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SUMMARY

The autism spectrum disorder (ASD) is a major public health concern in the United States.

Neuroimaging analysis is becoming an important feature in ASD research. ASD has been associ-

ated with altered functional connectivity in brain. Functional connectivity can be measured by

considering co-activation of brain regions in resting-state functional magnetic resonance imag-

ing (fMRI). We developed Bayesian models to explore contrasting brain connectivity between

subjects with ASD and controls using rs-fMRI data from Autism Brain Image Data Exchange

(ABIDE) database. We considered two separate approaches for analyzing rs-fMRI data. We

explored differential brain connectivity between subjects with ASD and controls using rs-fMRI

data summarized over time by connectivity metrics. We developed three Bayesian models :

the parametric model, Dirichlet Process Mixture (DPM) model and Neighborhood model on

ROI pairs. Initially, we used these models to analyze cross-correlated ABIDE data set for all

the sites separately. We observed that those links are not identical across all sites. Later, we

combined the data set and reanalyze using above mentioned models. The combined analysis,

models and identifies the links which were differentially connected across sites. Additionally, a

regional-temporal model is proposed to directly model time sequence of rs-fMRI measurements

at each brain region. We have applied dynamic linear model (DLM) to capture temporal struc-

ture. The potential correlation between connected regions was modeled using hidden Potts

model with latent variable. An algorithm was developed for joint modeling of DLM and hidden

Potts model with latent variable using fixed inverse temperature and hidden Potts model with

xiv



SUMMARY (Continued)

latent variable using pseudolikelihood approach. We applied the proposed approach to analyze

time-dependent rs-fMRI ABIDE data set. We observed different patterns in heat maps between

control and ASD subjects. Moreover, contrasting connectivity patterns can also be seen across

sites. We can also notice differential connectivity between ROIs across lobes of brains of ASD

subjects and controls. We observed dissimilarity in connectivity between ROIs across lobes

across all the sites.

xv



CHAPTER 1

INTRODUCTION

1.1 The Statistical Analysis of Functional Magnetic Resonance Imaging Data Set

Modern science have been fascinated with understanding human brain. Even in 2019,

neuroscientists are still discovering crucial information about the brain. National Institute of

Mental Health and the Library of Congress designated 1990s as “The Decade of the Brain”.

In the year 2003, the Nobel Prize in medicine was awarded to Paul C. Lauterbur and Peter

Mansfield for their discoveries relating to “magnetic resonance imaging”, which established

the foundation of functional magnetic resonance imaging (fMRI) [Lazar, 2008]. Functional

neuroimaging is an important tool to apprehend cognition, clinical and social psychology of

mankind. The field of fMRI emerged in the year 1991 and and since then it has been expanding

rapidly with an increasing number of scientific publications every year.

Statisticians and quantitative researchers play a crucial part in neuroscience and neuroimag-

ing research. As data acquired from neuroimaging studies are complex and massive, the re-

quirement for sophisticated statistical techniques have became increasingly prominent. The

primary challenge in statistical inference arises due to small sample size in most of these stud-

ies. In the age of “Big Data”, these studies are challenging researchers to develop statistical

techniques which can be implemented in this scenario and are providing the opportunity to

1
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make new discoveries about the human brain and understanding neurodegerative diseases and

mental illnesses. According to [Van Horn and Toga, 2014] ““big data” can become “big” brain

science”.

1.2 Activated Brain Regions Detection

Functional magnetic resonance imaging (fMRI) depends on blood-oxygen-level-dependent

(BOLD) signals and a time series of BOLD response can capture multiple simultaneous time

points for each voxel of the brain. Each voxel represents a tiny cube of 3-dimensional brain

tissue, which consists of a million or so brain cells.

One of the early statistical methods to model time series of BOLD response was proposed

by [Friston et al., 1994] using generalized linear model (GLM). The BOLD response apprehends

the vascular response and the stimulus in brain. The MR signal gets delayed hemodyanmically

while evaluating the change in metabolism of BOLD contrast due as a result of an external

stimulus. This type of hemodynamic response is called hemodynamic response function (HRF).

Each input stimulus depends on the known external time-dependent stimulus function for a

specific task and HRF, which depends on time-delay. [Friston et al., 1994] proposed a Poisson

distribution to model HRF. Other researchers proposed Gaussian function [Friston et al., 1995]

and Gamma functions [Lange and Zeger, 1997]. The Canonical HRF [Friston et al., 1998], which

is defined as the difference of two gamma functions has also been used widely. [Lindquist and

Wager, 2007] proposed three separate inverse logit functions.

Many models similar to the GLM model have been proposed under Bayesian framework.

These models have hierarchical structures which makes modeling temporal and spatial features
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of the data more adaptable. [Friston and Penny, 2003] presented a straightforward way for

constructing posterior probability map using empirical Bayes method. This approach allows

simple shrinkage priors based on variation between voxels. [Penny et al., 2003] used autore-

gressive (AR) error processes in the GLM and used variational Bayesian (VB) framework which

approximates the true posterior density with a factorized density. [Flandin and Penny, 2007]

described a spatially regularized GLM and proposed a spatial prior using sparse spatial basis

functions (SSBFs).

1.2.1 Temporal Modeling

The temporal component of the HRF varies across brain voxels and most definitely across

subjects. [Quirós et al., 2010] parameterized the HRF shape with a likely increase of signal and

a subsequent exponential decay in the temporal dimension. [Woolrich et al., 2004] modeled

temporal characteristic by assuming the parameters of the HRFs to be voxel-dependent. [Xia

et al., 2009] modeled the HRF at each voxel non-parametrically.

There has been considerable work in apprehending temporal correlation in fMRI data

through different possible error structure. [Friston et al., 1994] proposed to obtain estimate

of the autocorrelation structure by prewhitening the fmri data, and then eliminating the cor-

relation by applying a data-transformation. In Bayesian literature, researchers proposed to

model the error terms by imposing an autoregressive structure of order q (AR(q)) [Lee et al.,

2014]. Alternatively, wavelet transformations can be applied to filter noise. [Zhang et al., 2014]

considered a general error structure and modeled the correlated noise.
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1.2.2 Spatial Modeling

Voxel-level analysis of fMRI relies on spatial correlation as neighborhood voxels are likely

to have similar response. Spatial dependence between voxels are captured using spatial priors

on model parameters in Bayesian modeling. Gaussian Markov random field (GMRF) priors on

regression coefficient vectors has been used by many researchers [Quirós et al., 2010]. [Harrison

et al., 2008] used diffusion-based spatial priors on the regression coefficients. Conditional auto

regressive (CAR) priors were used by [Harrison and Green, 2010]. [Flandin and Penny, 2007]

used sparse spatial basis function (SSBF) priors on wavelet-based regression coefficients. An

alternative approach is to select activated voxels, which can be seen as a variable selection

problem. In Bayesian literature, a spike and slab on the regression coefficients were adopted

to specify mixture distribution [Brown et al., 1998]. [Smith and Fahrmeir, 2007] considered a

type of spatial Markov random field (MRF) prior to incorporate biological prior information

while considering spatial interaction between voxels.

1.3 Brain Connectivity Modeling

Brain connectivity refers to networks that demonstrate relationship between brain regions.

Interests in brain connectivity includes comparison of connectivity properties among multiple

subgroups and between different scanning sessions. Connectivity patterns and their disruptions

are useful to understand mental health disorders and neurodegenerative diseases. Two different

types of connectivity are of interest, namely, functional connectivity and effective connectivity.

A review of [Friston, 2011] and [Zhang et al., 2015a] is presented in this section.
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1.3.1 Functional Connectivity

The objective of functional connectivity is to identify regions of the brain which present

similar temporal characteristics. [Zalesky et al., 2012] proposed a simple approach of cap-

turing the functional connectivity based on temporal correlations between regions of interest

throughout the brain or between a “seed” region and other voxels throughout the brain. Prin-

cipal component analysis (PCA) [Andersen et al., 1999] and independent component analysis

(ICA) [Calhoun et al., 2001] have also been used to cluster the brain into sections that display

similar temporal traits. [Cribben et al., 2012] proposed a data-driven technique called dynamic

connectivity regression, which can detect change points over time in functional connectivity and

estimates a graph or set of relationships between regions of interest. [Bhaumik et al., 2017] ap-

plied support vector machine (SVM) classifier with elastic net feature selection to differentiate

resting-state functional connectivity of brain networks and to detect major depressive disor-

der. [Bhaumik et al., 2018] proposed a mixed-effects model, which can control false discovery

rate while detecting disruptive connectivities for a neural network in brain.

[Patel et al., 2006] is one of the early works developing Bayesian methods to assess func-

tional connectivity in which thresholding of fMRI time series data was used to identify presence

or absence of enhanced activity. The relationship between pairs of specific brain regions was

assessed by examining joint and marginal probabilities of elevated neural activity in hierarchi-

cal functional network. [Bowman et al., 2008] presented voxel-by-voxel modeling of the whole

brain and region of interest (ROI) analysis within one integrated framework. Intra-regional

correlations can be modeled by unstructed variance-covariance matrix and using an exchange-
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able correlation structure. Spatially distant voxels with similar temporal characteristics were

clustered using Dirichlet Process prior on parameters of long memory correlated error terms

in [Zhang et al., 2014]. [Chen et al., 2016] proposed a Bayesian hierarchical model to model

connectivity between voxel pairs from different brain regions. The connectivity is assumed

to follow a mixture distribution with two components reflecting connected and non-connected

voxel pairs. This modeling assumption derives from the “small-worldness” property, which as-

sumes that two distant ROIs may be connected through a small percentage of highly connected

nodes. A new statistic which measure the connectivity strength is introduced in this paper.

There is also a substantial literature on dynamic functional connectivity models, which

study dynamic temporal interactions among brain regions. [Warnick et al., 2018] used a hidden

Markov model to classify latent cognitive state and estimate time varying networks.

1.3.2 Effective Connectivity

Effective connectivity is defined as the explicit influence one neural system exerts over

another. Unlike functional connectivity, it is dynamic (activity-dependent), and depends on

a model of interactions. It typically generates models with small networks of connected brain

regions. The most commonly used methods include structural equation models (SEM), dynamic

causal models (DCM) and vector autoregressive (VAR) models.

1.4 Outline

The objective of this dissertation is to explore contrasting brain connectivity between sub-

jects with Autism Spectrum Disorder (ASD) and controls using resting state fMRI (rs-fMRI)

data. We develop Bayesian models and inference to explore differential connectivity using cross-
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correlated functional connectivity between region of interest (ROI) pairs. We also propose a

regional-temporal model to directly model time sequence of rs-fMRI measurements at each ROI.

This dissertation is organized as follows. In Chapter 2, we discuss the basic concepts behind

fMRI and functional connectivity as well as altered brain connectivity in individuals with ASD.

We provide a detailed description on Autism Brain Image Data Exchange (ABIDE) data set

and participant demographics. In Chapter 3, we explore differential functional connectivity be-

tween subjects with ASD and controls using rs-fMRI data summarized over time between ROI

pairs. We develop three Bayesian models: the parametric model, Dirichlet Process Mixture

(DPM) model and Neighborhood model on ROI pairs. Detailed simulation studies compare

performance of the proposed models. We use these models to analyze cross-correlated ABIDE

data set for all the sites separately. Later, we combine the data set and reanalyze using above

mentioned models. In Chapter 4, we directly model time sequence of rs-fMRI measurement

at each ROI. We propose a regional-temporal functional connectivity model. We develop a

dynamic linear model (DLM) to capture temporal structure and the potential correlation be-

tween connected regions is modeled using hidden Potts model with latent variable. We develop

Bayesian inference for this joint modeling of DLM and hidden Potts model. A detailed sim-

ulation study is performed to compare proposed approach to a comparable approaches. We

apply the proposed approach to analyze time-dependent rs-fMRI ABIDE data set. Chapter 5

provides future works and conclusions.



CHAPTER 2

FUNCTIONAL CONNECTIVITY IN AUTISM

2.1 Introduction

The human brain consists of a network with anatomically separated regions that are contin-

uously communicating with each other. Alteration in connectivity of brain networks has been

associated with Alzheimer’s disease, Parkinson’s disease, depression, schizophrenia and others.

In this chapter, we begin with a concise overview of the human brain. We then review basic

concepts of fMRI and discuss altered brain connectivity in subjects with Autism Spectrum

Disorder. We also discuss about Autism Brain Image Data Exchange database.

2.2 The Human Brain

The human brain is the central organ and the command center for the human nervous

system. The extremely complex network of the brain consists of about 100 billion neurons

and approximately 100 trillion connections. It weighs about three pounds and is divided into

the left and right hemisphere, separated by the corpus callosum. The brain is comprised of

three main parts: forebrain, midbrain and hindbrain. The forebrain consists of the cerebrum

(also known as the cortex), the thalamus and the hypothalamus. The cerebrum is the largest

part of the human brain. The thalamus is associated with sensory and motor function and the

hypothalamus is involved with regulating thirst, hunger, circadian rhythm in the body and also

in the modulation of reflex reaction and behavior, which are related to survival. The limbic

8
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system, which supports emotion and behavior is made up of the thalamus, the hypothalamus,

amygdala and the hippocampus. The hindbrain is comprised of cerebellum, pons and medulla.

The cerebellum, which is LATIN for “little brain” plays an important role in motor control.

Midbrain, pons and medulla make up the brain stem. The brain stem plays an important

role in regulating cardiac and respiratory function. The cerebral cortex has four lobes namely

frontal, parietal, occipital and temporal. The frontal lobe is engaged in higher functions like

reasoning, planning as well as problem solving, emotion and motor control. The parietal lobe

is responsible for recognition, perception and orientation. Visual processing is associated with

the occipital lobe. The temporal lobe is associated with memory, speech and the identification

of auditory stimuli.

Figure 1: Lobes of the human brain

(Source: Queensland Brain Institute (https://qbi.uq.edu.au.))
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2.3 Functional Magnetic Resonance Imaging

Functional magnetic resonance imaging (fMRI) is a noninvasive neuroimaging method for

measuring brain activity. Functional magnetic resonance imaging relies on BOLD signals that

occur in response to neural activity. When an area of the brain becomes active in response to

particular task or stimulus or even absence of any stimuli, the rate of blood flow increases and

there is an increase in firing rate of neurons. Active neurons require significantly more oxygen,

which causes an increase in oxygenated blood in adjacent blood vessels. fMRI measures the

increase in metabolic demand of the active neurons. [Lazar, 2008]. The activated areas display

shift in the ratio of oxygenated to deoxygenated blood, which is measured by hemodynamic

response function (HRF).

Haemoglobin is an iron-containing oxygen transporting protein found in the red blood

cell of almost every vertebrate. Haemoglobin can be saturated with oxygen molecules (oxy-

haemoglobin) or desaturated with oxygen molecules (deoxyhaemoglobin). These two states have

different magnetic properties, which can produce different magnetic fields as shown by [Pauling

and Coryell, 1936]. Oxyhaemoglobin is diamagnetic and does not affect magnetic fields. On

the other hand, deoxyhaemoglobin exhibits paramagnetism and causes distortion in the main

magnetic fields. This disturbance can appear as a decay of transverse magnetization related to

T2 and T ∗2 weighted MRI sequence ( [Thulborn et al., 1982], [Ogawa et al., 1990]).

An increase in metabolic activity in a specific region of the cortex demands increased cerebral

blood flow (CBF). This results in an increase in deoxyhemoglobin within the capillaries and

an initial drop in oxyhaemoglobin causing the initial dip. After a lag of 2 − 6 seconds, CBF
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increases and delivers an excess of oxygenated haemoglobin and reduces deoxyhaemoglobin

level. The response increases gradually and reaches to the peak at about 4−6 seconds. If there

is no more stimulus, the response will decline to an amplitude below baseline prior to the final

return to baseline. This process takes approximately 15 − 20 seconds to complete. Figure 2

shows a diagram of HRF for a voxel in an active brain region.

Figure 2: Blood Oxygen Level Dependent(BOLD) response.

(Source: https://radiopaedia.org)

A wide range of fMRI study designs is available to measure different neuronal activity.
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• Event-related design: Stimulus are administered to the subject for a brief period mostly

in random order. This produces BOLD responses which consist of short burst of activity.

• Block design: Multiple stimuli are administered like a block pattern or phase of 10− 30

seconds. This design helps to attain peak of BOLD signal for a longer interval, creating

a plateau in the graph.

• Resting-state design: Resting state occurs when an explicit stimuli is not present. This

design is also applied to understand the functional connectivity of the brain.

2.3.1 Functional Connectivity and Resting-state fMRI

The human brain consists of functionally linked and anatomically separated regions that

are in continuous communication with each other. Functional connectivity is the temporal

dependence of activation pattern of brain regions ( [Aertsen et al., 1989], [Friston et al.,

1993]). It is often analyzed by measuring co-activation of the brain regions during resting-state

fMRI(rs-fMRI) [Lowe et al., 2000]. Resting-state fMRI can provide insight on alteration of

functional connectivity due to neurodegenerative diseases [Greicius, 2008].

Multiple studies started to examine functional connectivity between brain regions during rs-

fMRI around 15 years after the invention of fMRI [Van Den Heuvel and Pol, 2010]. Volunteers

were instructed to relax and avoid thinking something in particular during these rs-fMRIs.

Biswal et al.(1995 and 1997) showed that left and right hemispheric regions of the primary

motor network demonstrated a high correlation between their fMRI BOLD time-series. Several

other studies showed that there is high level of functional connectivity between primary visual
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network, auditory network and higher order cognitive networks, including [Biswal et al., 1997];

[Cordes et al., 2002].

Figure 3: Functional connectivity and resting-state fMRI in Brain.

(Source: [Van Den Heuvel and Pol, 2010])

In Figure 3 panel a, BOLD rs-fMRI signal is measured during scans. In panel b, a seed

region of interest is selected and its BOLD response was measured. Panel c shows the correlation

between resting-state timeseries of voxel i and voxel j. The functional connectivity map (panel

d) resulted from the timeseries of a voxel being highly correlated with time series of other voxels.
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2.4 Autism Spectrum Disorder

The autism spectrum disorder (ASD) is a neurodevelopmental disorder which can cause

restrictive and repetitive behavior and social, communication, behavioral challenges. Autism

is known as a “spectrum” disorder due to the extensive variation in the type and severity of

symptoms patients may experience.

According to DSM-IV, published by American Psychriatric [Association et al., 2000],

ASD includes autistic disorder, pervasive developmental disorder not otherwise specified (PDD-

NOS), Asperger syndrome, disintegrative disorder and Rett disorder. Pervasive developmental

disorder not otherwise specified (PDD-NOS) is characterized by failure to obtain or early loss of

communication and social interaction skills as well as reduced interest and repetitive behavior.

Children with PDD also show poor motor coordination such as clumsiness. Rett disorder is a

genetic disorder of postnatal brain development caused by a X-linked gene defect. This abnor-

mal gene is responsible for death before or shortly after birth for most male fetuses therefore it

is seen almost exclusively to affect girls. Normal functioning child up to age four starts showing

sign of reduced social, verbal and cognitive development due to this disorder.

The autism spectrum disorder (ASD) is reported to prevail in all racial, ethnic and socioe-

conomic groups. It affects 1 in 59 children in the United States according to the Centers for

Disease Control and Prevention’s (CDC) Autism and Developmental Disabilities Monitoring

(ADDM) [Baio J, 2018] network. It is also reported to occur about four times more among

boys than among girls. Approximately, 31% of children identified with ASD also have intel-
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lectual disability. The average prevalence of ASD is between 1% and 2% according to studies

conducted in Asia, Europe and North America.

The causes of ASD have not yet been fully understood. It has a wide variety of both

genetic and non-genetic causes. The rate of recurrence of ASD in siblings of affected subject

is 2% to 8% which is much greater than prevalence rate in general population. Early studies

of twins in the UK and Scandinavia reported that chances of being affected by autism for

both monozygotic twins is > 60% whereas no concordance between dizygotic twins was found.

