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SUMMARY

The so-called cold-start problem has haunted the recommender systems community for

years. The problem happens when a user rated/clicked/liked a few number of items. Classic

approaches, such as collaborative filtering, assume that a user has a fair amount of actions

so that the preferences of the user can be inferred. As a result, traditional methods cannot

effectively model the interests of cold users due to the scarcity of data.

In this dissertation, I will introduce our recent works on employing deep learning methods

for alleviating the cold-start problem for recommendation. In the first part, we focus on utilizing

review data to build deep learning models to ease the cold start problem. In the second part, I

present an spectral approach to discover users’ interests from the spectral domain of the user-

item bipartite graph. In the third part, I introduce a recurrent method designed to capture

users’ evolving interests from dynamic graphs. In the fourth part, we propose to model users and

items with probability distributions, rather than the popular vectors. With distribution-based

representations, the proposed model is able to alleviate the cold-start problem and therefore,

delivers the start-of-the-art performances in three real-world datasets.

xii



CHAPTER 1

INTRODUCTION

1.1 Dissertation Outline

This dissertation focuses on alleviating the cold-start problem in multiple perspectives.

Specifically, four different tasks are covered to easy the cold-start problem:

• To ease the cold-start problem, we propose Deep Cooperative Neural Networks (Deep-

CoNN). DeepCoNN leverages review data to characterize user preferences and item prop-

erties to alleviate the cold-start problem for recommendation.

• We propose a spectral framework for recommendation to analyze users’ preferences from

the spectral domain, where not only the proximity information but also the connectivity

information can be revealed.

• In order to leverage co-evolving patterns from users’ actions for sequential recommenda-

tion, we introduce Gated Spectral Units (GSUs) to discover users’ evolving interests from

spectral domains of dynamic graphs.

• To combat the cold-start problem, we propose to model users and items with probability

distributions, instead of vectors. Since distributions are proved to be effective to handle

sparse data, the proposed model, Deep Distribution Network (DDN), diminish the neg-

ative impact of the cold start problem and delivers the start-of-the-art performances in

three real-world datasets.

1
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1.2 Review-based Deep Recommender Systems

(Part of this chapter was previously published in (Zheng et al., 2017).)

On one hand, in many recommender systems, other than the numeric ratings, users are

allowed to write reviews for products. Users explain the reasons behind their ratings in text

reviews. The reviews contain information which can be used to alleviate sparsity problem. One

of the drawbacks of most current collaborative filtering (CF) techniques is that they model

users and items just based on the numeric ratings provided by users and ignore the abundant

information existed in the review text. Recently, some studies (McAuley and Leskovec, 2013)

(Ling et al., 2014) have shown that using review text can improve the prediction accuracy of

recommender systems, in particular for the items and users with few ratings (Wang et al., 2010).

On the other hand, deep learning methods have shown a promising performance in analyzing

and modeling textual data in a variety of tasks (Collobert et al., 2011; Zheng et al., 2017; Zheng

and Han, 2013; Zheng, 2016). Thus, this calls for a review-based deep recommender system

leveraging review data for alleviating the cold-start problem.

In Chapter 2, we present a deep model to learn item properties and user behaviors jointly

from review text. The proposed model, named Deep Cooperative Neural Networks (Deep-

CoNN), consists of two parallel neural networks coupled in the last layers. One of the networks

focuses on learning user behaviors exploiting reviews written by the user, and the other one

learns item properties from the reviews written for the item. A shared layer is introduced on

the top to couple these two networks together. The shared layer enables latent factors learned

for users and items to interact with each other in a manner similar to factorization machine
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techniques. Experimental results demonstrate that DeepCoNN significantly outperforms all

baseline recommender systems on a variety of datasets.

1.3 Spectral Collaborative Filtering

(Part of this chapter was previously published in (Zheng et al., 2018b))

Despite the popularity of Collaborative Filtering (CF), CF-based methods are haunted by

the cold-start problem, which has a significantly negative impact on users’ experiences with

Recommender Systems. In Chapter 3, to overcome the aforementioned drawback, we first

formulate the relationships between users and items as a bipartite graph. Then, we propose

a new spectral convolution operation directly performing in the spectral domain, where not

only the proximity information of a graph but also the connectivity information hidden in

the graph are revealed. With the proposed spectral convolution operation, we build a deep

recommendation model called Spectral Collaborative Filtering (SpectralCF). Benefiting from

the rich information of connectivity existing in the spectral domain, SpectralCF is capable of

discovering deep connections between users and items and therefore, alleviates the cold-start

problem for CF. To the best of our knowledge, SpectralCF is the first CF-based method directly

learning from the spectral domains of user-item bipartite graphs. We apply our method on

several standard datasets. It is shown that SpectralCF significantly outperforms state-of-the-

art models.

1.4 Modeling Co-evolving Patterns for Sequential Recommendation

(Part of this chapter was previously published in (Zheng et al., 2019).)
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Exploiting historical data of users to make future predictions lives at the heart of building

effective recommender systems. Recent approaches for sequential recommendations often render

past actions of a user into a sequence, seeking to capture the temporal dynamics in the sequence

to predict the next item. However, the interests of users evolve over time together due to their

mutual influence, and most of existing methods lack the ability to utilize the rich coevolutionary

patterns available in underlying data represented by sequential graphs.

In order to capture the co-evolving knowledge for sequential recommendations, in Chapter

4, we start from introducing an efficient spectral convolution operation to discover complex

relationships between users and items from the spectral domain of a graph, where the hidden

connectivity information of the graph can be revealed. Then, the spectral convolution is gen-

eralized into an recurrent method by utilizing gated mechanisms to model sequential graphs.

Experimentally, we demonstrate the advantages of modeling co-evovling patterns, and Gated

Spectral Units (GSUs) achieve state-of-the-art performance on several benchmark datasets.

1.5 Distribution-based Representations for Top-N Recommendation

(Part of this chapter was previously published in (Zheng et al., 2019).)

Existing recommendation methods mostly learn fixed vectors for users and items in a low-

dimensional continuous space, and then calculate the popular dot-product to derive user-item

distances. However, these methods suffer from two drawbacks: (1) the data sparsity issue

prevents from learning high-quality representations; and (2) the dot-product violates the crucial

triangular inequality and therefore, results in a sub-optimal performance.
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In Chapter 5, in order to overcome the two aforementioned drawbacks, we propose Deep

Distribution Network (DDN) to model users and items via Gaussian distributions. We ar-

gue that, compared to fixed vectors, distribution-based representations are more powerful to

characterize users’ uncertain interests and items’ distinct properties. In addition, we propose

a Wasserstein-based loss, in which the critical triangular inequality can be satisfied. In ex-

periments, we evaluate DDN and comparative models on standard datasets. It is shown that

DDN significantly outperforms state-of-the-art models, demonstrating the advantages of the

proposed distribution-based representations and wassertein loss.



CHAPTER 2

REVIEW-BASED DEEP RECOMMENDER SYSTEMS

(This chapter was previously published as “Joint deep modeling of users and items us-

ing reviews for recommendation”, in the Tenth International Conference on Web Search and

Data Mining (WSDM’17) (Zheng et al., 2017). DOI: https://doi.org/10.1145/3018661.

3018665.)

2.1 Introduction

Many of the prominent approaches employed in recommender systems (Koren et al., 2009)

are based on Collaborative Filtering (CF) techniques. Many of the most successful CF tech-

niques are based on matrix factorization (Koren et al., 2009). Although CF techniques have

shown good performance for many applications, the sparsity problem is considered as one of

their significant challenges (Koren et al., 2009). The sparsity problem arises when the number

of items rated by users is insignificant to the total number of items. It happens in many real

applications. It is not easy for CF techniques to recommend items with few ratings or to give

recommendations to the users with few ratings.

One of the approaches employed to address this lack of data is using the information in

review text (Ling et al., 2014; McAuley and Leskovec, 2013). In many recommender systems,

users explain the reasons behind their ratings in text reviews. The reviews contain information

which can be used to alleviate sparsity problem. One of the drawbacks of most current CF

6

https://doi.org/10.1145/3018661.3018665
https://doi.org/10.1145/3018661.3018665
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techniques is that they model users and items just based on the numeric ratings provided by

users and ignore the abundant information existed in the review text. Recently, some studies

(McAuley and Leskovec, 2013) (Ling et al., 2014) have shown that using review text can improve

the prediction accuracy of recommender systems, in particular for the items and users with few

ratings (Wang et al., 2010).

In this paper, we propose a neural network (NN) based model, named Deep Cooperative

Neural Networks (DeepCoNN), to model users and items jointly using review text for rating

prediction problems. One of the networks models user behavior using the reviews written by

the user, and the other network models item properties using the written reviews for the item.

The learned latent features for user and item are used to predict the corresponding rating in

a layer introduced on the top of both networks. This interaction layer is motivated by matrix

factorization techniques (Koren et al., 2009) to let latent factors of users and items interact

with each other.

To the best of our knowledge, DeepCoNN is the first deep model that represents both users

and items in a joint manner using reviews. It makes the model scalable and also suitable

for online learning scenarios where the model needs to get updated continuously with new

data. Another key contribution is that DeepCoNN represents review text using pre-trained

word-embedding technique (Mikolov et al., 2013), (Mikolov et al., 2010) to extract semantic

information from the reviews. Recently, this representation has shown excellent results in

many Natural Language Processing (NLP) tasks (Collobert et al., 2011; Bengio et al., 2006).

Moreover, a significant advantage of DeepCoNN compared to most other approaches (McAuley
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and Leskovec, 2013; Ling et al., 2014) which benefit from reviews is that it models users and

items in a joint manner with respect to prediction accuracy. Most of the similar algorithms

perform the modeling independently of the ratings. Therefore, there is no guarantee that the

learned factors can be beneficial to the rating prediction.

The experiments on real-world datasets including Yelp, Amazon (McAuley et al., 2015a),

and Beer (McAuley et al., 2012) show that DeepCoNN outperforms all the compared baselines

in prediction accuracy. Also, the proposed algorithm increases the performance for users and

items with fewer ratings more than the ones with a higher number of ratings. It shows that

DeepCoNN alleviates the sparsity problem by leveraging review text.

Our contributions and also advantages of DeepCoNN can be summarized as follows:

• The proposed Deep Cooperative Neural Networks (DeepCoNN) jointly model user behav-

iors and item properties using text reviews. The extra shared layer at the top of two neural

networks connects the two parallel networks such that user and item representations can

interact with each other to predict ratings. To the best of our knowledge, DeepCoNN is

the first one that jointly models both user and item from reviews using neural networks.

• It represents review text as word-embeddings using pre-trained deep models. The ex-

perimental results demonstrate that the semantic meaning and sentimental attitudes of

reviews in this representation can increase the accuracy of rating prediction. All com-

peting techniques which are based on topic modeling (Wu and Ester, 2015; Bao et al.,

2014; Diao et al., 2014) use the traditional bag of words techniques.
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• It does not only alleviate the problem of sparsity by leveraging reviews, but also im-

proves the overall performance of the system significantly. It outperforms state-of-the-art

techniques (McAuley and Leskovec, 2013; Salakhutdinov and Mnih, 2007; Wang et al.,

2015) in terms of prediction accuracy on all of the evaluated datasets including Yelp, 21

categories of Amazon, and Beer (see Section 3.4).

In Section 2.2, we describe DeepCoNN in detail. Experiments are presented in Section

3.4 to analyze DeepCoNN and demonstrate its effectiveness compared to the state-of-the-art

techniques for recommendation systems. In Section 2.4, we give a short review of the works

related to our study.

2.2 Methodology

The proposed model, DeepCoNN, is described in detail in this section. DeepCoNN models

user behaviors and item properties using reviews. It learns hidden latent factors for users and

items by exploiting review text such that the learned factors can estimate the ratings given by

users. It is done with a CNN based model consisting of two parallel neural networks, coupled

to each other with a shared layer at the top. The networks are trained in a joint manner to

predict the ratings with minimum prediction error. We first describe notations used throughout

this paper and formulate the definition of our problem. Then, the architecture of DeepCoNN

and the objective function to get optimized is explained. Finally, we describe how to train this

model.
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2.2.1 Definition and Notation

A set of training set T consists of N tuples. Each tuple (u, i, rui, wui) denotes a review

written by user u for item i with rating rui and text review of wui. The mathematical notations

used in this paper are summarized in Table I.

TABLE I: Notations
Symbols Definitions and Descriptions

du1:n user or item u’s review text consisting of n
words

V u
1:n word vectors of user or item u
wui a review text written by user u for item i
oj the output of jth neuron in the convolutional

layer
ni the number of neurons in the layer i
Kj the jth kernel in the convolutional layer
bj the bias of jth convolutional kernel
g the bias of the fully connected layer
zj the jth feature map in the convolutional layer
W the weight matrix of the fully connected layer
t the window size of convolutional kernel
c the dimension of word embedding
xu the output of Netu
yi the output of Neti
λ the learning rate

2.2.2 Architecture

The architecture of the proposed model for rating prediction is shown in Figure 1. The

model consists of two parallel neural networks coupled in the last layer, one network for users

(Netu) and one network for items (Neti). User reviews and item reviews are given to Netu and
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Neti respectively as inputs, and corresponding rating is produced as the output. In the first

layer, denoted as look-up layer, review text are utilized to capture the semantic information in

the review text. Next layers are CNN based models, including convolution layer, max pooling

layer, and fully connected layer. Also, a top layer is added on the top of the two networks to

let the hidden latent factors of user and item interact with each other. This layer calculates an

objective function that measures the rating prediction error using the latent factors produced

by Netu and Neti. In the following subsections, since Netu and Neti only differ in their inputs,

we focus on illustrating the process for Netu in detail. The same process is applied for Neti

with similar layers.

2.2.3 Word Representation

A word embedding f : M → ℜn, where M represents the dictionary of words, is a parame-

terized function mapping words to n-dimensional distributed vectors. Recently, this approach

has boosted the performance in many NLP applications (Kim, 2014), (Collobert et al., 2011).

DeepCoNN uses this representation technique to exploit the semantics of reviews. In the look-

up layer, reviews are represented as a matrix of word embeddings to extract their semantic

information. To achieve it, all the reviews written by user u, denoted as user reviews, are

merged into a single document du1:n, consisting of n words in total. Then, a matrix of word

vectors, denoted as V u
1:n, is built for user u as follows:

V u
1:n = ϕ(du1)⊕ ϕ(du2)⊕ ϕ(du3)⊕ ... ⊕ ϕ(dun), (2.1)
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Figure 1: The architecture of the proposed model

where duk indicates the kth word of document du1:n, look-up function ϕ(duk) returns the cor-

responding c-dimensional word vector for the word duk , and ⊕ is the concatenation operator.

