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SUMMARY

This thesis presents an automated tremor prediction algorithm based on modified Large memory

storage and retrieval Neural Network (LNN-2), for the design of closed-loop Deep Brain Stimulation

(DBS) system. The proposed method modifies the current open-loop paradigm of DBS to work on-

demand by forecasting the onset of tremor in Parkinson’s Disease (PD) and Essential Tremor (ET)

patients. Feedback provided by non-invasive physiological signals is used to drive the DBS in an on-

off regime, stimulating the target region only when required. Such closed-loop DBS systems, thereby

reduce the amount of stimulation applied to the brain and may also lead to improving the battery life,

decreasing the risk of infection due to repetitive battery replacement surgeries.

Previously, the proof-of-concept of such a closed-loop system was established using surface Elec-

troMyoGraphy (sEMG) and accelerometry (acc) signals in four PD and four ET patients. To detect the

reappearance of tremor, thresholds were manually set on selected features. This process is tedious since

the manual algorithm is patient-specific and the threshold parameters have to be chosen individually for

each patient. To automate the process, Decision Tree (DT) algorithm was used and found to perform

better than back-propagation neural network, and support vector machine methods. The Classification

and Regression Tree (CART) algorithm used for DT will be compared here with LNN-2.

The main objectives of this thesis are:

1. Collect more data and assess the benefit of closed-loop DBS system in tremor-dominant PD pa-

tient population,
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SUMMARY (Continued)

2. Automate the process of tremor prediction using LNN-2 approach and improve the accuracy and

sensitivity of prediction,

3. Compare the algorithm with previously used DT method,

4. Assess the robustness of tremor predcition over time,

5. Determine a pre-tremor interval during the stimulation-free time using sEMG sensors.

Introduction to movement disorders, PD and ET, are given in the Chapter 1. Symptoms, cause and

the therapeutic treatment methods for both the disorders are outlined followed by a brief description of

DBS system in the current open-loop paradigm. Different feedback signals for closed-loop systems used

in the past work are introduced here. Finally, the specific goals of this research work and its significance

are stated.

Second chapter describes the process of patient recruitment and data collection. Two different set-

ups have been used for recording the non-invasive sEMG and acc signals. This thesis introduces new

data for four PD patients (second set-up). One more PD and two ET patients had participated in the

study; however, were not good candidates for the closed-loop system. Their data has not been used

for training or testing of prediction algorithms. In on-demand DBS systems, stimulation is only ap-

plied when the tremor is predicted to return after DBS is switched off. Data collected from nine PD

patients showed that the duration of tremor-free stimulation-off time varied from patient to patient, with

some patients having as little as 30 seconds to some patients having even more than three minutes of

such tremor-free time. The benefit of closed-loop DBS system was quantified and assessed for these

nine patients using metrics that give the ratio of stimulation-off time without tremor to the duration of

stimulation. This was used to show who may benefit most from such on-demand systems and show the
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SUMMARY (Continued)

importance of choosing the optimal duration of stimulation to maximize this ratio. To maximize the ben-

efit and maximize the ratio of stimulation free time, an analysis of patient-specific optimal duration of

stimulation is provided for PD patients. The tables list the observed ratio of stimulation-off, tremor-free

time to the duration of stimulation for different durations of stimulation ranging 20-80 seconds.

Chapter 3 details the preprocessing and feature extraction, followed by a detailed description of the

machine learning algorithms used. For the automation of tremor prediction, features were extracted

from physiological signals recorded at the symptomatic extremities during Posture, Rest and Action

states. Training and Testing was carried out using sEMG and acc based parameters, separately for

each of the eight PD and four ET patients. LNN-2 is run for all the modes together (Action, Posture

and Rest combined) and separately (Action state and Posture+Rest states). The architecture of LNN-1

and LNN-2 is included along with different methods of input discretization in place of self-organizing

maps. LNN-2 is the modified version of LNN-1 with a minor change in the decision making process.

In LNN-2, the link weights are normalized with respect to the number of times the winner neuron has

fired. Comparison is made for these state-specific and states-combined methods and given in Chapter

4. Performance of state-specific run was better compared to the combined-states run. We also compare

LNN-2 with Decision Tree (DT), using the same set of spectral, entropy and recurrence rate parameters

for both the techniques as well as the same set of training and testing trials. DT algorithm, CART, which

uses Gini index as split criterion, is then explained. For all the comparisons, the results are also given

separately for trials at an optimal duration of stimulation that maximizes the ratio of stimulation free

time without tremor to the duration of stimulation. In case of ET patients, results are given separately.

LNN-2 was seen to perform better than DT algorithm.
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In Chapter 5, the need for adaptive on-demand DBS systems is described. Data from two patients

(PD and ET) who had two different sessions of recordings spaced by at least one week was used.

Training and testing of the algorithms were then performed on the two different sessions. Tremor

prediction performance metrics were then used to assess the robustness of on-demand DBS algorithms

over time. The decline in performance between different sessions showed the need for adaptive learning

of on-demand DBS systems.

Chapter 6 shows that a specific and distinct Pre-Tremor (PT) interval exists within the No-Stimulation-

No-Tremor (NS-NT) period. This was shown using sample entropy and mean frequency features ex-

tracted from sEMG data in one tremor-dominant PD patient with high R-ratio. Identifying this PT inter-

val when DBS is off in sEMG signal based features justify the use of sEMG sensors and are important

to assess for on-demand predictive control of DBS.

Final chapter concludes this thesis on demand-driven DBS system based on machine learning ap-

proach applied to non-neuronal, peripheral sensors. The future work is also given in this chapter. Next,

we would also like to conduct more sessions with patients in their natural state rather than in the con-

trolled environment with fixed tasks that were used in the current protocol. Based on a bigger dataset,

adaptive learning methods can be studied which could ensure robustness of closed-loop DBS systems

over time. With the recent rise in wearable devices, we envisage a closed-loop system based on sEMG

and acc signals for tremor-dominant PD and ET patients.
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CHAPTER 1

INTRODUCTION

1.1 Deep Brain Stimulation

Deep Brain Stimulation (DBS) is a therapeutic surgical procedure that was approved by the FDA in

1997 for parkinsonian and essential tremor (ET). DBS originated from the work by Benabid et al [1],

who first applied it to Parkinson’s Disease (PD) and has since been extended for the treatment of a range

of other neuromotor and neuropsychiatric disorders. The device controls the symptoms by applying

continuous High-Frequency Stimulation (HFS) to the intended target regions in the brain. This well-

established implant is estimated to have been received by more than 100,000 patients worldwide [2,3].

DBS does not cure the disorder but helps with its management resulting in an overall improvement of

quality of life. Unlike the lesioning surgical interventions such as thalamotomy for PD and ET, DBS is

reversible and adjustable allowing original state to be restored.

A typical DBS system consists of a macroelectrode, an Implantable Pulse Generator (IPG) and an

extension wire connecting the two. The macroelectrode or the lead is implanted at the target location

which is selected based on the disorder and the related symptoms. The IPG, implanted subcutaneously

below the clavicle, is used to send the pulses to the lead and to control the HFS parameters. Once the

parameters are set, the stimulation is applied continuously to the target regions. DBS systems have

evolved in the past two decades in terms of the macroelectrode design, the stimulation paradigms, and

ongoing research towards adaptive stimulation systems. Although DBS technology has advanced, com-
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mercially available systems still run in open-loop mode, where HFS of fixed amplitude, frequency and

pulse width is delivered continuously without adapting to the symptoms.

1.1.1 Why close the loop?

Although this treatment is widely accepted, the mechanism of DBS is not yet completely understood.

The present-day DBS systems available in the market work open loop which means that the stimulation

is applied continuously without identifying the onset of symptoms. DBS, though reversible, can lead

to some unwanted side-effects such as dysarthria, gait impairment and dyskinesia [4]. These side-

effects may be mitigated using interleaving and field shaping techniques by reducing the stimulation

of undesirable regions. Interleaving approach uses varying stimulation parameters on different sets of

contacts, thereby stimulating different areas in alternating fashion and alleviating stimulation-induced

side-effects. However, this approach can increase the battery drain [5]. Field shaping by selection of the

optimal contact segments may also help reduce such side-effects [6]; albeit still applying stimulation

continuously when run open-loop. An effective system would minimize these undesirable effects while

maximizing the therapeutic effect of the stimulation. It has been previously shown that adaptive and

on-demand closed-loop DBS systems provide more effective symptom management with reduced side-

effects and improved power saving [7, 8].

An on-demand system can achieve improved efficacy can be achieved by applying stimulation only

when required. Such a system would, as a result, also increase the battery life of the device. The battery

of the IPG delivering HFS, needs to be surgically replaced every 3 to 4 years. Incidence of infection

has been reported to increase with number of IPG replacements [9]. By improving the battery life,

such traumatic surgeries, the associated risk of postoperative infection and the cumulative costs can
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be reduced. An on-demand system can be designed to track a suitable feedback signal specific to the

disorder and apply stimulation only when necessary. For movement disorders such as PD and ET, DBS

can be applied in a closed-loop regime by monitoring and predicting the onset of tremor.

1.2 Parkinson’s Disease

1.2.1 Etiology and Symptoms

PD is a progressive neurological movement disorder, characterized mainly by motor symptoms such

as tremor, bradykinesia, rigidity, and axial symptoms related to gait and balance issues. It is one of the

most prevalent neurodegenerative diseases, second only to Alzheimer’s disease [10]. It is caused by

degeneration of dopamine-producing cells in the substantia nigra, a component of the Basal Ganglia

(BG) motor pathway in the brain. PD phenotypes are classified as Tremor-Dominant (TD) and Non-

Tremor Dominant (NTD) which includes postural instability and gait disability (PIGD) subtype and PD

subtype dominated by bradykinesia and rigidity [11]. Resting tremor is the most common symptom

seen in PD patients. These patients may also experience kinetic tremors while performing voluntary

movement. Tremors are observed to be prominent towards the distal ends of the limbs [12]. The

frequency of resting tremors lie in 4-6 Hz and the postural or kinetic tremors are in the range of 7-11 Hz

[13].

1.2.2 Pharmaceutical and Surgical interventions

In early stages of PD, the symptoms can be controlled by pharmacological treatment of Levodopa-

Carbidopa, albeit not permanent. As the disease progresses, this drug combination is no longer adequate

to curb the debilitating symptoms. At this advanced stage, the patients are recommended the surgical

intervention of DBS.
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In case of PD patients, the DBS macroelectrode is stereotactically implanted in one of the two target

sites, either Sub-Thalamic Nucleus (STN) or Globus Pallidus interna (GPi). This electrode is connected

to an IPG or the neurostimulator, which is surgically placed below the clavicle. Each macroelectrode

consists of four contacts of which two are selected. Different combinations of contacts give different

field distributions, thereby stimulating different extents of the target region. IPG can be programmed

externally by the clinician by evaluating the effect of each configuration on the symptoms. The com-

bination of contacts and the parameters of the HFS, such as amplitude, frequency, pulse width, are

set to maximize efficacy and minimize any side-effects. IPG then provides HFS of the set parameters

continuously to the target location.

Frequently, DBS leads to certain side-effects such as dysarthria and gait impairment in PD patients.

STN-DBS may lead to dysarthria which means patients may experience speech impairment including

speech slurring and intelligibility [14]. Though DBS improves PD symptoms as well as levodopa-

induced dyskinesia, in some cases stimulation of upper portion of STN may even exacerbate dyskinesia

[15]. Such Stimulation-Induced Dyskinesia (SID) was observed to most commonly be manifested in

the contralateral lower limb. Such side-effects reduce the efficacy of DBS systems. It is, therefore,

imperative to reduce these side-effects while still providing the benefits of the conventional open-loop

DBS. Adaptive and on-demand DBS systems can help curb such side-effects [16].

1.3 Essential Tremor

1.3.1 Etiology and Symptoms

ET is another prevalent movement disorder, and is characterized by tremor in 4-12 Hz range [17].

Unlike PD, tremor in ET patients appear only when effort is exerted. These rhythmic oscillations occur
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during voluntary movement with higher amplitude of kinetic tremor than that of postural tremor. The

amplitude also increases during intentional tasks when the target is approached. The pathophysiology

of ET is unknown and it cannot be cured.

1.3.2 Pharmaceutical and Surgical interventions

The symptoms of ET can be controlled by drug intervention of propranolol and primidone. As the

disease advances, surgical options are considered. Lesioning method of thalamotomy is irreversible

where a permanent lesion to thalamus is applied. DBS is another surgical option which is an invasive

approach but is reversible. The electrode is placed in Ventral Intermediate Nucleus (VIM) of thalamus

and continuous HFS is applied to disrupt the pathological oscillations in the thalamocortical circuit [18].

