
Evaluation of Background Transport Protocols in Production and

Experimental LTE Networks.

BY

SHIBIN MATHEW
B.Tech, Govt. Model Engineering College, Kochi, Kerala, India, 2014

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science

in the Graduate College of the
University of Illinois at Chicago, 2019

Chicago, Illinois

Defense Committee:
Balajee Vamanan, Chair and Advisor
Chris Kanich
Mark Grechanik

ACKNOWLEDGMENT

I would like to thank my advisor, Balajee Vamanan, for introducing me to this project and

guiding me throughout its lifetime. Balajee always inspired me to approach the challenges I

faced, through the eyes of an avid researcher and pointed me in the right direction whenever it

was needed. I am extremely grateful to him for the constant motivation and emotional support

he has given me throughout my time here at UIC.

I am thankful to my other research collaborators, Emir Halepovic, Hulya Seferoglu, Shanyu

Zhou, Muhammad Usama Chaudhry, and Vijay Gopalakrishnan. The diligence and hard-work

put into this project by the team was always inspiring. It motivated in giving my best during

the course of research. In their absence this project would not have been successful. I am

grateful to have received an opportunity to work with this team.

I would also like to thank other members of my thesis committee, Chris Kanich and Mark

Grechanik for their guidance and support.

SM

iii

CONTRIBUTIONS OF AUTHORS

This thesis involves proceedings to a conference submission that is a combined work of Shibin

Mathew, Muhammad Usama Chaudhry, Shanyu Zhou, Vijay Gopalakrishnan, Emir Halepovic,

Hulya Seferoglu, and Balajee Vamanan. The writing towards the conference submission is a

combined effort of Balajee, Emir, Vijay and Hulya. Muhammad did the implementation of the

work on Linux kernel, evaluation in ns3 and helped me with the evaluation in real network.

Shanyu did the theoretical analysis of Proportional Fair (PF) scheduler. Designing and perfect-

ing the algorithm was a combined effort of the entire team. I implemented PF algorithm in Open

Air Interface (OAI), tested and verified the protocol’s performance in the PhantomNet simu-

lator, designed and developed an automated test-setup for real network testing which involves

a traffic generator application for android phones and automation scripts for synchronization

between servers and the phones. Various tests conducted involves, 1 on 1, mixed workload,

mixed workload with randomized traffic pattern, mobility test, fairness study in real networks.

iv

TABLE OF CONTENTS

CHAPTER PAGE

1 INTRODUCTION . 1

2 BACKGROUND . 7
2.1 Telecom Networks . 7
2.2 Popular transport protocol . 9
2.2.1 TCP Reno . 10
2.2.2 TCP CUBIC . 10
2.2.3 BBR . 11
2.3 Existing Background Flow Protocols 11
2.3.1 TCP Low Priority (TCP-LP) 11
2.3.2 LEDBAT . 12
2.3.3 TCP Vegas . 12
2.4 Why existing schemes do not work in cellular networks 13

3 DESIGN AND IMPLEMENTATION 15
3.1 TCPLegilimens . 16

4 TEST STRATEGIES AND EVALUATION 19
4.1 Emulated Test-bed . 20
4.1.1 One-on-one testing in emulator 20
4.1.2 Mixed workload test in emulator 22
4.1.2.1 Evaluation of emulated test results 23
4.2 Real world tests . 26
4.2.1 Stationary one-on-one testing in commercial network 27
4.2.2 Automated test framework for mixed workload test. 29
4.2.2.1 Evaluation of real world mixed workload experiment 33
4.2.3 Mobile one-on-one testing in commercial network 35
4.2.4 Mixed work-load experiment with randomized traffic pattern 37
4.2.5 Legilimens fairness study in real world network 40

5 PREVIOUS WORK . 42

6 CONCLUSION . 44
6.1 Future Work . 45

CITED LITERATURE . 46

v

TABLE OF CONTENTS (Continued)

CHAPTER PAGE

APPENDICES . 50

VITA . 52

vi

LIST OF TABLES

TABLE PAGE

I Flow numbers for corresponding loads for measured capacity of 25
Mbps. 30

II Data transmitted in randomized experiment Cubic vs Legilimens . . 39

vii

LIST OF FIGURES

FIGURE PAGE

1 Existing protocols in wired vs wireless networks. 13

2 High-level overview . 16

3 Emulator test framework. 21

4 One on one background (Legilimens) vs foreground (CUBIC) 22

5 Two on one with background (Legilimens) vs foreground (CUBIC) . . 22

6 foreground short flow FCT in phantomnet 24

7 foreground medium flow throughput in phantomnet 24

8 foreground long flow throughput in phantomnet 25

9 background flow throughput in phantomnet 25

10 1-on-1 test between CUBIC and Legilimens in real world setup. 27

11 1-on1 test between CUBIC and BBR in real world setup. 28

12 Real world base station UPRB . 31

13 foreground short flow FCT. 31

14 foreground medium flow throughput. 31

15 foreground long flow throughput. 32

16 background flow throughput. 32

17 Mobile testing of one-one workload. 35

18 Randomized workload with background using CUBIC 37

19 Randomized workload with background using Legilimens 37

viii

LIST OF FIGURES (Continued)

FIGURE PAGE

20 Fairness study of Legilimens in real world setup 40

ix

LIST OF ABBREVIATIONS

IoT Internet of Things

AIMD Additive Increase Multiplicative Decrease

CSMA Carrier Sense Multiple Access

FOTA Firmware Over The Air

FIFO First In First Out

OWD One Way Delay

GAP Gradually Aggressive Probing

FCT Flow Completion Time

LEDBAT Low Extra Delay Background Transport

LAN Local Area Network

PF Proportional Fair

PDCP Packet Data Convergence Protocol

RTT Round-Trip Time

PRB Physical Resource Block

SINR Signal to Interference+Noise Ratio

TTI Transmission Time Interval

OAI Open Air Interface

x

LIST OF ABBREVIATIONS (Continued)

RSRP Reference Signal Received Power

RSRQ Reference Signal Received Quality

BDP Bandwidth Delay Product

xi

SUMMARY

As cellular networks are becoming faster, cheaper and wider in terms of reach, it is today

the carrier of ever increasing bulk of network traffic. More and more foreground and back-

ground mobile applications are starting to depend on cellular networks than on wired or Wi-Fi

networks for transmission. Based on time critical nature of traffic, it can be classified into

high priority foreground and lower priority background traffic. Background traffic (software,

firmware updates and cloud-sync), even though they can be considered as lower priority, is an

important part of this mix. However they are time insensitive and it is highly undesirable if

it competes with time sensitive foreground traffic like: live streaming, audio / video calls etc.

Transport Congestion control schemes are responsible for preventing this contention.

Most congestion control techniques are end to end schemes with little or no intervention

from the intermediate network elements. Therefore, it raises the need for efficient, end to end

background congestion control schemes to deliver time insensitive background flows with little

or no performance impact on foreground flows sharing the same bottleneck link. There are

several protocols today like LEDBAT, VEGAS and TCP-LP that achieve this goal. However,

these are designed for wired or Wi-Fi networks and do not perform well in cellular networks.

This limitation can be attributed to the inability of cellular schedulers to differentiate between

foreground and background flows. Wired and Wi-Fi networks use simple FIFO queues which

does not have any scheduling policies other than tail dropping, whereas Cellular networks

employ PF schedulers which provides weighted fairness among the competing flows in short

xii

SUMMARY (Continued)

time granularity. However, this scheduling policy of PF scheduler directly conflicts with the

goals of end to end congestion control schemes which leads to undesirable results for protocols

that depend on parameters like One Way Delay (OWD) or Round Trip Time (RTT) to detect

contention.

In this thesis, we compare the performance of popular congestion control schemes like CU-

BIC and RENO with various state of the art background congestion schemes like LEDBAT,

VEGAS, TCP-LP in cellular network and we perform comprehensive evaluation of our proposed

scheme, Legilimens (1). Legilimens is specifically designed for LTE networks, it takes advantage

of the cellular schedulers policies to accurately predict the presence of competing foreground

flows in the network. Upon detecting contention, it pauses for random interval of time after

which it uses a new probing technique (GAP) that incrementally probes the network for spare

bandwidth. The probing technique provides an added advantage of being subtle on competing

flows, compared to the traditional probing technique that relies on bulky probes which can

choke competing foreground flows forcing them to back-off. Legilimens also provides added

advantage of simplicity in deployment, as this does not need any explicit network feedback

thereby obviating the need for infrastructural changes.