It should be considered that the order of words is preserved in matrix V u
1:n that is another

advantage of this representation comparing to bag-of-words techniques.
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2.2.4 CNN Layers

Next layers including convolution layer, max pooling, and fully connected layer follow the

CNN model introduced in (Collobert et al., 2011). Convolution layer consists of m neurons

which produce new features by applying convolution operator on word vectors V u
1:n of user u.

Each neuron j in the convolutional layer uses filter Kj ∈ ℜc×t on a window of words with size

t. For V u
1:n, we perform a convolution operation regarding each kernel Kj in the convolutional

layer.

zj = f(V u
1:n ∗Kj + bj) (2.2)

Here symbol ∗ is convolution operator, bj is a bias term and f is an activation function. In the

proposed model, we use Rectified Linear Units (ReLUs) (Nair and Hinton, 2010). It is defined

as Equation 2.3. Deep convolutional neural networks with ReLUs train several times faster

than their equivalents with tanh units (Krizhevsky et al., 2012).

f(x) = max{0, x} (2.3)

Following the work of (Collobert et al., 2011), we then apply Equation 2.4. The most important

feature of each feature map, which has the highest value, has been captured. This pooling

scheme can naturally deal with the varied length of the text. After the max pooling operation,

convolutional results are reduced to a fixed size vector.

oj = max{z1, z2, ..., z(n−t+1)} (2.4)
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We have described the process by which one feature is extracted from one kernel. The model

uses multiple filters to obtain various features and the output vector of the convolutional layer

is as Equation 2.5.

O = {o1, o2, o3, ..., on1}, (2.5)

where n1 denotes the number of kernel in the convolutional layer.

xu = f(W ×O + g) (2.6)

The results from the max-pooling layer are passed to a fully connected layer with weight

matrix W . As shown in Equation 2.6, the output of the fully connected layer xu ∈ ℜn2×1 is

considered as features for user u. Finally, the outputs of both user and item CNN xu and yi

can be obtained.

2.2.5 The Shared Layer

Although these outputs can be viewed as features of users and items, they can be in dif-

ferent feature space and not comparable. Thus, to map them into the same feature space, we

introduce a shared layer on the top to couple Netu and Neti. First, let us concatenate xu

and yi into a single vector ẑ = (xu,yi). To model all nested variable interactions in ẑ, we

introduce Factorization Machine (FM) (Rendle, 2012) as the estimator of the corresponding
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rating. Therefore, given a batch of N training examples T , we can write down its cost as Eq.

Equation 2.7.

J = ŵ0 +

|ẑ|∑
i=1

ŵiẑi +

|ẑ|∑
i=1

|ẑ|∑
j=i+1

⟨v̂i, v̂j⟩ẑiẑj , (2.7)

where ŵ0 is the global bias, ŵi models the strength of the ith variable in ẑ and ⟨v̂i, v̂j⟩ =∑|ẑ|
f=1 v̂i,f v̂j,f . ⟨v̂i, v̂j⟩ models the second order interactions.

2.2.6 Network Training

Our network is trained by minimizing Equation 2.7. We take derivatives of J with respect

to z, as shown in Equation 2.8.

∂J

∂ẑi
= ŵi +

|ẑ|∑
j=i+1

⟨v̂i, v̂j⟩ẑj (2.8)

The derivatives of other parameters in different layers can be computed by applying differ-

entiation chain rule.

Given a set of training set T consisting of N tuples, we optimize the model through RMSprop

(Tieleman and Hinton, 2012) over shuffled mini-batches. RMSprop is an adaptive version of

gradient descent which adaptively controls the step size with respect to the absolute value of

the gradient. It does it by scaling the update value of each weight by a running average of its

gradient norm. The updating rules for parameter set θ of the networks are as the following:

rt ← 0.9(
∂J

∂θ
)
2

+ 0.1rt−1 (2.9)
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θ ← θ − (
λ

√
rt + ϵ

)
∂J

∂θ
, (2.10)

where λ is the learning rate, ϵ is a small value added for numerical stability. Additionally, to

prevent overfitting, the dropout (Srivastava et al., 2014) strategy has also been applied to the

fully connected layers of the two networks.

2.2.7 Some Analysis on DeepCoNN

2.2.7.1 Word Order Preservation

Most of the recommender systems which use reviews in the modeling process employ topic

modeling techniques to model users or items (Chen et al., 2015). However, in many text

modeling applications, word order is crucial (Wallach, 2006). DeepCoNN is not based on topic

modeling and uses word embeddings to create a matrix of word vectors where the order of

words are preserved. In this way, convolution operations make use of the internal structure of

data and provide a mechanism for efficient use of words’ order in text modeling (Johnson and

Zhang, 2015).

2.2.7.2 Online Learning

Scalability and handling dynamic pools of items and users are considered as critical needs

of many recommender systems. The time sensitivity of recommender systems poses a challenge

in learning latent factors in an online fashion. DeepCoNN is scalable to the size of the training

data, and also it can easily get trained and updated with new data because it is based on

NN. Updating latent factors of items or users can get performed independently from historical
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TABLE II: The Statistics of the datasets

Class #users #items #review #words #reviews
per user

#words
per

review
Yelp 366,715 60,785 1,569,264 198M 4.3 126.41

Amazon 6,643,669 2,441,053 34,686,770 4.053B 5.2 116.67
Beer 40,213 110,419 2,924,127 154M 72.7 52.67

data. All the approaches which employ topic modeling techniques do not benefit from these

advantages to this extent.

2.3 Experiments

We have performed extensive experiments on a variety of datasets to demonstrate the ef-

fectiveness of DeepCoNN compared to other state-of-the-art recommender systems. We first

present the datasets and the evaluation metric used in our experiments in Section 2.3.1. The

baseline algorithms selected for comparisons are explained in Section 2.3.2. Experimental set-

tings are given in Section 2.3.3.

2.3.1 Datasets and Evaluation Metric

In our experiments, we have selected the following three datasets to evaluate our model.

• Yelp: It is introduced in the 6th round of Yelp Challenge and a large-scale dataset

consisting of restaurant reviews containing more than 1M reviews and ratings.
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• Amazon: It (McAuley et al., 2015a) contains product reviews and metadata from Ama-

zon website1. It includes more than 143.7 million reviews spanning from May 1996 to

July 2014. It has 21 categories of items, and as far as we know, this is the largest public

available rating dataset with text reviews.

• Beer: It is a beer review dataset extracted from ratebeer.com.

As we can see in Table II, all datasets contain more than half a million of reviews. However,

in Yelp and Amazon, customers provide less than six pair of reviews and ratings on average

which shows these two datasets are extremely sparse. This sparsity can largely deteriorate the

performance of recommender systems. Besides, in all datasets, each review consists of less than

150 words on average.

In our experiments, we adopt the well-known Mean Square Error (MSE) to evaluate the

performance of the algorithms. It is selected because most of the related works have used the

same evaluation metric(McAuley and Leskovec, 2013; Ling et al., 2014; Almahairi et al., 2015).

MSE can be defined as follows:

MSE =
1

N

N∑
n=1

(rn − r̂n)
2, (2.11)

where rn is the nth observed value, r̂n is the nth predicted value and N is the total number of

observations.

1https://snap.stanford.edu/data/web-Amazon.html
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2.3.2 Baselines

To validate the effectiveness of DeepCoNN, we have selected three categories of algorithms

for evaluations: (i) purely rating based models. We chose Matrix Factorization (MF) and

Probabilistic Matrix Factorization (PMF) to validate that review information is helpful for

recommender systems, (ii) topic modeling based models which use review information. Most of

the recommender systems which take reviews into consideration are based on topic modeling

techniques, and (iii) deep recommender systems. In (Wang et al., 2015), authors have proposed

a state-of-the-art deep recommender system named Collaborative Deep Learning (CDL). Note

that all the baselines except MF and PMF have incorporated review information into their

models to improve prediction.

• MF: Matrix Factorization (Koren et al., 2009) is the most popular CF-based recommen-

dation method. It only uses rating matrix as input and estimates two low-rank matrices

to predict ratings. In our implementation, Alternating Least Squares (ALS) technique is

adopted to minimize its objective function.

• PMF: Probabilistic Matrix Factorization is introduced in (Salakhutdinov and Mnih,

2007). It models latent factors of users and items by Gaussian distributions.

• LDA: Latent Dirichlet Allocation is a well-known topic modeling algorithm presented in

(Blei et al., 2003).
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Figure 2: The impact of the number of latent factors and convolutional kernels on the performance of
DeepCoNN in terms of MSE (Yelp Dataset).

• CTR: Collaborative Topic Regression has been proposed by (Wang and Blei, 2011).

It showed very good performance on recommending articles in a one-class collaborative

filtering problem where a user is either interested or not.

• HFT: Hidden Factor as Topic proposed in (McAuley and Leskovec, 2013) employs topic

distributions to learn latent factors from user or item reviews. The authors have shown

that item specific topic distributions produce more accurate predictions than user specific

ones. Thus, we report the results of HFT learning from item reviews.

• CDL: Collaborative Deep Learning combines a stacked denoising auto-encoders with a

probabilistic matric factorization (PMF).

2.3.3 Experimental Settings

We divided each dataset shown in Table II into three sets of training set, validation set, and

test set. We use 80% of each dataset as the training set, 10% is treated as the validation set
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to tune the hyper-parameters, and the rest is used as the test set. All the hyper-parameters of

the baselines and DeepCoNN are selected based on the performance on the validation set.

For MF and PMF, we used grid search to find the best values for the number of latent

factors from {25, 50, 100, 150, 200}, and regularization parameter from {0.001, 0.01, 0.1, 1.0}.

For LDA, CTR and HFT, we searched the number of topics K from {5, 10, 20, 50, 100}

using the validation set. We set K = 10 for LDA and CTR. The CTR model solves the

one-class collaborative filtering problem (Pan et al., 2008) by using two different values for the

precision parameter c of a Gaussian distribution. Following the work of (Ling et al., 2014), in

our experiments, we set precision c as the same for all the observed ratings for rating prediction.

HFT-k (k = 10, 50) are included to show the impact of the number of latent factors for HFT. By

performing a grid search on the validation set, we set hyper-parameters α = 0.1, λu = 0.02 and

λv = 10 for CTR and HFT. To optimize the performance of CDL, we performed a grid search

on the hyper-parameters λu, λv, λn, λw and L. Similar with CTR, the confidence parameter

cij of CDL is set as the same for all observed ratings.

We empirically studied the effects of two important parameters of DeepCoNN: the number of

latent factors(|xu| and |yi|) and the number of convolutional kernels: n1. In Figure 2, we show

the performance of DeepCoNN on the validation set of Yelp with varying |xu| and |yi| from 5 to

100 and n1 from 10 to 400 to investigate its sensitivity. As it can be seen, it does not improve

the performance when the number of latent factors and number of kernels is greater than 50

and 100 respectively. Thus, we set |xu| = |yi| = 50 and n1 = 100. Other hyper-parameters:

t, c, λ and batch size are set as 3, 300, 0.002 and 100, respectively. These values were chosen
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TABLE III: MSE Comparison with baselines. Best results are indicated in bold.

Dataset MF PMF LDA CTR HFT-10 HFT-50 CDL Deep-
CoNN

IMPV of
DeepCoNN

(%)
Yelp 1.792 1.783 1.788 1.612 1.583 1.587 1.574 1.441 8.5%

Amazon 1.471 1.460 1.459 1.418 1.378 1.383 1.372 1.268 7.6%
Beer 0.612 0.527 0.306 0.305 0.303 0.302 0.299 0.273 8.7%

Average
on all

datasets
1.292 1.256 1.184 1.112 1.088 1.09 1.081 0.994 8.3%

through a grid search on the validation sets. We used a pre-trained word embeddings which

are trained on more than 100 billion words from Google News (Mikolov et al., 2013) 1.

Our models are implemented in Theano (Theano Development Team, 2016), a well-known

Python library for machine learning and deep learning. The NVIDIA CUDA Deep Neural

Network4 (cuDNN v4) accelerated our training process. All models are trained and tested on

an NVIDIA Tesla K40 GPU.

2.3.4 Performance Evaluation

The performance of DeepCoNN and the baselines (see Section 2.3.2) are reported in terms

of MSE in Table III. Table III shows the results on the three datasets including the perfor-

mance averaged on all 21 categories of Amazon. The last column indicates the percentage

of improvements gained by DeepCoNN compared to the best baseline in the corresponding

category.

1https://code.google.com/archive/p/word2vec/
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In Table III, all models perform better on Beer dataset than on Yelp and Amazon. It is

mainly related to the sparsity of Yelp and Amazon. Although PMF performs better than MF

on Yelp, Beer, and most categories of Amazon, both techniques do not show good performance

compared to the ones which use reviews. It validates our hypothesis that review text provides

additional information, and considering reviews in models can improve rating prediction.

Although simply employing LDA to learn features from item reviews can help the model

to achieve improvements, LDA models reviews independent of ratings. Therefore, there is

no guarantee that the learned features can be beneficial to rating prediction. Therefore, by

modeling ratings and reviews together, CTR and HFT attain additional improvements. Among

those topic modeling based models (LDA, CTR and HFT), both HFT-10 and HFT-50 perform

better in all three datasets.

With the capability of extracting deep effective features from item review text, as we can

see in Table III, CDL outperforms all topic modeling based recommender systems and advances

the state-of-the-art. However, in benefiting from joint modeling capacity and semantic meaning

existing from review text, DeepCoNN beats the best baseline in Yelp, Beer and Amazon and

gains 8.3% improvement on average.

2.3.5 Model Analysis

Are the two parallel networks really cooperate to learn effective features from reviews?