VIM stimulation side-effects include speech slurring, increased falls and drooping of eyes. The

currently available DBS systems run open-loop, and the IPG runs continuously irrespective of whether

stimulation is required or not; however, since the kinetic tremors in ET are initiated by volitional move-

ment, the amount of stimulation to the target brain region and the side-effects can be reduced by enabling

DBS only when the patient is using their affected limb [19,20]. This may potentially improve the battery

life as well.

1.4 Closed-loop DBS approaches:

Closed-loop DBS system receives feedback from a signal that enables the stimulation to adapt with

the disease symptoms [21]. The adaptive control methodology for closed-loop DBS can be divided

into two classes: i) On-demand binary approach where the stimulation is either on or off based on

presence or absence of symptoms and ii) scalar approach where the stimulation voltage is modulated

by monitoring biomarkers [8]. Both the approaches can be implemented using either implanted or
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Figure 1. On-demand DBS system schematic consisting of sensors (sEMG and Acc) on the tremor
dominant limbs, a signal processor, machine learning algorithm and a wireless trigger relay.

noninvasive sensors. These adaptive systems modulate the stimulation by using a control sigal with

information indicative of the symptoms. For prediction of onset of tremor, a variety of approaches

can be adopted which are described in the following sections. Signals such as Local Field Potential

(LFP), surface Electromyography (sEMG), Electroencephalography (EEG) and kinematic signal from

gyroscope have been employed for tracking or predicting tremor onset [16, 20, 22, 23].



7

1.4.1 Neural activity based closed-loop DBS

The neural signals such as LFP or Single Unit Spike (SUS) can provide information regarding

symptom reoccurence. These signals can be recorded from a separate microelectrode placed close to

the target region of stimulation or from a bidirectional recording and stimulating macroelectrode.

1.4.1.1 SUS as feedback signal

In [7], Rosin et al showed a superior control of Parkinsonian symptoms in 1-methyl-4-phenyl-

1, 2, 3, 6-tetrahydropyridine (MPTP)-treated primate model using closed-loop DBS system than by

open-loop continuous stimulation despite less overall stimulation. Action potentials in the primary

motor cortex were monitored and stimulation was applied to GPi on occurrence of a spike in M1,

coinciding with the BG-cortical loop oscillations. Since chronic recording of a single M1 spike may not

be reliable, this procedure is not conducive for long-term implementation [24]. Following the success

of closed-loop DBS in a non-human primate model, different strategies have been applied for extending

this closed-loop approach to human subjects using more reliable signals such as Local Field Potentials

(LFP).

1.4.1.2 LFP biomarkers

Neuronal signals can be measured as feedback from the site of stimulation for prediction of tremor

and other Parkinsonian traits. An elevated beta band power associated with bradykinesia and rigidity

has been observed in the LFPs recorded from STN. A simple approach of tracking LFP beta power was

shown by [16] and [25]. The stimulation would be triggered once the beta power crossed a certain

threshold, controlling DBS in a binary on-off fashion in [16]. A scalar adaptive DBS (aDBS) in a freely

moving patient were tested by Rosa et al. The stimulation amplitude is modulated to adapt to the LFP
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beta power changes. These methods using LFP as a biomarker require changes to the DBS electrode to

either perform both stimulation and recording or need an additional electrode at the site dedicated for

measurement of neural activity and communicating with the IPG.

1.4.2 Peripheral sensors based closed-loop DBS

The increase of beta power in LFPs is associated with bradykinesia and rigidity, but not tremor,

which is a cardinal sign of PD. This increase is absent in one-third of the patients [21]. It can, therefore,

not be invariably used as the indicative biomarker [6]. A different indicator is required for on-demand

DBS control for tremor-dominant disorders, such as those of interest in this work. Of all the symp-

toms, tremor is the first one of the PD clinical signs to reappear on switching off the stimulation [26].

Prediction of this symptom can, thus, be used as an indication for switching on the stimulation in a

demand-driven system. Peripheral wearable devices such as sEMG sensors, and gyroscopes have been

used to track tremor for closed-loop DBS [21].

1.4.2.1 Electromyography and accelerometry signals

Non-neuronal signals recorded from peripheral sensors, such as, surface Electromyography (sEMG)

and accelerometer (acc), can also be used to extract predictive information regarding tremor. Proof-of-

concept of an on-demand DBS system using sEMG and acc signals was presented in [22]. Both these

sensors are non-invasive. The newer generations of this additional hardware are comfortable, smaller in

size and no longer bulky. With the recent rise in the use of wearable devices, there is a reduced stigma

towards wearing such monitoring devices [27]. Tremor prediction could also just be an additional

functionality of an activity-tracking wearable device.
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1.4.2.2 Inertial measurement unit signals

Similar to using these wearable sensors , a kinematic aDBS for resting tremor was described in [23].

Tremor power in 4-8 Hz was estimated by employing a gyroscope to adaptively modulate the stimulation

voltage. Stimulation was switched off when the tremor power was below 25% of its maximum value.

A combination of neural and wearable signals can be used to predict tremor and non-tremor symp-

toms together.

1.4.3 Neurochemical control

In [28], a closed-loop DBS system based on monitoring neurochemical changes is proposed. The

dopamine level changes were used to set the stimulation in rodent PD model. Irrespective of the

biomarker used for designing closed-loop DBS, all the strategies are suggested to lead to physiolog-

ical improvement and reduction in battery consumption [29].

1.4.4 Volitional movement in ET

Such demand-driven control for DBS systems can similarly be employed for other motor disorders.

Since tremor appears only during voluntary movement in essential tremor, an on-demand DBS system

can be implemented for this neuromotor disorder by detecting movement intention alone. This can

be identified by the decrease in low frequency beta oscillations using Electrocorticography [30] or

recognizing intent of motion using EMG signals [31].

1.5 Past work

An on-demand DBS system should maximize accurate tremor prediction so that the patient does

not suffer any discomfort. It should also minimize early predictions or false alarms due to voluntary

movement being erroneously interpreted as tremor. By implementing such a closed-loop system, it may
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be possible to increase the battery life of the IPG and also mitigate the adverse effects of continuous

stimulation. In [22], a non-invasive DBS system was presented which would run on-demand as an add-

on system to the current DBS set-up without any modifications to the stimulating electrodes or the IPG.

A stimulation of fixed duration is to be applied and once stimulation is turned off, an algorithm would

track certain parameters obtained by processing sEMG and acc signals. The onset of tremor is predicted

using a set of thresholds applied to these features. Once the tremor is predicted, the stimulation would be

switched on again. The thresholds were set manually for each of the four PD patients and an accuracy of

80.2% with 100% sensitivity was achieved. Since PD is progressive and rapidly changing, this process

may not be conducive for a larger number of patients. To automate this process, a Back-Propagation

Neural Network (BPNN) was applied in [32, 33]. An overall accuracy of 76% and sensitivity of 92%

was obtained for four patients, with sensitivity ranging from 88.9% to 93.3%. Sensitivity of 100% is

required to ensure that the patient does not experience tremor during stimulation off period.

LArge Memory STorage And Retrieval (LAMSTAR) neural network was applied to one patient in

[34]. The performance of LAMSTAR neural network (LNN-1) for one patient was found to be better

than BPNN, with 77% accuracy and 100% sensitivity. LAMSTAR is based on the concepts of winner-

take-all (WTA) and Hebbian learning. It consists of multiple Self-Organizing Map (SOM) layers which

take different features as inputs. Each SOM layer contains neurons of which only one “winner” neuron

fires for the given input. By Hebbian learning, the synaptic weights connecting each SOM neuron to

the decision layer neurons are increased when that neuron fires for the given output decision neuron.

The more probable output is determined by comparing the sum of link weights from the winner SOM

neurons to each of the output layer neurons. In [34], LNN-1 was used where link weights are not
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normalized. We denote the modified network with normalized link weights as LNN-2, described in the

next section.

1.6 Goals and outline of this work

In past work [33], Decision Tree (DT) was found to perform better than machine learning algorithms

such as BPNN, for prediction of tremor in four PD patients. These set of algorithms were used in offline

learning mode where training and testing are done separately and the thresholds (as in DT) or weights (as

in BPNN) once set, remain unchanged, irrespective of the changes in the characteristics of the disorder.

The goals for designing an effective closed-loop DBS system are:

1. To design an automated tremor prediction algorithm based on non-invasive physiological sig-

nals. LNN-1 has been used previously for medical diagnosis and prediction applications such as

automated detection of epileptic seizures using features extracted from electroencephalography

signals [35] and apnea episodes prediction using submental EMG-based features [36]. If such

networks are run in online learning mode, updating link weights with each new instance of data,

they can adapt with the changes in symptoms. Use of such algorithms in the design of closed-loop

system helps adjust thresholds with progression of the disease. Offline learning methods need to

be trained at regular intervals and do not adapt with the changes in disease features. Due to limited

duration of data for each patient, we have used offline learning methods for training.

2. To improve the performance of the algorithm so as to increase accuracy by reducing the number

of false alarms as well as to obtain 100% sensitivity and make sure that false negatives are min-

imum. LNN-1 can be improved by normalizing these link weights by the number of times the
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winner neuron of SOM layer fires with respect to the corresponding output [37, 38] in LNN-2.

Performance of LNN-2 is also compared with DT in offline learning mode for fair comparison.

3. To analyse the importance of selection of optimal duration of stimulation to maximize the benefit

of a closed-loop DBS system. Ratio of stimulation-free time without tremor to the duration of

stimulation was compared for different durations of stimulation.

4. To assess the robustness of on-demand systems over chronic use. Though the accuracy of the

algorithms is improved, it is essential to check if the algorithms are able to perform well over

time.

5. To detect changes in features that may be indicative of pre-tremor duration and can potentially be

used for design of adaptive systems.

In this thesis, an on-demand DBS system is presented which is designed using LNN-2 for tremor

prediction in eight PD and four ET patients. LNN-2 set-up is explained in detail in the next chapter. The

performance and ratio of predicted stimulation-free time without tremor to the duration of stimulation

of LNN-2 run for different limb states combined are compared with LNN-2 run for Action and Posture/

Rest states separately for 163 trials. The results are also presented for optimal durations of stimulation

for each patient. Higher stimulation-free time percentages were obtained for the 59 trials at optimal

duration of stimulation in eight PD patients.

The next set of comparisons were carried out for tremor prediction using LNN-2 and DT in offline

mode for the same eight PD patients and four ET patients. In DT learning, a binary tree is generated

for the given data. Gini impurity is used to decide the feature and the best split at each node. By using

the split as a threshold on the selected feature, the data is divided into smaller subsets. Working top-
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down, best features and splits are found for these small subsets and the process is repeated till the Gini

impurity is zero which is obtained when the data at that node belong to same category. LNN-2 and DT

are advantageous over BPNN since the training is faster compared to BPNN, which uses the gradient-

descent algorithm and delta-rule for weight updates. They perform well with large datasets and can

handle features of different data types. LNN-2 has other advantages such as the fast retrieval feature,

the forgetting feature and correlation layer for related attributes, extensively discussed in [38]. Both the

methods have properties of transparency and easy interpretability. For LNN, training can be continued

during the “testing” phase without any added complexity. Once the initial weights are established,

online learning with each new input-word continues during the operational run, allowing the network

to keep adapting [38]. For closed-loop DBS, LNN can be enabled to continuously train with new data

in a supervised manner by updating weights until the trigger event, tremor, appears. Iterative induction

of DT can allow online learning of this algorithm as well which will be compared with LNN in future

work. The two algorithms also have certain limitations. DT works in a greedy manner, finding the

local optimal solution at each node. It may create a complex overfitted tree which can be overcome

by pruning the tree to make it generalize better for new data. The classic LAMSTAR setup uses SOM

modules which set the ranges in an unsupervised manner for each feature. For small dataset where

clusters are not well-defined, unsupervised setting of thresholds may lead to not obtaining the required

set of thresholds or using more neurons than required. This can be fixed by using a supervised binning

method followed by the WTA principle. LNN-2 performed better that DT for both PD and ET patients.

