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SUMMARY

Synchronization by delegation has been shown to increase total throughput in highly parallel

systems over coarse grained locking, [1] but the latency inherent in passing messages between

cores introduces a bottleneck in overall throughput. To mitigate the effects of this bottleneck

we introduce parallelism in message passing by enabling asynchronous delegation calls.

We present an asynchronous design for both dedicated and flat delegation strategies. In

dedicated delegation hardware threads act exclusively as a client or server as opposed to flat

delegation where hardware threads share duty as both client and server.

This work is based upon Gepard which provides parallelism by using fibers, a user space

threading library. Our asynchronous approach removes the memory and computation overhead

of switching between fibers, freeing cache resources and processor cycles. Arrays for message

passing are augmented from 4 to 16 indices per server-client pair providing for even greater

concurrency. The result is a throughput increase of up to 400 MOPS on our test bench.

We compare the designs and throughput of asynchronous delegation to that of Gepard [2],

fine grained locks, and atomic operations on a fetch and add microbenchmark. We find that

dedicated asynchronous delegation outperforms all other synchronization schemes tested when

the delegated data structure remains in the server’s cache. Flat delegation performs comparably

to fine grained locking approaches for very large shared data structures where DRAM access

latency dominates performance.

viii



CHAPTER 1

BACKGROUND AND MOTIVATION

1.1 Synchronization

Parallel programs traditionally follow a model where multiple threads perform operations

on the same data structure. This model creates the opportunity for a simultaneous access of

shared memory by multiple threads that yields a non-deterministic result, or data race. The

commonly implemented solution is to synchronize access to shared data structures through

mutual exclusion (mutex) locks.

Mutex locks are implemented using locked atomic instructions. For access to individual

words, locked atomic instructions provide a guarantee that a write will be seen consistently

across all threads. The guarantee can be made by locking the system bus, but is more often

achieved through the processor’s cache coherency policy [3]. The locked operations are slower

than their standard counterparts; for example the locked compare and exchange instruction,

LOCK CMPXCHG, on Intel Skylake takes 18 cycles while a CMPXCHG instruction takes 6 [4].

A mutex lock works by ’claiming’ a variable using an atomic instruction like LOCK CM-

PXCHG. If a thread is successful in writing to the variable it can proceed to operate on the

critical section of shared memory, and then release the lock. If the thread is unsuccessful it will

wait by some policy until it successfully claims the lock variable. This programming pattern

serializes accesses to the shared memory therefore eliminating the data race. However when a

1
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lock is contended, threads may spend an inordinate amount of time waiting to acquire the lock

rather than performing useful calculations.

1.2 Delegation

Delegation, as described by Roghanchi et al. in FFWD [1], grants exclusive control of a

data structure to a single thread called a server. Client threads delegate operations on data

structures to the appropriate server by passing a message called a request. The server is one

thread, performing one operation at a time. The delegated operations are serialized and the

data race eliminated.

In FFWD style delegation, servers receive requests to perform an operation on their memory

from clients via a 64 Byte struct containing a function pointer, up to 6 arguments, and a status

flag. Similarly, responses are communicated via a 16 Byte struct containing a return value and

a status flag.

Every server-client pair has at least one dedicated request line and one dedicated response

line. Figure 1 shows a system with 3 clients and 3 servers. The client in the foreground makes

a request to its allocated request line on all three servers. The server performs an operation

on its delegated data structure, and writes the response to the response line allocated to that

specific client. Since each request and response line has only one writer, there is no data race

nor any cache line contention.

Each delegation server iterates through an array of requests. When a new request is en-

countered, the server loads the requested parameter values into the appropriate registers and
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Figure 1. A delegation system with 3 clients and 3 servers. The foreground client makes a

request to all three servers.

then calls the function pointer. The server stores the return value from the function and the

flag variable into the corresponding index in the array of responses.
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Programs using the delegation library typically initialize the data structure to delegate,

launch the dedicated servers, and then launch threads running the client function through a

POSIX threads like interface.