Our extensive evaluation involves one on one testing between competing protocols, mixed

workload experiments, randomized mixed workload experiments, mobility tests and fairness

tests for Legilimens. We perform the test in isolated and emulated test-bed, phantomnet. This

makes sure that the test results are not tampered by any natural cross traffic that otherwise

would have been present in commercial networks. We also compare the performance of Legili-

xiii

SUMMARY (Continued)

mens with other state of the art background protocols in real world setups to provide proof

of concept to its effectiveness. We evaluate Legilimens in terms of both foreground and back-

ground flow performance across different load and traffic settings and find that it performs

well for foreground traffic at higher loads and for background traffic at lower loads. Legilimens

accurately yields to foreground flows and is agile enough to capture spare bandwidth when

available thereby maximizing resource utilization.

xiv

CHAPTER 1

INTRODUCTION

With more and more internet service providers (ISP) introducing unlimited data plans to

customers at a cheaper rates, and due to its wider reach, mobile networks are being increasingly

used to push software and firmware updates to billions of Internet of Things (IoT) and hand-held

devices. One such major example is firmware updates for cars over cellular networks (2). With

technologies like truly autonomous vehicles edging towards reality, the load on cellular networks

due to time-sensitive and time-insensitive applications are bound to increase. According to

Statistica, ”by 2022, mobile data traffic worldwide is expected to reach 77.5 exabytes per

month at a compound annual growth rate of 46 percent” (3). Technological advancements in

health-care industry has enabled mobile diagnostics using a plethora of wearable devices which

are connected via cellular networks, with the advent of 5G such real time applications will

become more popular and widespread.

The above use cases suggests that, cellular networks are expected to cater to both low-

latency and high throughput (video-on-demand, video chats) needs of modern day applica-

tions, requiring both time-sensitive (foreground) and time-insensitive (background) applica-

tions to share a common medium for transfer of vast amount of data with varying latency and

throughput preferences. Large amount of data from background applications like cloud sync,

firmware-over-the-air (FOTA) can result in significant congestion and performance degradation

for users of typical real time applications such as web browsing, streaming, real time IoT data

1

2

and other interactive applications. This calls for techniques to prioritize time-sensitive fore-

ground applications over the lower priority, time-insensitive background applications using the

same shared medium. Rate-limiting specific flows is also possible. But naive rate-limiting can

cause under-utilization at low loads (or allow too much data under high loads and overwhelm

the network at high loads), while more sophisticated versions tend to be complex and expensive

to realize. Wired and Wi-Fi networks depend on end-to-end congestion control mechanisms to

cater to these network requirements.

Wired and Wi-Fi networks most commonly uses First-in-first-out(FIFO) queues with tail

drop, simplest of all queuing algorithms. Basic FIFO queues cannot differentiate between the

senders and therefore it pushes the responsibility of congestion detection and response to the

edge devices, particularly the sender. Therefore prevalent congestion control algorithms are

designed to perform independently without any aid from the network elements(4). Inability to

differentiate between packets belonging to different flows is a major disadvantage of FIFO and

Round Robin schedulers. It is also completely oblivious to how the edge to edge congestion

control algorithms operates, this forms a gullible mechanism that cannot be policed. Its effec-

tiveness depends on strict adherence of congestion control algorithms to principle of fairness and

can be easily fooled by adversary protocols that can capture more than its share of bandwidth.

Cellular networks employ Proportional Fair (PF) scheduler, which combined with unique

queues for each user in the base station, can achieve both fairness among users and high utiliza-

tion of the radio spectrum(5). However, the cellular scheduler remains completely unaware of

3

the end to end objectives of the congestion control algorithm deployed at the server and there-

fore it’s fairness objective can directly conflict with that of the congestion control algorithm.

There are existing TCP congestion control algorithms for delivery of bulk data (e.g., LED-

BAT, TCP-LP) without affecting competing higher priority flows, these work well in wired and

Wi-Fi networks. These algorithms introduce the concept of two-class service prioritization. The

key idea is to have a ”low-priority” mechanism for delivering large volume or time-insensitive

data. This allows for typical user interactive applications (considered foreground flows) to have

fast response times using a fair-share TCP variant like RENO or CUBIC, while simultane-

ously making progress on large volume transfers (considered background flows) using the lower

priority TCP variant. However, results show that these protocols are not effective in cellular

networks (in 2.4) due to variability in radio channel conditions and any attempts to correctly in-

fer congestion from One Way Delay (OWD) is rendered futile because of the use of proportional

fair (PF) schedulers in cellular base stations as stated above.

Drawing inspiration from TCP-LP protocols, we propose Legilimens (1), an agile Low Pri-

ority Transfer variant for cellular networks that delivers time-insensitive background traffic

without adversely affecting time-sensitive foreground traffic. Legilimens has the main proper-

ties of other Low Priority Transfer protocols — to use all available bandwidth when no other

traffic is present, and to yield quickly to standard TCP flows that share the same bottleneck

link — but includes novel features that make it effective in cellular networks. Specifically, a

well-designed Low Priority Transfer protocol for cellular networks must operate with minimal

queuing, so that its packets do not compete with those of foreground flows at the scheduler.

4

When deployed Legilimens, considers all its generated flows as lower priority background

flows and every other detected flow in the network as a higher-priority foreground flow. There-

fore as its operation suggests it is highly suitable for time-insensitive background applications

like FOTA, cloud backup and so on. Even though the approach can be helpful in both up-

link and downlink traffic, we focus on Legilimens’s applications in downlink traffic(1). To that

end, we design a novel algorithm that quickly estimates capacity and load based on packet

inter-arrival times, not rtt or owd. Our central idea lies in leveraging the downlink PF sched-

uler’s unique strength of providing fairness at short time scales to counteract its weakness of

interfering with the operation of traditional Low Priority Transfer protocols(1). Based on the

estimated capacity and load, Legilimens strives to deliver background traffic using only spare

capacity. Legilimens operates in one of two modes: normal mode and probing mode. If the

load is low and spare capacity is available, Legilimens operates in normal mode and quickly

captures available bandwidth. If the load is substantial, Legilimens enters the probing mode,

in which it yields all scheduling opportunities to other traffic most of the time while periodi-

cally sensing the network until spare capacity becomes available. In essence, we leverage the

operational traits of the PF scheduler to drive a novel end-to-end congestion control algorithm,

which otherwise does not work hand in hand with each other in cellular networks.

The following are the contributions of this thesis:

• Extensive testing and verification of Legilimens and competing background protocols in

phantomnet emulator (6). We dive deeper into the working of PF scheduler and implement

the same in open source software which is used in phantomnet.

5

• An automated test framework involving android applications that can request short,

medium and large flows in fixed or random intervals based on configuration and server side

code that tests various Low Priority Transfer congestion control schemes in an automated

fashion.

• Extensive testing of Legilimens, (comparing it with various state of the art congestion

control schemes), in real world setup using tests like 1-on-1 testing, mixed workload test,

randomized mixed workload, mobility test and fairness study.

• We discuss the results obtained in both phantomnet and real world tests and show that

Legilimens gives better foreground performance in the presence of competing background

flows, at the same time captures spare bandwidth for background flows when available.

Deploying Legilimens in real network is a trivial task as it needs no interaction from the

client nor the network. Legilimens functions solely using the meta-data available in ACKs

therefore, it needs no modification at the client side or network components. A potential path

for adoption could be deploying Legilimens on cellular proxy servers and TCP splitters that

most cellular operators use today (7) or on CDN edge servers that specifically serve traffic to

mobile devices over cellular links. Further, network and CDN operator would utilize existing

traffic classification techniques to identify background traffic and direct its delivery via servers

that run Legilimens.