The training of these machine learning algorithms has to be done separately for each patient since

the symptoms and the signal features may be patient specific. A state-classifier needs to be designed
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to accurately classify between Action and Posture / Rest states before the feature set is input to the

corresponding tremor-predictor. We also intend to carry out data collection in free-moving patients to

analyse the feasibility of wearable-based closed-loop DBS systems. The system can be used as an add-

on system to the market-available open-loop DBS systems including the kind with rechargeable IPG

batteries. The non-invasive wearable with sEMG and acc sensors can send trigger signals on prediction

of onset of tremor to the telemetry module of the IPG and start the fixed optimal duration of stimula-

tion. Tremor-predictor algorithm can adapt to the disease progression by learning online with each new

instance of data. The conclusions and future work is discussed in the last chapter.



CHAPTER 2

DATA COLLECTION AND MEASUREMENT OF DEGREE OF BENEFIT OF

ON-DEMAND DBS

Some sections of this chapter were published in Daniel Graupe, Nivedita Khobragade, Daniela

Tuninetti, Ishita Basu, Konstantin Slavin, Leo Verhagen Metman: Who may benefit from on-demand

control of DBS: a non-invasive Parkinson patients evaluation, Neuromodulation: Technology at the

Neural Interface, 2018.

On-demand control of DBS in PD is based on the observation that interruption of stimulation is

followed by a finite period that is free of PD symptoms with tremor being the first symptom to reemerge

[26]. Such a system can be realized via non-invasive add-on surface EMG sensors placed on the patient’s

limbs to predict tremor. These sensors would communicate the “stimulation on” trigger to the IPG

through an external device as in Medtronic Activa PC + S and Nexus-D interfacing system. In the

following two sections, the procedures for patient recruitment and data collection are described along

with test process for determination of degree of benefit of on-demand DBS system to individual PD

patients.

2.1 Data collection

Nine patients with tremor-dominant PD and six patients with ET were recruited from the Movement

Disorder Clinic at Rush University Medical Center in Chicago. The data collection was carried out at

15
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University of Illinois at Chicago, Neuroscience Center under the UIC-IRB 2008-0971. Inclusion criteria

for recruiting patients in this study were:

• patient is affected by TDPD or ET with tremor in one or more limbs ,

• patient has FDA-approved Medtronic DBS systems implanted in the STN or VIM at least 3

months before (details in Table 2.1),

• symptoms are well-controlled by medication and stimulation.

The patients were made aware of HIPAA compliance and informed consent was obtained before record-

ing the data. All patients were on their usual medication during the recording session. One of the

nine PD patients (PD6) was called for a second session since he had prolonged tremor-free period after

withdrawal of stimulation and made for a good candidate for this study. One of the six ET patients

(ET1) also had two separate sessions. In all, ten PD datasets (163 trials) and seven ET datasets (144

trials) were collected from nine PD and six ET patients. One patient (PD9) and two ET (ET5 and ET6)

were excluded since the patients did not have well-controlled tremor which reappeared as soon as the

stimulation was switched off.

To extract tremor predictive information non-invasively, sEMG and acc signals were measured from

the tremor-dominant limbs of nine PD and six ET patients. Two different set-ups were used for the

data collection with the only difference being in the sensors used. Figure 2.1 shows both the set-ups

used for data collection. Placement of sEMG sensors on Extensor and Flexor muscles and a separate

accelerometer sensor placed on the dorsal side of the tremor-dominant hand for the first set-up are shown

in (a) and (c). The second set-up where wireless sEMG sensors with in-built accelerometers were placed

on the Extensor and Flexor muscles are shown in (b), (d), (e) and (f).
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TABLE I

DETAILS OF PATIENTS AND DBS SETTING PARAMETERS
Patient Age Gender Implanted Amplitude Frequency Pulse Contacts Hand

in (Year) (Hz) width (µs) tested
PD1 46 M 2008 2.8 V 180 80 1-0+ Right
PD2 45 M 2002 2.5 V 185 60 1-2-C+ Left
PD3 52 F 2004 2.8 V 185 120 0-C+ Right
PD4 60 F 2009 2 V 145 60 1-3-C+ Right
PD5 60 F 2009 2.6 mA 125 450 1-3+ Right

2.6 mA 125 90 3-0+ Right
PD6 69 M 2011 3.9 V 130 80 1-C+ Right
PD7 67 F 2001 3.5 V 185 120 1+2-C+ Right
PD8 62 M 2012 3.1 V 160 80 1-2-C+ Right
ET1 64 M 2002 2 V 150 90 2-C+ Right
ET2 67 M 2010 1 V 130 120 1-C+ Right

1.4 V 5-6-C+ Left
ET3 51 M 2010 2.3 V 185 60 9-C+ Right
ET4 62 F 2007 2 V 185 90 0-C+ Right

Figure 2. Set-ups for acquisition of sEMG and accelerometer signals during Resting, Posture and
Action states
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In the first set-up for eight patients (PD1 to PD4, ET1 to ET4), a Coulbourn type V94-41 miniature

solid-state piezoresistive accelerometer sensor was placed 2 cm proximal to the middle metacarpopha-

langeal joint. sEMG was recorded in the first set-up using Delsys Bagnoli system. sEMG was recorded

from the extensor digitorum communis and flexor digitorum profundus (forearm extensor and flexor

muscles respectively) of the patient. Since tremor frequencies are different during relaxed states and

during active states, multiple trials were carried out in three different states of Resting, Posture and Ac-

tion. Figure 2.1 (a) shows Resting state where the arm is relaxed and is placed on a support. Posture

state is shown in Figure 2.1 (c). Here, the arm is extended and held in a steady position.

In the second set-up for seven patients (PD5, PD6 1, PD6 2, PD7, PD8, PD9, ET5, and ET6),

Delsys Trigno wireless sensors were used for measuring muscle activity. These devices also consist of

in-built tri-axial accelerometer sensors; therefore, no additional accelerometer sensor was used. The

wireless sEMG sensors minimize any motion artifacts. Figures 2.1 (b) and 2.1 (d) show Resting and

Posture states, respectively. Figures 2.1 (e) and 2.1 (f) show the Action state where wrist extension

and flexion was carried out continuously. Baseline recording was also done to ensure correct placement

of the sensors. Sampling rate of sEMG and acc sensors in the first set-up was 1000 Hz where as in

second set-up, the sEMG and acc signals were sampled at 1926 Hz and 148 Hz, respectively. Both the

Delsys sEMG sensors, Bagnoli and Trigno, have in-built band-pass filtering 20 Hz and 450 Hz to reject

movement artifacts as well as high-frequency noise. The tremor information, which lies in 5-12 Hz, can

be recovered by envelope detection [22].

Patient was seated on a chair in an upright position with arms resting on a supporting surface as

in Figures 2.1 (a) and 2.1 (b). Programmer interface which controls IPG, was placed on the IPG to
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switch the DBS on or off. DBS was switched off at the beginning of the trial, followed by stimulation

for a fixed duration. Stimulation remained in “off” state till tremor reappeared. sEMG and acc signals

were recorded for the whole trial. Multiple trials were carried out for different durations of stimulation

(DS: 20, 30, .. upto 80 seconds) and different states of resting, posture and action. In posture state, the

patients arms were held out in an extended position with no support (Figures 2.1 (c) and 2.1 (d)). This

posture was maintained without much movement. In the action state, the patient was asked to perform

a task such as extending and flexing the wrist or reaching for the opposite shoulder (Figures 2.1 (e) and

2.1 (f)). Timestamps were noted for the events when stimulation was stopped, voluntary movement was

started (action or posture) and tremor was observed after the stimulation was switched off.

Raw signals measured from the extensor muscle for Action trial are shown in Figure 3: sEMG

(top) and y-axis signal of tri-axial accelerometer (bottom). Dashed black line indicates the time where

stimulation was switched off. Vertical dashed green line shows the time of start of voluntary movement

and red vertical line indicates the time of observed onset of tremor.

2.2 Degree of Benefit

During the recordings conducted over multiple patients, it was observed that the duration of time

before tremor returned varied from patient to patient with some having the tremor return in less than

20 seconds after DBS was switched off and some having tremor not return for even more than three

minutes. This showed that an on-demand DBS system may be more beneficial for some patients com-

pared to others, given the predictions are made accurately as well as not too early compared to the actual

observed tremor. Considering that the maximum benefit would be achieved with perfect prediction, the

effectiveness of on-demand on-off DBS control for individual patients was quantified by calculating
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Figure 3. Raw sEMG and acc signals: the data collection protocol with fixed duration of stimulation
between 20-80 s

the ratio of stimulation-off duration without tremor to the stimulation-on period. Higher ratio indicates

greater benefit for such patients. Parameter Ro is defined as the observed ratio of stimulation-free time

without tremor to the DS given by:

Ro =
(Ttrem − To)

(To − Ts)
=

(Ttrem − To)
DS

(2.1)

where Ts denotes time of start of stimulation, Ttrem is the time of reappearance of tremor before restart-

ing stimulation, To is the time of end of stimulation, and DS = (To - Ts). Ro metric was calculated

for all testing cycles during resting, postural, and kinetic states. Stimulation of different durations were
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applied and the time of return of tremor was noted. It was observed that tremor may return in around the

amount of same time or less even if the DS was higher indicating that longer DS may not be required

and should be selected so as to maximize the Ro value.

Another metric to quantify the Ro information is the percentage of stimulation-free time which is

more intuitive to understand given their values. The Ro values lead to the derivation of the percentage

of stimulation-free time of the total time which is given by:

Psf (%) =
Ro

(1 +Ro)
.100 =

(Ttrem − To)
(Ttrem − Ts)

.100 (2.2)

For an average Ro of 1, the percentage Psf (%) is 50% of total time, while Ro yields Psf (%) of

80%. The trials described in the previous section consisted of DS in increments of 10 seconds for which

the average of Ro ratio is given in Table II.

2.3 Optimal Duration of Stimulation

For an on-demand DBS system, larger is the Ro, the higher is the Psf (%) and the better may be

the patients benefit. It is, therefore, essential to find the optimal DS∗ which maximizes this ratio, Ro,

thereby maximizing the Psf (%). Table II lists the Ro values for DS durations of 20-80 seconds with

the maximum value given in bold for all the movement modes combined. The DS corresponding to the

maximum Ro is the optimal duration of stimulation for the patient. For patients PD1, PD4, PD6, and

PD8, tremor did not reappear till the end of cycle for some trials. The cycle was ended due to time

restriction and time at the end of trial was used for calculation of Ro. This metric may, therefore, have

been higher than the value given in the table and is indicated by a + symbol.
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The optimal duration of stimulation (DS∗) can be selected based on the highest ratio on average

for a given DS and is given along with Psf (%) at DS∗ in Table III. Average Ro at DS∗ are given

individually for the kinetic, postural and resting states with their corresponding number of tests. The

same trend of higherRo using optimalDS∗ was observed in all patients during different states of resting,

postural, and kinetic action of the tremor-dominant limb. Tests on one of the patients (PD3) were carried

out at DS of 40 and 50 sec and were inadequate for this study. As a result, best DS∗ was not examined

for patient PD3. Therefore, the results for PD3 could not serve for comparison when analyzing the

results that involve performance at optimal DS∗.

2.4 Who benefits from on-demand DBS system?

Psf (%) gives the maximum possible percentage of time which would be stimulation-free with no

tremor. In three of these eight patients, the average Ro is greater than 1, namely, 1.069 for PD4, 4.239

for PD6, and 2.07 for PD8, which means >50% stimulation free time at these optimal DS∗, while all

the rest have an average Ro from 0.554 to 0.836 which on average gives 35% stimulation free time. We

note that certain tests of PD1, PD4, PD6, and PD8 had to be terminated for lack of time before tremor

could be observed. Therefore, in these tests, the average values of Ro might have been higher than is

tabulated. In individual trials counted toward the tabulated averages, Ro was as high as 9.9 (case of

PD6), and even this test was interrupted before any tremor was observed due to time limitations).

The results in Table III indicates that there exists a subset of PD patients that may benefit rather

significantly from on-demand control. Using metrics,Ro and Psf (%), the possible benefit of on-demand

DBS system can be evaluated; however, in practice, the Psf (%) depends on the performance of the
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predictive algorithm. A similar metric as Ro can be used to evaluate the average stimulation-free time

when using an on-demand system. This can be given as:

Rp =
(Tpr − To)

DS
(2.3)

where Tpr is the predicted time of reappearance of tremor before restarting stimulation, To is the

time of end of stimulation, and DS is the duration of stimulation.