An advantage of delegation is spatial locality of memory. A block of memory accessed

exclusively by a delegation server is never shared with another thread. A small delegated data

structure may fit within a server’s on-core cache and remain resident for the duration of the

program. In contrast, a system with multiple physical cores accessing the same data structure

will share cache lines, greatly reducing the likelihood of a high level cache hit.

From the client perspective, a drawback of delegation is the latency from request issuance

to response. In FFWD, a synchronous delegation system, clients issue a request to the server’s

request line and then poll the respective response line until the request is returned. The time

to complete a single delegated operation includes the time to write to the server, perform the

function, and then receive the response.

Gepard introduces concurrency in delegation operations while maintaining a synchronous

interface by enabling a thread to switch to productive work through the use of fibers. Based

upon libfiber [5], Gepard fibers are light-weight, cooperatively scheduled user mode threads.

Gepard threads run a fiber manager overseeing multiple client fibers. A client fiber writes a

delegation request to the server then yields, thereby invoking the fiber manager which switches

context to another client fiber. After some time the original client fiber will be reactivated and

continue execution. The major advantage of Gepard is that it enables a single thread to engage
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with multiple servers concurrently with the effect of increasing throughput despite constant

individual request latency.



CHAPTER 2

ASYNCHRONOUS DELEGATION

Function Description

Launch Servers(n) Starts the specified number of server threads, allo-

cates and initializes the request and response lines.

Client Thread Create(f, arg) Allocates and initializes a pending request queue for

every server as thread local variable. Launches an OS

thread to run function f with argument arg.

Delegate Async(s, cb, f, args...) Generates a delegation request to server s with func-

tion f and arguments args. Calls cb with the return

value from f.

Async Barrier() Places requests from a delegated thread’s queue and

polls server responses until all requests have been

served.

TABLE I

Excerpt of the asynchronous delegation API

6
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By decoupling a delegation call from its response, asynchronous delegation is able to in-

troduce more concurrency than Gepard and achieve greater system throughput. Operations

which Gepard performs after a call to delegate(s, retval, f, args) are now done in a callback

function invoked upon receipt of the response. The callback, if required, is passed to the dele-

gate function in place of the return value as shown by Delegate Async(s, cb, f, args). An

excerpt of the asynchronous delegation API is shown in 2.

The change in API allows asynchronous delegation to completely remove libfiber, the agent

of client side concurrency in Gepard, along with libfiber’s associated memory and computation

overhead. Gepard fiber managers keep track of a fiber’s state which includes its call stack and

instruction pointer. In contrast, asynchronous delegation tracks a client’s request leaving the

restoration of state to the callback function. By a combination of memory footprint and com-

puation overhead in contexting switching, Gepard’s throughput peaks at 64 fibers / thread. On

the other hand, we show asynchronous delegation efficiently tracks well over 1,000 concurrent,

outstanding pending requests in our benchmarks.

The reserve of pending requests is available because calls to Delegate Async() are non-

blocking for most invocations. The client function can continue to generate requests while

interaction with the delegation server is deferred until the most optimal time depending on the

delegation strategy.

In this chapter we explore the opportunities that this explosion of available requests provides

to increase concurrency in asynchronous delegation with one or more dedicated server threads.
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Later, we show how asynchronous operation can be applied to flat delegation, a more recent,

serverless design.

Figures in this chapter are generated with variations of a fetch and add benchmark. In

this benchmark (1ea) 64B, variable is allocated for each delegation server in the system. For a

period of three seconds, clients select a server at random and delegate an increment function

to the server. The function increments the server’s variable and returns. There is no callback.

Results shown are the harmonic mean of ten samples. Unless otherwise stated, asynchronous

delegation is configured with 16 request lines per client - server pair and a 32 length pending

request queue for each server.

2.1 Asynchronous Dedicated Delegation

Figure 2 sketches an asynchronous dedicated delegation system with 1 client and 3 servers.

The client generates requests and places them in the fixed-length request queue for the required

server. When any of the queues reaches capacity, the client suspends request generation and

begins the process of writing out requests to servers. The client polls its response lines one by

one, executing the callback function if provided. When a response is present a request is popped

from the request queue and placed in the corresponding request line. After all response-request

lines have been handled Delegate Async() returns.

