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SUMMARY

Kernel audit logs are a rich source of information containing the history of causal depen-

dencies and information flows among system entities in a host system. The mainstream use of

kernel audit logs is for forensic tasks to investigate cyberattacks retrospectively. In this disser-

tation, we develop efficient methods that make use of kernel audit logs for complex real-time

security tasks, such as Advanced and Persistent Threat (APT) detection, attack scenario re-

construction, and cyber threat-hunting. To this end, we first process kernel audit logs into a

platform-neutral provenance graph stored in the main memory and use it as a foundation to

run various analytics. For APT detection, we develop techniques to produce a detection signal

indicating the presence of a coordinated set of suspicious activities. For real-time attack sce-

nario reconstruction, we develop an approach that utilizes information flow policies to identify

entities and events that are involved in cyberattacks. For cyber threat-hunting, we develop an

inexact graph pattern matching approach to align a query graph extracted from cyber threat

intelligence to a provenance graph constructed out of kernel audit logs.

The efficacy of the proposed methods is evaluated against real-world APT scenarios designed

for adversarial engagements. These experiments contain millions of records and collectively

involve months of audit log collection activity from a variety of hosts that run OS platforms

such as Linux, FreeBSD, and Windows. The results indicate that the proposed methods are

capable of efficiently searching these audit logs and pinpoint threats in real-time with high

precision and low false alarm rate. Besides, these methods effectively produce summaries of

xv



SUMMARY (Continued)

attack campaigns that assist investigators in cyber response operations. In summary, this

dissertation demonstrates that the low-level causal information inferred from kernel audit logs

could be utilized to achieve robust and reliable threat detection methods that efficiently pinpoint

threats and reveal the high-level picture of attacks by producing compact visual graphs of attack

steps.
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CHAPTER 1

INTRODUCTION

We are witnessing a rapid escalation in targeted cyberattacks (“Enterprise Advanced and

Persistent Threats (APTs)”) [5] conducted by skilled adversaries. These attacks are constantly

evolving and getting more sophisticated. To confront these attacks, cyber defenders utilize

various solutions such as Security Information and Event Management (SIEM) systems. These

defense solutions make reasoning by aggregating security-related events from multiple sources,

such as end-user devices, servers, network equipment IDS/IPS, firewalls, and so on. While these

systems are generally useful, they often lack (a) an understanding of the complex relationships

that exist between alerts and actual intrusion instances and (b) the precision needed to piece to-

gether attack steps that take place on different hosts over long periods of time (weeks, or in some

cases, months). Instead, significant manual effort and expertise are needed to piece together

numerous alarms emitted by multiple security tools. Consequently, many attack campaigns are

missed for weeks or even months [6, 7].

The problem of piecing together the causal chain of events leading to an attack was first

explored in Backtracker [8,9] by introducing the notion of provenance graphs constructed from

kernel audit logs. In these graphs, vertices represent subjects (processes) and objects (files,

sockets), and edges denote audit events (e.g., operations such as read, write, execute, and

connect). Provenance graphs provide a detailed history of the causal dependencies and flow of

1



2

information among system entities. For many years, security analysts have used provenance

graphs for forensic tasks to investigate cyberattacks retrospectively.

In this dissertation, we first process kernel audit logs into a provenance graph stored in

the main memory, which is suitable for running high-performance analytics. Leveraging this

graph, we develop fundamental approaches to perform a variety of security tasks, such as APT

detection, attack scenario reconstruction, and cyber threat-hunting. The proposed technologies

use the knowledge of provenance, in terms of causal linkages of activities in an enterprise

along with big data techniques to mount a better defense against the insidious attacks that

thwart current defenses and afflict enterprises today. In particular, this dissertation includes

(1) Sleuth [1], a tag-based approach for attack scenario reconstruction based on prioritizing

entities and events by their likeliness to be involved in cyberattacks, (2) Holmes [2], an APT

detection system that effectively leverages the correlation between suspicious information flows

that arise during an attacker campaign to produce a detection signal that indicates the presence

of a coordinated set of suspicious activities, and (3) Poirot [3], a novel inexact graph pattern

matching method that assesses an alignment between a query graph extracted from cyber threat

intelligence correlations and the provenance graph.

1.1 Dissertation Statement

Our main thesis is that the low-level causal information inferred from kernel audit logs could

be utilized to achieve robust and reliable threat detection methods that efficiently pinpoint

threats and reveal the high-level picture of attacks by producing compact visual graphs of

attack steps.
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1.2 Contributions

The contributions of this dissertation are as follows:

• We leverage a compact in-memory dependence graph representation of the kernel audit

logs, which serves as the basis for running various high-performance analytics.

• We develop a tag-based approach for identifying subjects, objects and events that are most

likely involved in attacks. Tags enable us to prioritize, focus our analysis, and summarize

our assessment of the trustworthiness and sensitivity of objects and subjects.

• In order to effectively contain advanced attack campaigns, we develop high-level scenario

graphs that provide a very compact, visual summary of the campaign at the moment.

Such a summary enables an analyst to quickly ascertain whether there is a significant

intrusion, understand how the attacker initially breached security, and determine the

impact of the attack.

• We formulates cyber threat-hunting as a graph pattern matching problem to reliably

detect known cyberattacks. The matching is conducted based on a novel graph similarity

metric which assesses an alignment between a query graph constructed out of Cyber threat

intelligence (CTI) correlations and a provenance graph constructed out of kernel audit

log records.

1.3 Dissertation Overview

This dissertation includes three main chapters investigating technologies that radically

harden enterprise security in three different aspects: Sleuth introduces a compact in-memory
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graph representation of kernel audit logs which is deployable in large enterprises and is designed

for timely attack scenario reconstruction (Chapter 3), Holmes incorporates signal correlation

for APT detection by fusing unreliable loose alerts into a strong detection signal (Chapter 4),

and Poirot that searches for the embedding of a certain threat behavior in the provenance

graph to uncover the steps of a successful attack campaign (Chapter 5). In the following, we

briefly explain each of the three main chapters of this dissertation.

1.3.1 Sleuth: Attack Scenario Reconstruction

Sleuth [1] is a system for reconstruction of attack scenarios on an enterprise host based

on real-time analysis of kernel audit logs. To provide an efficient event storage and analy-

sis framework, Sleuth exploits a compact main-memory representation of kernel audit logs.

Graph algorithms on main memory representation can be orders of magnitude faster than on-

disk representations, an important factor in achieving real-time analysis capabilities. In our

experiments, we were able to process 79 hours worth of audit data from a FreeBSD system in

14 seconds, with a main memory usage of 84MB. This performance represents an analysis rate

that is 20K times faster than the rate at which the data was generated.

Sleuth uses a tag-based approach to identify entities and events that are most likely in-

volved in attacks. Tags enable us to prioritize and focus our analysis by encoding an assessment

of trustworthiness and sensitivity of data as well as processes. This assessment is based on data

provenance derived from audit logs. In this sense, tags derived from audit data are similar to

coarse-grain information flow labels. Sleuth leverages a customizable policy framework that

can raise detection alerts based on entity tags.
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Starting from alerts produced by the attack detection component, our backward analysis

algorithm follows the dependencies in the graph to identify the sources of the attack. Starting

from the sources, we perform a full impact analysis of the actions of the adversary using a

forward search. We present several criteria for pruning these searches in order to produce a

compact graph. We also present a number of transformations that further simplify this graph

and produce a graph that visually captures the attack in a succinct and semantically meaningful

way. Experiments show that our tag-based approach is very effective: for instance, Sleuth can

analyze 38.5M events and produce an attack scenario graph with just 130 events, representing

five orders of magnitude reduction in event volume.

1.3.2 Holmes: Real-time APT Detection

A typical APT consists of a successful penetration (e.g., a drive-by-download or a spear-

phishing attack), reconnaissance, command and control (C&C) communication (sometimes us-

ing Remote Access Trojans (RATs)), privilege escalation (by exploiting vulnerabilities), lateral

movement through the network, exfiltration of confidential information, and so on. This se-

quence of correlated activities are know as APT kill-chain. The kill-chain provides a reference

to understand and map the motivations, targets, and actions of APT actors. Even though the

concrete attack steps may vary widely among different APTs, the high-level APT behavior of-

ten conforms to the same kill-chain. Our analysis of hundreds of APT reports from [5] suggests

that most APTs consist of a subset, if not all, of those steps. More importantly, we make the

observation that these steps need to be causally connected, and this connectedness is a major

indication that an attack is unfolding.
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Holmes [2] begins with host audit data and produces a detection signal that maps out the

stages of an ongoing APT campaign to the kill chain. To bridge the semantic gap between

low-level system-call view and the high-level kill-chain view, we build an intermediate layer

based on MITRE’s ATT&CK framework [10], which describes close to 200 behavioral patterns

defined as Tactics, Techniques, and Procedures (TTPs) observed in the wild. Each TTP defines

one possible way to realize a particular high-level capability. For instance, the capability of

persistence in a compromised Linux system can be achieved using 11 distinct TTPs, each of

which represents a possible sequence of lower level actions in the ATT&CK framework, e.g.,

installation of a rootkit, modification of boot scripts, and so on. These lower level actions are

closer to the level of abstraction of audit logs, so it is possible to describe TTPs in terms of

nodes and edges in the provenance graph.

Taking advantage of inter-TTP information flow dependencies, we correlate various TTPs

and map them to high-level APT steps. The final correlation result is summarized in the form

of a graph that we call a High-level Scenario Graph (HSG). The HSG provides a compact,

visual abstraction of the progress of the campaign at any moment. To distinguish the HSGs

that constitute an attack from the benign ones, our approach assigns a severity score to each

HSG and raises an alarm if this score bypasses a certain threshold.

1.3.3 Poirot: Cyber Threat-Hunting

Cyber threat intelligence (CTI) is being used to search for indicators of attacks that might

have compromised an enterprise network for a long time without being discovered. To have a

more effective analysis, CTI open standards have incorporated descriptive relationships showing
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how the indicators or observables are related to each other. However, these relationships are

either completely overlooked in information gathering or not used for threat-hunting. Hence,

a vast majority of the current threat-hunting approaches operates only over fragmented views

of cyber threats [11, 12], such as signatures (e.g., hashes of artifacts), suspicious file/process

names, and IP addresses (domain names).

Poirot [3] uses the relationships between Indicators of Compromise (IOC) artifacts, which

contain essential clues on the behavior of the attacks inside a compromised system, to uncover

the steps of a successful attack campaign. In a nutshell, given a graph-based representation of

IOCs and relationships among them that expresses the overall behavior of an APT, which we

call a query graph, our approach efficiently finds an embedding of this query graph in a much

larger provenance graph, which contains a representation of kernel audit logs over a long period

of time. we formulate threat-hunting as a graph pattern matching (GPM) problem searching

for causal dependencies or information flows among system entities that are similar to those

described in the query graph. Our technical approach is based on a novel similarity metric

which assesses an alignment between a query graph constructed out of CTI correlations and a

provenance graph constructed out of kernel audit log records.

1.4 Dissertation Structure

The organization of the remainder of this dissertation is as follows: In Chapter 2, we provide

background material on APT and the defensive approaches and tools. Chapters 3, 4, and 5

present Sleuth, Holmes and Poirot, respectively. Chapter 6 highlights the related work and
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compares it with the work presented in this dissertation. Finally, we provide conclusions on

our work and the future research directions in Chapter 7.



CHAPTER 2

BACKGROUND

This chapter includes excerpts and figures from material that is published in [1–4].

In this chapter, we start with providing necessary background information on advanced

persistent threats and current defensive approaches. Then, we explain event correlation as a

necessary method to confront APT campaigns and mention current approaches. Consequently,

we describe kernel audit logs as a source of data containing history of system activities and

mention various information flow tracking techniques suitable for event correlation. Finally,

we elaborate on Transparent Computing datasets that are used for evaluation of our work.

While the material in this chapter is not comprehensive, it gives the reader of this dissertation

the required background information to understand the concepts introduced in the following

chapters.

