p1, ..., pn}, divided into n1 training points Ptrain ⊂ P and n2 test

points Ptest ⊂ P , m target classes C = {c1, ..., cm}, the goal of a classification problem is to

Pairwise classification approach [7] is used to convert multi-class classification problem to

binary classification problem. In this technique we consider two input examples and predict

whether they belong to same class or different classes. In our experiments, we modelled two

kinds of binary supervised Learning methods - Pairwise SVMs [8] and Siamese CNNs [6], each

of which relies on a pair of input examples to predict whether they belong to same or different

brood. Each method is described below. Our initial approach, however, used current state-of-

the-art CNNs, as feature descriptors to formulate a similarity verification task.

4.2 Local Binary Pattern(LBP)

LBP [33] is a powerful tool used for texture analysis. It is a non-parametric descriptor

that aims to summarize the local structures or textures of images. The LBP operator labels

the pixels of images with decimal numbers, called LBP codes, which encode the local structure

around each pixel. Figure 6 represents a simple example of LBP operator working. Each pixel

of image is compared with its 3 × 3 neighborhood consisting of 8 members, by subtracting

the center pixel values. The negative pixel values are encoded 0 and others with 1. A binary

code is obtained by concatenating all the encoded codes in a clock-wise direction. Thus formed



19

Figure 6: A basic example of LBP operator and code representation

binary numbers are called LBP codes. One of the limitations from this basic LBP operator

is that a 3 × 3 will not capture dominant features with large scale structures. The operator

was later generalized to use neighborhoods of different sizes to deal with different scales. A

local neighborhood is defined as a set of sampling points evenly spaced on a circle which is

centered at the pixel to be labeled, and the sampling points that do not fall within the pixels

are interpolated using bilinear interpolation, thus allowing for any radius and any number of

sampling points in the neighborhood. In the Figure 6, shows examples of pixels of images, with

P neighborhood points on a circle of radius R.

4.3 Scale-invariant Feature Transform(SIFT)

SIFT [26] is a popular technique used to compute the feature vectors of the analyzed im-

ages. The feature vectors are obtained by extracting feature points called keypoints and their

descriptors from an image. These keypoints are invariant to image scale and rotation and are

shown to provide robust matching across a substantial range of affine distortions, addition of

noise. The features generated are also highly distinctive, which allows a single feature to be cor-
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rectly matched with high probability against a large database of features. The scale-invariant

features are identified using a staged filtering techniques. First stage recognizes the key lo-

cations in scale space by looking for maxima or minima of a difference of Gaussian function.

Each point is used to generate feature vectors that describes the local image region relative

to its scale-space coordinate frame. The resulting feature vectors are called SIFT keys. These

keys derived are used as an input to a nearest-neighbor indexing method that identifies candi-

date object matches.Figure 7 represents the stages of generating keypoint descriptors in SIFT.

Keypoint descriptors are generated by computing gradient magnitude and orientation at each

image sample point in a region around keypoint location. These samples are then accumulated

into orientation histograms summarizing the content over the subregions. These keypoint de-

scriptors are crucial for matching purposes. Best candidate match for each keypoint is found

by identifying nearest neighbor.

4.4 Structural Similarity Index(SSIM)

The SSIM [51] index was proposed to predict human preference in evaluating image quality

. Assuming human visual system(HVS) is optimal in extracting the structural information from

visuals, an index from SSIM should be a good metric in inferring perceptual image similarities.

The Structural Similarity index is used to measure the similarity between two images. This

index can be viewed as a quality measure of images being compared, provided the other image.

Give two images x = {xi‖i = 1, ...M} and y = {yi‖i = 1, ...M}, the SSIM index is defined as:
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Figure 7: SIFT Architecture:

Source: Source — [26]
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S(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2xµ
2
y + C1)(σ2x + σ2y + C2)

where µ and σ are the sample mean, standard deviation or covariance, and C1 and C2 are

two positive stabilizing constants respectively.

4.5 Summary

In this chapter, we describe the important terminology we will be using in explaining the

models architecture and feature representation techniques of images are also presented. In

the following chapter, we explain the proposed approach and architecture of both supervised

and unsupervised classification tasks to solve - identifying genetic relatedness based on visual

patterns.