To use asynchronous dedicated delegation as shown in Figure 2, the user first initializes a

number of delegation servers using Launch Servers. Running on separate OS threads, the

servers begin sequentially polling their request lines. The user then launches OS threads with the

application code by calling Client Thread Create. The thread launched by Client Thread Create
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Figure 2. An asynchronous delegation system with 1 client and 3 servers in our highest

throughput configuration. The foreground client makes a request to all three servers. Requests

are written to a pending request queue which is periodically flushed out to the request line.

first initializes, on the client’s NUMA node, an empty queue of pending requests for each run-

ning server. Asynchronous requests may contain a callback, which the server does not require

to perform its delegated task. To keep track of the callback an array of pointers to local copies
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of the requests currently in-flight is also initialized. After queue initialization the thread invokes

the client function.

Within the client function the programmer uses Delegate Async to delegate the request.

Typically Delegate Async will enqueue the request locally and then return to the client

function. However, a push to the pending request queue will fail when the queue is full. At

this time the client iterates through its entire array of responses. A request line is available

if it has never been used or if its corresponding response line is ready. Either condition is

indicated by the flag value of the request line equaling the flag value of the response line. If a

response is ready, the client invokes the callback associated with the response line, if provided,

from the corresponding index of the requests in-flight array. In either case, the client copies the

required fields from a new request popped from the appropriate pending request queue into the

corresponding request line. The client also stores a pointer to the local copy of the request to

the requests in-flight array.

At any time the user can call Async Barrier to ensure that all pending requests in the

queues and in-flight are served before moving on. Async Barrier is always called after the

return of the client function and before joining the client thread.

2.1.1 Hurry Up and Wait - The Pending Request Queue

A counter-intuitive feature of the asynchronous API is the ability to hold a large number

of pending requests in reserve until the optimal time to write them to the server. One might

expect writing requests as quickly as possible to a constantly cycling server would yield the
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Figure 3. Throughput in MOPS for a 56 thread system by number of servers with a 32 length

pending request queue and direct request line writes. The remainder of threads are clients.

maximum throughput. However, Figure 3 provides evidence the reserve has a profound impact

on overall system throughput.

The experiment shown in Figure 3 plots the throughput of our benchmark with a reserve

queue and an asynchronous dedicated delegation configuration with direct writes to the server’s

request line. The direct write program tracks the index of the last request written to each server,

writing its current request to the next available index. If the next index is not available the

program polls the response line until it is available. Although direct write achieves comparable
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server consumption rate to the program with pending request reserve, it shows undesirable

degradation in performance when the number of clients bounds the throughput of the system.

We implement the request reserve as an array of pending request queues. For each client, a

FIFO queue of fixed length, implemented as a circular buffer, is allocated for each server. Each

call to Delegate Async() attempts to push a request onto the queue. When a push request

fails, Delegate Async() iterates through its response and request lines, calling the callback

on responses and writing requests from the pending request queue to the server if available.
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Figure 5. 16 Request Line Configuration: Latency, Server Saturation, Response Readiness,

and Failed Queue Pops by queue length.

How long should the individual pending request queues be? From Figure 4 we see that the

length of the pending request queue has a clear impact on overall throughput. Figure 4 shows

our familiar benchmark plotted with various pending request queue lengths from length 2 to

length 64 on a asynchronous dedicated delegation configured with 16 request lines. 2 - 8 length

queues exhibit poor performance because queues smaller than the number of request lines are

unable to utilize the entire capacity of the server.
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Figure 6. 8 Request Line Configuration: Latency, Server Saturation, Response Readiness, and

Failed Queue Pops by queue length.

Interestingly, Figure 4 shows that queue lengths greater than or equal to 16 show the same

client consumption rate when the system is bound by server capacity; suggesting higher server

saturation increases server throughput. This relationship is confirmed by Figure 5. Figure 5

plots throughput, server saturation, response ready rate, proportion of failed pending request

queue pop operations, and average request latency with our microbenchmark using 16 servers

and 40 clients. We see that peak system throughput is correlated with peak server saturation.
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Figure 7. 4 Request Line Configuration: Latency, Server Saturation, Response Readiness, and

Failed Queue Pops by queue length.

