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SUMMARY

Deep learning is currently one of the most effective approaches in machine learning with

applications in image processing, computer vision, and natural language processing. The key

technique underpinning its success is the automated learning of latent representation in data

using neural networks that employ parametric hidden variables. However, these parameters are

typically subject to a non-convex optimization, making the global optimum hard to find.

Inductive learning frameworks that guarantee global optimality have been recently devel-

oped for two-layer conditional models with a learning strategy based on parametric transfer

functions. However, they require optimization over large kernel matrices, hence are slow in

training and cannot be scaled to big datasets. In this thesis, we propose a novel optimization

strategy that iteratively and greedily expands the subspace of kernels, interlaced with network

parameter optimization in the low-rank subspace. The resulting approach significantly speeds

up training by 10 to 100 times, while maintaining optimality and accuracy. This allows convex

neural networks to be scaled to 10,000 examples for the first time.

x



CHAPTER 1

INTRODUCTION

The success of neural networks in various application domains such as computer vision,

natural language processing, and game playing is often attributed to the automated learning of

latent representations. This automated synthesis of abstract and semantic features from data

often results in strong estimations of the predictive relations between the observation regardless

of the possible complexity in the correlation.

Despite the vast successes in applications, it remains that these latent models are hard to

train due to the non-linear coupling of the model parameters. This in general leads to uncon-

strained convex optimization strategies being applied to a non-convex optimization problem,

thus making it hard to guarantee a globally optimal solution.

This issue of global trainability has been researched extensively and substantial progress has

been made towards reformulating the latent models in achieving tractable global solutions. An

inductive learning framework that facilitated convex relaxations based on completely positive

cones was proposed by Ganapathiraman et al. [1] that provided an efficient learning strategy

for two-layer conditional models and guaranteed global optimality.

Although this framework significantly scaled up the size of solvable problems by convex

neural networks, the optimization over large kernel matrices still bottle-necked the computation

time, preventing the model from scaling to real world datasets. The goal of this thesis, therefore,

1
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is to develop a better optimization strategy that achieves greater scaling while maintaining the

guarantees of tractable global optimality.

1.1 Motivation

Let Φ = (φ1, φ2, ..) be the hidden node values of the training examples where φi is for

training example xi. The convex relaxation scheme in [1] is based on the Fenchel dualization

of the activation function, which acts on the corresponding dual variables Λ = (λ1, λ2, ..). The

key step of SDP relaxation is to re-write the dual variable Λ in terms of Φ, as

Λ = ΦA. (1.1)

This allows Φ to be multiplied with Φ ′ (see details in Chapter 3), so that SDP relaxation can

be carried out by replacing Φ ′Φ with a positive semi-definite (PSD) matrix T :

T = Φ ′Φ (1.2)

while shifting the key computational cost to A, whose size is t × t, i.e.,, the square of number

of training examples. This hampers the scalability of the model.

In our work, we take the key insight that within the SDP solver in [1], the solution T

gradually expands its rank/subspace by greedily adding new bases. The efficiency of such greedy
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algorithms, indeed for general greedy optimization solvers such as GCG [2], lies in the so-called

local optimization (step 6 of Algorithm 1), which in our case first recovers a Φ from the current

low-rank solution of T, and then optimizes the loss over Φ as a non-convex problem. As GCG

[2] showed, this local optimization substantially accelerates the overall convex optimization on

T.

This insight motivates us to reconsider the optimization strategy: now that this step of local

optimization has forgone the convexity in solving Φ, could we dispense with the optimization

over A and directly optimize over the original Λ in Equation 1.1?

This leads to a significant reduction in the size of the optimization variable: from t × t

(for A) to t × h (for Φ). Furthermore, it turns out that the objective can be reformulated

accordingly in terms of Λ, thereby enjoying the performance boost offered by the reduced size

of the problem.

1.2 Key Contribution

The main contributions of this work are listed below.

Optimization over low-rank matrices: We propose a strategy for solving the objective

by decoupling the local optimization step from nested high-rank variable optimizations,

which were the cause of significant bottle-necks in [1]. This limits the context of local

optimizations to low-rank variables.

Closed-form solutions for large matrix: The reformulation of the objective function

to optimize Λ instead of A (as in [1]) allows for closed form solutions for A. This,
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combined with the previous point, offers a significant speed up to inductive training for

the conditional two-layer models.

Scaling to 10,000 examples: The new optimization strategy proposed in this work allows

for the model to scale up to 10,000 examples for the first time. This is discussed in

Chapter 6.

1.3 Outline of the Thesis

We begin in Chapter 2 by setting up an introduction to machine learning, the classification

task, neural networks and then convex optimizations. These form the cumulative background

required to read this thesis. In Chapter 2, we also describe the various datasets that were used

in training and evaluation of the models described in this work.

Chapter 3 sets up conditional two-layer models which is the bedrock for this work, and

Chapter 4 describes the optimization strategy currently employed by these models. While

these chapters directly follow the works of Ganapathiraman et al. [1], we make moderate

modifications to focus on the developments that are relevant to our proposed optimization

algorithm.

The new optimization strategy and the updated algorithms are presented in Chapter 5

with a discussion of changes to the objective function and the computational complexity of the

new optimization. Chapter 6 proceeds to describe the results of evaluation by comparing our

optimization with the existing optimization. Finally, we conclude in Chapter 7 with a summary

and the possible directions for this work.



CHAPTER 2

BACKGROUND

This chapter provides an introductory explanation to the various concepts that provide a

unifying base for the work in this thesis. Section 2.1 defines machine learning and explains

its types. Section 2.2 assumes prior knowledge of a perceptron and describes feed forward

neural networks. Finally, section 2.3 introduces convex optimization methods. We follow the

definitions and notations of Goodfellow et al. [3] for sections 2.1 and 2.2, and the works of Boyd

and Vandenberghe [4] for section 2.3. Figure 1 has been sourced from the works of Nielsen [5].

