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SUMMARY

The main goal of this thesis titled ”Packet Classification using Growing Hierarchical Self-

Organizing Map” is to validate the possibility of using a new approach for a well know problem.

The core idea is to present a possible implementation of a Growing Hierarchical Self-Organized

Map (GH-SOM) for use in packet classification in the context of software-defined networking

(SDN). SDN applications are characterized by frequent network configuration updates on-the-fly

and a large number of rules thereby requiring a highly flexible packet classification mechanism.

Moreover, as network bandwidths continue to grow, a high-performance packet classification is

imperative.

Today’s technology adopted for packet classification does not scale well in throughput and

power consumption as number of rules increase. The main change proposed in this implemen-

tation is to move all the complexity to an offline phase, train a modeled neural network and

exploit its properties to provide a more efficient solution for packet classification during run

time. Different input space and different parameters have been tested for training the network;

multiple simulations have been performed in order to find the best solution to this problem. The

work proposed consists of a trained neural network that classifies the rules of a given data-set,

then input packets are applied and rule with highest priority is determined.

Multiple simulation has been carried out for finding the best feature map for the different

layer of the GH-SOM structure, in order to provide the best accuracy in every application. The

MATLAB code was designed to give the possibility to the designer to easily adjust the training

ix



SUMMARY (continued)

parameters of the neural network in order to provide a general implementation of the structure

which can be adapted in multiple situations.
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CHAPTER 1

INTRODUCTION

1.1 Packet Classification problem

From the beginning of the digital era, the amount of network traffic to be handled has

grown exponentially and large datacenters and enterprise networks have become popular and

necessary in order to manage this exponential growth. There exist multiple paradigms useful for

managing the networks within these datacenters and one of the most popular is the Software-

Defined Networking (SDN). In traditional networks, control-plane functions (e.g., routing, load

balancing, access control) are distributed among network switches and routers, while in SDNs

control-plane functions are managed by a logically centralized controller. The interface between

the SDN controller and switch data-plane is handled by OpenFlow 1.

Although SDNs have changed how we manage large networks, the architecture and algo-

rithms used to handle packet classification have remained largely unchanged; the goal of this

thesis is to propose a new approach that can be suitable for improving packet classification.

Packet classification is defined as the management of the data flow (represented by data

packet) in a network router. This topic has been widely studied in the recent years in order

to accelerate network applications. Packets can be classified by source address, destination

1OpenFlow is a communication protocol through which is possible to access the data plane of a
network switch over the network [1].

1
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address, source port, destination port, mask and protocol type; field format will be discussed

in more detail in the next chapters.

The packet classification problem attempts to identify the highest-priority rule that matches

a given network packet out of a set of rules. Each rule specifies a collection of packets identified

by a combination of packet header fields. A priority is assigned to each rule in order to avoid

possible conflicts in case of multiple matching rules. A rule’s packet header format depends

on the protocol used: in this work the Internet Protocol version 4 (IPv4) protocol has been

considered.

In this work we will show that a hierarchical tree of SOMs is fast, flexible, and suitable

to fulfill the requirements of packet classification in SDN applications. We aim to present an

approach to segregate rules based on priority and header field which are filtered into different

SOMs and stored in bins at the bottom of the SOM-based tree. The main goal is to overcome

limitations of current state-of-the-art solutions by exploiting simple neural networks.

1.2 Classification of existing solutions

Before starting with the analysis of the proposed solution, it is important to provide a

background on existing solutions in order to fully understand the outcomes of the work.

Most of today’s solutions applied for matching incoming packet against a set of flow rules

employ Ternary Content Addressable Memories (TCAM). TCAM is special high performance

memory which searches its entire content in a single clock cycle performing a brute force search.

In other words, for every incoming packet the whole contents of the memory is searched in

order to find the best match for the given input. Although TCAMs are characterized by a high
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search speed, they do not scale well in throughput and power as the number of rules increases.

Moreover, SDNs are characterized by frequent updates to rules and because of the fact that

TCAMs physically order rules based on priority, they perform poorly with high speed dynamic

changes.

There are three key limitations of TCAMs as described below:

1. In traditional networks, rules are grouped manually by network administrators and each of

these groups contain hundreds of similar rules. In Software-Defined Network applications,

this rule aggregation process is automated by SDNs and rules are added or updated on

demand during the lifetime of the SDN. As stated in [2], OpenFlow allows packets to

be matched against a large set of header fields which increases the complexity. Limited

TCAM capacity is a serious limitation to fully exploit an SDN’s potential [3].

2. The rate of updates supported by TCAM-based switches is about 50-100 updates per

second [4]. Therefore, if the rule update rate of an SDN application is higher than this

threshold, the update performance is decreased dramatically [5].

3. The last reason has been already hinted in previous sections: as datacenters grow in scale,

poor scalability of TCAMs becomes an ever more critical bottleneck.

The approaches currently adopted to address the packet classification problem can be di-

vided in two categories: TCAM and algorithmic.

• TCAM works at the hardware level, exploiting parallel brute-force search of all rules for

every incoming packet; this leads to high energy and space overhead in the hardware. As
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already mentioned, TCAMs physically sort rules based on highest priority and because

of this, frequent updates are slow and complex. Considering the worst case all the rules

should be moved to make space for the top priority rule updated.

• Algorithmic schemes try to reduce the search complexity of the TCAM protocol exploiting

multiple methods. The current state-of-the-art algorithmic approaches exploit variants of

decision trees.

Another solution currently adopted to address the packet classification problem exploits the

implementation of deeply pipelined SRAMs instead of TCAMs; in fact, SRAMs offer higher

throughput despite a larger number of memory accesses. In any case, the number of memory

accesses required per packet match is a significant hurdle to their scalability because line rates

grow faster than SRAM speeds.

1.3 Geometrical interpretation of the problem

Before starting, it is important to point out that each rule can be defined by its different

components; in IPv4 this data is made up of six items, each of which is defined by a field of the

packet header. In our investigation, four among the six fields have been used. A more in depth

investigation into IPv4 and packet header has been presented in 2.1.

The idea of a geometric interpretation of classification is due to Lakshman and Stiliadis [6].

They stated that each rule can be considered as a hyper-rectangle with dimensions specified

by the rules header fields. For a better comprehension of the geometrical analysis it is possible

to consider a 2D example, remembering that in IPv4 the rules have six fields and thus six

dimension (only four of them have been considered for the implementation of the system).
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Figure 1: 2D geometrical representation of packet classification.

In the example above, the dataset is composed by six rules and each header’s field define a

range of values in the space. The intersection of two ranges in a 2D space forms a rectangle.

As already stated presenting the problem, the goal of packet classification is to find the highest

priority rule that matches the incoming packet. This process, from a geometrical point of view,

can be seen in this way: the incoming packet represent a point in the 2D space and the highest

priority matching rule is the rectangle with the smallest area that contain the point. This

geometrical interpretation was fundamental in the first steps of the project as it was possible

to analyze the problem from a previously studied, and better understood point of view.

State-of-the-art solution exploit decision tree to split rules into different bins in order to

face the packet classification problem . Each node of the mentioned tree represents a cut in
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Figure 2: 2D rule-set and decision tree.

the space and the leaves represent the rules. From a geometrical point of view, decision trees

exploit the idea created in [6] and represent rules as hyper-cubes in the multi-dimensional space;

cuts divide the space into sub-spaces which partition rules into smaller subsets. The algorithms

recursively partition the smaller spaces until the sub-spaces only contain a handful of rules that

can be manually searched (brute force method using TCAMs).

Figure 2 shows a sample of a two-dimensional rule-set and the corresponding decision tree.

Every node divided into leaves is referred to as a parent, while each leaf node is called child.
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In the example shown, no more than two rules need to be searched at any leaf node and they

match mutually exclusive sets of packets. During classification of new packets, the input starts

at the root node of the decision tree and traverses the parent nodes towards its appropriate leaf

node where a matching rule could be found.

Even though decision trees decrease search complexity, they do not scale well with increasing

number of rules. One critical drawback of using decision trees is the high update complexity.

Frequent updates are one of the main characteristic of packet classification in SDN applications.

In [5] is stated that rule updates may increase tree-imbalance to the point where the decision

tree needs to be re-balanced to keep the search time under control. One of the main problem

regarding decision trees is the re-balancing process. In state-of-the-art solutions, large rules are

replicated across multiple sub trees, increasing memory overhead. In a GHSOM-based system,

the stored rules are not repeated in multiple locations and therefore the number of movements

of rules is lower.

1.4 State-of-the-art solutions

State-of-the-art solutions regarding packet classification are represented by presented deci-

sion tree algorithms. [7] can be considered as a good starting point for the analysis of these

algorithms.

The best algorithms exploited for packet classification in current systems are:

• HiCuts

• HyperCuts

• EffiCuts
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EffiCuts represent an evolution of HyperCuts which themselves are an evolution of HiCuts.

1.4.1 HiCuts

The first idea for partitioning the multi-dimensional rule space exploit HiCuts. HiCuts

performs the presented operation through a decision tree with the goal of separating the rules

in different leaves. Starting from the root node (unit 0) that contain the whole dataset, HiCuts

cuts the space among a single dimension creating multiple equi-sized sub-spaces. Child nodes

are represented by these sub-spaces. This split process is iterated until the number of rules in

a child node is below a certain threshold. For classifying an incoming packet, we traverse down

the decision tree in accordance with the decisions taken at each level, and finally the rules at

the leaves of the tree are searched linearly for finding the best matching rule for the incoming

packet.