Does the proposed model benefit from the use of word embedding to exploit the semantic

information in the review text? How much does the shared layer help in improving the predcition

accuracy comparing to a simpler coupling approach? To answer these questions, we compare
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TABLE IV: Comparing variants of the proposed model. Best results are indicated in bold.
Model Yelp Amazon Music Instruments Beer

DeepCoNN-User 1.577 1.373 0.292
DeepCoNN-Item 1.578 1.372 0.296

DeepCoNN-TFIDF 1.713 1.469 0.589
DeepCoNN-Random 1.799 1.517 0.627

DeepCoNN-DP 1.491 1.253 0.278
DeepCoNN 1.441 1.233 0.273

the DeepCoNN with its five variants: DeepCoNN-User, DeepCoNN-Item, DeepCoNN-TFIDF,

DeepCoNN-Random and DeepCoNN-DP. These five variants are summarized in the following:

• DeepCoNN-User: The Neti of DeepCoNN is substituted with a matrix. Each row

of the matrix is the latent factors of one item. This matrix is randomly initialized and

optimized during the training.

• DeepCoNN-Item: Similar with DeepCoNN-User, the Netu of DeepCoNN is replaced

with a matrix. Each row of the matrix is the latent factors of one user. This matrix is

randomly initialized and optimized during the training.

• DeepCoNN-TFIDF: Instead of using word embedding, the TFIDF scheme is employed

to represent review text as input to DeepCoNN.

• DeepCoNN-Random: Our baseline model where all word representations are randomly

initialized as fixed-length vectors.

• DeepCoNN-DP: The factorization machine in the objective function is substitued with

a simple dot product of xu and yi.
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The performance of DeepCoNN and its variants on Yelp, Beer and one category of the

Amazon dataset: Music Instruments are given in Table IV.

To demonstrate that the two deep CNNs can cooperate with each other to learn effective

latent factors from user and item reviews, DeepCoNN-User and DeepCoNN-Item are trained

with only one CNN with review text as input and the other CNN is substituted with a list

of latent variables as the parameters to get learned. In this manner, latent factors of users

or items are learned without considering their corresponding review text. As it can be seen

in Table IV, while DeepCoNN-User and DeepCoNN-Item achieve similar results, DeepCoNN

delivers the best performance by modeling both users and items. It verifies that review text is

necessary for modeling latent factors of both users and items. Also, it shows that review text

has informative information that can help to improve the performance of recommendation.

Furthermore, to validate the effectiveness of word representation, we compare DeepCoNN

with DeepCoNN-TFIDF and DeepCoNN-Random. The DeepCoNN-TFIDF and Dee-

pCoNN-Random are trained to show that word embedding is helpful to capture semantic mean-

ing existed in the review text. While the performance of DeepCoNN-TFIDF is slightly better

than DeepCoNN-Random, they both perform considerably weaker than DeepCoNN. It shows

the effectiveness of representing review text in semantic space for modeling the latent factors

of items or users.

At last, to investigate the efficiency of the shared layer, DeepCoNN-DP is introduced that

couples the two networks with a simpler objective function. The comparison shows the superi-
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Figure 3: MSE improvement achieved by DeepCoNN compared to MF. For users and items with different
number of training reviews, DeepCoNN gains different MSE reductions.

ority of the factorization machine coupling. It can be the result of not only modeling the first

order interactions but also the second order interactions between xu and yi.

2.3.6 The Impact of the Number of Reviews

The cold start problem (Schein et al., 2002) is prevalent in recommender systems. In

particular, when a new user joins or a new item is added to the system, their available ratings

are limited. It would not be easy for the system to learn preferences of such users just from their

ratings. It has been shown in some of the previous works that exploiting review text can help
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to alleviate this problem especially for users or items with few ratings (McAuley and Leskovec,

2013). In this section, we conduct a set of experiments to answer the following questions. Can

DeepCoNN help to tackle the cold start problem? What is the impact of the number of reviews

on the effectiveness of the proposed algorithm?

In Figure 3, we have illustrated the reductions in MSE resulted from DeepCoNN compared to

MF technique on three datasets of Yelp, Beer, and a group of Amazon (Music Instruments). By

reduction in MSE, we mean the difference between the MSE of MF and the MSE of DeepCoNN.

Users and items are categorized based on the number of their reviews, and reductions are plotted

for both users and items groups. It can be seen that in all three datasets, reductions are positive,

and DeepCoNN can achieve RMS reduction on all groups of users and items with few number

of ratings. A more important advantage of DeepCoNN is that higher reductions are gained for

groups with fewer ratings. It shows that DeepCoNN can alleviate the sparsity problem and

help on the cold start problem.

It can also be seen that there exists a relation between the effectiveness of DeepCoNN and

the number of ratings for a user or item. For users or items with a lower number of ratings,

DeepCoNN reduction in MSE is higher. It shows that review text can be valuable information

especially when we have limited information on the users or items.

2.4 Related Works

There are two categories of studies related to our work: techniques that model users and/or

items by exploiting the information in online review text, and deep learning techniques employed
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for recommender systems. In this section, we give a short review of these two research areas

and distinguish our work from the existing approaches.

The first studies that used online review text in rating prediction tasks were mostly focused

on predicting ratings for an existing review (Baccianella et al., 2009; Wu and Ester, 2015),

while in our paper, we predict the ratings from the history of review text written by a user to

recommend desirable products to that user.

One of the pioneer works that explored using reviews to improve the rating prediction

is presented in (Jakob et al., 2009). In (McAuley and Leskovec, 2013), the authors proposed

Hidden Factors as Topics (HFT) to employ topic modeling techniques to discover latent aspects

from either item or user reviews. This method achieves significant improvement compared to

models which only use ratings or reviews. A similar approach is followed in (Bao et al., 2014)

with the main difference that it models user’s and items’ reviews simultaneously. Ratings Meet

Reviews (RMR) (Ling et al., 2014) also tries to harness the information of both ratings and

reviews.

Overall, one limitation of the above studies is that their textual similarity is solely based

on lexical similarity. The semantic meaning is of particular importance and has been ignored

in these works. Additionally, reviews are represented by using bag-of-words, and words’ order

exists in reviews has not been preserved. At last, the approaches which employ topic modeling

techniques suffer from a scalability problem and also cannot deal with new coming users and

items.
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Recently, several studies have been done to use neural network based models including deep

learning techniques for recommendation tasks (Zheng et al., 2018; Zheng et al., 2017; Wang et

al., 2017). Several works (Salakhutdinov et al., 2007; Wu et al., ; Li et al., 2015) model users

and/or items from the rating matrix using neural networks like denoising auto-encoders or

Restricted Boltzmann Machines (RBM). They are considered as collaborative based techniques

because they just utilize the rating matrix and ignore review text unlike our approach.

In (Van den Oord et al., 2013) and (Wang and Wang, 2014), deep models of CNN and

Deep Belief Network (DBN) are introduced to learn latent factors from music data for music

recommendation. In both models, initially, they find user and item latent factors using matrix

factorization techniques. Then, they train a deep model such that it can reconstruct these

latent factors for the items from the music content. A similar approach is followed in (Wang

et al., 2015) for movie recommendation by using a generalized Stacked Auto Encoder (SAE)

model. In all these works (Van den Oord et al., 2013), (Wang and Wang, 2014), (Wang et al.,

2015), an item’s latent factors are learned from item’s content and review text is ignored.

In (Elkahky et al., 2015; Zheng et al., 2018a), a multi-view deep model is built to learn

the user and item latent factors in a joint manner and map them to a common space. The

general architecture of the model seems to have some similarities to our proposed model, but

it differs from ours in some aspects. Their model is a content-based recommender system and

does not use review text. Moreover, their outputs are coupled with a cosine similarity objective

function to produce latent factors with high similarity. In this way, user and item factors are
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not learned explicitly in relation to the rating information, and there is no guarantee that the

learned factors can help the recommendation task.

All the above NN based approaches differ from DeepCoNN because they ignore review text.

To the best of our knowledge, the only work which has utilized deep learning techniques to

use review text to improve recommendation is presented in (Almahairi et al., 2015). To use

the information exists in reviews, they proposed a model consisting of a matrix factorization

technique and a Recurrent Neural Network (RNN). The matrix factorization is responsible for

learning the latent factors of users and items, and the RNN models the likelihood of a review

using the item’s latent factors. The RNN model is combined with the MF simply via a trade-

off term as some sort of a regularization term to tame the curse of data sparsity. Due to the

matrix factorization technique, handling new users and items is not trivial in this model unlike

DeepCoNN that handles them easily. Their proposed algorithm does not model users and items

explicitly in a joint manner from their reviews, and it just uses reviews to regularize their model.

In addition, since item text is represented by using bag-of-words, semantic meaning existing in

words has not been explored.

2.5 Conclusion

In comparison with state-of-the-art baselines, DeepCoNN achieved 8.5% and 7.6% im-

provements on datasets of Yelp and Beer, respectively. On Amazon, it outperformed all the

baselines and gained 8.7% improvement on average. Overall, 8.3% improvement is attained

by the proposed model on all three datasets.
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Additionally, in the experiments by limiting modeling to just one of the users and items,

we demonstrated that the two networks could not only separately learn user and item latent

factors from review text but also cooperate with each other to boost the performance of rating

prediction. Furthermore, we showed that word embedding could be helpful to capture semantic

meaning of review text by comparing it with a variant of DeepCoNN which uses random or

TF-IDF representations for reviews.

At last, we conducted experiments to investigate the impact of the number of reviews. Ex-

perimental results showed that for the users and items with few reviews or ratings, DeepCoNN

obtains more reduction in MSE than MF. Especially, when only one review is available, Deep-

CoNN gains the greatest MSE reduction. Thus, it validates that DeepCoNN can effectively

alleviate the sparsity problem.



CHAPTER 3

SPECTRAL COLLABORATIVE FILTERING

(This chapter was previously published as “Spectral Collaborative Filtering”, in the 12th

ACM Conference on Recommender Systems (RecSys’18) (Zheng et al., 2018b). DOI: https:

//doi.org/10.1145/3240323.3240343.)

3.1 Introduction

The effectiveness of recommender systems (RS) often relies on how well users’ interests

or preferences can be understood and interactions between users and items can be modeled.

Collaborative Filtering (CF) (Koren et al., 2009) is one of the widely used and prominent

techniques for RS. The underlying assumption of the CF approach is that if a user u1 shares

a common item with another user u2, u1 is also likely to be interested in other items liked

by u2. Although CF has been successfully applied to many recommendation applications, the

cold-start problem is considered as one of its major challenges (Koren et al., 2009). The problem

arises when a user interacted with a very small number of items. Consequently, the user shares

few items with other users, and effectively recommending for the user becomes a challenging

task for RS.
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u1 u2 u3

i1 i2 i3 i4

Figure 4: A toy example of a user-item bipartite graph B with edges representing observed user-item
interactions. Red circles and green rectangles denote users and items, respectively.

If we formulate the relationships between users and items as a bipartite graph1, we argue

that the connectivity information of the graph can play an important role for tackling the

cold-start problem. For example, let us see a bipartite graph B in Figure 4. A cold-start user

u1 only interacts with item i1. Since u1 shares i1 with user u2 and user u3, as a result, three

items (i2, i3 and i4) connected with u2 or u3 can all be recommended to u1 by a CF-based

model. However, a natural and important question arises: which one in the three items is the

most reliable recommendation for u1? The key to answer the question lies in the user-item

connectivity information. In fact, if we take a look at the connections of the graph, it is clear

that there is only one path existing between u1 and i2 (or i3), while two paths connect u1 to

i4. Thus, compared with i2 and i3, obviously, i4 is a more reliable recommendation for u1.

However, existing CF-based methods, including model-based and memory-based approaches,

often suffer from the difficulty of modeling the connectivity information. Previous model-based

approaches, such as Matrix Factorization (MF) (Koren et al., 2009), are usually designed to ap-

1In this paper, we use the terminology ”graph” to refer to the graph/network structure of data and
”network” for the architecture of machine learning models.
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proximate the direct connections (or proximities). However, indirect connectivity information

hidden in the graph structures is rarely captured by traditional model-based approaches. For

instance, it is formidable for them to model the number of paths between u1 and i4 in Figure 4.

Whereas a number of memory-based approaches (Sarwar et al., 2001; Jamali and Ester, 2009)

is introduced to model the connectivity information, these methods often rely on pre-defined

similarity functions. However, in the real world, defining an appropriate similarity function

suitable for diverse application cases is never an easy task.

Spectral graph theory (Shuman et al., 2013) studies connections between combinatorial prop-

erties of a graph and the eigenvalues of matrices associated to the graph, such as the laplacian

matrix (see Definition 3.2.4 in Section 3.2). In general, the spectrum of a graph focuses on the

connectivity of the graph, instead of the geometrical proximity.

To see how does the spectral domain come to help for recommendations and better under-

stand the advantages of viewing a user-item bipartite graph in the spectral perspective, let

us revisit the toy example shown in Figure 4. For the bipartite graph B, we visually plot its

vertices in one specific frequency domain. Although vertices do not come with coordinates, a

popular way to draw them in a space is to use eigenvectors of a laplacian matrix associated with

the graph to supply coordinates (Spielman, 2007). Figure 5 shows that, compared with i2 and

i3, i4 becomes closer to u1 in the space1. Thus, when transformed into the frequency domain,

1In spectral graph theory, smaller (or larger) eigenvalues of the associated laplacian matrix corresponds
to lower- (or higher-) frequency domains. In Figure 4, we plot each vertex j at the point (µ1(j),µ2(j)),
where µl(j) indicates the jth value of the lth eigenvector of the laplacian matrix L.
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i4 is revealed to be a more suitable choice than i2 or i3 for u1. The underlying reason is that

the connectivity information of the graph has been uncovered in the frequency domain, where

the relationships between vertices depend on not only their proximity but also connectivity.

Thus, exploiting the spectrum of a graph can help better explore and identify the items to be

recommended.

Inspired by the recent progress (Kipf and Welling, 2016; Defferrard et al., 2016) in node/graph

classification methods, we propose a spectral graph theory based method to leverage the broad

information existing in the spectral domain to overcome the aforementioned drawbacks and

challenges. Specifically, to conquer the difficulties (see Section 3.3.3) of directly learning from

the spectral domain for recommendations, we first present a new spectral convolution opera-

tion (see Equation 3.10), which is approximated by a polynomial to dynamically amplify or

attenuate each frequency domain. Then, we introduce a deep recommendation model, named

Spectral Collaborative Filtering (SpectralCF), built by multiple proposed spectral convolution

layers. SpectralCF directly performs collaborative filtering in the spectral domain.

The key contributions of this work can be summarized as follows:

• Novelty: To the best of our knowledge, it is the first CF-based method directly learning

from the spectral domains of user-item bipartite graphs.