CHAPTER 5

PROPOSED APPROACH - SUPERVISED AND UNSUPERVISED

5.1 Supervised and Unsupervised Learning Motivation

We modelled this problem as typical case of pattern recognition [21] problem that can

be stated as: Given patterns on pair of egg shells, can we recognize similarity within these

patterns? This can be done using one of the following tasks: 1) Supervised classification: where

the similarities within input patterns are classified into one of the predefined classes, in our case,

broods, 2) Unsupervised Classification: where pairs of images are classified to an unknown class

based on similarity of patterns. In the following chapter we present the Unsupervised models’

architecture. In the subsequent sections of this chapter, we describe the supervised models’

architecture and introduce terminology related to this classification task.

5.2 Supervised Techniques

5.2.1 Siamese CNN

Siamese neural nets were first introduced in 1990s by Bromley and LeCun to solve signature

verification as an image matching problem [6]. A siamese neural network consists of two identical

sub-networks which are used to process two distinctive inputs and a subsequent module metric

function. The metric function then computes the desired metric between the highest level

feature representation obtained from the sub-networks. Figure 8 shows the architecture of a

Siamese CNNs and input to the network is a pair of images. That is, we consider a positive pair

23



24

of images (Iq, Ip) to be images of same category (same brood/nest), which are either original

images or variants produced by data augmentation (discussed below, see Section ??), and a

negative pair of images (Iq, In) to be images from different categories (nest/brood). We map

these images using CNN networks to get a high-dimensional embedding, translating an image

I to its high-dimensional embedding coordinates x. The goal of this embedding is to have the

positive images (from the same class) closer together (as measured by some distance measure,

such as Euclidean or Manhattan) than the negative pairs of images from different classes.

Label Y = 1 is given to dissimilar images or negative pairs and label of Y = 0 is given to

pairs of similar of positive pairs. These labels are subsequently used in training the siamese

CNN model as the two classes.

The subnetworks of siamaese network have shared weights optimised by contrastive loss

function L [?].

L(θ) = (1− Y )
1

2
{D(xp, xn}2 + (Y )

1

2
{max(0,m−D(xq, xn))}2

Contrastive loss function(L) computes loss per training example. Total loss is summation

over all image pairs. We used the concept of Transfer Learning as described in previous section

3.2.1 to avoid the challenge of training a model from scratch. Pan and Yang [34] defined Transfer

Learning as a framework described below:

A domain D consists of two components, feature space X and a marginal probability dis-

tribution P (X), where X = {x1, ..xn}. Thus, a domain can be represented as D = {X , P (X)}.
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A task T can be defined as two element tuple of the label space Y and an objective function,

η can also be represented as P(Y|X).

Transfer learning is thus formally defined as, given a source domain Ds, a corresponding

source task Ts and a target domain Dt and a target task Tt, transfer learning enable us to learn

the target conditional probability distribution P(Yt|Xt) in Dt with the information gained

from Ds and Ts. An assumption is number of labelled target samples available are lesser than

labelled source samples.

5.2.2 Pairwise SVM

Pairwise Support Vector Machines (SVMs) are support vector machines that are able to

handle pairwise classification tasks described in the previous section. Let X be an arbitrary

dataset and n be the number of training points, xi ∈ X. For each pair of training examples,

(xi, xj), we identify whether they belong to same class or a different class. Subsequently, for

every training example we assign label yij as +1 if from same class/same brood, yij as -1 if

from different class/different brood.

For pairwise SVM model, we used Local Binary Pattern (LBP) as feature descriptor to

extract features and then learn an SVM model on top of these features.

5.3 Unsupervised Learning

Cluster analysis [21] is one of the important branches of unsupervised learning in pattern

recognition analysis. It is used to cluster data into different clusters based on the similarity of

patterns. Given a set of data points, a clustering algorithm should group them into clusters

such that: 1) data points within each cluster will be similar to each other, 2) data points
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Figure 8: This figure represents a simple two layer architecture of the model Siamese CNN with

logistic prediction p. The model represents a pair of images in a high dimensional feature space

and measures the distance between two using a distance metric. images which are similar lie

close to each other and which are not similar lie farther apart. The networks represented in the

figure are twin networks
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in different clusters will be dissimilar. To implement this approach, we used Scale Invariant

Feature Transforms (SIFT) [26] and Structural SIMilarity (SSIM) [50] to model the features and

generate a similarity score between these feature vectors. We then used unsupervised clustering

techniques such as Spectral based clustering [32], Affinity propagation [14] and k-means [17]

clustering to identify different clusters, in our case broods, within the data.