2.1 Machine Learning

Mitchell [6] defined machine learning as, “A computer program is said to learn from expe-

rience E with respect to some class of tasks T and performance measure P, if its performance

at tasks in T, as measured by P, improves with experience E.”

Tasks: Machine learning enables us to tackle tasks that are hard to solve with programs

with rules and fixed conditions that are written and designed by humans. These tasks

are typically described in terms of how a system processes a collection of quantitatively

measured features. We typically represent this collection of features or examples as a

vector x ∈ Rn where each entry xi of the vector is a feature. This collection of examples

is called a training set.

Over time, machine learning has been successfully used towards various tasks such as

5
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regression, classification, anomaly detection, machine translation. In this thesis, we focus

our attention on the classification task.

Performance: A performance measure helps us evaluate the abilities of a machine learning

algorithm. Typically, this performance measure is specific to the task being performed

by the system. For the classification task, we often measure the accuracy of the model.

We evaluate the quality of the algorithm on previously unseen data or a test set.

Experience: The experience is defined based on the type of data the system is allowed to

see during the learning process. This broadly classifies machine learning algorithms into

three categories -

• Inductive or supervised learning: When the training data includes the corre-

sponding output for every example.

• Transductive or semi-supervised learning: When the training data does not

assume the presence of outputs for every example.

• Deductive or unsupervised learning: When the training data does not include

the corresponding output for every example.

In this thesis, our classification task follows an inductive learning framework.

The goal of a machine learning algorithm is to enable a system to infer or learn the relation

between observations based on given data without the need of explicitly providing said relation.

This learning typically takes place by the process of training where the algorithm produces
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outputs and evaluates its performance. The metric by which the algorithm self-evaluates its

performance during training is called a loss function or the objective function.

2.1.1 The Classification Task

The automated categorization of a new observation to a given set of k categories or labels

based on previous data and their categorical labels is called classification. This task is typically

performed by estimating a mapping function f := Rn → {1, .., k} such that y = f(x ) assigns the

numerical code of the correct category for an input described by the vector x . An example of a

classification task is object classification, where the input is the image of some object and the

categories are the names of the objects in the image.

2.2 Feed-forward Neural Networks

Feed-forward neural networks are a collection of perceptrons or artificial neurons that are

sequentially layered. Figure 1 describes a typical feed-forward neural network as a computa-

tional graph. The idea is that each layer characterizes a latent representation of the input data

x ∈ Rn using a non-linear function f : Rh → Rh which converts the linear transformation Wx

into φ = f(Wx). Here W ∈ Rh×n is the hidden layer weights. Thus, the output from a feed

forward neural network of 2 layers would be

ŷ = f2(W2f1(W1x )) (2.1)
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Figure 1: The computational graph of a feed-forward neural network

where fi and Wi denote the transfer function and weights respectively for each hidden layer.

There are several popular transfer functions that are applied to hidden layers. A common

setting is to apply ReLU f(x) = x+ to all the hidden layers and follow that with the softmax

function σ(z)j =
e
zj∑K

j=1 e
zj

to the output layer to produce ŷ . In the setting of the typical multi-

class classification task with C classes, the output ŷ is measured against the given label y ∈ Rm
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(which encodes a class c ∈ C with the canonical vector ec) using an objective function or a loss

function `(ŷ ,y). The most commonly used loss function is the logistic loss

`(ŷ ,y) = −ŷ ′y+ log
∑
c

exp(ŷc) (2.2)

Training a neural network model is equivalent to optimizing the loss function or minimizing the

objective value.

2.3 Convex Optimization

This chapter serves as an introduction to convex optimization methods. We first go over the

definition and the standard form of a convex problem, followed by some important functions

that make convex optimizations applicable to problems that are non-convex. We then describe

some common solution strategies by providing an overview of the oracles, but for this work, we

treat the solvers as black-boxes.

2.3.1 Definition and Formulation

A constrained minimization problem can be written as

minimize f0(x)

subject to fi(x) ≤ 0, ∀i = 1, ..,m

hi(x) = 0, ∀i = 1, .., p,

(2.3)
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where f0(x) : Rn → R is the objective function, fi(x) : Rn → R are the inequality constraints,

and hi(x) : Rn → R are the equality constraints. We call a problem a convex problem if

fi, ∀i = 0, ..,m, are convex and hi, ∀i = 1, .., p, are affine. Convex problems are a class of opti-

mization problems in which the objective function is a convex function and the feasible set is a

convex set.

2.3.2 Convex Conjugate

The convex conjugate f ∗ : Rn → R of a function f : Rn → R is defined as the supremum

f ∗(y) = sup
x∈dom f

(
yTx − f (x)

)
, (2.4)

This is known as the Legendre-Fenchel transform of f. The Fenchel bi-conjugate f ∗∗ yields

a convex envelope, the largest closed convex underapproximation of f [4]. The epigraph of a

convex function f can be defined as

epi( f ) =
{
(x, d) ∈ Rn+1 | f (x) ≤ d

}
(2.5)

For all convex functions with closed epigraph and non-empty domains in finite dimensions,

the bi-conjugate f ∗∗ = f.
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2.3.3 Lagrange Duality

An important function in constrained optimization is the Lagrangian

L(x, λ, ν) = f0(x) +
m∑
i=1

λifi(x) +

p∑
i=1

νihi(x) (2.6)

where (λ, ν) ∈ Rm × Rp are called the Lagrange multipliers or the dual variables. The dual

function is defined as

g(λ, ν) = inf
x

L(x, λ, ν) (2.7)

The (Lagrange) dual problem is then given as

maximize g(λ, ν)

subject to λi ≥ 0, ∀i = 1, ..,m
(2.8)