• A deep recommendation model: We propose a new spectral convolution operation

performing in the spectral domain. Stacked by multiple layers of the proposed spectral

convolution operation, a deep recommendation model, named Spectral Collaborative Fil-

tering (SpectralCF), is introduced.
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Figure 5: Vertices of the bipartite graph in Figure 4 are plotted in a frequency domain. Note that the
vertices not shown above are omitted for simplicity.

• Strong Performance: In the experiments, SpectralCF outperforms state-of-the-art

comparative models. It is shown that SpectralCF effectively utilizes the rich informa-

tion of connectivity existing in the spectral domain to ease the cold-start problem.

The rest of the paper is organized as follows. In Section 3.2, we provide preliminary concepts.

Section 3.3 describes SpectralCF in detail. Experiments are presented in Section 3.4 to analyze

SpectralCF and demonstrate its effectiveness compared with state-of-the-art techniques for RS.

In Section 3.5, we give a short review of the works related to our study. Finally, conclusions

are presented in Section 3.6.

3.2 Definitions and Preliminaries

In this section, we present the background and preliminaries of this study. Throughout the

paper, we denote scalars by either lowercase or uppercase letters, vectors by boldfaced lowercase

letters, and matrices by boldfaced uppercase letters. Unless otherwise specified, all vectors are
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considered to be column vectors. Let I denote an identity matrix, and 1 and 0 denote matrices

of ones and zeros, respectively. In addition, we define the following definitions in this paper as:

Definition 3.2.1. (Bipartite Graph). A bipartite user-item graph with N vertices and E edges

for recommendations is defined as B = {U , I, E}, where U and I are two disjoint vertex sets of

users and items. Every edge e ∈ E has the form e = (u, i) where u ∈ U and i ∈ I and denotes

that user u has interacted with item i in the training set.

Definition 3.2.2. (Implicit Feedback Matrix). An implicit feedback matrix R is a |U| × |I|

matrix defined as following:

Rr,j =


1 if (ur, ij) interaction is observed,

0 otherwise.
(3.1)

Definition 3.2.3. (Adjacent Matrix). For the bipartite graph B, its corresponding adjacent

matrix A can be defined as:

A =

 0 R

R⊺ 0

 , (3.2)

where A is an N ×N matrix.

Definition 3.2.4. (Laplacian Matrix). The random walk laplacian matrix L is defined as

L = I −D−1A, where I is the N × N identity matrix and D is the N × N diagonal degree

matrix defined as Dnn =
∑

j An,j.

This paper focuses on the recommendation problem with implicit feedbacks, where we only

observe whether a person has viewed/liked/clicked an item and do not observe explicit ratings.
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Let I+i denote the set of all items liked by user i and I−i denote the remaining items. We define

the recommendation problem which we study in this paper as the following:

Definition 3.2.5. (Problem Definition). Given a user set U and an item set I, for each user

u ∈ U who has liked/clicked/viewed an item set I+u ⊆ I, we aim to recommend a ranked list of

items from I−u that are of interests to the user.

3.3 Proposed Model

In this section, we first describe the process of performing a graph fourier transform on a

bipartite graph B for recommendations. Then we propose to place a novel spectral convolution

filter on vertices (users and items) of the bipartite graph to dynamically filter the contributions

of each frequency component in the spectral domain. Later, a polynomial approximation is

employed to overcome the shortcomings of the proposed convolution operation. Finally, with

the approximate convolution operation, we introduce our final recommender system, named

Spectral Collaborative Filtering, stacked by multiple spectral convolution layers.

3.3.1 Graph Fourier Transform

Definition 3.3.1. (Graph Signal). Given any graph G = {V, E}, where V and E are a vertex

and an edge set, respectively, a graph signal is defined as a state vector x ∈ R|V|×1 over all

vertices in the graph, where xj is the jth value of x observed at the jth vertex of G.

The classical fourier transform is defined as an expansion of a function f in terms of the

complex exponentials as:

f̂(ξ) =

∫ +∞

−∞
f(x)e−2πiξdx, (3.3)
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where i is an imaginary number, and the complex exponentials (e−2πiξ) form an orthonormal

basis.

Analogously, the graph fourier transform is defined as an expansion of an observed graph

signal in terms of the eigenvectors of the graph laplacian L = I −D−1A, and the eigenvectors

serve as a basis in the spectral domain. Let us assume that a graph signal (x ∈ R|V|×1) is

observed on a graph G, we define the graph fourier transform and its inverse on G as:

x̂(l) =
N−1∑
j=0

x(j)µl(j) and x(j) =
N−1∑
l=0

x̂(l)µl(j), (3.4)

where x(j), x̂(l) and µl(j) denote the jth, lth and jth value of x, x̂ and µl, respectively; µl

denotes the lth eigenvector of L; x̂ represents a graph signal which has been transformed into

the spectral domain. For simplicity, we rewrite Equation 3.4 in the matrix form as x̂ = U⊺x

and x = Ux̂, respectively, where U = {µ0,µ1, ...,µl, ...,µN−1} are eigenvectors of L.

In particular, for a bipartite graph B, assume that there are two types of graph signals:

xu ∈ R|U|×1 and xi ∈ R|I|×1, associated with user and item vertices, respectively. We transform

them into the spectral domain and vice versa as :

 x̂u

x̂i

 = U⊺

 xu

xi

 and

 xu

xi

 = U

 x̂u

x̂i

 . (3.5)
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3.3.2 Spectral Convolution Filtering

The broad information of graph structures exists in the spectral domain, and different types

of connectivity information between users and items can be uncovered in different frequency

domains. It is desirable to dynamically adjust the importance of each frequency domain for

RS.

To this end, we propose a convolution filter, parameterized by θ ∈ RN , as gθ(Λ) =

diag([θ0λ0, θ1λ1, ..., θN−1λN−1]) into the spectral domain as:

 xu
new

xi
new

 = Ugθ(Λ)

 x̂u

x̂i

 = Ugθ(Λ)U⊺

 xu

xi

 , (3.6)

where xu
new and xi

new are new graph signals on B learned by the filter gθ(Λ), and Λ =

{λ0, λ1, ..., λN−1} denotes eigenvalues of the graph laplacian matrix L.

In Equation 3.6, a convolution filter gθ(Λ) is placed on a spectral graph signal

 x̂u

x̂i

,

and each value of θ is responsible for boosting or diminishing each corresponding frequency

component. The eigenvector matrix U in Eq. (Equation 3.6) is used to perform an inverse

graph fourier transform.

3.3.3 Polynomial Approximation

Recall that we proposed a convolution operation, as shown in Equation 3.6, to directly

perform in the spectral domain. Although the filter is able to dynamically measure contributions

of each frequency component for the purpose of recommendations, there are two limitations.
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Figure 6: The feed-forward procedure of SpectralCF. The function sp(:;U ,Λ,Θ) denotes the spectral
convolution operation shown in Equation 3.10.

First, as shown in Equation 3.6, the learning complexity of the filter is O(N), where N is the

number of vertices. That is, unlike classical Convolutional Neural Networks (CNNs), the number

of parameters of the filter is linear to the dimensionality of data. It constrains the scalability of

the proposed filter. Second, the learned graph signals (xu
new ∈ R|U|×1 and xi

new ∈ R|I|×1) are

vectors. It means that each vertex of users or items is represented by a scalar feature. However,

a vector for every user and item is necessary to model the deep and complex connections between

users and items.

The first limitation can be overcome by using a polynomial approximation. We first demon-

strate that the set of all convolution filters Sg = {gθ(Λ) = diag([θ0λ0, θ1λ1, ..., θN−1λN−1]),θ ∈

RN} is equal to the set of finite-order polynomials Sh = {hθ′(Λ) =
N−1∑
p=0

θ′pΛ
p,θ′ ∈ RN}.

Proposition 3.3.1. Sh is equal to Sg.

Proof. Let us consider an instance hθ′(Λ) ∈ Sh. Then, hθ′(Λ) =
N−1∑
p=0

θ′pΛ
p = diag([

N−1∑
p=0

θ′pλ
p−1
0 ·

λ0,
N−1∑
p=0

θ′pλ
p−1
1 · λ1, ...,

N−1∑
p=0

θ′pλ
p−1
N−1 · λN−1]). So, hθ′(Λ) ∈ Sg. Now, consider a convolution filter

gθ(Λ) ∈ Sg. Then, there must exist a polynomial function ϕ(λ) =
N−1∑
p=0

apλ
p that interpolates

through all pairs (λi, θiλi) for i ∈ {0, 1, ..., N−1}. The maximum degree of such a polynomial is
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at most N − 1 as there are maximum N points to interpolate. Therefore, gθ(Λ) =
N−1∑
p=0

apΛ
p =

ha(Λ) ∈ Sh.

Now, we can approximate the convolution filters by using first P polynomials as the follow-

ing:

gθ(Λ) ≈
P∑

p=0

θ′pΛ
p. (3.7)

In this way, the learning complexity of the filter becomes O(P ), where P is a hyper-

parameter, and independent from the number vertices. Specially, we limit the order of the

polynomial, P , to 1 in order to avoid over-fitting. By substituting Equation 3.7 into Equa-

tion 3.6, we have:  xu
new

xi
new

 = (θ′0UU⊺ + θ′1UΛU⊺)

 xu

xi

 . (3.8)

Furthermore, it is beneficial to further decrease the number of parameters by setting θ′ = θ′0 =

θ′1. As a result, Equation 3.8 becomes:

 xu
new

xi
new

 = θ′(UU⊺ +UΛU⊺)

 xu

xi

 , (3.9)

where θ′ is a scalar.

For the second limitation, one can generalize the graph signals (xu ∈ R|U|×1 and xi ∈ R|I|×1)

to C-dimensional graph signals: Xu ∈ R|U|×C and Xi ∈ R|I|×C . Hence, Equation 3.9 becomes
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 Xu
new

Xi
new

 = (UU⊺ + UΛU⊺)

 Xu

Xi

 θ′. To take one step further, we generalize the filter

parameter θ′ to a matrix of filter parameters Θ′ ∈ RC×F with C input channels and F filters.

As a result, our final spectral convolution operation is shown as the following:

 Xu
new

Xi
new

 = σ

(UU⊺ +UΛU⊺)

 Xu

Xi

Θ′

 , (3.10)

where Xu
new ∈ R|U|×F and Xi

new ∈ R|I|×F denote convolution results learned with F filters from

the spectral domain for users and items, respectively; σ denotes the logistic sigmoid function.

In fact, Equation 3.10 is a general version of Equation 3.9 as it is equivalent to perform

Equation 3.9 in C input channels with F filters. Hereafter, the proposed convolution operation

as shown in Equation 3.10 is denoted as a function sp(:;U ,Λ,Θ′), which is parameterized by

U ,Λ and Θ′.

3.3.4 Multi-layer Model

Given user vectors Xu and item vectors Xi, new graph singals (Xu
new and Xi

new) in Equa-

tion 3.10 are convolution results learned from the spectral domain with a parameter matrix

Θ′ ∈ RC×F . As in classical CNNs, one can regard Equation 3.10 as a propagation rule to build

a deep neural feed-forward network based model, which we refer as Spectral Collaborative

Filtering (SpectralCF).
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Similar to word embedding techniques, we first randomly initialize user vectors Xu
0 and

item vectors Xi
0. Taking Xu

0 and Xi
0 as inputs, a K layered deep spectralCF can be formulated

as:  Xu
K

Xi
K

 = sp
(
...sp

(︸ ︷︷ ︸
K

 Xu
0

Xi
0

 ;U ,Λ,Θ′
0

)
...;U ,Λ,Θ′

K−1

)
, (3.11)

where Θ′
K−1 ∈ RF×F is a matrix of filter parameters for the kth layer; Xu

k and Xi
k denote the

convolution filtering results of the kth layer.

In order to utilize features from all layers of SpectralCF, we further concatenate them into

our final latent factors of users and items as:

Vu = [Xu
0 ,X

u
1 , ...,X

u
K ] and Vi =

[
Xi

0,X
i
1, ...,X

i
K

]
, (3.12)

where Vu ∈ R|U|×(C+KF ) and Vi ∈ R|I|×(C+KF ).

In terms of the loss function, the conventional BPR loss suggested in (Rendle et al., 2009)

is employed. BPR is a pair-wise loss to address the implicit data for recommendations. Un-

like point-wise based methods (Koren, 2008), BPR learns a triple (r, j, j′), where item j is

liked/clicked/viewed by user r and item j′ is not. By maximizing the preference difference

between j and j′, BPR assumes that the user i prefers item j over the unobserved item j′. In
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particular, given a user matrix V u and an item matrix V i as shown in Equation 3.12, the loss

function of SpectralCF is given as:

L = arg min
V u,V i

∑
(r,j,j′)∈D

−ln σ(vu
r
⊺vi

j − vu
r
⊺vi

j′) (3.13)

+λreg(||V u||22 + ||V i||22),

where vu
r and vi

j denote rth and jth column of V u and V i, respectively; λreg stands for the

weight on the regularization terms, and the training data D is formulated as:

D = {(r, j, j′)|r ∈ U ∧ j ∈ I+i ∧ j′ ∈ I−i }. (3.14)

3.3.5 Optimization and Prediction

At last, RMSprop (Tieleman and Hinton, 2012) is used to minimize the loss function. The

RMSprop is an adaptive version of gradient descent which adaptively controls the step size with

respect to the absolute value of the gradient. It is done by scaling the updated value of each

weight by a running average of its gradient norm.

As shown in Algorithm 1, for a batch of randomly sampled triple (r, j, j′), we update pa-

rameters in each epoch using the gradients of the loss function. After the training process, with

optimized Θ, Xu
0 and Xi

0, we derive the user r’s preference over item j as vu
r
⊺vi

j . The final

item recommendation for a user r is given according to the ranking criterion as Equation 3.15.

r : j1 ≽ j2 ≽ ... ≽ jn ⇒ vu
r
⊺vi

j1 > vu
r
⊺vi

j2 > ... > vu
r
⊺vi

jn . (3.15)
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Algorithm 1 SpectralCF
Input:Training set: D := {(r, j, j′)|r ∈ U∧j ∈ I+i ∧j′ ⊆ I

−
i }, number of epochs E, batch size B, number

of layers K, dimension of latent factors C, number of filters F , regularization term λreg, learning rate
λ, laplacian matrix L and its corresponding eigenvectors U and eigenvalues Λ.
Output:Model’s parameter set: Ψ = {Θ′

0,Θ
′
1, ...,Θ

′
K−1,X

u
0 ,X

i
0}.