The rest of the thesis is organized as follows. Chapter 2 delves deeper into the function of

PF scheduler and the basics of cellular networks that is necessary for understanding Legilimens

and also discusses the limitations of existing schemes. Chapter 3 gives an overview of the design

6

and operation of Legilimens. Chapter 4 discusses the test strategies used and we analyzes the

results obtained. Finally, Chapter 5 discusses related previous works, and Chapter 6 concludes

the thesis.

CHAPTER 2

BACKGROUND

This chapter gives the necessary background information required to facilitate better under-

standing of the problem statement, motivation and design choices that drove the development

of Legilimens. Section 2.1, gives an introduction to cellular networks and delves deeper into the

working of PF scheduler, the operational characteristic of which forms the main design moti-

vation for Legilimens. Section 2.2 introduces the various existing congestion control algorithms

with similar design objectives and the design choices they made. Section 2.4 talks about why

the existing schemes does not work in cellular networks and the challenges they face.

2.1 Telecom Networks

Long Term Evolution (LTE) forms the backbone of the telecommunication architecture and

Legilimens was designed to operate primarily on top of it. The main requirements of LTE

are ”high spectral efficiency, high peak data rates, short round trip time as well as flexibility

in frequency and bandwidth” (8). LTE access network can be defined as a network of base

stations, evolved NodeB (eNB). LTE obviates the need for a central controller and distributes

the intelligence among eNBs. It gives advantages like lower connection setup time and faster

handover. The MAC protocol layer in LTE forms the brain of the base station as it houses the

scheduler who handles resource allocation. Unlike in previous generation of cellular technologies,

like in Universal Mobile Terrestrial System (UMTS), this obviates the dependence of scheduling

7

8

and MAC layer functionality on a central controller, leading to faster communication and

decisions between the eNB and the UE(8).

MAC scheduler is the entity within the base station which allocates radio resources to User

Equipment (UE) or phones. The smallest unit of radio resource that can be allocated to a user

is called a Resource Block (RB) and it is 180 kHz wide in frequency. RBs can be allocated

every epoch, which is 1 ms long in LTE and is referred to as Transmit Time Interval (TTI) (9).

Based on the radio quality reported by the UE and its past state information stored in the eNB,

the scheduler allocates sets of RBs called RB Groups to the most deserving UE on the same or

different component carrier (CC). A CC is a part of the continuous frequency spectrum that

is used to transmit or receive data between the eNB and UE and they can have a bandwidth

of 1.4, 3, 5, 10, 15 or 20 MHz and each bands constitute of 6, 15, 25, 50, 75 and 100 RBs

respectively every TTI.

One particular component of an eNB that is pivotal to its performance in terms of through-

put and fairness is the PF scheduler and we dive deeper into its working. The objective of

PF algorithm is to provide fairness among UEs at the same time, attain maximum utilization

of the scarce radio resource. This is achieved by means of exploiting the mult-iuser diversity

over temporally independent channel fluctuations. (10) In every TTI, the algorithm calculates

the maximum achievable throughput or instantaneous rate of each connected UE for every

sub-channel. This is influenced by the modulation scheme that can be used on the particular

sub-channel. which is the direct consequence of the Signal to Noise Ratio(SINR) reported by

the UE. The algorithm also keeps track of the average data rate of each connected user at time

9

t. The two data points mentioned above are used to generate a PF utility function which is

the ratio of instantaneous throughput to average rate. In every scheduling instance, the UE

with highest utility function is chosen and all available RBs are allocated to it. If the per-user

queue of the UE does not have enough data to fill all RBs, the remaining RBs are allocated

to UE with next larger utility value. Intuitively, the user with higher instantaneous rate has

higher probability of getting picked over that with lower. This promotes better throughput and

utilization of radio resources. Also those users with higher average rate are less probable to be

chosen, which takes care of the fairness guarantee of PF scheduler PF.

2.2 Popular transport protocol

Transmission Control Protocol (TCP) is the most widely adopted transport protocol, ”de-

signed to operate reliably over almost any transmission medium regardless of transmission rate,

delay, corruption, duplication, or reordering of segments” (11). It provides services like con-

gestion control, flow control, in-order delivery and reliable delivery in an end to end setup.

TCP uses packet Acknowledgements (ACK) from receiver to attain necessary meta-data like

ACK number for in order delivery, time-stamps that helps the sender calculate One Way Delay

(OWD) and Round Trip Time (RTT) (12). Congestion control in TCP works by modulating

congestion window depending on the presence or extend of congestion detected in the network.

Initially the algorithm starts by setting congestion window to 10 Maximum Segment Size (MSS)

(13) and then the window essentially doubles on being Acked, this phase is termed Slow-Start

and once the algorithm detects congestion, it drops the window size then increases in a more

linear fashion upon detecting more bandwidth. This is congestion avoidance. Almost all con-

10

gestion control algorithms out there essentially uses the same core idea. Let us look deeper into

some of them.

2.2.1 TCP Reno

TCP Reno (14) uses Additive Increase Multiplicative Decrease (AIMD) form of congestion

window modulation. In the Slow-Start phase the algorithm increases the window size by 1

MSS for every received ACK, essentially doubling it. However, once it detects congestion

through duplicate ACKs, it enters into Fast Re-transmit, drops the window size to half and

continues with congestion avoidance. If packet loss is detected through a timeout, the window

size is dropped to 1 MSS and Slow Start Threshold is set to half that of the window when it

detected loss. Major disadvantage is that Reno depends on ACKs to increase the window size

and therefore it is not suited for connections with high latency. It tends to under utilize the

bandwidth. Regardless, it is one of the most popular congestion control scheme out there.

2.2.2 TCP CUBIC

Unlike the usual TCP flavors, TCP CUBIC(15) does not depend on RTT for modulating

the window size. As the name suggests, it uses a cubic function to increase the window size and

therefore it quickly captures the available bandwidth. Once it encounters a congestion event, it

sets the inflection point to the window size prior to the event, and drops the window size. The

remaining operation is same as that or Reno. However, this is not suited for networks with low

latency as the congestion window growth is no longer dependent on RTT. Cubic is the default

scheme used in major Linux releases.

11

2.2.3 BBR

Bottleneck Bandwidth and Round-trip propagation time (BBR) (16) identifies loss based

congestion control schemes as the major reason for buffer bloat which causes congestion. Instead

of pushing the network into congestion and then detecting it, BBR proposes a clever solution to

detect congestion even before it occurs. BBR keeps track of Bandwidth Delay Product (BDP)

of each connection. The algorithm identifies two parameters : RTprop (round-trip propagation

time) and BtlBw (bottleneck bandwidth), which controls the transport performance of a path

(simplifying each path to a single link limited by the bottleneck bandwidth). BBR paces the

packet to match the packet-arrival rate to the bottleneck links departure rate. The idea is to

keep the packets in flight ¡= BtlBw RTprop. However, BBR works poorly in tandem with loss

based congestion control schemes. It aggressively captures the bandwidth and provides poor

fairness when working in tandem with loss based protocols.

2.3 Existing Background Flow Protocols

Now we look at existing protocols that aim at the same end goal as Legilimens, back-off in

the presence of high priority flows and make use of only the remaining bandwidth.

2.3.1 TCP Low Priority (TCP-LP)

TCP-LP (17), like the name suggests, TCP-LP is a scheme for delivering low priority traffic

like FOTA or cloud updates. It uses One Way Delay (OWD) to infer congestion. It keeps track

of the minimum and maximum OWD for the connection and also maintains a running average of

the congestion window of the existing connection. The algorithm infers congestion if the running

average is higher than a calculated threshold, which is influenced by the stored minimum and

12

maximum congestion window values and a threshold parameter that ranges between 0 and 1.

Once it detects congestion, it drops the window to half and waits for a fixed amount of time. If

it encounters congestion again, it drops the window to 1 MSS. This 2 stage congestion response

is a key feature of TCP-LP.

2.3.2 LEDBAT

LEDBAT(18), is a very commonly used scheme to deliver bulk of data across the internet

without choking it. It does so by measuring the One Way Delay (OWD). For every connection

it keeps track of the minimum OWD and assumes that to be one with minimum or no queuing.