In the paper [7], it is presented an example of how HiCuts works. Modifying slightly the

Figure 2 it is possible to obtain the Figure 3, useful for understanding how HiCuts works.

Initially, the 2D plan is divided along the first dimension (Cut 0); the first layer of leaves of the

tree contain the sub-space generated by the first cut. Subsequently, a second cut is carried out

(Cut 1): the first sub-space is divided in two more child along the other dimension. Multiple

cut can be performed if a leaf contain too many rules.

The critical drawbacks related to HiCuts are (1) the fact that the tree depth is dependent on

the distribution of the rules in the rule space and (2) due to the large amount of redundancy in

the tree. The first limitation comes from the inability of HiCuts to perform multi-dimensional

cuts on the rule space; this problem is solved with the improved Hypercuts. On the other
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Figure 3: HiCuts in a 2D rule space.

hand, redundancy cannot be captured if siblings do not share the totality of rules (partial

redundancy).

1.4.2 HyperCuts

HyperCuts is a decision tree-based algorithm and it has been proposed to address HiCuts’

shortcomings. It represents an evolution of HiCuts and is based on simultaneous multiple

dimension cuts. Hypercuts also addresses the partial redundancy problem: it recognize when

a group of rules is common to multiple siblings and moves it to the parent.
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Figure 4: HiCuts vs. HyperCuts.

In Figure 4 from is presented an optimal example of the differences between HiCuts and

HyperCuts: the height of the decision tree is reduced by applying HyperCuts which cuts the

plane into four squares with one division.

HyperCuts overcomes some but not all critical problems of HiCuts: regarding redundancy,

is it not possible to completely eliminate it when the repeated rules are not present in all the

siblings.

1.4.3 EffiCuts

Because of its sub-optimal solution regarding redundancy, HyperCuts still incurs memory

overhead with large test sets. For this reason, Efficuts represents the real state-of-the-art in

packet classification. As explained in the paper ”EffiCuts: Optimizing Packet Classification

for Memory and Throughput” [7], EffiCuts is a feasible solution to the previously mentioned

overhead of other algorithms. The new ideas used in this approach comprehend separable trees
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combined with selective tree merging. These tree-based algorithms are employed in order to

face the variation in size of overlapping rules, while a particular type of cuts (equi-dense cuts)

are used to face the change in the rule-space density. EffiCuts represent an improvement on

HyperCuts, but still employs all of HiCuts and HyperCuts heuristics.

In this solution, redundancy is lower that the previous solutions, but is still present; one of

the biggest advantages of GHSOM based solutions is the fact that rule redundancy is completely

eliminated.



CHAPTER 2

THEORETICAL BACKGROUND

2.1 Internet Protocol version 4

As already stated in 1.1, the goal of Internet Protocol is to provide a location of a computer

systems on networks; the last protocol released is the Internet Protocol version 4 (IPv4). An-

other result of the mentioned code is that the identification of multiple systems on the network

is easier then before its application.

Each message in an IPv4 (or IPv4) packet consist of a header that controls information for

addressing and routing, and a payload consisting of user data.

Source 
32 bits 

Destination 
32 bits 

Source Port 
16 bits 

Destination
Port 

16 bits 
Protocol Mask 

Figure 5: Simplified IPv4 header format.

The Mask and Protocol fields have not been considered in this work and therefore the input

space comprises of the first four fields only: source address and destination address, source port

and destination port.

12
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2.2 Self-Organized Map

The following sections of this chapter provide a necessary background of the tool (GHSOM)

used for implementing the solution.

Self-organized Map, introduced by Kohonen [8], is a type of artificial neural network (ANN)

that is trained using unsupervised training 1.

SOMs exploit dimensionality reduction in order to provide a low-dimensional, discretized

representation of the space of the training inputs; this representation is called map. The

elements which form the maps are called units or nodes. Patterns that are close in the original

(higher dimension) space are also close in the reduced feature space (lower dimension). In

general, a SOM’s output space is typically one or two dimensional. One of the main feature

fundamental for packet classification is the absence of redundancy in classification. This means

that if a data has been classified in a certain node, it will not appear again in another unit.

The input-output relationship of the neural network can be expressed by the following

equation:

yi = xT ∗ wi (2.1)

1Unsupervised training is based on a learning algorithm that finds (by itself) similarities between
different training samples and classifies them accordingly (usually this classification is called clustering
when talking about unsupervised learning). In certain contexts, the process is also referred to as self-
organization. A training dataset is used to train the network, but there is no output information for the
members of the input dataset.
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Output
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Figure 6: Two-dimensional lattice of neurons.

In the Figure 6 the input vector could be seen as x = [x1, x2, x3, x4]
T and i indicates the

number of the neuron unit. In the example shown above, a two-dimension SOM has been

shown. Each unit has its own weights vector which will be used for determining the winning

neuron during the calculation of the output given certain inputs. No activation function has

been used in the SOM shown in the figure above or in the implemented SOM-based tree.

2.2.1 Training Self-Organized Map

As every neural network, the self-organized map needs to be trained against a group of

training input in order to be able to work properly.
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The Self-Organizing Map consists of a set of nodes i, which are arranged according to some

topology: generally, the nodes are positioned to form a two-dimensional grid (Figure 6). A

weight vector wi of the same dimension as the input data is assigned to each of the node i,

wi ∈ Rd. Generally, in the initial step the weights are randomly initialized. Training a self-

organized map requires repeated learning iterations: t represents the current training iteration.

During each learning step t, an input xi is taken from the training dataset and presented to

the map. The winning unit for the presented input is called µ(x) and is chosen by computing

the highest activity level of units. Activity level depends on the Euclidean distance between

the input pattern and units weight vector; thus, the winning neuron is represented by the node

associated to the smallest Euclidean distance between its weight vector and the applied input

vector.

The general formula for computing the distance at each iteration is:

µ(xi) = argmin
k
‖xi − wk‖ (2.2)

Where k represents the number of neurons of the SOM.

The winning unit µ(x) is adapted in a way that, at future presentation of the same input

pattern, it will exhibit an even higher activity level. The adaptation process is performed at

every learning iteration with the goal to reduce the differences between input patterns and unit’s

weights. The update formula of weights is generally the following (applied to all neurons):

wk = wk + η ∗ hk,µ(xi)(xi − wk), k = 1, ..., k (2.3)
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The other elements of the formula are η that is the learning parameters and hk,µ that is

the topological neighborhood function around the winning neuron µ. Typically the learning

parameter is monotonically decreasing in the course of time and takes values between 0 and 1:

η(t) = µ0 ∗ exp(
−t
µ1

) (2.4)

for certain parameters µ0 and µ1. The topological neighborhood function hk,l is chosen to

be a monotonically decreasing function of dk,l that represents the distance between the neuron

k and the neuron l on the map grid.

The general effect of the learning rule is that it pulls all weights toward the input pattern

xi. However, the winning neuron is pulled the most due to the nature of the topological

neighborhood function. The pulling effect is reduced for neurons that are further away from

the winning neuron.

2.3 Growing Hierarchical Self-Organized Map

Classical SOMs presented in the previous section show two major limitations: they are

static structures and therefore offer limited capabilities for the representation of hierarchical

relations of the data. Also, since SOMs are unsupervised learning structures, no prior knowledge

of the underlying data distribution means that there is no recourse in cases where the initial

number of neurons is insufficient to adequately segment all the data. For addressing these

two limitations, the Growing Hierarchical Self-Organized Map has been introduced. Packet

classification applications require an high dynamism in modifying structures based on the input

dataset. The GHSOM is a neural network with a hierarchical structure and is composed by
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independent growing SOMs. The GHSOM is characterized by the ability to grow both vertically

and horizontally; it means that, based on the heuristic chosen for the training, the size of each

map adapts itself to the characteristic of the input space.

Each map of the structure grows in size (depth and breadth) in order to represent a collection

of data at a particular level of detail. The level of detail is chosen before the training, through

heuristics parameters that will be more deeply discussed in section 2.3.2.

Layer 0

Layer 2

Layer 1

Layer 3

Figure 7: General GHSOM structure.
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A graphical representation of a GHSOM is given in Figure 7. In this example the first layer

comprises of a 2 by 2 map. Each unit of this first SOM contains a subset of input data and

provides a rough organization of the main clusters in the input data. In other words, data

points contained in the same unit are more similar to each other than data points in other

nodes. The three maps in the second layer classify the data with more detail compared to the

first map; they will be expanded as well, until the granularity level decided is reached. In the

example considered, as the authors of the paper [9] confirm, one of the unit of the first unit

has not been expanded into a map on a lower level because it has already reached the desired

level of accuracy. The maps have different sizes based on the distribution of the input dataset;

differently from the classical SOMs, the designer does not have to decide the size of the map a

priori.

2.3.1 Growing Hierarchical Self-Organized Map mechanism

Before starting with the actual algorithm used for training GHSOM structure, it is important

to define the mathematical tools used for this purpose. The basic principle of the GHSOM is to

adapt its structure to the distribution of the input dataset. For doing this it is important that

the growth of the map is correlated to the values of the mean quantization errors computed.