For a convex problem, necessary and sufficient conditions for primal and dual optimality
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for differentiable objective and constraint functions are given by Karush-Kuhn-Tucker (KKT)

conditions [7]



fi(x
∗) ≤ 0, ∀i = 1, ..,m

hi(x
∗) = 0, ∀i = 1, .., p

λ∗i ≥ 0, ∀i = 1, ..,m

λ∗i fi(x
∗) = 0, ∀i = 1, ..,m

∇f0(x
∗) +

m∑
i=1

λ∗i∇fi(x
∗) +

p∑
i=1

ν∗i∇hi(x
∗) = 0

(2.9)

2.3.4 Solving Convex Optimizations

Typically, the harder task is the formulation of problems in the standard convex optimization

form:

maximize f (x)

subject to x ∈ Q
(2.10)

where f(x) = f0(x) and

Q = {x | fi(x) ≤ 0, ∀i = 1, ..,m; hi(x) ≤ 0, ∀i = 1, .., p} (2.11)
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The methods for solving the problems as formed in Equation 2.10 are characterized by the

type of structural information that can be evaluated.

Zero-order oracles evaluate only f (x). Exhaustive search in combinatorial optimization

employ these oracles.

First-order oracles evaluate f(x) and∇f(x). The classic steepest descent, conjugate gradient,

quasi-Newton techniques employ a first-order oracle.

Second-order oracle evaluate f (x), ∇f (x), and ∇2f (x). Newtons method and interior-point

methods employ second-order oracles.

In application, first-order oracles are the most commonly used solvers even though second-order

oracles arrive at the optima faster. This is attributed to the fact that computation of a Hessian

does not scale well to large number of examples because of the computational complexity.

2.4 Datasets

This section details the different datasets used for training and evaluation in this work.

2.4.1 MNIST

The MNIST [8] dataset is an extremely popular dataset consisting of hand-written digits

from 0-9 in different variations. There are totally (784 × 60000) training and (784 × 10000)

testing image samples.

2.4.2 Letter

The Letter [9] dataset is made of (16 × 20000) image samples of vowel letters A-E and

non-vowel letters B-F made available by UCI [10].
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Figure 2: Samples from the MNIST dataset

2.4.3 CIFAR-SM

The CIFAR-SM [11] dataset is a subsampled dataset from the CIFAR-10 [12] dataset. It

contains (256× 1526) image samples of bicycles, motorcycles, lawn-mowers, and tanks with the

red channel features preprocessed by averaging pixels.

2.4.4 USPS

USPS [13] is another popular hand-written text dataset containing (256×9298) images that

have been sampled from zip-codes and state names in grey-scale.
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2.4.5 COIL

COIL was collected by the Center for Research on Intelligent Systems at the Department of

Computer Science, Columbia University. The database contains color images of various objects.

This dataset was used in a real-time object recognition system whereby a system sensor could

identify the object and display its angular pose. We use a sampled version of this database for

binary classification, containing (241× 1500) sample images.

2.4.6 G241N

G241N [14] by Chapelle is a commonly used synthesized benchmark dataset for various

convex optimization binary classification tasks.. It contains (241 × 1500) randomly sampled

data points.



CHAPTER 3

CONDITIONAL TWO-LAYER MODELING

Chapter 3 as well as Chapter 4 describe the works of Ganapathiraman et al [1] towards

convex two-layer modeling and the optimizing these models. This work forms the underly-

ing base for the algorithms derived in this thesis. As previously mentioned, the contents of

Chapter 3 and Chapter 4 follow [1] directly with moderate modifications made to focus on the

developments that are relevant to our proposed optimization strategy (detailed in Chapter 5).

3.1 Choosing a Loss Function

As explained in 2.2, a major source of non-convexity in neural networks is the non-linear

mapping or the transfer function φ = f (Wx). To cope with this, the approach is to construct

a loss that would satisfy three conditions [1]:

• Unique Recovery : arg minφL(φ, z) = f (z) for all z with the arg min attained uniquely.

• Joint Recovery : L is jointly convex over φ and z. This is required if a convex deep model

is jointly built by directly using L to connect the input and output of adjacent layers.

• Grounding : minφL(φ, z) = 0 for all z, so that there is no bias towards any value of z.

The authors of [1] theorize:

Theorem 1 There exists a loss L that satisfies all three conditions if, and only if, f is affine.

They note that the matching loss [15] not only meets the first and third conditions, but also

satisfies a weakened version of convexity by assuming that the transfer function is the gradient

16
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of a strictly convex function F : f = ∇F, with F : Rh → R.

Given that f is elementwise, constituent f is continuous and strictly increasing. This means that

the inverse of f exists, f−1 = ∇F∗, where F∗ is the Fenchel conjugate of F. When the transfer

function is not strictly increasing in some direction like ReLU, which is non-increasing on the

negative half line, approximations can be used such as the leaky-ReLU fr(z) = max(εz, z) for

infinitesimally small ε > 0.

In the case that f is not elementwise, this assumption of F implies:

1. f is strictly increasing in the vector sense: (x − y) ′(f(x) − f(y)) > 0.

2. The Jacobian of f is symmetric (as the Hessian of F ): J f = (J f) ′, provided f is differen-

tiable.