For all further ACKs, it calculates the queuing delay by comparing it with the stored minimum

value. It comes up with a tolerable target delay and increases the congestion window if the

difference is lesser than this value and decreases it if its higher.

2.3.3 TCP Vegas

Vegas (19) is another flavor of protocols intended to serve background flows. The main aim

of Vegas is to keep loss to the minimum and hence obtain higher good-put. Vegas calculates

a target rate for each connection by making use of RTT. If the difference between target rate

and current rate is lesser than a constant alpha then the congestion window is increased and if

it is greater than a constant beta then the window is decreased. Congestion window remains

unchanged if the value is between the two thresholds. The accuracy of this algorithm is highly

dependent on the accurate measurement of RTT and the configured thresholds.

13

(a) LEDBAT (b) TCP-LP

Figure 1: Existing protocols in wired vs wireless networks.

2.4 Why existing schemes do not work in cellular networks

Existing methods of congestion control greatly depends on the bottleneck queue to func-

tion. They expect the RTT and loss to accurately detect congestion related symptoms like

buffer bloat. This expectation is met in the case of wired or Wi-Fi networks since they use

FIFO queues. Delay or Loss based congestion control plus FIFO queues will form and efficient

ecosystem. However, in the case of wireless networks this combination does not work. The

reason being per user queues (20), the operation of PF scheduler and other factors like envi-

ronmental conditions that read to propagation delays (5) and interference in the radio front.

As we discussed in the previous section the RTT and delay now includes the side effects of

decisions made by PF scheduler. Such perturbations adversely affect the congestion inference

in most delay based congestion control protocols. Therefore it is intuitive that such protocols

are less efficient in determining the state of the network in cellular environment.

We conducted a simple experiment to prove this hypothesis (1). We use two of the most

commonly used protocols to deliver background traffic, namely LEDBAT and VEGAS (21),

14

(22). The test-bed contains 2 servers situated in the lab environment, connected via high speed

Local Area Network (LAN) to 2 test phones connected to the same Wi-Fi access point. One of

the servers runs Cubic and serves high priority foreground flow to one of the phones while the

other uses LEDBAT and VEGAS in subsequent runs to serve lower priority, bulk, continuous

background flow to the other phone. The foreground flow joins in fixed intervals to form an on-

off pattern (send for 30 seconds and then stay idle for the next 30). We repeat this experiment

in a different setting where the phones are now forcefully connected to the same base station

but uses the exact same traffic pattern. We expect TCP-LP protocols to back off whenever

the foreground flow joins in, which is exactly what happens in the case of wired networks as

seen in Figure 1(a). However, in the second iteration of this experiment in cellular settings, we

find that both LEDBAT and TCP-LP struggle to accurately determine the state of network,

demonstrated in Figure 1(b). TCP-LP calculates a very low decision threshold, thereby sending

very less traffic and under-utilizing the network whereas LEDBAT ends up competing with the

foreground flow.

This pilot study validates our hypothesis as to why existing TCP-LP protocols do not work

well in cellular networks. Therefore, we see that there is need for a new transport protocol

tailor made for cellular networks for sending lower priority background traffic. We developed

such a protocol that determines congestion more accurately in the cellular environment when

comparing to its counterparts.

CHAPTER 3

DESIGN AND IMPLEMENTATION

Design and implementation of this idea has been mentioned in detail in (1). We go through

a brief overview of the operation and the design choices that we make. The prime motive

of this algorithm is to favor higher priority foreground flows like video streaming, VOIP and

text messages, when it shares the same bottleneck queue in the last hop, with lower priority

background flows like FOTA or cloud updates. In such scenarios, limiting the throughput of

background flows will free up extra bandwidth which can be utilized by the foreground flows.

This will give better throughput and smaller Flow Completion Time (FCT) to the competing

foreground flows. However, if the foreground flows suffers from bad signal strength or other

factors limiting its achievable throughput, Legilimens should be agile enough to capture the

spare capacity thereby generated, promoting better resource utilization. On a higher level,

Legilimens is a foreground flow favoring protocol that sends background traffic utilizing only

the spare capacity available, post prioritization of foreground flow. For this purpose, Legilimens

identifies all other traffic competing with itself as higher priority foreground flows. Other key

feature of this solution is that the only changes required to deploy this is in the sender stack.

No other network element has to be modified, thereby making the deployment process easier.

15

16

Figure 2: High-level overview

3.1 TCPLegilimens

Legilimens infers the presence of other flows in the end to end network path without any

explicit feedback from network elements. It makes use of only the meta-data from the ACKs,

specifically TCP timestamp and ACK number. TCP timestamp for a connection can be enabled

without any changes needed from the client side (12). Legilimens has been designed and

implemented on top of RENO and therefor it uses the same AIMD-style of congestion control

during its regular operation. However unlike RENO, Legilimens limits the throughput to 80%

of the estimated capacity. This is to ensure that we are leaving enough bandwidth for any new

coming flows to get through and to avoid any form of buffer bloats or cell saturation that might

lead to poor performance (2).

17

Figure (1) shows a complete state machine depicting the various operation modes of Legili-

mens. Essentially Legilimens has two operation modes, the normal mode and the Gradually

Aggressive Probing (GAP) mode. In the normal mode there is no congestion in the network

and Legilimens uses the AIMD style congestion control here. When Legilimens detects con-

tention, it enters into GAP mode and pauses for a random interval of time thereby yielding

to the competing foreground flow. Legilimens thereafter uses probing technique to determine

spare bandwidth. However, we do not use the classic probing technique. Instead, Legilimens

probes in 3 separate stages or GAP modes. In GAP mode 1, we send M packets and waits for

a random interval of time, if we detect contention we wait for longer duration before we probe

again with the same number of packets. However, if we detect no congestion, we probe with

2M packets and waits for 250ms and if we detect spare capacity we send 4M packets and wait

for 250 ms again. This probing technique ensures that the trade-off between the accuracy of

probing and its network impact is balanced. Legilimens uses regular data packets for probing,

which does not impose any extra load (overhead) on the network. GAP mode prevents any

unwanted oscillations between normal mode and dormant mode.

Legilimens estimates capacity by counting the number of packets serviced in every TTI. As

PF scheduler picks the phone with highest utility value in a TTI, it is bound to get all the RBs

in that TTI and therefore counting the number of packets serviced will give you a much accurate

estimation of capacity. Legilimens detects business by analyzing scheduling gaps in the received

timestamps of successive packets. If two successive packets were serviced by PF scheduler in

the same TTI, then the gap in received timestamp will be smaller than 1 ms. However, if

18

there are competing flows in the base station, PF will not assign all RBs to the same receiver in

successive TTIs and creating a visible gap of more than 1 ms in receiver timestamps. Legilimens

uses this observation as an indication of busyness. Legilimens also measures the instantaneous

throughput and cross checks it with the estimated capacity. A lower instantaneous capacity

also indicates busyness.

CHAPTER 4

TEST STRATEGIES AND EVALUATION

In this chapter we introduce the various verification techniques used, the motivations to-

wards using them, a detailed layout of the test setup, the metrics that we compare and also the

test results obtained. We evaluate the performance of various background transport protocols,

comparing them in particular with the proposed scheme Legilimens to evaluate its performance.

Intuitive test strategy would be to run a mixture of foreground and background flows to phones

connected to the same base station and use the background protocol in question as the un-

derlying transport protocol for servers generating the background flows. However, using a live

base-station during busy hours will give random results due to unpredictable cross traffic in the

cell, making it near impossible to derive any conclusive performance metrics or justifications.

Unpredictable response also makes it impossible to tune the algorithm to handle corner cases.

We first evaluate the algorithms on an emulated LTE test platform with both 1 on 1 traffic

pattern and also mixed workloads. Secondly, we evaluate them on real world test setup with

1 on 1, mixed workload and randomized mixed workload tests. We then perform a mobility

test to make sure that Legilimens functions even when the phones suffer from varying signal

strength. We evaluate each experiments in their respective subsections.