By maximizing the stimulation-free time without tremor by making accurate prediction of tremor,

the side-effects such as speech dysarthria may potentially be reduced. Based on theDS∗ andRo values,

the benefit of on-demand DBS for a patient given their side-effects to DBS can be evaluated by the

clinician. More patients need to be tested to decide if the observation of symptoms other than tremor

would help in selection of DS∗ in patients with non tremor-dominant PD.
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TABLE II. AVERAGE Ro AT DIFFERENT DS FOR PD1 - PD9
Average Ro at DS (sec) # of tests

Patients 20 30 40 50 60 80
at all DS with no tremor

PD1 - 0.68+ 0.39 - - - 16 2
PD2 0.84 0.63 0.52 0.43 - - 26 0
PD3 - - 0.3 0.15 - - 17 0
PD4 1.069+ 0.87 0.76 0.59 32 2
PD5 - 0.554 0.3 0.1 0.21 0.145 20 0
PD6 - 4.24+ - 0.96 - - 29 12
PD7 - 0.73 - 0.16 - 0.22 9 0
PD8 - 2.07+ 1.29 0.234 - 14 2
PD9 - 0.585 - 0.14 - 4 0
Total 167 18

TABLE III. AVERAGE Ro AT DS∗ FOR KINETIC, POSTURAL AND RESTING MODES
Average Ro at DS∗ (sec)

Psf (%)Patients Kinetic # of tests Postural # of tests Resting # of tests
at DS∗

PD1 0.96 3 0.31 3 0.84 2 40.48
PD2 1.09 1 0.80 3 0.76 2 45.36
PD3 - - - - - -
PD4 0.46 2 1.32 3 1.23 3 51.69
PD5 - - 0.69 1 0.42 1 35.48
PD6 2.81 11 5.43 7 5.46 6 80.88
PD7 1.48 1 0.50 1 0.18 1 44.13
PD8 0.44 4 1.83 4 8.14 1 67.43
PD9 0.80 1 - - 0.37 1 36.95
Total 23 22 17



CHAPTER 3

FEATURE EXTRACTION AND DESIGN OF TREMOR PREDICTION

ALGORITHMS

Some sections of this chapter were published in Nivedita Khobragade, Daniel Graupe, Daniela

Tuninetti: Towards fully automated closed-loop Deep Brain Stimulation in Parkinson’s disease patients:

A LAMSTAR-based tremor predictor, Engineering in Medicine and Biology Society (EMBC), 37th An-

nual International Conference of the IEEE, August 2015 c©and some sections are to be submitted for

publication.

In this chapter, feature engineering from the sEMG signals to extract information related to onset

of tremor and the setups of different machine learning algorithms for the design of an on-demand DBS

system, are described.

3.1 Pre-processing and Feature Extraction

Attributes for the machine learning algorithms were extracted by performing spectral, entropy and

recurrence quantification analysis on extensor and flexor sEMG. Spectral analysis was also carried out

on acc signal. In case of the first set-up, accelerometer sensor measured the magnitude of the signal

recorded from the location shown in Figure 2.1 (a). For the second set-up, each of the sensors placed

on extensor and flexor, recorded accelerometer along the three axes. We found that for these locations,

it was more useful to consider each axis information separately than the magnitude.

25
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The raw sEMG signals were smoothened first, by calculating the power over a window of 50 ms at

every sample. Spectral, entropy and recurrence parameters were then calculated over sliding windows

of 1 second with an overlap of 750 ms of the smoothened sEMG and acc signals as in [22]. Following

is a description of the features used for tremor prediction:

3.1.1 Spectral measures

Tremor information typically lies in 4-6 Hz frequency band for resting tremor and around 7-11 Hz

for postural/kinetic tremor [13]. The power of the smoothed sEMG was found to be concentrated in

0-40 Hz range. Measures such as the frequency with maximum power over the tremor band and the

mean frequency were calculated to provide predictive information related to tremor. The power spectral

density of smoothed sEMG was calculated over 1-second windows using 512-point Fourier transform.

This gives the power Pk of the signal at frequency bands centered around fk, k ∈ {1, ..., N} where

fN − f1 is the signal bandwidth. We omit the 0-3 Hz band which contain the DC component and very

low frequency movement artifacts. Since the power of patient-specific tremor frequency in 4-10 Hz

band is expected to increase at the onset of tremor, we calculate Fmax, the frequency with maximum

power (Pmax) in this frequency range of our interest, fB − f1 where f1 is 4 Hz, fB is 10 Hz, fN is 40

Hz, B=7 and N=36. The index (j?) of the frequency with maximum power (f?j ) is defined as:

j? = arg max
j∈{1,...,B}

{Pj}, (3.1)
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and the power (Pmax) at peak frequency (Fmax) is defined as

Pmax =
Pj?∑

j∈{B+1,...,N} Pj
, (3.2)

Fmax = fj? (3.3)

Pmax is normalized by the power outside the bandwidth of interest so the power is comparable over

different trials. This metric in (Equation 3.2) can be interpreted as the signal-to-noise ratio.

Relative power (Prel) was also calculated to measure the total shift of power towards the 4-10 Hz

band using the following:

Prel =

∑
j∈{1,...,B} Pj∑
j∈{1,...,N} Pj

, (3.4)

The mean frequency gives the expected frequency over the spectrum of 3-40 Hz and is given as:

Fmean =

∑N
k=1 fkPk∑N
k=1 Pk

. (3.5)

Wavelet analysis was also carried out to calculate mean power of the signal in its wavelet bands.

Using Daubechies4 discrete wavelet transform (DWT), the sEMG signal was decomposed into M=10

bands. The signal component in the j-th frequency band, j ∈ {1, ...,M} is given as xj(t) over a window

of ∆T = 1 s. Mean power of xj(t) is calculated as:
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Pj =
1

∆T

∑
t∈∆T

|xj(t)|2 (3.6)

These spectral measures were also calculated for the acc signal.

3.1.2 Entropy measures

Wavelet Entropy (WtEn) was calculated to measure the degree of disorder based on the normalized

power in different wavelet bands of the smoothed sEMG. The normalized power of xj(t) can be treated

as a probability mass function for calculating WtEn and is given as:

pj(t) =
|xj(t)|2∑M
k=1 |xk(t)|2

, j ∈ {1, ...,M} (3.7)

Using the definition of entropy, WtEn can be computed as:

Hwt(t) =
M∑
j=1

pj(t) log
1

pj(t)
(3.8)

For a periodic signal, value of WtEn will be low since the normalized power is concentrated in one

of the wavelet levels and a limited power is contained in the remaining wavelet levels. In contrast, for

a disorderly signal, WtEn will be high as there will be significant contributions from all the wavelet

bands.

Sample entropy was calculated for assessing the complexity of the smoothed sEMG signal. This

metric evaluates self-similarity of a data series and is calculated as the negative logarithm of the con-

ditional probability that two sub-sequences of the series of a given length that match within a given
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tolerance also match when the length is increased by one. Given these parameters of similarity toler-

ance criterion, r, and the pattern length of the sub-sequence, m, we can compute the sample entropy of

a series U = {x(i), i ∈ {1, ..., L}} where L is its length. A set of sequences of U of pattern length m

was constructed and is given as xm(i) = [x(i), ..., x(i + m − 1)] for i ∈ {1, ..., L −m + 1}. The `∞

distance between two sequences x(i) and x(j) was calculated as:

d∞[x(i),x(j)] = max
k∈{1,...,m}

|x(i+ k − 1)− x(j + k − 1)|.

For the created sequences in the set, we find the matches within the similarity criterion as:

Bm
i (r) = |{j : d∞[xm(i),xm(j)] ≤ r}| (3.9)

for i, j ∈ {1, ..., L−m}, i 6= j. Self-matches are not considered in Sample entropy, unlike approximate

entropy where lower values may be be obtained due to self-matches leading to signals being interpreted

as more regular than they are. Let

Bm(r) =

L−m∑
i=1

Bm
i (r), Bm+1(r) =

L−m∑
i=1

Bm+1
i (r). (3.10)

The sample entropy, SpEn(U,m, r), is then defined as:

SpEn(U,m, r) = lim
L→∞

− log
Bm+1(r)

Bm(r)
. (3.11)
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A lower SpEn(U,m, r) value reflects more self-similarity in the series and therefore, a high degree of

regularity. Parameter values of pattern length and tolerance were taken as m = 3 and r = 0.15σ.

3.1.3 Recurrence Quantification Analysis (RQA)

RQA analysis of sEMG was performed to assess motor unit synchronization. It has been extensively

used for analysis of sEMG for detecting hidden characteristics that cannot be detected by linear analysis

[39,40]. This nonlinear method measures the complexity of a time series by quantifying the number and

duration of recurrences presented by the phase space trajectory of the dynamic system. The recurrence

rate is calculated as the density of recurring point in the recurrence plot.

Recurrence plot or recurrence matrix (RM) for the series U was computed as follows:

Ri,j = Θ(r − ‖xi − xj‖), (i, j) ∈ {1, ..., L− (M − 1)τ} (3.12)

where, xi = [x(i), x(i+ τ), ..., x(i+ (m− 1)τ)] for i ∈ {1, ..., L− (M − 1)} is a vector of length m,

‖ · ‖ is the Euclidean norm, r is the radius, Θ is the Heaviside function, M is the embedding dimension,

τ is the time delay, and L is the length of the time series U.

From Ri,j , the recurrence rate R is calculated as:

R =
1

P 2

∑
i,j

Ri,j . (3.13)

R is more sensitive to changes in the degree of synchronization than linear variables such as mean/median

frequency [40].
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We used M = 5, τ = 3, r = 0.33, L = 1000 as described in [41].

3.2 Machine Learning Algorithms

In [22], a manual algorithm was used for the design of a closed-loop DBS system. The process

of setting the thresholds manually for different parameters to predict the advent of tremor can be chal-

lenging. A Back-propagation neural network (BPNN) was used to automate the process as described

in [32] for 2 PD patients but was unable to achieve 100% sensitivity. Another neural network, LNN-

1, was proposed for tremor prediction in [34]. Preliminary results of training LNN-1 with data from

1 patient showed that it performed better than the BPNN. Here, we present the set-ups of automated

tremor prediction algorithms using DT and modified version of LNN-1 i.e. LNN-2. We used the same

set of features for both the algorithms. Training and testing data consisted of these attributes for each

trial after the stimulation was switched off to the End of File (EOF). Detailed description of each of the

algorithms is given in this section.

3.2.1 Modified LAMSTAR Neural network

LArge Memory STorage and Retrieval neural network, as the name suggests, can store and retrieve a

large number of patterns. The classic setup of this neural network is based on the concepts of Kohonen’s

Self-organizing map (SOM) and Hebbian learning. Figure 4 shows the structure of LNN comprising of

9 SOM layers and one output layer. LNN input “word” consists of attributes or “subwords” extracted

from sEMG and Acc. Here, an instance of feature set used for prediction algorithm is shown. The

attributes are fed to their respective SOM layer. Each layer i consists of Ni neurons. A representative

example of winner neurons for a given set of SOM layers is shown. The shaded boxes represent the

winner neurons at a time instant. Each of the Ni neurons in each SOM layer are connected to the output



32

Figure 4. Architecture of LNN consisting of self-organizing maps and output layer connected by link
weights that update based on Hebbian learning

layer via Link weights. Link from winner neuron of each layer to output neuron related to the event of

“No tremor” (NT) or “Tremor” (T) are rewarded or punished. The weight of these links represent the

strength of associations between the neurons, similar to synaptic weights in the nervous system. Output

NT or T is decided by comparing the sum of link weights from the winner neurons to the output neurons,∑
LNT and

∑
LT respectively normalized by the number of times a neuron activates in association

with NT or T. Output neuron corresponding to greater of the sums of mormalized link weights wins. We

first describe the Winner-Take-All (WTA) layers in this setup, followed by the supervised link weight

update.

The input to this network is called a “word”, consisting of an instance of the feature set. Each word

is split into subwords that are fed to separate SOM layers. For the eight PD and four ET patients, 8-12

features were selected from the extracted set corresponding to 8-12 layers. These SOM layers contain
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a fixed number of neurons and follow Winner-Take-All (WTA) principle i.e. only one neuron in each

SOM layer will fire for a given instance of data. SOM is an unsupervised method used for clustering

where the winner of each module is determined by finding the neuron with minimum distance from

a given input vector. The number of neurons can be predetermined or set dynamically, thus dividing

the feature space into different regions. The binning of these WTA layers can also be performed by

other discretizing methods than the conventional SOM binning. These include unsupervised methods

such as equal width, equal frequency and supervised methods that use entropy or other metrics to create

bins. Minimum Description Length (MDL), a supervised method, is used in this setup since the dataset

is small and unsupervised clustering method may not give the optimal boundaries. Class information

entropy is used for selection of boundaries. It is a top-down method that starts with one interval and

keeps splitting till the criterion is met. The method is given in detail in [42]. For attributes where

no partition cut point satisfied the MDL criterion, equal frequency or equal width method was used to

create 3-8 bins or neurons.