2.1 Advanced Persistent Threats

Advanced Persistent Threat is a targeted and stealthy cyberattack that follow a multi-stage

threat workflow [13] to break into an enterprise network with the goal of harvesting invaluable

information, altering, or destroying critical infrastructures. APT actors are advanced and so-

phisticated in terms of the resource, tools and knowledge, and they hide their activities between

other normal events to persist for a long period of time (weeks, or in some cases, months). The

Internet Society’s Online Trust Alliance has estimated occurrence of two million cyberattacks

9
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TABLE I

Some of the most devastative cyberattacks, targeting different sectors
Name Year Description

Titan Rain 2003 Targeting US military (called the greatest transfer of wealth in history) stealing blueprints of planes,
space-based lasers, missile navigation and nuclear submarines

Stuxnet 2010 Targeting Nuclear Facilities (called first Digital Weapon)
Target 2013 40 million payment card credentials and 70 million customer records lost
Yahoo 2014 Information associated with at least 500 million user accounts was stolen
OPM 2015 Described by federal officials as among the largest breaches of government data in the history of the

United States
Deep Panda 2015 Targeting Health Care Services (breach of financial and medical records of up to 80 million customers)

Black Energy 2016 destroyed all available data on the hard drives of a Power Grid Systems
Equifax 2017 Exposed the names, SSN, birth dates, addresses, and, in some instances, driver’s license numbers of about

44 percent of the current American population
Marriott 2018 Hundreds of millions of customer records, including credit card and passport numbers, being exfiltrated

by the attackers

in 2018, which collectively have resulted in more than $45 billion losses. In addition to financial

losses, cyberattacks have the potential to cause life threatening disasters, by targeting critical

infrastructures, e.g., PLCs compromised in the Stuxnet worm [14]. Table I represents some of

the most devastative cyberattacks, targeting different sectors, since 2003. As shown, business

corporations, governmental organizations, religious or educational institutions are all targets of

cyberattacks.

In one of the first ever detailed reports on Advanced and Persistent Threats (entitled

APT1 [13]), the security firm Mandiant disclosed the goals and activities of a global APT

actor. The activities included stealing of hundreds of terabytes of sensitive data (including

business plans, technology blueprints, and test results) from at least 141 organizations across a

diverse set of industries. They estimated the average duration of persistence of malware in the

targeted organizations to be 365 days. Since then, there has been a growing list of documented

APTs involving powerful actors, including nation-state actors, on the global scene.



11

Initial

Compromise

Establish

Foothold
Escalate

Privileges

Complete

Mission

Internal

Recon

Move

Laterally
Maintain
Presence

Figure 1. APT Lifecycle.

Understanding the motivations and operations of the APT actors plays a vital role in the

challenge of addressing these threats. To further this understanding, the Mandiant report also

offered an APT lifecycle model (Figure 1), also known as the kill-chain, that allows one to

gain perspective on how the APT steps collectively achieve their actors’ goals. A typical APT

attack consists of a successful penetration (e.g., a drive-by-download or a spear-phishing attack),

reconnaissance, command and control (C&C) communication (sometimes using Remote Access

Trojans (RATs)), privilege escalation (by exploiting vulnerabilities), lateral movement through

the network, exfiltration of confidential information, and so on. In short, the kill-chain provides

a reference to understand and map the motivations, targets, and actions of APT actors.

APTs have grown in sophistication since the publication of the first Mandiant report. The

details of various exploits used have varied over the years, but the high-level steps have remained
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mostly the same. While surveying about 300 APT reports [5], we observed that most of the

APTs still follow the steps that mostly conform to the kill-chain shown in Figure 1.

2.2 Defensive Approaches

In this section, we introduce different defensive approaches security analysts use to confront

cyberattacks. First, we explain intrusion detection techniques, and then, we explain forensics

and threat-hunting as two post-attack analysis techniques.

2.2.1 Intrusion Detection

The main goal of Intrusion Detection Systems (IDS) is to find the malicious activities,

preferably in real time, and then, block and/or report them to system administrators. There

are two broad categories of intrusion detection systems, i.e., host-based and network-based.

Network IDS operates on sensors deployed on the network, while host-based IDS operates on

basis of log files produced by software running on host computers. Commercially, network-

based sensors have proven to be far more viable than host-based sensors. Network sensors can

be deployed in just a few locations, e.g., network gateways, yet monitor an entire enterprise

network. In contrast, host-based sensors need to be deployed on every host. More importantly,

their implementation will differ with the specific OS and software deployed on a host. The

drawback of network sensors is that they provide very limited insight into software systems

that are both the targets as well as agents of intrusions.

The algorithms and techniques used by IDSes could be divided into three main categories:

misuse detection, anomaly detection, and specification-based detection.
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Misuse detection is one of the earliest techniques used by intrusion detection systems to

identify infected files. This technique relies on predefined attack signatures that are extracted

from known attacks. Consequently, it is relatively easy to interpret the alerts as the matched

signatures are associated with specific attack names or identifiers. The biggest limitation of

this technique is in discovering unknown threats that do not have a known signature. As

cyberattacks become more sophisticated, they may involve zero-day exploits or mutations of

known exploits with different signatures, thereby escaping detection.

Anomaly-based intrusion detection is the process of identifying unexpected events which

differ from the norm. To this end, a model of normal behavior is learned during a training

phase in a benign environment. Next, this model is used to detect deviations during the test

phase in an operation environment. Anomaly detection addresses the main limitation of misuse

detection techniques in being able to detect novel attacks. However, their real-world use has

been hampered by a relatively high false positive rate, as well as the need for training.

Specification-based intrusion detection focuses on behavior rather than unique signatures

of specific attacks. As a result, it is capable of detecting unknown threats. However, this

technique has not seen much deployment because it is challenging to define accurate behavioral

specifications.

2.2.2 Forensics and Threat-hunting

Forensic analysis is the act of investigating and examining evidences after a detection signal

is raised from intrusion detection systems. This process traces evidences related to the incident

to provide a more precise description and additional context of an attack. This information
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would help us in finding the origin of the attack, how the attack is conducted, and the scale of

the attack. As a result, security analysts can find the vulnerable services, improve their systems

to prevent this attack in future, discover the affected units which are under influence of the

attackers, and quarantine or recover these units to stop additional damage from this attack.

When the reports related to an APT is released, a common question that emerges among

enterprise security analysts is if their enterprise has been the target of that APT. This process

is commonly known as Threat-hunting. Answering this question with a high level of confidence

often requires lengthy and complicated searches and analysis over host and network logs of the

enterprise, recognizing entities that appear in the IOC descriptions among those logs and finally

assessing the likelihood that the specific APT successfully infiltrated the enterprise.

Threat-hunting is different from forensic analysis in that it does not start from a detection

signal. In threat-hunting, security analysts proactively and iteratively search through the logs

to discover the attacks which have evaded the existing security solutions. These searches usually

look for IOCs that with high confidence can indicate the occurrence of an attack, such as hash

values of malware files, low reputation IP addresses and domain names, or unique names used

by certain attackers.

2.3 Event Correlation

As APT campaigns employ multiple attack vectors, it poses a great challenge on defensive

approaches which have isolated views. To derive a high-level picture of an ongoing APT cam-

paign, events coming from heterogeneous sources are required to be processed and correlated.

Enterprises today, are capable of gathering an extremely rich set of telemetry data from dif-
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ferent sources, such as firewalls, IPS/IDS, endpoint and server security systems, identity and

access management tools, application security tools, application firewalls and database fire-

walls. However, there is limited capabilities in relating or mapping these sources together. In

particular, it is difficult for a security analyst to distinguish truly significant attacks — the

proverbial “needle-in-a-haystack” — from background noise, and it remains a major challenge

to accurately “connect the dots”, i.e., piece together fragments of an attack campaign that span

multiple applications or hosts and extend over a long time period.

Security Information and Event Management (SIEM) systems aggregate security-related

events and alerts from multiple sources and make reasoning by correlating them. Some examples

of these systems are Splunk [15], LogRhythm [16] and IBM QRadar [17]. Research in this area

falls into the following main categories [18]:

• Statistical analysis: In this approach [19], successive steps of a multi-step attack are

correlated based on statistical features of alerts that occur temporally close to each other.

However, as attacks are very rare events and the amount of available training data is often

limited, the managing of false positives is very difficult.

• Precondition-based analysis: In this method, two attacks are correlated if the post-

condition of an attack contributes to the precondition of a subsequent attack [20]. How-

ever, this type of reasoning requires attack models (describing pre- and post-conditions)

to be developed which might not be always practical.

• Graph-based analysis: This technique models the entities involved in a coordinated set

of attack stages in a graph structure. Then, various graph analytics could be applied
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for alarm correlation [21], such as spectral clustering and page rank. It is also possible

to correlate alarms based on learning how predictable a correlation between two events

might be [22].

In this dissertation, we use kernel audit logs as an invaluable source to piece together the

causal chain of events and activities. In the next section, we provide necessary background

information about the kernel audit logs.

2.4 Kernel Audit Logs

Applications do not have permission to directly access system resources such as CPU, mem-

ory, or Input/Output (I/O). The kernel of the operating system acts as a bridge between

software applications and system resources, and applications should requests a service from

the kernel. These requests, which are called system calls, are processed by the kernel and a

response is sent to the applications. The kernel has the ability to intercept every system call

and record them, and there are different tools that could be used for this purpose. For example,

auditd can be the source of audit data in Linux, while it can be dtrace for BSD, and ETW

for Windows. To be consistent and independent of the low-level system details, we collect and

process this raw audit data into an OS-neutral format. This is the input format that we use

for the systems proposed in this dissertation. This input captures events relating to principals

(users), files (e.g., operations for I/O, file creation, ownership, and permission), memory (e.g.,

mprotect and mmap) processes (e.g., creation, and privilege change), and network connections.

To provide a convenient formalism for reasoning about system activity and allow tracking

causality and information flow efficiently, the kernel audit logs could be represented as a graph,
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TABLE II

System event types
Purpose Relevant System Calls
Information Flow clone (process), fork , msgsnd, msgrcv, write, send, read, recv, exec
Creation open, creat, dup, link, socket, socketpair
Preparatory lseek, connect, listen, accept, bind, link
Termination close, exit, exit group, unlink, kill

called the provenance graph, which is a labeled, typed, and directed graph. In this graph,

nodes represent system entities, which have different types such as files and processes, while

edges represent information flow and causal dependency among these nodes taking into account

the direction. Not all the system calls indicate an information flow or a causal dependency,

and therefore are not required to be collected. For example, Table II shows some of the most

important security related system calls that are needed for a BSD operating system. In this

table, we show different categories of system calls according to their purpose. Some system

calls are responsible for the actual information flow between objects. For instance, when a new

process is created via a clone system call, it inherits the file descriptors of its parent. Therefore,

there is information flow from the parent to the child process. A subset of the system calls (third

row of Table II) is responsible for initializing and setting up data structures rather than dealing

with information flow directly. For example, the socketpair system call creates two sockets.

Preparatory system calls initialize data structures, and in certain cases provide the provenance

of the subsequent data. For example, by checking the lseek system call and considering file

offsets, we only track specific offsets of a file to prevent unnecessary dependencies. Termination

system calls deal with the destruction of objects.
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TABLE III

Information flow events.
Relevant System Calls From To Source Destination
clone (process), fork, vfork, rfork, msgsnd Process Process event caller arg(s)
wait, msgrcv Process Process arg(s) event caller
write, pwrite, writev, pwritev, send, sendto, sendmsg Process File/Socket event caller arg(s)
read, recv, recvfrom, recvmsg, execl, execv, execle, execve, execlp, execvp File/Socket Process arg(s) event caller

To construct a provenance graph from the sequence of system calls, we need to extract

the process initiating the system call, the type of the system call, and their arguments. Ta-

ble III shows some examples of how certain system calls are converted to nodes and edges of

a provenance graph. The second and third columns show the direction of the edge and the

types of nodes (File, socket, process), while the last two columns show how the node names and

attributes are extracted from the system call event. we use arg(s) to indicate the argument(s)

of system calls to refer to the object(s) that the caller process manipulates. In particular, de-

pending on the system call, the argument type may be the id of a process, the name of a file,

or a descriptor referring to a file/socket. As shown in the table, there are different kinds of

information flow between system objects. These include: (i) from a process to another process

initiated by events like fork and clone, which indicates a causal dependency between them, (ii)

from a process to a file/socket initiated by events like write and send, and (iii) from a file/socket

to a process initiated by events such as read, and receive, which indicate an information flow.

Figure 2 shows a snippet of a provenance graph. The graph on the left shows the “SSH”

daemon process which has created two “bash” processes, and the graph on the right is generated

as the result of Firefox browser downloading an executable file (“Openme.exe”) from an IP
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Figure 2. Sample provenance graph snippets

address (“131.193.32.29:80”). The direction of edges show that the two “bash” processes are

children of “SSH” and are causally dependent to it. Also, the direction indicates the flow of

information originating from the socket connection to the downloaded file. To be consistent,

we use certain node shapes to distinguish entity types. For this figure and the rest of this

dissertation, Ovals, diamonds, rectangles, and stars represent processes, sockets, files, and

users, respectively. In addition, memory objects and registry entries are both represented

by pentagons. As it is shown, the provenance graphs leverage the full historical context of a

system and can include hundreds of millions/billions nodes.