19

20

4.1 Emulated Test-bed

To evaluate the performance of algorithms in isolated test environment, we use the phan-

tomnet (6) emulator. Phantomnet provides binary access to OpenEPC 3GPP framework im-

plementation. It lets you configure an end to end experimental LTE test setup made of actual

hardware or emulated network components configured using emulab profiles. The test setup

we use contains a server running Open Air Interface (OAI) inside the LTE packet core and eN-

odeBs (base stations). eNodeB is based on Software-Defined Radio (SDR) running OAI(Intel

NUC + USRP B210). PhantomNet also provides Nexus 5 phones accessible via Android Debug

Bridge(ADB), target server and a GUI interface, Culebra. Log-distance path loss model was

used to produce realistic varying Signal to Noise Ratio(SNR). We use 4 Nexus-5 phones con-

nected to the same SDR thereby sharing the same PF scheduler and remotely connected servers

generate test traffic both foreground and background. Since the setup is completely isolated,

there is no concern of cross traffic altering the results. The scheduler in OAI is not standard PF

scheduler, rather a flavor of it which gives RB to all connected devices in every TTI. This is a

proprietary scheduler and does not represent those used in real-world base stations. Therefore,

we implement a standard PF scheduler on top of OAI for verification purposes.

4.1.1 One-on-one testing in emulator

We do basic one-on-one testing as proof of concept to show the effectiveness of Legilimens.

The workload involves 2 competing flows foreground and background, using the same bottleneck

link serviced by PF scheduler. The background is one continuous flow generated by iperf3 and

using Legilimens as the underlying transport protocol whereas the foreground follows an on-

21

Figure 3: Emulator test framework.

off pattern (sends for 20 seconds then sleeps for 20 seconds) and uses CUBIC. Figure 4 is a

per second throughput plot of both the flows. As expected, Legilimens detects contention and

backs off whenever the foreground flow joins in and the background flow resumes once spare

bandwidth is available.

To study the impact of signal strength of UE on the performance of Legilimens, we add

another UE with a weaker or varying signal strength into the mix (Foreground Flow-1). We see

in Figure 5 that background flow backs off completely for foreground flow-2 and the foreground

is able to utilize this spare bandwidth made available. The UE receiving foreground flow-1

has varying signal strength and therefore is unable to utilize the resource efficiently. However,

Legilimens is agile enough to sense spare bandwidth and sends enough background traffic to fill

in. But once the signal strength of foreground UE revives, Legilimens backs-off. We see that

22

Figure 4: One on one background (Legilimens) vs foreground (CUBIC)

Figure 5: Two on one with background (Legilimens) vs foreground (CUBIC)

Legilimens promotes better link usage by preventing wastage of spare capacity, at the same

time ensuring better throughput and FCT for competing foreground flows.

4.1.2 Mixed workload test in emulator

Mixed workload tests are intended to mirror real world traffic scenarios and provide proof

of concept for the algorithm in actual workload. Real world cellular traffic constitutes flows of

23

different sizes and duration, primarily categorized into 3 types. (1) Short flows: 32 KB flows

that represent traffic like messages, web objects and other mobile application related data.

(2) Medium flows: 1 MB represents content heavy pages, video segments from applications

supporting adaptive video streaming, music downloads and so on (3) long Flows: 32 MB video

downloads, software and firmware updates. We model the workload similar to observed traffic

characteristics, which follows a heavy tailed distribution with majority of the traffic being

generated by long flows (23). The short, medium and long flows constitute 10%, 30% and 60%

of the total capacity respectively.

We generate 3 different loads using only the foreground flows, measured in terms of physical

resource block UPRB utilization. Low load UPRB = 30%, medium load UPRB = 60% and high

load UPRB = 70% we use the combined maximum achievable throughput of the phones as

an indication for capacity. Stable tests at higher loads were limited to 70% capacity due to

limitations in phantomnet. The above mentioned workload forms the foreground flows in the

test setup and they use CUBIC as the underlying transport protocol, whereas the background

flow is one continuous long flow that runs throughout the duration of the experiment and uses

competing protocols like Cubic, Reno, Vegas, Ledbat, LP and Legilimens.

4.1.2.1 Evaluation of emulated test results

Figure 6 shows the 50th, 99th and 99.99th percentile Flow Completion Time (FCT) of

foreground short flows in the mixed workload experiment, Figure 7, Figure 8 and Figure 9

shows the throughput attained for foreground medium, foreground long and background flow

respectively. We see that Legilimens achieves the lowest FCT for short flows across all loads and

24

Figure 6: foreground short flow FCT in phantomnet

Figure 7: foreground medium flow throughput in phantomnet

25

Figure 8: foreground long flow throughput in phantomnet

Figure 9: background flow throughput in phantomnet

26

plotted percentiles, whereas RENO and CUBIC gives consistent performance, VEGAS struggles

in the tail 99.9th across all loads which indicates that it gives the worst tail performance of the

lot. It is intuitive that since Legilimens limits itself at 80% capacity, the short flows are able to

get through unaffected. Medium flow performance is almost identical across all the competing

protocols, with a slight inclination towards RENO and CUBIC. This might be because the flow

sizes are not large enough to exploit the spare bandwidth made available, further investigation

is needed into this observation to confirm this claim.

All background protocols show significantly better performance in long flows, with TCP-LP

and Legilimens being the best of them. VEGAS and LEDBAT performs consistently worse

than others in terms of background throughput across all loads. This suggests that in cellular

networks, the capacity thresholds determined by these protocols are erroneous and so they

force the background flow to send less, regardless the availability of spare capacity. Intuitively,

corresponding long flow throughput is higher. However an ideal background protocol should

attain a balance between the two, back-off for foreground flow at the same time capture spare

capacity when available and Legilimens comes closer to achieving this goal.

4.2 Real world tests

Simulated and emulated test bed gives you a controlled environment which attempts to

mimic the real world traffic scenarios. This is an ideal test method for preliminary modelling,

evaluation and bug fixes as the reaction of the algorithm is completely predictable in this

scenario. However, it is necessary to deploy the scheme in commercial network to evaluate its

performance in real world. This section talks of the real world test setup we use, the deployment

27

Figure 10: 1-on-1 test between CUBIC and Legilimens in real world setup.

model, the automated framework used and the evaluation of test results hence obtained. We

consider 2 tests.

• One-on-one testing between foreground and background.

• Mixed workload testing.

4.2.1 Stationary one-on-one testing in commercial network

We replicate the 1 on 1 Legilimens vs CUBIC experiment in real world setup and the results

are in 4.2. Both the phones receiving foreground and background flows are stationary located

approximately 150 meters from the macro cell, we also repeat this experiment in mobile test

setup in section 4.2.3. We attempt to provide proof of concept for our claim that Legilimens

backs off when it detects the presence of foreground flow in the bottleneck link and is agile

28

Figure 11: 1-on1 test between CUBIC and BBR in real world setup.

enough to detect when spare capacity becomes available and utilizes it. We see in figure 4.2 (1)

that Legilimens lives up-to this expectation.

We also perform 1 on 1 testing between CUBIC and BBR and the results are plotted in

4.2.1. The traffic follows a similar on-off pattern that we have seen throughout with BBR being

one continuous flow and CUBIC follows an on-off pattern. We notice that BBR competes with

CUBIC and it even is more aggressive in capturing the bandwidth. It is a known limitation of

BBR that it does not work well in tandem with loss based protocols. Therefore, we see that

BBR is not suited to function as a background protocol and we do not use it in any other mixed

workload tests.

29

4.2.2 Automated test framework for mixed workload test.

The test framework constitutes a lab server running Linux version 4.15 generating fore-

ground traffic, a virtual machine with the modified TCP stack generating background flows

and 4 phones physically located in a different state, 3 of which are Samsung J7s and one S6.

The phones are running on Android 7.0 (Nougat), band locked to the same carrier and fre-

quency band (10 MHz) on the same macro cell using Gnet tracker pro android application

(24). The signal quality represented by ”Reference Signal Received Power” (RSRP) fluctuated

between -92 and -95 dBm and ”Reference Signal Received Quality” (RSRQ) between -10 to -13

dB. The phones use a custom android application to request foreground flows of configurable

sizes, numbers and inter arrival times.