As shown in the Figure 4, each neuron of each SOM layer is connected to each neuron of the output

layer via link weights (LNT or LT ). According to Hebbs rule, if for a set of inputs, certain elements are

activated, then by repeated occurrence of these patterns, the activated elements get increasingly strongly

associated. For LNN training, these link weights are updated in a supervised manner, either rewarded

or punished based on the output class. These links can be treated as synapses of a neuronal network

whose weights increase in a Hebbian manner. This update occurs for the link weights from only the

winner neurons of all SOM layers. At time t + 1, the link weights at previous time t from the winning

neuron w of each module k to the winning decision neuron v are rewarded by ∆L. Link weights from
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the winning neuron w of each layer k to all the other non-winning decision neurons j are punished by

∆M . Following are the equations for reward and punishment of the link weights:

Lkw,v(t+ 1) = Lkw,v(t) + ∆L, (3.14)

Lkw,j(t+ 1) = Lkw,j(t)−∆M (3.15)

When a neuron of a layer fires, the link-weight from this winner neuron to the output neuron of the

corresponding class, gets rewarded as in (Equation 3.14). Rest of the link-weights from this winner

neuron, get punished as in (Equation 3.15).

Finally, the predicted class is the one with maximum value of the sum of link weights from the

winner neurons to each output class neuron. A variation of LNN, known as modified or normalized

LAMSTAR, is used here. In case of modified LNN, denoted as LNN-2, the link weights are normalized

with respect to the number of times a winner neuron has fired with an associated decision neuron. The

number of times a winner neuron w was activated with an associated decision neuron i is given by nkw,i.

The link weights are normalized as given below:

Lkw,i
∗

=
Lkw,i

nkw,i
(3.16)

The decision for LNN-2 with K layers and J output neurons, is given by the following equation:

∑
k∈K

Lkw,v
∗
>

∑
k∈K

Lkw,j
∗
,∀j ∈ J, j 6= v (3.17)
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Normalization of link weights, as in LNN-2, has been reported to improve the results compared to

the classic LNN setup (LNN-1) [37, 38]. This is especially beneficial in case of unbalanced datasets

such as in our case where number of tremor onset datapoints are limited compared to the data where no

tremor was observed.

3.2.2 Decision Tree Learning

Decision tree model is a popular technique used to produce a set of tree-based rules. The decision

tree consists of nodes and leaves where each node represents a condition or rule on an attribute, and

the leaves or the terminal nodes signify the decision. This algorithm is trained in a greedy manner by

finding the optimal local solution based on Gini impurity of the features for splitting the data. Starting

with the root node, the tree is built by recursively dividing the data into smaller subsets using the feature

and its split criterion that gives the least node impurity. At each level, node n is divided into right node

nr and left node nl. The process is recursively carried out till a condition is met, either all the data

is classified or till the maximum number of levels are reached. At each level, the descendant subsets

are ‘purer’ than the parent dataset and contain majority of one class. This method of space partitioning

creates hyper-rectangles and these hyperspaces represent different categories. Gini impurity, the metric

used for measuring impurity at each node n, is given as:

i(n) = 1−
K∑
k=1

p(k|n)2. (3.18)

where K is the total number of decision categories and p(k|n) is the proportion of class k at the node

n. The split leads to decrease in impurity, ∆i(s, n) = i(n)− pli(nl)− pri(nr) where pl and pr are the
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proportions of classes in left and right nodes, respectively and s is the split threshold applied to the node

n. ∆i(n) gives the measure of goodness of split’ and is maximized by selection of the best split. The

best split criterion is obtained by selecting the split s∗ giving the largest decrease in impurity, given by:

∆i(s∗, nR) = max
s∈S

∆i(s, nR) (3.19)

In the designed tremor prediction algorithm, DT makes the decision of either tremor predicted or tremor

not predicted, denoted as T and NT , respectively. The number of categories is K = 2. The tree can

then be pruned to avoid overfitting for the given training data. This step is especially useful for sparse

or high-dimensional dataset.

3.2.3 Minimax Support Vector Machine

Previously, a Support Vector Machine (SVM) algorithm was also compared to DT with DT perform-

ing better. An SVM is suitable for binary classification where an optimal hyperplane is found such that

the data is separated by maximum margin. In this work, we used a variation of SVM which uses mini-

max hinge loss instead of 0-1 loss or hinge loss functions. Figure 5 shows the different loss functions

[43]. Minimax hinge-loss is as following, given α∗ the optimal linear predictor for n samples (xi, yi):

min
α

1

n

∑
k∈1:n

max(0,
1− yiαTxi

2
, yiα

Txi) + ε||α|| (3.20)

In this approach, the minimax hinge loss SVM is implemented by applying sub-gradient descent to

obtain the parameters of the SVM model.
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Figure 5. Minimax hinge loss vs 0-1 loss and Hinge loss

3.3 Performance metrics

We define the metrics of accuracy, sensitivity and β ratio to best reflect the performance of the

algorithms. Figure 6 shows a trial where tremor was observed. Typical events noted during a recording

trial include:

1. time when stimulation is switched: ton,

2. time when stimulation is stopped: ts,

3. time when tremor is observed: to, and

4. time where recording is stopped or end-of-file: tEOF.

Tremor correctly predicted at time tp is showed as an example of True Positive or TP prediction in

second row of Figure 6. Examples of early prediction and late prediction for the given trial are shown as
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Figure 6. Definitions of TP , TN , FP and FN for tremor prediction using machine learning
algorithms

the gray blocks in the third series, indicated as FP and FN , respectively, representing False Positive

and False Negative. The algorithms check for onset of tremor only after the stimulation is switched

off at time ts. The actual tremor is observed at time to.

If the tremor onset is predicted in the second half of the duration from ts to to, we say that tremor

was correctly predicted and define this trial as a True Positive or TP . If the prediction is made in

the first half of the duration of ts to to, the prediction is too early and is classified as False Positive

or FP . This way, we can penalize early prediction which are not helpful for an effective closed-loop

system. We allow prediction in less than 1 s of tremor being observed. If the tremor is predicted beyond

1 s of tremor being detected, then the prediction is too late and is defined as False Negative or FN .

In cases where no tremor is observed till the EOF and tremor is not predicted till this time tEOF , the

trial is classified as True Negative or TN .
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Based on these definitions of TP , TN , FP and FN , we give the performance metrics as follows:

Accuracy(A) =
#TP + #TN

#TP + #TN + #FP + #FN
(3.21)

Sensitivity(S) =
#TP

#TP + #FN
(3.22)

The sensitivity needs to be 100% so that the patient does not experience tremor when the stimulation

is switched off. Accuracy, which gives the ratio of correct predictions to total number of trials should

be high. These metrics do not give information about how close the prediction is made to the actual

observed tremor. Therefore, we defined ratios Ro, Rp and β to assess the performance of algorithms

with respect to how good the prediction is.

Ro =
∑

(to − ts)/
∑

(ts − ton), (3.23)

Rp =
∑

(tp − ts)/
∑

(ts − ton), (3.24)

β =
∑

(tp − ts)/
∑

(to − ts) (3.25)

Ro gives the ratio of observed tremor-free time to the duration of stimulation. Rp gives a similar ratio

for predicted delay in tremor. In the trials where tremor was not observed till EOF, we can consider tEOF

- ts as the tremor-free time. Ro is then calculated as the ratio of this tremor-free period to the duration of

stimulation. β is the ratio of Rp to Ro, giving a measure of prediction performance. Closer the number



40

is to 1, closer the prediction is made to the observed tremor. Average across patients was calculated

based on the number of trials in that patient.

Percentage of observed and predicted stimulation-free time are given by Psf o (%) and Psf p (%),

respectively.

Psf o(%) =
Ro

1 +Ro
.100 (3.26)

Psf p(%) =
Rp

1 +Rp
.100 (3.27)

For example, if Ro is equal to 4, stimulation can be off for 80% of the total time. The effective

percentage of battery power that can be saved is Psf p for the actual closed-loop tremor prediction

system. Weighted average for a performance metric is given as
∑

i∈1,..,8(ni.Mi)/
∑

i∈1,..,8(ni) where

ni is the number of test trials and Mi is the performance metric for patient i.



CHAPTER 4

COMPARISON OF PERFORMANCE OF TREMOR PREDICTION ALGORITHMS

Results from this section to be submitted for publication.

4.1 Tremor prediction results

Performance of tremor predition algorithms is evaluated here where the algorithms are trained in

offline learning mode such that the algorithm parameters are set during the training phase and remain

unchanged during the testing phase. For the patients with two sessions of recordings, trials from the

same session were used for training and testing. LNN-2 and DT were run for all states combined as well

as for state-specific mode. Both the algorithms did not perform as well for when trained for all states

together, giving early predictions and low β ratio. This is expected since the movement action could

be misclassified as tremor onset. When trained for all states, tremor onset may also be misinterpreted

as action, leading to low sensitivity. Rest of the results are presented for algorithms when trained for

state-specific mode. This initial separation of action from posture and rest states lead to higher β ratio

and sensitivity. Following are exemplars of features used and the resulting cases of TP , FP and TN .

Figure 7 – Figure 10 show set of sEMG and acc based features for TP , FP , and TN cases

during Rest, Action and Posture states. Same set of features were used for training of both DT and

LNN-2 for fair comparison. Figure 7 displays a resting state trial with stimulation duration of 30 s.

Smoothed extensor sEMG and its sample entropy are given in top two rows, and power in 4-10 Hz of

accelerometer signal with raw triaxial accelerometer signals are shown in bottom two rows. Black dot-

41
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dashed line shows where the stimulation was switched off, red line indicates where tremor was actually

observed. The tremor was observed at 250 s giving a high Ro ratio of 6.45. LNN-2 correctly recognizes

onset of tremor within 1 s of actual reappearance of tremor. Gray line indicates where DT made an early

prediction for state-specific training and dashed blue line shows where tremor was correctly predicted

by LNN-2 for separately training Action and Posture/Rest modes.

Figure 8 shows the drop in sEMG sample entropy and an increase in accelerometer power in 4-10

Hz at 250 s of this same trial when tremor reappears after switching off the stimulation in previous

“rest” trial. Both these parameters indicate the start of periodic tremor oscillations. Raw acc signal

shows prominent tremor oscillations which is reflected by the increase of acc power in 4-10 Hz. Red

vertical line indicates observed tremor and dashed blue line indicates tremor “prediction” by LNN-2.

The delay in “prediction of tremor” is by 0.5 s which is acceptable since the onset of tremor is just

setting in. DT predicts the tremor earlier at 151 s but with a high Rp of 2.97. Small oscillations are seen

in the accelerometer signals; however, a corresponding drop in sample entropy or increase in acc 4-10

Hz power was not observed at this time. This was also classified as TP .

Figure 9 shows Smoothed sEMG, its sample entropy and recurrence rate during an Action state

trial with stimulation duration of 50 s. Green dashed line shows start of voluntary movement, black

dot-dashed line indicates stimulation “off” time and red line shows the time when tremor was observed.

Gray and Dashed blue line show comparison between training for combined states vs training separately

for the states. An early prediction (FP ) was made by both DT and LNN-2 when they were trained for

the Action, Posture and Rest states together. Early prediction, shown by the gray line, may be due to

mistaking movement as tremor onset (False Positive). When “Action” files are trained separately,
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both DT and LNN2 correctly identify onset of tremor around a second prior than when the tremor was

actually observed (True Positive). Prediction was made at 69.75 s and 69 s, with a β of 0.98 and 0.94,

by DT and LNN-2, respectively. .

An exemplar of TN is illustrated in Figure 10. Smoothed extensor sEMG and features extracted

from this signal, namely, sample entropy and power in 4-10 Hz, are given for a trial during “Posture”

mode (stim duration = 30 s). Green dashed line indicates the start of voluntary movement and black dot-

dashed line shows where the stimulation was switched off. In this trial of “Posture” state (stimulation

duration of 30 s), no tremor was observed even after 120 s of stimulation being switched off. Postural

movement was initiated at 58.5 s and some movement can be observed in the acc signal. Both DT

and LNN-2, when trained for all states together as well as for state-specific training, accurately, did not

predict tremor till the EOF. Accelerometer signals are also shown in the bottom row for x, y and z axes.