Randomly initialize Xu
0 and Xi

0 from a Gaussian distribution N (0.01, 0.02);
for e = 1, 2, · · · , E do

Generate the eth batch of size B by uniformly sampling from U , I+i and I−i ;
for k = 0, 1, · · · ,K − 1 do

Calculate Xu
k+1 and Xi

k+1 by using Equation 3.10;
end for
Concatenate [Xu

0 ,X
u
1 , ...,X

u
K ] into V u and [Xi

0,X
i
1, ...,X

i
K ] into V i;

Estimate gradients ∂L
∂Ψe

by back propagation;
Update Ψe+1 according to the procedure of RMSprop optimization (Tieleman and Hinton, 2012);

end for
Return ΨE.

3.4 Experiments

As discussed in the introduction section, leveraging the connectivity information in a user-

item bipartite graph is essentially important for an effective recommendation model. In this

section, we argue that, directly learning from the spectral domain, the proposed SpectraCF can

reveal the rich information of graph structures existing in the spectral domain for making better

recommendations. One may ask the following research questions:

RQ1: How much does SpectralCF benefit from the connectivity information learned from the

spectral domain?

RQ2: Does SpectralCF learn from the spectral domain in an effective way?

RQ3: Compared with traditional methods, can SpectralCF better counter the cold-start prob-

lem?
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In this section, in order to answer the questions above, we conduct experiments to compare

SpectralCF with state-of-the-art models.

3.4.1 Comparative Methods

To validate the effectiveness of SpectralCF, we compare it with six state-of-the-art models.

The comparative models can be categorized into two groups: (1) CF-based Models: To

answer RQ1, we compare SpectralCF with four state-of-the-art CF-based methods (ItemKNN,

BPR, eALS and NCF) which ignore the information in the spectral domain; (2) Graph-based

Models: For RQ2, we are interested in how effectively does SpetralCF learn the connectivity

information from the spectral domain. We therefore compare SpectralCF with two graph-based

models: GNMF and GCMC. Although the two models are also CF-based, we term them as

graph-based models since they learn the structural information from a bipartite graph. These

two groups of comparative models are summarized below:

• ItemKNN (Sarwar et al., 2001): ItemKNN is a standard neighbor-based collaborative

filtering method. The model finds similar items for a user based on their similarities.

• BPR (Rendle et al., 2009): We use Bayesian Personalized Ranking based Matrix Fac-

torization. BPR introduces a pair-wise loss into the Matrix Factorization to be optimized

for ranking (Gantner et al., 2011).

• eALS (He et al., 2016): This is a state-of-the-art matrix factorization based method for

item recommendation. This model takes all unobserved interactions as negative instances

and weighting them non-uniformly by the item popularity.
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Figure 7: Effects of hyper-parameter K in terms of Recall@20 and MAP@20 in the dataset of MovieLens-
1M.

• NCF (He et al., 2017b): Neural Collaborative Filtering fuses matrix factorization and

Multi-Layer Perceptron (MLP) to learn from user-item interactions. The MLP endows

NCF with the ability of modelling non-linearities between users and items.

• GNMF (Cai et al., 2008): Graph regularized Non-negative Matrix Facto-rization con-

siders the graph structures by seeking a matrix factorization with a graph-based regular-

ization.

• GCMC (Berg et al., 2017): Graph Convolutional Matrix Completion utilizes a graph

auto-encoder to learn the connectivity information of a bipartite interaction graph for

latent factors of users and items.

Please note that, GNMF and GCMC are originally designed for explicit datasets. For a fair

comparison, we follow the setting of (Hu et al., 2008) to adapt them for implicit data.
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TABLE V: The hyper-parameter setting of SpectralCF.
Hyper-parameters K C F λreg B E λ

Values 3 16 16 0.001 1, 024 200 0.001

3.4.2 Datasets

We test our method as well as comparative models on three publicly available datasets1:

• MovieLens-1M (Harper and Konstan, 2016): This movie rating dataset has been

widely used to evaluate collaborative filtering algorithms. We used the version containing

1,000,209 ratings from 6,040 users for 3,900 movies. While it is a dataset with explicit

feedbacks, we follow the convention (He et al., 2017b) that transforms it into implicit

data, where each entry is marked as 0 or 1 indicating whether the user has rated the

item. After transforming, we retain a dataset of 1.0% density.

• HetRec (Cantador et al., 2011): This dataset has been released by the Second Inter-

national Workshop on Information Heterogeneity and Fusion in Recommender Systems2.

It is an extension of MovieLens-10M dataset and contains 855,598 ratings, 2,113 users

and 10,197 movies. After converting it into implicit data as MovieLens-1M, we obtain a

dataset of 0.3% density.

1MovieLens-1M and HetRec are available at https://grouplens.org/datasets/; and Amazon In-
stant Video can be found at http://jmcauley.ucsd.edu/data/amazon/

2http://ir.ii.uam.es/hetrec2011/

https://grouplens.org/datasets/
http://jmcauley.ucsd.edu/data/amazon/
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• Amazon Instant Video (McAuley et al., 2015b): The dataset consists of 426,922 users,

23,965 videos and 583,933 ratings from Amazon.com. Similarly, we transformed it into

implicit data and removed users with less than 5 interactions. As a result, a dataset of

0.12% density is obtained.

3.4.3 Experimental Setting

Ideally, a recommendation model should not only be able to retrieve all relevant items out of

all items but also provide a rank for each user where relevant items are expected to be ranked

in the top. Therefore, in our experiments, we use Recall@M and MAP@M to evaluate the

performance of the top-M recommendations. Recall@M is employed to measure the fraction of

relevant items retrieved out of all relevant items. MAP@M is used for evaluating the ranking

performance of RS. The Recall@M for each user is then defined as:

Recall@M =
#items the user likes among the top M

total number of items the user likes . (3.16)

The final results reported are average recall over all users.

For each dataset, we randomly select 80% items associated with each user to constitute

the training set and use all the remaining as the test set. For each evaluation scenario, we

repeat the evaluation five times with different randomly selected training sets and the average

performance is reported in the following sections.

We use a validation set from the training set of each dataset to find the optimal hyper-

parameters of comparative methods introduced in the Section 3.4.1. For ItemKNN, we employ



51

the cosine distance to measure item similarities. The dimensions of latent factors for BPR, eALS

and GNMF are searched from {8,16,32,64,128} via the validation set. The hyperparameter λ of

eALS is selected from 0.001 to 0.04. Since the architecture of a multi-layer perceptron (MLP)

is difficult to optimize, we follow the suggestion from the original paper (He et al., 2017b) to

employ a three-layer MLP with the shape of (32, 16, 8) for NCF. The dropout rate of nodes

for GCMC is searched from {0.3,0.4,0.5,0.6,0.7,0.8}. Our SpectralCF has one essential hyper-

parameter: K. Figure 7 shows how the performances of SpectralCF vary as K is set from 1 to

5 on the validation set of MovieLens-1M. As we can see, in terms of Recall@20 and MAP@20,

SpectralCF reaches its best performances when K is fixed as 3. Other hyper-parameters of

SpectralCF are empirically set and summarized in Table V, where λ denotes the learning rate

of RMSprop. Our models are implemented in TensorFlow (Abadi et al., 2016).

3.4.4 Experimental Results (RQ1 and RQ2)

In Figure 8, we compare SpectralCF with four CF-based models and two graph-based mod-

els in terms of Recall@M on all three datasets. Overall, when M is varied from 20 to 100,

SpectralCF consistently yields the best performance across all cases. Among CF-based com-

parative models, ItemKNN gives the worst performances in all three datasets, indicating the

necessity of modeling users’ personalized preferences rather than just recommending similar

items to users. For graph-based models (GNMF and GCMC), they generally underperform

CF-based models such as BPR and NCF. The unsatisfying performance of GNMF shows that

adding a graph-based regularization is not sufficient to capture complex structures of graphs.

Though GCMC directly performs on a user-item bipartite graph, each vertex in the graph is
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Figure 8: Performance comparison in the dataset of MovieLens-1M, HetRec, and Amazon Instant Video,
respectively, in terms of recall@M with M varied from 20 to 100. Errors bars are 1-standard deviation.

only allowed to learn from its neighbors. This constrains its ability of capturing global struc-

tures in the graph. Among all comparative models, benefiting from its capability of modeling

non-linear relationships between users and items, NCF beats all other models and becomes

the strongest one. However, none of models above are able to directly perform in the spectral

domain. They lose the rich information in the domain and as a result, SpectralCF greatly

outperforms NCF by 16.1%, 16.2% and 28.0% in the dataset of MovieLen-1M, HetRec and

Amazon Instant Video, respectively.
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Figure 9: Performance comparison in the dataset of MovieLens-1M, HetRec, and Amazon Instant Video,
respectively, in terms of MAP@M with M varied from 20 to 100. Errors bars are 1-standard deviation.

In Figure 9, we compare SpectralCF with all comparative models in terms of MAP@M.

Again, when M is in a range from 20 to 100, SpectralCF always yields the best performance.

Neighbor-based ItemKNN performs the worst among all models. It further shows the advan-

tages of modeling users’ personalized preferences. Compared with NCF and BPR, graph-based

models (GNMF and GCMC) again fail to show convincing ranking performances measured by

MAP@M. For CF-based models, while NCF beats other CF-based models in the dataset of

HetRec, BPR shows itself as a strong model for ranking, owing to its pairwise ranking loss. It

slightly outperforms NCF on average in the datasets of MovieLens-1M and Amazon Instant
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Video. However, SpectralCF improves BPR by 15.9%, 64.9% and 47.5% in the dataset of

MovieLen-1M, HetRec and Amazon Instant Video, respectively.

Overall, as shown in Figure 8 and Figure 9, not surprisingly, the performances of all models

decline as the dataset becomes sparse. However, SpectralCF always outperforms all comparative

models regardless of the sparsities of the datasets. By comparing spectralCF with traditional

CF-based models, we demonstrate that the rich information of connectivity existing in the

spectral domain assists SpectralCF in learning better latent factors of users and items. By

comparing SpectralCF with graph-based models, we show that SpectralCF can effectively learn

from the spectral domain.

3.4.5 Quality of Recommendations for Cold-start Users (RQ3)

To answer RQ3, in this section, we conduct an experiment to investigate the quality of

recommendations made by SpectralCF for cold-start users. To this end, in the dataset of

MovieLens-1M, we build training sets with different degrees of sparsity by varying the number

of items associated with each user, denoted as P , from one to five. All the remaining items

associated with users are used as the test set. We compare SpectralCF with BPR, which is

widely known and also shown as a strong ranking performer in Figure 9. The test results are

reported in the Table VI.

In Table VI, it is shown that, suffering from the cold-start problem, the performances of

BPR and SpectralCF inevitably degrade. However, regardless of the number of items associated

with users, SpectralCF consistently outperforms BPR in terms of Recall@20 and MAP@20.

On average, SpectralCF improves BPR by 36.8% and 33.8% in Recall@20 and MAP@20,
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TABLE VI: Performance Comparison in terms of Recall@20 and MAP@20 in the sparse training sets.
In the dataset of MovieLens-1M, we vary the number of items associated with each users, denoted as P ,
from 1 to 5. The average results are reported and the best results are in bold. The standard deviation
is shown in parentheses.

P 1 2 3 4 5

BPR 0.021
(0.003)

0.029
(0.004)

0.031
(0.003)

0.034
(0.004)

0.038
(0.003)

Recall
@20 SpectralCF 0.031

(0.003)
0.039
(0.003)

0.042
(0.002)

0.045
(0.003)

0.051
(0.003)

Improvement 47.6% 34.5% 35.5% 32.4% 34.2%

BPR 0.014
(0.002)

0.017
(0.002)

0.021
(0.002)

0.024
(0.003)

0.027
(0.003)

MAP
@20 SpectralCF 0.019

(0.002)
0.024
(0.002)

0.028
(0.003)

0.031
(0.003)

0.035
(0.002)

Improvement 35.7% 41.2% 33.3% 29.2% 29.6%

respectively. Hence, it is demonstrated that compared with BPR, spectralCF can better handle

cold-start users and provide more reliable recommendations.

3.5 Related Works

There are two categories of studies related to our work: deep learning based RS and graph-

based RS. In this section, we will first briefly review existing works in the area of deep RS.

Then, we focus on presenting recent works on graph-based RS. Despite all these approaches,

SpectralCF is the first model to directly learn latent factors of users and items from the spectral

domains of user-item bipartite graphs.

3.5.1 Deep Recommender Systems

One of the early works utilizing deep learning for RS builds a Restricted Boltzmann Ma-

chines (RBM) based method to model users using their rating preferences (Salakhutdinov et al.,
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2007). Although the method is still a relatively shallow model, it slightly outperforms Matrix

Factorization technique and shows the promising future for deep recommender systems. In

(Wang et al., 2017a), a generative model and a discriminative model are employed to play a

minimax game. The two models are iteratively optimized and achieve promising results for the

item recommendation problem. Inspired by (Salakhutdinov et al., 2007), (Zheng et al., 2016)

proposed a CF Neural Autoregressive Distribution Estimator (CF-NADE) model for collabora-

tive filtering tasks. CF-NADE shares parameters between different ratings. (He et al., 2017b)

presents to utilize a Multilayer Perceptron (MLP) to model user-item interactions.

A number of researchers proposed to build a hybrid recommender systems to counter the

sparsity problem. (Wang and Wang, 2014) introduce Convolutional Neural Networks (CNN)

and Deep Belief Network (DBN) to assist representation learning for music data. As such,

their model is able to extract latent factors of songs without ratings while CF based techniques

like MF are unable to handle these songs. These approaches above pre-train embeddings of

users and items with matrix factorization and utilize deep models to fine-tune the learned item

features based on item content. In (Elkahky et al., 2015) and (Wang et al., 2017), multi-view

deep models are built to utilize item information from more than one domain. (Kim et al.,

2016) integrates a CNN with PMF to analyze documents associated with items to predict

users’ future explicit ratings. (Zheng et al., 2017) leverage two parallel neural networks to

jointly model latent factors of users and items. To incorporate visual signals into RS, (Wang et

al., 2017b) propose CNN-based models to incorporate visual signals into RS. They make use of

visual features extracted from product images using deep networks to enhance the performance
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of RS. (Zhang et al., 2016) investigates how to leverage the multi-view information to improve

the quality of recommender systems. (Cheng et al., 2016) jointly trains wide linear models and

deep neural networks for video recommendations. (Wang et al., 2016) and (Zheng et al., 2017)

utilize RNN to consider word orders and extract complex semantics for recommendations.