The entire test-bed was automated and synchronization among these components were

achieved using socket communication. Each run would last for 15 minutes with the background

flow remaining ON throughout the run. The number of foreground flows and the time interval

between them are configured based on the capacity and load. The framework automatically

cycles between different background protocols every 15 minutes by loading the respective patch

in the kernel and captures the tcpdump at the server interface. We use tstat (25) to extract

relevant metrics as below.

• 99 and 99.9 percentile of flow completion times (FCT) of short flows representing median

and tail.

• foreground medium flow throughput

• foreground long flow throughput

30

• background continuous flow average throughput

TABLE I: Flow numbers for corresponding loads for measured capacity of 25 Mbps.

Load Short flows Medium flows Long flows

30% 1080 203 13

60% 2160 406 26

80% 2880 540 30

The traffic pattern used is identical to the emulated test-bed. With short, medium and long

flow constituting 10%, 30% and 60% of the foreground flow traffic respectively (1). We use three

different loads for foreground traffic: low load UPRB = 30%, medium load UPRB = 60% and

high load UPRB = 80%. The corresponding flow numbers can be found in Table I, these number

of flows correspond to the respective contribution to load in terms of bytes transmitted. We

spread out the flows equally across the 15 minute test period. We use the combined, maximum

achievable throughput of the phones as an indication for capacity, generate traffic of respective

load levels using this capacity as an index and verify it by measuring the performance monitoring

(PM) counters at the base station for the corresponding 15 minute interval. The load values

were determined after monitoring the UPRB of the macro cell (used in the tests) on a typical

week day as shown in figure Figure 12. To minimize the cross traffic affecting the experiment,

the tests were conducted during quiet hours post midnight until 6 am when the typical UPRB

is less than 5% on average.

31

Figure 12: Real world base station UPRB

Figure 13: foreground short flow FCT.

Figure 14: foreground medium flow throughput.

32

Figure 15: foreground long flow throughput.

Figure 16: background flow throughput.

33

4.2.2.1 Evaluation of real world mixed workload experiment

We evaluate the results of mixed work flow experiments in the real world setup. Figure

Figure 13, Figure 14, Figure 15 represents the foreground flow performance and Figure 16

represents the background flow performance (1). The plots compares protocols like CUBIC,

RENO, LEDBAT, TCP-LP and Legilimens. We use a no background flow run as the yardstick

to compare their performances. No background test uses the same foreground test setup the

only difference being the absence of background flow which thereby can be considered as an

ideal case.

We see that for foreground short flows the FCT is consistently better for the passive version

of Legilimens, while the active version achieves better background flow performance at the

expense of slightly worse short flow FCT and foreground throughput. CUBIC and RENO aim

at fairness among competing flows and therefore are not intended as background protocols.

As expected, the corresponding foreground flows performs the worst. Since these protocol aim

at maximum utilization, it does not leave any headroom for foreground flows to get through.

background protocols like Legilimens, utilizes only 80% of the capacity, thereby leaving enough

room for foreground flows. This has significant impact on short flows FCT. This is also the

reason why the tail (99.9 %) is so much worse for other protocols compared to Legilimens.

Medium flow performance does not show drastic differences across all protocols. We see

that protocols like RENO and CUBIC perform worse in their corresponding foreground medium

flow throughput as the load increases. This is because the background flows do not back off,

rather tries to attain its fair share of bandwidth. Low Priority Transfer protocols detect the

34

presence of foreground flow and backs off. Both the active and passive versions of Legilimens

performs comparatively better which indicates that it possesses more accurate algorithms in

detection of foreground flow, back-off and is more agile in capturing the spare bandwidth

when made available. We talk about the background flow performance in this section. Let

us Keep in mind that in the ideal world, the aim of Low Priority Transfer protocols is to

prioritize foreground flows that compete with itself in the bottleneck link. Therefore, their

corresponding background flow performance will degrade with increase in the foreground load.

This is desirable because it opens up more bandwidth for foreground flows leading to better

foreground flow performance. We see an expected trend in protocols like CUBIC and RENO

as the background flow throughput converges to fair share. We see a proportional decrease

in throughput with increasing load and we expect a much sharper decline for Low Priority

Transfer protocols. However, for Low Priority Transfer protocols that depends on accuracy of

the calculated capacity and thresholds like LEDBAT, TCP-LP and VEGAS, the performance

is near identical even across drastic changes in foreground loads. This is not desirable, as

it indicates significant under-utilization in low loads and competition in higher loads. We

see a favorable trend in background flow performance of Legilimens where the throughput

degrades with increasing foreground load opening up spare capacity for foreground flows. We

see a performance trade-off between the active and passive version of Legilimens, with the

active version giving more aggressive background flow performance while passive Legilimens

background flow is more conservative. This shows that Legilimens is configurable in terms of the

background and foreground performance. Passive version can blindly prioritize the foreground

35

flows whenever they are present, giving considerably better performance for foreground flows

compared to protocols that promote fair sharing of available bandwidth. Active version of

Legilimens attains better background performance while slightly sacrificing the foreground flow

performance (still better than all compared protocols).

4.2.3 Mobile one-on-one testing in commercial network

Figure 17: Mobile testing of one-one workload.

To evaluate Legilimens in a mobile scenario, where changing radio signal and different cell

loads can be frequently encountered, we conduct a mobile test. The test lasts for about 37

minutes, starting with walking for about 8 minutes, then driving at moderate speed (30-70

km/h) for about 3 minutes, followed by freeway speed (70-110 km/h) for 10 minutes, and

36

completing the remainder of the test at moderate driving speed. The total distance is about

24 km on freeway and residential area roads. For clarity, we show the first 14 minutes of the

test. Two J7 phones are used, placed in a laptop bag, which is carried and then placed on the

vehicle seat. One phone runs a continuous Legilimens background flow in passive mode, and

another phone runs a foreground CUBIC flow with 1-minute on/off pattern.

Figure 17 shows the results and the mobility profile of this test. Signal strengths, measured

as RSRP, varied from -111 dBm to -68 dBm. A total of 13 hand-offs were performed. While the

two devices sometimes perform a hand-off a few seconds apart, their signal strength is almost

the same, with small but expected deviation.

Performance-wise, we do not expect to see a clear pattern of yielding by Legilimens, simply

because we only see two flows among a large volume of regular traffic in the network. However,

as expected, we see that Legilimens performs significantly more conservative than CUBIC,

which competes with other traffic. Legilimens also does not appear to suffer major disruption

by changing signal strength, especially in the second half of the time series, where driving causes

frequent hand-offs.

37

4.2.4 Mixed work-load experiment with randomized traffic pattern

Figure 18: Randomized workload with background using CUBIC

Figure 19: Randomized workload with background using Legilimens

38

The mixed work flow experiments uses constant number of short, medium and long flows

for the same capacity, with inter arrival time of flows changing based on the completion of

previous flow. However we see that the flows follows a pattern which might not ideally mimic

the real world traffic pattern. To analyze if this provides any performance aid to the protocols,

we perform randomized mixed work-flow experiment. The hardware components in the test

setup are the same, however the flow sizes and flow inter arrival times of foreground flows

are no longer uniform. They are picked by the sender from a uniform bounded distribution.

foreground short flows follows the same pattern, 1 short flow every second. The medium flow

sizes can vary randomly between 0.5 and 5 MB, and long flow between 10 and 64 MB. Flow

size is calculated using the formula:

flowsize = (u ∗ ((max−min) + 1)) +min

, where u is uniform random number in [0,1). Inter arrival time for the next flow is calculated

using the formula:

InterArrivalTime(IAT) = −mean/ln(1− u)

, where mean is 4 for medium flows. We bound the IAT for medium flow to 15 seconds to

supply a healthy number of medium flows. Similarly for long flows, we use a mean of 70 and

an upper bound of 160 seconds. background flow is a bulky long flow that runs throughout the

duration of the experiment.