2.5 Information Flow Analysis

The high-level idea in information flow analysis is to tag (taint) an interesting data and

track it as it propagates through the system. Information flow analysis could be done in

different granularities, i.e., fine-grained and coarse-grained. In fine-grained information flow

analysis [23–25], a shadow memory is used that keeps a tag for every word in memory. When

the tainted data influence the value of some memory region, those parts get tainted with the tag
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bits. This type of tracking typically requires instrumenting applications (e.g., using Pin [26])

and is infeasible because of too high overhead (usually around 10×-20×).

On the contrary, coarse-grained information flow analysis mainly focuses on system call

data (kernel audit logs) which its collection imposes low runtime overhead (around 2%). In

particular, one can initiate forward or backward graph traversals on a provenance graph built

from the kernel audit logs to investigate cyberattacks. For example, after an attack is detected,

system analysts use the detection point as a seed to initiate backward tracking strategies to

determine the root-cause of that attack. Similarly, system analysts can initiate forward tracking

methods to find out the impacts of the attack and the entities that are affected.

The lower overhead of coarse-grained information flow analysis comparing to the fine-grained

one comes at the cost of losing the precision, and sometimes, the coarse granularity of system

calls may limit reasoning about information flows. For example, when a process reads multiple

encrypted files and writes the decrypted content to multiple files in random order, knowing

which of the decrypted files corresponds to which one of the encrypted ones is a challenge that

cannot be overcome without fine-grained and memory-level information flow tracking.

2.6 Transparent Computing Datasets

The work presented in this dissertation is evaluated against datasets released by Trans-

parent Computing (TC) program for adversarial engagements. The TC program [27] is a

DARPA effort aiming to add more transparency to computing systems by using minimal over-

head components to monitor interactions during system operation. This program involved

multiple red-team, blue-team adversarial engagements which some are publicly available [28].
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In these engagements, the red-team has been responsible for simulating multiple cyberattacks

on a network consisting of different platforms, such as Linux, FreeBSD, and Windows.

Before the engagements, each machine was set up with some vulnerable software that later

gets exploited. During the engagements, kernel audit logs were being collected, processed, and

converted to a common data representation for ease of analysis1. To further mix normal and

attack logs, the red-team also performed benign activities on the target hosts in parallel with

attacks. Routine system activities include, but are not limited to, web browsing, checking

email, software upgrading, administrative tasks using PowerShell (in Windows), running pro-

grams that require administrative privileges, and so on. Collectively, these engagements involve

months of audit log collection activity, while attacks constitute less than 0.001% of the audit

data volume.

1While some additional finer-granularity data might be provided in some platforms (such as Linux
dataset containing unit abstraction data [25]), we have not considered them in our evaluation.



CHAPTER 3

Sleuth: REAL-TIME ATTACK SCENARIO RECONSTRUCTION

FROM COTS AUDIT DATA

This chapter includes excerpts and figures from material that is published in [1].

This chapter presents Sleuth, a system that consumes kernel audit logs from different

operating systems and process them into a platform-neutral graph representation in memory.

Both graph representation and in-memory storage provide a basis suitable for running high

performance computations on kernel audit logs. This graph representation serves as the basis

for the systems presented in the next chapters (Holmes and Poirot) of this dissertation.

In addition to proposing an efficient in-memory graph representation, Sleuth can also alert

analysts in real-time about an ongoing campaign, and provide them with a compact, visual

summary of the activity in seconds or minutes after the attack. This would enable a timely

response before enormous damage is inflicted on the victim enterprise.

3.1 Introduction

Using kernel audit logs for real-time analytics such as attack detection poses the following

additional challenges over a purely forensic analysis:

1. Event storage and analysis: How can we store the millions of records from event streams

efficiently and have algorithms sift through this data in a matter of seconds?

22
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2. Prioritizing entities for analysis: How can we assist the analyst, who is overwhelmed with

the volume of data, prioritize and quickly “zoom in” on the most likely attack scenario?

3. Scenario reconstruction: How do we succinctly summarize the attack scenario, starting

from the attacker’s entry point and identifying the impact of the entire campaign on the

system?

4. Dealing with common usage scenarios: How does one cope with normal, benign activities

that may resemble activities commonly observed during attacks, e.g., software downloads?

5. Fast, interactive reasoning: How can we provide the analyst with the ability to efficiently

reason through the data, say, with an alternate hypothesis?

Figure 3 provides an overview of our approach. Sleuth assumes that attacks initially come

from outside the enterprise. For example, an adversary could start the attack by hijacking a web

browser through externally supplied malicious input, by plugging in an infected USB memory

stick, or by supplying a zero-day exploit to a network server running within the enterprise. We

assume that the adversary has not implanted persistent malware on the host before Sleuth

started monitoring the system. We also assume that the OS kernel and audit systems are

trustworthy.

The first contribution of Sleuth, which addresses the challenge of efficient event storage

and analysis, is the development of a compact main-memory dependence graph representation

(Section 3.2). Graph algorithms on main memory representation can be orders of magnitude

faster than on-disk representations, an important factor in achieving real-time analysis capabil-

ities. In our experiments, we were able to process 79 hours worth of audit data from a FreeBSD
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Figure 3. Sleuth System Overview

system in 14 seconds, with a main memory usage of 84MB. This performance represents an

analysis rate that is 20K times faster than the rate at which the data was generated.

The second major contribution of Sleuth is the development of a tag-based approach for

identifying subjects, objects and events that are most likely involved in attacks. Tags enable

us to prioritize and focus our analysis, thereby addressing the second challenge mentioned

above. Tags encode an assessment of trustworthiness and sensitivity of data (i.e., objects) as

well as processes (subjects). This assessment is based on data provenance derived from audit

logs. In this sense, tags derived from audit data are similar to coarse-grain information flow

labels. Our analysis can naturally support finer-granularity tags as well, e.g., fine-grained taint

tags [29, 30], if they are available. Tags are described in more detail in Section 3.3, together

with their application to attack detection.

A third contribution of Sleuth is the development of novel algorithms that leverage tags

for root-cause identification and impact analysis (Section 3.5). Starting from alerts produced

by the attack detection component shown in Figure 3, our backward analysis algorithm follows
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the dependencies in the graph to identify the sources of the attack. Starting from the sources,

we perform a full impact analysis of the actions of the adversary using a forward search. We

present several criteria for pruning these searches in order to produce a compact graph. We

also present a number of transformations that further simplify this graph and produce a graph

that visually captures the attack in a succinct and semantically meaningful way, e.g., the graph

in Figure 5. Experiments show that our tag-based approach is very effective: for instance,

Sleuth can analyze 38.5M events and produce an attack scenario graph with just 130 events,

representing five orders of magnitude reduction in event volume.

The fourth contribution of Sleuth, aimed at tackling the last two challenges mentioned

above, is a customizable policy framework (Section 3.4) for tag initialization and propagation.

Our framework comes with sensible defaults, but they can be overridden to accommodate

behaviors specific to an OS or application. This enables tuning of our detection and analysis

techniques to avoid false positives in cases where benign applications exhibit behaviors that

resemble attacks. (See Section 3.6.6 for details.) Policies also enable an analyst to test out

“alternate hypotheses” of attacks, by reclassifying what is considered trustworthy or sensitive

and re-running the analysis. If an analyst suspects that some behavior is the result of an attack,

they can also use policies to capture these behaviors, and rerun the analysis to discover its cause

and impact. Since we can process and analyze audit data tens of thousands of times faster than

the rate at which it is generated, efficient, parallel, real-time testing of alternate hypotheses is

possible.
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The final contribution of Sleuth is an experimental evaluation (Section 3.6), based mainly

on a TC dataset (described in Section 2.6). In this evaluation, attack campaigns resembling

modern APTs were carried out on Windows, FreeBSD and Linux hosts over a two week period.

In this evaluation, Sleuth was able to:

• process, in a matter of seconds, audit logs containing tens of millions of events generated

during the engagement;

• successfully detect and reconstruct the details of these attacks, including their entry

points, activities in the system, and exfiltration points;

• filter away extraneous events, achieving very high reductions rates in the data (up to

100K times), thus providing a clear semantic representation of these attacks containing

almost no noise from other activities in the system; and

• achieve low false positive and false negative rates.

Our evaluation is not intended to show that we detected the most sophisticated adversary;

instead, our point is that, given several unknown possibilities, the prioritized results from our

system can be right on spot in real-time, without any human assistance. Thus, it really fills a

gap that exists today, where forensic analysis seems to be primarily initiated manually.

3.2 Main Memory Dependency Graph

To support fast detection and real-time analysis, we store dependencies in a graph data

structure. One possible option for storing this graph is a graph database. However, the per-

formance [31] of popular databases such as Neo4J [32] or Titan [33] is limited for many graph
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algorithms unless main memory is large enough to hold most of data. Moreover, the memory

use of general graph databases is too high for our problem. Even STINGER [34] and Net-

workX [35], two graph databases optimized for main-memory performance, use about 250 bytes

and 3KB, respectively, per graph edge [31]. The number of audit events reported on enterprise

networks can easily range in billions to tens of billions per day, which will require main memory

in the range of several terabytes. In contrast, we present a much more space-efficient depen-

dence graph design that uses only about 10 bytes per edge. In one experiment, we were able

to store 38M events in just 329MB of main memory.

The dependency graph is a per-host data structure. It can reference entities on other hosts

but is optimized for the common case of intra-host reference. The graph represents two types of

entities: subjects, which represent processes, and objects, which represent entities such as files,

pipes, and network connections. Subject attributes include process id (pid), command line,

owner, and tags for code and data. Objects attributes include name, type (file, pipe, socket,

etc.), owner, and tags.

Events reported in the audit log are captured using labeled edges between subjects and

objects or between two subjects. For brevity, we use UNIX names such as read, connect,

and execve for events. A detailed explanation of the techniques that are developed to reduce

storage requirements of Sleuth was later published in [36].

3.3 Tags and Attack Detection

We use tags to summarize our assessment of the trustworthiness and sensitivity of objects

and subjects. This assessment can be based on three main factors:
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• Provenance: the tags on the immediate predecessors of an object or subject in the depen-

dence graph,

• Prior system knowledge: our knowledge about the behavior of important applications,

such as remote access servers and software installers, and important files such as /etc/passwd

and /dev/audio, and

• Behavior: observed behavior of subjects, and how they compare to their expected behav-

ior.

We have developed a policy framework, described in Section 3.4, for initializing and propagating

tags based on these factors. In the absence of specific policies, a default policy is used that

propagates tags from inputs to outputs. The default policy assigns to an output the lowest

among the trustworthiness tags of the inputs, and the highest among the confidentiality tags.

This policy is conservative: it can err on the side of over-tainting, but will not cause attacks to

go undetected, or cause a forward (or backward) analysis to miss objects, subjects or events.

Tags play a central role in Sleuth. They provide important context for attack detection.

Each audited event is interpreted in the context of these tags to determine its likelihood of

contributing to an attack. In addition, tags are instrumental for the speed of our forward and

backward analysis. Finally, tags play a central role in scenario reconstruction by eliminating

vast amounts of audit data that satisfy the technical definition of dependence but do not

meaningfully contribute to our understanding of an attack.

3.3.1 Tag Design

We define the following trustworthiness tags (t-tags):
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• Benign authentic tag is assigned to data/code received from sources trusted to be benign,

and whose authenticity can be verified.

• Benign tag reflects a reduced level of trust than benign authentic: while the data/code is

still believed to be benign, adequate authentication hasn’t been performed to verify the

source.

• Unknown tag is given to data/code from sources about which we have no information on

trustworthiness. Such data can sometimes be malicious.

Policies define what sources are benign and what forms of authentication are sufficient. In the

simplest case, these policies take the form of whitelists, but we support more complex policies

as well. If no policy is applicable to a source, then its t-tag is set to unknown.

We define the following confidentiality tags (c-tags), to reason about information stealing

attacks:

• Secret: Highly sensitive information, such as login credentials and private keys.

• Sensitive: Data whose disclosure can have a significant security impact, e.g., reveal vul-

nerabilities in the system, but does not provide a direct way for an attacker to gain access

to the system.