From Figure 4 we also observe the marginal return on throughput for longer queue lengths

diminishes after length 32, or 2 ∗ Nrequestlines. For more insight into this, we again reference

Figure 5. Server saturation increases and failed queue pop instances decrease with the extension

of the pending request queue. At roughly 2 ∗Nrequestlines the gains cease. This finding suggests

that the probability of having enough requests in all queues to fill all request lines approaches

1 somewhere near 2 ∗Nrequestlines. Figure 6 and Figure 7 plot the same experiment configured

with 8 and 4 request line servers respectively. Both support the 2 ∗Nrequestlines hypothesis.
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Based on these results, we set the pending request queue to double the amount of request

lines per client - server pair. This configuration provides high throughput while leaving cache

available for delegated data structures.

2.1.2 More Concurrency with Request Lines
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Figure 8. Throughput in MOPS for a 56 thread system by number of request lines.

Correlated to the length of the queue is the number of request and response lines used

to pass messages between clients and servers. Gepard as tested in chapter 3 is configured



17

with 4 request lines per client. Gepard, however, manages far fewer concurrent requests due

to the overhead of the fiber library. The increased rate of request production in asynchronous

dedicated delegation provides the opportunity to experiment with writing more concurrent to

requests to the servers.

Figure 8 shows the measured system throughput for our benchmark with throughput plotted

against the number of request lines per server-client pair. Figure 8 shows that increasing the

number of request line generally increases the throughput until about 16 request lines when

performance degrades.

Due to this observation we use 16 request lines for the rest of our experiments.

2.1.3 Client and Server Production Rates

A feature of dedicated delegation is the ability to select the number of clients and servers

operating in the system. This is a course grained way for the programmer to balance the

expected request production rate of a client with the expected consumption rate of the server.

In general, the programmer should increase the number of servers for more time consuming

delegated functions.

Equation 2.1 describes this rule of thumb, Where Thputsystem is the throughput of the entire

system in MOPS, Thputcomponent is the throughput of an individual component in MOPS, and

Ncomponent is the number of that component in the system. As Thputserver decreases, Nserver

must increase to compensate until it reaches equilibrium with Nclient ∗ Thputclient.

Thputsystem = min(Nserver ∗ Thputserver, Nclient ∗ Thputclient) (2.1)
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faster than client speed, peak throughput will require more servers when the delegated

function is slower.

Figure 9 displays results of an experiment where we compare the throughput by number

of servers of a faster (addition) and slower (sqrt) delegated function for our benchmark. In

the regions left of peak throughput shown in Figure 9 the system is bound by server capacity.

The upward slope corresponds to the consumption rate of an individual server, or Thputserver.

Conversely, in the region to the right of the equilibrium point the system is bound by client

production. The downward slope corresponds to the Thputclient.
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Figure 9 shows Equation 2.1 to be a good model. Consumption rate slows for the server

performing a more time consuming delegated function. The slower Thputserver requires more

Nserver to balance the total throughput of the clients. The peak throughput, or equilibrium

point, requires more servers for the slow function than it does for the faster one, suggesting

that programmers should increase the number of servers when the delegated function is more

computationally intense.

2.2 Asynchronous Flat Delegation

Flat delegation combines the client and server roles of dedicated delegation into a single

thread. The goal is to simplify delegation programming by finding a natural equilibrium between

client and server rather than the user specified client to server ratio of dedicated delegation.

Figure 10 sketches a sample flat delegation system with three OS threads splitting duty as

client and server. Functions performing client and server duty are called from the same thread

represented by the split box in the center of the figure. In Figure 10 the client generates

requests and writes them out to the request line of the desired server, which may be the server

to be invoked later on the same thread. Depending on the scheduling policy, the server function

will be called to handle the requests on its request line.

Since flat delegation does not launch dedicated server threads there is no call to Launch Servers.

Besides this difference the API remains the same as dedicated delegation.

Although the API for asynchronous flat delegation remains the same, within Delegate Async()

the client must determine when to invoke the server function in addition to writing out requests.