5.4 Summary

In this chapter we described in detail, the proposed approach and architecture of both

supervised and unsupervised tasks. The design details and parameters we chose to implement

the model are explained in the subsequent chapters.



CHAPTER 6

EXPERIMENTAL SETUP AND RESULTS

In this chapter, we list the design choices and experimental settings for each of the su-

pervised and unsupervised learning approaches and evaluated them to establish a connection

between visual patterns similarity and brood membership. For each machine learning task, we

describe implementation details of the feature descriptors, metric learning methods and model

parameters. We then present the results of the analysis for each approach.

6.1 Implementation Details : Supervised Learning

6.1.1 t-Distributed Stochastic Neighbor Embedding (t-SNE) for visualization

t-SNE [23] is a non-linear technique for dimentionality reduction that is well used for visu-

alizing and exploring high dimensional datasets in a lower dimensional space by reducing the

divergence between two distributions: a distribution that measures pairwise similarities between

inputs and another distribution that measures pariwise similarities between corresponding low

dimensional points in embedding. By doing so, a t-SNE tries to find patterns within data

by identifying clusters formed based on similarity within the data points. Figure 9 and Fig-

ure 10 shows the t-SNE plots in 3D and 2D space respectively. We can identify various clusters

(according to nest identities) within this plot.

28
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Figure 9: t-SNE plot of bird eggs based on nest identities in 3D space
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Figure 10: t-SNE plot of bird eggs based on nest identities in 2D space
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6.1.2 Siamese CNNs Experimental Setup

We conduct experiments to identify the brood relations between any given pair of egg

images. In our model, we used the proposed transfer learning technique in the form of a

pre-trained model. As explained in Section 5.2.1, siamese CNN networks should consist of

a pair of identical CNN networks. These identical networks are used for extracting features

from images. CNN networks we chose to use are pre-trained VGG19 networks [43]. A VGG

network accepts an input an image of size 224 by 224. The last fully connected layers of VGG

are removed to obtain the high dimensional feature representation of each image in feature

space. These feature representations from identical VGG19 networks are further joined using

Euclidean distance function. The network loss used for the model is contrastive loss function

L (Equation 5.1). It defines how well the network places positive image matches closer in

high dimensional embedding space and negative image matches, farther. This function tries to

minimize the distance between a pair of similar images and maximize the distance between a

pair of different images.

For Optimization, a variety of optimizers such as ADAGRAD, ADAM, Stochastic Gradient

Descent (SGD) were used to train the model. Adaptive learning rate optimizers such as Root

Mean Square Propagation (RMSProp) was also used. SGD optimizer was chosen due to its

better control over updates of learning rates and magnitude of weights. Learning rate is the

amount the weights of neural networks are updated during training. We have experimented

with learning rates from 0.001 to 0.1.



32

For Data Augmentation of the existing 297 images, we used both rotation and dropout. We

rotated images twice by a random angle from 0 to 180 degrees. Dropout is a technique where

randomly selected neurons in the neural network are ignored while training [44]. This technique

prevents a layer from seeing an exact data pattern twice, which acts as a data augmentation

step as well as avoids overfitting. There were 1188 images after data augmentation, resulting

in the number of images shown in Table Table III.

We used random 70/30 split for the training/testing data (once1), considering each image

as an input data point. Number of images available for training are 831 and number of images

available for training are 357. After creating every possible combinations of images, we get,(
831
2

)
= 344865 pairs of training images and

(
357
2

)
= 63546 pairs of testing images.

TABLE III: Number of positive and negative pairs before undersampling, after undersampling

and bootstrapping

Total Pairs Positive Pairs Negative Pairs

Before Undersampling 344865 5062 339803

Ater Undersampling 21185 5062 16123

After Bootstrapping 10682 4832 5850

1We will run more testing analysis
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For training, we initialized the Keras pre-trained VGG19 network with network weights

initialized from IMAGENET dataset [41]. We used negative and positive pairs of images as

training input. An image of the input pair is classified using the VGG19 network and the

resulting embeddings of the two images are then compared using Euclidean distance. We train

the model to minimize the distance for positive input pairs, while maximizing it for negative

input pairs.