• Private: Data whose disclosure is a privacy concern, but does not necessarily pose a

security threat.

• Public: Data that can be widely available, e.g., on public web sites.
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An important aspect of our design is the separation between t-tags for code and data. Specif-

ically, a subject (i.e., a process) is given two t-tags: one that captures its code trustworthiness

(code t-tag) and another for its data trustworthiness (data t-tag). This separation significantly

improves attack detection. More importantly, it can significantly speed up forensic analysis by

focusing it on fewer suspicious events, while substantially reducing the size of the reconstructed

scenario. Note that confidentiality tags are associated only with data (and not code).

Pre-existing objects and subjects are assigned initial tags using tag initialization policies.

Objects representing external entities, such as a remote network connection, also need to be

assigned initial tags. The rest of the objects and subjects are created during system execution,

and their tags are determined using tag propagation policies. Finally, attacks are detected using

behavior-based policies called detection policies.

As mentioned before, if no specific policy is provided, then sources are tagged with un-

known trustworthiness. Similarly, in the absence of specific propagation policies, the default

conservative propagation policy is used.

3.3.2 Tag-based Attack Detection

An important constraint in Sleuth is that we are limited to information available in audit

data. This suggests the use of provenance reflected in audit data as a possible basis for detection.

Since tags are a function of provenance, we use them for attack detection. Note that in our

threat model, audit data is trustworthy, so tags provide a sound basis for detection.

A second constraint in Sleuth is that detection methods should not require detailed

application-specific knowledge. In contrast, most existing intrusion detection and sandbox-
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ing techniques interpret each security-sensitive operation in the context of a specific application

to determine whether it could be malicious. This requires expert knowledge about the applica-

tion, or in-the-field training in a dynamic environment, where applications may be frequently

updated.

Instead of focusing on application behaviors that tend to be variable, we focus our detection

techniques on the high-level objectives of most attackers, such as backdoor insertion and data

exfiltration. Specifically, we combine reasoning about an attacker’s motive and means. If an

event in the audit data can help the attacker achieve his/her key high-level objectives, that

would provide the motivation and justification for using that event in an attack. But this is not

enough: the attacker also needs the means to cause this event, or more broadly, influence it.

Note that our tags are designed to capture means: if a piece of data or code bears the unknown

t-tag, then it was derived from (and hence influenced by) untrusted sources.

As for the high-level objectives of an attacker, several reports and white papers have iden-

tified that the following steps are typical in most advanced attack campaigns [5, 13,37]:

1. Deploy and run attacker’s code on victim system.

2. Replace or modify important files, e.g., /etc/passwd or ssh keys.

3. Exfiltrate sensitive data.

Attacks with a transient effect may be able to avoid the first two steps, but most sophisticated

attacks, such as those used in APT campaigns, require the establishment of a more permanent

footprint on the victim system. In those cases, there does not seem to be a way to avoid one
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or both of the first two steps. Even in those cases where the attacker’s goal could be achieved

without establishing a permanent base, the third step usually represents an essential attacker

goal.

Based on the above reasoning, we define the following policies for attack detection that

incorporate the attacker’s objectives and means:

• Untrusted code execution: This policy triggers an alarm when a subject with a higher

code t-tag executes (or loads) an object with a lower t-tag1.

• Modification by subjects with lower code t-tag: This policy raises an alarm when a subject

with a lower code t-tag modifies an object with a higher t-tag. Modification may pertain

to the file content or other attributes such as name, permissions, etc.

• Confidential data leak: An alarm is raised when untrusted subjects exfiltrate sensitive

data. Specifically, this policy is triggered on network writes by subjects with a sensitive

c-tag and a code t-tag of unknown.

1Customized policies can be defined for interpreters such as bash so that reads are treated the same
as loads.
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• Preparation of untrusted data for execution: This policy is triggered by an operation by a

subject with a code t-tag of unknown, provided this operation makes an object executable.

Such operations include chmod and mprotect1,2.

It is important to note that “means” is not diluted just because data or code passes through

multiple intermediaries. For instance, the untrusted code policy does not require a direct load

of data from an unknown web site; instead, the data could be downloaded, extracted, uncom-

pressed, and possibly compiled, and then loaded. Regardless of the number of intermediate

steps, this policy will be triggered when the resulting file is loaded or executed. This is one of

the most important reasons for the effectiveness of our attack detection.

Today’s vulnerability exploits typically do not involve untrusted code in their first step, and

hence won’t be detected by the untrusted code execution policy. However, the eventual goal of

an attacker is to execute his/her code, either by downloading and executing a file, or by adding

execute permissions to a memory page containing untrusted data. In either case, one of the

above policies can detect the attack. A subsequent backward analysis can help identify the first

step of the exploit.

Additional detector inputs can be easily integrated into Sleuth. For instance, if an external

detector flags a subject as a suspect, this can be incorporated by setting the code t-tag of the

1Binary code injection attacks on today’s OSes ultimately involve a call to change the permission of
a writable memory page so that it becomes executable. To the extent that such memory permission
change operations are included in the audit data, this policy can spot them.

2Our implementation can identify mprotect operations that occur in conjunction with library loading
operations. This policy is not triggered on those mprotect’s.
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subject to unknown. As a result, the remaining detection policies mentioned above can all

benefit from the information provided by the external detector. Moreover, setting of unknown

t-tag at suspect nodes preserves the dependency structure between the graph vertices that cause

alarms, a fact that we exploit in our forensic analysis.

The fact that many of our policies are triggered by untrusted code execution should not be

interpreted to mean that they work in a static environment, where no new code is permitted

in the system. Indeed, we expect software updates and upgrades to be happening constantly,

but in an enterprise setting, we don’t expect end users to be downloading unknown code from

random sites. Accordingly, we subsequently describe how to support standardized software

updating mechanisms such as those used on contemporary OSes.

3.4 Policy Framework

We have developed a flexible policy framework for tag assignment, propagation, and attack

detection. We express policies using a simple rule-based notation, e.g.,

exec(s, o) : o.ttag < benign→ alert("UntrustedExec")

This rule is triggered when the subject s executes a (file) object o with a t-tag less than benign.

Its effect is to raise an alert named UntrustedExec. As illustrated by this example, rules are

generally associated with events, and include conditions on the attributes of objects and/or

subjects involved in the event. Attributes of interest include:

• name: regular expressions can be used to match object names and subject command lines.

We use Perl syntax for regular expressions.
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• tags: conditions can be placed on t-tags and c-tags of objects and/or subjects. For

subjects, code and data t-tags can be independently accessed.

• ownership and permission: conditions can be placed on the ownership of objects and

subjects, or permissions associated with the object or the event.

The effect of a policy depends on its type. The effect of a detection policy is to raise an alarm.

For tag initialization and propagation policies, the effect is to modify tag(s) associated with the

object or subject involved in the event. While we use a rule-based notation to specify policies

in this chapter, in our implementation, each rule is encoded as a (C++) function.

To provide a finer degree of control over the order in which different types of policies are

checked, we associate policies with trigger points instead of events. In addition, trigger points

provide a level of indirection that enables sharing of policies across distinct events that have a

similar purpose. Table IV shows the trigger points currently defined in our policy framework.

The first column identifies events, the second column specifies the direction of information flow,

and the last two columns define the trigger points associated with these events.

Note that we use a special event called define to denote audit records that define a new

object. This pseudo-event is assumed to have occurred when a new object is encountered for the

first time, e.g., establishment of a new network connection, the first mention of a pre-existing

file, creation of a new file, etc. The remaining events in the table are self-explanatory.

When an event occurs, all detection policies associated with its alarm trigger are executed.

Unless specifically configured, detection policies are checked only when the tag of the target

subject or object is about to change. (“Target” here refers to the destination of data flow in
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an operation.) Following this, policies associated with the event’s tag triggers are tried in the

order in which they are specified. As soon as a matching rule is found, the tags specified by this

rule are assigned to the target of the event, and the remaining tag policies are not evaluated.

Our current detection policies are informally described in the previous section. We therefore

focus in this section on our current tag initialization and propagation policies.

3.4.1 Tag Initialization Policies

These policies are invoked at the init trigger, and are used to initialize tags for new objects,

or preexisting objects when they are first mentioned in the audit data. Recall that when a

subject creates a new object, the object inherits the subject’s tags by default; however, this can

be overridden using tag initialization policies.

Our current tag initialization policy is as follows. Note the use of regular expressions to

conveniently define initial tags for groups of objects.

init(o): match(o.name, "^IP:(10\.0|127)")→ o.ttag = BENIGN AUTH, o.ctag = PRIVATE

init(o): match(o.name, "^IP:")→ o.ttag = UNKNOWN, o.ctag = PRIVATE

TABLE IV

Edges with policy trigger points. In the direction column, S indicates subject, and O indicates
object. The next two columns indicate trigger points for detection policies and tag setting

policies.
Event Direction Alarm trigger Tag trigger
define init
read O→S read propRd

load, execve O→S exec propEx
write S→O write propWr

rm, rename S→O write
chmod, chown S→O write, modify

setuid S→S propSu
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init(o): o.type == FILE→ o.ttag = BENIGN AUTH, o.ctag = PUBLIC

The first rule specifies tags for intranet connections, identified by address prefixes 10.0 and

127 for the remote host. It is useful in a context where Sleuth isn’t deployed on the remote

host1. The second rule states that all other hosts are untrusted. All preexisting files are assigned

the same tags by the third rule. Our implementation uses two additional policies that specify

c-tags.

3.4.2 Tag Propagation Policies

These policies can be used to override default tag propagation semantics. Different tag

propagation policies can be defined for different groups of related event types, as indicated in

the “Tag trigger” column in Table IV.

Tag propagation policies can be used to prevent “over-tainting” that can result from files

such as .bash history that are repeatedly read and written by an application each time it is

invoked. The following policy skips taint propagation for this specific file:

propRd(s, o): match(o.name, "\.bash_history$")→ skip2

Here is a policy that treats files read by bash, which is an interpreter, as a load, and hence

updates the code t-tag.

1If Sleuth is deployed on the remote host, there will be no define event associated with the
establishment of a network connection, and hence this policy won’t be triggered. Instead, we will
already have computed a tag for the remote network endpoint, which will now propagate to any local
subject that reads from the connection.

2Here, “skip” means do nothing, i.e., leave tags unchanged.
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propRd(s, o): match(s.cmdline, "^/bin/bash$")→ s.code ttag = s.data ttag = o.ttag, s.ctag = o.ctag

Although trusted servers such as sshd interact with untrusted sites, they can be expected

to protect themselves, and let only authorized users access the system. Such servers should

not have their data trustworthiness downgraded. A similar comment applies to programs such

as software updaters and installers that download code from untrusted sites, but verify the

signature of a trusted software provider before the install.

propRd(o, s): match(s.cmdline, "^/sbin/sshd$")→ skip

Moreover, when the login phase is complete, typically identified by execution of a setuid

operation, the process should be assigned appropriate tags.

propSu(s):

match(s.cmdline, "^/usr/sbin/sshd$")→ s.code ttag = s.data ttag = BENIGN, s.ctag = PRIVATE

3.5 Tag-Based Bi-Directional Analysis

3.5.1 Backward Analysis

The goal of backward analysis is to identify the entry points of an attack campaign. Entry

points are the nodes in the graph with an in-degree of zero and are marked untrusted. Typically

they represent network connections, but they can also be of other types, e.g., a file on a USB

stick that was plugged into the victim host.

The starting points for the backward analysis are the alarms generated by the detection

policies. In particular, each alarm is related to one or more entities, which are marked as
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suspect nodes in the graph. Backward search involves a backward traversal of the graph to

identify paths that connect the suspect nodes to entry nodes. We note that the direction of the

dependency edges is reversed in such a traversal and in the following discussions. Backward

search poses several significant challenges:

• Performance: The dependence graph can easily contain hundreds of millions of edges.

Alarms can easily number in thousands. Running backward searches on such a large

graph is computationally expensive.

• Multiple paths: Typically numerous entry points are backward reachable from a suspect

node. However, in APT-style attacks, there is often just one real entry point. Thus, a

naive backward search can lead to a large number of false positives.

The key insight behind our approach is that tags can be used to address both challenges. In

fact, tag computation and propagation is already an implicit path computation, which can be

reused. Furthermore, a tag value of unknown on a node provides an important clue about the

likelihood of that node being a potential part of an attack. In particular, if an unknown tag

exists for some node A, that means that there exists at least a path from an untrusted entry

node to node A, therefore node A is more likely to be part of an attack than other neighbors

with benign tags. Utilizing tags for the backward search greatly reduces the search space by

eliminating many irrelevant nodes and sets Sleuth apart from other scenario reconstruction

approaches such as [8, 25].