Flat delegation servers run periodically as determined by the scheduling policy instead of con-
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Figure 10. A flat delegation system with 3 client-server threads. The foreground client makes

a request to itself and the background client.

tinuously as they do in the dedicated approach. We continued to experiment with writing

requests directly to the servers as described §2.1.1 because of the periodic server invocation.
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Figure 11. Flat delegation throughput by scheduling policy.

2.2.1 Scheduling Strategies for Asynchronous Flat Delegation

Figure 11 summarizes the throughput for the asynchronous flat delegation scheduling strate-

gies tested on our benchmark. The independent variable, however represents the total number

of threads running, e.g., at 20 there are 20 total threads, each running as both client and

server. The parameters for each are described in the following paragraphs. The server function

is the same server function as Asynchronous Dedicated Delegation and Gepard except it iterates

through its request lines once and then returns.
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availability, and comparative throughput. Greedy omitted for scale.

Holding requests in reserve for batch write continues to be the highest throughput (queue),

however direct request line write (blocked) shows comparable performance for higher numbers

of threads.

Figure 12 and Figure 13 show the average latency in clock cycles and proportion response

ready when polled by delegation strategy. The Direct Write Serve When Blocked strategy

shows minimum average request latency. We should note that average request latency is on the
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Figure 13. 28 server-client pair comparison of average request latency, response line

availability, and comparative throughput. Greedy omitted for scale.

order of 10 times greater for asynchronous flat delegation than it is for asynchronous dedicated

delegation shown in Figure 5 .

The following subsections provide more detail on the request writing and server invocation

strategies.

2.2.1.1 Pending Request Queue

Shown as queue in Figure 11 pending request queue is the same as direct delegation de-

scribed in subsection 2.1.1 but with the server function invoked prior to writing and reading
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request lines. This approach outperformed all others in our trial, and is the approach tested in

chapter 3.

2.2.1.2 Direct Write Serve When Blocked

Perhaps the simplest strategy for invoking the server function is upon a failed request

issuance. After all, if the client is blocked waiting for a server to become available, the most

useful thing it can do is invoke the server to handle others’ requests. As shown in Figure 11

blocked shows comparable results to queue for larger numbers of threads. Blocked cuts down on

the delegation memory footprint because it eliminates the pending request queues. For larger

systems, or systems with smaller amounts of on core cache blocked may be preferable for better

on-core cache utilization.

The blocked strategy exhibits a desirable property shown in Figure 12 and Figure 13. The

latency for any individual request, from generation to execution of the callback function is up

to 15.5% lower for blocked than queue.

2.2.1.3 Direct Write Fast Path, Greedy Client, Upper Bound, and Doorbell

A proposed optimization to the serve when blocked policy was to fast track requests to

a server on the same thread as the client by invoking the delegated function directly. The

unintended impact of this optimization was the greedy client problem, which is caused by

victim threads attempting to write requests to the full request lines of the greedy client. The

victim threads operate in server mode until the request line becomes available. However, the

request line never becomes available because the greedy client’s requests continue to be served

by the victim threads. The greedy client problem was avoided in blocked strategy because the
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client was guaranteed to invoke the server function when writes to the request lines of its own

server blocked.

To break the greedy client we experiment with an upper bound on the client by invoking

the server after a fixed number of calls to Delegate Async(). We also implement the doorbell

strategy. When a client blocks on an unavailable request line it ”rings the doorbell” of the

required thread by writing a 1 to its doorbell variable. Clients check their doorbell during each

call to Delegate Async and invoke the server, resetting the doorbell to zero after a run of the

server loop. The doorbell approach measures the highest average request latency, likely due to

the latency of writing the doorbell message to a remote thread.

2.3 Ordering Guarantees

The asynchronous API provides no guarantee to the ordering of delegated functions. Del-

egated functions may be executed out of generation order when delegated to different servers

because the servers are not synchronized with respect to each other. Even requests to the same

server may be reordered as described below.

Servers handle requests by iterating through all of their request lines and performing those

requests with the appropriate flag. However, when there are multiple request lines per server-

client pair we cannot guarantee that the requests will be performed in the order they are sent.