In artificial neural networks, an epoch refers to one cycle through training on a dataset.

Choosing the right number of epochs is important for a model convergence without overfitting

during training. We used early stopping criteria to stop the training when validation loss between

epochs has stopped improving. We saved the weights of the best model’s neural networks.

As seen from Table Table III, there are many more negative pairs of images (344865) than

positive pairs of images (5062), thus the data set is highly imbalance, with a much larger

negative class. The problem with highly imbalanced datasets is that a simple majority class

classifier may perform very well and it is difficult to learn the minority class. We have performed

random undersampling, to avoid imbalance caused by negative pairs of images. Number of

positive and negative pairs for both training and testing data after undersampling are shown

in Table Table III. In addition, to overcome the challenge of imbalanced datasets we used

bootstrapping aggregating.

Bootstrapping involves iteratively resampling m new training datasets each of size n with

replacement. We have set m = 8. Then, m models (VGG19 as base learners) are fitted

on m bootstrapped samples. The updated weights of the siamese CNN models are finally
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combined using aggregation, which helps in prediction of classes (same brood or different brood).

Table Table III shows the number of positive and negative samples after bootstrapping with

replacement is performed (on the augmented dataset). The number of base learners created in

our project are 8.

6.1.3 Siamese CNNs Results

The model is ran and tested on Amazon Web Services (AWS) EC2, p2.x and p2.8 instances.

Test set was random 20% of available pairs. We assessed the experiments using accuracy and

confusion matrix. Table Table IV shows the confusion matrix obtained on the testing dataset.

The true positives are number of pairs of egg images that are actually similar/coming from same

nest. The true negatives are number of pairs of eggs that are coming from different nest. False

positives are number of pairs of eggs that are actually not similar but are classified as similar and

false negatives are number of pairs which are similar but are classified as not similar. Accuracy

on testing set, 93.32%, is only predicting the majority class. Other performance metrics are

summarized in Table Table X.

Figure 11 and Figure 12 plots the histogram of euclidean distance and number of pairs

having that euclidean distance for same and different pairs. The histogram showed that there

is no separation between distances of same and different pairs and hence separation of same and

different pairs by siamese networks is not happening. Siamese networks with other embedding

techniques to encode the images into high dimensional space might capture the right metrics

and improve the results.
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Figure 11

Histogram of euclidean distance versus number of similar eggs having that euclidean distance
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Figure 12

Histogram of euclidean distance versus number of different eggs having that euclidean

distance
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TABLE IV: Confusion matrix results for the Siamese CNNs on test dataset of 63546 pairs.

Each entry shows the number of corresponding pairs in the appropriate category.

Predicted

Different Brood Same Brood

Different Brood 62575 0

Same Brood 971 0

6.1.4 Supervised Pairwise SVM

The strategy of Pairwise SVM and Siamese CNNs are same, except we have used VGG19

for feature embedding and learning whereas in Pairwise SVM we have used LBP for encoding

the descriptors and then SVM was used as a model to learn the feature representations of pairs

of bird egg images.

LBP is most commonly used for texture analysis, as mentioned in Section 4.2. We set the

parameters of LBP as follows: Radius of the pattern surrounding the centre pixel to be 3 and

number of points along the outer radius to be 24. LBP computation is handled by skimage’s

local binary pattern library. Then we obtain the histograms of the LBP labels of the

image patterns. These histograms of the pairs are concatenated and processed through SVM

with the poly kernel. 10 fold cross-validation is also performed. Results on test set are shown

in Table Table V
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TABLE V: Confusion matrix for the LBP+Pairwise SVM Results on the test dataset of 63546

pairs. Each entry shows the number of corresponding pairs in the appropriate category.

Predicted

Different Brood Same Brood

Different Brood 38476 24099

Same Brood 208 763

6.2 Implementation details: Unsupervised Learning

6.2.1 Clustering on SIFT, SSIM and LBP features

SIFT is most widely used feature type in object recognition tasks. We have used OpenCV [20],

which provides ready-to-use platform for easy implementation of SIFT keypoint and descriptors

generation. Here we followed the default settings from OpenCV for creating SIFT descriptors.

A 4 × 4 array of histograms with 8 orientation bins in each were used. Therefore, the feature

vector was of size 4 × 4 × 8 = 128 for each keypoint. Figure Figure 13 shows an example

feature vector generated and the corresponding orientation histograms.