The higher rate in monozygotic twins provides a stronger evidence for the robust influence of

genetics in cause of autism. After reevaluating unaffected twins for broader autistic phenotypes

such as communication skills and social disorders, the concordance for UK monozygotic twins

increased to 92% and for UK dizygotic twins increased to 10% [Rebecca Muhle and Rapin,

2004]. [Marc G. Weisskopf and Roberts, 2015] discussed association with air pollution exposure

during the third trimester of pregnancy and risk of ASD. Prenatal and first year of life exposure

to nitrogen dioxide, particle matter, ozone, and near-roadway air pollution has been associated

with ASD severity in children [Kerin et al., 2018]. Factors such as viral infections, medications

or complications during pregnancy can also trigger ASD.

The link between autism and vaccination has received a close review over last two decades.

Two studies had claimed that the mumps, measles and rubella (MMR) vaccine causes autism

and were later found to be critically flawed. Wakefield et. al (1998) published an article in

Lancet stating a hypothesis that MMR vaccine caused many side effects such as intestinal in-

flammation, entrance into the bloodstream of proteins harmful to the brain, and subsequent
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development of autism. They also reported that 8 children developed autism within one month

of receiving MMR vaccine. It was later discovered that those children had intestinal inflamma-

tion even before receiving vaccine. This study was later retracted as the study did not have a

control group hence it was impossible to determine whether there is a causal relationship be-

tween MMR vaccine and autism. [Taylor et al., 2014] performed a meta analysis based on five

cohort studies involving 1, 256, 407 children and five case-control studies involving 9, 920 chil-

dren. They found no relationship between developing ASD and vaccination, MMR vaccination,

mercury and thimerosal.

2.5 Neuroimaging Analysis in Autism Spectrum Disorder

Neuroimaging analysis is becoming an increasingly important technique in ASD research.

At present, ASD diagnosis solely depend on clinical assessment of an individual’s verbal and

physical behavior. Delay in diagnosis can lead an intellectually efficient children to social

impairments. Recent advances of neuroimanging technology are making a path for identifying

ASD based on the underlying brain activation patterns. However, classification of ASD can be

complex because of heterogeneous nature of the disorder.

2.5.1 Functional Connectivity in Autism Spectrum Disorder

Researchers agree that ASD is associated with alterations in brain connectivity. But there

is a growing debate about the precise nature of these alterations such as over-connectivity,

under-connectivity or a combination of both. A review of functional connectivity ( [Hull et al.,

2017], [Uddin et al., 2013]) in ASD is provided in this section.
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Under-connectivity is a statistically significant decrease in connectivity relative to a standard

or normative reference value. A reduced inter-regional network mostly in frontal and posterior

integration can be observed in task-based neuroimaging. Over-connectivity is reported when

there is a statistically significant correlation in the affected subjects compared to control. More

diffused connectivity of brain network in ASD has been reported recently such as stronger

correlation with ectopic regions, which are outside of the generally defined circuit.

[Kennedy et al., 2006] compared default mode network (DMN) connectivity in ASD and

control. The default mode network (DMN) is referred to as a “task-negative” network (TNN)

as its activity reduce during performance of a cognitive task. Moreover, it is essential for social

and emotional behavior. This study showed that TNN deactivation did not appear between

resting-state and task-associated fMRI for ASD subjects. In a follow up study, [Kennedy and

Courchesne, 2008] demonstrated under-connectivity within the TNN in ASD but it did not

find any significant changes in the “task-positive” network (TPN). [Lee et al., 2016] inves-

tigated inter- and intra-hemispheric connectivity using Autism Brain Image Data Exchange

(ABIDE) data set. This study suggested that under-connectivity in medial prefrontal cortex

and posterior cingulate cortex may contribute to social impairments. Various studies reported

under-connectivity in the brain regions which processes voice perception and language devel-

opment such as posterior superior temporal sulcus. Under-connectivity was also observed in

interhemispheric Broca’s area, between the right cerebellar region and supratentorial language

area and also in the dorsolateral prefrontal cortex (DLPFC). Communication challenges may

have occurred due to these under-connectivity.
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Over-connectivity (OC) have been reported in ASD using region of interest (ROI) seed-

based analysis and as well as in graph theory and network analysis. [Di Martino et al., 2011]

showed that OC can be observed between the striatum and right superior temporal gyrus and

insular cortex and remarkably between striatum and pons, and more over between the pons

and insular cortex. [Nebel et al., 2014] demonstrated increased and less segregated functional

connectivity in primary motor cortex. Studies found correlation with degree of OC and of

severity symptoms, which can suggest that ASD can be caused by the dysfunctional sensory

connectivity.

In recent years, many literature demonstrated trends of both under and over connectivity

in ASD, based on whether researchers are examining local or global networks. [Hahamy et al.,

2015] found both under and over connectivity using a graph theory approach on the ABIDE

data set. But this study had difficulty in finding a prevalent trend in ASD because of the

uniqueness of the condition for each individual.

Many recent papers are focused on age-related changes in brain connectivity to understand

developmental alternation on functional connectivity in ASD. This may explain the disagree-

ment in hyper- and hypo- connectivity theory. [Uddin et al., 2013] proposed that young children

with ASD may have OC of brain network, while under-connectivity can be observed more in

adolescents and adults with ASD. [Padmanabhan et al., 2013] investigated the development

of intrinsic functional connectivity with rs-fMRI measurements from 8− 36 years old subjects.

Subjects with ASD exhibited increased connectivity in parietal cortex although decreased con-

nectivity in prefronal cortex when subjects were controlled for age. Moreover, abnormal age-
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related connectivity in the anterior part of cerebellum and posterior temporal regions can be

observed in ASD subjects. [Nomi and Uddin, 2015] used a data driven approach to investigate

within and between network functional connectivity in three age-cohorts of children, adoles-

cents and adults. Children with ASD showed hyper-connectivity within brain networks and

decreased between-network connectivity. Adolescents with ASD showed no difference in within

network connectivity but showed decreased between-network connectivity compared to control.

Interestingly, adults with ASD showed no difference in within or between-network compared

to controls. [Lee et al., 2017] explored age-related changes in functional connectivity in the

language network of three age groups. Broca’s area in both children and adolescents with ASD

showed decreased functional connectivity. Adults with ASD showed decreased degree centrality

in Wernicke’s area. An increased degree centrality was observed in left inferior parietal lobule

and left middle temporal gyrus for every age group with ASD compared to control.

We still do not have a complete understanding of what biological phenomena may cause these

differences. These disparities may be attributed from heterogeneity in conditions, small sample

size and not considering difference among subjects and variation among sites, the design of

resting-state scan, the pre-processing and methodology of analysis. Also gender representation

in the literature is extremely uneven, which is a hindrance in understanding ASD in females.

2.6 Autism Brain Image Data Exchange

Autism Brain Image Data Exchange (ABIDE) is an alliance among medical centers across

the USA and Europe and is the largest repository of functional and structural brain imaging data

for autism. It is a part of the 1000 Functional Connectomes Project/ International Neuroimag-
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ing Datasharing Initiative (INDI). The data sets are anonymous, with no protected health

information according to Health Insurance Portability and Accountability (HIPAA) guidelines

and the 1000 Functional Connectomes Project / INDI protocols. The ABIDE data set com-

prises of the two large-scale datasets: ABIDE I and ABIDE II. The ABIDE I data set includes

17 international sites. It contains structural and resting state fMRI data and also extensive

phenotypic information from 539 individuals suffering from ASD and 573 controls. The data

consists of approximately 90% male subjects. The ABIDE data were preprocessed by Connec-

tome Computation System (CCS), the Configurable Pipeline for the Analysis of Connectomes

(CPAC), the Data Processing Assistant for Resting-State fMRI (DPARSF) and the NeuroImag-

ing Analysis Kit. The ABIDE data set has individuals with age, sex and IQ matched ASD and

control group. The phenotypic information in this data set includes age at scan, sex, IQ and

diagnostic information.

We used fMRI measurements from 7 sites; California Institute of Technology, New York

University Langone Medical center, Olin institute of living at Hartford Hospital, University of

Pittsburgh, San Diego State University, Social Brain Lab and Stanford University. The age at

scan of subjects varies from 6 years minimum to 64 maximum. Full IQ (FIQ) was calculated

by averaging performance and verbal IQ score for each individual. The FIQ has a sample mean

of 111.06 and standard deviation of 14.43.

The Autism Diagnostic Interview-Revised (ADI-R) ( [Lord et al., 1997], [Rutter et al.,

2003]) is a comprehensive standardized clinical tool for diagnosis of autism in children and

adults with mental age of at least 2 years. The interview addresses three areas: communication
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and language, social interaction and restrictive, repetitive and stereotyped behavior. It also

considers abnormality of development observed by caregiver at or before 36 months. The

interview consists of 93 questions and each question has a score which depends of severity of

the condition. A total score is calculated for each of those areas. Most of the sites in ABIDE

database provides ADI-R scores for ASD subjects.

Table I along with Figure 4 and Figure 5 represents participants demographics and charac-

teristics for all sites. 84 regions of Broadmann areas of brain was applied to explore differentional

cross-correlated functional connectivity between subjects with ASD and controls. Table II lists

description for each region. The regional-temporal functional connectivity model considers 111

regions. Table III lists description for each region.



TABLE I: PARTICIPANTS DEMOGRAPHICS FOR ALL SITES

ASD

CALTECH NYU OLIN PITT SBL SDSU STANFORD

(N = 19) (N = 79) (N = 20) (N = 30) (N = 15) (N = 14) (N = 20)

AGE 27.44(10.30) 14.52(6.97) 16.70(3.42) 18.93 (7.20) 35.00(10.43) 14.72(1.76) 9.96(1.59)

FIQ 108.17 (12.59)a 107.91(16.62) 113(17.87)b 109.97(14.38) 109.2 (13.63)c 111.36 (18.04) 112.55(17.80)

SEX

Male 15 (79) 68 (86) 17 (85) 26 (87) 15 (100) 13 (93) 16 (80)

Female 4 (21) 11 (14) 3 (15) 4 (13) 0 (0) 1 (7) 4 (20)

Control

CALTECH NYU OLIN PITT SBL SDSU STANFORD

(N = 19) (N = 105) (N = 16) (N = 27) (N = 15) (N = 22) (N = 20)

AGE 28.87(11.21) 15.81(6.25) 16.94(3.68) 18.88(6.64) 33.73(6.61) 14.22(1.90) 9.95 (1.60)

FIQ 114.21(9.65) 113.15(13.12) 114.94(16.54) 110.15(9.40) – 108.09(10.50) 112.10 (15.37)

SEX

Male 15 (79) 79 (75) 14 (88) 23 (85) 15 (100) 16 (73) 16 (80)

Female 4 (21) 26 (25) 2 (12) 4 (15) 0 (0) 6 (27) 4 (20)

a Score missing for 1 participant, b Score missing for 2 participants, c Score missing for 10 participants

222222
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(a) Distribution of age at scan (in years) for individ-

uals with ASD and Control per site

(b) Distribution of FIQ for individuals with ASD and

Control per site

(c) Percentage of males and females for sites (d) Percentage of specific ASD diagnostic categories

for all sites

Figure 4: ABIDE participant characteristic
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(a) The distribution of reciprocal social interaction

subscore for all sites

(b) The distribution of abnormalities in Communi-

cation subscore for all sites

(c) The distribution of restrictive, repetitive and

stereotyped behavior subscore for all sites

(d) The distribution of abnormality of development

evident at or before 36 months subscore for all sites

Figure 5: Autism Diagnostic Interview-Revised (ADI-R) scores for ASD individuals for all sites
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TABLE II: REGIONS OF INTEREST IN CROSS-CORRELATED

FUNCTIONAL CONNECTIVITY MODEL

Region of Interest

BA.1 (L & R). Primary Somatosensory Cortex BA.33 (L & R). Anterior Cingulate Cortex

BA.10 (L & R). Anterior Prefrontal Cortex BA.34 (L & R). Anterior Entorhinal Cortex

BA.11 (L & R). Orbitofrontal Cortex BA.35 (L & R). Perirhinal cortex

BA.13 (L & R). Insular Cortex BA.36 (L & R). Parahippocampal cortex

BA.17 (L & R). Primary Visual Cortex BA.37 (L & R). Fusiform gyrus

BA.18 (L & R). Secondary Visual Cortex BA.38 (L & R). Temporopolar Area

BA.19 (L & R). Associative Visual Cortex BA.39 (L & R). Angular gyrus

BA.2 (L & R). Primary Somatosensory Cortex BA.4 (L & R). Primary Motor Cortex

BA.20 (L & R). Inferior Temporal Gyrus BA.40 (L & R). Supramarginal Gyrus

BA.21 (L & R). Middle Temporal Gyrus BA.41 (L & R). Primary Auditory Cortex

BA.22 (L & R). Superior Temporal Gyrus BA.42 (L & R). Primary Auditory Cortex

BA.23 (L & R). Ventral Posterior Cingulate Cortex BA.43 (L & R). Subcentral Area

BA.24 (L & R). Ventral Anterior Cingulate Cortex BA.44 (L & R). IFC pars opercularis

BA.25 (L & R). Subgenual cortex BA.45 (L & R). IFC pars triangularis

BA.27 (L & R). Piriform Cortex BA.46 (L & R). Dorsolateral Prefrontal Cortex

BA.28 (L & R). Posterior Entorhinal Cortex BA.47 (L & R). Inferior Prefrontal Gyrus

BA.29 (L & R). Retrosplenial Cingulate Cortex BA.5 (L & R). Somatosensory Association Cortex

BA.3 (L & R). Primary Somatosensory Cortex BA.6 (L & R). Premotor Cortex

BA.30 (L & R). Cingulate Cortex BA.7 (L & R). Somatosensory Association Cortex

BA.31 (L & R). Dorsal Posterior Cingulate Cortex BA.8 (L & R). Dorsal Frontal Cortex

BA.32 (L & R). Dorsal anterior Cingulate Cortex BA.9 (L & R). Dorsolateral Prefrontal Cortex
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TABLE III: REGION OF INTEREST IN REGIONAL-TEMPORAL

FUNCTIONAL CONNECTIVITY MODEL

Region of Interest

(L & R). Thalamus (L & R). Angular Gyrus

(L & R). Caudate (L & R). Lateral Occipital Cortex;

superior division

(L & R). Putamen (L & R). Lateral Occipital Cortex;

inferior division

(L & R). Pallidum (L & R). Intracalcarine Cortex

(L & R). Hippocampus (L & R). Frontal Medial Cortex

(L & R). Amygdala (L & R). Juxtapositional Lobule Cortex

(L & R). Accumbens (L & R). Subcallosal Cortex

(L & R). Frontal Pole (L & R). Paracingulate Gyrus

(L & R). Insular Cortex (L & R). Cingulate Gyrus;

anterior division

(L & R). Superior Frontal Gyrus (L & R). Cingulate Gyrus;

posterior division

(L & R). Middle Frontal Gyrus (L & R). Precuneous Cortex

(L & R). Inferior Frontal Gyrus; pars triangularis (L & R). Cuneal Cortex

(L & R). Inferior Frontal Gyrus; pars opercularis (L & R). Frontal Orbital Cortex

(L & R). Precentral Gyrus (L & R). Parahippocampal Gyrus;

anterior division

(L & R). Temporal Pole (L & R). Parahippocampal Gyrus;

posterior division

(L & R). Superior Temporal Gyrus; (L & R). Lingual Gyrus

anterior division

(L & R). Superior Temporal Gyrus; (L & R). Temporal Fusiform Cortex;

posterior division anterior division
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TABLE III –REGION OF INTEREST IN REGIONAL-TEMPORAL FUNCTIONAL CONNECTIVITY MODEL(Continued)

Region of Interest

(L & R). Middle Temporal Gyrus; (L & R). Temporal Fusiform Cortex;

anterior division posterior division

(L & R). Middle Temporal Gyrus; (L & R). Temporal Occipital Fusiform Cortex

posterior division

(L & R). Middle Temporal Gyrus; (L & R). Occipital Fusiform Gyrus

temporooccipital part

(L & R). Inferior Temporal Gyrus; (L & R). Frontal Operculum Cortex

anterior division

(L & R). Inferior Temporal Gyrus; (L & R). Central Opercular Cortex

posterior division

(L & R). Inferior Temporal Gyrus; (L & R). Parietal Operculum Cortex

temporooccipital part

(L & R). Postcentral Gyrus (L & R). Planum Polare

(L & R). Superior Parietal Lobule (L & R). Heschl’s Gyrus(includes H1 and H2)

(L & R). Supramarginal Gyrus; (L & R). Planum Temporale

anterior division

(L & R). Supramarginal Gyrus; (L & R). Supracalcarine Cortex

posterior division

(L & R). Angular Gyrus (L & R). Occipital Pole



CHAPTER 3

CROSS-CORRELATED FUNCTIONAL CONNECTIVITY

MODEL

3.1 Introduction

In this chapter, we develop Bayesian models and inference to explore differential functional

connectivity between subjects with Autism Spectrum Disorder (ASD) and controls using resting

state fMRI (rs-fMRI) data, summarized over time by connectivity metrics, from Autism Brain

Image Data Exchange (ABIDE) database.

3.2 Model Specification

The ABIDE pre-processed database provides rs-fMRI measurements at each time point from

each ROI for every individual. Connectivity metrics are calculated to reduce dimension of data,

which can help to decrease computational complexity [Turk-Browne, 2013]. These connectivity

metrics can be obtained by taking cross-correlation between two ROI at lag µ [Cao et al.,

1999]. The cross-correlation can be expressed as follows

Corrx,y(µ) =
covx,y(µ)√
var(x)var(y)

28
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[Sun et al., 2004] proposed using cross spectral coherence, which measures the coherence

between the time series sequence in two ROI.

Cohx,y(λ) =
|Fx,y(λ)|2

Fx,x(λ)Fy,y(λ)

where Fx,y(λ) is the cross spectrum, which is defined by the Fourier transformation as following

Fx,y(λ) =
∑
u

covx,y(u)× exp{−jλu}

and the power spectrum Fx,x(λ) and Fy,y(λ) are defined as

Fx,x(λ) =
∑
u

covx,x(u)× exp {−jλu}

Fy,y(λ) =
∑
u

covy,y(u)× exp {−jλu}

The rs-fMRI network for each individuals with R many ROI was represented by R×R symmetric

matrix. The upper triangular elements of the connectivity matrix are considered, which implies

that for each subject we have R× (R− 1)/2 many functional connectivity measurements.

3.2.1 Model 1: Parametric Model

We use Yi,rs to denote the functional connectivity metric measurement between ROI r and

s (where, 1 ≤ r < s ≤ R) for subject i, where i = 1, · · · , n. In our first model, we model these

functional connectivity measurement as
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Yi,rs ∼ f(·|ηi,rs)

g(ηi,rs) = β1,rs + β2,rsXi + γi + δc

(3.1)

Here f(·) denotes a probability distribution, g(·) is a link function, Xi = 0 if subject i is

control while Xi = 1 if the subject is ASD, γi is a subject-level random effect term and δc is

a center-level random effect. Additionally, β1,rs is an ROI pair (r, s) specific intercept term to

reflect different levels of connectivity among different brain regions, and β2,rs models the ROI

pair (r, s) specific differential connectivity between normal and ASD subjects. The generalized

linear model for the control group is

g(ηi,rs) = β1,rs + γi + δc (3.2)

and for the ASD group is

g(ηi,rs) = β1,rs + β2,rs + γi + δc (3.3)

The parameters β2,rs model the differential connectivities of interest and we model them by a

spike-and-slab prior ( [Lempers, 1971], [Mitchell and Beauchamp, 1988])

β2,rs
i.i.d∼ p δ0(.) + (1− p)G(·), 1 ≤ r < s ≤ R. (3.4)
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Here δ0(·) denotes the degenerate distribution at 0 and represents the null case of no differential

connectivity between region pair (r, s) or β2,rs = 0. The second component of the mixture

provides the distribution of β2,rs in the nun-null case when regions r and s have differential

connectivity between control and ASD groups.