39

Figure Figure 18 shows the results of foreground vs background flows in the randomized ex-

periment where both background and foreground flows use CUBIC as the underlying transport

protocol. The foreground flow plot is an accumulated representation of short, medium and long

foreground flows in the mix. We see that the competing flows attempt to converge to fair share

while the foreground is the bulkier long flow. In case of smaller medium flows, we see that the

foreground flows are not large enough for the flows to converge to fair share. Therefore, for

medium flows, the throughput is significantly lesser. Figure Figure 19 represents the run where

background protocol was Legilimens. We see a much desirable trend here, the background flows

yield for foreground flows regardless the flow sizes, at the same time it is agile enough to capture

spare capacity. This also shows that Legilimens is robust to varying traffic conditions. Both

the experiments were run for same duration in identical hardware settings. Legilimens sent a

combined 1.175 GB of foreground traffic and 2.246 GB of background traffic while CUBIC sent

only 1.031 GB of foreground traffic and 2.079 GB of background traffic. A detailed flow wise

statistics (data transmitted) can be found in table Table II. Even though the traffic pattern

followed is not identical, the flow sizes and IAT are chosen from the same uniform bounded

distribution thereby producing comparable tests. This also shows that Legilimens promotes

better link utilization in this experiment.

TABLE II: Data transmitted in randomized experiment Cubic vs Legilimens

BG Protocol FG Short (MB) FG Medium (MB) FG Long (MB) BG (MB)

Cubic 38.84 557.86 434.53 2079.90

Legilimens 41.17 675.85 457.62 2246.33

40

Figure 20: Fairness study of Legilimens in real world setup

4.2.5 Legilimens fairness study in real world network

The effectiveness of Legilimens lies in its ability to accurately detect the presence of compet-

ing foreground flows in the bottleneck link. Legilimens assumes every other flow in the network

as foreground flow to achieve this, which raises a very important question. What if there are

only Legilimens generated flows in the base station, will they fair against each other? To verify

this, we perform a fairness study in real world setup. The test was performed during quiet

hours, so that no cross traffic interferes with the results. We run 2 bulk backgroundLegilimens

flows and capture the tcpdump to analyze per second throughput as seen in Figure Figure 20.

We notice that Legilimens achieves fairness among the competing flows. This attributes to the

operational characteristics of PF scheduler and Legilimens. Once a UE starts getting contin-

41

uous opportunity at the base station, the PF utility index of that UE decreases and that of

the competing UE increases. Which forces PF scheduler to pick the latter UE over the former

and Legilimens of the former UE detects this and backs off for a random interval of time. This

random back-off combined with PF scheduler ensures that Legilimens flows achieves fairness

among themselves,

We have performed a comprehensive evaluation of the various competing background pro-

tocols in isolated as well as real world settings. Traditional background protocols like TCP-LP,

LEDBAT and VEGAS have proved to be effective in wired settings however they do not adapt

well in cellular networks primarily due to the PF scheduler characteristics. An ideal back-

ground protocol will pause or reduce the throughput when it detects a competing foreground

flow sharing the bottleneck link and diligently capture spare bandwidth once it is available. Our

evaluation suggests that: an accurate foreground flow detection algorithm, appropriate back-off

mechanism, subtle probing technique and accurate capacity estimation form the pillars of an

ideal background protocol. We see that Legilimens comes closer to these objectives particularly

at higher loads by accurately predicting the presence and yielding to foreground flows and also

at lower loads by capturing the spare bandwidth, unlike competing background protocols that

suffer from severe under-utilization of radio resource. On those regards, Legilimens outperforms

various state of the art transport protocols.

CHAPTER 5

PREVIOUS WORK

Congestion control schemes for networks is a very heavily researched area, with high through-

put and low latency for flows being the main goal. Some of the earliest among the TCP variants

include CUBIC (15), RENO (26), NEWRENO (14) and TAHOE (27). CUBIC uses an AIMD

style congestion window evolution to cater to high latency networks. We use this flavor of con-

gestion window adaptation. Loss based congestion control protocols face severe performance

degradation in cellular networks due to buffer bloat (28), since it has higher tolerance to delays,

it keeps pushing the network further deeper into congestion even if small delays in RTT might

indicate the onset of congestion. Latest state of the art protocols like BBR, (16) aims to control

the congestion window using Bandwidth Delay Product (BDP). It makes use of both RTT and

capacity estimate to make use of any spare bandwidth available. BBR aims at achieving the

same input rate at the bottleneck queue as is its output rate.

A solution to the limitations of loss based systems is to use delay based protocols which

depend on OWD or RTT to infer congestion, but these can be very sensitive to competing flows.

Hence, such delay based protocols are ideal choice for protocols that service background flows.

Prior research into this field has led to development of protocols like VEGAS (19), LEDBAT

(18), TCP-LP (17) and TCP-NICE (29). These protocols are effective in wired and Wi-Fi

networks, but does not work well in cellular networks, primarily due to PF scheduler which

is not aware of congestion control objectives of these end to end protocols and follows its on

42

43

scheduling policies and ends up conflicting with each other. Also cellular links degrade the

performance of such protocols (30),(31), (32),(33),(34).

Realizing the above conflict, there has been previous research into congestion control schemes

for cellular networks. Sprout (5) and Verus (35) aims at accurately predicting the congestion

window by observing the arrival times of packets. Legilimens uses the same observation by

QProbe (36). Qprobe uses the operational characteristics of the cellular PF scheduler to iden-

tify bottleneck links, whereas Legilimens uses the same technique to identify busyness in the

bottleneck link and use this information to scheduler background traffic in such a way that it

makes use of only the spare bandwidth available. PropRate (37) uses OWD to achieve better

throughput for flows. All the above mentioned protocols, though they work in cellular net-

works, their goal is to achieve better throughput, FCT and fairness. However, Legilimens is

an ideal protocol for background flows and it does not try to compete with other flows in the

network and rather backs down to let them through. Legilimens achieves good fairness among

other background flows as seen in 4.2.5. There are other techniques like passive estimation of

channel power and pilot signal as used in LoadSense (38). But unlike Legilimens which does

not require any support from client side devices, it does need support from the phones to make

these measurements and hence makes deployment more complicated.

CHAPTER 6

CONCLUSION

With the advent of faster network speeds, better coverage, increase in number of IoT and

connected mobile devices, the load on cellular networks is only set to increase. Multimedia

and other time sensitive traffic still bears higher priority than background time insensitive

applications, therefore it is imperative that the services catering to background traffic use an

effective, accurate and agile congestion control technique that prioritizes foreground flow over

itself and promotes better link utilization by capturing any spare bandwidth available. There

are several congestion control algorithms in existence designed to achieve this goal, however they

are efficient on cellular networks. The main aim of this thesis was to test the various congestion

control techniques out there and compare it against new proposed scheme, the Legilimens. Our

test methods indicate that an accurate foreground flow detection algorithm, appropriate back-

off mechanism, subtle probing technique and accurate capacity estimation form the pillars of an

ideal background protocol. Through extensive evaluation in real world as well as in emulated

(and isolated) test setups, we not only provide proof of concept to the effectiveness of Legilimens

but also introduce various verification techniques that can be used to prove the effectiveness of

any future research works with the same goal.

44

45

6.1 Future Work

Future work in terms of verification involves using parallel foreground flows in the mixed

workload experiments. Serializing the foreground flows affects the actual load on the network

. Also, testing various background protocols with multiple background flows in the mixed

workload experiments in real networks, which is more closer to realistic scenarios. I intend

on completing an ongoing verification test, where I track the congestion window evolution of

Legilimens in milli second scale, while running mixed or 1-on-1 foreground workload. This will

serve as proof of concept to the effectiveness of Legilimens in smaller time granularity.

Legilimens is developed particularly for downlink traffic. It needs to be verified and if needed

modified to work in uplink traffic scenarios as well. Also, it will be beneficial in exploring the

deployment possibilities of Legilimens in 5G networks.

CITED LITERATURE

1. Realizing provider policies on cellular networks, 2018.

2. Andrade, C. E., Byers, S. D., Gopalakrishnan, V., Halepovic, E., Majmundar,
M., Poole, D. J., Tran, L. K., and Volinsky, C. T.: Managing mas-
sive firmware-over-the-air updates for connected cars in cellular networks.
In Proceedings of the 2Nd ACM International Workshop on Smart, Autonomous,
and Connected Vehicular Systems and Services, CarSys ’17, pages 65–72, New
York, NY, USA, 2017. ACM.