Formally, the mqei of a node i is computed as the mean Euclidean distance of:

• the weight vector wi of the unit i;

• the input vectors xj that are components of the group of input vectors Ci mapped onto

the aforementioned node.

nc indicates the number input vectors. The general formula is the following one:
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mqei =
1

nc
·
∑
xj∈Ci

‖wi − xj‖, nc ∈ Ci, Ci 6= ∅ (2.5)

The first step of the training begins with the calculation of the mean quantization error of

the single unit at the layer zero. In the following equation, nI is the number of all input vector

x of the input dataset I:

mqe0 =
1

nc
·
∑
xj∈I
‖w0 − xj‖, nI ∈ I (2.6)

The value of mqe0 measure the degree of overall dissimilarity of the input data. Afterwards,

it will be discussed the reason why this value is a crucial parameter regarding the growth process

of the artificial neural network.

2.3.1.1 Training and growth process of a map

Once we have the necessary parameters, it is possible to begin with the actual training of

the structure. Beneath the layer 0, a new map is created. The size of this dimension depends

on the heuristics that will be treated in 2.3.2. The map at the first layer is trained using a

certain procedure (for example the one shown in 2.2.1). After a predefined number of epochs

of iteration and input fed to the map, the mean quantization error of each unit is analyzed. At

this point there are two possible scenarios:

• if mqe is high it means that for the selected unit the level of accuracy desired for the

representation of the input space has not yet been reached.

• a low mqe shows that the level of granularity desired for the input space has been reached.
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The quantitative value of high and low mqe will be discussed in the section dedicated to

the choice of the heuristic parameters 2.3.2. In the first scenario, it is necessary to generate

new units in order to better represent the input space. First of all it is necessary to select the

two nodes among which a new row or column will be inserted: the error unit e is associated

to the node which posses the highest mean quantization error, while the unit d represents its

most unlike neighbor. After computing the two elements, a new column or row of nodes is

inserted between e and d. The weights of the created units are initially set as the average of

their corresponding neighbors. The insertion process is shown in Figure 8.

e

d

e

d

e d e d

Figure 8: Insertions of units.
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The inserted units are marked in gray.

Specifically, keeping in mind the assumption made previously it is possible to describe the

growth process as presented. Consider Ci as defined for Equation 2.5, i.e. Ci ∈ I; let than wi

be the weight vector of unit i. At this point it is possible to calculating the error unit e as

follows:

e = argmax
i
{ 1

nc
·
∑
xj∈ci

‖wi − xj‖}, nC ∈ Ci (2.7)

The distances between the weight vector of error unit and the weights vectors of the neigh-

boring nodes is computed in order to find the most dissimilar neighbor d, the maximum value

indicates the unit d.

The second scenario described in the analysis of the mean quantization error occurs one

the value of mqe can be considered low. The enlargement process stops when the map’s mean

quantization error1 reaches a certain value τ1 of the mqeu of the corresponding node in the level

above the one considered.

MQEm =
1

nU
·
∑
i∈U

mqei, nU ∈ U (2.8)

1The map’s mean quantization error is commonly named MQE in capital letters.
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The formula for computing the MQE 1 of a map is reported in Equation 2.8. As we can

see, it is defined by the mean of all nodes’ mqei of the subgroup U of the maps’ nodes where

data is mapped.

Specifically, MQE is used to delineate the stopping criterion of the growth process of a

single map m:

MQEm < τ1 ·mqeu (2.9)

It is clear from the previous formula that the smaller the parameter τ1 is, the longer the

training will last; longer training leads to larger map.

Once that the training of a map is finished, each unit is checked for further expansion. More

formally, if a certain unit contains too diverse set of input a new map will be created in the

next layer. The criterion for stopping the growth of depth of the structure depends on a second

parameter τ2; this value decides if the quality of the data representation is enough or it will be

necessary to create a new map in the next layer. This is described in the following formula:

mqei < τ2 ·mqe0 (2.10)

It is notable that this second stopping principle is based on mqe0 that represents the mean

quantization error of layer 0, for each unit on all maps. The new map generated will be trained

1map’s mean quantization error MQE is indicated in capital letters so as not to be confused with the
standard mean quantization error.
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using the input vectors mapped to the unit which has just been expanded. The process is

iterated until all the lower leaves of the structure meet the criterion given in Equation 2.10.

2.3.2 Heuristics

As it has been pointed out several times, one of the main advantages of GHSOM structures

is the possibility of a node to grow in depth independently from the other units. This feature

allows the GHSOM to represent every dataset adapting the structure to the distribution of

the input elements. The growth process - vertical and horizontal - mainly depends from two

parameters:

• the parameters τ1 controls the actual growth process of the GHSOM; thus, it controls the

final size of each map.

• τ2 controls the data representation granularity (the detail of all units. It means that

each map has to posses a minimum level of quality of data representation. GHSOMs

perfectly suit this feature providing the required number of units for ensuring that the

representation detail level meets a minimum threshold for all parts of the input dataset.

All this discussion about SOMs and GHSOMs has been already treated by prof. Andreas

Rauber, prof. Dieter Merkl and prof. Michael Dittenbach in their paper [9] and [10].



CHAPTER 3

OVERALL SYSTEM AND VALIDATION OF THE IDEA

Before starting with the description of the system, it is right to explain from where the basic

of the MATLAB code came from. From the beginning, it has been decided to not use any

pre-built neural network functions; this is because it was necessary to have complete control

over all the parameters, training algorithms and functions for reaching the best performance

offered from this type of implementation. Thus, the basic of the MATLAB code used for

the GHSOM is the one developed by the Department of Software Technology of the Vienna

University of Technology [11]. The code has been modified to make it suitable for packet

classification applications.

The output grid size in the traditional SOM is fixed. Therefore, the traditional SOM does

not adapt to the characteristics of input sample space and it is not suitable for problems char-

acterized by frequent update of the training rule-set. Moreover, dataset in packet classification

can present rules with different distributions in the space (dataset’s characteristics are diverse,

based on the type of packets 4.1) and, as already stated, the distribution may dramatically

change over time due to rule updates in SDN applications. To handle rule updates, the Grow-

ing Hierarchical Self Organized Map has been adopted and implemented.

The goal of this thesis is to exploit learning architectures to solve in a clever way the

packet classification problem presented in the first chapter. The core idea is to train a GHSOM

on different rule-sets to find the best match rule for each input. A reinforcement learning

24
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style system has been used to find the best heuristics for building the GHSOM based on the

characteristic of the dataset. Hence, the overall system shown in Figure 9, is made up of two

blocks:

GHSOM 
System 

Training Dataset 
Input Packet 

Matched
RuleTCAMs 

Heuristics 
Controller 

Figure 9: Overall system.

• The GHSOM system is the main block of the system and it is composed by the SOM-

based structure.

• The Heuristics Controller which, through a reinforcement learning style network, select

the best parameter for building the GHSOM.

• The TCAMs at the last leaves of the SOM-based trees are used to perform a brute force

search on a handful of rules, in order to find the highest priority match. Furthermore, to

increase the accuracy of the general system an additional memory has been implemented

for storing the most critical rules (additional TCAM).
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Before starting with the explanation of the solution, an aspect must be underlined. During

the study, tree structure, leaves and bins will be mentioned several times and, from now on,

when trees are mentioned we are referring to the SOM-based tree that represent the GHSOM

system. The leaves of the tree are the children of a certain parent node and each of them

is composed by a Growing-SOM (GSOM). The bins indicate the last leaves of the trees; at

a hardware level, the bins are mapped to TCAMs, each of which contain a small number of

rules. This is used to perform a brute force search for finding the highest priority match for

the incoming packets within rules for a leaf nodes. As already mentioned in 1, TCAM is a

specialized type of high-speed memory that is able to search the entire contents in a single

clock cycle. TCAM provides the addresses where the requested data can be found.

The core idea of this study is to create a hybrid system that exploits the high performances

of TCAMs, decreasing their drawbacks which are mainly due to bad scalability in throughput

and to high power consumption as the number of rules increase. The structure presented in

the following sections is composed of two separate levels: the higher level is implemented by

means of GHSOM and aims to classify the input space based on the distribution of the input

parameters, while the lower level is employed in the search of the highest priority matching rule

and it is implemented by TCAMs which perform a brute force search against small subsets of

rules (decreasing in this way the drawbacks of the mentioned memories).

3.1 Overall structure

As already stated in 2.2, a SOM produces a low-dimensional (usually 1-D or 2-D), discretized

representation of the space of the training inputs. The first step for building a system able to
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GHSOM­1 GHSOM­N

Rule bins: Each bin contains rules of similar
size (similar priority) and position. Rules in
the neighboring bins are more similar to each

other than in the far away bins.

Location­based
clustering: centroid of
rule hyper­rectangle as

feature

Size­based
clustering: Use
size as rule

feature

Iterate Location­
based clustering

GSOM 
1st Layer 

Apply Packet
Header Here

Network Rules
Applied Here

Figure 10: SOM-based tree used for Packet Classification.

perform a correct packet classification is to choose the input space wisely. The idea followed in

this work is to use a first layer of GHSOM that can only grow in width and whose feature map

depends on the log10 scaled value of two parameters:

• Volume of the hyper-cube: the volume of the four dimensional hyper-cube has been

computed as the multiplication of the four edges of the figure. In other words, the vertices
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of the hyper-cubes are determined by the rule ranges across various header’s fields and

these values have been used as edges of the figure.

• Hyper-cube surfaces area: these areas are computed multiplying the permutations of

the different edges of the hyper-cube.

The first layer classifies the whole set of rules in multiple subsets based on the parameters

explained in the list above. For each subset, the locations of the hyper-cubes are computed.