We assume that the mixture proportion p has Uniform (0, 1) prior. The specification of our

first Bayesian model, hereafter refered to as Model 1 or the parametric model, is completed by

assuming a parametric functional form for G as G = N(0, τ2). Spike and slab variable selection

is extensively discussed in Section 3.3.

3.2.2 Model 2: Dirichlet Process Mixture (DPM) Model

We propose an alternative second Bayesian model where we utilize Bayesian non-parametric

approach to provide flexibility in modeling the distribution G(·) of differential connectivities.

We model G(·) as a random probability distribution with an associated Dirichlet Process (DP)

probability measure [Ferguson, 1973], which defines a probability measure on the space of

probability distributions and has an extensive literature that is ever-expanding. The support

of DP is dense in the space of all probability distributions with support same as the base

measure G0. One important property of the Dirichlet Process is that it can induce ties and

clustering. Dirichlet Process Mixture (DPM) model not only provide more flexibility but it

can also allow clustering among the differentially connected regions. The DPM model can be

expressed hierarchically as
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Yi,rs ∼ f(·|ηi,rs)

g(ηi,rs) = β1,rs + β2,rsXi + γi + δc

β2,rs
i.i.d.∼ p δ0(.) + (1− p)G(·)

G(·) ∼ DP (κ,G0)

(3.5)

DPM models and Markov chain sampling methods for sampling from the posterior distri-

bution of DPM models are reviewed in Section 3.4.

3.2.3 Model 3: Neighborhood Model on ROI Pairs

We introduce a third Bayesian model to capture dependence patterns among ROIs which

are often indirectly connected through a small number of highly connected nodes [Achard et al.,

2006]. We propose a conditionally defined model of dependence among local neighborhoods as

is commonly used in spatial analysis. This first requires a neighborhood structure on the index

set of region pairs {rs : 1 ≤ r < s ≤ R}. We define a neighborhood of rs as

N (rs) = {r′s, r′ 6= r} ∪ {rs′, s′ 6= s},

that is, links which are connected to rs at one of the vertices (either at r or at s). Let N denote

the collection of these neighborhoods for all pairs rs.

The neighborhood model on ROI pairs is motivated by the postulate that differential con-

nectivity at rs may be associated with connectivities in other links which are attached with rs
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at one of its vertices. We propose a conditional auto-regressive (CAR) model with neighbor-

hood structure N to incorporate potential dependencies in functional connectivity of regions

rs and its neighbors.

Yi,rs ∼ f(·|ηi,rs)

g(ηi,rs) = β1,rs + β2,rsXi + γi + brs + δc

{brs : 1 ≤ r < s ≤ R} ∼ CAR(N )

(3.6)

The CAR model is described in detail in Section 3.5.1.

3.3 Spike and Slab Variable Selection

All three models proposed above utilize the spike-and-slab prior described in (Equation 3.4).

The spike and slab prior was introduced by [Lempers, 1971] and [Mitchell and Beauchamp,

1988]. The expression “spike and slab” is assigned to prior for β2,rs where β2,rs has a two-point

mixture distribution made up with a degenerate distribution at zero (the spike) and a normal

distribution (the slab). This prior helps to reduce β2,rs coefficients to zero that are truly zero

by making posterior mean values small. The model can be specified by the following prior

hierarchy
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Yi,rs|· ∼ N(µi,rs, σ
2)

µi,rs = β1,rs + β2,rsXi + γi + δc

β1,rs ∼ N(µβ1 , σ
2
β1)

β2,rs
i.i.d∼ p δ0(.) + (1− p)N(0, τ2)

σ2 ∼ π(dσ2)

(3.7)

where a uniform (0, 1) prior is often assumed on p . π(·) is the prior distribution for σ2.

Small hypervariances can reduce the value of coefficient to zero. On the other hand, large values

will inflate coefficients.

3.4 Non-parametric Bayesian Models

We begin this section with a review of Dirichlet Process(DP) and Dirichlet Process Mixture

(DPM) models which are primary components of our proposed model 2. Dirichlet Process

defines a probability measure on the space of probability measures.

Definition 3.4.1 ( [Ferguson, 1973]). Let α > 0, G0(.) be a specified probability measure

and let G(·) (a random probability measure) be a stochastic process. G is a Dirichlet process,

or G ∼ DP(αG0(·)), if for every finite measurable partition {B1, ..., Bm}, the random vector

(G(B1), ..., G(Bm)) has a Dirichlet distribution with parameter (αG0(B1), ..., αG0(Bm)).

The random distribution G is almost surely a discrete distribution. Dirichlet process has

the following Bayesian conjugate property.
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Property 1. If G ∈ DP (αG0(·)) and if Y1, . . . , Yn
iid∼ G, then the posterior of G|Y1, . . . , Yn

is DP (α G0 +
∑n

1 δYi), where δY is the Dirac measure.

3.4.1 Dirichlet Process Mixture

Dirichlet process Mixture (DPM) models are reviewed in [Ferguson, 1973], [Antoniak, 1974],

[Escobar and West, 1995] and many other literature. The data (Y1, . . . , Yn) is regarded as part

of an indefinite exchangeable sequence which implies that they are independently drawn from

an unknown distribution G by di Finneti’s theorem. The DPM model can be hierarchically

defined as

Yi|θi ∼ F (θi)

θi
i.i.d∼ G

G ∼ DP (α,G0)

(3.8)

The distributions of F and G0 can depend on additional hyperparameters. According to [Fer-

guson, 1983], these models are considered as countably infinite mixtures. The conditional

distribution of θi follows the following Polya urn representation

θi|θ1, · · · , θi−1 ∼
α

α+ i− 1
G0(·) +

1

α+ i− 1

i−1∑
j=1

δθj (·) (3.9)

where δθj (·) is the degenerate distribution at the point θj .

An alternate way to represent is based on “latent class”, which is indicated by ci and it is

related with observation yi. Here the labeling of ci has no significance and the parameters φc
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determine the distribution of the observations from a particular label c. The model [Neal, 2000]

can be defines as follows

Yi|ci, φ ∼ F (φci)

ci|p ∼ Discrete(p1, . . . , pK)

φc ∼ G0

p ∼ Dirichlet(α/K, . . . , α/K)

(3.10)

where the mixing proportion for the classes are defined by p = (p1, . . . , pK). Here p is a

symmetric DP, with concentration parameter α/K, which approaches to zero as K →∞.

3.4.1.1 Pólya Urn Scheme

Posterior computation under DPM initially seemed problematic as the mixing measure G

is characterized by infinitely many parameters. The posterior of G given (y1, . . . , yn) also has a

convoluted form. A way to deal with this issue is to marginalize out G to obtain an induced prior

distribution on parameters θ1, . . . , θn. We obtain the Pólya urn predictive rule by marginalizing

out G. In the Pólya urn scheme, it is assumed that there is a opaque urn which contained colored

balls and balls are drawn randomly from it. When a ball is drawn, we inspect its color and

return to the urn and also insert an another ball of the same color. [Blackwell et al., 1973]

used a similar scheme for construction of Dirichlet Process. The color of the ball placed in the

urn is θn+1 ∼ G0. There are already previously seen balls in the urn. In the starting, the urn

is empty and we pick a color drawn from G0 i.e. θ1 ∼ G0 and add a ball of that particular

color in the urn. Then (n + 1)th step, we either pick a new color (i.e. draw θn+1 ∼ G0 ) with
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probability α
α+n and add a ball with that color into the urn or with probability n

α+n pick out

a ball randomly from the urn, pick a ball of same color and drop both balls back into the urn.

This scheme produces a sequence of θi with conditional probabilities

θn+1|θ1, . . . , θn ∼
α

α+ n
G0(θn+1) +

∑n
i=1 δθn+1=θi

α+ n
(3.11)

The simple form for the conditional distribution in Equation 3.9 generate an useful idea for

posterior computation. As the values of draws θk are repeated, let θ∗1, . . . , θ
∗
m be the unique

values among θ1, . . . , θn, and nk be the number of repeats of θ∗k. Then we can write Equation 3.11

as follows

θn+1|θ1, . . . , θn ∼
α

α+ n
G0(θn+1) +

∑m
k=1 nkδθ∗k
α+ n

(3.12)

3.4.1.2 Stick-breaking Process

[Sethuraman, 1994] developed a constructive way of forming G known as “stick breaking”.

This construction is more straightforward and general than existing DP model. The Stick-

breaking representation allows us to induce G ∼ DP (α,G0) by letting
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G =

∞∑
k=1

πkδθ∗k

Vk ∼ Beta(1, α)

π1 = V1

πk = Vk

k−1∏
l=1

(1− Vl), k = 2, 3, . . .

θ∗k
i.i.d∼ G0

(3.13)

where δθ∗ denotes a degenerate distribution. The atoms θ∗k are generated independently from

base distribution G0. Here πk is the probability mass at atom θ∗k and these probability masses

guarantees that the weights sum to 1.

In this representation, there is a stick of unit length, which represent the total probability

to be allocated to all the atoms. The stick is broken off into a random piece of length V1, where

V1 is generated from Beta(1, α) distribution and allocate π1 = V1 to the randomly generated

first atom θ∗1 . Now generate V2 ∼ Beta(1, α) of the remaining 1− V1 stick and the probability

π2 = V2(1−V1) allocated the second atom θ∗2. We repeat the same process to obtain π3, π4, . . .

and we get an explicit construction of G. Here, E(Vh) = 1
1+α , values close to zero lead to high

weight on the first couple atoms and small probabilities are assigned to the remaining atoms.

3.4.2 Posterior Simulations for Dirichlet Process Mixture Model

We review inference algorithms from [Neal, 2000] for DPM models in this section. There

are various simulation-based methods to get inference on posterior distribution for conjugate
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and non-conjugate priors. Gibbs sampling can be applied for conjugate prior models. It cannot

be applied on non-conjugate priors because of complexity in numerical integration. A Monte

Carlo based approaches to handle the non-conjugate priors were developed by [MacEachern and

Müller, 1998] and [West and Escobar, 1993]. Here we have discussed simulation based methods

for conjugate priors.

3.4.2.1 Conjugate Priors

The first algorithm was introduced by [Escobar, 1994] and by [Escobar and West, 1995].

This is the most direct approach to sample θi from the distribution in Equation 3.9.

θi|θ−i, yi ∼
∑
j 6=i

qi,jδ(θj) + riHi (3.14)

Here, Hi is the posterior for θ based on the prior G0 and the likelihood F (yi, θ). qi,j and ri are

defined as the following

qi,j = bF (yi, θj)

ri = bα

∫
F (yi, θ) dG0(θ),

(3.15)

where b is a normalizing constant, such that
∑

j 6=i qi,j + ri = 1. The algorithm can be summa-

rized as follows
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Algorithm 3.1 Let the Markov chain consists of θ = (θ1, . . . , θn)

• Initialize θ.

• Draw a new value from θi|θ−i from Equation 3.14.

This algorithm has a slow convergence rate and sampling may be inefficient due to that. It can

occur because sometime a class of observations are associated with same θ with high probability.

As this algorithm can only change one at a time, a change to the θ values for observations can

occur rarely in such a class. This kind of change requires low probability transition.

This can be avoided by applying Gibbs sampling to the model Equation 3.10. This method

is used by [Bush and MacEachern, 1996]. In every Gibbs sampling, a new value for each ci is

selected from the conditional distribution ci|yi, φc, cj . Then a new value for each φc is selected

from its conditional distribution given the yi for which ci = c. The conditional probabilities for

ci can be computed

P (ci = c|c−i, yi, φ) = b
ni,c + α/K

n− 1 + α
F (yi, φc), (3.16)

where ni,c is the number of cj for j 6= i that are equal to c and b is the normalizing constant.

When K tends to infinity, Gibbs sampling is done in certain φc that are associated with certain

observation. Hence, the posterior distribution over ci can be computed

P (ci = c|c−i, yi, φ) =


b
ni,c+α
n−1+αF (yi, φc), if c = cj for some j 6= i

b α
n−1+α

∫
F (yi, φc) dG0(φ), if c 6= cj for all j 6= i

(3.17)



41

where ni,c is the number of cj for j 6= i that are equal to c, b is the appropriate normalizing

constant and φ is the set of φc. The second sampling method as follows:

Algorithm 3.2 Let the Markov chain consists of c = (c1, . . . , cn) and φ = (φc : c ∈ {c1, . . . , cn})

• Initialize (c1, . . . , cn) and φ.

• For i = 1, . . . , n: Remove φci from the state if current value of ci is not related to
observation (i.e n−i,ci = 0). Draw a new value for ci as defined by Equation 3.17. If the
new ci is not related with any other observation then draw a value of φci from Hi.

• For all c ∈ {c1, . . . , cn}): Draw a new value from φc|yi, ∀i for which ci = c.

In conjugate context, we can use the Markov chain consists only of ci by integrating over

φc and eliminating it from the algorithm. This algorithm is discussed in [MacEachern, 1994]

and [Neal, 1992]. The posterior probabilities is as follows

P (ci = c|c−i, yi, φ) =


b
ni,c+α
n−1+α

∫
F (yi, φ) dH−i,c(φ), if c = cj for some j 6= i

b α
n−1+α

∫
F (yi, φ) dG0(φ), if c 6= cj for all j 6= i

(3.18)

where dH−i,c(φ) is the posterior distribution of φ based on the prior G0 and for all yj for which

cj = c. The Gibbs sampling method is the following
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Algorithm 3.3 Let the Markov chain consists of c = (c1, . . . , cn).

• Initialize (c1, . . . , cn).

• For i = 1, . . . , n: Draw a new value from ci|c−i, yi by Equation 3.18.

This algorithm provides an efficient sampler as provides a precise estimate of the likelihood.

3.4.3 Blocked Gibbs Sampling for Stick-breaking Priors

[Ishwaran and James, 2001] introduced blocked Gibbs sampling method for fitting Bayesian

non-parametric hierarchical model based on stick-breaking priors. This approach allows direct

sampling of the non-parametric posterior, which leads to many computational and inferential

benefits. The observed data Y = (Y1, . . . , Yn) and the sequence of unobserved random elements

c1, · · · , cn with conditional distribution G sampled from stick-breaking prior. The hierarchical

model is

(Yi|ci, θ)
ind∼ π(Yi|ci, θ), i = 1, . . . , n,

(ci|G)
iid∼ G

θ ∼ π(θ)

G ∼ DP (α,G0)

(3.19)

We are assuming ci = ZKi where the Ki is the classification variable to match ZK associated

with each ci. With finite dimensional Stick-breaking prior, the Bayesian semiparametric model

Equation 3.19 can be rewritten as
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(Yi|Z,K, θ)
ind∼ π(Yi|ZKi , θ), i = 1, . . . , n,

(Ki|p)
i.i.d.∼

N∑
k=1

pkδk(·),

(p, Z) ∼ π(p)×HN (Z),

θ ∼ π(θ)

(3.20)

where K = (K1, · · · ,Kn) , Z = (Z1, · · · , ZN ), p = (p1, · · · , pN ) and Zk
iid∼ H. Here θ ∈ Rd

represents a finite dimensional parameter. The following algorithm will allow to draw values

from the conditional distributions of the blocked variables.

Algorithm 3.4 Let m unique values of K is denoted by {K∗1 , · · · ,K∗m}.

• Conditional for Z: For each k ∈ K − K∗1 , . . . ,K
∗
m simulate Zk ∼ H and also draw

(ZK∗j |K, θ,Y) from the density

f(ZK∗j |K, θ,Y) ∝ H( dZK∗j )
∏

{i:Ki=K∗j }

f(Yi|ZK∗j , θ), j = 1, . . . ,m.

• Conditional for K: Draw Ki from

(Ki|Z,p, θ,Y)
ind∼

N∑
k=1

pj,iδk(.), i = 1, . . . , n.

where (p1,i, . . . , pN,i) ∝ (p1f(Yi|Z1, θ), . . . , pNf(Yi|ZN , θ)).
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Algorithm 3.4 (Continued)

• Conditional for p: As the generalized Dirichlet distribution is conjugate to Multinomial
sampling. Then draws are following

p1 = V ∗1 , pk = (1− V ∗1 )(1− V ∗2 ) . . . (1− V ∗k−1)V ∗k , k = 2, . . . , N − 1,

where V ∗k
ind∼ Beta(ak +Mk, bk +

∑N
l=k+1Ml) for k = 1, . . . , N − 1 and Mk is the number

of Ki values that equal k.

• Conditional for θ: θ will be drawn from the density

f(θ|Z,K,Y) ∝ π( dθ)

n∏
i=1

f(Yi|ci, θ)

3.4.4 Posterior Analysis in Model 2: DPM Model

In section 3.2.2, we propose a DPM model for differential functional connectivity by mod-

eling the connectivity measurement Yi,rs between ROI pairs (r, s) for subject i as

Yi,rs ∼ f(·|ηi,rs)

g(ηi,rs) = β1,rs + β2,rsXi + γi + δc

β2,rs
i.i.d.∼ p δ0(.) + (1− p)G(·)

G(·) ∼ DP (α,G0)

G0 = N(0, σ2θ), σ2θ ∼ π(dσ2θ)

(3.21)
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For posterior computation of this model, we utilize finite truncation of Sethuraman’s stick-

breaking representation [Sethuraman, 1994] of the random G and its finite truncation to write

the model as follows.

G =
N∑
k=1

πkδθ∗k , N ≥ 1

Vk ∼ Beta(1, α) , k ≥ 2

π1 = V1

πk = Vk

k−1∏
l=1

(1− Vl), k = 2, · · · , N

θ∗k
i.i.d∼ N(0, σ2θ)

σ2θ ∼ π(dσ2θ)

(3.22)

where VN = 1 so that
∑N

k=1 πk = 1. The DP precision parameter α controls the prior on

the quantity of clusters. We used α ∼ Gamma(aα, bα) to keep it updating during the MCMC

sampling.

The posterior computation for this model used an algorithm similar to Algorithm 3.4.

OpenBUGS [Surhone et al., 2010] and R are used to generate MCMC samples for the Bayesian

posterior inference.

3.5 Neighborhood Model on ROI Pairs

3.5.1 Conditional Auto Regressive Model

Conditional autoregressive (CAR) models have been used extensively for analysis of spatial

data in many areas, such as ecology, demography, epidemiology, economics to model spatially



46

autocorrelated data based on neighborhood relationships. CAR models are a class of Gaussian

Markov random fields [Carlin et al., 2014] and early influential works include [Besag, 1974].

This subsection introduces the CAR model utilizing general spatial notations. The application

of the CAR model in modeling differential functional connectivities is described in the next

section.

We consider a process Y (·), with finite dimensional joint distribution (Y (s1), . . . , Y (sr))

defined on the lattice Ds ≡ {s1, · · · , sr} ∈ Rd. The neighborhood of location sk is defined as

N(sk) = {sj : sj is a neighbor of sk}.

Note that the neighborhood relationships can differ with respect to the area of interest. The

neighborhood N(sk) of the kth location sk can be formally defined as

[Y (sk)|Y−k] = [Y (sk)|Y(N(sk))], k = 1, · · · , r,

where Y (N(sk)) ≡ {Y (u) : u ∈ N(sk)}.

Lemma 3.5.1. [Cressie and Wikle, 2015] Let Y (·) and W (·) be two processes. Brook’s Lemma

relates the joint probability with conditional probability as following

P (y)

P (w)
=

r∏
k=1

P (y(sk)|y(s1), · · · , y(sk−1), w(sk+1), · · · , w(sr))

P (w(sk)|y(s1), · · · , y(sk−1), w(sk+1), · · · , w(sr))
, y, w ∈ Ω (3.23)
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The neighborhood structure can be represented by B = {bkj} such that bkk = 0 and bkj = 0

for sj 6∈ N(sk), k = 1, · · · , r. CAR model for any exponential family can be expressed as

following

p(yk|yj , j 6= k) ∝ exp
{
ψ(θkyk − χ(θk))

}
, (3.24)

where, canonical link θk =
∑

j 6=k bkjyj and ψ is a non-negative dispersion parameter.