Based on this insight, we formulate backward analyis as an instance of shortest path prob-

lem, where tags are used to define edge costs. In effect, tags are able to “guide” the search along
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relevant paths, and away from unlikely paths. This factor enables the search to be completed

without necessarily traversing the entire graph, thus addressing the performance challenge. In

addition, our shortest path formulation addresses the multiple paths chalenge by by preferring

the entry point closest (as measured by path cost) to a suspect node.

For shortest path, we use Dijkstra’s algorithm, as it discovers paths in increasing order of

cost. In particular, each step of this algorithm adds a node to the shortest path tree, which

consists of the shortest paths computed so far. This enables the search to stop as soon as an

entry point node is added to this tree.

Cost function design. Our design assigns low costs to edges representing dependencies

on nodes with unknown tags, and higher costs to other edges. Specifically, the costs are as

follows:

• Edges that introduce a dependency from a node with unknown code or data t-tag to a

node with benign code or data t-tag are assigned a cost of 0.

• Edges introducing a dependency from a node with benign code and data t-tags are assigned

a high cost.

• Edges introducing dependencies between nodes already having an unknown tag are as-

signed a cost of 1.

The intuition behind this design is as follows. A benign subject or object immediately related to

an unknown subject/object represents the boundary between the malicious and benign portions

of the graph. Therefore, they must be included in the search, thus the cost of these edges is 0.
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Information flows among benign entities are not part of the attack, therefore we set their cost

to very high so that they are excluded from the search. Information flows among untrusted

nodes are likely part of an attack, so we set their cost to a low value. They will be included in

the search result unless alternative paths consisting of fewer edges are available.

3.5.2 Forward Analysis

The purpose of forward analysis is to assess the impact of a campaign, by starting from an

entry point and discovering all the possible effects dependent on the entry point. Similar to

backward analysis, the main challenge is the size of the graph. A naive approach would identify

and flag all subjects and objects reachable from the entry point(s) identified by backward

analysis. Unfortunately, such an approach will result in an impact graph that is too large to be

useful to an analyst. For instance, in our experiments, a naive analysis produced impact graphs

with millions of edges, whereas our refined algorithm reduces this number by 100x to 500x.

A natural approach for reducing the size is to use a distance threshold dth to exclude nodes

that are “too far” from the suspect nodes. Threshold dth can be interactively tuned by an

analyst. We use the same cost metric that was used for backward analysis, but modified to

consider confidentiality1. In particular, edges between nodes with high confidentiality tags (e.g.,

secret) and nodes with low code integrity tags (e.g., unknown process) or low data integrity tags

(e.g., unknown socket) are assigned a cost of 0, while edges to nodes with benign tags are assigned

a high cost.

1Recall that some alarms are related to exfiltration of confidential data, so we need to decide which
edges representing the flow of confidential information should be included in the scenario.
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3.5.3 Reconstruction and Presentation

We apply the following simplifications to the output of forward analysis, in order to provide

a more succinct view of the attack:

• Pruning uninteresting nodes. The result of forward analysis may include many dependen-

cies that are not relevant for the attack, e.g., subjects writing to cache and log files, or

writing to a temporary file and then removing it. These nodes may appear in the results

of the forward analysis but no suspect nodes depend on them, so they can be pruned.

• Merging entities with the same name. This simplification merges subjects that have the

same name, disregarding their process ids and command-line arguments.

• Repeated event filtering. This simplification merges into one those events that happen

multiple times (e.g., multiple writes, multiple reads) between the same entities. If there are

interleaving events, then we show two events representing the first and the last occurrence

of an event between the two entities.

3.6 Experimental Evaluation

3.6.1 Implementation

Most components of Sleuth, including the graph model, policy engine, attack detection and

some parts of the forensic analysis are implemented in C++, and consist of about 9.5KLoC. The

remaining components, including that for reconstruction and presentation, are implemented in

Python, and consist of 1.6KLoC.
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3.6.2 Data Sets

Table V summarizes the dataset used in our evaluation. The first eight rows of the table

correspond to attack campaigns carried out by a red team as part of the TC program. This set

spans a period of 358 hours, and contains about 73 million events. The last row corresponds

to benign data collected over a period of 3 to 5 days across four Linux servers in our research

laboratory. Attack data sets were collected on Windows (W-1 and W-2), Linux (L-1 through

L-3) and FreeBSD (F-1 through F-3) by three research teams that are also part of the TC

program.

The “duration” column in Table V refers to the length of time for which audit data was

emitted from a host. Note that this period covers both benign activities and attack related

activities on a host. The next several columns provide a break down of audit log events into

different types of operations. File open and close operations were not included in W-1 and

W-2 data sets. Note that “read” and “write” columns include not only file reads/writes, but

TABLE V

Dataset for each campaign with duration, distribution of different system calls and total
number of events.

Dataset
Duration

(hh-mm-ss)
Open

Connect+
Accept

Read Write
Clone+

Exec
Close+

Exit
Mmap /
Loadlib

Others
Total

Events
Scenario
Graph

W-1 06:22:42 N/A 22.14% 44.70% 5.12% 3.73% 3.88% 17.40% 3.02% 100K Figure 28
W-2 19:43:46 N/A 17.40% 47.63% 8.03% 3.28% 3.26% 15.22% 5.17% 401K Figure 4
L-1 07:59:26 37% 0.11% 18.01% 1.15% 0.92% 38.76% 3.97% 0.07% 2.68M Figure 25
L-2 79:06:39 39.58% 0.08% 12.19% 2% 0.83% 41.28% 3.79% 0.25% 38.5M -
L-3 79:05:13 38.88% 0.04% 11.81% 2.35% 0.95% 40.98% 4.14% 0.84% 19.3M Figure 29
F-1 08:17:30 9.46% 0.40% 24.65% 40.86% 2.10% 12.55% 9.08% 0.89% 701K Figure 26
F-2 78:56:48 11.78% 0.42% 16.60% 44.52% 2.10% 15.04% 8.54% 1.01% 5.86M Figure 27
F-3 79:04:54 11.31% 0.40% 19.46% 45.71% 1.64% 14.30% 6.16% 1.03% 5.68M Figure 5

Benign 329:11:40 11.68% 0.71% 26.22% 30.03% 0.63% 15.42% 14.32% 0.99% 32.83M N/A
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also network reads and writes on Linux. However, on Windows, only file reads and writes

were reported. Operations to load libraries were reported on Windows, but memory mapping

operations weren’t. On Linux and FreeBSD, there are no load operations, but most of the mmap

calls are related to loading. So, the mmap count is a loose approximation of the number of loads

on these two OSes. The “Others” column includes all the remaining audit operations, including

rename, link, rm, unlink, chmod, setuid, and so on. The last column in the table identifies

the scenario graph constructed by Sleuth for each campaign. Due to space limitations, we

have omitted scenario graphs for campaign L-2.

3.6.3 Engagement Setup

The attack scenarios in our evaluation are setup as follows. Five of the campaigns (i.e.,

W-2, L-2, L3, F-2, and F3) ran in parallel for 4 days, while the remaining three (W-1, L-1,

and F-1) were run in parallel for 2 days. During each campaign, the red team carried out a

series of attacks on the target hosts. The campaigns are aimed at achieving varying adversarial

objectives, which include dropping and execution of an executable, gathering intelligence about

a target host, backdoor injection, privilege escalation, and data exfiltration.

Being an adversarial engagement, we had no prior knowledge of the attacks planned by

the red team. We were only told the broad range of attacker objectives described in the

previous paragraph. It is worth noting that, while the red team was carrying out attacks

on the target hosts, benign background activities were also being carried out on the hosts.

These include activities such as browsing and downloading files, reading and writing emails,

document processing, and so on. On average, more than 99.9% of the events corresponded to
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benign activity. Hence, Sleuth had to automatically detect and reconstruct the attacks from

a set of events including both benign and malicious activities.

We present our results in comparison with the ground truth data released by the red team.

Before the release of ground truth data, we had to provide a report of our findings to the

red team. The findings we report in this chapter match the findings we submitted to the

red team. A summary of our detection and reconstruction results is provided in a tabular

form in Table VII. Below, we first present reconstructed scenarios for selected datasets before

proceeding to a discussion of these summary results.

3.6.4 Selected Reconstruction Results

Of the 8 attack scenarios successfully reconstructed by Sleuth, we discuss campaigns W-2

(Windows) and F-3 (FreeBSD) in this section, while deferring the rest to Appendix A. To make it

easier to follow the scenario graph, we provide a narrative that explains how the attack unfolded.

This narrative requires manual interpretation of the graph, but the graph generation itself is

automated. In these graphs, edge labels include the event name and a sequence number that

indicates the global order in which that event was performed. Ovals, diamonds and rectangles

represent processes, sockets and files, respectively.

Campaign W-2. Figure 4 shows the graph reconstructed by Sleuth from Windows audit

data. Although the actual attack campaign lasted half an hour, the host was running benign

background activities for 20 hours. These background activities corresponded to more than

99.8% of the events in the corresponding audit log.
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Figure 4. Scenario graph reconstructed from campaign W-2.

Entry: The initial entry point for the attack is Firefox, which is compromised on visiting the

web server 129.55.12.167.

Backdoor insertion: Once Firefox is compromised, a malicious program called dropper is down-

loaded and executed. Dropper seems to provide a remote interactive shell, connecting to ports

443 and then 4430 on the attack host, and executing received commands using cmd.exe.
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Figure 5. Scenario graph reconstructed from campaign F-3.

Intelligence gathering: Dropper then invokes cmd.exe multiple times, using it to perform various

data gathering tasks. The programs whoami, hostname and netstat are being used as stand-

ins for these data gathering applications. The collected data is written to C:\Users\User1\-

Documents\Thumbs\thumbit\test\thumbs.db.

Data exfiltration: Then the collected intelligence is exfiltrated to 129.55.12.51:9418 using git.

Clean-up: Dropper downloads a batch file called burnout.bat. This file contains commands to

clean up the attack footprint, which are executed by cmd.exe (see edges 11,12, 31-33).
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Campaign F-3. (Figure 5). Under the command of an attacker who uses stolen ssh

credentials, sshd forks a bash process. Note that though there is no direct evidence from the

audit data about the stolen ssh credentials, because of the subsequent events (scp) from this

shell, we conclude this as a sign of an attacker that uses stolen ssh credentials.

Next the attacker, invokes scp, which downloads a file into location /var/dropbear latest/-

dropbearFREEBSD.tar, which is then uncompressed. The file dropbearscript is next read and in-

terpreted by sh. This action creates the process dropbearkey, which writes to /usr/ local/etc/-

dropbear/dropbear ecdsa host key and /usr/local/etc/dropbear/dropbear rsa host key. Next,

another sudo process created by bash starts another dropbear process which reads these two

keys for future use (presumably to assist in connecting to a remote host).

Dropbear next starts a shell process, which executes a series of commands ls, bash, uname,

ps, all of which write to a file /usr/home/user/procstats.

Finally, dropbear starts a bash process, which uses scp to download a file called /usr/home/-

user/archiver, and executes that file. The resulting process, called archiver, reads the file

/usr/home/user/procstats, which contains the data output earlier, and exfiltrates this infor-

mation to 128.55.12.167:2525.

Summary. The above two graphs were constructed automatically by Sleuth from audit

data. They demonstrate how Sleuth enables an analyst to obtain compact yet complete attack

scenarios from hours of audit data. Sleuth is able to hone in on the attack activity, even when

it is hidden among benign data that is at least three orders of magnitude larger.
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3.6.5 Overall Effectiveness

To assess the effectiveness of Sleuth in capturing essential stages of an APT, in Table VI,

we correlate pieces of attack scenarios constructed by Sleuth with APT stages documented

in postmortem reports of notable APT campaigns (e.g., the MANDIANT [13] report). In 7 of

the 8 attack scenarios, Sleuth uncovered the drop&load activity. In all the scenarios, Sleuth

captured concrete evidence of data exfiltration, a key stage in an APT campaign. In 7 of the

scenarios, commands used by the attacker to gather information about the target host were

captured by Sleuth.

Another distinctive aspect of an APT is the injection of backdoors to targets and their use for

C&C and data exfiltration. In this regard, 6 of the 8 scenarios reconstructed by Sleuth involve

backdoor injection. Cleaning the attack footprint is a common element of an APT campaign.