These locations are represented by the centroids of the hyper-cubes and are used as input

parameters for the second layer of GHSOMs. The locations of the rules in the space are therefore

used to develop finer clusters of the dataset. Thus, centroid-based clustering is iterated from

the second layer to the end of the tree. Moreover, it is important to remember that the second

layer of GHSOMs can grow both in width and in depth (unlike the first level of the tree); the

growth depends on the training parameters τ1 and τ2.

During classification, the input packet headers (which geometrically represent a point in the

4D space) are applied from the second layer of the SOM-based tree. This because these input

packet headers are only characterized by their position in the rule space (they do not have a

volume or surfaces) and are composed of four fields. Another reason is related to the intrinsic

characteristic of SOMs: the input dimension of the training samples has to be the same as the

input dimension of the test inputs.

The process develops in the following steps:

• during the training phase, the feature map of the second layer of the GHSOM is composed

of four points which represent the centroids (location) of the hyper-cube of each rule.
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• during the test phase, the four fields of the feature map are composed just by the packet’s

position in each dimension of the input space as determined from the packet header.

At the lower leaves of the tree, rules are associated with an edge bin. The network’ rules in

a certain bin match each other with respect to their shape and position. Moreover, SOM-based

rule clustering is also ordered from bin-to-bin regarding rule similarity; it means that rules in

the adjacent bins match each other more (in priority and header fields) than in the bins farther

away.

3.1.1 Additional TCAM

This part of the project will be further clarified in the 4 section, but it is worth mentioning

while presenting the overall structure. During the training of the GHSOM where the best

heuristics are chosen (the process is explained in 3.7.1, the map is tested with a subset of

incoming packets randomly generated by Classbench 4.1. During the training phase is possible

to find the most critical rules; in other words, it is possible to detect in the dataset the rules

that most likely will generate mismatches or will not be found during the actual use phase.

These rules are stored in a separate TCAM (named additional TCAM ). Experimental results

show an increase in accuracy of the system with the addition of this memory. The results of

this assumption are shown in Section 4.

3.2 Functioning

As mentioned before, during the training phase the generated structures are tested against

a bunch of packet headers randomly generated by Classbench tool 4.1. The number of rules

tested in the simulations carried out is equal to 10% of the space of the dataset. This process
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helps to find the most critical rules present in the dataset and therefore increase the accuracy

of the structure. The pseudo-code of this process is the following:

1 end t r a i n i ng = 10 % of the dimension o f the datase t ;

2 f o r i = 1 : end t r a i n i ng

3 chose random input ( i ) ;

4 compute matched ru l e with GHSOM system ;

5 compute matched ru l e with accurate system ( s lower ) ;

6 i f comparison == 1 % the matched r u l e s are the same ;

7 do nothing % co r r e c t match ;

8 e l s e

9 add co r r e c t matched ru l e to the add i t i ona l TCAM;

10 end

11 end

The results in terms of performances and memory accesses will be presented in 4.5. Re-

garding the packet classification phase, a network packet is correlated across hierarchical SOM

nodes in the GHSOM-based tree and eventually mapped to a bin at the leaf of the tree.

In the training phase, the size of the GSOM at the first layer is variable and its size depends

on the heuristics presented in 2.3.2 and on the distribution of the input parameters. Each unit

of the map is assigned a certain subset of rules which location represents the feature map for

the second layer of GHSOMs. On the other hand, during training is possible that some of the

units are left empty or with a number of rules not sufficient for creating a second layer map;
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in these scenarios there are two possible solutions: if the number of rules is insufficient for

creating a map obtaining some improvements, the subset of rules is directly stored in a TCAM.

In the other case, if the node created has no rules stored into it, a TCAM is left empty. This

operation allows to have free space available in view of a possible dataset’s update. In both

cases, as soon as the number of rules exceeds a certain threshold 1, it is possible to re-train the

selected GHSOM without changing the rest of the structure.

3.3 Initialization of Self-Organized Map

There exist different ways for initializing a Self-Organizing Map. Generally a random ini-

tialization of the weights is used, but, in this study, a linear initialization has been chosen;

this is because for the implemented training algorithm the linear initialization produces better

results 2. In other words, the computation of the SOM can be made orders of magnitude faster

since a SOM is than already approximately organized in the beginning.

First of all a map structure is created; then, the eigenvalues and the eigenvectors of the

training data are calculated. The weights of the map are initialized along the dimension of the

map grid characterized by the greatest eigenvectors of the training data.

1The threshold depends on the number of rules that the designer decide to store in a single TCAM,
is an hardware constriction.

2It is possible to start the training with a narrower neighborhood function and smaller learning-rate
factor [8].
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3.4 From header to binary

In the IPv4, the header of each information packet is composed by six fields, as already

shown in 2.1. For understanding the mentioned fields, we can consider the following rule:

@147.12.227.34/32 76.188.171.59/32 0:65535 1717:1717 0x06/0xFF 0x0000/0x0200

The example above is used for explaining the different fields which are source address, destina-

tion address, source port, destination port, protocol and mask.

Geometrically is possible to consider each field as a range of valid value in a specific dimen-

sion; in the presented work, only the first four field have been considered and this means that

each rule is represented in the space by a four dimensions hyper-cube.

1. @147.12.227.34/32 the first field identifies the source address of the rule. First of all

it is necessary to translate the number in binary: the source is represented on 32 bits, 8

bits for each section of the field.

TABLE I: FROM DECIMAL TO BINARY

Decimal Binary

147 10010011

12 00001100

227 11100011

34 00100010
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In this example, the source in binary on 32 bits is 10010011000011001110001100100010

and represents the concatenation of the four sections of the number. \32 is the number

of bit to consider. In this case all the bits are counted and therefore the range in the first

dimension is only a point. There are other cases in which this number is not 32: for a

better comprehension consider now the same source address, but instead of 32 bits, only

27 are considered (this is just an example, on the datasets in A is possible to see a handful

of rules from a dataset): @147.12.227.34/27. In this case the range of values considered

in binary is 100100110000110011100011001XXXXX in which only the first 27 bits are

important. Here, the range of value goes from 10010011000011001110001100100000

to 10010011000011001110001100111111.

100100110000110011100011001xxxxx 

10010011000011001110001100100000

10010011000011001110001100111111

Figure 11: Translation of the range.

Geometrically this range represents an edge in a certain dimension.

2. 76.188.171.59/32 is the the destination address. The same consideration carried out

for the source address can be done for this field.
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3. 0 : 65535 the third field of the rule is the source port. The range in binary is expressed

on 16 bits instead of 32 and is easier to understand the value considered for the edge from

the geometrical point of view: the first number represents the beginning, while the second

is the end of the range.

4. 1717 : 1717 same consideration of the third field can be used for the fourth which

represents the destination port.

5. 0x06/0xFF and 0x0000/0x0200 are the mask and the protocol of the rule and they

have not been considered for defining the rule space.

3.5 Output

Each memory selected by the algorithm of the GHSOM perform a brute force search on the

proper subset of rules. Thus, the selected TCAMs provide the matched rules in output (if they

exist). The additional memory will perform the search as well. Geometrically, all the matched

rules represent the hyper-cubes which contain the input point. The last step is to compare

the rules and find the one with the highest priority: the selected rule will represent the correct

match and therefore be the output of the system.

3.5.1 Priority Checker

The only goal of this unit is to compare the possible rule matched by the multiple TCAMs

and define the one with the highest priority. Generally the priority is defined based on the

dimension of the rule (in this study, the volume of the hyper-cube is considered).

In Figure 12 is given a graphical representation of the route of the incoming packet from

the input to the output. Each blue and green block represented in the figure has an address
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Figure 12: From input to output.

register that is helpful for the actual implementation of the GHSOM tree. In every block we

compute the address of the next GHSOM until eventually reach an associated leaf level TCAM.

3.6 Updates management

One of the main feature of SDN applications is continuous rule updates. The SOM-based

structure offers a partial solution to this problem: once the GHSOM has been trained with the

initial dataset, the weights are decided and it is possible to use them even if it is necessary
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to update or remove new rules by simply removing the rules from one TCAM and re-classify

them by running them through the structure and adding them to the newly matched leaf level

TCAM. In other words, the proposed solution does not require to be fully re-trained when small

updates are performed on the dataset.

3.6.1 Add rule function

When the user decides to add to the GHSOM structure new rules, it is necessary to find

the correct bin for each of them. The process regarding the first layer is analyzed at first.

1 % Find input parameters :

2 Compute volume o f the hyper−cube ;

3 Compute su r f a c e areas o f the hyper−cube ;

4 Update datase t memory and l a b e l s adding new ru l e s ; % Updates

5 Find Best Match Unit 1 s t l a y e r % Test the 1 s t l a y e r GSOM

6 input : log10 ( volume ) , log10 ( areas ) ;

7 Add Rule to the found un i t and update tree ’ s l a b e l s ;

The first layer is tested with a new rule and the GSOM gives back the most similar node in

the map. Therefore, the rule is added to the corresponding unit. At hardware level the memory

corresponding to the selected unit will be updated storing the new rule.

The weights of the GSOM do not need to be re-computed. Thus, we only need to select the

best match unit and add the rule to the selected subset. As we know, these subsets are used

for training the second layer’s GHSOMs; in the following pseudo-code it is possible to see how
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to handle rule updates for the GHSOMs of the second layer of the tree.