Under these assumptions, the authors finally adopt the following loss function based on

Bregman divergence:

L(φ, z) = D F ∗(φ, f(z)) = F ∗(φ) + F (z) − φ ′z, (3.1)

where D F ∗ is the Bregman divergence induced by F ∗. Here, L satisfies the conditions of

recovery and grounding, and is not jointly convex because of the bilinear term φ ′z, while both

F and F ∗ are convex. This decoupling of the convex and non-convex parts from the transfer

function enables the convex reformulation.
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3.2 Convex Modeling

Supposing there are t training pairs
{
(xj,yj)

}t
j=1

, stacked in two matrices X = (x1, ... ,xt) ∈

Rn×t and Y = (y1, ... ,yt) ∈ Rm×t, with the corresponding set of latent layer outputs stacked

into Φ = (φ1, ... , φt) ∈ Rh×t, the regularized risk minimization objective can be written as:

min
W,Φ,U,b

t∑
j=1

D F∗(φj, f(Wxj)) + `(U
′φj + b,yj) +

||W || 2 + ||U || 2

2

= min
W,Φ,U,b

t∑
j=1

{
F ∗(φj) − φ

′
jWxj + F(Wxj) + `(U

′φj + b)
}
+
1

2
||W ||2 +

1

2
||U ||2,

(3.2)

where `(U ′φj + b) := `(U ′φ + b,yj). The regularizations are introduced via Frobenius

norms, and the assumed dom `j is the entire space. For convenience, vector-input functions on

matrices are written representing the sum of the function values applied to each column, e.g.

F∗(Φ) =
∑

j F∗(φj). The objective can now be rewritten compactly as

min
Φ,W,U,b

F ∗(Φ) − tr(Φ ′WX) + F(WX) + `(U ′Φ+ b1 ′) +
1

2
||W ||2 +

1

2
||U ||2 (3.3)
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This is bi-convex in (Φ,b) and (W,U), i.e. when one group is fixed, it is convex in the

other. In order to derive a jointly convex reformulation, the authors note that

`(U ′φ+ b1 ′) = maxR

{
tr(R ′(U ′Φ+ b1 ′)) − `∗(R)

}
,

where `∗ is the Fenchel conjugate of `, and R ∈ Rm×t. They further note that

• For binary hinge loss, `∗(r) = yr over r ∈ [ min {0,−y} , max {0,−y} ], and otherwise ∞.

• For multi-class hinge loss, `∗(r) = y ′r if r + y ∈ ∆m :=
{
x ∈ Rm

+ : 1 ′x = 1
}

, and ∞
otherwise.

• For multi-class logistic loss, `∗(r) =
∑
i(ri+yi)log(ri+yi) if r+y ∈ ∆m, and∞ otherwise.

Similarly, F(WX) = maxΛ {tr(Λ ′WX) − F ∗(Λ)}.

With this, Equation 3.2 can be rewritten as

min
W,U,b,Φ

max
R,Λ

F ∗(Φ) − tr(Φ ′WX) + tr(Λ ′WX) − F ∗(Λ)

− tr(R ′(U ′Φ+ b1 ′)) − `∗(R) +
||W ||2 + ||U ||2

2

= min
Φ

max
R,Λ

min
W,U,b

F ∗(Φ) − tr(Φ ′WX) + tr(Λ ′WX) − F ∗(Λ)

− tr(R ′(U ′Φ+ b1 ′)) − `∗(R) +
||W ||2 + ||U ||2

2

= min
Φ

max
R1=0,Λ

F ∗(Φ) −
1

2
||(Φ−Λ)X ′||2 −

1

2
||ΦR ′||− F ∗(Λ) − `∗(R)

(3.4)
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A few things are happening here -

1. The optimal W and U for the last equality are W = (Φ+Λ)X ′ and U = −ΦR ′.

2. The first equality swaps minW,U,b with maxR,Λ.

The authors note that this strong duality is non-trivial because Sion’s minimax lemma [16]

requires that the domain of (W,U) be compact, which is not assumed here. They then theorize:

Theorem 2 For any W, U, b, denote L(Φ,R) = F∗(Φ)−tr(Φ ′WX)+tr(R ′(U ′Φ+b1 ′))−`∗(R).

Then,

min
Φ

max
R
L(Φ,R) = max

R
min
Φ
L(Φ,R)

Based on this, the convex relaxation for Equation 3.4 can be derived using ReLU Fr(Z) =

1
2 ||[Z ]+||

2 and its Fenchel dual Fr
∗(Φ) = 1

2 ||Φ ||2 for Φ ≥ 0(element-wise) and +∞ otherwise.

Equation 3.4 is specialized into

min
Φ≥0

max
R1=0,Λ≥0

1

2
||Φ||2 −

1

2
||(Φ−Λ)X ′||2 −

1

2
||ΦR ′||2 −

1

2
||Λ||2 − `∗(R) (3.5)
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Here, both Φ and Λ are constrained to the positive orthant and hence are both sized h× t.

Typically, t � h, their ranks are h, and their column spaces have full rank. As a result, the

authors perform a change of variable as

Λ = ΦA, (3.6)

where A ∈ Rt×t
+ and is not necessarily symmetric. Using this, Equation 3.5 can be rewritten as

min
Φ≥0

max
R1=0,Λ≥0

1

2
||Φ||2 −

1

2
tr(Φ ′Φ(I − A)X ′X(I − A ′))

−
1

2
tr(Φ ′ΦR ′R) −

1

2
tr(Φ ′ΦAA ′) − `∗(R)

(3.7)

While this is still not convex, all occurrence of Φ are of the form Φ ′Φ, thus making it

possible to optimize over Φ ′Φ directly. Denoting T := Φ ′Φ ∈ Rt×t, Equation 3.7 is rewritten

as:

min
T∈Th

max
R1=0,A≥0

1

2
tr(T) −

1

2
tr(T(I − A)X ′X(I − A ′))

−
1

2
tr(TR ′R) −

1

2
tr(TAA ′) − `∗(R),

(3.8)

where Th :=
{
Φ ′Φ : Φ ∈ Rh×t

+

}
⊆
{

T ∈ Rt×t
+ : T � 0

}
. There are a few things to note here:

1. T � 0 means that T is positive semi-definite (PSD).
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2. R and A are decoupled making inner optimization efficient, and given T, the maximization

over R and A is concave because T � 0.