In our experiments, in 5 of the 8 scenarios, Sleuth uncovered attack cleanup activities, e.g.,

removing dropped executables and data files created during the attack.

TABLE VI

Sleuth results with respect to a typical APT campaign.
Dataset Drop & Load Intelligence Gathering Backdoor Insertion Privilege Escalation Data Exfiltration Cleanup

W-1 X X X X
W-2 X X X X X
L-1 X X X X X
L-2 X X X X X X
L-3 X X X X X X
F-1 X X
F-2 X X X X
F-3 X X X
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Table VII shows another way of breaking down the attack scenario reconstruction results,

counting the number of key files, network connections, and programs involved in the attack.

Specifically, we count the number of attack entry entities (including the entry points and the

processes that communicate with those entry points), attack-related program executions, key

files that were generated and used during the campaign, and the number of exit points used for

exfiltration (e.g., network sockets). This data was compared with the ground truth, which was

made available to us after we obtained the results. The last two columns show the incorrectly

reported and missed entities, respectively.

The two missed entities were the result of the fact that we had not spent any effort in

cataloging sensitive data files and device files. As a result, these entities were filtered out

during the forward analysis and simplification steps. Once we marked the two files correctly,

they were no longer filtered out, and we were able to identify all of the key entities.

In addition to the missed entities shown in Table VII, the red team reported that we missed

a few other attacks and entities. Some of these were in data sets we did not examine. In

TABLE VII

Attack scenario reconstruction summary.
Dataset Entry

Entities
Programs
Executed

Key Files Exit Points Correctly Identified
Entities

Incorrectly Identified
Entities

Missed
Entities

W-1 2 8 7 3 20 0 0

W-2 2 8 4 4 18 0 0

L-1 2 10 7 2 20 0 1

L-2 2 20 11 4 37 0 0

L-3 1 6 6 5 18 0 0

F-1 4 13 9 2 13 0 1

F-2 2 10 7 3 22 0 0

F-3 4 14 7 1 26 0 0

Total 19 89 58 24 174 0 2
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particular, campaign W-2 was run multiple times, and we examined the data set from only

one instance of it. Also, there was a third attack campaign W-3 on Windows, but the team

producing Windows data sets had difficulties during W-3 that caused the attack activities not

to be recorded, so that data set is omitted from the results in Table VII. Similarly, the team

responsible for producing Linux data sets had some issues during campaign L-3 that caused

some attack activities not to be recorded. To account for this, Table VII counts only the subset

of key entities whose names are present in the L-3 data set given to us.

According to the ground truth provided by the red team, we incorrectly identified 21 entities

in F-1 that were not part of an attack. Subsequent investigation showed that the auditing

system had not been shutdown at the end of the F-1 campaign, and all of these false positives

correspond to testing/administration steps carried out after the end of the engagement, when

the auditing system should not have been running.

3.6.6 False Alarms in a Benign Environment

In order to study Sleuth’s performance in a benign environment, we collected audit data

from four Ubuntu Linux servers over a period of 3 to 5 days. One of these is a mail server,

TABLE VIII

False alarms in a benign environment with software upgrades and updates. No alerts were
triggered during this period.

Dataset Log Size on Disk # of Events Duration (hh:mm:ss) Packages Updated Binary Files Written
Server 1 1.1G 2.17M 00:13:06 110 1.8K
Server 2 2.7G 4.67M 105:08:22 4 4.2K
Server 3 12G 20.9M 104:36:43 4 4.3K
Server 4 3.2G 5.09M 119:13:29 4 4.3K
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another is a web server, and a third is an NFS/SSH/SVN server. Our focus was on software

updates and upgrades during this period, since these updates can download code from the

network, thereby raising the possibility of untrusted code execution alarms. There were four

security updates (including kernel updates) performed over this period. In addition, on a fourth

server, we collected data when a software upgrade was performed, resulting in changes to 110

packages. Several thousand binary and script files were updated during this period, and the

audit logs contained over 30M events. All of this information is summarized in Table VIII.

As noted before, policies should be configured to permit software updates and upgrades

using standard means approved in an enterprise. For Ubuntu Linux, we had one policy rule

for this: when dpkg was executed by apt-commands, or by unattended-upgrades, the process

is not downgraded even when reading from files with untrusted labels. This is because both

apt and unattended-upgrades verify and authenticate the hash on the downloaded packages,

and only after these verifications do they invoke dpkg to extract the contents and write to

various directories containing binaries and libraries. Because of this policy, all of the 10K+

files downloaded were marked benign. As a result of this, no alarms were generated from their

execution by Sleuth.

3.6.7 Runtime and Memory Use

Table IX shows the runtime and memory used by Sleuth for analyzing various scenarios.

The measurements were made on a Ubuntu 16.04 server with 2.8GHz AMD Opteron 62xx

processor and 48GB main memory. Only a single core of a single processor was used. The first

column shows the campaign name, while the second shows the total duration of the data set.
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The third column shows the memory used for the dependence graph. As described in

Section 3.2, we have designed a main memory representation that is very compact. This compact

representation enables Sleuth to store data spanning very long periods of time. As an example,

consider campaign L-2, whose data were the most dense. Sleuth used approximately 329MB

to store 38.5M events spanning about 3.5 days. Across all data sets, Sleuth needed about 8

bytes of memory per event on the larger data sets, and about 20 bytes per event on the smaller

data sets.

The fourth column shows the total run time, including the times for consuming the dataset,

constructing the dependence graph, detecting attacks, and reconstructing the scenario. We note

that this time was measured after the engagement when all the data sets were available. During

the engagement, Sleuth was consuming these data as they were being produced. Although

the data typically covers a duration of several hours to a few days, the analysis itself is very

fast, taking just seconds to a couple of minutes. Because of our use of tags, most information

TABLE IX

Memory use and runtime for scenario reconstruction.
Dataset Duration (hh:mm:ss) Memory Usage Runtime

Time Speed-up

W-1 06:22:42 3 MB 1.19 s 19.3 K

W-2 19:43:46 10 MB 2.13 s 33.3 K

W-Mean 6.5 MB 26.3 K

L-1 07:59:26 26 MB 8.71 s 3.3 K

L-2 79:06:39 329 MB 114.14s 2.5 K

L-3 79:05:13 175 MB 74.14 s 3.9 K

L-Mean 177 MB 3.2 K

F-1 08:17:30 8 MB 1.86 s 16 K

F-2 78:56:48 84 MB 14.02 s 20.2 K

F-3 79:04:54 95 MB 15.75 s 18.1 K

F-Mean 62.3 MB 18.1 K
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needed for the analysis is locally available. This is the principal reason for the performance we

achieve.

The “speed-up” column illustrates the performance benefits of Sleuth. It can be thought

of as the number of simultaneous data streams that can be handled by Sleuth, if CPU use

was the only constraint.

In summary, Sleuth is able to consume and analyze audit COTS data from several OSes

in real time while having a small memory footprint.

3.6.8 Benefit of split tags for code and data

As described earlier, we maintain two trustworthiness tags for each subject, one correspond-

ing to its code, and another corresponding to its data. By prioritizing detection and forward

analysis on code trustworthiness, we cut down vast numbers of alarms, while greatly decreasing

the size of forward analysis output.

TABLE X

Reduction in (false) alarms by maintaining separate code and data trustworthiness tags. The
average reduction shows the average factor of reduction we get for alarms generation when

using split trustworthiness tag over single trustworthiness tag.

Dataset
Untrusted
execution

Modification by
low code t-tag subject

Preparation of untrusted
data for execution

Confidential
data leak

Single t-tag Split t-tags Single t-tag Split t-tags Single t-tags Split t-tags Single t-tag Split t-tags

W-1 21 3 1.2 K 3 0 0 6.1 K 11

W-2 44 2 3.7 K 108 0 0 20.2 K 18

L-1 60 2 53 5 1 1 19 6

L-2 1.5 K 5 19.5 K 1 280 8 122 K 159

L-3 695 5 26.1 K 2 270 0 62.1 K 5.3 K

Average Reduction 45.39x 517x 6.24x 112x
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Table X shows the difference between the number of alarms generated by our four detection

policies with single trustworthiness tag and with the split trustworthiness (code and integrity)

tags. Note that the split reduces the alarms by a factor of 100 to over 1000 in some cases.

Table XI shows the improvement achieved in forward analysis as a result of this split. In

particular, the increased selectivity reported in column 5 of this table comes from splitting the

tag. Note that often, there is a 100x to 1000x reduction in the size of the graph.

3.6.9 Analysis Selectivity

Table XI shows the data reduction pipeline of the analyses in Sleuth. The second column

shows the number of original events in each campaign. These events include all the events in

the system (benign and malicious) over several days with an overwhelming majority having a

benign nature, unrelated to the attack.

The third column shows the final number of events that go into the attack scenario graph.

TABLE XI

Comparison of selectivity achieved using forward analysis with single trustworthiness tags,
forward analysis with split code and data trustworthiness tags, and finally simplifications.

Dataset Initial # of Events Final # of Events
Reduction Factor

Single t-tag Split t-tag Sleuth Simplif. Total

W-1 100 K 51 4.4x 1394x 1.4x 1951x

W-2 401 K 28 3.6x 552x 26x 14352x

L-1 2.68 M 36 8.9x 15931x 4.7x 74875x

L-2 38.5 M 130 7.3x 2971x 100x 297100x

L-3 19.3 M 45 7.6x 1208x 356x 430048x

F-1 701 K 45 2.3x 376x 41x 15416x

F-2 5.86 M 39 1.9x 689x 218x 150202x

F-3 5.68 M 45 6.7x 740x 170x 125800x

Average Reduction 4.68x 1305x 41.8x 54517x
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The fourth column shows the reduction factor when a naive forward analysis with single

trustworthiness tag (single t-tag) is used from the entry points identified by our backward

analysis. Note that the graph size is very large in most cases. The fifth column shows the

reduction factor using the forward analysis of Sleuth— which is based on split (code and

data) trustworthiness tags. As can be seen from the table, Sleuth achieved two to three

orders of magnitude reduction with respect to single t-tag based analysis.

The output of forward analysis is then fed into the simplification engine. The sixth column

shows the reduction factor achieved by the simplifications over the output of our forward anal-

ysis. The last column shows the overall reduction we get over original events using split (code

and data) trustworthiness tags and performing the simplification.

Overall, the combined effect of all of these steps is very substantial: data sets consisting of

tens of millions of edges are reduced into graphs with perhaps a hundred edges, representing

five orders of magnitude reduction in the case of L-2 and L-3 data sets, and four orders of

magnitude reduction on other data.

3.7 Summary

We presented an approach and a system called Sleuth for real-time detection of attacks

and attack reconstruction from COTS audit logs. Sleuth uses a main memory graph data

model and a rich tag-based policy framework that make its analysis both efficient and precise.

We evaluated Sleuth on large datasets from 3 major OSes under attack by an independent

red team, efficiently reconstructing all the attacks with very few errors.



CHAPTER 4

Holmes: REAL-TIME APT DETECTION THROUGH CORRELATION

OF SUSPICIOUS INFORMATION FLOWS

This chapter includes excerpts and figures from material that is published in [2].

4.1 Introduction

The main problem tackled in this chapter is to detect an ongoing APT campaign (that

consists of many disparate steps across many hosts over a long period of time) in real-time and

provide a high-level explanation of the attack scenario to an analyst, based on host logs and

IPS alerts from the enterprise. There are three main aspects to this problem, and they are as

follows:

• Alert generation: Starting from low-level event traces from hosts, we must generate alerts

in an efficient manner. How do we generate alerts that attempt to factor any significant

steps the attacker might be taking? Additionally, care must be taken to ensure that we

do not generate a large volume of noisy alerts.

• Alert correlation: The challenge here is to combine these alerts from multiple activities of

the attacker into a reliable signal that indicates the presence of an ongoing APT campaign.

• Attack scenario presentation: Indicators of an ongoing APT campaign needs to be com-

municated to a human being (a cyber-analyst). To be effective, this communication must

57
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be intuitive and needs to summarize the attack at a high level such that the analyst

quickly realizes the scope and magnitude of the campaign.

We present a system called Holmes in this chapter that addresses all the above aspects.

Holmes begins with host audit data and produces a detection signal that maps out the stages of

an ongoing APT campaign. At a high level, Holmes makes novel use of the APT kill-chain as

the pivotal reference in addressing the technical challenges involved in the above three aspects

of APT detection. We describe our key ideas and their significance below, with a detailed

technical description appearing in Section 4.3.