For Gaussian (or autonormal) case, we assume that [Carlin et al., 2014]

Yk|(Yj , j 6= k) ∼ N(
∑

j∈N(sk)

bkjyj , τ
2
k ), k = 1. · · · , r. (3.25)

By applying Brook’s Lemma we can obtain

p(y1, · · · , yr) ∝ exp{−1

2
y′D−1(I −B)y} (3.26)

where B = {bkj} and D is a diagonal matrix with Dkk = τ2k . Y = (y1, · · · , yr) follows a

Multivariate Normal distribution with mean 0 and variance matrix Σy = (I−B)−1D if following

two conditions are satisfied

• D−1(I −B) is symmetric, which is equivalent to
bkj
τ2k

=
bjk
τ2j

for all k, j.

• D−1(I −B) is positive definite.

In the case where B is not symmetric, bkj is assumed to depend on symmetric proximity

matrix W = {wkj}. The entries wkj in W connect units k and j, where wkj = 1 if k and j share

same neighborhood and assume that wkk = 0. wkj ’s may be standardized by
∑

j wkj = wk+.
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The condition
bkj
τ2k

=
bjk
τ2j

satisfied if we assume bkj = wkj/wk+ and τ2k = τ2/wk+. We can rewrite

Equation 3.25 as

p(yk|yj , j 6= k) ∼ N(
∑
j

wkjyj/wk+, τ
2/wk+)

and then applying Brook’s Lemma the joint distribution can be expressed as

p(y1, · · · , yr) ∝ exp{− 1

2τ2
y′(Dw −W )y} (3.27)

where Dw is a diagonal matrix with (Dw)kk = wk+. The distribution in Equation 3.27 is

improper as Σy = (Dw −W )1 = 0. Equation 3.27 can be rewritten as following

p(y1, · · · , yr) ∝ exp{− 1

2τ2

∑
k 6=j

wkj(yk − yj)2} (3.28)

This joint distribution is improper but has proper full conditionals. Equation 3.28 is referred

as an intrinsically autoregressive (IAR) model.

We can get a proper CAR model by redefining Σy = Dw − ρW . Σ−1y is non-singular if

ρ ∈ (1/λ(1), 1/λ(r)), where λ(1) < λ(2) < · · · < λ(r) are eigen values of Dw
−1/2WDw

−1/2. The

full conditional can be written as

p(yk|yj , j 6= k) ∼ N(ρ
∑
j

wkjyj/wk+, τ
2/wk+) (3.29)

However, a proper CAR model may have limited spread of spatial pattern. An improper CAR

model allows a wide scope for posterior spatial pattern.
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3.5.2 Model 3: Neighborhood Model on ROI Pairs

We utilize the CAR model described in the previous section to incorporate dependence

between connectivity of the link rs and an appropriately defined neighborhood structure. We

define the neighbors of link rs as

N (rs) = {r′s, r′ 6= r} ∪ {rs′, s′ 6= s},

that is, links which are connected to rs at one of the vertices (either at r or at s). Let N denote

the collection of these neighborhoods for all pairs rs.

The model can be specified by the following prior hierarchy

Yi,rs|· ∼ N(µi,rs, σ
2)

µi,rs = β1,rs + β2,rsXi + γi + brs + δc

β1,rs ∼ N(µβ1 , σ
2
β1)

β2,rs
i.i.d∼ p δ0(.) + (1− p)N(0, τ2)

σ2 ∼ π(dσ2)

{brs : 1 ≤ r ≤ s ≤ R} ∼ CAR Normal(N (rs), σ2b )

σ2b ∼ π(dσ2b )

(3.30)

The neighborhood structure N (rs) is associated with weights wrs. These weights are assumed

to be symmetric and usually it is set to be equal to 1 [Besag et al., 1991].
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3.6 Performance Evaluation

We evaluate the performances of (1) Model 1: Parametric model, (2) Model 2: DPM model

and (3) Model 3: Neighborhood model on multiple simulation studies. These simulation studies

represent both correct analysis model and incorrect analysis model situations. Each simulation

study evaluates performances of the three analysis models over 100 replicated data sets. To

keep the Bayesian computational complexity over these replicated data sets manageable, each

data set considers 20 ROI’s resulting in
(
20
2

)
= 190 connectivities of rs pairs. Among these 190

links, 20 are specified to be differentially connected and remaining 170 are non-differentially

connected in the data generation models. We considered a sample size of n1 = 30 in the control

group and n2 = 30 in the ASD group.

3.6.1 Simulation Study 1

3.6.1.1 Data Generation Model

For this first simulation study, the data generation model is specified as follows

Yi,rs ∼ N(µi,rs, σ
2)

µi,rs = β1,rs + β2,rsXi + γi

where we generate γi ∼ Normal(0, σ2γ), with σ2γ = 0.052 and σ2 = 0.102. We specify the

intercept term β1,rs = 0.15 for all the 190 links. We specified connected and non-connected
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regions in parameter β2,rs. We considered the first 20 region pairs to be differentially connected

for which β2,rs = 0.055. β2,rs for non-differentially connected regions are set to be = 0.

β2,rs = (0.055, · · · , 0.055︸ ︷︷ ︸
20

, 0, · · · , 0︸ ︷︷ ︸
170

)

3.6.1.2 Results from Analysis Models 1, 2, and 3

We utilize the data-generating model specified above to generate 100 replicated data sets,

each of size (n1 = 30, n2 = 30) for the control and ASD groups respectively. We then analyzed

each data set using each of the three analysis models described. Note that analysis model 1 is

the correctly specified model here and analysis model 2 (DPM) is, in some sense, a super-model.

The hyperparameters for the model 1 (parametric model) in the Equation 3.7 is specified

as following

µβ1 ∼ N(0.5, 1), σ2β1 ∼ Inverse-Gamma(0.01, 0.01)

σ2 ∼ Inverse-Gamma(0.001, 0.001), τ2 ∼ Inverse-Gamma(0.01, 0.01)

p ∼ Uniform(0, 1)

We have considered the initial numbers of clusters to be 10 in the model 2 (DPM). Hyperpa-

rameters in Equation 3.22 are specified as following

α ∼ Gamma(0.1, 0.1), σ2θ ∼ Inverse-Gamma(0.01, 0.01)

Model 3 (neighborhood model) hyperparameters in Equation 3.30 are specified to be
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{brs : 1 ≤ r < s ≤ 20} ∼ CAR Normal(Nrs, σ2b ), σ2b ∼ Inverse-Gamma(0.01, 0.01).

Here weights {wrs}, which are associated with Nrs are set to be equal to 1. We generated 100

replicated data sets and apply the different analysis model. The following table shows mean

and standard error of parameters β1,·· = 1
190

∑190
rs=1 β1,rs, σ

2 and σ2γ obtained from simulation

study. We notice in Table IV that the estimated values of β1,··, σ
2 and σ2γ are approaching to

their respective true values.

TABLE IV: SIMULATION STUDY 1: AVERAGE VALUES AND STANDARD ERRORS

FROM THREE ANALYSIS MODELS

Analysis Models

Data Model 1 Model 2 Model 3

Parameter generation Parametric DPM Neighborhood

β1,·· 0.15 0.1512(0.0117) 0.1493(0.0105) 0.1508(0.0095)

σ2 0.10 0.1002 (0.0006) 0.0999 (0.0006) 0.1000(0.0006)

σ2γ 0.05 0.0499(0.0041) 0.0499(0.0041) 0.0500 (0.0041)

The panel of ROC curves in Figure 6 plot the false positive rate (FPR) versus the true

positive rate (TPR) for the parametric, Dirichlet process and neighborhood models. We notice

that DPM model performs strongly compared to the other two models.
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(a) Parametric Model (b) DPM Model

(c) Neighborhood model

Figure 6: Each panel shows 100 separate ROC curves for 100 replicated data sets. The average

curve over the 100 replications is shown in black
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3.6.2 Simulation Study 2

3.6.2.1 Data Generation Model

The data set are generated from a Conditional Autoregressive (CAR) Normal model for the

second simulation study. The dependence and neighborhood structures are as defined before,

that is, the neighborhood of rs are all links that include either the region r or the region s.

Yi,rs ∼ N(µi,rs, σ
2)

µi,rs = β1,rs + β2,rsXi + γi + brs

where we generate γi ∼ Normal(0, σ2γ), with σ2γ = 0.052 and σ2 = 0.102. Here we are considering

β1,rs = 0.15 for all the links. Here brs is the random effect coming from neighborhood links and

brs ∼ CAR Normal(Nrs, σ2b ) with σ2b = 0.72. β2,rs for non-connected regions are set to be zero.

We specified connected and non-connected regions in parameter β2,rs. We considered first 20

region pairs to be differentially connected for which β2,rs = 0.055. β2,rs for non-differentially

connected regions are set to be = 0.

β2,rs = (0.055, · · · , 0.055︸ ︷︷ ︸
20

, 0, · · · , 0︸ ︷︷ ︸
170

)

3.6.2.2 Results from Analysis Models 1, 2, and 3

We utilize the data-generating model specified above to generate 100 replicated data set,

each of size (n1 = 30, n2 = 30) for the control and ASD groups respectively. We then analyzed
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each data set using each of the three analysis models described. Note that analysis model 3

(neighborhood model) is the correctly specified model and the analysis model 2 (DPM) is, in

some sense, a super-model.

The hyperparameters for the model 1 (parametric model) in the Equation 3.7 is specified

as following

µβ1 ∼ N(0.5, 1), σ2β1 ∼ Inverse-Gamma(0.01, 0.01)

σ2 ∼ Inverse-Gamma(0.001, 0.001), τ2 ∼ Inverse-Gamma(0.01, 0.01)

p ∼ Uniform(0, 1)

We have considered initial numbers of clusters to be 10 in the model 2 (DPM). Hyperparameters

in Equation 3.22 is specified as following

α ∼ Gamma(0.1, 0.1), σ2θ ∼ Inverse-Gamma(0.01, 0.01)

Model 3 (neighborhood model) hyperparameters in the Equation 3.30 are specified to be

{brs : 1 ≤ r ≤ 20} ∼ CAR Normal(Nrs, σ2b ), σ2b ∼ Inverse-Gamma(0.01, 0.01)

here weights {wrs}, which are associated with Nrs are set to be equal to 1. We generated 100

replicated data sets and apply the different analysis model. The following table shows mean

and standard error of parameters β1,·· = 1
190

∑190
rs=1 β1,rs, σ

2 and σ2γ obtained from simulation

study. We notice in Table V that estimated values of β1,··, σ
2 and σ2γ are approaching to their

respective true values.
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TABLE V: SIMULATION STUDY 2: AVERAGE VALUES AND STANDARD ERRORS

FROM THREE ANALYSIS MODELS

Analysis Models

Data Model 1 Model 2 Model 3

Parameter generation Parametric DPM Neighborhood

β1,·· 0.15 0.1519(0.1197) 0.1501(0.1194) 0.1517(0.0796)

σ2 0.10 0.1003 (0.0007) 0.0999 (0.0007) 0.0999 (0.0007)

σ2γ 0.05 0.0487(0.0048) 0.0487(0.0048) 0.0487 (0.0048)

Figure 7 represents the multiple sets of ROC curve which plots the false positive rate (FPR)

on the x-axis and the true positive rate (TPR) for parametric, Dirichlet process method and

neighborhood model for the parameter β2,rs. We notice that DPM performs exceptionally well

even better than neighborhood model (the correctly specified model). The parametric model

has performed really poorly in this simulation study.
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(a) Parametric Model (b) DPM Model

(c) Neighborhood model

Figure 7: Each panel shows 100 separate ROC curves for 100 replicated data sets. The average

curve over the 100 replications is shown in black
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3.7 ABIDE Data Analysis

Autism Brain Image Data Exchange (ABIDE) is an alliance among medical centers across

the USA and Europe and is the largest repository of functional and structural brain imaging data

for autism. It is a part of 1000 Functional Connectomes Project/ International Neuroimaging

Datasharing Initiative (INDI). The data sets are anonymous, with no protected health infor-

mation according to Health Insurance Portability and Accountability (HIPAA) guidelines and

1000 Functional Connectomes Project / INDI protocols. The ABIDE data were preprocessed

by Connectome Computation System (CCS), the Configurable Pipeline for the Analysis of Con-

nectomes (CPAC), the Data Processing Assistant for Resting-State fMRI (DPARSF) and the

NeuroImaging Analysis Kit.

We used fMRI measurements from 84 regions of Broadmann areas of brain (see Table II)

from 7 sites for investigating functional connectivity. There are a total of 314 subjects (see

Table VI) including 164 control and 150 subjects with ASD. Each sites have sample of size less

than 60 except New York University.

Connectivity metrics in this data set are obtained by computing Pearson correlation between

two ROI pairs over all time points and then applying Fisher’s z-transformation to the correlation

[Bhaumik et al., 2018]. There are total
(
84
2

)
= 3486 many region pairs.
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TABLE VI: NUMBER OF SUBJECTS AT EACH SITE FOR ABIDE DATA SET

Site Control ASD Total

California Institute of Technology 21 16 37

New York University 42 35 77

Olin Institute of living 16 20 36

University of Pittsburgh 28 30 58

Social Brain Lab 15 15 30

San Diego State University 22 14 36

Stanford University 20 20 40

Total 164 150 314

3.7.1 Analysis on Single Site Data Set

We analyzed rs-fMRI data from 7 sites to explore differentially connected region between

ASD and control subjects.

3.7.1.1 Preliminary Analysis

We perform a marginal analysis to understand the pattern of the data. We have randomly

selected two subjects from California Institute of Technology, one from ASD and another one

from control and plot their cross-correlated functional connectivity over 3486 links in Figure 8.
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Figure 8: Cross-correlated Functional Connectivity from randomly selected subject of site Cal-

ifornia Institute of Technology

Figure 9 illustrates cross-correlated functional connectivity measurements, which are aver-

aged over subjects from ASD and control group for all sites. Difference in patterns in averaged

cross-correlated functional connectivity can be observed among sites.
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Figure 9: Average cross-correlated functional connectivity for all sites
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We further proceed to perform a two sample t-test on cross-correlated functional connectiv-

ity between ASD and control group for each site. Numbers of significantly different ROI pair

connection observed using two sample t-test is reported in Table VII.

TABLE VII: NUMBERS OF SIGNIFICANTLY DIFFERENT REGION PAIR CONNECTION

OBSERVED USING TWO SAMPLE T-TEST

Site P-value < 0.05

California Institute of Technology 199

New York University 192

Olin Institute of living 134

University of Pittsburgh 242

Social Brain Lab 200

San Diego State University 166

Stanford University 203
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3.7.1.2 Results from Analysis Models 1, 2, and 3

Let Yi,rs is functional connectivity measurement between ROI from Broadmann areas of

brain r and s (where, 1 ≤ r < s ≤ 84) for subject. i, i = 1, · · · , n.

Yi,rs|· ∼ N(µi,rs, σ
2)

µi,rs = β1,rs + β2,rsXi + γi

σ2 ∼ π(dσ2)

(3.31)

where Xi = 0 if subject i is control while Xi = 1 if the subject is ASD, γi is a subject-level

random effect term and σ2 ∼ Inverse-Gamma(0.001, 0.001).

The parametric model can be expressed as

β1,rs ∼ N(µβ1 , σ
2
β1), where µβ1 ∼ N(0.5, 1), σ2β1 ∼ Inverse-Gamma(0.01, 0.01)

β2,rs
i.i.d∼ p δ0(.) + (1− p)G(·), where p ∼ Uniform(0, 1)

G(·) ∼ N(0, τ2), where τ2 ∼ Inverse-Gamma(0.01, 0.01),

γi ∼ N(0, σ2γ), where σ2γ ∼ Inverse-Gamma(0.001, 0.001)

We consider a DPM extension of the parametric model by assuming G(·) ∼ DP (α,G0), where

the base measureG0 = N(0, σ2θ). We are using Sethuraman’s finite stick-breaking representation

for posterior computation of the random G. The initial number of clusters are set to be k = 12

and precision parameter α ∼ Gamma(0.1, 0.1). The complexity of the computation goes up
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when DPM model is being used. As a result, DPM model has significantly higher computation

time compared to parametric model.

The neighborhood model on ROI pairs is motivated by the assumption that differential

connectivity at rs may be associated with connectivities in other links which are attached

with rs at one of its vertices. We propose a conditional auto-regressive (CAR) model with

neighborhood structure N to incorporate potential dependencies in functional connectivity of

regions rs and its neighbors.

Yi,rs ∼ f(·|ηi,rs)

g(ηi,rs) = β1,rs + β2,rsXi + γi + brs

{brs : 1 ≤ r < s ≤ 84} ∼ CAR Normal(N , σ2b ), where σ2b ∼ Inverse-Gamma(0.001, 0.001)

The results that we present below are based on 50, 000 post-burn-in Markov Chain samples from

the posterior distribution of each of the Bayesian models after an initial burn-in of 25, 000.

Figure 10 and Figure 11 illustrates trace plots of the indicator variable of links 136, 800,

σ2 and deviance (−2 ∗ log(Yi,rs|·)) from site California Institute of Technology by applying

parametric model (model 1) and DPM model (model 2).
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(a) Trace plot of Link 136

(b) Trace plot of Link 800

(c) Trace plot of σ2

(d) Trace plot of deviance

Figure 10: Trace plots by applying parametric model for data set from site California Institute

of Technology
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(a) Trace plot of Link 136

(b) Trace plot of Link 800

(c) Trace plot of σ2

(d) Trace plot of deviance

Figure 11: Trace plots by applying DPM model for data set from site California Institute of

Technology
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The following table summarizes significant links discovered from these models.

TABLE VIII: NUMBERS OF SIGNIFICANT DIFFERENTIAL CONNECTED LINKS AT

EACH SITE

Site Parametric DPM Neighborhood

California Institute of Technology 68 89 95

New York University 264 207 341

Olin Institute of living 85 100 135

University of Pittsburgh 184 160 275

Social Brain Lab 174 166 226

San Diego State University 143 137 197

Stanford University 119 117 178

The significant links are not identical across all sites. The number of significant links also

varies across sites. There might be several reasons for these disparities. The samples size for

most of the sites are quite small. Moreover, there is an unequal distribution of age across sites

(Table I) which can contribute to these disparities. [Uddin et al., 2013], [Padmanabhan et al.,

2013], [Nomi and Uddin, 2015] investigated age-related differences in brain connectivity in ASD.
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3.7.2 Analysis on Combined Data Set

In the previous section, analysis was done for each of the 7 sites separately and we notice

that significant links are not identical across all the sites. This might have occurred due to small

sample size and unequal age group distribution in the sites. We combine data across all the

site, which provide considerable sample size. The combined data set has total of 314 subjects

including 164 control and 150 subjects with ASD. We consider a random effect δc ∼ N(0, 0.52)

to account for heterogeneity across sites as described in Equation 3.1.

The results that we present below are based on 100, 000 post-burn-in Markov Chain samples

from the posterior distribution of each of the Bayesian models after an initial burn-in of 50, 000.

The following table summarizes significant links discovered from these models.