For feature matching (among candidate images) we used a brute force match available

standard in OpenCV. It uses K-Nearest Neighbor algorithm for matching descriptors. We used

K = 2, following Lowe’s paper on SIFT [26].
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Figure 13: SIFT Keypoint Descriptor: an example of a 4 × 4 descriptor array computed from

8 × 8 set of samples, which is also the settings used in our SIFT feature embedding.

Source: Figure 7 from [26]

For SSIM, we used the the SSIM implementation (compare ssim) available in scikit-image [47]

and calculate a similarity score for every pair of images. The value is in the range [−1, 1], with

1 being the perfect match.

6.2.2 Clustering Results

In this section we discuss the Clustering results with SIFT, SSIM and LBP descriptors. We

used Spectral Clustering, Affinity Propagation clustering and K-Means clustering to divide the

images into group of clusters based on brood relations. Silhouette Coefficient, Completeness



40

Score and Homogeneity Scores are best used to understand the clustering efficiency which are

described below.

Silhouette Coefficient [40]: The Silhouette Coefficient is a measure of how similar an

object is to its own cluster compared to other clusters. Silhouette value ranges from -1 to +1,

where higher value indicates an object being correctly classified to its cluster.

Completeness Score [38]: A clustering result satisfies completeness if all the data points

that are members of a given class are elements of the same cluster.

Homogeneity Score [38]: A clustering result satisfies homogeneity if all of its clusters contain

only data points that are members of a single class

Table Table VI shows the clustering results by using SIFT descriptors. Table Table VII shows

the clustering results by using SSIM descriptors and Table Table VIII shows the clustering

results by using LBP descriptors.

TABLE VI: SIFT Clustering Results

Clustering Silhouette Coefficient Completeness Score Homogeneity score

Spectral -0.89 0.60 0.41

K-Means -0.97 0.69 0.68

Affinity Propagation -1 0.58 0.41
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TABLE VII: SSIM Clustering Results

Clustering Silhouette Coeff Completeness Score Homogeneity Score

Spectral -0.29 0.64 0.45

K-Means -0.25 0.59 0.24

Affinity Propagation -0.42 0.71 0.66

TABLE VIII: LBP Clustering Results

Clustering Silhouette Coeff Completeness Score Homogeneity Score

Spectral -0.95 0.82 0.73

K-Means -0.86 0.70 0.62

Affinity Propagation 0.03 0.61 0.15
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TABLE IX: Number of clusters for SIFT, SSIM and LBP features, using different clustering

methods. Real number of broods is 81.

Clustering SIFT SSIM LBP

Spectral 59 59 59

K-Means 81 81 81

Affinity Propagation 24 28 3

6.3 Summary

We identified from the experiments that Siamese CNNs are still learning the majority class,

even after performing bootstrap aggregation to avoid issues due to imbalanced data. Clustering

techniques with SIFT, LBP and SSIM are also not showing encouraging similarities within the

clusters formed, according to Silhouette coefficient, completeness and homogeneity scores.
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TABLE X: Precision, Recall and F1-Scores of Supervised and Unsupervised algorithms

Precision Recall F1-Score

SIFT+K-Means 0.01 0.011 0.01

SIFT+Spectral Clustering 0.013 0.018 0.01

SIFT+Affinity Propagation 0.01 0.002 0.003

SSIM+K-Means 0.01 0.003 0.004

SSIM+Spectral Clustering 0.016 0.014 0.015

SSIM+Affinity Propagation 0.006 0.004 0.002

LBP+K-Means 0.01 0.008 0.01

LBP+Spectral Clustering 0.014 0.013 0.01

LBP+Affinity Propagation 0.01 0.004 0.003

LBP+SVM 0.03 0.78 0.039

Siamese CNNs 0 0 0



CHAPTER 7

CONCLUSIONS AND FUTURE WORK

7.1 Conclusions

The aim of this project was to develop a machine learning model which can determine the

correlation between visual markings and genetic relatedness. Biologists hypothesize that visual

markings have genetic underpinnings and in some cases can be used as a proxy for genetic

relatedness. Motivated by this finding, we set out to quantify genetic relatedness using visual

markings similarity by applying machine learning approaches on a birds egg dataset.