1 Compute c en t r o id o f the hyper−cube ; % Find input parameters ;

2 Find Best Match Unit o f the 2nd l ay e r GHSOM; % Test the GHSOMs s e l e c t e d by the 1

s t l a y e r ;

3 input : c en t r o id ;

4 Add ru l e s to the each un i t o f the s e l e c t e d t r e e ;

5 Add Rule to the found bin and update tree ’ s l a b e l s ;

These two functions are then combined and used as shown below:

1 f o r i =1: number input

2 Find Best Match Unit and update memories adding new ru l e ;

3 Add ru l e s to the mapped t r e e to matched b ins ;

4 end

3.6.2 Delete rule function

For deleting a group of rules the actions taken on the system are similar to the ones per-

formed for the adding new rules. The inputs of the deleting function are the GHSOM structure,

the memories and the group of rules to delete; the output will be the exact same GHSOM (the

weights are not modified) with updated rules stored in the memories.
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The pseudo-code is the following:

1 f o r i =1: number input

2 Update dataset ’ s memory and l a b e l s d e l e t i n g s e l e c t e d r u l e s ;

3 Search the ru l e in the 1 s t l a y e r GHSOM;

4 Delete the ru l e in the un i t s e l e c t e d by the search be f o r e

5 Delete r u l e from subset memory ;

6 Find the path from the 2nd l ay e r o f the t r e e to the b ins ;

7 Delete r u l e from l e av e s o f the t r e e and TCAM;

8 end

3.6.3 Retraining function

One of the function added to our implementation is the ability to retrain the network

considering the changes made on the dataset. This additional function can be useful if, after

several updates of the dataset, the GHSOM becomes imbalanced. The first consequence of the

disbalance of the structure is the increase in the computation time. This effect can be generated

from adding a large group of rules in the same leaf of the tree: the dimension of the TCAM for

the mentioned node would explode, loosing the benefits obtained splitting the dataset.

3.7 How to chose the heuristics

As already stated in 2.3.2 section, in the SOM-based tree, each parent unit can expand both

horizontally and vertically depending on two controlling parameters τ1 and τ2 as well as the

mean quantization error (MQE) of input data [9]. The expansion of the SOM can affect the

accuracy on a certain dataset as well as the number of rules contained in the lower leaves of the
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tree; for this reason, is important to find the best parameters based on the provided dataset.

The number of rules contained in the leaf bins affects the cost of the algorithm: the TCAMs

perform a brute force search in each bin in order to find the matching rules and, obviously, a

larger set of rules means an higher cost per research. After understanding the importance of

an accurate regulation of the parameters τ1 and τ2, two steps were undertaken to find the best

solution. In the first place, a trial and error method has been performed: through this technique

it was possible to understand the general trend for reaching the highest possible accuracy for

each dataset. In the second step, a reinforcement fashion learning has been implemented for

finding the best heuristics to avoid having to search manually the best training parameters.

3.7.1 Reinforcement Learning style algorithm

In this section is presented an innovative approach which goal is to increase the accuracy of

the GHSOM in packet classification applications and build the best tree for a provided dataset.

The idea is to perform multiple training iterations of the complete structure modifying the

heuristics according to the trend of the accuracy test performed. The general idea of this

approach has been taken from the classical reinforcement learning method introduced below.

It is important to underline that the approach used is not the standard reinforcement learning,

but a method whose basic idea is based on mentioned learning.

Figure 13 is a graphical representation of a reinforcement learning (RL) scheme. Briefly, an

RL system consists of an agent that repeatedly interacts with an environment. The agent

observes the state of the environment and consequently take an action that could change the

environment’s state.
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Figure 13: Classic RL system.

It is possible to see the same key elements of the reinforcement learning in our approach:

the agent consists in the controller that choose the heuristics (action) which are responsible

for the construction of the GHSOM (environment). After the modification of the training

parameters, the structure is retrained changing consequently its state. The state can be seen

as the accuracy value generated by the current setup; once the GHSOM is created, it is tested

using a small set of packet headers generated by the Classbench tool. Thus, it is possible to

obtain an estimation of the accuracy of the system; in parallel, the most critical rules of the

dataset are identified and stored in the additional TCAM as explained in 3.1.1. The reward

parameter come out from the analysis of the present and past accuracies computed; when the

accuracy grows at new iterations it means that the parameter are updated with positive results

on the environment. For this reason it is necessary to store the value of the accuracy at every

epoch of training.
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Let t represents the number of the current epoch: if accuracy in t is higher than accuracy

in t-1, it means that the action that was performed had a positive result, the reward is positive

and therefore the heuristics will be updated following the same trend.

A graphical representation of the approach is shown in Figure 14. It noticeable that the

general structure of the classical reinforcement learning system has been maintained.

Update 
τ1 & τ2 

  GH­SOM  
Structure 

Reinforcement  
Learning 
Style 
System 

Accuracy

Reward ­ Accuracy comparison

Figure 14: RL style in GHSOM system.

3.7.1.1 Early stopping

To avoid the situation in which the accuracy between t-1 and t decrease, a technique called

early stopping has been used. This approach is wildly used in machine learning to avoid

overfitting when training a network with an iterative method (e.g. as gradient descent). In this

work, the test of the structure continues until there are three consecutive epochs in which the
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accuracy drops or until the accuracy remains the same for five consecutive iterations. In the

first scenario, the heuristics where the accuracy where maximum are restored and the SOM-

based tree is retrained for the last time and ready for the actual usage; in the second case, the

heuristics are restored to the epoch where the accuracy where the maximum value before the

five equal accuracies in row.

The pseudo code for the reinforcement training style algorithm is presented in the next

page.
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1 Set d e f au l t h e u r i s t i c s parameters :

2 breadth1stSOM (0) ,

3 depth1stSOM ALWAYS = 1 ,

4 breadth2ndSOM(0) ,

5 depth2ndSOM(0) ;

6 f l a g t r a i n i n g = 0 ;

7 t = 0 ;

8 whi le f l a g t r a i n i n g == 0

9 Train the network with the chosen h e u r i s t i c s ;

10 Test the network with co rne r s o f hyper−cubes ( worst case ) ;

11 Compute accuracy ( t ) ;

12 i f t >= 3

13 i f accuracy ( t )<accuracy ( t−1)<accuracy ( t−2)

14 Stop Train ing : f l a g t r a i n i n g = 1 ;

15 Restore h e u r i s t i c s where max( accuracy ) ;

16 Re−t r a i n network ;

17 end

18 end

19 i f t >= 5

20 i f accuracy ( t )=accuracy ( t−1)=accuracy ( t−2) = . . .

21 . . .= accuracy ( t−3)=accuracy ( t−4)

22 Stop Train ing : f l a g t r a i n i n g = 1 ;

23 Restore h e u r i s t i c s where max( accuracy ) ;

24 Re−t r a i n network ;

25 end

26 end

27 t = t + 1 ;

28 Update Heu r i s t i c s ;

29 end



CHAPTER 4

RESULTS AND COMPARISONS

The first purpose of the testing process is to debug the system and bring it to its correct

functioning. Several simulations have been carried out on different feature maps before finding

the best suitable solution; the comparison between these simulations is presented in the following

sections. After finding the best option for the specific application and verifying the correct

working principle of the system, we tested its accuracy.

In order to test performance of the system on real rules it was necessary to generate datasets

similar to the ones used in real life application. In this thesis, the standard benchmark Class-

bench [12] has been used to generate rules for different usage categories with different charac-

teristics and sizes.

4.1 Classbench & dataset format

Classbench is a tool that helps generate rules and packet traces for different usage patterns.

It is also helpful to use its output for benchmarking packet classification devices and algorithms.

The Filter Set Generator included in Classbench produces rule-sets that are similar to the

ones used in real applications. A Trace generator is used for producing the incoming packet

applied to the system for testing it.

44
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TABLE II: CLASSBENCH SEEDS

ACL1 seed
ACLl2 seed
ACL3 seed
ACL4 seed
ACL5 seed

Access
Control
List
(ACL)

FW1 seed
FW2 seed
FW3 seed
FW4 seed
FW5 seed

Firewall
(FW)

IPC1 seed
IPC2 seed

IP Chain

From the Classbench tool is possible to generate datasets in different formats Table II.

The differences between the formats are mainly due to the distribution of the data in the rule

space and various ranges in the four analyzed dimensions.

From the comparison reported in the following section, it can be shown that the algo-

rithm shows different accuracy on different datasets leading to variation in accuracy across the

datasets.

4.2 Testing Growing Hierarchical Self-Organize Map

Once trained, the network is tested against a new set of packet headers, created by means of

the Classbenchtool as well. These simulated sets of packet headers are as similar as possible

to real life applications based on the previously generated rule sets, in order to present realistic

results.
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The pseudo-code for testing the network is the following one:

1 f o r i = 1 : number o f inputs

2 For each 1 s t l a y e r GHSOM struc ture , compute the address bin ;

3 Search the ru l e in s e l e c t e d TCAM + Addit iona l TCAM;

4 i f r u l e matched != 0

5 compare r e s u l t s f o r f i nd i n g h i ghe s t p r i o r i t y ru l e ;

6 e l s e i f no ru l e matched

7 compute ru l e with accurate method ( s lower ) ;

8 update add i t i o na l TCAM;

9 end

10 output h i ghe s t p r i o r i t y ru l e matched ;

11 end

The incoming packet is applied at the second level of the network and eventually the out-

put is provided. A 100% accurate application is used to evaluate the number of errors and

misclassifications when testing the system for accuracy. In fact, the proper classification of the

input does not mean everything. In this study, a brute force search has been used as 100%

accurate method. The output of the comparison between the two implementation can lead to

three different scenarios:

• Correct Rule Found the optimal classification is provided in output;

• Rule Not Found this situation is tolerated, since it is possible to immediately perform

the search with the back-up system presented in 5.2.1 (i.e. Efficuts). In this scenario the
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loss in performance is equal to the time necessary for searching the rule with the back-up

system.