3. The objective is convex in T, because maximization of linear terms is convex.

The authors address the challenge of the non-convexity of Th by pointing out that the set

Th is a cone. If the fixed value of h is relaxed, then T∞ is the completely positive (CP) matrix

cone [17] and T∞ is the convex hull or the tightest possible relaxation of Th for any h. Using

this, the final objective becomes

min
T∈T

max
R1=0,A≥0

1

2
tr(T) −

1

2
tr(T(I − A)X ′X(I − A ′))

−
1

2
tr(TR ′R) −

1

2
tr(TAA ′) − `∗(R)

(3.9)

The authors note that this technique can be extended beyond ReLU, to even non-elementwise

transfer functions and hence provide a general framework for creating convex relaxations for

two layer neural networks.

They further note that while Equation 3.9 is convex, the set T lacks a compact characteri-

zation in terms of linear or quadratic, PSD, or second-order conic constraints. Optimization

over CP matrices is known hard [17], and projection to T is NP-hard [18]. Therefore, a special

optimization framework has been proposed which is discussed in the next section.



CHAPTER 4

INDUCTIVE TRAINING

Due to the hardness of optimization over CP matrices, Ganapathiraman et al. [1] propose

a framework for optimization that employs conditional gradient methods [19][20] that are free

of projections through the Generalized Conditional Gradient algorithm (GCG) [2]. Since GCG

operates on gauge regularized objectives, Equation 3.9 has to be rewritten.

Given a convex bounded set C containing the origin, the guage function induced by C

evaluated at T can be defined as γC(T) := min {γ ≥ 0 : γX = T,X ∈ C }. If no (γX) meets the

condition, then γC (T) := ∞. Equation 3.9 has to be recast into this framework in order to

deal with the unbound T , which can be done by using the trace norm.

S := T ∩ {T : tr(T ≤ 1}

= conv T1 ∩ {T : tr(T) ≤ 1}

= conv
{
xx ′ : x ∈ Rt

+, ||x|| ≤ 1
}
.

(4.1)

The authors present the following lemma and state that the domain of the gauge implicitly

enforces constraint on T.

23
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Lemma 1 S is convex, bounded, and closed. In addition,

γS(T) =


tr(T) T ∈ T

+∞ otherwise

(4.2)

This allows Equation 3.9 to be equivalently rewritten as

min
T

J(T ) :=
1

2
γS(T ) + g(T ) where

g(T ) := max
R1=0,A≥0

−
1

2
tr(T (I − A)X ′X(I − A ′))

−
1

2
tr(TR ′R) −

1

2
tr(TAA ′) − `∗(R)

(4.3)

which falls into the framework of GCG, as shown in Algorithm 1 [2] [20]. GCG iteratively

seeks the steepest descent extreme point T new (called the basis) of the set S with respect to

the objective gradient (steps 3-4). It directly optimizes the underlying factor Φ after finding

the conic combination with the existing solution.
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Algorithm 1: General GCG algorithm

1 Randomly sample Φ1 ∈ [0, 1]t, and set T1 = Φ
′
1Φ1

2 while k = 1, 2, ... do
3 Find ∇g(Tk) with Tk = Φ

′
kΦk by solving the inner maximization problem in g(Tk) of

Equation 4.3
4 Polar operator: find a new basis via T new = arg maxT∈S < T,−∇g(Tk) >.
5 Compute the optimal combination weight (α,β) := arg minα≥0,β≥0J(αTk + βT new).

6 Locally optimize T : Φk+1 = arg minΦ≥0J(Φ
′Φ) with Φ initialized by the value

corresponding to Φ ′Φ = αTk + βT new.

7 Return Tk+1

4.1 Polar Operator

For the computational strategies for the operations in GCG, the authors bring our attention

to the polar operator of S, which tries to solve the following optimization in Equation 4.1:

max
T∈S

tr(G ′T)⇐⇒ max
x∈Rt

+,||x||≤1
tr(x ′Gx) (4.4)

This optimization is NP-hard and are usually solved by semi-definite relaxations (SDP). For

this optimization, the authors show that this bound can be tightened under the condition that

G � 0. This is presented as the theorem :

Theorem 3 Assuming G � 0, a 1
4 -approximate solution to Equation 4.4 can be found in O(t2)

time.

Here, a multiplicative α-approximate solution can be defined as:
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Definition 1 Let α ∈ (0, 1 ] and assume an optimization problem maxx∈χf(x) has non-negative

optimal value. A solution x∗ ∈ χ is called α-apprpximate if f(x∗) ≥ αmaxx∈χf(x) ≥ 0. Similarly,

the condition becomes 0 ≤ f (x∗ ≤ 1
αminx∈χf (x)) for minimization problems.

While this requirement of G being positive semi-definite is not satisfied in general, it happens

to be fulfilled for this particular problem via Equation 4.3. The gradient of g is negative semi-

definite, and can be calculated as

−
1

2
(I − A)X ′X(I − A ′) −

1

2
R ′R −

1

2
AA ′, (4.5)

where the R and A are the optimal solution to the inner maximizations.

4.2 Optimization using equivalent min-min objective

For the local optimization, g has to be converted from a min-max problem to a min-min

problem so that it can be solved by alternating, i.e., optimizing one variable by fixing the other

variables, as done in Algorithm 2.
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This can be done by

g(Φ ′Φ) = max
R1=0

{
−
1

2
||ΦR ′||2 − `∗(R)

}
+ max

A≥0

{
−
1

2
||Φ(I − A)X ′||2 −

1

2
||ΦA||2

}
= max

R
min
b

{
b ′R1 − `∗(R) − max

U
− tr(U ′ΦR ′) −

||U ||2

2

}
+ max

A
min
M≥0

{
−
||Φ(I − A)X ′||2

2
−

||ΦA||2

2
+ tr(M ′A)

}
= min

U,b

{
`(U ′Φ+ b1 ′) +

1

2
||U ||2

}
+ min

M≥0
h(M, Φ),

(4.6)

where h(M, Φ) := max
A

{
−
1

2
||Φ(I − A)X ′||2 −

1

2
||ΦA||2 + tr(M ′A)

}
(4.7)

Using this, the local optimization minΦ≥0J(Φ ′Φ) = minΦ≥0
1
2 ||Φ||2 + g(Φ ′Φ) can now be

solved by alternating between (U,b), M, and Φ. This is shown in Algorithm 3.