Consider the case shown in Figure 14. A client writes a request to all but one of its request

lines before the server handles the entire batch. Afterward the client writes requests to its last

request line and then begins writing new requests to its first request line. Since the server
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Figure 14. The server may execute requests out of order when multiple requests lines are used

by one client. (1.) The client issues 3 requests before the server reaches its section of the

request line array. (2.) The server handles all requests in this clients section before the client

writes a fourth request. (3.) The client writes its next request into the next available line, after

request 4 is written the next line is the first one. The requests are now executed out of order.

handles requests in the order of the request line array, newer requests are handled before the

oldest request in the last position.
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For an application with non-commutative properties, the programmer can take care to

delegate the entire order critical section. It that is unfeasible, a single request line preserves the

ordering of requests made by a client to a specific server, albeit with detrimental impacts to

overall throughput. Experimental results are shown with both 1 and 16 request lines per client-

server pair to show the difference in throughput while maintaining ordering between delegated

requests to the same server.



CHAPTER 3

EXPERIMENTAL EVALUATION

The results shown are from a 28 core, 56 thread Intel Skylake machine with 97 GB of

RAM. The system has three levels of cache: On-core non-inclusive L1 and L2 of size 32KB and

1,024KB respectively, and 19,712KB of L3 cache per socket shared among the 14 physical cores

on one processor.

For spin, mutex, atomic, and flat delegation we use the number of threads available on the

machine (56) unless otherwise stated. For trials with dedicated delegation async and Gepard

we list the number of servers. The balance of remaining threads are clients.

Like Gepard, asynchronous delegation threads are assigned to processors in a round-robin

fashion. For example, on our machine threads 0-13 are on processor 0 and 14-23 are on processor

1. Threads are assigned in the order 0, 14, 1, 15, etc... In the dedicated case all server threads

are launched before any client threads. Memory for delegated data structures is allocated on

the NUMA node corresponding to the processor which it is assigned.

3.1 Fetch and Add

The experiment shown in Figure 15 allocates a user specified number of 64B variables shown

on the x-axis. OS threads are launched, and for three seconds each thread selects a variable

at random and then increments that variable by its synchronization technique. After three

28
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Figure 15. Throughput in MOPS by number of 64Byte variables. Higher is better.

seconds the threads are joined and the throughput in Million Operations per Second (MOPS)

is reported.

The experiment is run using the POSIX threads implementations of mutex and spin locks,

the gcc compiler intrinsic atomic fetch and add (atomic), and delegation approaches (Gepard-8s,

async-16s, and async-flat).

The delegation approaches allocate memory as a two dimensional array, where the rows of

the array are assigned to the individual server thread. numa alloc onnode is used to allocate



30

the delegated data structures into dram local to the intended server’s core’s processor. E.g.,

server 1 is assigned to core 14 on processor 1, NUMA node 1.

For flat delegation the number of shared variables is rounded up to the next highest multiple

of the number of servers. For example 128 variables is rounded up to 168. For dedicated

approaches when the number of shared variables is smaller than the requested number of servers

the number of servers is reduced. For example a 16 server dedicated system handling 4 shared

variables will run with 4 servers and 52 clients.

The atomic and locking approaches allocate memory using malloc as a single array.

3.1.1 Performance Under Contention

Delegation approaches excel for smaller numbers of shared variables. Notice dedicated

delegation achieves over 600 MOPS for shared variable counts up to the size of the server

cache. Flat delegation achieves consistent performance, topping out just under 500 MOPS.

The reason for this even performance at low levels of shared variables is a lack of contention.

A variable is contended if multiple threads are trying to access it simultaneously. By the

pigeonhole principle, we can be guaranteed that when the number of shared variables is less

than the number of threads, the number of threads contending for variables is at least 2∗(T−V )

where V is total number of shared variables and T is the number of threads. The impact of the

contention is evident for the locking and atomic approaches, which demonstrate consistently

low throughput until the number of shared variables increases beyond the number of threads.

The probability of contention wanes as the number of variables grows. The chance that at least

one pair of threads in the system is contending for a variable is described by C = 1− (VT)
V T where
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C is the probability of contention. C drops below 10% at 214 and is practically zero at 219,

which corresponds with the peak throughput of of the locking and atomic approaches.