TABLE IX: NUMBERS OF SIGNIFICANT DIFFERENTIAL CONNECTED LINKS FOR

COMBINED DATA SET

Parametric DPM Neighborhood

218 135 203

The following table demonstrates the shared differentially connected regions obtained using

each of the Bayesian models from combined data set of all 7 sites of ABIDE data and the

probability of each links to be in connected regions using above mentioned methods.
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TABLE X: DIFFERENTIAL CONNECTED REGIONS IN COMBINED DATA

Region-1 Region-2 SS DPM Neighborhood

(R). Primary Somatosensory Cortex (R). Secondary Visual Cortex 0.98 0.96 0.98

(L). Anterior Prefrontal Cortex (R). Secondary Visual Cortex 0.89 0.83 0.87

(L). Anterior Prefrontal Cortex (L). Angular gyrus 0.83 0.78 0.83

(L). Anterior Prefrontal Cortex (R). Supramarginal Gyrus 0.86 0.77 0.83

(L). Anterior Prefrontal Cortex (R). Inferior Prefrontal Gyrus 0.86 0.78 0.85

(R). Anterior Prefrontal Cortex (R). Primary Motor Cortex 0.92 0.88 0.90

(L). Orbitofrontal Cortex (L). Primary Somatosensory Cortex 0.85 0.79 0.87

(L). Orbitofrontal Cortex (R). Dorsal Frontal Cortex 0.95 0.95 0.96

(R). Orbitofrontal Cortex (L). Primary Visual Cortex 0.98 0.97 0.99

(R). Orbitofrontal Cortex (L). Inferior Temporal Gyrus 1.00 1.00 1.00

(R). Insular Cortex (R). Anterior Cingulate Cortex 0.94 0.92 0.95

(R). Insular Cortex (R). Angular gyrus 0.95 0.93 0.95

(R). Insular Cortex (R). Premotor Cortex 0.95 0.90 0.96

(L). Primary Visual Cortex (R). Associative Visual Cortex 0.86 0.77 0.83

(L). Primary Visual Cortex (L). Primary Somatosensory Cortex 0.96 0.95 0.97

(L). Primary Visual Cortex (L). Ventral Anterior Cingulate Cortex 0.95 0.93 0.95

(L). Primary Visual Cortex (L). Piriform Cortex 0.92 0.86 0.92

(L). Secondary Visual Cortex (L). Subgenual cortex 1.00 1.00 1.00

(L). Secondary Visual Cortex (R). Subcentral Area 0.95 0.94 0.96

(L). Secondary Visual Cortex (R). IFC pars triangularis 0.89 0.76 0.87

(R). Secondary Visual Cortex (R). Angular gyrus 0.88 0.86 0.90

(R). Secondary Visual Cortex (R). Somatosensory Association Cortex 0.98 0.95 0.98

(R). Secondary Visual Cortex (L). Premotor Cortex 1.00 1.00 1.00

(R). Secondary Visual Cortex (R). Premotor Cortex 0.90 0.80 0.90

(L). Associative Visual Cortex (L). Inferior Prefrontal Gyrus 1.00 1.00 1.00

(R). Associative Visual Cortex (R). Ventral Posterior Cingulate Cortex 0.90 0.85 0.89

(R). Associative Visual Cortex (R). Perirhinal cortex 0.99 0.98 0.99
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TABLE X – DIFFERENTIAL CONNECTED REGIONS IN COMBINED DATA (Continued)

Region-1 Region-2 SS DPM Neighborhood

(R). Associative Visual Cortex (R). Dorsolateral Prefrontal Cortex 0.95 0.94 0.96

(L). Primary Somatosensory Cortex (L). Primary Auditory Cortex 0.97 0.96 0.98

(R). Primary Somatosensory Cortex (R). Angular gyrus 1.00 1.00 1.00

(L). Inferior Temporal Gyrus (R). Subgenual cortex 0.85 0.79 0.85

(L). Inferior Temporal Gyrus (R). Posterior Entorhinal Cortex 0.86 0.79 0.85

(L). Inferior Temporal Gyrus (R). IFC pars opercularis 0.85 0.76 0.84

(L). Middle Temporal Gyrus (R). Anterior Cingulate Cortex 0.89 0.83 0.88

(L). Middle Temporal Gyrus (L). IFC pars triangularis 0.90 0.88 0.90

(L). Middle Temporal Gyrus (L). Dorsolateral Prefrontal Cortex 0.90 0.77 0.89

(R). Middle Temporal Gyrus (R). Dorsal Posterior Cingulate Cortex 0.94 0.87 0.93

(R). Middle Temporal Gyrus (R). Premotor Cortex 0.92 0.82 0.90

(L). Superior Temporal Gyrus (L). Ventral Posterior Cingulate Cortex 0.93 0.86 0.93

(L). Superior Temporal Gyrus (R). Retrosplenial Cingulate Cortex 0.94 0.88 0.93

(L). Superior Temporal Gyrus (L). Primary Somatosensory Cortex 0.99 0.99 0.99

(L). Superior Temporal Gyrus (L). Subcentral Area 0.89 0.82 0.86

(R). Superior Temporal Gyrus (R). Dorsal anterior Cingulate Cortex 0.92 0.82 0.92

(R). Superior Temporal Gyrus (L). Anterior Cingulate Cortex 0.86 0.78 0.83

(R). Superior Temporal Gyrus (L). Parahippocampal cortex 0.87 0.80 0.84

(L). Ventral Posterior Cingulate Cortex (L). Anterior Cingulate Cortex 0.95 0.94 0.95

(L). Ventral Posterior Cingulate Cortex (R). Fusiform gyrus 0.93 0.89 0.92

(R). Ventral Posterior Cingulate Cortex (L). Posterior Entorhinal Cortex 0.88 0.84 0.89

(R). Ventral Posterior Cingulate Cortex (L). Primary Somatosensory Cortex 0.93 0.90 0.92

(R). Ventral Posterior Cingulate Cortex (R). Cingulate Cortex 0.88 0.82 0.88

(R). Ventral Posterior Cingulate Cortex (R). IFC pars triangularis 0.93 0.89 0.93

(L). Ventral Anterior Cingulate Cortex (R). Premotor Cortex 0.88 0.76 0.88

(L). Ventral Anterior Cingulate Cortex (L). Dorsal Frontal Cortex 0.93 0.90 0.90

(R). Ventral Anterior Cingulate Cortex (L). Parahippocampal cortex 0.86 0.79 0.84

(R). Ventral Anterior Cingulate Cortex (L). Temporopolar Area 1.00 0.99 0.99
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TABLE X – DIFFERENTIAL CONNECTED REGIONS IN COMBINED DATA (Continued)

Region-1 Region-2 SS DPM Neighborhood

(R). Ventral Anterior Cingulate Cortex (R). IFC pars triangularis 0.89 0.79 0.89

(R). Ventral Anterior Cingulate Cortex (R). Dorsolateral Prefrontal Cortex 0.87 0.79 0.88

(L). Subgenual cortex (R). Primary Somatosensory Cortex 0.97 0.95 0.97

(R). Subgenual cortex (L). Retrosplenial Cingulate Cortex 0.87 0.83 0.87

(R). Subgenual cortex (L). Dorsal Frontal Cortex 1.00 1.00 1.00

(R). Subgenual cortex (R). Dorsolateral Prefrontal Cortex 0.97 0.97 0.97

(L). Piriform Cortex (R). Piriform Cortex 0.99 0.97 0.99

(L). Piriform Cortex (L). Somatosensory Association Cortex 1.00 0.99 0.99

(R). Piriform Cortex (L). Primary Somatosensory Cortex 0.94 0.92 0.94

(R). Piriform Cortex (R). Cingulate Cortex 1.00 0.99 0.99

(R). Piriform Cortex (R). Dorsolateral Prefrontal Cortex 0.86 0.77 0.86

(R). Piriform Cortex (L). Inferior Prefrontal Gyrus 0.95 0.88 0.93

(R). Piriform Cortex (L). Dorsolateral Prefrontal Cortex 0.96 0.92 0.96

(R). Posterior Entorhinal Cortex (R). Temporopolar Area 0.93 0.87 0.93

(L). Retrosplenial Cingulate Cortex (R). Supramarginal Gyrus 0.96 0.94 0.96

(R). Retrosplenial Cingulate Cortex (L). Fusiform gyrus 0.94 0.90 0.93

(R). Retrosplenial Cingulate Cortex (L). IFC pars triangularis 0.98 0.96 0.98

(R). Retrosplenial Cingulate Cortex (R). Inferior Prefrontal Gyrus 0.89 0.84 0.88

(L). Primary Somatosensory Cortex (R). Supramarginal Gyrus 0.99 0.99 0.99

(R). Primary Somatosensory Cortex (R). Somatosensory Association Cortex 0.89 0.79 0.88

(L). Cingulate Cortex (L). Primary Auditory Cortex 1.00 1.00 1.00

(L). Cingulate Cortex (L). IFC pars triangularis 0.90 0.89 0.92

(L). Cingulate Cortex (R). Dorsal Frontal Cortex 0.93 0.88 0.93

(R). Cingulate Cortex (L). IFC pars opercularis 0.90 0.85 0.90

(L). Dorsal Posterior Cingulate Cortex (R). Temporopolar Area 0.97 0.94 0.97

(L). Dorsal Posterior Cingulate Cortex (R). Primary Motor Cortex 0.96 0.92 0.95

(R). Dorsal Posterior Cingulate Cortex (R). IFC pars triangularis 0.92 0.88 0.93

(L). Dorsal anterior Cingulate Cortex (R). Parahippocampal cortex 0.99 0.99 0.99



72

TABLE X – DIFFERENTIAL CONNECTED REGIONS IN COMBINED DATA (Continued)

Region-1 Region-2 SS DPM Neighborhood

(L). Dorsal anterior Cingulate Cortex (R). Subcentral Area 1.00 1.00 1.00

(L). Dorsal anterior Cingulate Cortex (L). IFC pars opercularis 1.00 1.00 1.00

(L). Dorsal anterior Cingulate Cortex (R). Dorsolateral Prefrontal Cortex 0.85 0.79 0.85

(R). Dorsal anterior Cingulate Cortex (R). Inferior Prefrontal Gyrus 1.00 0.99 1.00

(L). Anterior Cingulate Cortex (L). Somatosensory Association Cortex 0.92 0.84 0.92

(R). Anterior Cingulate Cortex (L). IFC pars triangularis 0.97 0.94 0.96

(R). Anterior Cingulate Cortex (R). Inferior Prefrontal Gyrus 0.92 0.90 0.93

(L). Anterior Entorhinal Cortex (R). Fusiform gyrus 0.86 0.78 0.87

(L). Anterior Entorhinal Cortex (L). Temporopolar Area 0.99 0.99 1.00

(L). Anterior Entorhinal Cortex (R). Premotor Cortex 0.84 0.77 0.83

(L). Anterior Entorhinal Cortex (R). Somatosensory Association Cortex 0.86 0.77 0.85

(R). Anterior Entorhinal Cortex (R). Parahippocampal cortex 1.00 1.00 1.00

(R). Anterior Entorhinal Cortex (L). Temporopolar Area 0.93 0.89 0.90

(R). Anterior Entorhinal Cortex (R). Primary Motor Cortex 0.87 0.80 0.86

(R). Anterior Entorhinal Cortex (L). Somatosensory Association Cortex 0.99 0.98 0.99

(L). Perirhinal cortex (R). Premotor Cortex 1.00 1.00 1.00

(L). Perirhinal cortex (R). Somatosensory Association Cortex 0.94 0.92 0.94

(L). Perirhinal cortex (R). Dorsolateral Prefrontal Cortex 0.96 0.95 0.95

(L). Parahippocampal cortex (L). Primary Motor Cortex 0.94 0.90 0.94

(L). Parahippocampal cortex (R). Dorsal Frontal Cortex 0.90 0.89 0.90

(R). Parahippocampal cortex (L). Fusiform gyrus 0.95 0.94 0.95

(R). Parahippocampal cortex (R). Primary Motor Cortex 0.97 0.96 0.97

(R). Parahippocampal cortex (L). Primary Auditory Cortex 0.99 0.99 0.99

(R). Parahippocampal cortex (R). Subcentral Area 0.87 0.79 0.87

(R). Parahippocampal cortex (R). IFC pars triangularis 0.94 0.90 0.94

(L). Fusiform gyrus (L). Primary Auditory Cortex 0.99 0.99 0.98

(L). Fusiform gyrus (R). Primary Auditory Cortex 0.95 0.90 0.95

(R). Fusiform gyrus (R). Temporopolar Area 0.99 0.97 0.99
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TABLE X – DIFFERENTIAL CONNECTED REGIONS IN COMBINED DATA (Continued)

Region-1 Region-2 SS DPM Neighborhood

(L). Temporopolar Area (R). Primary Motor Cortex 0.96 0.95 0.96

(L). Temporopolar Area (L). Primary Auditory Cortex 0.98 0.97 0.98

(L). Temporopolar Area (R). Somatosensory Association Cortex 0.93 0.90 0.93

(R). Temporopolar Area (L). Somatosensory Association Cortex 0.98 0.96 0.98

(R). Temporopolar Area (R). Premotor Cortex 0.90 0.80 0.90

(R). Temporopolar Area (L). Dorsolateral Prefrontal Cortex 0.89 0.78 0.90

(L). Angular gyrus (R). Primary Auditory Cortex 0.92 0.90 0.90

(R). Angular gyrus (R). Supramarginal Gyrus 0.93 0.85 0.93

(R). Angular gyrus (L). Somatosensory Association Cortex 0.90 0.84 0.89

(L). Primary Motor Cortex (L). Subcentral Area 0.99 0.97 0.98

(L). Primary Motor Cortex (R). Inferior Prefrontal Gyrus 0.87 0.82 0.87

(L). Primary Motor Cortex (L). Somatosensory Association Cortex 0.94 0.92 0.95

(R). Primary Motor Cortex (R). Subcentral Area 0.89 0.80 0.89

(L). Supramarginal Gyrus (L). IFC pars triangularis 0.97 0.98 0.97

(R). Supramarginal Gyrus (R). IFC pars opercularis 0.95 0.90 0.95

(R). Supramarginal Gyrus (R). Dorsal Frontal Cortex 0.90 0.85 0.90

(L). Primary Auditory Cortex (L). Dorsolateral Prefrontal Cortex 0.87 0.80 0.86

(L). Primary Auditory Cortex (R). IFC pars triangularis 0.98 0.99 0.99

(L). Dorsolateral Prefrontal Cortex (R). Dorsal Frontal Cortex 0.98 0.96 0.98

(R). Dorsolateral Prefrontal Cortex (R). Dorsal Frontal Cortex 0.99 0.99 1.00

(R). Inferior Prefrontal Gyrus (L). Dorsolateral Prefrontal Cortex 0.99 0.98 0.99

(R). Inferior Prefrontal Gyrus (R). Dorsolateral Prefrontal Cortex 0.87 0.80 0.85

(L). Somatosensory Association Cortex (R). Somatosensory Association Cortex 0.99 1.00 1.00

(R). Premotor Cortex (L). Somatosensory Association Cortex 0.92 0.90 0.90
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Figure 12: Connectivity between differentially connected regions across brain hemisphere using

combined data set of all 7 sites of ABIDE data

3.7.3 Conclusion

We analyze summarized functional connectivity measurements between ROI pairs from

Broadmann areas of brain using proposed Bayesian models. The analysis is done using data

from 7 sites separately and then again combining the data across all the sites. The combined

analysis models and identifies the links which are differentially connected across sites. The



75

single site data analysis identifies differentially connected links at each individual site. We

observe that those links are not identical across all sites.



CHAPTER 4

REGIONAL-TEMPORAL FUNCTIONAL CONNECTIVITY

MODEL

4.1 Introduction

In the previous chapter, the outcome variable was a connectivity metric summarized over

time between ROI pairs. In this chapter, instead of considering measures summarized over time,

we directly model the time sequence of rs-fMRI measurement at each ROI. The time-dependent

model for functional connectivity jointly considers the time sequence of fMRI measurements and

the modularity structure of brain regions. We have applied dynamic linear model to capture the

temporal structure of data and the potential correlation between connected regions is modeled

using the Hidden Potts model with latent variable. As an application we used these models to

analyze functional connectivity in the Autism Brain Imaging Data Exchange (ABIDE).

Figure 13 illustrates rs-fMRI measurements over 196 time points for 6 randomly selected

ROIs with two randomly selected subjects, one from ASD subject and other from control.

76
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(a) rs-fMRI measurement for randomly selected con-

trol subject

(b) rs-fMRI measurement for randomly selected ASD

subject

(c) Average rs-fMRI measurement for all control sub-

ject

(d) Average rs-fMRI measurement for all ASD sub-

ject

Figure 13: rs-fMRI measurement for randomly selected ROIs (6, 17, 32, 40, 55, 56) from ran-

domly selected site (Social Brain Lab)
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4.2 Model Specification

We have rs-fMRI measurements Yitr for i = 1, · · · , n subjects, at t = 1, · · · , T are discrete

time points, and r = 1, · · · , R regions We model Yitr as following

Yitr = G(θitr, br) + εitr, (4.1)

where θitr is the temporal component of the model and br is a random effect which brings in

potential correlation between connected regions. We assume that errors εitr
i.i.d∼ N(0, σ2).

We utilize Dynamic Linear Model (DLM) [West and Harrison, 2006] to model the temporal

component θitr. Dynamic Linear Models are state-space models where we specify an auto-

regressive structure on the latent parameters θitr.

Observational Equation Yitr = G(θitr, br) + εitr

System Equation of Temporal Component θitr = βirθi(t−1)r + ηitr (4.2)

where, ηitr
i.i.d∼ N(0, w2) is the error term of system equation and the coefficient βir de-

pends on subject i and region r. We assume a normal prior for βir ∼ N(µβr , σ
2
βr

), where

the hyperpriors µβr and σ2βr are shared across subjects and specify the initial distribution as

θi0r ∼ N(m0, C0), for all i and r.

The region-level random effects {br}Rr=1 are modeled using a hidden Potts model which

creates stochastic clustering among {br}Rr=1 with same cluster br values sharing identical values.

Let zr denote the (random) cluster label of br. The random effects {br}Rr=1 can then be labeled
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as {b∗z1 , · · · , b
∗
zR
}, where b∗1, b

∗
2, . . . denote the unique values associated with the clusters. The

hidden Potts model allocates small weights to large cluster, and therefore generates various

smaller clusters [Zhang et al., 2015b].

4.3 State-space Models

We describe the state-space model for the temporal components θitr in Equation 4.2 for

observations Yitr. For notational simplicity, we suppress subscripts i and r in this section

and denote them as θt and Yt respectively. We also suppress the dependence of Yitr on the

region-level random effects br in this section.

State-space models have become popular in time series analysis in the last two decades.

Univariate and multivariate time series can be modeled using state-space models. The observed

time series Yt is related to an underlying unobservable process called state process (θt). The

following description of state-space models follows [West and Harrison, 2006], and [Petris et al.,

2009].

1. {θt, t = 0, 1, · · · } is a (first-order) stationary Markov process. The distribution of θt

depends on the past history through θt−1. The density of the initial θ0 is given by p0(θ0)

and the transition density of the stationary process is given by p(θt|θt−1).

2. Observation Yt depends on the state process {θt} only through θt. For any T ≥ 1,

(Y1, . . . , Yt) are conditionally independent so that the joint density of (Y1, · · · , YT )|(θ1, · · · , θT )

is given by
∏T
t=1 f(Yt|θt).
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Figure 14: state-space model.

(Source: [Petris et al., 2009])

In this model state variables are continuous unlike hidden Markov model, where state vari-

ables are discrete. The process {(θt, Yt), t = 1, 2, · · · } is Markovian. The joint density of (θt, Yt)

can be obtained as

(θ0, θ1, · · · , θT , Y1, · · · , YT ) ∼ p0(θ0)
T∏
t=1

p(θt, Yt|θ0, θ1, · · · , θt−1, Y1, · · · , Yt−1)

= p0(θ0)
T∏
t=1

f(Yt|θ0, θ1, · · · , θt, Y1, · · · , Yt−1)

p(θt|θ0, θ1, · · · , θt−1, Y1, · · · , Yt−1)

= p0(θ0)
T∏
t=1

f(Yt|θt)p(θt|θt−1) (4.3)

Equation 4.3 implies that Yt is conditionally independent from the past observations (Y1, · · · , Yt−1)

given θt. The density of (Y1, · · · , YT ) can be obtained by marginalizing the joint density in

Equation 4.3 over θ, however the marginal density does not have a closed form expression.