(Wang et al., 2017) applies an attention mechanism on a sequence of models to adaptively

capture the change of criteria of editors. (Zheng et al., 2018a) leverages an attentional model

to learn adaptive user embeddings. A survey on the deep learning based RS with more works

on this topic can be found in (Zhang et al., 2017).

3.5.2 Graph-based Recommender Systems

In order to learn latent factors of users and items from graphs, a number of researchers have

proposed graph-based RS. (Zhou et al., 2008) develops a semi-supervised learning model on

graphs for document recommendation. The model combines multiple graphs in order to mea-

sure item similarities. In (Yuan et al., 2014), they propose to model the check-in behaviors of

users and a graph-based preference propagation algorithm for point of interest recommendation.

The proposed solution exploits both the geographical and temporal influences in an integrated

manner. (Guan et al., 2009) addresses the problem of personalized tag recommendation by

modeling it as a ”query and ranking” problem. Inspired by the recent success of graph/node

embedding methods, (Berg et al., 2017) proposes a graph convolution network based model

for recommendations. In (Berg et al., 2017), a graph auto-encoder learns the structural infor-

mation of a graph for latent factors of users and items. (Cai et al., 2008) adds graph-based

regularizations into the matrix factorization model to learn graph structures. Graph-regularized
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methods are developed for the problemm of matrix completion in (Rao et al., 2015). (Monti

et al., 2017) combines a convolutional neural network and a recurrent neural network to model

the dynamic rating generation process. Although this work also considers the spectral domain,

they learn from a graph constructed from side information, such as genres or actors for movies.

In contrast, our method learns directly from user-item bipartite graphs and does not require

the side information. Thus, this work is not comparable to our method.

Additionally, some scholars have proposed to incorporate the heterogeneous information on

a graph for recommendations. (Jamali and Lakshmanan, 2013) suggests a general latent factor

model for entities in a graph. (Yu et al., 2013) introduces a recommendation model for implicit

data by taking advantage of different item similarity semantics in the graph. (Shi et al., 2015)

introduces a semantic path based personalized recommendation method to predict the rating

scores of users on items.

However, all works above are different from ours because they fail to consider the rich

information in the spectral domains of user-item bipartite graphs. Also, our study focuses on

learning from the implicit feedbacks, and leaves incorporating the heterogeneous information

in a graph and the item content for future works.

3.6 Conclusions

In comparison with four state-of-the-art CF-based and two graph-based models, SpectralCF

achieved 20.1% and 42.6% improvements averaging on three standard datasets in terms of

Recall@M and MAP@M, respectively.
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Additionally, in the experiments, by varying the number of items associated with each user

from 1 to 5, we build training sets with different degrees of sparsity to investigate the quality

of recommendations made by SpectralCF for cold-start users. By comparing SpectralCF with

BPR, on average, SpectralCF improves BPR by 36.8% and 33.8% in Recall@20 and MAP@20,

respectively. It is validated that SpectralCF can effectively ameliorate the cold-start problem.



CHAPTER 4

MODELING CO-EVOLVING PATTERNS FOR SEQUENTIAL

RECOMMENDATION

(This chapter was previously published as “Gated Spectral Units: Modeling Co-evolving

Patterns for Sequential Recommendation”, in the 42nd International ACM SIGIR Conference

on Research and Development in Information Retrieval (SIGIR’19) (Zheng et al., 2019). DOI:

https://doi.org/10.1145/3331184.3331329.)

4.1 Introduction

What will a customer buy next? The importance of this question cannot be overstated for

building effective recommender systems (RS). RS intersect multiple products and customers,

where characteristics of users and perceptions of items not only shift over time but also influence

each other. This complex temporal information raises unique challenges.

In order to build a predictive model for users’ future purchases, we observe that a user’s

actions are correlated to not only his or her past activities but also other users’ behaviors.

Interests of users co-evolve over time and their preferences influence each other dynamically.

For example, as shown in Figure 10, if user u1 is related to user u2, when u1 purchases a pair

of shoes at time t3, u2 may buy a pair of socks for u1 at a later time, say t5. Some time later

(t7), when u2 shops a bottle of wine, it is reasonable to expect u1 to be interested in a bottle

opener. We term this phenomenon of evolving actions of users and their mutual influence over
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Figure 10: An example illustrates how activities of user co-evovles over time. Yellow and green circles
denote purchases of user I and user II, respectively. (Best viewed in color)

time as co-evovling patterns. It is no doubt that effectively capturing such rich patterns can

help reason over complex non-linear user-item interactions.

Existing approaches often lack the ability of learning the co-evovling knowledge, resulting

in a limited understanding on behaviors of users and how they influence each other over time.

Early works, such as TimeSVD++ (Koren, 2009), focus on modeling the shifting patterns of a

user’s preferences and the popularity of an item by introducing additional variables changing

over time. Recent models first regard activities of a user as a sequence, and then propose

Markov Chain (MC) based methods to capture the item dependencies or correlations within

the sequence. For instance, in Figure 10, user u1 shops a goggle at t5 time because of the

purchase of a swimming suit at the time of t1. Another line of work adopts Recurrent Neural

Networks (RNNs) to model the sequence. However, almost all of them fail to capture the rich

co-evovling patterns.
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In this paper, in order to utilize the co-evovling patterns and capture dependencies between

actions across different users, we first formulate timestamped user-item interactions into Se-

quential Evolving Graphs (SEGs) (see Definition 4.2.1), where co-evolutionary knowledge can

be revealed. Then, we generalize a spectral unit into a recurrent model by introducing gated

mechanisms (Chung et al., 2014) to model the co-evovling patterns from spectral domains. The

proposed model, Gated Spectral Units (GSUs), recurrently takes a sequence of graphs as in-

put, and learns state vectors of users and items to summarize co-evovling patterns within the

sequence. Our work makes the following contributions:

• Novelty: To our knowledge, it is the very first recommendation method to model sequential

graphs from spectral domains.

• Demonstrated Effectiveness: It is demonstrated that the co-evovling patterns can be

effectively captured from spectral domains of temporal graphs.

• High Performance: Benefiting from the co-evovling knowledge being effectively captured,

GSU significantly outperforms state-of-the-art methods on three real-world datasets.

4.2 Background and Preliminaries

This paper focuses on the recommendation problem with implicit feedbacks (e.g. clicks,

purchases, likes), where we only observe whether a person has interacted with an item and do

not observe explicit ratings. Let us denote a set of users as U and an item set I. I+i represents

the set of all items liked by user i and I−i stands for the remaining items. Each user-item
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TABLE VII: Notations
Notation Description
U , I user and item set
I+i , I−i a set of items liked by user i, and all other

items without interactions with user i
nu, ni number of users and items
Gt = {U , I, Et} the tth graph consisting of user set U , item

set I and edge set Et
Lt the laplacian matrix of the tth graph
U

(l)
t , Λ(l)

t the top-l eigenvectors and eigenvalues of Lt

Hu
t , Hi

t hidden state matrices of users and items at
timestamp t

Wz, Wh, Wr convolutional filters of update, candidate
and reset gate

bz, bh, br bias vectors of update, candidate and reset gate
∆ time interval

interaction is represented as a tuple (i, j, t̂), denoting that user i has interacted with item j at

timestamp t̂. We define Sequential Evolving Graphs (SEGs) as:

Definition 4.2.1. (Sequential Evolving Graphs). Sequential Evovling Graphs (SEGs) are rep-

resented as a sequence of bipartite graphs G = {G1,G2, ...,Gt, ...}. The tth bipartite graph Gt is

defined as Gt = {U , I, Et}, where U and I are the user set and item set, respectively and Et

denotes an edge set connecting users in U and items in I. For an edge (i, j, t̂) ∈ Et, it denotes

user i has interacted with item j at timestamp t̂ when ∆(t− 1) < t̂ ≤ ∆t.1

Given SEGs of length T , we aim to predict edges (user-item interactions) to be formed

in GT+1. Throughout the paper, we denote scalars by either lowercase or uppercase letters,

1In the case that Et is empty, we remove Gt from G.
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vectors by boldfaced lowercase letters, and matrices by boldfaced uppercase letters. Important

notations are summarized in Table IX.

4.3 Proposed Model

4.3.1 Spectral Convolution

Inspired by the recent success of graph convolution methods (Kipf and Welling, 2016),

a recently proposed method (Zheng et al., 2018b), SpectralCF, extends the idea of spectral

convolutions to the task of collaborative filtering. SpectralCF shows a great ability to cap-

ture preference patterns of users from the spectral domain of a user-item bipartite graph, and

therefore achieves state-of-the-art performance.

Specifically, given a user-item bipartite graph G and its graph laplacian L = I − D−1A,

where D and A denote the degree matrix and adjacent matrix of G, respectively, the spectral

convolution operation is defined as:

 h̃u

h̃i

 = Ufθ(Λ)UT

 hu

hi

, where U ∈ R(nu+ni)×(nu+ni)

and Λ ∈ R(nu+ni)×(nu+ni) are eigenvectors and eigenvalues of L, respectively; fθ(Λ) is a con-

volutional filtering function placed on eigenvalues; hu ∈ R(nu×1) and hi ∈ R(ni×1) respectively

denote state vectors of users and items, and h̃u ∈ R(nu×1) and h̃i ∈ R(ni×1) represent new state

vectors of users and items, respectively, learned from the spectral domain.

Nonetheless, the number of parameters in fθ(Λ) is linear to the dimensionality of data,

resulting in an unscalable model. To circumvent this issue, (Zheng et al., 2018b) utilizes a poly-

nomial approximation to approximate gΘ(Λ) as gθ(Λ) ≈
∑P

p=0 θ
′
pΛ

p. As a result, the spectral
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convolution is reformulated as

 H̃u

H̃i

 = (UU⊺+UΛU⊺)

 Hu

Hi

Θ, where Hu ∈ R(nu+ni)×F

and Hu ∈ R(nu+ni)×F are F -dimensional row-vectors for users and items, respectively; and

Θ ∈ R(F×F ) is a generalized convolutional filter with F channels and F filters.

However, as we aim to model co-evovling patterns from sequential graphs other than one

static graph, computing the eigendecomposition of laplacians of multiple graphs would be pro-

hibitively expensive. In order to adopt the aforementioned spectral convolution operation for

modeling sequential graphs, we notice that, rather than the full eigen-decomposition, top-l

eigenvectors and eigenvalues are sufficient to approximate L (Chen and Cai, 2011). Thus, we

adopt ARPACK (Lehoucq et al., 1998), a most popular iterative eigensolver. Its complexity

is O((nu + ni)l
2 + el), where e stands for the number of edges, and linear w.r.t. the graph size

(nu+ni). Due to the sparsity of our graphs, we have e≪ nu+ni. Given the top-l eigenvectors

U
(l)
t and eigenvalues Λ

(l)
t of the tth graph, we have:

 H̃u
t

H̃i
t

 = (U
(l)
t U

(l)
t

⊺
+U

(l)
t Λ

(l)
t U

(l)
t

⊺
)

 Hu
t−1

Hi
t−1

Θ, (4.1)

where Hu
t−1 ∈ R(nu+ni)×F and Hi

t−1 ∈ R(nu+ni)×F are state matrices of users and items from the

previous time step t− 1; H̃u
t and H̃i

t are learned by convolving

 Hu
t−1

Hi
t−1

 on the current graph

Gt. As such, H̃u
t and H̃i

t captures the evolving patterns by integrating information from the

previous step (t− 1) with newly formed connections of the current step t. Hereafter, we denote
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the spectral convolution operation in Equation 4.1 as a function: Conv(

 Hu
t−1

Hi
t−1

 ,Gt;Θ),

parameterized by a convolutional filter Θ.

4.3.2 Gated Spectral Units

Recall that our spectral convolution Conv(

 Hu
t−1

Hi
t−1

 ,Gt;Θ) is capable of capturing the

patterns co-evolving from the previous graph to the current graph. It is an natural idea to

introduce gated mechanisms (Chung et al., 2014) into our spectral convolution to capture co-

evolving patterns from a sequence of graphs. Therefore, we present Gated Spectral Units

(GSUs), which are capable of learning the co-evovling patterns from sequential graphs.

In GSUs, the update gate Zt ∈ R(nu+ni)×F convolves the historical state matrices on the

current graph to decide how much the unit updates its state matrices. It is computed by:

Zt = σ(Conv(

 Hu
t−1

Hi
t−1

 ,Gt;Wz) + bz), (4.2)

where Wz ∈ R(nu+ni)×F , bz ∈ R(nu+ni)×1, and σ denotes the sigmoid function. A candi-

date gate generates a candidate state matrices by resetting the previous Hu
t−1 and Hi

t−1, and

convolving them on Gt as:

 Ĥu
t

Ĥi
t

 = tanh(Conv(Rt ⊙

 Hu
t−1

Hi
t−1

 ,Gt;Wh) + bh), (4.3)
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where Wh ∈ R(nu+ni)×F , bh ∈ R(nu+ni)×1, and the reset gate Rt ∈ R(nu+ni)×F is similar to the

update gate as below:

Rt = σ(Conv(Hu
t−1,H

i
t−1,Gt;Wr) + br), (4.4)

where Wr ∈ R(nu+ni)×F and br ∈ R(nu+ni)×1. Finally, the output of GSUs at time t is a linear

interpolation between the previous state matrices

 Hu
t−1

Hi
t−1

 ∈ R(nu+ni)×F and the candidate

 Ĥu
t

Ĥi
t

 ∈ R(nu+ni)×F as below:

 Hu
t

Hi
t

 = Zt ⊙

 Hu
t−1

Hi
t−1

+ (1− Zt)⊙

 Ĥu
t

Ĥi
t

), (4.5)

where ⊙ denotes the element-wise multiplication.