The optimization over M and Φ is tricky because h requires the nested optimization over A.

Since h is quadratic in A, a closed-form solution for A can be calculated using the Woodbury

formula [21] and Nesterov smoothing [22]. This is done by the introduction of a small strongly

convex regularizer (µ > 0) on A in the definition of h(M, Φ):

hµ(M, Φ) := max
A

{
−
1

2
||Φ(I − A)X ′||2 −

1

2
||ΦA||2 + tr(M ′A) −

µ

2
tr(A(X ′X + I)A ′)

}
, (4.8)
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The optimal A can be calculated by setting its gradient to zero:

A = (Φ ′Φ = µI)−1(M +Φ ′ΦX ′X)(X ′X + I)−1 (4.9)

for efficiency, A can be computed using the Woodbury formula as:

µA = (M +Φ ′ΦX ′X)(X ′X + I)−1

−Φ ′(µI +ΦΦ ′)−1Φ(M +Φ ′ΦX ′X)(X ′X + I)−1.

(4.10)

Now, optimization over (U,b) is the standard supervised learning, and optimization over

M and Φ can be done using LBGFS-B with A computed using Equation 4.10.
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Algorithm 2: Solving Equation 3.9 for T by the GCG algorithm

1 Randomly sample Φ1 ∈ [0, 1]t, and set T1 = Φ
′
1Φ1

2 while k = 1, 2, ... do
3 if k = 1 then
4 (Uk,bk) = optimal U and b in Equation 4.6 for Φ1.
5 Mk = optimal M in Equation 4.6 for Φ1

6 Recover the optimal R : Rk = ∇`(U ′kΦk + bk1
′).

7 Recover the optimal A by Equation 4.10.
8 Compute the gradient Gk of gµ at Tk = Φ

′
kΦk via Equation 4.5, with R and A

served by Rk and Ak, respectively.
9 Compute a new basis xk by approximately solving arg maxx∈Rt

+,||x||≤1x
′(−Gk)x

(Theorem 3).
10 Line search: (α,β) := arg minα≥0,β≥0J(αTk + βxkx

′
k).

11 Set Φtmp = (
√
αΦ ′k,

√
βxk)

′.
12 Local search: (Φk+1,Uk+1,bk,Mk+1) := Local Opt(Φtmp,Uk,bk,Mk) using

Algorithm 3.

13 Return Tk+1.

Algorithm 3: Local optimization used by GCG

1 Require (Φtmp,Uk,bk,Mk) from the current step.
2 Initialize: Φ = Φtmp,U = Uk,b = bk,M = Mk.
3 for t = 1, 2, ... do // till change is small

4 (U,b) = arg minU,b

{
`(U ′Φ+ b1 ′) + 1

2 ||U ||2
}

.
5 M = arg minM≥0h(M, Φ).
6 Φ = arg minΦ≥0

{
`(U ′Φ+ b1 ′) + h(M, Φ)

}
.

7 Return (Φ,U,b,M)



CHAPTER 5

FASTER INDUCTIVE TRAINING

A major bottle-neck for local optimization in Algorithm 3 is the nested optimization of A in

M and Φ. According to Ganapathiraman et al. [1], the time complexity for local optimization

is O(t3) and if n � t, then O(nt2) (recall that A ∈ Rt×t and X ∈ Rn×t). Yet, A is required

for optimizing Equation 3.9 and therefore, our key contribution in this thesis is the decoupling

of the optimization of A from the local optimization step, making alternating between the

variables efficient. This new strategy will remove the need for nested optimizations.

This chapter details an updated framework with a reformulated objective function as described

in Section 5.1, followed by Section 5.2 that sketches the proposed algorithms for optimizing

Equation 3.9 using GCG and the local optimization of the variables.

5.1 Reformulating the Objective

In Algorithm 2, the optimization of Φ is non-convex, and makes uses of a local-optimization

strategy that is described in Algorithm 3. A was introduced for the reformulation of the

objective for the convenient optimization of Φ as T := Φ ′Φ in Equation 3.7. This motivates us

to explore the optimization of Λ directly, and eventually computing A from the optimal Λ.

Recall from Equation 3.6 that

Λ = ΦA.
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By using this in Equation 4.6, we can reformulate the min-min objective, while maintaining its

solvability via alternating, as:

g(Φ ′Φ) = max
R1=0

{
−
1

2
||ΦR ′||2 − `∗(R)

}
+ max
Λ≥0

{
1

2
||(Φ−Λ)X ′||2 −

1

2
||Λ||2

}
= max

R
min
b

{
b ′R1 − `∗(R) − max

U
− tr(U ′ΦR ′) −

||U ||2

2

}
+ max

Λ
min
N≥0

{
−
||(Φ−Λ)X ′||2

2
−

||Λ||2

2
+ tr(N ′Λ)

}
= min

U,b

{
`(U ′Φ+ b1 ′) +

1

2
||U ||2

}
+ min

N≥0
q (N, Φ),

(5.1)

where q (N, Φ) := max
Λ

{
−
1

2
||(Φ−Λ)X ′||2 −

1

2
||Λ||2 + tr(N ′Λ)

}
(5.2)

This reformulation is significant because as we will show next, q (N, Φ) does not lead to a

nested optimization of A, allowing us to optimize A outside of the local optimization. Recall

that optimization of A within the local optimization step for h (M, Φ) (Equation 4.7) was the

cause of the bottle-neck.