4.1.1 PD

Comparison of LNN-2 and DT performance metrics is shown in Table IV for PD patients for all

DS. The total number of trials (Nto), the number of training trials (Ntr) and that for testing (Nte) are

listed as well. For each PD patient, 65-75% of total files were used for training the algorithms. Both

the algorithms were trained separately for Action and Posture / Rest states. A and S columns give the

accuracy and sensitivity (%) achieved by DT and LNN-2 for each patient. Bottom rows give the total

number of files, total number of TP, TN, FP and FN, along with weighted average of accuracy and

sensitivity (%) across all PD patients. LNN-2 performs better with sensitivity of 100%. For trials at all

DS, sensitivity of DT is not 100% due to one FN. The total number of files for PD7 is 9; however, only

2 of the files were in action mode. This made training for action mode separately not feasible for this
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Figure 7. A “Rest” trial (stim duration = 30 s) with True Positive prediction
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Figure 8. Zoomed-in plot of sEMG and acc features for “Rest” trial with True Positive prediction
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Figure 9. An “Action” trial (stim duration = 50 s) with True Positive prediction (separate modes) and
False Positive prediction (combined modes)
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Figure 10. A “Posture” trial (stim duration = 30 s) with True Negative prediction
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patient, leading to only the posture/rest files to be used. Therefore, the total number of files are given to

be 7 for PD7.

Table V give the observed and predicted R-ratios for state-specific training of DT and LNN-2. Ro

gives the ratio of duration of observed tremor free time from the time stimulation was switched off to

the duration of stimulation applied. This ratio is given for all trials and the test trials for each patient. Rp

gives the ratio of duration of predicted tremor free time from the stimulation “off” time to the duration

of stimulation. Lower the difference between Rp and Ro, closer the prediction of tremor is to the actual

observed tremor. DT Rp and LNN-2 Rp, calculated over Nte trials for each patient, are compared to the

Ro of those Nte trials.

β is the ratio of the predicted tremor free time (Rp) to the observed tremor free time (Ro) from the

time stimulation was switched off. Closer this value is to 1, closer the prediction of tremor is to the

actual observed tremor. β of PD7 is greater than one but since the tremor onset is predicted within one

second of observed tremor, we accept these as correct recognitions. The weighted average is calculated

with respect to the number of trials. Rp ratio is also expressed in terms of percentage of stimulation-free

time Psf−p (%). Ro ratio based Psf−p (%) gives the maximum possible percentage of stimulation-free

time. Psf−p (%) represents the average feasible percentage of stimulation-free time using the tremor

prediction algorithms. Overall the ratio Rp and Psf−p% are higher for LNN-2 than for DT.

The performance of LNN-2 and DT was also compared with minimax SVM. However, the minimax

SVM classifier did not perform well and had a low weighted average β value of 0.72, and accuracy and

sensitivity of 75% and 79%, respectively, for the 47 PD patient trials.
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TABLE IV. Performance of DT and LNN-2 for tremor prediction in eight PD patients when the algorithms were trained separately for the
states of Action and Posture/Rest. The number of total trials (Nto), the number of training trials (Ntr) and the number trials used for testing
(Nte) are given for each patient. TP, TN, FP and FN give the True Positive, True Negative, False Positive and False Negative, respectively. A
and S columns give the accuracy and sensitivity (%) achieved by DT and LNN-2 for each patient. The weighted average is calculated with

respect to the number of trials. For PD7*, number of ‘Action’ files were limited to train DT and LNN-2 separately for the state.

Patient
Performance comparison between DT and LNN-2

Nto Ntr Nte
DT LNN-2

TP TN FP FN A (%) S (%) TP TN FP FN A (%) S (%)
PD1 16 11 5 4 0 1 0 80.00 100.00 5 0 0 0 100.00 100.00
PD2 26 17 9 5 1 2 1 66.67 83.33 5 1 3 0 66.67 100.00
PD3 17 12 5 5 0 0 0 100.00 100.00 5 0 0 0 100.00 100.00
PD4 32 23 9 4 3 2 0 77.78 100.00 4 3 2 0 77.78 100.00
PD5 20 13 7 7 0 0 0 100.00 100.00 6 0 1 0 85.71 100.00
PD6 29 23 6 5 1 0 0 100.00 100.00 5 1 0 0 100.00 100.00
PD7* 7 5 2 2 0 0 0 100.00 100.00 2 0 0 0 100.00 100.00
PD8 14 10 4 3 1 0 0 100.00 100.00 3 1 0 0 100.00 100.00
Total 161 114 47 35 6 5 1 35 6 6 0
Wt Avg 87.23 91.67 87.23 100.00
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TABLE V. R-ratios obtained using DT and LNN-2 in eight PD patients when the algorithms were trained separately for the states of Action
and Posture/Rest. Ro gives the ratio of duration of observed tremor free time from the time stimulation was switched off to the duration of

stimulation applied. This ratio is given for all trials and the test trials for each patient. Rp gives the ratio of duration of predicted tremor free
time from the stimulation “off” time to the duration of stimulation. β is the ratio of the predicted tremor free time (Rp) to the observed tremor

free time (Ro) from the time stimulation was switched off. Closer this value is to 1, closer the prediction of tremor is to the actual observed
tremor. For PD7*, number of ‘Action’ files were limited to train DT and LNN-2 separately for the state. Tremor was predicted within 1

second of tremor onset, giving Rp > Ro

Patient

R-ratio comparison between DT and LNN-2
All trials Test trials

Nto Ro Nte Ro Psf−o%
DT LNN-2

Rp β Psf−p% Rp β Psf−p%
PD1 16 0.52 5 0.40 28.57 0.29 0.75 22.48 0.30 0.77 23.07
PD2 26 0.56 9 0.75 42.86 0.53 0.71 34.64 0.50 0.67 33.33
PD3 17 0.19 5 0.15 13.04 0.12 0.83 10.71 0.12 0.82 10.71
PD4 32 0.76 9 0.86 46.24 0.69 0.81 40.83 0.72 0.84 41.86
PD5 20 0.26 7 0.21 17.36 0.20 0.95 16.67 0.20 0.95 16.67
PD6 29 3.53 6 2.79 73.61 2.24 0.80 69.1 2.73 0.94 73.19
PD7* 7 0.41 2 0.32 24.24 0.33 1.03 24.81 0.34 1.05 25.37
PD8 14 1.71 4 2.14 68.15 2.10 0.98 67.74 2.14 1.00 68.15
Total 161 47
Wt Avg 1.14 0.95 48.72 0.79 0.86 44.13 0.85 0.88 45.95
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TABLE VI. Tremor prediction performance of DT and LNN-2 for test trials of eight PD patients at their optimal optimal duration of
stimulation, DS*. The number of trials used for testing at DS* (N∗

te) are given for each patient. R∗
o and its corresponding R∗

p are noted to be
higher for DS∗ compared to when all the stimulation durations are considered together. β∗ is the ratio of the predicted tremor free time (R∗

p)
to the observed tremor free time (R∗

o) from the time stimulation was switched off. β∗ of PD5 and PD7 are greater than one but since the
tremor onset is predicted within one second of observed tremor, we accept these as correct recognitions. The weighted average is calculated

with respect to the number of trials.

Patient

β-ratio comparison at optimal DS*
Test trials at DS*

DS* N∗te R∗o P ∗sf−o%
DT LNN-2

R∗p β∗ P ∗sf−p% R∗p β∗ P ∗sf−p%
PD1 30 3 0.38 27.54 0.31 0.81 23.66 0.33 0.86 24.81
PD2 20 3 0.87 46.52 0.69 0.79 40.83 0.70 0.80 41.18
PD3 NA - - - - - - - -
PD4 20 3 1.18 54.13 0.96 0.81 48.98 1.21 0.95 52.83
PD5 30 1 0.43 30.07 0.47 1.08 31.97 0.42 0.97 29.58
PD6 30 4 3.80 79.17 2.80 0.81 73.68 3.68 0.97 78.63
PD7* 30 1 0.50 33.33 0.51 1.02 33.77 0.51 1.02 33.77
PD8 30 4 2.34 70.06 2.31 0.98 69.79 2.34 1.00 70.06
Total 19
Wt Avg 1.73 63.37 1.44 0.89 59.02 1.66 0.94 62.41
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LNN-2 and DT performance are also compared for trials at DS∗ only in Table VI. These ratios are

given only for the trials of optimal duration of stimulation (DS∗) along with the DS∗ for that patient.

The number trials used for testing at DS∗ (N∗te) are given for each patient. R∗o and its corresponding R∗p

are noted to be higher for DS∗ compared to when all the stimulation durations are considered together.

β∗ is the ratio of the predicted tremor free time (Rp) to the observed tremor free time (Ro) from the

time stimulation was switched off. Closer this value is to 1, closer the prediction of tremor is to the

actual observed tremor. β∗ of PD5 and PD7 are greater than one but since the tremor onset is predicted

within one second of observed tremor, we accept these as correct recognitions. The weighted average

is calculated with respect to the number of trials. For trials at DS∗, the accuracy and sensitivity of DT

and LNN-2 are equal (100% for each patient) but the β ratio of LNN-2 (0.94) is higher than that of DT

(0.89). This gives a higher stimulation-free duration percentage, which is closer to the observed Psf−o

at the optimal DS∗.

4.1.2 ET

Tremor prediction algorithms based on LNN-2 and DT were also run for four ET patients. Data was

collected using the first set-up here. Patients performed Action and Posture tasks. ET patients do not

experience tremor during Rest state; therefore, only the Action and Posture states have been considered

for recording. LNN-2 and DT were trained and tested in the offline mode with no changes made to the

algorithm parameters once the training phase is completed. Same set of features and the same training

and testing trials were used for both the algorithms. 75-80% of all trials were used for training for each

patient and the rest for testing. Performance of LNN-2 and DT is compared in Table VII and Table VIII

for a total of 128 trials.
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Table VII lists the total number of trials (Nto), the corresponding Ro, the number of testing trials

(Nte) and the corresponding Ro for each patient. The performance metrics A and S along with TP ,

TN , FP and FN are given under DT and LNN-2 sections. The predicted R-ratio, Rp for test trials

and their respective β values are also given for state-specific training of DT and LNN-2. Sensitivity of

100% is obtained using both the algorithms. Accuracy, and β of DT are lower than that of LNN-2. The

latter algorithm performed better than DT for four ET patients in a similar manner as that observed for

PD patients. A β ratio of 0.92 was obtained for LNN-2, whereas, it was 0.83 for DT, giving a higher

percentage of stimulation-free duration Psf−p % for LNN-2.
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TABLE VII. Performance of DT and LNN-2 for tremor prediction in four ET patients when the algorithms were trained separately for the
states of Action and Posture/Rest. The number of total trials (Nto), the number of training trials (Ntr) and the number trials used for testing
(Nte) are given for each patient. TP, TN, FP and FN give the True Positive, True Negative, False Positive and False Negative, respectively. A
and S columns give the accuracy and sensitivity (%) achieved by DT and LNN-2 for each patient. The weighted average is calculated with

respect to the number of trials.

Patient
Performance comparison between DT and LNN-2

Nto Ntr Nte
DT LNN-2

TP TN FP FN A (%) S (%) TP TN FP FN A (%) S (%)
ET1 52 41 11 7 2 2 0 81.82 100.00 9 2 0 0 100.00 100.00
ET2 30 22 8 5 3 0 0 100.00 100.00 4 4 0 0 100.00 100.00
ET3 16 12 4 4 0 0 0 100.00 100.00 3 1 0 0 100.00 100.00
ET4 30 23 7 3 4 0 0 100.00 100.00 3 4 0 0 100.00 100.00
Total 128 98 30 19 9 2 0 19 11 0 0
Wt Avg 95.45 100.00 100.00 100.00
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TABLE VIII. R-ratios obtained using DT and LNN-2 in four ET patients when the algorithms were trained separately for the states of Action
and Posture/Rest. Ro gives the ratio of duration of observed tremor free time from the time stimulation was switched off to the duration of

stimulation applied. This ratio is given for all trials and the test trials for each patient. Rp gives the ratio of duration of predicted tremor free
time from the stimulation “off” time to the duration of stimulation. β is the ratio of the predicted tremor free time (Rp) to the observed tremor

free time (Ro) from the time stimulation was switched off. Closer this value is to 1, closer the prediction of tremor is to the actual observed
tremor. PD7*: Number of ‘Action’ files were limited to train DT and LNN-2 separately for the state. Tremor was predicted within 1 second of

tremor onset, giving Rp > Ro

Patient

R-ratio comparison between DT and LNN-2
All trials Test trials

Nto Ro Nte Ro Psf−o%
DT LNN-2

Rp β Psf−p% Rp β Psf−p%
ET1 52 0.79 11 0.82 45.05 0.55 0.67 35.48 0.67 0.81 40.12
ET2 30 0.89 8 0.90 47.37 0.86 0.95 46.24 0.88 0.98 46.81
ET3 16 0.86 4 0.91 47.64 0.68 0.75 40.48 0.84 0.93 45.65
ET4 30 1.29 7 1.20 54.55 1.16 0.96 53.7 1.13 0.94 53.05
Total 128 30
Wt Avg 0.94 0.96 48.98 0.81 0.83 44.75 0.88 0.92 46.81
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4.2 Discussion

sEMG and acc were used as the biosignals providing feedback for the design of automated closed-

loop DBS system. Since the typical tremor features of PD may vary for different states [13], we

trained the algorithms for Action and Posture/Rest trials separately. During the Action state, patients

performed a task of extension and flexion of wrist. During Posture state, the patient had to hold their

arms out and during Rest trials, the patient placed their arms in a relaxed state. Since during Posture

and Rest states, arms of the patient were more or less stationary, we merged the trials in these two states

while training for state-specific algorithms. 100% sensitivity was obtained by training the algorithms

separately, based on the arm state. An overall higher Rp was obtained using LNN-2 for state-specific

run compared to states-combined run. Similar better performance of LNN-2 was also observed in trials

at DS∗. Furthermore, we also compared DT and LNN-2 in offline learning mode, trained and tested

on the same set of Action and Posture trials for ET patients. For the same set of test trials, LNN-2

performance metrics are superior to that of DT.