First, Holmes aims to map the activities found in host logs as well as any alerts found in

the enterprise directly to the kill chain. This design choice allows Holmes to generate alerts

that are semantically close to the activity steps (“Tactics, Techniques and Procedures” (TTPs))

of APT actors. By doing so, Holmes elevates the alert generation process to work at the level

of the steps of an attack campaign, than about how they manifest in low-level audit logs. Thus,

we solve an important challenge in generating alerts of significance. In our experiments, we

have found that a five-day collection of audit logs contains around 3M low-level events, while

Holmes only extracts 86 suspicious activity steps from them.

A second important idea in Holmes is to use the information flow between low-level entities

(files, processes, etc.) in the system as the basis for alert correlation. To see this, note that

the internal reconnaissance step in the kill-chain depends on a successful initial compromise

and establishment of a foothold. In particular, the reconnaissance step is typically launched

using the command and control agent (process) installed by the attacker during foothold estab-
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lishment, thus exhibiting a flow between the processes involved in the two phases. Moreover,

reconnaissance often involves running malware (files) downloaded during the foothold establish-

ment phase, illustrating a file-to-process flow. Similarly, a successful lateral movement phase,

as well as the exfiltration phase, uses data gathered by the reconnaissance phase. Thus, by

detecting low-level events associated with APT steps and linking them using information flow,

it is possible to construct the emerging kill-chain used by an APT actor.

A third main contribution in Holmes is the development of a high-level scenario graph

(HSG). The nodes of the HSG correspond to TTPs, and the edges represent information flows

between entities involved in the TTPs. The HSG provides the basis for detecting APTs with

high confidence. For this purpose, we develop several new ideas. First is the concept of an

ancestral cover in an HSG. We show how this concept can help to assess the strength of depen-

dencies between HSG nodes. Weak dependencies can then be pruned away to eliminate many

false alarms. Second, we develop noise reduction techniques that further de-emphasize depen-

dencies that are known to be associated with benign activities. Third, we develop ranking and

prioritization techniques to prune away most nodes and edges unrelated to the APT campaign.

These steps are described in detail in Sections 4.4.4, 4.4.5, and 4.4.6. Using these techniques,

we demonstrate that Holmes is able to make a clear distinction between attack and benign

scenarios.

Finally, the HSG provides a very compact, visual summary of the campaign at any moment,

thus making an important contribution for attack comprehension. For instance, starting from

a dataset of 10M audit records, we are able to summarize a high-level attack campaign using
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a graph of just 16 nodes. A cyber-analyst can use the presented HSG to quickly infer the big

picture of the attack (scope and magnitude) with relative ease.

Evaluation. We evaluated Holmes on data generated by TC program. The advantage of

using system audit data is that it is a reliable source of information and is free of unauthorized

tamper (under a threat model of non-compromised kernel). Evaluation of Holmes on nine

real-life APT attack scenarios, as well as running it as a real-time intrusion detection tool in

a live experiment spanning for two weeks, show that Holmes is able to clearly distinguish

between attack and benign scenarios and can discover cyber-attacks with high precision and

recall (Section 4.6).

4.2 A Running Example

In this section, we present a running example used through the chapter to illustrate our

approach. This example represents an attack carried out by a red-team as part of the TC

program. In this attack, a vulnerable Nginx web server runs on a FreeBSD system. Its opera-

tions (system calls) are captured in the system audit log. From this audit data, we construct

a provenance graph, a fragment of which is shown in Figure 6. Nodes in this graph represent

system entities such as processes (represented as rectangles), files (ovals), network connections

(diamonds), memory objects (pentagons), and users (stars). Edges correspond to system calls

and are oriented in the direction of information flow and/or causality. Note that our provenance

graph has been rendered acyclic using the (optimized) node versioning technique described in

Reference [36].
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Figure 6. Provenance Graph of the Running Example.

The goal of the attacker is to exfiltrate sensitive information from the system. The attacker’s

activities are depicted at the bottom of Figure 6, and consist of the following steps:

• Initial Compromise. The attacker sends a malicious payload on the socket (S1) listening

on port 80. As a result, Nginx makes some part of its memory region (M1) executable.

Next, the attacker gains control over the Nginx process by using a reflective self-loading

exploit.
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• C&C Communications. The compromised Nginx process makes a connection (S2) to the

C&C server to receive commands from the attacker.

• Privilege Escalation. The attacker exploits an existing vulnerability to escalate the priv-

ilege of Nginx to root (U1).

• Internal Reconnaissance. Next, the attacker issues commands such as whoami (P5) and

hostname (P6). These commands were used by the red team to simulate access to con-

fidential/proprietary data. The attacker also reads usernames and password hashes (F2,

F3, F4) and writes all this information to a temporary file.

• Exfiltration. Next, the attacker transfers the file containing the gathered information to

her/his machine (S3).

• Cleanup. In the last step of the attack, the attacker removes the temporary file (F5) to

clean up any attack remnants.

This example illustrates many key challenges described below:

Stealthy Attacks. This attack leaves a minimal footprint on the system. The first step of

the attack, the initial compromise of the Nginx server, is executed in main memory and does

not leave any visible traces such as downloaded files. Moreover, the payload runs within the

existing Nginx process. It is very challenging to detect such stealthy attacks, where attacker

activities blend in seamlessly with normal system operation.

Needle in a haystack. Even a single host can generate tens of millions of events per day. All

but a very tiny fraction of these — typically much less than 0.01% — correspond to benign
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activities. (The top portion of Figure 6 shows a small subset of benign activities in the audit log.)

It is difficult to detect such rare events without a high rate of false alarms. More importantly,

it is very challenging to filter out these benign events from the attack summaries presented to

analysts.

Real-time detection. We envision Holmes to be used in conjunction with a cyber-response

system, so it is necessary to detect and summarize an ongoing campaign in a matter of sec-

onds. Real-time detection poses additional challenges and constraints for the techniques used

in Holmes.

To overcome these challenges, note that, despite blending seamlessly into benign background

activity, two factors stand out regarding the attack. First, the attack steps achieve capabilities

corresponding to some of the APT stages. Second, the attack activities are connected via

information flows. In the next section, we describe the Holmes approach based on these two

key observations.

4.3 Approach Overview

The central insight behind our approach is that even though the concrete attack steps may

vary widely among different APTs, the high-level APT behavior often conforms to the same

kill-chain introduced in Section 4 ( Figure 1). Our analysis of hundreds of APT reports from

[5] suggests that most APTs consist of a subset, if not all, of those steps. More importantly, we

make the observation that these steps need to be causally connected, and this connectedness is

a major indication that an attack is unfolding.
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Note that the concrete manifestation of each APT step may vary, e.g., an initial compromise

may be executed as a drive-by-download or as a spear-phishing attack with a malicious file that

is executed by a user. Regardless, the APT steps themselves represent a high-level abstraction

of the attacker’s intentions, and hence they must manifest themselves even if the operational

tactics used by attackers vary across APTs. Moreover, information flow or causal relations must

necessarily exist between them since the APT steps are logically dependent on each other, e.g.,

exfiltration is dependent on internal reconnaissance to gather sensitive data.

The research question, therefore, is whether we can base our detection on

• an APT’s most essential high-level behavioral steps, and

• the information flow dependencies between these steps.

A major challenge in answering this question is the large semantic gap between low-level audit

data and the very high-level kill-chain view of attacker’s goals, intentions, and capabilities.

Bridging the Semantic Gap. To bridge the semantic gap between low-level system-call view

and the high-level kill-chain view, we build an intermediate layer as shown in Figure 7. The

mapping to this intermediate layer is based on MITRE’s ATT&CK framework [10], which de-

scribes close to 200 behavioral patterns defined as Tactics, Techniques, and Procedures (TTPs)

observed in the wild.

Each TTP defines one possible way to realize a particular high-level capability. For instance,

the capability of persistence in a compromised Linux system can be achieved using 11 distinct

TTPs, each of which represents a possible sequence of lower level actions in the ATT&CK

framework, e.g., installation of a rootkit, modification of boot scripts, and so on. These lower
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Figure 7. Holmes Approach: From Audit Records to High-Level APT Stages

level actions are closer to the level of abstraction of audit logs, so it is possible to describe TTPs

in terms of nodes and edges in the provenance graph.

Technical challenges. The main technical challenges in realizing the approach summarized

in Figure 7 are:

• efficient matching of low-level event streams to TTPs,

• detecting correlation between attack steps, and

• reducing false positives.

We solve these challenges through several design innovations. For efficient matching, we use a

representation of the audit logs as a directed provenance graph (Section 4.4) in main memory,

which allows for efficient matching. This graph also encodes the information flow dependencies

that exist between system entities (such as processes and files). TTPs are specified as patterns
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that leverage these dependencies. For instance, in order to match a maintain persistence TTP,

an information flow dependency must exist from a process matching an initial compromise TTP

to the maintain persistence TTP.

For detecting correlations between attack steps, we build a High-level Scenario Graph (HSG)

as an abstraction over the provenance graph. Each node in the HSG represents a matched TTP,

while the edges represent information flow and causality dependencies among those matched

TTPs. An HSG is illustrated in the middle layer of Figure 7 by nodes and edges in boldface.

(We refer the reader to Figure 8 for the HSG of the running example.) To determine the edges

among nodes in the HSG, use the prerequisite-consequence patterns of among the TTPs and

the APT stages.

To reduce the number of false positives (i.e., HSGs that do not represent attacks), we use

a combination of: (a) learning benign patterns that may produce false positive TTPs and, (b)

heuristics that assign weights to nodes and paths in the graph based on their severity, so that

the HSGs can be ranked, and the highest-ranked HSGs presented to the analyst.

In summary, the high-level phases of an APT are operationalized using a common suite of

tactics that can be observed from audit data. These observations provide evidence that some

malicious activity may be unfolding. The job of Holmes, then, is to collect pieces of evidence

and infer the correlations among them and use these correlations to map out the overall attack

campaign.
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4.4 System Design

Like most previous works [25,38–40] that rely on OS audit data, we consider the OS kernel

and the auditing engine as part of the trusted computing base (TCB). In other words, attacks

on the OS kernel, the auditing system and the logs produced by it are outside the scope of our

threat model. We also assume that the system is benign at the outset, so the initial attack

must originate external to the enterprise, using means such as remote network access, removable

storage, etc.

4.4.1 Data Collection and Representation

Holmes relies on the provenance graphs constructed from audit logs retrieved from multiple

hosts that may run different operating systems (OSes). 1 As mentioned in Chapter 3, we use

a highly compact provenance graph representation that, on average, requires less than 5 bytes

of main memory per event in the audit log. In addition the entities of our provenance graph

are versioned. A new version of a node is created before adding an incoming edge if this edge

changes the existing dependencies (i.e., the set of ancestor nodes) of the node. Versioning

enables optimizations that can prune away a large fraction of events in the audit log without

changing the results of forensic analysis [36]. Moreover, this versioned graph is acyclic, which

can simplify many graph algorithms. This representation enables real-time consumption of

events and graph construction over prolonged periods of time. It is on this provenance graph

that our analysis queries for behavior that matches our TTP specifications.

1The design of Holmes makes it possible to take additional inputs such as events and alerts from a
variety of IDS/IPS, but we do not discuss this aspect of the system further.
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4.4.2 TTP Specification

TTP specifications provide the mapping between low-level audit events and high-level APT

steps. Therefore, they are a central component of our approach. In this subsection, we describe

three key choices in the TTP design that enable efficient and precise attack detection.

Recall that in our design, TTPs represent a layer of intermediate abstraction between con-

crete audit logs and high-level APT steps. Specifically, we rely on two main techniques to lift

audit log data to this intermediate layer: (a) an OS-neutral representation of security-relevant

events in the form of the provenance graph and (b) use of information flow dependencies between

entities involved in the TTPs. Taken together, these techniques enable high-level specifications

of malicious behavior that are largely independent of many TTP details such as the specific

system calls used, names of malware, intermediate files that were created and the programs

used to create them, etc. In this regard, our information flow based TTP specification ap-

proach is more general than the use of misuse specifications [41, 42] from the IDS literature.

Use of information flow dependencies is crucial in the detection of stealthy APTs that hide their

activities by using benign system processes to carry out their goals.

In addition to specifying the steps of a TTP, we need to capture its prerequisites. Prereq-

uisites not only help reduce false positives but also help in understanding the role of a TTP in

the larger context of an APT campaign. In our TTP specifications, prerequisites take the form

of causal relationships and information flows between APT stages.
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Finally, TTP matching needs to be efficient, and must not require expensive techniques

such as backtracking. We find that most TTPs can be modeled in our framework using a single

event, with additional preconditions on the subjects and objects involved.