5.2 Optimization

We begin our optimizations by first targeting Λ. Fortunately, by taking the derivative of

Equation 5.2 and setting it to 0, we arrive as a closed form solution for Λ.
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δ

δΦ
q (N, Φ) = 0

⇒ (ΦX ′ −ΛX ′)X −Λ+ N = 0

⇒ Λ(X ′X + I) = ΦX ′X + N

(5.3)

Λ = (ΦX ′X + N)(X ′X + I)−1 (5.4)

We can substitute this value of Λ back in Equation 5.2 and we get

q (N, Φ) = −
1

2
||(Φ− (ΦX ′X + N)(X ′X + I)−1)X ′||2

−
1

2
||(ΦX ′X + N)(X ′X + I)−1||2

+ tr(N ′(ΦX ′X + N)(X ′X + I)−1)

(5.5)

Using Equation 5.5, we can now obtain the optimal N by computing the derivative of

q (N, Φ) with respect to N and optimizing using LBFGS-B solver.

δ

δN
q (N, Φ) = (Φ− (ΦX ′X + N)(X ′X + I)−1)X ′X(X ′X + I)−1

− (Φ ∗X ′X + N)(X ′X + I)−1(X ′X + I)−1

+ (ΦX ′X + N)(X ′X + I)−1 + N(X ′X + I)−1

(5.6)
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Similarly, the derivative of Equation 5.5, combined with the gradient of `(U ′Φ + b1 ′), can

be used to optimize Φ.

δ

δΦ
q (N, Φ) = − t + t (X ′X + I)−1X ′X

− (ΦX ′X + N)(X ′X + I)−1(X ′X + I)−1X ′X

+Φ+ N(X ′X + I)−1X ′X

(5.7)

where, t = (Φ− (ΦX ′X + N)(X ′X + I)−1)X ′X. (5.8)

Using the optimal Φ and Λ, optimal A can be recovered as

A = lsqminnorm(Φ,Λ), (5.9)

where the lsqminnorm function computes a unique minimal norm least square solution for the

system of linear equations in Equation 3.6.

Finally, we can now run local optimization minΦ≥0J(Φ ′Φ) = minΦ≥0
1
2 ||Φ||2 + g (Φ ′Φ)

by alternating between (U,b), N, and Φ. Algorithm 4 shows the faster inductive training

updates for Equation 3.9, and Algorithm 5 details the new local optimization used by Algorithm

4. This local optimization strategy now focuses on the optimization of low-rank variables
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while computing closed-form solution for Λ. The optimization for A is now taken out of the

local-optimization step as in Algorithm 3 (nested within the optimization of h(M, Φ)) and is

separately computed using significantly faster techniques in step 8 of Algorithm 4.

Algorithm 4: Solving Equation 3.9 for T by the GCG algorithm

1 Randomly sample Φ1 ∈ [0, 1]t, and set T1 = Φ
′
1Φ1

2 while k = 1, 2, ... do
3 Compute Λ using Equation 5.4
4 if k = 1 then
5 (Uk,bk) = optimal U and b in Equation 4.6 for Φ1.
6 Nk = optimal N in Equation 5.5

7 Recover the optimal R : Rk = ∇`(U ′kΦk + bk1
′).

8 Compute the optimal A: lsqminnorm(Φ, Λ)
9 Compute the gradient Gk of gµ at Tk = Φ

′
kΦk via Equation 4.5, with R and A

served by Rk and Ak, respectively.
10 Compute a new basis xk by approximately solving arg maxx∈Rt

+,||x||≤1x
′(−Gk)x

(Theorem 3).
11 Line search: (α,β) := arg minα≥0,β≥0J(αTk + βxkx

′
k).

12 Set Φtmp = (
√
αΦ ′k,

√
βxk)

′.
13 Local search: (Φk+1,Uk+1,bk,Nk+1) := Local Opt(Φtmp,Uk,bk,Nk) using

Algorithm 5.

14 Return Tk+1.

5.3 Computational Complexity

The time complexity for the variable optimizations assuming LBGFS-B solver is used is of

the order O(t2). In Algorithm 3, the challenge was optimizing A, which made the complexity

O(t3). In Algorithm 4 however, A is solved by calculating the minimal norm least squares
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Algorithm 5: Local optimization used by GCG

1 Require (Φtmp,Uk,bk,Nk) from the current step.
2 Initialize: Φ = Φtmp,U = Uk,b = bk,N = Nk.
3 for t = 1, 2, ... do // till change is small

4 (U,b) = arg minU,b

{
`(U ′Φ+ b1 ′) + 1

2 ||U ||2
}

.
5 N = arg minN≥0q (N, Φ).
6 Φ = arg minΦ≥0

{
`(U ′Φ+ b1 ′) + q (N, Φ)

}
.

7 Return (Φ,U,b,N)

solution of a system of linear equations. Typically this involves the calculation of the Moore-

Penrose pseudo-inverse [23]. The time complexity of computing the pseudo-inverse of a matrix

of size h×t is of the order O(t×h×min(t, h)). This is a significant reduction in the computation

time as compared to Algorithm 3.



CHAPTER 6

EXPERIMENTS

6.1 Experimental setup

We evaluate the proposed faster inductive two-layer model (F-CVX) based on Algorithm

4 by comparing it with the original inductive two-layer model (CVX-IN) [1] based on two

metrics - mean classification error and running time for local optimization step. To perform

this evaluation, we trained both models over a some benchmark datasets for ”real world” binary

classification tasks. All experiments were conducted on a 16GB RAM Intel Core-i7 quad-core

CPU.