• Rule Mismatched this is the worst scenario and it has to be avoided. The GHSOM system

is not able to recognize this error and it is necessary a feedback signal from the external

routers to report these problems. The additional TCAM is useful for decreasing this type

of error during run time. The back-up system is used to solve mismatches of rules.

4.3 Choosing the feature map

As already mentioned, from the beginning of the project the idea was to implement the first

layer of the structure for classifying the rules based on their hyper-cubes’ geometrical features

and the second layer for the classification based on the position. The main problem was finding

a proper feature map which was suitable for classification by exploiting GHSOMs. The feature

map under analysis is the one related to the first layer’s Growing-SOM which is employed for

classifying the rules based on their size. From the simulations performed, it has been proven

that the accuracy of the structure depends significantly on how rules are classified by the first

layer GSOM.

The choice of the feature map used for the classification of the second layer is quite straight-

forward (it is only necessary to compute the centroids of the hyper-cubes), on the other hand

the problematic decisions has been made on the first feature map because multiple choices

were possible. It was clearly necessary to include the volume as one of the parameters for the

classification because, in this study, it represents the priority of the rule. Even though volume

represented a good starting point for the feature map, it was not enough for a correct classi-
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fication. Therefore, the area of the surfaces of the hyper-cubes has been considered as well.

After these decisions, it was possible to define the complete feature map of the first GSOM as

composed by the volume and the six areas of the surfaces of the hyper-cubes.

In the final realization of the system, the logarithm function has been applied to the first

layer input parameters (volume and area of the surfaces of the hyper-cubes) in order to ensure

that the considered input space was suitable for classification; it was necessary to apply the

log10 in order to be able to classify the rule-sets.

The histogram plots reported in Figure 15 show that the analyzed datasets have a small

number of rules with a volume not comparable with the other rules. Hence, for classifying this

parameter was necessary to apply a function for getting a better distribution of the values.

Everything explained for the volume has to be applied to all the other parameters of the

feature map.
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Figure 15: Distributions of input parameters of the first layer of the tree.
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4.4 Accuracy test

The accuracy tests have been used to evaluate the number of misclassification and rules not

found in the system. This value was useful to quantify the quality of the system.

In order to compute the accuracy, a 100% accurate system has been implemented in MAT-

LAB in order to ensure the correctness of the analysis. The output of the GHSOM structure

and the brute force search are compared for assuring that the values are the same.

The table and the graph below show the performances obtained by the system implemented:

TABLE III: ACCURACY TEST PERFORMED ON DIFFERENT DATASETS

dataset 1000 5000 10000

ACL1 100 100 99.8
ACL2 100 96.6 94.2
ACL3 100 95.4 95.9
ACL4 98.5 97.5 94
ACL5 100 100 100

FW1 100 93.3 93.6
FW2 94.3 95.2 92.9
FW3 97.3 95.4 96.9
FW4 99.65 98.5 93
FW5 98.75 97.3 96.5

IPC1 98.5 97.4 98.5
IPC2 98 97.4 94

Figure 16 presents packet classification accuracy for 36 different rule-sets created by Class-

bench. The largest rule-set contains around 10000 rules, and each rule-set is tested against
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2000 packets. High accuracy is observed across all the tested rule-sets and that means that the

system will have to face a performances loss only in a low percentage of executions (second and

third scenario 4.2).

Accuracies (%) of different rule-sets
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Figure 16: Accuracy with different datasets.
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The accuracy results presented above do not consider the performance boost due to the back-

up system that computes the matching rules when the incoming packet cannot be found using

the GHSOM-based system. The accuracy has been re-calculated with the back-up structure

and the success rate has increased to almost at 100% for every format. Only the worst cases

will be shown in this table:

TABLE IV: ACCURACY TEST INCLUDING BACK-UP SYSTEM (SLOWER)

dataset 1000 5000 10000

ACL4 100 100 99.9
FW1 100 100 99.85
FW2 99.9 100 98.7
FW4 100 100 99.6
IPC2 100 100 99.8

If a dataset is not in Table IV, it means that it has reached 100% accuracy. The small

percentages of error reported for the other formats are due to misclassifications that the system

alone was not able to detect.

In certain situation is not tolerable to mismatch any rule so, for this reason, a solution

has been presented in the chapter related to the hardware design. The system adopted for

protecting the SOM-based tree is based on a feedback coming directly from the routers that

indicates the correctness of the received packet; further analysis have been provided in 5.2.



53

The pseudo-code reported below is the implementation of the brute force method for packet

classification. The same code has been exploited for simulating the TCAM search:

1 min volume = i n f i n i t e ;

2 ru l e f ound = 0 ;

3 f o r i =1: n r u l e s in the memory

4 f o r i =1:4

5 i f input ( i ) i s i n s i d e the range o f the dimension ( i )

6 go on ;

7 e l s e

8 input not i n s i d e the ru l e ;

9 break

10 end

11 end

12 i f input i s conta ined by the hyper−cube ( r u l e )

13 ru l e f ound = 1 ;

14 compute volume hyper−cube ;

15 i f volume hyper−cube < min volume

16 min volume = volume hyper−cube ;

17 end

18 end

19 end

The output of the presented algorithm is the matching hyper-cube with the lowest volume

and therefore it represents the highest priority matching rule.
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4.4.1 Comparison between different dataset formats - Accuracy

In 4.1 the differences between the dataset formats have been mentioned. From the plot

below, it is possible to see the trend of each format with increasing number of rules: ACL1,

FW1 and IPC1 format have been selected as samples for this analysis:
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Figure 17: Accuracy comparison between different dataset formats.
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It is important to mention that the ACL format, compared to FW and IPC, contains an

higher percentage of rules with smaller sizes. In this scenario, it has been proved that finding

the matching rule was easier due to the lower dependency on the size of the hyper-cubes.

From the graph we can see that despite the increasing number of rules in the dataset, the

trend of the ACL1 remains almost constant around 100% of accuracy. FW1 is the format the

shows the worst performances between the datasets taken in account; the accuracy decrease

with increasing size of the rule-set, but remain practically constant after 5000 rules are exceeded.

Regarding IP Chain datasets, the trend remains constant at an accuracy slightly lower than

ACL.

From the multiple simulations carried out and reported in this study, it is possible to

confirm that the behavior shown by ACL1, FW1 and IPC1 correctly represent the trends of

the respective formats.

4.5 Testing additional TCAM

The idea behind the addition of a TCAM for checking the most critical rules 1, came after

an accurate analysis of the distribution of the errors that occurred during the simulations. It is

shown that each dataset contains a small number of rules which most likely will not be matched,

decreasing the actual accuracy of the system. The possibility of rules not founded comes from

the fact that some incoming packets are classified in some leaf bins based on their location,

but then no hyper-cubes of the corresponding sub-space contains the incoming point. From a

1Most critical rules are the ones that most likely will generate mismatches or will not be found during
the test phase.
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rapid test (1000 randomly generated samples of packet headers are tested against the network)

during the training of the GHSOM it was possible to accumulate the most critical rules and

store them in an additional TCAM. The idea was considered valuable after proving that the

dimension of the input space of the additional TCAM was limited compared to the others, in

order to perform the search inside it in parallel to the GHSOM search.

TABLE V: SIZE AND PERFORMANCE WITH ADDITIONAL TCAM

dataset 1000 5000 10000

ACL1 4 8 13
FW1 70 80 96
IPC1 43 100 20

dataset 1000 5000 10000

ACL1 0.3% 0.1% 0.6%
FW1 4.3% 1.4% 3.6%
IPC1 2% 4.6% 1.2%

ACL1, FW1 and IPC1 formats have been selected as samples for this analysis because the

results of the other corresponding type of rule-sets were similar.

4.6 Rules executed per incoming packet

As pointed out at the beginning of the thesis, one of the main problem of TCAM in packet

classification was the poor scalability of throughput and power as the number of rules increase.

In the implemented system, the problem has been addressed exploiting the intrinsic proprieties

of GHSOMs: the number of rules executed 1 per search is, in the worst case, around 25%

1The executed rules are the rules searched by brute force inside the TCAMs to find the highest
priority matching rule.
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(Format FW3 5000). On average, the number of executed rules is around 15% as it is possible

to see in Figure 18.
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Figure 18: Average of executed rules per research.

The size of the TCAMs on which the searches are performed are contained and depends on

the chosen heuristics.
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4.6.1 Comparison between different dataset formats - Executed Rules

Just as pointed out for the accuracy analysis, the number of executed rules is different

based on the rule-set format. From Figure 19 it is possible to see a lower bound around 10% of

executed rules and an upper bound around 25% in the worst cases.
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Figure 19: Comparison between executed rules in different formats.
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In general, ACL seeds generate dataset that requires a lower number of searched rules for

computing the correct matching rule, compared to FW. The behaviour of IPC seeds is similar

to the trend found for ACL.

Because of the similarity between type of rule-sets of the same format, again the consider-

ation obtained from the analysis of the first seed (ACL1, FW1 and IPC1) can be extended to

the other datasets of the same category because the results follow the same pattern.

4.7 Update friendly

One of the main features of SDN applications is the frequent update of the dataset. The

system used for addressing the packet classification in SDN needs to be able to handle fast up-

date without affecting performance. The GHSOM structure represents a significantly adaptive

and robust system for handling such dynamic rule updates. For example TCAM-based search

requires quite a long time to update its content and therefore such dynamic updates adversely

affect performances.