An advantage of delegation approaches, previously shown by Gepard, is the lack of contention

for variables. Figure 15 shows that asynchronous approaches meet or exceed the throughput

gains made by Gepard for small numbers of variables.

Interestingly, asynchronous dedicated delegation outperforms all approaches on the bench-

mark up to 220 shared variables. This is no accident, when the delegated data structure is

sufficiently small, it remains resident in the server’s on-core cache. For the 16 server dedicated

delegation case shown, each delegation server shares, as a hyperthread, a core with a delegation

client. The combined memory overhead of delegation for the two threads is about 93 KB. This

amount consumes the entire L1 cache and 62 KB of the L2 leaving 962 KB of L2 cache for the

delegated data structure. 960 KB translates to (15,000) 64B variables per server, or 246,000

variables for the system. L2 cache is exhausted at 218 variables, which is where Figure 15 shows

degradation of asynchronous dedicated delegation throughput performance.

Further, the portion of L3 cache available to the server is roughly 1/Nserversonprocessor of

the L3 on the processor, or 2,464 KB. This translates to 39,000 additional variables per server,

or 630,000 more variables for the system. L3 is exhausted when the number of shared variables

approaches 220. Performance continues to degrade as the number of variables resident in DRAM

increases and the likelihood of cache hits decreases.
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3.1.2 Memory Subsystem

All approaches display a reduction in throughput beginning around 220 shared variables.

This is because the likelihood a shared variable will be in cache decreases as the number of

shared variables increases. Because of the randomness in the benchmark, we can estimate the

probability that a shared variable will be DRAM resident. The probability, P that a variable
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picked at random in a system with cache size Scache, variable size Svariable, total number of

variables Nvariables follows Equation 3.1

P =
Scache/Svariable

Nvariables
(3.1)

Since Scache is a fixed property of the hardware, we see the probability that a variable is in

cache approaches zero with an increasing number of shared variables.

Much slower access to DRAM dominates the performance of all approaches as the number

of shared variables grows beyond 220. For dedicated delegation the degradation in performance

is particularly extreme because accesses are made by a smaller subset of cores than the other

approaches. This observation is substantiated by Figure 16, which shows that tail throughput

rises with the number of delegation servers. Cross referencing Figure 15, we see that the 32

server asynchronous dedicated delegation and flat delegation shown in Figure 16 achieve nearly

the same throughput as the locking and atomic approaches on our benchmark.

Our final observation of flat and high server count delegation systems provides motivation

to continue optimizing the systems for use in large delegated data structures. We delegate

data structures onto the same NUMA node in which the server thread is running. As a result

delegation servers will access NUMA local dram for 100% of delegated operations. In compar-

ison, a data structure with synchronized access through locks or atomic operations will have a

1/Nnodes chance of performing a local operation where Nnodes is the number of NUMA nodes

in the system.
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We can observe the NUMA effect in Figure 17 where local and remote DRAM loads were

measured using perf stat for dedicated delegation in blue, flat delegation in black, and mutex

locks in red. Local DRAM loads have filled in pips while remote loads are outlined. We

observe in Figure 17 a wide separation between remote and local DRAM loads per operation

for delegation approaches. As expected, mutex shows a balance much closer to an even split

between nodes.



CHAPTER 4

CONCLUSIONS

We have shown that asynchronous delegation approaches outperform the synchronous dele-

gation approach of Gepard on the fetch and add benchmark. Further, asynchronous delegation

is shown to outperform fine-grained locking and atomic approaches when the delegated data

structure fits within the delegation server thread’s on-core cache. Interestingly, flat delegation

shows comparable performance to atomic and locking approaches as the size of the delegated

data structure exceeds the size of the available cache.

Opportunities for continuing work remain. The performance of asynchronous delegation

should be measured on a variety of microbenchmarks to confirm these initial findings. Asyn-

chronous delegation should also be ported into a real world application and its impact on

performance measured.

Flat delegation shows promise to equal or outperform synchronization approaches through-

out the range of shared variables. More research is necessary on the strategy for invoking the

server function on a flat delegation thread with the goal of finding an equilibrium between client

and server functions that maximizes overall throughput.
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