4.3.1 Dynamic Linear Model

One of the most important classes of state-space model is Gaussian linear state-space model,

also known as dynamic linear model (DLM).
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Definition 4.3.1. [West and Harrison, 2006] The general dynamic linear model (DLM) is

defined by a set of quadruples for each time point t, {F,G, V,W}t = {Ft, Gt, Vt,Wt} where Ft

is a known (n× r) design matrix, Gt is a known (n×n) transfer or state matrix, Vt is a known

(r× r) variance matrix and Wt is a known (n×n) variance matrix. Let Yt be an (r× 1) vector

observation over times t = 1, 2, · · · , which is associated with state vector θt through the set of

quadruples at time t.

(Yt|θt) ∼ N [F ′tθt, Vt]

(θt|θt−1) ∼ N [Gtθt−1,Wt] (4.4)

Equation 4.4 also conditional on Dt−1, where Dt−1 = {Yt−1, Dt−2} the information set available

prior to time t.

Alternatively, the equation can be defined as follows

Yt = Ftθt + νt, νt ∼ N [0, Vt]

θt = Gtθt−1 + ωt, ωt ∼ N [0,Wt] (4.5)

where νt is the observational error and ωt is the system or evolution error. These error sequences

are internally and mutually independent.

The general univariate DLM is defined by Definition 4.3.1 with r = 1.
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Definition 4.3.2. [West and Harrison, 2006] The general univariate DLM for each timepoint

t is defined by

Observational equation: Yt = F ′tθt + νt, νt ∼ N(0, V ),

System equation: θt = Gtθt−1 + ωt, ωt ∼ N(0,Wt),

Initial information: (θ0|D0) ∼ N(m0, C0),

where νt and ωt are internally and mutually independent and also independent of (θ0|D0)

Theorem 4.3.1. [West and Harrison, 2006] The one-step forecast and the posterior distribu-
tion for any time t > 0 can be obtained as following

1. Posterior for θt−1:

(θt−1|Dt−1) ∼ N [mt−1, Ct−1],

for some mean mt−1 and variance matrix Ct−1.

2. Prior for θt :

(θt|Dt−1) ∼ N [at, Rt],

where at = Gtmt−1 and Rt = GtCt−1G
′
t +Wt.

3. 1-step forecast:

(Yt|Dt−1) ∼ N [ft, Qt],

where ft = F ′tat and Qt = F ′tRtFt + Vt.

4. Posterior for θt:

(θt|Dt) ∼ N [mt, Ct],

with mt = at +Atet and Ct = Rt −AtQtA′t,
where At = RtFtQ

−1
t , and et = Yt − ft.
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The posterior probability of regression coefficient Equation 4.2 can be calculated as following

Prior Probability: βir ∼ N(µβr , σ
2
βr)

Posterior Probability: (βir|θ1:T , DT ) ∼ π(βir) ∗
T∏
t=1

p(θt|βir, Dt)

∼ N(µβir , σ
2
βir

)

with µβir =

(∑T
t=1 θt
w2 +

µβr
σ2
βr

)
(

T
w2 + 1

σ2
βr

) and σ2βir =

(
T

w2
+

1

σ2βr

)−1

The priors of µβr and σ2βr are the following

µβr ∼ N(µb0 , σ
2
b0)

σ−2βr ∼ Gamma(a0, b0)

4.4 Modeling Dependence among ROIs

We now return to model in Equation 4.2 and focus on the model for the region level random

effects br. Markov random field (MRF) models has been used extensively in image analysis. It

is applied towards image correction and pattern detection.

4.4.1 Grids and Lattices

The lattice is a multidimensional object on which spatial structures may be constructed.

[Besag, 1974] introduced such spatial structures in plant ecology and agricultural experiments.

Locations of the pixels are random and these pixels are related by spatial proximity. However,
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the neighborhood relation can certainly have other connection beside geographical proximity.

[Marin and Robert, 2014] argued probabilistic dependence between two points of lattice can be

interpreted as the neighborhood relationship.

The lattice is associated with an image, which is a N ×M array made of pairs (i, j) where

i = 1, · · · , N, j = 1, · · · ,M . The adjacent neighbors can be four entries such as (i, j − 1),

(i, j + 1), (i − 1, j) and (i + 1, j). Let us assume, i ∈ I. Here ∼ denotes neighborhood

relationship on a lattice I. i ∼ j, where i, j ∈ I are considered to be neighbors. We can

associate these lattice I with probability distribution on z, where z = (zi)i∈I . Two components

zi and zj are correlated if the sites i ∼ j. The neighborhood relation is symmetric if i ∼ j then

j ∼ i and i is not a neighbor of itself. Three common types of neighborhood structure on a

regular grid are illustrated in Figure 15.

Figure 15: Common neighborhood structures with four neighbors, eight neighbors and twelve
neighbors in imaging.

(Source: [Marin and Robert, 2014])
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4.4.2 The Markov Random Field

A random field can be specified on a lattice I and there exists random variables {zi : i ∈ I},

where each random variable zi belongs to finite set X and zi’s may have dependent neighborhood

structure on I. Let n(i) denote the set of neighbors of region i and zn(i) is the collection of

values taken by the neighborhood region of i. Such a random field is called a Markov random

field (MRF) if the conditional distribution of region i given the other regions only depends on

the neighbors of region i ∈ I i.e

π(zi|z−i) = π(zi|zn(i)) (4.6)

Markov random field has been used avidly in imaging because of its stabilizing properties

in modeling. It is often difficult to directly characterize the global properties of an image

through a probability distribution which makes construction of joint prior distribution extremely

complication. The simple way around this problem is to use the full conditional distribution,

which concentrates on properties of zi when the neighborhood structure is known.

Let us assume, on a lattice I = {1, . . . , n} the joint density can be written as the following

π(z) = π(z1|z−1)π(z−1)

and for a fixed value z∗ we can rewrite the expression as

π(z) =
π(z1|z−1)
π(z∗1 |z−1)

π(z∗1 , z−1)
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The representation for all terms in the lattice is the following

π(z)

π(z∗)
=

n−1∏
i=0

π(zi+1|z∗1 , . . . , z∗i , zi+2, . . . , zn)

π(z∗i+1|z∗1 , . . . , z∗i , zi+2, . . . , zn)
(4.7)

This enables to express the joint density as a product of ratios of its full conditionals. This rep-

resentation is known as Hammersley-Clifford theorem [Marin and Robert, 2014]. Equation 4.7

must follow every representation of a lattice I if there exists a joint density such that full

conditionals are not canceling and for every fixed value z∗.

A clique is a maximal subset of a lattice I consists of regions which are all neighbors. The

joint distribution can be expressed in terms of its system of cliques [Cressie, 1993].

π(x) ∝ exp(−
∑
C∈C

ΦC(xC)) (4.8)

where C is the collection of all cliques.

We now review specific MRFs such as Ising model, the Potts model and the hidden Potts

model.

4.4.2.1 The Ising Model

The Ising model has been extensively used for binary images and other spatial models. The

random variable zi can take binary values. The distribution of a region is conditional on its

neighboring region is assumed to be Bernoulli with

π(zi = j|z−i) ∝ exp(βni,j), β > 0, (4.9)
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where ni,j =
∑

l∈n(i)(Izl = j) is the number of neighbors of region zi and n(i) denotes the

neighbors of region i. The full conditionals of Ising model is

π(zi = 1|z−i) =
exp(βni,1)

exp(βni,0) + exp(βni,1)

and the joint distribution therefore satisfies

π(z) ∝ exp

(
β
∑
j∼i

Izj=zi
)
, (4.10)

where the summation is taken over all pairs (i, j) of neighbors [Marin and Robert, 2014].

The normalizing constant Z(β) of the joint probability distribution in Equation 4.10 is

intractable in most of the cases except for very small lattices I, which makes statistical inference

about β problematic, for example, using Markov chain sampling. Algorithm 4.1 [Marin and

Robert, 2014] assumes fixed β for the Gibbs sampler.

Algorithm 4.1 Isling Gibbs sampler

• Initialize: i ∈ I and generate z
(0)
i ∼ Bernoulli(0.50).

For iteration (≥ 1):

• Generate u = {ui}i∈I to randomly order the components of I.

• For l = 1, · · · , |I|, update n
(t)
ul,0

and n
(t)
ul,1

and generate

z(t)ul ∼ Bernoulli
(

exp(βn
(t)
ul,0

)

exp(βn
(t)
ul,0

) + exp(βn
(t)
ul,1

)

)
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The selection of β can be crucial. Gibbs sampler encounters difficulty to alter the value of

a single pixel if β is large.

4.4.2.2 The Potts Model

The Potts model is a generalization of the Ising model. There are G (G > 2) regions and

for g (g = 1, · · · , G).Numbers of neighbors of i is ni,g =
∑

j∼i Izj=g. In the Potts model, the

full conditional distribution of zi satisfies

π(zi = g|z−i) ∝ exp(βni,g)

The joint distribution of the Potts model can be described as [Marin and Robert, 2014]

π(z) ∝ exp

(
β
∑
j∼i

Izj=zi
)

(4.11)

where, the normalizing constant of the joint distribution is intractable. The following Metropolis-

Hastings Sample [Marin and Robert, 2014] can be used for Markov chain sampling from the

Potts model with fixed β.
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Algorithm 4.2 Potts Metropolis-Hastings Sampler

• Initialize: i ∈ I and generate z
(0)
i ∼ U(1, . . . , G).

For iteration (≥ 1):

• Generate u = {ui}i∈I to randomly order the components of I.

• For l = 1, · · · , |I| generate

z̃ul ∼ U(1, 2, . . . , z(t−1)ul
− 1, z(t−1)ul

+ 1, . . . , G)

and compute n
(t)
ul,g and compute the probability

ρl = exp(βnul,z̃ul )/ exp(βn(t)ul,zul
) ∧ 1

and z̃ul is equal to zul with probability ρl.

4.4.3 The Hidden Potts Model

Spatial dependence between adjacent neighbours can be modeled by a hidden Potts model

[Potts, 1952] which is a latent MRF on discrete states. The hidden Potts model is a hierarchical

model where there are observed yi ∈ R, i = 1, · · · , n and finite set of discrete states z, where

z ∈ {1, . . . , k}. The Potts model is defined on these z’s. The likelihood equation that relates

observed pixel values with corresponding latent labels will be

p(y|z, θ) =
n∏
i=1

p(yi|zi, θzi) (4.12)

here θzi are the parameter that regulate the distribution of the yi with label zi.
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The conditional probabilities of the labels zi’s follow a Potts model as

p(zi|z−i, β) =
exp(β

∑
i∼l I(zi, zl))∑k

j=1 exp(β
∑

i∼l I(j, zl))
, (4.13)

where β is often termed as inverse temperature, [Geman and Geman, 1984], [Alston et al.,

2007] and many other assume that yi with latent label j follows a Gaussian distribution with a

common mean µj and variance σ2j .

(yi|zi = j, µj , σ
2
j ) ∼ Normal(µj , σ2j ) (4.14)

There is a sufficient statistic for this model as Normal distribution is a member of the exponential

family. The sufficient statistics given by [Grelaud et al., 2009] is S(z) =
∑

i∼l I(zi, zl)), which

represents the total number of neighbors that share same label. This enables us to factorize

the likelihood p(y, z|θ, β) into p(y|z, θ)p(S(z)|β). The posterior is the following

p(θ, β, z|y) ∝ p(y|z, θ)π(θ)p(S(z)|β)π(β)

∝ p(y|z, θ)π(θ)
p(S(z)|β)π(β)

C(β)
(4.15)

where π(θ) is the joint prior for θ and π(β) is the prior for the inverse temperature β. The

posterior normalizing constant C(β) =
∑

z∈Z exp{βS(z)} is intractable as it involves a sum

over all available combinations of labels with computational complexity of O(nkn). Therefore,

sampling from the posterior distribution has no exclusive solution.
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The conditional expectation of S(z) given β can also be expressed in terms of normalizing

constant

Ez|β(S(z)) =
d

dβ
log{C(β)} (4.16)

All yi are almost surely allocated to same label if β →∞ as expectation of S(z) converges

asymptotically to the total number of combinations of labels and the variance approaches to

zero. The labels zi are independent and uniformly-distributed when β = 0.

[Potts, 1952] showed that the model transition from disordered to an ordered state at a

certain critical value of β. For a regular 2D lattice, the critical value can be calculated as

following

βcrit = log{1 +
√
k} (4.17)

4.4.3.1 Bayesian Computational Methods for Hidden Potts Model

We provided a review of major algorithms [Moores et al., 2018] used for hidden Potts

model. These provides alternative methods to simulate parameter value β without computing

the normalizing constant. These methods include Markov Chain Monte Carlo (MCMC) with

pseudolikelihood and Approximate Bayesian Computation(ABC)-MCMC algorithm.

Pseudolikelihood is the fastest and easiest method to deal with intractable likelihood in

Image analysis. According to, [Rydén and Titterington, 1998] the intractable distribution could

be approximated using product of conditional density given by Equation 4.13.

p(z|β) ≈
n∏
i=1

p(zi|z−i, β) (4.18)
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The conditional distributions for each pixels are being computed individually. The algorithm

is following

Algorithm 4.3 Hidden Potts Model MCMC with pseudolikelihood

• Initialize β0, µ0, σ
2
0, z0.

For iteration t(t ≥ 1):

• Update the labels: zi ∼ p(yi|zi, µzi , σ2zi)p(zi|z−i), ∀i ∈ {1, . . . , n}.
• Calculate the sufficient statistics: ȳj , s

2
j , ∀zi = j, ∀j ∈ {1, . . . , k}.

• Update the noise parameters µj , σ
2
j ∼ p(yj , s2j |µj , σ2j )π(µj |σ2j )π(σ2j ).

• Draw proposed parameter value β′ ∼ q(β′|βt−1).
• Approximate p(z|β′) and p(z|βt−1) by using : p(z|β) ≈

∏n
i=1 p(zi|z−i, β).

• Calculate the Metropolis-Hastings ratio ρ = min

(
1, p(z|β′)π(β′)q(βt−1|β′))

p(z|βt−1)π(βt−1)q(β′|βt−1))

)
.

• Draw u ∼ Uniform(0, 1) if u < ρ then βt = β′. Else βt = βt−1.

In ABC algorithm, an auxiliary variable w is introduced to determine whether to accept

or reject the proposed value of β′. The summary statistics of the auxiliary variable S(w)

and observed data S(z) are compared [Grelaud et al., 2009]. The proposal is accepted if

‖ S(w)− S(z) ‖≤ ε. The labels z are observed without error if the following approximation is

true.

p(β|y, z, θ) ≈ πε(β| ‖ S(w)− S(z) ‖≤ ε) (4.19)

The ABC approximation Equation 4.19 approaches to the true posterior as n→∞ and ε→ 0.

The Hidden Potts Model ABC-MCMC algorithm follows.
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Algorithm 4.4 Hidden Potts Model ABC-MCMC

• Initialize β0, µ0, σ
2
0, z0.

For iteration t(t ≥ 1):

• Update the labels: zi ∼ p(yi|zi, µzi , σ2zi)p(zi|z−i), ∀i ∈ {1, . . . , n}.
• Calculate the sufficient statistics: ȳj , s

2
j , ∀zi = j, ∀j ∈ {1, . . . , k}.

• Update the noise parameters µj , σ
2
j ∼ p(yj , s2j |µj , σ2j )π(µj |σ2j )π(σ2j ).

• Draw proposed parameter value β′ ∼ q(β′|βt−1).
• Generate w|β′ by sampling from Equation 4.13.

• Draw u ∼ Uniform(0, 1).

• if u < π(β′)q(βt−1|β′)
π(βt−1)q(β′|βt−1)

and ‖ S(w)− S(z) ‖≤ ε then βt = β′. Else βt = βt−1.

4.5 A Region-temporal Model for Functional Connectivity

As we describe before, we consider resting state fMRI measurements Yitr for i = 1, · · · , n

subjects, at t = 1, · · · , T are discrete time points, and r = 1, · · · , R regions We model Yitr as

following

Yitr = G(θitr, br) + εitr, (4.20)

where θitr is the temporal component of the model and br is the region-level random effect

to brings in potential correlation between connected regions. We assume that errors εitr
i.i.d∼

N(0, σ2).
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As we describe in the previous sections, we utilize dynamic Linear Model (DLM) to model

the temporal component θitr.

Observational Equation Yitr = G(θitr, br) + εitr

System Equation of Temporal Component θitr = βirθi(t−1)r + ηitr (4.21)

where, ηitr
i.i.d∼ N(0, w2) is the error term of system equation and the coefficient βir de-

pends on subject i and region r. We assume a normal prior for βir ∼ N(µβr , σ
2
βr

), where

the hyperpriors µβr and σ2βr are shared across subjects and specify the initial distribution as

θi0r ∼ N(m0, C0), for all i and r.

The region-level random effects {br}Rr=1 are modeled using a hidden Potts model which

creates stochastic clustering among {br}Rr=1. Regions r which are in the same cluster share

identical values of br. Let zr denote the (random) cluster label of br. The random effects {br}Rr=1

can then be labeled as {b∗z1 , · · · , b
∗
zR
}, where b∗1, b

∗
2, . . . denote the unique values associated with

the clusters.

As we have described in the previous sections we assume a Potts model on the cluster label

{zr}Rr=1. In particular, the conditional probabilities of zr is given as follows

p(zr|z−r, β) ∝ exp{−β
∑
r∼l

δ(zr, zl)}, (4.22)
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The regions or ROI’s which are in the same cluster c thus share the random effect b∗c and

are thus dependent or functionally connected. This clustering is stochastic as the Potts model

provides a probability distribution over the space of all possible clustering.

4.5.1 Posterior Computation for Region-temporal Model

The likelihood equation that relates observed values with corresponding latent labels zr and

random effect b∗zr can be expressed as

p(Yitr|z, b∗z, θ) =
R∏
r=1

p(Yitr|zr, b∗zr , θzr), (4.23)

here θzr are the parameter that regulate the distribution of the pixel values with label zr. We

are assuming that Yitr with label j has a common mean µj and noise σ2j .

(Yitr|zr = j, b∗zr = b∗j , µj , σ
2
j ) ∼ Normal(µj , σ2j ) (4.24)

The conditional distribution of random effect br is the following

p(br|Yitr, zr, θzr) ∝ π(br)
∏

{h:b∗zh=b
∗
zj
}

p(Yith|zh, θzh , b
∗
zh

), (4.25)

where π(br) is the prior for b.

p(θ, β, z, b∗z|y) ∝ p(y|z, b∗z, θ)π(θ)π(b∗z)p(S(z)|β)π(β)

∝ p(y|z, b∗z, θ)π(θ)π(b∗z)
p(S(z)|β)π(β)

C(β)
(4.26)
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where π(θ) is the joint prior for θ and π(β) is the prior for the inverse temperature β. S(z) =∑
i∼l δ(zi, zl)), which represents the total number of neighbors that share same label. The

posterior normalizing constant C(β) =
∑

z∈Z exp{βS(z)} is intractable as it involves a sum

over all available combinations of labels with computational complexity of O(nkn). Therefore,

sampling from the posterior distribution has no exclusive solution. We use conjugate priors for

µ ∼ N(µ0, σ
2
0) and σ2 ∼ Inverse Gamma(As, Bs).

The Markov chain sampling for the joint modeling method for dynamic linear model and

hidden Potts model with latent variable with fixed β and pseudolikelihood approach can be

described as the following

θitr|br can be updated by applying one-step forecast and the posterior distribution on the

general univariate DLM for each timepoint t (Theorem 4.3.1).

• Updating θitr|br and βir for every individual i and region r

1. Initialize: mi0r, Ci0r.

2. Posterior for θi(t−1)r: (θi(t−1)r|Di(t−1)r) ∼ N [mi(t−1)r, Ci(t−1)r].

3. Prior for θitr : (θitr|Di(t−1)r) ∼ N [aitr, Ritr],

where aitr = βirmi(t−1)r and Ritr = β2irCt−1 + w2.