In general, it is not necessary to re-build the SOM-tree by retraining the structure with all

the rules (including rules that did not change) when only a few new rules are added/modified

in the rule-set; clustering new rules based on the hyper-cube’s features and centroid locations

into the existing GHSOM bin is sufficient.

An example on the ACL1 format has been used for showing the performances of the structure

with updates: in particular Figure 20 shows the system’s performance for ACL1 5000, but the

same trend can be found in every format.
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Figure 20: System performance with increasing added rules.

In Figure 20 are plotted the accuracy and the number of executed rules as a function of

the percentage of rules added to the dataset. The added rules are generated from a similar

distribution of rule-set ACL1 10000. The newly added rules are classified into existing SOM

bin without regenerating new SOM-tree and neuron weights.

Accuracy remains constant as the number of new added rules increase and the low number

of misclassification is taken care by the block shown in 5.2. As expected, adding new rules
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to existing bin means that the size of the TCAMs increases and the number of executed rules

grows as well.

To sum up, the structure shows good results in both accuracy and number of executed rules

even when the number of added rules are as many as the original dataset size.



CHAPTER 5

MOVING TO HARDWARE

The main idea of this thesis was to validate a possible alternative solution to the packet

classification problem. First of all it was important to prove that GHSOM system was a feasible

option for this application. Several tests on the possible feature maps have been carried out

before finding the one presented in this study. The hardware implementation has not been

developed, but in this chapter some suggestions on a possible architecture are provided to help

future development. In particular the discussion will be concentrated on the GHSOM module

that represents the core block of this architecture.

Moving to hardware requires to think about bits instead of full precision numbers. The

idea followed for performing the translation is the same explained in the paper [13] that was

to literally translate each information embodied in the neural network to hardware. From the

simulation performed it is possible to estimate the number of bits and the type of representation

needed for a correct implementation. In will be necessary to operate on weights and packet

headers and, for a precise representation, it will be necessary to use 64 bits and adopt fixed

point arithmetic.

Each of the leaf nodes in the SOM-tree eventually terminate in a TCAM module where a

subset of rules is contained. This group of rules are classified size and positioned as already

explained. Depth and breadth of each single GHSOM module are based on the parameters

62
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τ1 and τ1. The way in which each map develops is independent from the construction of the

others.
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Figure 21: Hardware architecture of the structure.



64

The input of the hardware implementation are the weights and the corresponding addresses

of the GHSOM modules, the packet headers and the feedback signal which comes from the

external routers. The weights are computed at in software and stored in specific memories

inside the system 5.1, the input packet headers are the points that have to be matched against

the dataset which has been used for training the SOM-based tree. Finally, the feedback signal

is the one used by the external routers to report the rules’ mismatches.

The best way for increasing the throughput of this massively parallel structure is to insert

a pipeline. In Figure 21 is presented the physical architecture of GHSOM tree for a pipelined

packet processing. The first step for a parallel implementation is to store the incoming packets

in a FIFO memory (First In First Out). Thus, is possible to provide to the system a new input

every time the computation of the first step for the previous value is ended. When the first

group of GHSOMs have computed the lower distance between the weights and the incoming

packet, the destination address of the subsequently module is computed as well. The number

of destination address registers have to be at least equal to:

ndestination add = nparallel GHSOM ∗ nlayer (5.1)

Assuming that the number of destination address registers and the number of GHSOMs

module available are known a priori, inverting Equation 5.1 is possible to find out the maximum

number of layers that can be implemented in the system. Therefore the required granularity

level of the GHSOM tree is adjusted by setting τ2, in order to meet the hardware restrictions.
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After a number of step equal to the maximum depth of the deepest GHSOM structure,

the incoming packet is addressed to the correct TCAM where theoretically the matching rule

should be found (if it exists). From the assumption made before, the GHSOMs can grow in

depth independently of each other; every tree that is shorter than the deepest one delays the

address of the final TCAM location passing it from one destination register to the next one,

but without actually computing any new address. In this way, is possible to compute all the

TCAM search in parallel and then perform the priority check when all the rules are available.

The procedure of these last steps is the following: after the TCAMs have performed their

searches, the matching rules are stored inside a set of registers called Winning Rule Registers.

The number of registers is equal to the number of the parallel GHSOMs of the structure available

in the hardware implementation. The winning rules are then sent to the Priority Checker : in

this work, this unit compares the volume of each matched rule and selects the smallest. In other

applications, the priority may not be based on the volume; in such cases, it is only necessary

to adjust the block in order to select the rule based on the wanted parameter 1.

5.1 Growing Hierarchical Self-Organized Map module

The GHSOM modules are used for storing the weights and computing the best unit match

for every incoming packet. It is important to remember that the first layer of the SOM-tree is

only used for generating the division of the dataset based on the size and other characteristics

of the hyper-cubes.

1In some application the priority is given as a field of the incoming packet.
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The weights of the maps which are stored include also the ones of the first layer because

they will be useful when new rule is added, even they are not necessary for actual packet

classification 1. The additional constrain regarding the storage of GHSOM modules is that the

number maps of the structure has to be lower than N (the total number of GHSOM modules

available in the physical architecture). For every rule-set, the higher N is the smaller is the

number of rules that each leaf bin has. This facilitate the TCAM-based search; moreover N is

also limited by the allocated physical modules of SOM-based tree.

Figure 22 shows the block diagram of a GHSOM module.
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Figure 22: Physical implementation of the GHSOM Block.

1From Figure 7 we see that the incoming packet is applied from the second layer.
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As can be seen from the figure above, it is composed by four units:

• Weights Memory stores the weights of each unit present on the map considered. Together

with the weights, the child address of each unit is stored as well (the number of weights

that could be stored depends on the size of the memories of the GHSOM modules). In

this way, after finding the winner unit, is possible to carry on the search of the best match

rule onto the next the module addressed.

• Distance Computing Block is used for performing the calculation of the distance between

the unit’s weights and the incoming packet. This block will be the subject of further

analysis in section 5.1.1.

• Distances Memory stores all the distances computed by the previous block. The distances

are computed sequentially and saved inside the memory one by one.

• Minimum Detector, this block is responsible for finding the minimum value between all

the distances computed. After this, is possible to move forward to the address of the child

(i.e. GHSOM module or TCAM).

The number of weights stored in each GHSOM module can be computed as follows:

nweights = 4 ∗ nrules subset (5.2)

The number 4 in equation Equation 5.2 represents the dimension of the input space. Each

field of the incoming packet can be associated to a geometrical point in one of the four di-
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mensions. From the background explained in the Section 2, it is possible to conclude that the

number of weights of each unit is equal to the size of the input space.

5.1.1 Distance Computing Unit

The goal of this element is simple; compute the distance between the weights stored and

the incoming packet. The weights of a unit can be seen as a matrix because each node is

characterized by four weights, one for each dimension. The pseudo-code regarding the Distance

Computing Unit is provided below:

1 f o r i =1:number o f un i t s

2 d i s t ance ( i ) = 0 ;

3 f o r k = 1 :4

4 compute d i s t ance between the packet and the weight on the i−th dimension :

5 p a r t i a l = weight ( i , k ) + (− packet ( k ) ) ;

6 i f p a r t i a l >= 0

7 do nothing ;

8 e l s e i f p a r t i a l < 0

9 2 ’ s complement o f the p a r t i a l dimension ;

10 end

11 d i s t ance ( i ) = d i s t anc e ( i ) + p a r t i a l ;

12 end

13 s t o r e d i s t ance ( i ) ;

14 end
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At a hardware level, the necessary blocks for the distance computing unit are three 64-bits

adders and two block of 64 parallel XOR gates (one for each bit). The first wall of XOR gates

is used for performing the 2’s complement of the input packet header, then, the first adder

perform the addition of the two input with the carry fixed at 1. The second segment of the

system perform the 2’s complement of the result whenever the distance computed is negative.

The last adder is used for summing the four distances computed on the four dimension. The

sum of the four single dimensional distances represents the total distance in the 4D space. A

possible hardware implementation about the previous description is shown in Figure 23.
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Figure 23: Distance Computing Unit.

The other option would be to use four parallel distance computing unit and then sum the

four results. This solution would be faster, but it would have larger area and it would consume

more power.
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5.1.1.1 Adder

In the DCU there are two adders, each with a different purpose. The first adder computes

the difference between the weights stored in memory and the incoming packet. The XOR wall

is used for inverting the sign of the input value in order to perform the subtraction using an

adder. The second XOR and adder is used for performing the 2’s complement whenever the

result of the previous operation is negative. If the distance computed is already positive, the

value will pass through the second adder unchanged.

The input parameters of the first adder are the weights of the GHSOM module and the

fields of the incoming packet 1. Because of the fact that the input values have different signs,

overflow and underflow have not been considered for the implementation of the adder.

Addition is performed between two number represented in fixed point on 64 bits so there is

no need to used floating point which would have been more difficult to implement.

5.1.2 Minimum Distance Detector

After the distances are evaluated by the DCU, the minimum has to be detected in order to

declare the winning neuron. The general structure is shown in Figure 24 and is composed by:

• Minimum Detector

• Address Register

• Minimum Distance Register

1As already mentioned, the packet classification is applied from the second layer of the structure.
Geometrically the incoming packets represent a point in the space and therefore they cannot assume
negative values.
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Figure 24: Minimum Distance Detector (MDD).