4.2.1 Performance

Performance metrics were chosen to represent how well tremor is predicted. Sensitivity metric gives

how well the algorithm performs such that the tremor is predicted before it is actually observed. We

may achieve 100% sensitivity if tremor was predicted each time right after stimulation is switched off.

Accuracy value expresses performance taking false positives into account. β-ratio evaluates how close

to the actual tremor does the algorithm predict its reappearance.
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4.2.2 Sensitivity

In case of state-specific run, we were able to achieve 100% sensitivity using LNN-2 for DS∗. This

means that there were 0 ‘misses’ and all the predictions were made before the observed reappearance of

tremor.

For an on-demand tremor prediction system, it is essential to have 100% sensitivity so that the

patient does not feel any discomfort. Sensitivity of LNN-2 is better when run separately for Action and

Posture/Rest modes than when the modes are combined together. In case of offline learning comparison

of LNN-2 and DT for state-specific training, DT was unable to achieve 100% sensitivity with 1 FN for

PD2, whereas, LNN-2 had sensitivity of 100% for all eight PD patients. Both the algorithms achieved

100% sensitivity in case of state-specific training of four ET patients.

4.2.3 Accuracy

An overall accuracy of 83.05% was achieved for 59 trials at DS∗ when LNN-2 was separately

run for the two states. Accuracy gives the percentage of correctly predicted tremor i.e. True Positive

when prediction not made too early and True Negativewhen prediction not made in absence of tremor.

When trained for Action and Posture/Rest states together, higher number of FP or early predictions were

made since voluntary movement may have been mistaken as onset of tremor. It should be mentioned here

that the protocol of data collection for “Action” state required patients to perform extension and flexion

of the wrist continuously, which inadvertently was periodic in nature. This periodicity of movement

and its related frequency range may have characteristics similar to that of tremor, leading to excessive

FPs. Further investigation would, therefore, be required in freely-moving patients to better mimic the

“Action” state. DT and LNN-2 performed similarly, with respect to the accuracy metric, in case of PD
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patients; however, two FP predictions were made by DT in 30 ET test trials, when run in state-specific

offline learning mode, giving a lower accuracy for DT compared to that for LNN-2.

4.2.4 β-ratio

The R-ratios given in Table V and Table VIII give a comparison between DT and LNN-2. Ta-

ble V and Table VIII shows an overall higher Rp using LNN-2 than by DT for state-specific training.

Compared to trials at all DS, the R-ratios are higher for the trials at DS∗ for each patient. For patient

PD3, the recordings were done at 40-50 s stimulation periods which may not have included the optimal

duration of stimulation for that patient. It should be noted that finding DS∗ was not the primary objec-

tive of this study; however, it was found during the conduct of this study that Ro can be maximized by

selecting the right duration of stimulation. This is discussed further in Section 7.2.1. Rp of greater than

1 was achieved for patients PD4, PD6 and PD8 atDS∗. This gives DBS “off” time greater than or equal

to the duration of stimulation, reducing the amount of stimulation by half or more and increasing the

battery life at least by 50%. For 59 trials at DS∗, an average β∗ of 0.83 was achieved by LNN-2. A β

value close to 1 indicates that the prediction algorithm is able to attain maximum stimulation-free time

possible. However, β of 0.97 or higher, is usually not desirable, since there must be some time interval

(a few seconds) before DBS starts to suppress tremor. A higher β was obtained by LNN-2 than that by

DT for 47 PD test trials as well as for 30 ET trials. A higher percentage of stimulation-free time can be

obtained using LNN-2 applied to non-invasive sensors, for PD as well as ET patients. This is essential

to maximize the efficacy of closed-loop DBS systems, irrespective of the type of feedback signal.



CHAPTER 5

ON THE NEED FOR ADAPTIVE LEARNING IN ON-DEMAND DEEP BRAIN

STIMULATION FOR MOVEMENT DISORDERS

This chapter were published in Nivedita Khobragade, Daniela Tuninetti, Daniel Graupe: On the

need for adaptive learning in on-demand Deep Brain Stimulation for Movement Disorders, Engineering

in Medicine and Biology Society (EMBC), 40th Annual International Conference of the IEEE, July 2018

c©.

There is an increased interest in designing on-demand DBS systems due to their potential benefits

such as reducing amount of stimulation delivered, reduced side-effects as well as reduction in battery

power consumption. Studies using approaches of setting single threshold on power of the beta band

extracted from LFPs or on tremor power obtained from gyroscope signals have shown to reduce the

stimulation delivered, switching on DBS only in presence of symptoms (rigidity and tremor, respec-

tively). Effect of these manually set thresholds have to be studied for chronic use of on-demand system.

Other than reliability, an important factor to be considered when selecting the control signal and such

thresholds for an on-demand DBS system is robustness over time. Current studies have been carried

out over single session without analyzing the chronic implications. The authors of [44] stress that it is

essential to shift from acute trials of on-demand systems to their long-term evaluation.

59
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5.1 Training and testing on data from different sessions

Of the recruited patients, one PD patient and one ET patient had two separate data recording sessions

at least one week apart. The data collection and feature extraction was same as before. The robustness

was then assessed for two machine learning (ML) methods - Decision Tree (DT) and LAMSTAR neural

network (LNN) - applied to features extracted from sEMG and accelerometry signals recorded in sepa-

rate sessions. For both these algorithms, we first carried out training and testing with data of the same

session. Next, we trained the algorithm with data of one session and then tested it on that of the other.

Since the sEMG sensors and accelerometers are placed externally, this experiment is conducted to test

the robustness of such closed-loop systems. The performance metrics are compared for the algorithms

when training for tremor prediction was performed on signals from one session and testing on the other

session with the results obtained from training and testing on the same session. Performance metrics

used for this comparison are defined as previously described in Chapter 3.

5.2 Comparison of performance

Table IX and Table X give the performance metrics of LNN-2 and DT based tremor prediction for

patients ET1 and PD6. The number of trials used for training and testing are given as Ntr and Nte,

respectively. The average ratio of observed tremor-free duration without stimulation to the stimulation

period before being switched off (Ro te) is listed for all trials in the testing set. The performance metrics

include number of True Positives (TP), True Negatives (TN), False Positives (FP) and False Negatives

(FN) from which accuracy (A) and sensitivity (S) values were calculated. Rp te ratio was calculated

similar to the Ro te ratio using predicted tremor-free duration without stimulation for each testing set.

When training and testing was performed on the data of the same session (Table IX, sensitivity of
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tremor prediction was found to be 100% for both DT and LNN-2. β ratio values are listed for the

two algorithms for each session, with higher β for LNN-2. In table Table X, session numbers of the

training and testing datasets are given separately. Both DT and LNN-2 showed lower performance when

compared to the metrics of same session testing. LNN-2 achieved higher sensitivity compared to DT

but 100 % sensitivity was not achieved for all sessions. β was also higher overall for LNN-2 than DT

but both the algorithms did not perform as well for different session testing.
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TABLE IX. PERFORMANCE METRICS: TRAINING AND TESTING ON DATA FROM THE SAME SESSION

Patient Session
Trials

Rote Method
Performance metrics

Ntr Nte TP, TN, FP, FN A (%) S (%) Rpte β

ET1 1 10 3 0.57
DTC 3, 0, 0, 0 100 100 0.4 0.71

LNN-2 3, 0, 0, 0 100 100 0.53 0.94

ET1 2 31 8 0.93
DTC 4, 2, 2, 0 75 100 0.61 0.66

LNN-2 6, 2, 0, 0 100 100 0.73 0.78

PD6 1 12 3 2.67
DTC 2, 1, 0, 0 100 100 2.49 0.93

LNN-2 1, 1, 1, 0 66.67 100 2.3 0.86

PD6 2 11 3 2.87
DTC 3, 0, 0, 0 100 100 2.08 0.73

LNN-2 3, 0, 0, 0 100 100 2.86 0.99
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TABLE X. PERFORMANCE METRICS: TRAINING AND TESTING ON DATA FROM DIFFERENT SESSIONS

Patient
Training Trials Testing Trials

Rote Method
Performance metrics

session Ntr session Nte TP, TN, FP, FN A (%) S (%) Rpte β

ET1 1 13 2 39 0.73
DTC 16, 2, 11, 10 46.15 61.54 0.33 0.45

LNN-2 16, 1, 22, 0 43.56 100 0.3 0.41

ET1 2 39 1 13 1.07
DTC 4, 2, 4, 3 46.15 57.14 0.29 0.27

LNN-2 6, 0, 6, 1 46.15 85.71 0.49 0.46

PD6 1 15 2 14 2.72
DTC 6, 0, 2, 6 42.85 50 1.5 0.55

LNN-2 9, 0, 2, 3 64.29 75 1.74 0.64

PD6 2 14 1 15 3.27
DTC 6, 1, 4, 4 46.67 60 1.73 0.53

LNN-2 9, 1, 5, 0 66.67 100 1.79 0.55
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5.3 Need for adaptive learning

Though this comparison of performances is performed for only two patients (2 sessions each), the

need for adaptive learning and chronic use assessment is evident. Due to the nature of movement disor-

ders of disease progression and changing symptoms, clinicians evaluate the efficacy of DBS parameter

settings at least every three months. Apart from the changes over these longer durations, PD patients

have known to experience “on-off” phenomenon due to wear-off of the effect of levodopa medica-

tion [45]. While selecting parameters for closed-loop DBS system using any of the available control

signal options, the variability of psychological and cognitive state of the patient should also be taken

into account. Another factor to be considered for external sensors such as gyroscopes, sEMG and EEG

is the effect of small differences in their position on the selected parameters of the closed-loop system

for tremor prediction.

We presented here the preliminary results for chronic use of sEMG and accelerometry based on-

demand DBS system using two machine learning algorithms. The necessity for an adaptive learning

system was observed from the decrease in β-values for different session testing compared to the same

session testing. The present on-demand systems designed using power of beta band (extracted from

LFPs) or tremor power (obtained from gyroscope signal) require thresholds to be set for the stimulation

to be switched on or off. The effect of fluctuations in symptom severity or changes in symptoms over

time on the selected threshold needs to be studied. Adaptive systems would update their parameters with

the progression of disease. Our main contribution is to show that though both the algorithms predicted

tremor with a 100% sensitivity when testing over the same session as that for training, the sensitivity re-

duces when testing on a different session. It is also found that the ratio of predicted stimulation-off time
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Figure 11. Comparison between predicted and observed R-ratio when training and testing performed
on the same session data

Figure 12. Comparison between predicted and observed R-ratio when training and testing performed
on data from different sessions
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to observed stimulation-off time reduces when testing on data from the other session. These reduced

sensitivity and ratio metrics demonstrate why adaptive learning is essential in on-demand DBS systems.

In the future, we intend to develop a tremor-prediction algorithm with online learning capability that

would use new information to adapt with changes in symptoms.



CHAPTER 6

DETERMINATION OF DISTINCT PRE-TREMOR INTERVAL FROM SEMG DATA

WITHIN TREMOR-FREE-STIMULATION-FREE PERIOD IN PD PATIENTS

Results from this section to be submitted for publication.