We have compared several state of the art approaches to encode images features, such as

SIFT, LBP and CNN embeddings of visual patterns and explored various image similarity algo-

rithms, such as siamese neural networks, pairwise SVM and unsupervised clustering techniques.

In our experiments, none of the methods performed well, with pairwise SVM with LBP feature

descriptor performing better than others, giving the still low F1 of Table X.

Based on the results and discussions so far, we find that using visual markings similarity

to identify genetic relatedness is a viable approach. While there is no strong evidence showing

that the approach we chose works perfectly, the results we have produced is encouraging our

hypothesis to pursue advanced future research directions. We strongly believe that with enough

training data and more sophisticated machine learning approaches reasonable and improved

connection between genetic relatedness and visual patterns can be produced.
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7.2 Future Work

The objective of this research was to use machine learning to learn the features and patterns

of bird egg images and identify the similarity between them. One of the future application of

our work is to understand the nesting behaviour of birds and their ability to identify their

brood. We want to produce various similar, slightly similar to highly distorted patterns of eggs

based on the patterns learnt, to understand what extent a bird recognizes its own brood. To

make it possible, we want to make the machine learning model learn the patterns of the eggs

and their similarity scores - hence, this thesis. We then would like to generate various patterns

of eggs using our trained models and produce 3D printed eggs with these learned patterns. We

then intend to put these 3D printed eggs at the nesting location to identify to what extent a

bird can accept an egg as its own.

So far, from the results obtained in this work none of the machine learning methods we

chose performed well. Hence the current signals doesn’t show a signal that genetic relatedness

can be quantified based on visual patterns similarity. However, a lot of work can be done to

improve the accuracy and the results, and in this chapter, we explain a few directions which

can be pursued further to enhance the results and quality of work already performed.

7.3 Data Augmentation as an enhancement:

Even though the state of the art Siamese Networks are well-suited for performing similarity

detection tasks, the results obtained in this work are far from perfect. We believe the biggest

reason for this is lack of a large dataset and therefore lack of sufficient features for the machine

learning models to learn. In order to overcome the challenge of a small dataset, we applied classic
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image transformations such as rotating, cropping and zooming, which boosted and enlarged the

data and provided additional features required for training. We have also implemented few-shot

learning with the help of siamese networks. However, standard data augmentation produces only

limited possible alternative data. Furthermore, we hope that using more advanced techniques

such as generative adversarial networks(GANs) [?], matching networks for one shot learning [?]

can potentially improve the results. GANs are able to learn and produce indistinguishable

data from the available original data. This model takes any data item from source domain

and generalise it to generate other within-class data item and thus, provides a broader set of

augmentations. Matching Networks for One Shot Learning, on the other hand, uses attention

and memory for rapid learning and is proven to work well in cases where there is less amount

of data. Overall, these methods can generate new images of high quality that combine content

of a base image with the appearance of other images. The newly created images are expected

to improve the training process drastically [15]. Although we have used Transfer Learning

in our model in the form of few-shot pre-trained model approach, using VGG networks, in

the future, we would like to leverage Inception [45], Xception [9] and ResNet-50 [18] models

and study how these models impact the results. Another possible direction is to add more

hand-crafted features such as the color and density of the spots on egg and their shape and

sizes.
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6. Bromley, J., Guyon, I., LeCun, Y., Säckinger, E., and Shah, R.: Signature verification
using a ”siamese” time delay neural network. In Advances in Neural Information
Processing Systems 6, eds, J. D. Cowan, G. Tesauro, and J. Alspector, pages 737–
744. Morgan-Kaufmann, 1994.

7. Brunner, C., Fischer, A., Luig, K., and Thies, T.: Pairwise support vector machines
and their application to large scale problems. The Journal of Machine Learning
Research, 13:2279–2292, 08 2012.

8. Brunner, C., Fischer, A., Luig, K., and Thies, T.: Pairwise support vector machines and
their application to large scale problems. J. Mach. Learn. Res., 13(1):2279–2292,
August 2012.

9. Chollet, F.: Xception: Deep learning with depthwise separable convolutions. 2017 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pages 1800–

1807, 2016.

47



48

10. Crall, J. P., Stewart, C. V., Berger-Wolf, T. Y., Rubenstein, D. I., and Sundaresan, S. R.:
Hotspotter patterned species instance recognition. In 2013 IEEE Workshop on
Applications of Computer Vision (WACV), pages 230–237, Jan 2013.