Based on the availability of a parallel Minimum Detector unit, the minimum distance register

may or may not be necessary. There are two possible scenarios: in the first case, if the number of

distances in input is more than the input space of the minimum detector, the minimum distance

register will be necessary because the minimum distance has to be stored and compared at every

iterations until all the distances have been checked. In the second scenario, if the number of

distances to compare is equal or less than the input space of the minimum detector, all the
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distances could be compared at the same time and saving the temporary minimum distances

would not be necessary. Further analysis of both scenarios will take place in next sections.

5.1.2.1 Minimum Comparator
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The gate level implementation of a minimum comparator is presented in Figure 24. As

mentioned in the previous paragraph, there are two possible implementations based on the

hardware availability and the decision made by the designer. If it is not possible to imple-

ment the cascade version of the minimum comparator 1, the idea is to perform serially the

computation of the minimum distance, storing the minimum value at each iteration and using

it as future input. The other reasons for not implementing the cascaded version of this unit

are around the trade-off between area, power consumption and speed. Implementing a cascade

version means more area and more dynamic power (all the gates switch together); on the other

hand, a serial implementation involves less area and less dynamic power, but it will slow down

the search of the minimum.

Figure 25 represents a single stage of a minimum distances comparator. By means of a

handful of multiplexers and single comparators it is possible to obtain the ID of the minimum

distance. As already mentioned, if the number of distances to compare is higher than the

input space it will be necessary to implement a serial search or to expand the system using a

cascade these units. The cascade tree has log2(number of inputs) layers. During the design

phase it will be necessary to take this decision, in order to make the system more suitable for

the application’s requirement.

The single comparator used in the minimum detector is presented in Figure 26; it compares

the two inputs bit-by-bit.

1There are several reason why it would be preferable to implement the serial version of the comparator,
e.g. there is not enough area avaiable.
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Figure 26: Single Minimum Comparator.

5.1.2.2 Address Registers

The minimum distance detector also consists of an address register necessary for storing the

value of the next module responsible for computing the future classification for the incoming

packet. It would be possible to analyze the address register as divided in two parts: the first one
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consists of the address of the actual GHSOM on which the present operations are performed,

the second part of the address will be updated based on the results of the winning neuron (the

closer unit). Specifically, the first part of the address is the parent address in which the best

match unit is computed and the second part of the address indicate the child, the winning node

of the map. Therefore, these two parts generate the address of the child which will perform the

subsequent operations; the address calculated could point both to another GHSOM module or

final TCAM.

5.2 Error Detection Architecture

The main goal of this system is to improve the accuracy of the system during run time and

compute the correct rule when the SOM-based tree system cannot find a match. In order to

achieve this target, the structure in Figure 27 is used.

The blocks used for this purpose are:

• GHSOM Hardware Structure that represents the core of this work: it includes the GHSOM

structure presented and the additional TCAM where the most critical rules are stored.

• 100% Accurate Method represents the parallel system used for support the system when

it cannot find the rule or the corrent rule is misclassified.

• Output Multiplexer select the correct matching rule which has to be sent to the external

routers.
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5.2.1 Back-up system

The back-up system represents the core of the unit used for increasing accuracy of the system

at run time. A 100% accurate method has to be used in this block (i.e. brute forces approaches).

This unit, being generally purely algorithmic, is slower than the hardware implementation of

the GHSOM system. If a TCAM is used as back-up system it means that the search will be still

fast, but there will be a loss in terms of power consumed. In any scenario, when the GHSOM

system cannot find a matching rule, there will be a loss in terms of performances.
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The parallel system is used in two scenarios:

• when the GHSOM system and the additional TCAM do not find any matching rule for

the incoming packet, the back up system receives a signal that tells it to start searching

the matching rule for the incoming packet. Once the highest priority rule has been found,

the matching rule is selected by the output multiplexer and it is sent to the external

routers; in parallel, the found rule is stored in the additional TCAM with the other most

critical rules of the dataset. In this way it is possible to increase the accuracy of the

system almost to 100% for every format of rule-sets.

• this second scenario is the most critical, and it has already been mentioned in 4.2. When

a rule is misclassified it means that a wrong rule has been matched to the incoming

packet. From the results of simulation performed it is possible to state that those cases

are very rare, but still present. Moreover, in some situation is necessary to assure a

100% accuracy. For addressing this problem, a feedback system from the routers can

be implemented: when the router receives a matched rule that is wrong 1, it reports it

back to the system that compute the correct matching with the back up system. The

computation in these cases the computation can be done in parallel unless the system is

already busy. The back up system will update the TCAM memory with the mismatched

rule in order to prevent the error in the future.

1The external routers can recognize the mismatches because they will receive rules that were not
meant for their addresses.
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The implementation will use a small memory for storing the last match between incoming

packet and outgoing rule: in this way, if a rule is sent back from the routers is possible to

recognize the mismatched packet and recompute it again with the more accurate method.

The output of the final system is chosen by a multiplexer addressed by a signal that indicates

if the GHSOM system found or not a matching rule. The same flag can be used for reporting

to the back up system that it need to became the research of the highest priority rule when no

match has been found by the SOM-based system.



CHAPTER 6

CONCLUSIONS

The outcome of the project meets the goals set at the beginning; it is proven that Growing

Hierarchical Self-Organized Map are a suitable solution for SDN applications and that the

system implemented is able to handle large datasets with low performance losses. The intrinsic

characteristics of the GHSOM implemented address the redundancy problem related to the

known algorithm used for packet classification. It has been proven that the system can handle

small updates without the need to re-train the neural network. The approach to this problem

is different from earlier published works because it applies the increasingly used SOMs in an

application where they had not yet been seen.

There are some advantages of the discussed GHSOMbased packet classification over the

current packet classification methods (e.g. TCAM search): first, for an incoming packet, the

average number of rules executed by the memories in the SOM-tree algorithm is significantly

smaller than in a brute-force search method against all rules. Second, as compared to the

software-based algorithm and pure TCAM-based searching scheme, the discussed SOM-tree

algorithm is more efficient in dealing with rule updates. Moreover, thanks to the features of

the SOM, it has been possible to eliminate the replication of rules that characterizes all the

state-of-the-art solutions.

79
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6.1 Future Work

This work represents a revolutionary way of solving the packet classification problem, then

a lot of future development can be carried out.

The first step to follow is the implementation of the algorithm from the hardware point of

view. With the provided suggestions, a hardware architecture can be easily developed. More-

over, for the purpose of this study, a real profiling of the applications needs to be undertaken.

Since the goal of this thesis was to validate the idea, a precise work on the profiling of the

application has not been carried out. This can be seen as a future work to further increase

the confidence in this structure and it is a needed step before using the algorithm in real-world

problems.

Although an hardware implementation of the system is one of the first work to be undertaken

in the future, some improvement can be made from an algorithmic point of view; the most

important is related to the managing of the unbalancement of the tree due to a large number of

rule updates. This complication is associated with both, the SOM-base tree and state-of-the-art

solutions (e.g. Efficuts) and is one of the most critical issue related to the approaches applied

in packet classification. This disbalance in the structure happens when heavy updates are

iterated on a single branch of the structure; consequently the TCAM at the end of the branch

will explode in size, eliminating the performance improvement of the structure and forcing a

retraining of the network. Thus, one of the first algorithm improvement needed is to find a

possibility to take care of big updates without retraining the structure every time.
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APPENDIX

EXAMPLE DATASET

This is an example of how a dataset looks like, the dataset showed is acl1 seed 1000.filter :

@191.147.101.52/31 122.228.222.0/24 0 : 65535 0 : 65535 0x00/0x00 0x0000/0x0000

@191.147.96.0/22 5.179.96.127/32 0 : 65535 0 : 65535 0x00/0x00 0x0000/0x0000

@191.147.101.54/32 167.79.88.0/22 0 : 65535 0 : 65535 0x00/0x00 0x0000/0x0000

@5.179.100.0/22 216.26.120.0/22 0 : 65535 0 : 65535 0x06/0xFF 0x1000/0x1000

@191.147.101.8/31 23.220.164.0/22 0 : 65535 0 : 65535 0x00/0x00 0x0000/0x0000

@191.147.101.8/31 5.56.120.0/22 0 : 65535 0 : 65535 0x00/0x00 0x0000/0x0000

@191.147.101.8/31 116.71.124.0/22 0 : 65535 0 : 65535 0x00/0x00 0x0000/0x0000

@191.147.101.52/31 122.228.216.0/22 0 : 65535 0 : 65535 0x00/0x00 0x0000/0x0000

@191.147.101.48/30 122.228.220.0/23 0 : 65535 0 : 65535 0x00/0x00 0x0000/0x0000

@5.179.96.176/29 217.238.10.0/23 0 : 65535 0 : 65535 0x00/0x00 0x0000/0x0000

@191.147.101.12/30 5.179.100.0/22 0 : 65535 0 : 65535 0x00/0x00 0x0000/0x0000

@191.147.101.48/30 216.26.120.0/22 0 : 65535 0 : 65535 0x00/0x00 0x0000/0x0000

@191.147.100.0/24 122.228.128.0/18 0 : 65535 0 : 65535 0x06/0xFF 0x1000/0x1000

@191.147.101.128/25 122.228.128.0/18 0 : 65535 0 : 65535 0x06/0xFF 0x0000/0x0000

@191.147.100.0/24 49.33.0.0/18 0 : 65535 0 : 65535 0x06/0xFF 0x0000/0x0000

@5.179.97.0/24 5.179.96.128/25 0 : 65535 0 : 65535 0x00/0x00 0x0000/0x000
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