4. 1-step forecast : (Yitr|Di(t−1)r) ∼ N [fitr, Qitr],

where fitr = aitr and Qitr = Ritr + σ2.
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5. Posterior for θitr : (θitr|Ditr) ∼ N [mitr, Citr],

with mitr = aitr +Aitreitr and Citr = Ritr −A2
itrQitr,

where Aitr = Ritr/Qitr, and eitr = Yitr − fitr.

6. Posterior for βir : (βir|·) ∼ N(µβir , σ
2
βir

)

with µβir =

(∑T
t=1 θitr
w2 +

µβr
σ2
βr

)
(

T
w2+

1

σ2
βr

) and σ2βir =

(
T
w2 + 1

σ2
βr

)−1
.

br|θitr can be updated using two different hidden Potts based methods. The first method

depends on fixing β values to avoid the intractable likelihood altogether. The second

method relies on Markov chain Monte Carlo with pseudolikelihood. We consider similar

algorithm for MCMC with Pseudolikelihood described in [Moores et al., 2018].

Model 1: Hidden Potts model with latent variable using fixed β values

• Updating br|θitr

1. Set a fixed β value.

2. Initialize µ0, σ
2
0, z0.

3. Collapse the data as conditional on θ, the averages d··r = 1
n

∑n
i=1

1
T

∑T
t=1(Yitr− θitr)

are sufficient statistics.

For iteration(≥ 1):

4. Update random effect br: br ∼ π(br)
∏
{h:b∗zh=b

∗
zj
} p(d··h|zh, b∗zh).

5. Update the labels: zr ∼ p(d··r|zr, br, µzr , σ2zr)p(zr|z−r, β), ∀r ∈ {1, . . . , R}.

6. Update parameters of br: µb, σ
2
b ∼ p(br|µb, σ2b )π(µb|σ2b )π(σ2b ).
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7. Calculate the sufficient statistics: d··j , s
2
j , ∀zr = j, ∀j ∈ {1, . . . , k}.

8. Update the noise parameters µj , σ
2
j ∼ p(d··j , s2j |µj , σ2j )π(µj |σ2j )π(σ2j ).

Model 2: Hidden Potts model with latent variable using pseudolikelihood

approach

• Updating br|θitr

1. Initialize β0, µ0, σ
2
0, z0.

2. Collapse the data as conditional on θ, the averages d··r = 1
n

∑n
i=1

1
T

∑T
t=1(Yitr− θitr)

are sufficient statistics.

For iteration(≥ 1):

3. Update random effect br: br ∼ π(br)
∏
{h:b∗zh=b

∗
zj
} p(d··h|zh, θzh , b∗zh).

4. Update the labels: zr ∼ p(d··r|zr, br, µzr , σ2zr)p(zr|z−r, β), ∀r ∈ {1, . . . , R}.

5. Update random effect br: br ∼ π(br)
∏
{h:b∗zh=b

∗
zj
} p(d··h|zh, b∗zh).

6. Calculate the sufficient statistics: d··j , s
2
j , ∀zr = j, ∀j ∈ {1, . . . , k}.

7. Update the noise parameters µj , σ
2
j ∼ p(d··j , s2j |µj , σ2j )π(µj |σ2j )π(σ2j ).

8. Draw proposed parameter value β′ ∼ q(β′|βt−1).

9. Approximate p(z|β′) and p(z|βt−1) by using : p(z|β) ≈
∏R
r=1 p(zr|z−r, β).

10. Calculate the Metropolis-Hastings ratio ρ = min

(
1, p(z|β′)π(β′)q(βt−1|β′))

p(z|βt−1)π(βt−1)q(β′|βt−1))

)
.

11. Draw u ∼ Uniform(0, 1) if u < ρ then βt = β′. Else βt = βt−1.
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4.6 Performance Evaluation

We evaluate the performances of three different clustering methods: Blocked Dirichlet pro-

cess, hidden Potts model with latent variable (fixed inverse temperature) and hidden Potts

model with latent variable (pseudolikelihood approach). We describe Blocked Dirichlet process

in Equation 3.19. Each simulation study evaluates performances of the clustering methods over

100 replicated data sets. To keep the Bayesian computational complexity over these replicated

data sets manageable, each data set considers R = 50 regions. The first 30 of regions are

specified to be inter-connected and remaining regions are non-connected. We assumed a AR(2)

structure for temporal part. A sample size of n = 20 individuals and T = 30 time points has

been considered.

4.6.1 Data Generation Model

The data sets are generated from the following model

Yitr = G(θitr, br) + εitr

θitr = β1θi(t−1)r + β2θi(t−2)r

where εitr ∼ N(0, 0.52) and i = 1, · · · , 20, t = 1, · · · , 30, r = 1, · · · , 50.

Out of 30 connected regions, we have assumed that there exists total of 9 clusters with differ-

ent sizes and different levels of connectivity: cluster 1={1, . . . , 5} and cluster 2 = {6, . . . , 10} are

assumed to be strongly connected, cluster 3={11, . . . , 14}, 4={15, · · · , 17} and 5={19, · · · , 22}

are moderately connected. Then we have clusters 6, 7, 8 and 9 with only 2 regions each: 23−24,
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25 − 26, 27 − 28 and 29 − 30. The first two clusters are specified to be moderately connected

and last two are highly connected.

4.6.2 Results from Clustering Methods

We perform a joint modeling method by applying dynamic linear model with three clustering

methods to assess performance of each model.

θitr|br is updated by applying one-step forecast and the posterior distribution on the general

univariate DLM for each time point t (Theorem 4.3.1). The hyperparameters for the DLM

is specified as following

µβr ∼ N(0.1, 0.052), σ2βr ∼ Inverse-Gamma(10, 1)

br|θitr is updated using DPM and two different hidden Potts based models. We initialized the

numbers of clusters to be 30 for all three clustering methods. For both hidden Potts models

with latent variable, we are assuming inverse temperature to be β = 1.25.

We follow Algorithm 3.9 for blocked Gibbs sampling method based on stick-breaking

prior. For Blocked DPM model, the hyperparameters are the following

α ∼ Gamma(10, 2), σ2 ∼ Inverse-Gamma(100, 2)

We follow posterior computation in 4.5.1 for hidden Potts model with latent variable using fixed

β values. The hyperparameters are described below
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µb ∼ N(0.1, 0.022), σ2b ∼ Inverse-Gamma(1, 0.5)

σ2 ∼ Inverse-Gamma(100, 1)

We follow posterior computation in 4.5.1 hidden Potts model with latent variable using pseu-

dolikelihood approach. The hyperparameters are the following

µb ∼ N(0.1, 0.22), σ2b ∼ Inverse-Gamma(5, 2),

σ2 ∼ Inverse-Gamma(100, 1)

and the proposed parameter value β′ ∼ Log Normal(β, 0.252).

Figure 16 displays the heat map of clustering for joint modeling DLM with blocked Dirichlet

process (Figure 16a), DLM with hidden Potts model with latent variable (model 1: fixed inverse

temperature) (Figure 16b) and DLM with hidden Potts model with latent variable (model 2:

pseudolikelihood approach) (Figure 16c). Figure 16a is not capable to capture the clustering

structure of the simulated data. Figure 16b and Figure 16c picked up the clustering structure

of the simulated data appropriately. However, we do not see any significant difference in heat

maps of hidden Potts model with latent variable (fixed inverse temperature) and hidden Potts

model with latent variable (pseudolikelihood approach) methods.
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(a) Joint modeling DLM and blocked Dirichlet Prior

Process

(b) Joint modeling DLM and hidden Potts model

with latent variable (fixed inverse temperature)

(c) Joint modeling DLM and hidden Potts model

with latent variable (pseudolikelihood approach)

Figure 16: Simulation Study heat map of clustering



103

4.7 ABIDE Data Analysis

Autism Brain Image Data Exchange(ABIDE) is an alliance among medical centers across the

USA and Europe and is the largest repository of functional and structural brain imaging data

for autism. It is a part of 1000 Functional Connectomes Project/ International Neuroimaging

Datasharing Initiative (INDI). The data sets are anonymous, with no protected health infor-

mation according to Health Insurance Portability and Accountability (HIPAA) guidelines and

1000 Functional Connectomes Project / INDI protocols. We have analyzed 5 sites of ABIDE

database separately using joint modeling of DLM and hidden Potts with latent variable. There

are total of 324 subjects including 177 controls and 147 subjects with ASD (see Table XI). Each

of these data sets have different number of time points (see Table XII).

TABLE XI: NUMBER OF SUBJECTS AT EACH SITE FOR ABIDE DATA SET

Site Control ASD Total

California Institute of Technology 19 19 38

New York University 105 79 184

Olin Institute of living 16 20 36

Social Brain Lab 15 15 30

San Diego State University 22 14 36

Total 177 147 324
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TABLE XII: NUMBERS OF TIME POINTS AT EACH SITE

Site Numbers of time points

California Institute of Technology 146

New York University 176

Olin Institute of living 206

Social Brain Lab 196

San Diego State University 176

4.7.1 Results from Analysis using Region-temporal Model

Recall that, Yitr is a rs-fMRI measurement from ith individual at time t from ROI r (where

i = 1, · · · , n t = 1, · · · , T , r = 1, · · · , 111). Yitr is modeled as following

Yitr = G(θitr, br) + εitr,

where θitr is the temporal component of the model and br is a random effect which brings in

potential correlation between connected regions. We assume that errors εitr
i.i.d∼ N(0, σ2).
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We utilize Dynamic Linear Model (DLM) to model the temporal component θitr. Dynamic

Linear Models are state-space models where we specify an auto-regressive structure on the

latent parameters θitr.

Observational Equation Yitr = G(θitr, br) + εitr

System Equation of Temporal Component θitr = βirθi(t−1)r + ηitr

where, βir depends on subject i and region r . We assume that βir ∼ N(µβr , σ
2
βr

), where the

hyperiors µβr ∼ N(0.1, 0.052) and σ2βr ∼ Inverse-Gamma(10, 1). The error term for the system

equation ηitr
iid∼ N(0, 0.52).

The region-level random effect {br}Rr=1 are modeled using a hidden Potts model with latent

variable. We perform joint modeling method to fit DLM and hidden Potts model with latent

variable. We follow posterior computation in 4.5.1 for model 1 (hidden Potts model with latent

variable) using fixed β values. The hyperparameters are described below

µb ∼ N(0.1, 0.022), σ2b ∼ Inverse-Gamma(1, 0.5)

σ2 ∼ Inverse-Gamma(100, 1)

We follow posterior computation in 4.5.1 for in model 2 (hidden Potts model with latent variable

using pseudolikelihood approach). The hyperparameters are the following
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µb ∼ N(0.1, 0.22), σ2b ∼ Inverse-Gamma(5, 2),

σ2 ∼ Inverse-Gamma(100, 1)

and the proposed parameter value β′ ∼ Log Normal(β, 0.252).

The results we present below are based on 50, 000 post burn-in Markov Chain samples from

the posterior distribution after an initial burn-in of 25, 000. Here we consider the initial β = 1.1.

Figure 17 is a trace plot of β value from regional component for ASD subjects of Social Brain

Lab using hidden Potts model with latent variable (pseudolikelihood approach) for iteration

25, 001 to 50, 000.

Figure 17: Trace plots for regional component β from ASD subjects of Social Brain Lab using

hidden Potts model with latent variable (pseudolikelihood approach)
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Figure 18 illustrates trace plots for randomly selected temporal components β2,40 and β11,85

and σ2 for iteration 25, 001 to 50, 000.

(a) Trace plot β2,40 (b) Trace plot β11,85

(c) Trace plot of σ2

Figure 18: Trace plots for temporal component and σ2 from ASD subjects of Social Brain Lab

using hidden Potts model with latent variable (pseudolikelihood approach)
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The heat maps of clustering by joint modeling DLM and hidden Potts model with latent

variable for each sites will be displayed in Figures 19-22. The regions of interests (see Table III)

are categorized into Frontal lobe, Temporal lobe, Parietal lobe, Occipital lobe, Insular cortex,

Cingulate cortex and subcortical grey matter (SCGM). Figures 24-28 illustrate connectivity

between regions of interest across lobes of brain for each sites.

(a) Control (b) ASD Subject

Figure 19: Heat map of clustering of brain regions in California Institute of Technology
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(a) Control (b) ASD subject

Figure 20: Heat map of clustering of brain regions in New York University

(a) Control (b) ASD subject

Figure 21: Heat map of clustering of brain regions in Olin Institute of living
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(a) Control (b) ASD subject

Figure 22: Heat map of clustering of brain regions in Social Brain Lab

(a) Control (b) ASD subject

Figure 23: Heat map of clustering of brain regions in San Diego State University



111

(a) Control

(b) ASD Subject

Figure 24: Connectivity between ROIs across lobes of brain in California Institute of Technology
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(a) Control

(b) ASD subject

Figure 25: Connectivity between ROIs across lobes of brain in New York University
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(a) Control

(b) ASD subject

Figure 26: Connectivity between ROIs across lobes of brain in Olin Institute of living
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(a) Control

(b) ASD subject

Figure 27: Connectivity between ROIs across lobes of brain in Social Brain Lab
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(a) Control

(b) ASD subject

Figure 28: Connectivity between ROIs across lobes of brain in San Diego State University
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4.7.2 Conclusion

We analyzed the time-sequence of rs-fMRI at each brain region. We have implemented

dynamic linear model to capture temporal structure of the data and the potential correlation

between connected regions is modeled using hidden Potts model with latent variable. We notice

different patterns in heat map in control and ASD subject. Contrasting connectivity patterns

can also be observed across sites. Connectivity between ROIs across lobes of brain suggests that

difference in connectivity exists in ASD individuals and control. We can also notice dissimilarity

in connectivity between ROIs across lobes of brain over all the sites.



CHAPTER 5

FUTURE WORK AND SUMMARY

5.1 Introduction

Functional connectivity can be determined by considering co-activation of brain region dur-

ing resting-state fMRI. Connectivity patterns and their disruptions are immensely helpful to

understanding mental health disorders and neurodegenerative diseases. The characteristic of

altered brain connectivity in Autism Spectrum Disorder has been debatable. There are many

theories associated with alterations such as under-connectivity, over-connectivity and a combi-

nation of both. Additionally, researchers found age-related changes in functional connectivity in

with ASD. These disparities may be associated with heterogeneity in conditions, small sample

size, the design of resting-state scan, the pre-processing and data analysis approach.

5.2 Future Work

Many recent papers ( [Uddin et al., 2013], [Padmanabhan et al., 2013], [Nomi and Uddin,

2015]) are focused on age-related changes in brain connectivity to understand developmental

alternation on functional connectivity in ASD. This may explain the disagreement in hyper-

and hypo- connectivity theory.

We perform a preliminary sub group analysis based on cross-correlated functional connec-

tivity data using Bayesian models mentioned in Chapter 3. In the analysis, the subjects are

divided into three subgroups based on age such as children, teenager and adults. The subgroups

117
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are: children (less than 13 year), teenagers (ages 13-19) and adults (over 19). We consider the

rs-fMRI data from New York University, which is the only site which has subjects from each

subgroup.

TABLE XIII: NUMBERS OF SUBJECTS AT EACH SUBGROUP

Age group Control ASD Total

Children 42 43 85

Teenager 33 19 52

Adult 30 17 47

We use the parametric model, Dirichlet process mixture model and neighborhood model on

ROI pairs to analyze three subgroups from New York University. The results that we present

below are based on 50, 000 post burn-in Markov Chain samples from the posterior distribution

of the Bayesian models after an initial burn-in of 25, 000.



119

TABLE XIV: NUMBERS OF SIGNIFICANT DIFFERENTIAL CONNECTIVITY FOR NEW

YORK UNIVERSITY DATA

Age Group Parametric DPM Neighborhood

Children 194 81 108

Teen 459 72 437

Adult 0 0 0

The common differential connectivity shared between children and teenager subgroups are

following: (R). Primary Somatosensory Cortex and (R). Dorsal Posterior Cingulate Cortex, (L).

Inferior Temporal Gyrus and (L). Cingulate Cortex, (L). Ventral Posterior Cingulate Cortex and

(L). Primary Auditory Cortex. and, (R). Perirhinal cortex and (L). Somatosensory Association

Cortex. Adults with ASD show no differential functional connectivity compared to controls.

This result is similar to [Nomi and Uddin, 2015].

This research can be extended in several aspects. We notice that there is age-related differ-

ence in brain connectivity. Bayesian models mentioned in Chapter 3 can be extended by adding

the coefficient age to explore change in brain connectivity that may occur when individuals with

ASD age. We use Yi,rs to denote the functional connectivity metric measurement between ROI
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r and s (where, 1 ≤ r < s ≤ R) for subject i, where i = 1, · · · , n and each subject i is nested

within group Zg, such that

Zg =



1, if age < 13

2, if 13 ≤ age ≤ 19

3, if age > 19

We can rewrite the parametric model from Chapter 3 as the following

Yi,rs ∼ f(·|ηi,rs)

g(ηi,rs) = β1,rs + β2,rsXi + γi + δc

β2,rs
i.i.d.∼ pg δ0(.) + (1− pg)G(·)

log

(
pg

1− pg

)
= α1 + α2Zg

(5.1)

Here, we assume that the mixture proportion pg depends on age group. The above mentioned

model can be extended to the Dirichlet process mixture model and neighborhood model.

5.3 Summary

We developed Bayesian models to explore contrasting brain connectivity between subjects

with ASD and controls using rs-fMRI data from Autism Brain Image Data Exchange (ABIDE)

database. We considered two separate approaches for analyzing rs-fMRI data.

We explored differential brain connectivity between subjects with ASD and controls using

rs-fMRI data summarized over time by connectivity metrics. We developed three Bayesian

models : parametric model, Dirichlet Process Mixture (DPM) model and Neighborhood model
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on ROI pairs. Detailed simulation studies were implemented to compare performance of pro-

posed models. Simulation study results indicated that DPM model performs exceptionally well

compared to others. Initially, we used these models to analyze cross-correlated ABIDE data

set for all the sites separately. We observed that those links are not identical across all sites.

Later, we combined the data set and reanalyze using above mentioned models. The combined

analysis, models and identifies the links which were differentially connected across sites.

We directly modeled time sequence of rs-fMRI measurement at each region of interest. We

proposed a regional-temporal functional connectivity model. We have applied dynamic linear

model (DLM) to capture temporal structure. The potential correlation between connected

regions was modeled using hidden Potts model with latent variable. An algorithm was developed

for joint modeling of DLM and hidden Potts model with latent variable using fixed inverse

temperature and hidden Potts model with latent variable using pseudolikelihood approach. A

detailed simulation study was performed to compare proposed approaches to blocked Dirichlet

process. We observed that DLM with blocked Dirichlet process was unable capable capture

the clustering structure of the simulated data. We did not observe any significant difference in

performance between hidden Potts model with latent variable using fixed inverse temperature

and hidden Potts model with latent variable using pseudolikelihood approach. We applied the

proposed approach to analyze time-dependent rs-fMRI ABIDE data set. We observed different

patterns in heat maps between control and ASD subjects. Moreover, contrasting connectivity

patterns can also be seen across sites. We can also notice differential connectivity between ROIs
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across lobes of brains of ASD subjects and controls. We observed dissimilarity in connectivity

between ROIs across lobes across all the sites.
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The annals of statistics, 1(2):353–355.

Bowman, F. D., Caffo, B., Bassett, S. S., and Kilts, C. (2008). A bayesian hierarchical
framework for spatial modeling of fmri data. NeuroImage, 39(1):146–156.

Brown, P. J., Vannucci, M., and Fearn, T. (1998). Multivariate bayesian variable selection and
prediction. Journal of the Royal Statistical Society: Series B (Statistical Methodology),
60(3):627–641.

Bullmore, E. and Sporns, O. (2009). Complex brain networks: graph theoretical analysis of
structural and functional systems. Nature Reviews Neuroscience, 10(3):186.