6.2 Convergence to global optima

A key advantage of a convex neural network is the guarantee of the convergence to the global

optima. Since our model optimizes over the same objective function as [1], we hypothesised

that:

1. Both models (F-CVX and CVX-IN) should converge to the same objective value.

2. Our model (F-CVX) should converge much faster.

We evaluate this by training both models on 1000 samples of the MNIST dataset [8] till the

reduction in the objective value plateaus, and then compare the time taken for both models to

perform the local optimization step per iteration. We can clearly see from Figure 3 that not

36
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COIL G241N Letter MNIST CIFAR-SM USPS

CVX-IN 41 28 22 22 27 13

F-CVX 40 25 7 21 22 12

TABLE I: Mean errors of models on 100 samples from each dataset.

only do both models converge to similar values in roughly the same number of iterations for

this dataset, but also that our model reaches this optimal value significantly faster.

Figure 4 shows the time taken for the objective optimization in F-CVX model to plateau

and the corresponding value for the non-converged CVX-IN model (note that CVX-IN model

will plateau at similar values after a longer time of training) using 1000 samples of MNIST and

Letter, and 750 samples of the remaining datasets. This serves as another validation for our

claim that the objective is being optimized faster using Algorithm 4.

6.3 Comparison on smaller subsets

We compare the accuracies of the F-CVX and CVX-IN models, first, by using 100 training

and testing samples of six ”real world” classification datasets - COIL [24], G241N [14], Letter

[10], MNIST [8], CIFAR-SM [11], and USPS [13]. We can see from Table I and Figure 5 that

while both models achieve similar mean testing errors, the optimization time for F-CVX is

lower than that of CVX-IN.

6.4 Comparison on larger subsets

We then trained both models on 1000 training and testing samples each of Letter and

MNIST, and 750 training and testing samples each of COIL, G241N, Nested and USPS datasets.
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(a) Objective value at each iteration

(b) Objective value vs. time (in seconds)

Figure 3: Comparing the number of steps and the total time taken for both models to converge
to the global optima while training on 1000 samples of MNIST dataset. (a) Plots the objective
on the X-axis against the iterations on Y-axis. (b) Plots the objective on X-axis against the
local optimization time on Y-axis.
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(a) COIL (b) G241N

(c) Letter (d) MNIST

(e) CIFAR-SM (f) USPS

Figure 4: Time taken for optimization per 1000 samples of Letter and MNIST datasets, and 750
samples each of the rest. Y-axis shows the objective value and X-axis plots time (in seconds).
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(a) COIL (b) G241N

(c) Letter (d) MNIST

(e) CIFAR-SM (f) USPS

Figure 5: Time taken for optimization per 100 samples of each dataset. X-axis shows the
objective value and Y-axis plots time (in seconds) for 20 iterations of training for each model.
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COIL G241N Letter MNIST CIFAR-SM USPS

CVX-IN 14.267 15.6 4.8 9.2 23.867 9.2

F-CVX 14.133 14.533 6.3 8.667 22.0 9.067

TABLE II: Mean errors of models on 1000 samples from Letter and MNIST, and 750 samples
of the remaining datasets.

Once again, we see in Table II that both models achieve a similar test accuracy. Figure 6

shows F-CVX completing the 20 iterations significantly faster than the CVX-IN model, as also

demonstrated in Section 6.2. Figure 7 displays the testing accuracies over time for both models

and shows that the F-CVX model reaches the optimal accuracies achieved by these models

much faster than the CVX-IN model.

6.5 Scaling to larger datasets

A key merit of the F-CVX model is that for the first time, it is now possible to train on

10,000 samples. We evaluated this by using 10,000 training and testing samples from the MNIST

dataset and achieved 7.2% mean classification error. 10 iterations of local optimization under

this setting took 2 hours and 51 minutes. Figure 8 shows the training and testing accuracies

over 35 training iterations of the F-CVX model on 10,000 training and 10,000 testing samples

of the MNIST dataset. The total optimization time for performing 35 iterations of training

using the mentioned hardware is 9 hours and 47 minutes. To the best of our knowledge, no

previous convex neural network model has been able to achieve this.
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(a) COIL (b) G241N

(c) Letter (d) MNIST

(e) CIFAR-SM (f) USPS

Figure 6: Time taken for optimization per 1000 samples of Letter and MNIST datasets, and
750 samples of the remaining. X-axis plots the time (in seconds) and Y-axis plots objective
value over 20 iterations of training for each model.
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(a) COIL (b) G241N

(c) Letter (d) MNIST

(e) CIFAR-SM (f) USPS

Figure 7: Plots the testing accuracies over time for 85 training iterations of the F-CVX model
and 30 training iterations for CVX-IN model using 1000 samples of MNIST and Letter datasets,
and 750 samples of the rest. Y-axis plots the accuracy and X-axis plots the time (in seconds).
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Figure 8: Training and Testing accuracies over 35 training iterations of F-CVX model on 10,000
training samples of MNIST dataset.



CHAPTER 7

CONCLUSION AND FUTURE WORK

In this thesis, we introduced convex two-layer modeling with the problems involved in

the choice of loss functions and the use of parametric Bregman transfer. Key steps of local-

optimization in previous works was involving nested optimizations of a large matrices, inevitably

causing a huge bottle-neck in terms of optimization time while also preventing the models from

scaling to larger datasets.

We extended the idea from the previous works, by using the same objective functions but

modifying them just enough to allow local-optimization to be focused on non-nested low rank

matrices and closed-form strategies for the large matrix. This provides a significant boost to

the optimization time and allows the model to scale to 10,000 samples for the first time. To the

best of our knowledge, no known convex neural network model has achieved the same scale.

Although our empirical results show promise, some work towards establishing theoretical guar-

antees would be interesting. Further, extension of this model to leverage performance boosts

offered by high performance clusters and parallel processing would be fruitful.
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