3. Global mobile data traffic from 2017 to 2022 (in exabytes per month), 2019.

4. Peterson, L. and Davie, B.: Computer networks: A systems approach. In Computer
Networks: A Systems Approach, pages 41–46, 2012.

5. Winstein, K., Sivaraman, A., and Balakrishnan, H.: Stochastic forecasts achieve high
throughput and low delay over cellular networks. In Proceedings of the 10th
USENIX Conference on Networked Systems Design and Implementation, nsdi’13,

pages 459–472, Berkeley, CA, USA, 2013. USENIX Association.

6. Banerjee, A., Cho, J., Eide, E., Duerig, J., Nguyen, B., Ricci, R., Van der Merwe, J., Webb,
K., and Wong, G.: Phantomnet: Research infrastructure for mobile networking,
cloud computing and software-defined networking. GetMobile: Mobile Computing
and Communications, 19(2):28–33, 2015.

7. Xu, X., Jiang, Y., Flach, T., Katz-Bassett, E., Choffnes, D. R., and Govindan, R.: ”inves-
tigating transparent web proxies in cellular networks”. In PAM, 2015.

8. Lte overviewe, 2019.

9. Lte in a nutshell.

10. Barayan, Y. and Kostanic, I.: Performance evaluation of proportional fairness scheduling in
lte. In Proceedings of the World Congress on Engineering and Computer Science
2013 Vol II, volume 2, page 1, October 2013.

46

47

11. Zhang, L., Braden, R. T., and Jacobson, V.: TCP Extension for High-Speed Paths. RFC
1185, October 1990.

12. Jacobson, V., Braden, B., and Borman, D.: Tcp extensions for high performance. RFC
1323, RFC Editor, May 1992.

13. Dukkipati, N., Refice, T., Cheng, Y., Chu, J., Herbert, T., Agarwal, A., Jain, A., and
Sutin, N.: An argument for increasing tcp’s initial congestion window. Computer
Communication Review, 40(3):26–33, 2010.

14. Henderson, T., Floyd, S., Gurtov, A., and Nishida, Y.: The newreno modification to tcp’s
fast recovery algorithm. RFC 6582, RFC Editor, April 2012.

15. Rhee, I., Xu, L., Ha, S., Zimmermann, A., Eggert, L., and Scheffenegger, R.: Cubic for
fast long-distance networks. RFC 8312, RFC Editor, February 2018.

16. Cardwell, N., Cheng, Y., Gunn, C. S., Yeganeh, S. H., and Jacobson, V.: Bbr: Congestion-
based congestion control. ACM Queue, 14, September-October:20 – 53, 2016.

17. Kuzmanovic, A. and Knightly, E. W.: Tcp-lp: A distributed algorithm for low priority
data transfer. In INFOCOM 2003. Twenty-Second Annual Joint Conference of the
IEEE Computer and Communications. IEEE Societies, volume 3, pages 1691–1701.
IEEE, 2003.

18. Shalunov, S., Hazel, G., Iyengar, J., and Kuehlewind, M.: Low extra delay background
transport (ledbat). RFC 6817, RFC Editor, December 2012.

19. Brakmo, L. S. and Peterson, L. L.: Tcp vegas: End to end congestion avoidance on
a global internet. IEEE Journal on selected Areas in communications, 13(8):1465–
1480, 1995.

20. Bodrog, L., Horváth, G., and Vulkán, C.: Analytical tcp throughput model for high-speed
downlink packet access. IET software, 3(6):480–494, 2009.

21. Rossi, D., Testa, C., Valenti, S., and Muscariello, L.: Ledbat: The new bittorrent congestion
control protocol. In ICCCN, pages 1–6, 2010.

22. Kuzmanovic, A. and Knightly, E. W.: Tcp-lp: low-priority service via end-point congestion
control. IEEE/ACM Transactions on Networking (TON), 14(4):739–752, 2006.

48

23. Huang, J., Qian, F., Guo, Y., Zhou, Y., Xu, Q., Mao, Z. M., Sen, S., and Spatscheck,
O.: An in-depth study of lte: Effect of network protocol and application behav-
ior on performance. In Proceedings of the ACM SIGCOMM 2013 Conference on
SIGCOMM, SIGCOMM ’13, pages 363–374, New York, NY, USA, 2013. ACM.

24. Net monitor and drive test tool application for umts/gsm/lte/cdma/evdo network, 2016.

25. Tcp statistic and analysis tool, 2016.

26. Fall, K. and Floyd, S.: Simulation-based comparisons of tahoe, reno and sack tcp.
SIGCOMM Comput. Commun. Rev., 26(3):5–21, July 1996.

27. Jacobson, V.: Congestion avoidance and control. In Symposium Proceedings on
Communications Architectures and Protocols, SIGCOMM ’88, pages 314–329, New
York, NY, USA, 1988. ACM.

28. Jiang, H., Wang, Y., Lee, K., and Rhee, I.: Tackling bufferbloat in 3g/4g networks.
In Proceedings of the 2012 Internet Measurement Conference, IMC ’12, pages 329–
342, New York, NY, USA, 2012. ACM.

29. Chen, J., Mahindra, R., Khojastepour, M. A., Rangarajan, S., and Chiang, M.:
A scheduling framework for adaptive video delivery over cellular networks.
In Proceedings of the 19th Annual International Conference on Mobile Computing
& Networking, MobiCom ’13, pages 389–400, New York, NY, USA, 2013.

ACM.

30. Wang, J., Huang, A., WeiWang, Zhang, Z., and Lau, V. K. N.: On the transmission
opportunity and tcp throughput in cognitive radio networks. Int. J. Commun.
Syst., 27(2):303–321, May 2012.

31. Lu, F., Du, H., Jain, A., Voelker, G. M., Snoeren, A. C., and Terzis,
A.: Cqic: Revisiting cross-layer congestion control for cellular networks.
In Proceedings of the 16th International Workshop on Mobile Computing Systems
and Applications, pages 45–50. ACM, 2015.

32. Ludwig, R. and Katz, R.: The eifel algorithm: Making tcp robust against spurious retrans-
missions. ACM Computer Communication Review, 30:30–36, Janurary 2000.

33. Gurtov, A. and Ludwig, R.: Responding to spurious timeouts in tcp. In Proc. of IEEE
INFOCOM, volume 3, pages 2312–2322, 2003.

49

34. Liu, X., Sridharan, A., Machiraju, S., Seshadri, M., and Zang, H.: Experiences in a 3g
network: Interplay between the wireless channel and applications. In MOBICOM,
pages 211–222. ACM, 2008.

35. Zaki, Y., Pötsch, T., Chen, J., Subramanian, L., and Görg, C.: Adaptive congestion control
for unpredictable cellular networks. In Proceedings of the 2015 ACM Conference on
Special Interest Group on Data Communication, SIGCOMM ’15, pages 509–522,

New York, NY, USA, 2015. ACM.

36. Baranasuriya, N., Navda, V., Padmanabhan, V. N., and Gilbert, S.: Qprobe: Locating the
bottleneck in cellular communication. In Proceedings of the 11th ACM Conference
on Emerging Networking Experiments and Technologies, CoNEXT ’15, pages 33:1–
33:7, New York, NY, USA, 2015. ACM.

37. Leong, W. K., Wang, Z., and Leong, B.: Tcp congestion control beyond bandwidth-delay
product for mobile cellular networks. In Proceedings of the 13th International
Conference on Emerging Networking EXperiments and Technologies, CoNEXT

’17, pages 167–179, New York, NY, USA, 2017. ACM.

38. Chakraborty, A., Navda, V., Padmanabhan, V. N., and Ramjee, R.: Coordinating
cellular background transfers using loadsense. In Proceedings of the 19th annual
international conference on Mobile computing & networking, pages 63–74. ACM,

2013.

APPENDICES

50

51

VITA

NAME Shibin Mathew

EDUCATION B.Tech., Electronics and Communication, Government Model Engi-
neering College Thrikkakara, Kochi, Kerala, India. 2014

TA Computer Algorithms (CS401, Spring 2018)

PUBLICATIONS

52