Bush, C. A. and MacEachern, S. N. (1996). A semiparametric bayesian model for randomised
block designs. Biometrika, 83(2):275–285.

Calhoun, V. D., Adali, T., Pearlson, G. D., and Pekar, J. (2001). A method for making group
inferences from functional mri data using independent component analysis. Human
brain mapping, 14(3):140–151.

Cao, J., Worsley, K., et al. (1999). The geometry of correlation fields with an application
to functional connectivity of the brain. The Annals of Applied Probability, 9(4):1021–
1057.

Carlin, B. P., Gelfand, A. E., and Banerjee, S. (2014). Hierarchical modeling and analysis for
spatial data. Chapman and Hall/CRC.



125

Chen, S., Bowman, F. D., and Mayberg, H. S. (2016). A bayesian hierarchical framework for
modeling brain connectivity for neuroimaging data. Biometrics, 72(2):596–605.

Cordes, D., Haughton, V., Carew, J. D., Arfanakis, K., and Maravilla, K. (2002). Hierarchical
clustering to measure connectivity in fmri resting-state data. Magnetic resonance
imaging, 20(4):305–317.

Cressie, N. and Wikle, C. K. (2015). Statistics for spatio-temporal data. John Wiley & Sons.

Cressie, N. A. (1993). Statistics for spatial data. john willy and sons. Inc., New York.

Cribben, I., Haraldsdottir, R., Atlas, L. Y., Wager, T. D., and Lindquist, M. A. (2012). Dy-
namic connectivity regression: determining state-related changes in brain connectivity.
Neuroimage, 61(4):907–920.

Di Martino, A., Kelly, C., Grzadzinski, R., Zuo, X.-N., Mennes, M., Mairena, M. A., Lord, C.,
Castellanos, F. X., and Milham, M. P. (2011). Aberrant striatal functional connectivity
in children with autism. Biological psychiatry, 69(9):847–856.

Escobar, M. D. (1994). Estimating normal means with a dirichlet process prior. Journal of
the American Statistical Association, 89(425):268–277.

Escobar, M. D. and West, M. (1995). Bayesian density estimation and inference using mix-
tures. Journal of the american statistical association, 90(430):577–588.

Ferguson, T. S. (1973). A bayesian analysis of some nonparametric problems. The annals of
statistics, pages 209–230.

Ferguson, T. S. (1983). Bayesian density estimation by mixtures of normal distributions. In
Recent advances in statistics, pages 287–302. Elsevier.

Flandin, G. and Penny, W. D. (2007). Bayesian fmri data analysis with sparse spatial basis
function priors. NeuroImage, 34(3):1108–1125.

Friston, K., Frith, C., Liddle, P., and Frackowiak, R. (1993). Functional connectivity: the
principal-component analysis of large (pet) data sets. Journal of Cerebral Blood Flow
& Metabolism, 13(1):5–14.

Friston, K. and Penny, W. (2003). Posterior probability maps and spms. Neuroimage,
19(3):1240–1249.



126

Friston, K. J. (2011). Functional and effective connectivity: a review. Brain connectivity,
1(1):13–36.

Friston, K. J., Fletcher, P., Josephs, O., Holmes, A., Rugg, M., and Turner, R. (1998).
Event-related fmri: characterizing differential responses. Neuroimage, 7(1):30–40.

Friston, K. J., Holmes, A. P., Poline, J., Grasby, P., Williams, S., Frackowiak, R. S., and
Turner, R. (1995). Analysis of fmri time-series revisited. Neuroimage, 2(1):45–53.

Friston, K. J., Jezzard, P., and Turner, R. (1994). Analysis of functional mri time-series.
Human brain mapping, 1(2):153–171.

Geman, S. and Geman, D. (1984). Stochastic relaxation, gibbs distributions and the bayesian
restoration of images. IEEE Trans. Pattern Anal. Mach. Intell., 6:721.

George, E. I. and McCulloch, R. E. (1993). Variable selection via gibbs sampling. Journal of
the American Statistical Association, 88(423):881–889.

Greicius, M. (2008). Resting-state functional connectivity in neuropsychiatric disorders. Cur-
rent opinion in neurology, 21(4):424–430.

Grelaud, A., Robert, C. P., Marin, J.-M., Rodolphe, F., Taly, J.-F., et al. (2009). Abc
likelihood-free methods for model choice in gibbs random fields. Bayesian Analysis,
4(2):317–335.

Hahamy, A., Behrmann, M., and Malach, R. (2015). The idiosyncratic brain: distortion of
spontaneous connectivity patterns in autism spectrum disorder. Nature neuroscience,
18(2):302.

Harrison, L. M. and Green, G. G. (2010). A bayesian spatiotemporal model for very large
data sets. NeuroImage, 50(3):1126–1141.

Harrison, L. M., Penny, W., Daunizeau, J., and Friston, K. J. (2008). Diffusion-based spatial
priors for functional magnetic resonance images. Neuroimage, 41(2):408–423.

Hull, J. V., Jacokes, Z. J., Torgerson, C. M., Irimia, A., and Van Horn, J. D. (2017). Resting-
state functional connectivity in autism spectrum disorders: A review. Frontiers in
psychiatry, 7:205.



127

Ishwaran, H. and James, L. F. (2001). Gibbs sampling methods for stick-breaking priors.
Journal of the American Statistical Association, 96(453):161–173.

Kennedy, D. P. and Courchesne, E. (2008). The intrinsic functional organization of the brain
is altered in autism. Neuroimage, 39(4):1877–1885.

Kennedy, D. P., Redcay, E., and Courchesne, E. (2006). Failing to deactivate: resting func-
tional abnormalities in autism. Proceedings of the National Academy of Sciences,
103(21):8275–8280.

Kerin, T., Volk, H., Li, W., Lurmann, F., Eckel, S., McConnell, R., and Hertz-Picciotto, I.
(2018). Association between air pollution exposure, cognitive and adaptive function,
and asd severity among children with autism spectrum disorder. Journal of autism
and developmental disorders, 48(1):137–150.

Lange, N. and Zeger, S. L. (1997). Non-linear fourier time series analysis for human brain
mapping by functional magnetic resonance imaging. Journal of the Royal Statistical
Society: Series C (Applied Statistics), 46(1):1–29.

Lazar, N. (2008). The statistical analysis of functional MRI data. Springer Science & Business
Media.

Lee, J. M., Kyeong, S., Kim, E., and Cheon, K.-A. (2016). Abnormalities of inter-and intra-
hemispheric functional connectivity in autism spectrum disorders: a study using the
autism brain imaging data exchange database. Frontiers in neuroscience, 10:191.

Lee, K.-J., Jones, G. L., Caffo, B. S., and Bassett, S. S. (2014). Spatial bayesian variable
selection models on functional magnetic resonance imaging time-series data. Bayesian
Analysis (Online), 9(3):699.

Lee, Y., Park, B.-y., James, O., Kim, S.-G., and Park, H. (2017). Autism spectrum disorder
related functional connectivity changes in the language network in children, adoles-
cents and adults. Frontiers in human neuroscience, 11:418.

Lempers, F. B. (1971). Posterior probabilities of alternative linear models.

Lindquist, M. A. and Wager, T. D. (2007). Validity and power in hemodynamic response
modeling: a comparison study and a new approach. Human brain mapping, 28(8):764–
784.



128

Lord, C., Pickles, A., McLennan, J., Rutter, M., Bregman, J., Folstein, S., Fombonne, E.,
Leboyer, M., and Minshew, N. (1997). Diagnosing autism: analyses of data from
the autism diagnostic interview. Journal of autism and developmental disorders,
27(5):501–517.

Lowe, M. J., Dzemidzic, M., Lurito, J. T., Mathews, V. P., and Phillips, M. D. (2000).
Correlations in low-frequency bold fluctuations reflect cortico-cortical connections.
Neuroimage, 12(5):582–587.

MacEachern, S. N. (1994). Estimating normal means with a conjugate style dirichlet process
prior. Communications in Statistics-Simulation and Computation, 23(3):727–741.

MacEachern, S. N. and Müller, P. (1998). Estimating mixture of dirichlet process models.
Journal of Computational and Graphical Statistics, 7(2):223–238.

Marc G. Weisskopf, M.-A. K. and Roberts, A. L. (2015). Air pollution and autism spectrum
disorders: Causal or confounded? Curr Environ Health Rep., 2((4)):430–439.

Marin, J.-M. and Robert, C. P. (2014). Bayesian essentials with R, volume 48. Springer.

Mitchell, T. J. and Beauchamp, J. J. (1988). Bayesian variable selection in linear regression.
Journal of the American Statistical Association, 83(404):1023–1032.

Møller, J., Pettitt, A. N., Reeves, R., and Berthelsen, K. K. (2006). An efficient markov
chain monte carlo method for distributions with intractable normalising constants.
Biometrika, 93(2):451–458.

Moores, M., Nicholls, G., Pettitt, A., Mengersen, K., et al. (2018). Scalable bayesian inference
for the inverse temperature of a hidden potts model. Bayesian Analysis.

Müller, P., Erkanli, A., and West, M. (1996). Bayesian curve fitting using multivariate normal
mixtures. Biometrika, 83(1):67–79.

Neal, R. M. (1992). Connectionist learning of belief networks. Artificial intelligence, 56(1):71–
113.

Neal, R. M. (2000). Markov chain sampling methods for dirichlet process mixture models.
Journal of computational and graphical statistics, 9(2):249–265.



129

Nebel, M. B., Joel, S. E., Muschelli, J., Barber, A. D., Caffo, B. S., Pekar, J. J., and Mostofsky,
S. H. (2014). Disruption of functional organization within the primary motor cortex
in children with autism. Human brain mapping, 35(2):567–580.

Nomi, J. S. and Uddin, L. Q. (2015). Developmental changes in large-scale network connec-
tivity in autism. NeuroImage: Clinical, 7:732–741.

Ogawa, S., Lee, T.-M., Kay, A. R., and Tank, D. W. (1990). Brain magnetic resonance
imaging with contrast dependent on blood oxygenation. Proceedings of the National
Academy of Sciences, 87(24):9868–9872.

Padmanabhan, A., Lynn, A., Foran, W., Luna, B., and O’Hearn, K. (2013). Age related
changes in striatal resting state functional connectivity in autism. Frontiers in human
neuroscience, 7:814.

Patel, R. S., Bowman, F. D., and Rilling, J. K. (2006). A bayesian approach to determining
connectivity of the human brain. Human brain mapping, 27(3):267–276.

Pauling, L. and Coryell, C. D. (1936). The magnetic properties and structure of hemoglobin,
oxyhemoglobin and carbonmonoxyhemoglobin. Proceedings of the National Academy
of Sciences, 22(4):210–216.

Penny, W., Kiebel, S., and Friston, K. (2003). Variational bayesian inference for fmri time
series. NeuroImage, 19(3):727–741.

Petris, G., Petrone, S., and Campagnoli, P. (2009). Dynamic linear models. In Dynamic
Linear Models with R, pages 31–84. Springer.

Potts, R. B. (1952). Some generalized order-disorder transformations. In Mathematical pro-
ceedings of the cambridge philosophical society, volume 48, pages 106–109. Cambridge
University Press.

Quirós, A., Diez, R. M., and Gamerman, D. (2010). Bayesian spatiotemporal model of fmri
data. NeuroImage, 49(1):442–456.

Rebecca Muhle, S. V. T. and Rapin, I. (2004). The genetics of autism. Pediatrics, 113:e472–
e486.



130

Robert, C. P., Ryden, T., and Titterington, D. M. (2000). Bayesian inference in hidden markov
models through the reversible jump markov chain monte carlo method. Journal of the
Royal Statistical Society: Series B (Statistical Methodology), 62(1):57–75.

Rutter, M., Le Couteur, A., Lord, C., et al. (2003). Autism diagnostic interview-revised. Los
Angeles, CA: Western Psychological Services, 29:30.

Rydén, T. and Titterington, D. (1998). Computational bayesian analysis of hidden markov
models. Journal of Computational and Graphical Statistics, 7(2):194–211.

Sethuraman, J. (1994). A constructive definition of dirichlet priors. Statistica sinica, pages
639–650.

Smith, M. and Fahrmeir, L. (2007). Spatial bayesian variable selection with application to
functional magnetic resonance imaging. Journal of the American Statistical Associa-
tion, 102(478):417–431.

Sun, F. T., Miller, L. M., and D’esposito, M. (2004). Measuring interregional functional
connectivity using coherence and partial coherence analyses of fmri data. Neuroimage,
21(2):647–658.

Surhone, L. M., Tennoe, M. T., and Henssonow, S. F. (2010). Openbugs.

Taylor, L. E., Swerdfeger, A. L., and Eslick, G. D. (2014). Vaccines are not associated with
autism: an evidence-based meta-analysis of case-control and cohort studies. Vaccine,
32(29):3623–3629.

Thulborn, K. R., Waterton, J. C., Matthews, P. M., and Radda, G. K. (1982). Oxygenation
dependence of the transverse relaxation time of water protons in whole blood at high
field. Biochimica et Biophysica Acta (BBA)-General Subjects, 714(2):265–270.

Turk-Browne, N. B. (2013). Functional interactions as big data in the human brain. Science,
342(6158):580–584.

Uddin, L. Q., Supekar, K., and Menon, V. (2013). Reconceptualizing functional brain connec-
tivity in autism from a developmental perspective. Frontiers in human neuroscience,
7:458.



131

Van Den Heuvel, M. P. and Pol, H. E. H. (2010). Exploring the brain network: a review
on resting-state fmri functional connectivity. European neuropsychopharmacology,
20(8):519–534.

Van Horn, J. D. and Toga, A. W. (2014). Human neuroimaging as a “big data” science. Brain
imaging and behavior, 8(2):323–331.

Warnick, R., Guindani, M., Erhardt, E., Allen, E., Calhoun, V., and Vannucci, M. (2018).
A bayesian approach for estimating dynamic functional network connectivity in fmri
data. Journal of the American Statistical Association, 113(521):134–151.

West, M. and Escobar, M. D. (1993). Hierarchical priors and mixture models, with application
in regression and density estimation. Institute of Statistics and Decision Sciences,
Duke University.

West, M. and Harrison, J. (2006). Bayesian forecasting and dynamic models. Springer Science
& Business Media.

Woolrich, M. W., Behrens, T. E., Beckmann, C. F., Jenkinson, M., and Smith, S. M. (2004).
Multilevel linear modelling for fmri group analysis using bayesian inference. Neuroim-
age, 21(4):1732–1747.

Xia, J., Liang, F., and Wang, Y. M. (2009). fmri analysis through bayesian variable selection
with a spatial prior. In 2009 IEEE International Symposium on Biomedical Imaging:
From Nano to Macro, pages 714–717. IEEE.

Zalesky, A., Fornito, A., and Bullmore, E. (2012). On the use of correlation as a measure of
network connectivity. Neuroimage, 60(4):2096–2106.

Zhang, L., Guindani, M., and Vannucci, M. (2015a). Bayesian models for functional magnetic
resonance imaging data analysis. Wiley Interdisciplinary Reviews: Computational
Statistics, 7(1):21–41.

Zhang, L., Guindani, M., Versace, F., and Vannucci, M. (2014). A spatio-temporal nonpara-
metric bayesian variable selection model of fmri data for clustering correlated time
courses. NeuroImage, 95:162–175.

Zhang, T., Wu, J., Li, F., Caffo, B., and Boatman-Reich, D. (2015b). A dynamic directional
model for effective brain connectivity using electrocorticographic (ecog) time series.
Journal of the American Statistical Association, 110(509):93–106.



132

VITA

NAIRITA GHOSAL

Education

• Doctor of Philosophy, 2019
Biostatistics
University of Illinois at Chicago, Chicago, Illinois, USA

• Master of Science, 2014
Mathematical Science
University of New Orleans, New Orleans, Louisiana, USA

• Master of Science, 2011
Statistics
University of Kalyani, Kalyani, West Bengal, India

• Master of Science, 2009
Statistics
University of Calcutta, Kolkata, West Bengal, India

Research Experience

• Center for Clinical and Translational Sciences, University of Illinois at Chicago
Research Assistant, August 2018–May 2019.

– Providing statistical support regarding data analysis, study design, power analysis,
sample size calculation and grant preparation.

• Center for Drug Evaluation and Research, FDA
Summer Intern, June 2018–August,2018.

– Applied and evaluated Bayesian Hierarchical models to estimate subgroup treatment
effects across multiple levels.

– Applied Bayesian approach for joint modeling of benefit and risk in clinical trial.

• AbbVie Inc.
Research Extern at Abbvie, North Chicago Site, August 2017–May 2018.

– Applied missing data handling techniques to obtain bias corrected estimate.

– Analyzed Patient Reported Outcome (PRO) data.

– Provided statistical support for Phase III clinical trial.



133

• Center for Devices and Radiological Health, FDA
Summer Intern, June 2017–August 2017.

– Examined multiple methods to generate reference interval and applied them to Op-
tical Coherence Tomography Database.

• Institute for Health Research and Policy, University of Illinois at Chicago
Research Assistant, August 2016–May 2017.

– Worked on building R Shiny App for accessing REDCap database and produced R
markdown documents.

– Provided statistical support regarding longitudinal analysis, multilevel modeling,
missing data issues, power analysis, sample size calculation to UIC researcher com-
munity.

Teaching Experience

• School of Public Health, University of Illinois at Chicago
Teaching Assistant, August 2016–May 2017.

– Biostatistics II (Spring 2017), Longitudinal Data Analysis (Fall 2016).

• Department of Mathematics, Northern Illinois University
Teaching Assistant, August 2014–August 2016.

– Recitation Instructor : Core Competency in Mathematics (Summer 2016),Calculus
for Business and Social Science (Spring 2016), Elementary Statistics (Fall 2015).

– Graduate course grader : Introduction to Probability Theory (Fall 2015).

– Tutor in the mathematics assistant center : Various undergraduate courses (Fall 2014
and Spring 2015).

• Department of Mathematics, University of New Orleans
Teaching Assistant, August 2012–May 2014.

– Full responsibility Instructor : Introductory Statistics (Fall 2013 and Spring 2014).

– Teaching assistant : Precalculus (Spring 2013).

– Tutor in the mathematics assistant center : Various undergraduate and some gradu-
ate courses(Fall 2012–Spring 2014).

Awards

• FDA Research Fellowship, awarded by Center for Drug Evaluation and Research (CDER),
Food and Drug Administration, 2018.

• FDA Research Fellowship, awarded by Center for Devices and Radiological Health (CDRH),
Food and Drug Administration, 2017.



134

• Honorable Mention Award, awarded by Department of Mathematics, Northern Illinois
University, 2016.

• Mathematics Faculty Award, awarded by College of Sciences, University of New Orleans,
2013.

• Conference Travel Awards

– International Indian Statistical Association Conference 2018, University of Florida,
FL, 2018.

– BiostatMCW 2017, Medical College of Wisconsin, Milwaukee, WI, 2017.

Presentations

• FDA ORISE Statistical Conference, Silver Spring, Maryland, August 17, 2018.

• Joint Statistical Meeting 2018, Vancouver, BC, July 28-August 1, 2018.

• International Indian Statistical Association Conference 2018 at University of Florida, FL,
May 17-20, 2018.

• BiostatMCW 2017 at the Medical College of Wisconsin in Milwaukee, WI, September
28-30, 2017.

Publication

1. Bipasa Biswas, Nairita Ghosal. “ Comparison of Methods to Generate Reference Lim-
its”. In JSM Proceedings, Biopharmaceutical Section, Vancouver, BC (2018).

2. Ellen Manieri, Michelle De Lima, Nairita Ghosal. “ Testing for success: A logistic
regression analysis to determine which pre-admission exam best predicts success in an
associate degree in nursing program”, Teaching and Learning in Nursing, 10 (2015), 25–
29.

Professional Membership

• American Statistical Association.

• International Indian Statistical Association.