11. Eizirik, E., David, V. A., Buckley-Beason, V., Roelke, M. E., Schffer, A. A., Hannah, S. S.,
Narfstrm, K., O’Brien, S. J., and Menotti-Raymond, M.: Defining and mapping
mammalian coat pattern genes: Multiple genomic regions implicated in domestic
cat stripes and spots. Genetics, 184:267–275, 2010.

12. Elshire, R., Glaubitz, J., Sun, Q., and Poland, J.: A robust, simple genotyping-by-
sequencing (gbs) approach for high diversity species. PLoS ONE, 6, 01 2011.

13. Fang, Ruogu D. Tang, K. . S. N. . C. T.: Towards computational models of kinship
verification. ICIP, pages 1577–1580, 2010.

14. Frey, D. D. . B. J.: Non-metric affinity propagation for unsupervised image categorization.
2007 IEEE 11th International Conference on Computer Vision, 2007.

15. Grochowski, A. M. . M.: Data augmentation for improving deep learning in image clas-
sification problem. 2018 International Interdisciplinary PhD Workshop (IIPhDW),
2018.

16. Guillaumin, M., Verbeek, J., and Schmid, C.: Is that you? metric learning approaches
for face identification. In 2009 IEEE 12th International Conference on Computer
Vision, pages 498–505, 2009.

17. Hartigan, J. A. and Wong, M. A.: Algorithm as 136: A k-means clustering
algorithm. Journal of the Royal Statistical Society. Series C (Applied Statistics),
28:100–08, 1979.

18. He, K., Zhang, X., Ren, S., and Sun, J.: Deep residual learning for image
recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 770–778, 2015.

19. Igic, B., Nunez, V., Voss, H., Croston, R., Aidala, Z., Lpez, A., Van Tatenhove, A., Holford,
M., Shawkey, M., and Hauber, M.: Using 3d printed eggs to examine the egg-
rejection behaviour of wild birds. PeerJ, 3, 05 2015.

20. Itseez: Open source computer vision library. https://github.com/itseez/opencv, 2015.

https://github.com/itseez/opencv


49

21. Jain, A., Duin, R., and Mao, J.: Statistical pattern recognition: A review. IEEE Trans.
Pattern Anal. Mach. Intell., 22:4–37, 01 2000.

22. Jiang Wang, Yang song, T. L. C. R. J. W. J. P. B. C. Y. W.: Learning fine-grained image
similarity with deep ranking. CVPR 2014, 2014.

23. Laurens van der Maaten, G. H.: Visualizing data using t-sne. Journal of Machine Learning
Research, 9:2579–2605, 11 2008.

24. LeCun, Y., Jackel, L., Bottou, L., Brunot, A., Cortes, C., Denker, J., Drucker, H., Guyon,
I., Mller, U., Sckinger, E., Simard, P., and Vapnik, V.: Comparison of learning al-
gorithms for handwritten digit recognition. In INTERNATIONAL CONFERENCE
ON ARTIFICIAL NEURAL NETWORKS, pages 53–60, 1995.

25. Liu, T.-Y.: Learning to rank for information retrieval. Found. Trends Inf. Retr., 3(3):225–
331, March 2009.

26. Lowe, D. G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput.
Vision, 60(2):91–110, November 2004.

27. Lu Kou, Xiuzhuang Zhou, M. X. and Shang, Y.: Learning a genetic measure for kinship
verification using facial images. Mathematical Problems in Engineering, 2015, 2015.

28. Martin, G. and Osorio, D.: Vision in birds. The senses: A comprehensive reference, 1:25–
52, 01 2010.

29. Mehrotra, R., Namuduri, K., and Ranganathan, N.: Gabor filter-based edge detection.
Pattern Recognition, 25:1479–1494, 12 1992.

30. Min Xu, Y. S.: Kinship verification using facial images by robust similarity learning.
Mathematical Problems in Engineering, page 8, 2016.

31. Ming Shao, Siyu Xia, Y. F.: Genealogical face recognition based on ub kinface database.
CVPR 2011 WORKSHOPS, 2011.

32. Ng, A. Y., Jordan, M. I., and Weiss, Y.: On spectral clustering: Analysis and an algo-
rithm. In ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS,
pages 849–856. MIT Press, 2001.



50
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