While training the machine learning algorithms, a fixed window before observed tremor time point

was used for training as the tremor prediction time. The aim of this work to determine the existence

of distinct pre-tremor interval from sEMG data was motivated by the observation of a pre-ictal region

before epileptic seizure seen in Electroencephalography (EEG) signals. Such pre-ictal intervals do not

have a fixed duration before seizure appears as shown by [35]. Here, we show that a specific and distinct

Pre-Tremor (PT) interval exists within the No-Stimulation-No-Tremor (NS-NT) period. This was shown

using sample entropy and mean frequency features extracted from sEMG data in two tremor-dominant

PD patient with high R-ratio. Identifying this PT interval when DBS is off in sEMG signal based

features justify the use of sEMG sensors and are important to assess for on-demand predictive control

of DBS.

This pre-tremor region is not discernible looking at the signal; however, changes were observed in

certain extracted features from the sEMG signal over windows of 5 seconds. The data from one PD6

who had high R-ratio was considered to evaluate the changes in features over time after stimulation

is switched off, upto the timepoint where tremor reappeared. In this dataset, one session of PD6 data

was used consisting of 10 trials where tremor came back before stimulation was switched on again.

Three trials from PD8 were also considered where the R-ratio was high. All the three modes (action,

67
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postural and rest) were analysed. Sample entropy which measures the uncertainty was chosen as one of

the features as it can determine increase in regularity in muscle activity associated with appearance of

tremor. Mean frequency is also indicative of shift in power which may be related to tremor onset. These

two features were evaluated along with rest of the feature set used previously in the machine learning

algorithms and were found to be reflective of a pre-tremor region.

6.1 Efficiency operator

The metric used to evaluate these features is described here. Let m, n denote numbers of samples

at distances of m, n samples away from observed tremor, where m > n. Defining ratio r(PT, i) for all

m:

r(PT, i;m) =
Nw(PT, i;m)

m
(6.1)

where i is the range, Nw is the number of wins or occurrences in that range, PT stands for pre-tremor

Efficiency E can then be defined as:

E =
r(PT, i)

r(EP, i)
(6.2)

where EP denotes the early period before pre-tremor and, prior to first sample considered within

the NS-NT period, starting from end of stimulation.

Let:

∆N(i;m,n) = Nw(PT, i;m)Nw(PT, i;n) (6.3)

∆r(i;m.n) =
∆N(i;m,n)

(m− n)
(6.4)
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Hence, we define:

∆E(i) =
∆r(i;m,n)

r(EP, i;m)
(6.5)

∆E denoting an interval of E for samples of data lying at distances between m, n samples away from

observed tremor.

6.2 Results

The ranges were set for each of the features in 6 bins based on equal frequency. ∆N and ∆E were

calculated over 5 second windows. The six ranges were grouped together to have high, medium, low

ranges. Adjacent windows were compared to measure a drop or shift from high to low range for the

entropy and the mean frequency which are indicative of tremor reappearance. The results are tabulated

for each of the trials over listing the adjacent windows (total 10 second window) where such a drop

was observed. There were some drops which were false alarms since they were observed more than 40

seconds before the actual tremor was observed.
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TABLE XI. CHANGE IN ENTROPY AND MEAN FREQUENCY

Patient Trial
delta E delta N

PT NSNT

SaEn mf SaEn mf start duration

PD6
post30-1 12.5-22.5, 0-10 12.5-22.5, 0-10 12.5-22.5, 0-10 12.5-22.5, 0-10 22.5 298
post30-2 40-50, 5-10 40-50, 0-10 40-50, 5-10 45-55, 0-5 40 126
post30-3 10-25 10-25 10-25 10-25 25 124
post50-1 5-15 5-15 15-25, 0-5 15-25, 0-5 15 174
rest30-1 15-25, 0-5 15-25, 0-5 12-22, 0-5 12-22, 0-5 22 107
rest30-2 0-15 0-15 0-15 0-15 15 185
rest50-1 0-20 0-20 0-10 0-10 20 31
act30-3 15-25 15-25 15-25 15-25 25 67
act30-4 40-50 40-50 40-50 40-50 50 145
act30-5 15-25, 0-10 15-25, 0-10 15-26, 0-10 15-26, 0-10 25 54

PD8
post30-2 20-30 20-30 20-30 20-30 20 35
post40-1 20-30 20-30 20-30 20-30 20 132
rest40-1 16-26 16-26 16-26 16-26 16 69



71

Figure 13. delta N over 5 second windows of mean frequency

Stimulation is restarted at end of the first interval where a decision is made where ∆E(N1, N2) >

∆E(N5, N6) Namely where the two lowest ranges dominate the two highest range in both layers

F8 and F9 for the last 10 seconds. However, if already prior to 60 seconds into the NS-NT period

∆N(N1, N2) > ∆N(N5, N6) where decision is made according to ∆N , since initially ∆E is unreli-

able due to insufficient data.

Stimulation is to be restarted 10 seconds after estimate of start of PT interval is made.

To take care of the false alarms, mean power in frequency band of 8-16 Hz is used as the 3rd feature.

Adding this information can then help reduce the number of early predictions.

6.3 Conclusion

This work shows that there exists a pre-tremor region which can be used for tremor prediction. Only

sEMG signal was used to extract three features which show a drop in the ranges during this pre-tremor

region. By identifying this region, we provide proof that sEMG can be used as the control signal for
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prediction of tremor for design of on-demand DBS system. The data was limited for this study but

can be extended to other patients who may be good candidates for on-demand systems and have high

R-ratio.



CHAPTER 7

CONCLUSION AND FUTURE WORK

Parts from this chapter to be submitted for publication.

7.1 Conclusion

In this thesis, an automated tremor prediction algorithm has been implemented for the design of

closed-loop DBS system in eight PD patients. For each of these individual patients, an optimal duration

of stimulation was determined providing the highest stimulation-free period. A comparison was carried

out between the performance of combined-states and state-specific runs of LNN-2 algorithm for all

durations of stimulation and only the optimal duration of stimulation, specific to each patient. Offline

learning algorithms of DT and LNN-2 were also compared for the same eight PD patients and four ET

patients. Training was performed on 75-80% of the trials and testing was carried out on the rest. The

following conclusions are made from the obtained results:

1. The efficacy of on-demand DBS systems can be maximized by find the optimal duration of stim-

ulation for each patient. In 3 out of 9 patients, Ro of greater than 1 was observed, allowing at

least 50% of stimulation-free time. For all patients, an optimal duration of stimulation can be

determined which gives the highest stimulation-free time. LNN-2 gave higher Rp for trials at

optimal duration stimulation than that for trials at all durations of stimulation.

2. The offline learning comparison showed that LNN-2 performs better than DT for both PD and

ET patients. The training and testing trials were separate. Both the machine learning algorithms
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performed better when they were trained separately for the different modes of Action and Posture

/ Rest than when they were trained for the states combined together. In practice, the state-specific

tremor predictor would be preceded by another algorithm to classify the state requiring features

extracted mainly from accelerometer signal.

3. The need for an adaptive learning algorithm was shown for on-demand systems since the control

signals may change with time and the parameters used to predict onset of tremor may not be robust

to these changes. By adaptive learning with new data obtained from every day use of the system,

the algorithm should be able to monitor these changes and update the parameters accordingly.

4. Sample entropy and mean frequency features were shown to indicate the pre-tremor interval in

patient PD6. It is essential to identify the pre-tremor interval for on-demand systems.

5. By using a time-adaptive algorithm, a closed-loop system can be developed that adjusts to the

changes in symptom features as the disease progresses. LNN-2 is a feasible option for such an

automated system due to its simplicity of implementation. The link weights are updated for the

winner neuron of each subword layer in real time. Only when tremor is experienced, the patient

needs to manually record the miss of tremor prediction to update the link weights going to output

neuron T.

7.2 On-Demand closed-loop DBS in practice

This system would be effective for patients with primary PD symptom of tremor, well-controlled

by any type of open-loop DBS. Since tremor is the first symptom to reappear once the stimulation is

switched off, other secondary symptoms such as rigidity and bradykinesia would also be taken care
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of by this closed-loop system. Feature selection and training need to be carried out for each patient.

Since the metrics indicate better performance when the training is done separately for the two states, the

algorithm will have to be preceded by a state classifier in practice. IPG programmer should receive a

trigger signal from the wearable tremor predictor device via Bluetooth. The external programmer would

then communicate the on-off signal to the IPG. This is more convenient in newer IPG programmers

which can communicate without direct contact to IPG.

Non-invasive sensors for sEMG plus acc could be stand-alone devices or part of the ubiquitous

activity-tracking wearable devices that communicate with the IPG. This closed-loop system would re-

duce the amount of stimulation being applied to the brain and its related side-effects. It would improve

the IPG battery life, reducing the number of battery replacement surgeries, the associated risk of infec-

tion and the cumulative cost. It would also be an effective system for rechargeable IPG batteries which

have longer lifespan by allowing an increase in the non-charging interval of the battery charging cycle.

7.2.1 Selecting Optimal duration of stimulation

Though this was not the main goal of this study, an important finding has been made during the

course of 10 sessions of data collection from nine PD patients. For some patients, tremor did not

reappear instantaneously and in some cases, did not reappear even after three minutes of switching

of the stimulation. In the on-demand, closed loop DBS systems, stimulation is turned on when onset

of tremor is predicted to occur. A predetermined duration of stimulation (DS) is applied, followed

by repetition of the process of tremor prediction. DS∗ can be selected to maximize, Ro, the ratio of

tremor-free period to the stimulation duration [19,46]. Patients who can most benefit from this designed

closed-loop system are those for whom tremor does not reappear immediately after discontinuing the
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stimulation. Based on these metrics, a clinician should decide whether the patient will benefit from

on-demand system and which optimal duration of stimulation would give the maximum percentage of

stimulation-free time.

7.2.2 Preventing Paresthesia

Since this on-demand DBS system requires the stimulation to be given in a binary fashion, some

patients experience paresthesia or tingling sensation in their hands when stimulation is switched on

rapidly after being off for some duration. This sensation due to sudden application of HFS can be

overcome by applying a gradually ramping of stimulation onset and offset instead of rapid stimulation

[21].

7.2.3 Rechargeables IPGs

Rechargeable IPGs (Medtronic Activa RC, Boston Scientific Vercise) have a longer battery life of 9

to 25 years, requiring less frequent battery replacement surgeries. These need to be recharged every 1-2

weeks for 3-4 hours. Such systems may also benefit from a closed-loop DBS by improving the battery

charging cycle. By stimulating on-demand, the number of days without recharging can be increased.

7.2.4 Continuous learning

From the metrics discussed in results section, LNN-2 showed better overall performance compared

to DT. An important advantage of LNN-2, which makes it a superior prediction algorithm than DT, is

its ability to continuously adapt with newer information. In case of DT, the training once completed, the

thresholds remain unchanged over time, irrespective of the changes in PD symptoms. Incremental DT,

which is an online learning method, requires the Classification and Regression Tree (CART) algorithm

to be modified to evaluate the change in impurity at each node that the new instance traversed and find
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the new optimal split for the given change in impurity [47]. However, LNN-2 can continue learning

online with every new input feature set, continually adapting to the disease progression, without any

modification to the current architecture. The system can be set up such that, the link-weights to no-

tremor (NT) neuron are rewarded as long as tremor is not observed. If the patient experiences tremor, a

manual button tap would indicate occurrence of tremor so that “punishment” is given to the NT neuron

link-weights and tremor (T) neuron link-weights are rewarded.

7.3 Future work

7.3.1 sEMG and acc signals recorded from free-moving patients

The current data collection protocol for all eight PD patients and four ET patients required the

patients to carry out one of the three tasks in each trial: Action where the wrist would be extended or

flexed, Posture where the hands are extended out horizontally or Rest where the limb remain stationary

with no effort exerted on the sEMG muscle source. Action task performed by the patients is repetitive

and periodic in nature. Such controlled environment does not completely reflect the activities of free-

moving patients. It is, therefore, essential to also collect and analyse data during daily activities of the

patients in their natural environment.

7.3.2 Extending to other disorders

A similar analysis has to be carried out for ET data from the second recording set-up. Online

learning approach, LNN-2, has to be implemented for all ET patients (four from first set-up and two

from second set-up) following the state-classifier algorithm. An analysis will also be carried out on

sEMG+acc data recorded from a non-tremor PD patient and from open-access wearable data of NTD

PD patients to assess if bradykinesia can be tracked for on-demand DBS systems.
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