Overall, GSUs take the current graph Gt and previous Hu
t−1 and Hi

t−1 as inputs, and output

Hu
t and Hi

t for the current time step t. Thus, given the initial state matrices, Hu
0 and Hi

0,

which are randomly initialized as trainable parameters, GSUs are able to recurrently process

a sequence of graphs, and output state matrices of users and items of the last step, which

summarize the co-evovling patterns within the sequence.
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4.3.3 Optimization and Prediction

Given SEGs of length K generated from the training data, we randomly sample a batch of

SEGs of length T + 1 (T + 1 ≪ K) for training. For each SEGs of length T + 1, we feed the

first T graphs into GSUs to obtain Hu
T and Hi

T . And, the score of an edge (i, j) ∈ ET+1 at step

T +1 can be calculated as Hu
T (i, :)

⊺Hi
T (j, :), where Hu

T (i, :) and Hi
T (j, :) denote the ith and jth

row of Hu
T and Hi

T , respectively. We optimize the parameters of GSUs by minimizing the loss

as:

L = −
∑

(i,j)∈ET+1

j′∈I−
i

ln σ(Hu
T (i, :)

⊺Hi
T (j, :)−Hu

T (i, :)
⊺Hi

T (j
′, :))

+λ(||Hu
T ||2F + ||Hi

T ||2F ), (4.6)

where λ is an regularization term. Equation 5.5 seeks to maximize the difference between the

scores of an existing edge (i, j) ∈ ET+1 and a non-existing edge (i, j′), where j′ is sampled from

I−i .

For evaluation, the last T graphs of SEGs of length K are taken into GSUs to attain Hu
T and

Hi
T . The final item recommendation for a user i is given by ranking the score Hu

T (i, :)
⊺Hi

T (j, :)

in a descending order.

4.4 Experiments

In this section we conduct experiments to answer the following research questions:

• RQ1: Are the co-evolving patterns being effectively captured?

• RQ2: How do the co-evovling patterns work for handling the cold-start problem?
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4.4.1 Datasets

In our experiments, we use three publicly available timestamped datasets: (1) ML-1M: (Harper

and Konstan, 2016) MovieLens-1M contains 1, 000, 209 ratings, 6, 014 users and 3, 706 movies;

(2) ADM (McAuley et al., 2015b): Amazon Digital Music 5-core includes 4, 731 users, 2, 420

video games; (3) AIV: Amazon Instant Videos 5-core is collected by (McAuley et al., 2015b)

and consists of 4, 818 users and 1, 685 items.

As in (He et al., 2017b), we transform datasets with explicit ratings into implicit data by

regarding rating of 5 as positive feedback and all others as negative ones. For each dataset, we

select the most recent item of each user for testing and the second most recent one for validation.

All remaining items will be used for training. To create SEGs to capture co-evovling patterns,

we set the time interval ∆ as 1 day for ML-1M and AIV, and 7 for ADM to reduce the numder

of graphs. As a result, we attain the SEGs of length (K) 977, 754, and 1, 472 for the dataset

of ML-1M, ADM, and AIV, respectively.

4.4.2 Experimental Settings

Evaluation Protocols. We evaluate all models in two metrics: Hit Ratio@10 (HR@10)

and NDCG@10. HR@10 measures the fraction of relevant items at top-10 recommendations

out of all relevant items, while NDCG@10 evaluates their ranking performance. We follow a

similar strategy as in (He et al., 2017b) to avoid heavy computation on evaluating all user-item

pairs. For each user i, we randomly sample 999 negative items, and rank these items with the

ground-truth item. Based on the rankings of these 1, 000 items, HR@10 and NDCG@10 can be

evaluated.
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Comparative Models. We compare GSUs with six state-of-the-art algorithms. They can

be categorized into two groups: (1) Non-sequential Models: BPR (Rendle et al., 2009) and

SpectralCF (Zheng et al., 2018b)1; (2) Sequential Models: FPMC (Rendle et al., 2010),

TransRec (He et al., 2017a), GRU4Rec (Hidasi et al., 2015)2 and Caser (Tang and Wang,

2018)3. The first group is added to validate the usefulness of sequential recommendation models,

and the second group is for demonstrating the advantage of modeling co-evovling patterns.

Parameter Settings. For all methods, we search the latent dimensions from {8, 16, 32, 64}.

The L2 regularization term is selected from {0.0001, 0.001, 0.01, 0.1} for BPR, SpectralCF,

FPMC, TransRec and GSUs. We tune all hyper-parameters using the validation set. For

GRU4Rec and Caser, we use the parameter settings as suggested in the original papers. The

Adam optimizer (Kingma and Ba, 2014) with the learning rate of 0.001 is adopted, and l in

Equation 4.1 and T are empirically set to 6 and 10, respectively, for GSUs.

4.4.3 Performance Comparison (RQ1)

In this section we compare GSUs with six state-of-the art methods to answer RQ1. Table XI

shows the performance comparison in terms of HR@10 and NDCG@10. Overall, GSUs improves

the best comparative method by 27.9% and 53.4% in terms of HR@10 and NDCG@10, respec-

tively, averaging on all three datasets. This experiment reveals two interesting observations:

1https://github.com/lzheng21/SpectralCF

2https://github.com/hidasib/GRU4Rec

3https://github.com/graytowne/caser_pytorch

https://github.com/lzheng21/SpectralCF
https://github.com/graytowne/caser_pytorch
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TABLE VIII: Performance comparison in HR@10 and NDCG@10. The best and second best method
are boldfaced and underlined, respectively. ⋆ and ⋆⋆ denote the statistical significance for p < 0.05 and
p < 0.01, respectively, compared to the best competitor.

Data
set Metric BPR Spectral

CF FPMC Trans
Rec

GRU-
4Rec Caser GSUs

GSUs
vs.
best

ML-
1M HR@10 0.061 0.081 0.092 0.099 0.102 0.103 0.131⋆⋆ 27.2%

NDCG@10 0.025 0.031 0.039 0.041 0.046 0.045 0.061⋆⋆ 35.6%
ADM HR@10 0.022 0.031 0.041 0.043 0.051 0.048 0.065⋆⋆ 27.4%

NDCG@10 0.011 0.018 0.019 0.021 0.024 0.022 0.034⋆ 41.7%
AIV HR@10 0.072 0.088 0.096 0.010 0.111 0.117 0.151⋆ 29.1%

NDCG@10 0.022 0.031 0.034 0.037 0.039 0.041 0.075⋆ 82.9%

• Non-sequential methods underperform sequential methods, indicating the benefits of model-

ing the short- and long- term dynamics in users’ actions.

• Regardless of the data sets and the evaluation metrics, the proposed GSUs always achieve

the best performance. This shows that by leveraging the power of co-evovling patterns, GSUs

can better predict users’ future actions.

4.4.4 Recommending for Cold-start Users (RQ2)

The cold-start problem is one of the most challenging issues for RS. It happens when a

user interacted with very few number of items, causing a difficulty to understand the user’s

preferences. We are interested in if co-evovling patterns are helpful for alleviating the cold-

start problem. As such, we conduct experiments under an extremely sparse setting, where

we only use the first interaction of each user for training, and the second and third one for

validation and test, respectively. All others are discarded. Consequently, we obtain SEGs of
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Figure 11: Performance comparison in HR@10 and NDCG@10 under a sparse setting, where each user
is associated with only one user-item interaction for training.

length 458 and 1, 158 for the datasets of ADM and AIV, respectively. Figure 14 illustrates

the performance comparison under the sparse setting. In ADM, GSUs outperform the best

comparative method, GRU4Rec, by 32.3% and 31.8% in HR@10 and NDCG@10, respectively.

In AIV, GSUs beat the best performing competitor, Caser, by 47.6% and 34.8% in HR@10

and NDCG@10, respectively. It is validated that, benefiting from the ability of capturing co-

evolving patterns, GSUs can better handle cold-start users than state-of-the-art comparative

methods.



CHAPTER 5

DISTRIBUTION-BASED REPRESENTATIONS FOR TOP-N

RECOMMENDATION

(This chapter was previously published as “Deep Distribution Network: Addressing the Data

Sparsity Issue for Top-N Recommendation”, in the 42nd International ACM SIGIR Conference

on Research and Development in Information Retrieval (SIGIR’19) (Zheng et al., 2019). DOI:

https://doi.org/10.1145/3331184.3331330.)

5.1 Introduction

The effectiveness of recommender systems (RS) often relies on how well users’ interests or

preferences can be understood and user-item interactions can be modeled. However, the data

sparsity issue arises when users interacted with a limited number of items, hindering RS from

understanding users’ intentions. The problem is considered as one of major challenges for RS.

Nonetheless, tackling the sparsity issue raises great challenges. Users’ interests are diverse, and

perceptions of items differ from user to user. This intricate information requires models of

high-complexity while training such models needs a large amount of data, which contradicts to

the reality of data scarcity.

Recent studies (Koren et al., 2009; He et al., 2017b) have suggested the importance of

learning embeddings, or vectors, for users and items. Although embedding-based models have

been proven useful in capturing typical interests of users and general concepts of items, most of

73
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existing approaches learn fixed vectors to represent users and items. Arguably, users’ behaviors

are uncertain, and can be seen as stochastic events sampled from underlying distributions.

When a user is modeled with a fixed vector, all actions of the user are considered to be certain

and the uncertainty is hardly captured. Moreover, existing well-known Collaborative Filtering

(CF) methods, such as matrix factorization (Koren et al., 2009), mostly use the popular dot-

product as a metric, which violates the triangular inequality1, to calculate user-item similarities.

Nevertheless, according to (Hsieh et al., 2017; Tay et al., 2018), the triangular inequality is a

prerequisite for fine-grained setting of users and items in a vector space.

Probabilistic distributions are classic and fundamental tools for tackling uncertainty and

dealing with limited data. As users’ actions are uncertain, we can consider them as observed

stochastic events governed by underlying distributions of user interests. These distributions are

able to describe how interests of users distribute in the space. As such, in order to power RS with

the ability of combating the data sparsity issue with limited data, we propose Deep Distribution

Network (DDN) to learn distributions for users and items. Specifically, we associate each user

and item with a Gaussian distribution, whose mean and covariance matrix are estimated by

deep neural networks, to characterize their interests and properties. Then, instead of calculating

the popular dot-product, the Wasserstein distance is utilized to measure the difference between

two Gaussian distributions, and the triangular inequality can therefore be satisfied. Finally, a

1The triangular inequality states that, given any three objects o1, o2, and o3, the distance between
any two objects, say d(o1, o2), should satisfy the constraint d(o1, o2) ≤ d(o1, o3) + d(o2, o3))
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pair-wise loss is proposed to minimize the Wasserstein distance of positive user-item pairs and

maximize negative pairs.

Our work makes the following contributions:

• Novelty: To the best of our knowledge, it is the first work proposing to model users and

items by Gaussian distributions via deep architectures for recommendation. We demonstrate

that, distributions of users and items can be well modeled to alleviate the data sparsity issue.

• A Wasserstein Loss: We propose a Wasserstein loss for recommendation tasks. In the

proposed loss, the crucial triangular inequality can be satisfied and therefore, leads to better

performances, compared to conventional methods.

• High Performance: In the experiments, it is shown that DDN achieves state-of-the-art

performances on three benchmark datasets. Specifically, compared to the best performing

comparative method, DDN gains 42.4% and 47.3% improvements in Hit Ratio@10 and

NDCG@10, respectively, averaging on all datasets.

5.2 Background and Preliminaries

In this section we present the background and preliminaries. We consider the most common

scenario of RS with implicit feedbacks (e.g. clicks, purchases, likes). We follow the convention

that the observed user-item interactions, such as clicks/purchase/likes, are treated as positive,

and the non-observed ones are regarded as negative observations. Let us assume that a user u

and an item i are associated with a feature vector xu ∈ Rn(0)×1 and xi ∈ Rn(0)×1, respectively

(notation n(0) is described in Table IX). A user set and an item set are denoted as U and I,
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TABLE IX: Notations
Notation Description
U , I user and item set
I+u , I−u a set of items liked by user u, and all the

remaining items without interactions with u
xu,xi feature vectors for user u and item i
fu(:;Ω

u),fi(:;Ωi) two mean networks of user u and item i
gu(:;Π

u), gi(:;Πi) two covariance networks of user u and item i

Wu,l
mean,Wi,l

mean projection matrices of the lth layer of
the mean network of user u and item i

Wu,l
cov,Wi,l

cov projection matrices of the lth layer of the
covariance network of user u and item i

n(l) number of neurons of the lth layer

respectively. For a user u ∈ U , let I+u denote a set of items liked by user u and I−u denote the

remaining items. Important notations are summarized in Table IX.

5.3 Proposed Model

Instead of deriving vectors of users and items based on their interactions, we aim to learn

Gaussian distributions to characterize interests of users and perceptions of items. To do so,

as illustrated in Figure 12, we introduce a mean and a covariance network to learn these two

parameters for the users’ distribution. And, since users and items are two different types of

entities, another two deep models will be built to estimate mean vectors and covariance matrices

of items. Please bear in mind that, although these mean vectors and covariance matrices are also

fixed after training, they together describe a probability density function. And, this function

describes the sampling probability of each point in a space. This is a key point to distinguish

DDN from existing embedding-based methods .
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Figure 12: The mean and covariance networks of users. A feature vector xu of user u is taken into
fu(xu;Ω

u) and gu(xu;Π
u) to learn the mean µu and covariance Σu, respectively.

5.3.1 Mean Networks

To learn a mean vector for user u, we build a mean network to take the user feature

xu ∈ Rn(0)×1 into account, and output a mean vector µu as:

µu = elu
(
...elu

(
Wu,2

mean(elu(︸ ︷︷ ︸
L

Wu,1
meanxu + bu,1

mean)) + bu,2
mean

)
...
)
, (5.1)

where Wu,l
mean ∈ Rn(l−1)×n(l) and bu,l

mean ∈ Rn(l)×1 are projection matrix and bias vector of

the lth layer, respectively; elu is an activation function (Clevert et al., 2015). We denote
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the mean network of users as fu(:;Ω
u), where Ωu = {Wu,1

mean, ...,W
u,L
mean,b

u,1
mean, ...,b

u,L
mean} is a

parameter set. Likewise, another mean network, denoted as fi(:;Ω
i) parameterized by Ωi =

{Wi,1
mean, ...,W

i,L
mean,b

i,1
mean, ...,b

i,L
mean}, is utilized to derive mean vectors of items.

5.3.2 Covariance Networks

To learn covariance matrices of users, we establish a L-layer covariance network for esti-

mating the covariance matrix of user i. The diagonal elements of Σu is computed as:

σu = elu
(
...elu

(
Wu,2

cov(elu(︸ ︷︷ ︸
L

Wu,1
covxi + bu,1

cov) + 1) + bu,2
cov

)
+ 1...

)
, (5.2)

where Wu,l
cov ∈ Rn(l−1)×n(l) and bu,l

cov ∈ Rn(l)×1 are projection matrix and bias vector of the lth

layer, respectively; 1 denotes an vector of all ones. Finally, the covariance matrix of user u is

given by:

Σu = diag(σu) + I, (5.3)

where I ∈ Rn(L)×n(L) is an identity matrix ensuring Σu to be positive semi-definite. The

covariance network of users is denoted as gu(:;Πu), where Πu = {Wu,1
cov, ...,W

u,L
cov ,b

u,1
cov, ...,b

u,L
cov}

is a parameter set. Analogously, another covariance network for items is denoted as gi(:;Π
i),

where Πi = {Wi,1
cov, ...,W

i,L
cov,b

i,1
cov, ...,b

i,L
cov} includes all parameters of the network.

Our focus is to model the sparse user-item interaction data with the proposed distribution-

based representations, we therefore avoid using additional information, such as user demo-

graphics or item textual descriptions, for feature vectors of users and items, even though these

information is shown to be helpful for easing the sparsity issue. Instead, xu and xi are randomly
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initialized, and then optimized during the training. Overall, given a user feature vector xu, we

derive its mean vector and covariance matrix as µu = fu(xu;Ω
u) and Σu = gu(xu;Π

u), respec-

tively. With an item feature vector xi, its mean vector and covariance matrix are calculated as

µi = fi(xi;Ω
i) and Σi = gi(xi;Π

i), respectively.

5.3.3 A Wasserstein Loss

Recall that two Gaussian distributions of user u and item i, N (µu,Σu) and N (µi,Σi), are

estimated by mean and covariance networks. Instead of using the dot-product, one can utilize

statistical distances to measure the distance between N (µu,Σu) and N (µi,Σi). In this section

we compare two popular distribution distances: Kullback-Leibler (KL) divergence and the pth

Wasserstein distance, and propose a Wasserstein based loss for recommendation.

The pth Wasserstein distance (Wp) between two probability measures, x1 ∼ P1 and x1 ∼ P2,

is defined as:

Wp(P1,P2) :=

(
inf

γ∈Γ(x1,x2)

∫
d(x1,x2)

pdγ(x1,x2)

)1/p

, (5.4)

where Γ(P1,P2) denotes the joint distribution of P1 and P2, and d(:, :) can be any distance, such

as L2 distance. It is easy to verify that Wp distance satisfies the triangular inequality (Clement

and Desch, 2008), while KL-divergence violates the inequality. As discussed in (Hsieh et al.,

2017),(Tay et al., 2018), the satisfaction of the inequality benefits RS for reasoning over intricate

user-item relationships, while the violation results in problematic representations of users and

items. Moreover, if two distributions are non-overlapping, the Wasserstein distance can still
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TABLE X: Statistics of Datasets
Dataset #users #items density

MovieLens-1M 6,014 3,706 1.0%
LastFM 1,892 17,632 0.28%

Amazon Video Games 22,996 10,672 0.049%

measure the distance between them, while KL-divergence fails and leads to vanishing gradients.

Hence, a Wasserstein based loss is proposed as:

L = −
∑

(u,i,i′)∈D
ln σ{W2(N (µu,Σu),N (µi′ ,Σi′)) (5.5)

−W2(N (µu,Σu),N (µi,Σi))}+ λ(||Ωu||22 +

||Ωi||22 + ||Πu||22 + ||Πi||22),

where σ denotes a sigmoid function; the training data D is created by {(u, i, i′)|u ∈ U ∧ i ∈ I+u ∧

i′ ∈ I−u }; and λ represents the weight on the regularization terms. Fortunately, the W2 distance

between two Gaussian distributions has an analytical solution as W2(N (µ1,Σ1),N (µ2,Σ2)) =

||µ1 − µ2||22 + Tr(Σ1 + Σ2 − 2 ∗ (Σ1/2
1 Σ2Σ

1/2
1 )1/2). Equation 5.5 seeks to maximize the

Wasserstein distance of a negative pair (u, i′) and minimize the distance of a positive pair

(u, i). For evaluation, the final recommendation list of items for a user u is given by ranking

W2(N (µu,Σu),N (µi,Σi)) in an ascending order.

5.4 Experiments

In this section we conduct experiments to anwser the following research questions:
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TABLE XI: Performance comparison in HR@10 and NDCG@10. The best and second best method are
boldfaced and underlined, respectively. ⋆ and ⋆⋆ denote the statistical significance for p < 0.05 and
p < 0.01, respectively, compared to the best baseline.

Dataset Metric Item
KNN eALS BPR NCF CML DDN DDN

vs. best
MovieLens-

1M HR@10 0.038 0.049 0.061 0.081 0.092 0.128⋆ 39.1%

NDCG@10 0.021 0.024 0.025 0.039 0.041 0.058⋆⋆ 41.4%
LastFM HR@10 0.063 0.101 0.121 0.103 0.101 0.147⋆ 42.7%

NDCG@10 0.031 0.035 0.039 0.052 0.050 0.076⋆⋆ 46.1%
Amazon
Video
Games

HR@10 0.032 0.041 0.046 0.052 0.055 0.080⋆⋆ 45.4%

NDCG@10 0.018 0.019 0.021 0.022 0.034 0.042⋆ 54.5%

RQ1: Does DDN outperform state-of-the-art methods?

RQ2: Are the distribution-based representations helpful for tackling the data sparsity issue?

RQ3: How does the proposed Wasserstein loss work?

RQ4: Can DDN handle cold-start users in an effective way?

5.4.1 Experimental Settings

Comparative Models. We compare DDN with five state-of-the-art methods: ItemKNN (Sar-

war et al., 2001), eALS (He et al., 2016), BPR (Rendle et al., 2009), NCF (He et al., 2017b)

and CML (Hsieh et al., 2017) 1. Among them, only ItemKNN does not learn user vectors or

item vector, while all others represent users and items with vectors. NCF optimizes vectors

1https://github.com/changun/CollMetric

https://github.com/changun/CollMetric
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of users and items via deep architectures, and CML proposes a metric obeying the triangular

inequlity.

Datasets. We test all methods on three standard datasets: MovieLens-1M , LastFM , and

Amazon Video Games (Lakkaraju et al., 2013). As in (He et al., 2017b), we transform

datasets with explicit ratings into implicit data by regarding rating of 5 as positive feedbacks

and all others as negative. For each dataset, we select the latest item of each user for testing

and the second latest one for validation. All remaining items are for training. The statistics of

datasets are shown in Table X.

Evaluation Protocols. We evaluate all models in two metrics: Hit Ratio@N (HR@N) and

NDCG@N. We follow a common strategy as in (He et al., 2017b) to avoid heavy computation

on evaluating all user-item pairs. For each user i, we randomly sample 999 negative items,

and rank them with the single ground-truth item. Based on the rankings of these 1, 000 items,

HR@N and NDCG@N can be evaluated.

Paramter Settings. For ItemKNN, we employ the cosine distance to measure item similarities.

For eALS and BPR, we search the latent dimensions from {8, 16, 32, 64} and L2 regularization

term from {0.0001, 0.001, 0.01, 0.1}. The network shape of NCF is set as (32, 16, 8), as suggested

in the original paper (He et al., 2017b). Since we avoid using the item content, the Lf loss of

CML is excluded for a fair comparison. λc is chosen from {0.001, 0.01, 0.1, 1, 10}. All hyper-

parameters are tuned using the validation set. For DDN, the Adam optimizer (Kingma and

Ba, 2014) with the learning rate of 0.001 is adopted.
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5.4.2 Performance Comparison (RQ1 and RQ2)

To anwser RQ1 and RQ2, DDN is compared with five state-of-the-art models on three

datasets with different densities. Table XI shows the performance comparison. Overall, bene-

fiting from the proposed distribution-based representations and Wasserstein loss, DDN beats all

comparative methods, and achieves 42.4% and 47.3% improvements over the best comparative

model in HR@10 and NDCG@10, respectively, averaging on all three datasets. These experi-

ments reveal a number of interesting discoveries: (1) CML yields the second best performances

in MovieLens-1M and Amazon Video Games, demonstrating the importance of the satisfaction

of the triangular inequality; (2) Owing to the capability of capturing non-linearities via deep

models, NCF defeats other comparative methods in LastFM ; (3) It is shown that DDN achieves

more improvements in a sparser dataset than in a denser one. It is validated that, compared

to comparative approaches, DDN can better diminish the negative impacts of the data sparsity

issue.

5.4.3 Effectiveness of the Wasserstein Loss (RQ3)

In order to anwser RQ3, we conduct experiments to compare DDN with DDN-KL, which

is a variant of DDN employing the KL-divergence to measure the distances between users and

items. Figure 13 shows the performance comparison between DDN and DDN-KL in MovieLens-

1M. Overall, when N is vared from 3 to 10, DDN consistently outperforms DDN-KL in HR@N

and NDCG@N. Specifically, DDN improves DDN-KL by 21.0% and 31.0% in HR@N and
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Figure 13: In MovieLens-1M, DDN is compared with DDN-KL in terms of HR@N and NDCG@N with
N varied from 3 to 10. Errors bars are 1-standard deviation.

NDCG@N, respectively, averaging on N 1. This experiment shows that, benefiting from the

satisfaction of the triangular inequality, the proposed Wasserstein loss assists DDN with rea-

soning over complex user-item relations with limited data.

5.4.4 Recommending for Cold-start Users (RQ4)

The cold-start problem is one of the major challenges for RS. In this section we are curious

if DDN can handle cold-start users in an effective way. Therefore, we compare DDN with two

strong competitors, NCF and CML, in an extremely sparse setting, where each user is only

associated with one item for training, one for validation and one for testing. Figure 14 shows

that, suffering from the cold-start problem, the performances of NCF and CML inevitably

degrade. However, DDN outperforms NCF and CML in terms of HR@10 and NCDG@10.

1Although similar results are observed in other two datasets, LastFM and Amazon Video Games, we
omit the results due to limited space.
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Figure 14: Performance comparison in HR@10 and NDCG@10 under a sparse setting, where each user
is associated with only one user-item interaction for training.

Specifically, in MovieLens-1M, DDN improves CML by 46.0% and 48.4%, in HR@10 and

NCDG@10, respectively. In LastFM, DDN beats NCF by 58.3% and 43.9%, in HR@10 and

NCDG@10, respectively. Hence, it is demonstrated that, compared with two best performing

state-of-the-art baselines, DDN can better handle cold-start users.



CHAPTER 6

CONCLUSION

(Part of the chapter was previously published in (Zheng et al., 2017; Zheng et al., 2018b;

Zheng et al., 2019; Zheng et al., 2019).)

In this dissertation, we have explored the problem of deep learning methods for recom-

mender systems. Towards this direction, we thoroughly studied four different research problems:

review-based deep recommender systems, spectral collaborative filtering, modeling co-evolving

patterns for sequential recommendation and distribution-based representation for Top-N rec-

ommendation. We evaluate our proposed methods by conducting intensive experiments on a

variety of real-world datasets. The main contributions of our works are summarized as follows:

• It is shown that reviews written by users can reveal some info on the customer buying and

rating behavior, and also reviews written for items may contain info on their features and

properties. In this paper, we presented Deep Cooperative Neural Networks (DeepCoNN)

which exploits the information exists in the reviews for recommender systems. DeepCoNN

consists of two deep neural networks coupled together by a shared common layer to model

users and items from the reviews. It makes the user and item representations mapped

into a common feature space. Similar to MF techniques, user and item latent factors can

effectively interact with each other to predict the corresponding rating.
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• We show that the rich information of connectivity existing in the spectral domain of a

bipartite graph is helpful for discovering deep connections between users and items. We

introduce a new spectral convolution operation to directly learn latent factors of users

and items from the spectral domain. Furthermore, with the proposed operation, we build

a deep feed-forward neural network based recommendation model, named Spectral Col-

laborative Filtering (SpectralCF). Due to the rich information of connectivity existing in

the spectral domain, compared with previous works, SpectralCF is capable of discovering

deep connections between users and items and therefore, alleviates the cold-start problem

for CF. To the best of our knowledge, SpectralCF is the first CF-based method directly

learning from the spectral domains of user-item bipartite graphs. We believe that it shows

the potential of conducting CF in the spectral domain, and will encourage future works

in this direction.

• Despite the promising results achieved by recent sequential methods, most of them fail to

leverage the co-evovling patterns, and such patterns are affluent in users actions and ben-

eficial for reasoning over intricate user-item relationships. In order to power RS with the

ability to capture co-evolving patterns, we first formulate the dynamic user-item bipartite

graph into Sequential Evovling Graphs. Then, in order to utilize co-evolutionary patterns

from SEGs, we propose Gated Spectral Units (GSUs). GSUs incorporate gated mecha-

nisms into a spectral convolution. In this way, GSUs are able to learn from sequential

graphs and capture the co-evovling patterns from spectral domains. In experiments, we

demonstrate the usefulness of leveraging co-evolving patterns by comparing GSUs with
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six state-of-the-art comparative methods. Overall, averaging on all three datasets, GSUs

achieve 27.9% and 53.4% improvements over the best performing competitor in terms of

HR@10 and NDCG@10, respectively. Additionally, we evaluate GSUs and three compar-

ative methods in an extremely sparse setting, where each user is associated with only one

user-item interaction. In the sparse setting, GSUs show its superior ability for handling

cold-start users.

• We present Deep Distribution Network (DDN) to model users and items with Gaus-

sian distributions for Top-N recommendation. Compared to existing approaches learning

fixed vectors of users and items, DDN addresses the uncertainty inherent from the data

sparsity issue by distribution-based representations. In DDN, each user and item is as-

sociated with a Gaussian distribution, whose mean and covariance are estimated by deep

neural networks. Experimentally, we show that, compared to fixed vectors, the proposed

distribution-based representations can better ease the sparsity issue and handle cold-start

users. Additionally, we propose a Wasserstein distance based loss satisfying the triangular

inequality, which is crucial for the performances of RS. By comparing DDN with one of

its variants, DDN-KL, it is demonstrated that the proposed Wasserstein loss leads to a

better performance.
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