An example of a TTP rule specification is shown in Table XII, with additional rules appear-

ing in Section 4.5. In Table XII, the first column represents the APT stage, and the second

column represents the associated TTP name and the entities involved in the TTP. The third

column specifies the event family associated with the TTP. For ease of illustration, some of the

specific events included in this family are shown in the fourth column, but note that they are

not part of a TTP rule. (Event classes are defined once, and reused across all TTP rules.)

TABLE XII

Example TTPs. In the Severity column, L=Low, M=Moderate, H=High, C=Critical. Entity
types are shown by the characters: P=Process, F=File, S=Socket, M=Memory, U=User.
APT Stage TTP Event Family Events Severity Prerequisites

Initial
Compromise(P )

Untrusted
Read(S, P )

READ
FileIoRead (Windows),
read/pread/readv/preadv
(Linux,BSD)

L
S.ip /∈
{Trusted IP Addresses}

Make Mem
Exec(P,M)

MPROTECT
VirtualAlloc (Windows),
mprotect (Linux,BSD)

M

$PROT EXEC$ ∈ M.flags
∧ ∃ Untrusted Read(?, P ′) :
path factor(P ′, P ) <=
path thres

Establish
Foothold(P )

Shell
Exec(F, P )

EXEC
ProcessStart (Windows), ex-
ecve/fexecve (Linux,BSD)

M

F.path ∈
{Command Line Utilities}
∧ ∃ Initial Compromise(P ′) :
path factor(P ′, P ) <=
path thres

The fifth column represents a severity level associated with each TTP. We use this severity

level to rank alarms raised by our system, prioritizing the most severe alarms. Our current
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assignment of the severity levels is based on the Common Attack Pattern Enumeration and

Classification (CAPEC) list defined by US-CERT and DHS with the collaboration of MITRE

[43] but can be tailored to suit the needs of a particular enterprise. We also provide another

customization mechanism, whereby each severity level can be mapped to an analyst-specified

weight that reflects the relative importance of different APT stages in a deployment context.

The last column specifies the prerequisites for the TTP rule to match. The prerequisites

can specify conditions on the parameters of the TTP being matched, e.g., the socket parameter

S for the Untrusted Read TTP on the first row. Prerequisites can also contain conditions on

previously matched TTPs and their parameters. For instance, the prerequisite column of the

Make Mem Exec(P,M) TTP contains a condition ∃ Untrusted Read(?, P ′). This prerequisite

is satisfied only if an Untrusted Read TTP has been matched for a process P ′ earlier, and if

the processes involved in the two TTPs have a path factor (defined below) less than a specified

threshold.

Prerequisites can capture relations between the entities involved in two TTPs, such as the

parent-child relation on processes, or information flow between files. They can also capture the

condition that two TTPs share a common parent. Using prerequisites, we are able to prune

many false positives, i.e., benign activity resembling a TTP.

4.4.3 HSG Construction

Figure 8 illustrates an HSG for the running example. The nodes of this graph represent

matched TTPs and are depicted by ovals in the figure. Inside each oval, we represent the

matched provenance graph entities in grey. For illustration purposes, we have also included
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the name of the TTP, the APT stage to which each TTP belongs, and the severity level (Low,

Medium or High) of each TTP. The edges of the graph represent the prerequisites between

different TTPs. The dotted lines that complete a path between two entities represent the

prerequisite conditions. For instance, the Make Mem Exec TTP has, as a prerequisite, an

Untrusted Read TTP, represented by the edge between the two nodes.

The construction of the HSG is primarily driven by the prerequisites: A TTP is matched

and added to the HSG if all its prerequisites are satisfied. This factor reduces the number of

TTPs in the HSG at any time, making it possible to carry out sophisticated analyses without

impacting real-time performance.

4.4.4 Avoiding Spurious Dependencies

By spurious dependencies, we refer to uninteresting and/or irrelevant dependencies on the

attacker’s activities. For instance, in Figure 6, the process nginx (P2) writes to the file

/usr/log/nginx-error.log, and the cat process later reads that file. However, even though

there is a dependency between cat and the log file, cat is unrelated to the attack and is

invoked independently through ssh. More generally, consider any process that consumes sec-

ondary artifacts produced by the attack activity, e.g., a log rotation system that copies a log file

containing some fraction of entries produced by an attacker’s process. Such processes, although

they represent benign background activity, will be flagged in the provenance graph as having a

dependence on the attacker’s processes. If these spurious dependencies aren’t promptly pruned,

there can be a dependence explosion that can enormously increase the size of HSGs. As a re-

sult, the final result presented to the analyst may be full of benign activities, which can cause
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the analyst to miss key attack steps embedded in a large graph. For this reason, we prioritize

stronger dependencies over weaker ones, pruning away the latter as much as possible.

Intuitively, we can say that a process Pd has a strong dependency on a process Pa if Pd is a

descendant process of Pa. Similarly, a file or a socket has a strong dependency on a process Pa

if Pa or its descendant processes write to this file/socket. More generally, consider two entities

and a path between them in the provenance graph that indicates an information between them.

Determining if this flow represents a strong or weak information flow is equivalent to determining

if the entities in the flow share compromised ancestors. If they share compromised ancestors,

they are part of the attacker’s activities, and there is a strong dependency among them, which

must be prioritized. Otherwise, we consider the dependency to be weak and deemphasize it in

our analysis.

To generalize the above discussion to a case where there may be multiple compromised

processes, we introduce the following notion of an ancestral cover AC(f) of all processes on an

information flow path f :

∀p ∈ f ∃a ∈ AC(f) a = p or a is an ancestor of p

Note that non-process nodes in f don’t affect the above definition. A minimum ancestral cover,

ACmin(f) is an ancestral cover of minimum size. Intuitively, ACmin(f) represents the minimum

number of ancestors that an attacker must compromise (i.e., the number of exploits) to have

full control of the information flow path f . For instance, consider again the flow from the
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nginx process, which is under the control of the attacker, to the cat process. Since these two

processes share no common ancestors, the minimum ancestral cover for the path among them

has a size that is equal to 2. Therefore, to control the cat process, an attacker would have to

develop an additional exploit for cat. This requires the attacker to first find a vulnerability

in cat, then create a corresponding exploit, and finally, write this exploit into the log file. By

preferring an ancestral cover of size 1, we capture the fact that such an attack involving cat is

a lot less likely than one where the attack activities are executed by nginx and its descendants.

We can now define the notion of path factor(N1, N2) mentioned earlier in the discussion

of TTPs. Intuitively, it captures the extent of the attacker’s control over the flow from N1

to N2. Based on the above discussion of using minimum ancestral covers as a measure of

dependency strength, we define path factor as follows. Consider all of the information flow

paths f1, ..., fn from N1 to N2, and let mi be the minimum ancestral cover size for fi. Then,

path factor(N1, N2) is simply the minimum value among m1, . . . ,mn.

Note that if process N2 is a child of N1, then there is a path with just a single edge between

N1 to N2. The size of minimum ancestral cover for this path is 1 since N1 is an ancestor of

N2. In contrast, the (sole) path from nginx to cat has a minimum ancestral cover of size 2, so

path factor(nginx, cat) = 2.

We describe an efficient computation of path factor in Section 4.5. In our experience, the

use of path factor greatly mitigated dependency explosions by prioritizing attacker-influenced

flows.
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4.4.5 Noise Reduction

One of the challenges in the analysis of audit logs for attack detection and forensics is

the presence of noise, i.e., benign events matching TTP rules. Long-living processes such as

browsers, web servers, and SSH daemons trigger TTP matches from time to time. To cut down

these false positives, we incorporate noise reduction rules based on training data. We leverage

two notions: (1) benign prerequisite matches and (2) benign data flow quantity.

Noise reduction based on benign prerequisites. For each process, our system learns

prerequisites that fired frequently when the system is run in a benign context. At runtime,

when the prerequisites of a triggered TTP match the prerequisites that were encountered during

training, we ignore the match.

Noise reduction based on data flow quantity. Filtering based on benign prerequisites may

lead to false negatives: a malicious event may go unnoticed because it matches behavior observed

during the learning phase. For instance, even without any attack, nginx reads /etc/passwd

during its startup phase. However, if we were to whitelist all nginx access to /etc/passwd,

then a subsequent read by a compromised nginx server will go unnoticed.

To tackle this problem, we enhance our learning to incorporate quantities of information

flow, measured in bytes transferred. For instance, the amount of information that can flow

from the file /etc/passwd to nginx is equal to the size of that file, since nginx reads that file

only once. Therefore, if significantly more bytes are observed flowing from /etc/passwd to

nginx, then this flow may be part of an attack. To determine the cut-off points for information

quantity, we observe process-file and process-socket pairs over a period in a benign setting.
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4.4.6 Signal Correlation and Detection

Given a set of HSGs, how do we distinguish the ones that constitute an attack with a

high confidence? We address this challenge by assigning a severity score to each HSG. This

assignment proceeds in two steps further described below.

Threat Tuples. First, we represent the attacker’s progress in a campaign by an abstract threat

tuple associated with the corresponding HSG. In particular, for every HSG, a threat tuple is a

7-tuple 〈S1, S2, S3, ..., S7〉 where each Si corresponds to the severity level of the APT stage at

index i of the HSG. We chose 7-tuples based on an extensive survey of APTs in the wild [5],

but other choices are possible as well.

Since different TTPs belonging to a certain APT stage may have different severity levels,

there are usually multiple candidates to pick from. It is natural to choose the highest severity

level among these candidates. For instance, the threat tuple associated with the HSG of Figure 8

is 〈M,L,H,H,−, H,M〉. This tuple contains 6 entries because its matched TTPs belong to 6

different APT stages. The entries are ordered according to the order of the APT stages in the

kill-chain. For instance, the first entry of the tuple is M since the most severe TTP belonging

to Initial Reconnaissance in the graph has severity M.

HSG Ranking and Prioritization. To rank HSGs, we first transform a threat tuple to a

numeric value. In particular, we first map each element of a threat tuple to a numerical value

based on the conversion table (Table XIII) included in the Common Vulnerability Scoring Sys-

tem (CVSS), a vendor-neutral industry standard created through the collaboration of security

professionals across commercial, non-commercial, and academic sectors [44]. Alternative scor-
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ing choices may be made by an enterprise, taking into context its perceived threats and past

threat history.

TABLE XIII

NIST severity rating scale
Qualitative level Quantitative Range Rounded up Average Value

Low 0.1 - 3.9 2.0
Medium 4.0 - 6.9 6.0

High 7.0 - 8.9 8.0
Critical 9.0 - 10.0 10.0

Next, we combine the numeric scores for the 7 APT stages into a single overall score. The

formula that we use to compute this score was designed with two main criteria in mind: (1)

flexibility and customization, and (2) the correlation of APT steps is reflected in the magnifi-

cation of the score as the steps unfold. To address these criteria, we associate a weight with

each entry in the converted threat tuple and calculate a weighted product of the threat tuple as

the score. These weights are configurable by a system administrator, and they can be used to

prioritize detection of specific stages over other stages.

Using a training set, we performed several experiments and compared results using other

schemes, such as weighted sum, exponential sum, and geometric sum. For each equation, we

measured the average margin between the benign subgraph scores and the attack subgraph
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scores after normalization and found that the weighted product had the best results. Hence we

use the following criteria to flag an APT attack:

n∏
i=1

(Si)
wi ≥ τ (4.1)

Here, n is the number of APT stages, wi and Si denote respectively the weight and severity of

stage i, and τ is the detection threshold. If no TTP occurs in stage i, we set Si = 1.

4.5 Implementation

Stream Consumption for Provenance Graph Construction. Figure 9 shows the archi-

tecture of Holmes. To achieve platform independence, audit records from different OSs are

normalized to a common data representation (CDR) with shared abstractions for various sys-

tem entities. For streamlined audit data processing, CDR-based audit records are published to

a stream processing server (Kafka) and real-time analysis and detection proceeds by consuming

from the streaming server. We use our Sleuth system [1] for stream consumption, causality

tracking, and provenance graph construction, so we don’t describe those steps in detail here.
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Policy Matching Engine and HSG Construction. The Policy Matching Engine takes

the TTP rule specifications as input and operates on the provenance graph. A representative

set of the TTP rule specifications used in the current implementation of Holmes is shown in

Table XIV. To match a TTP, as the provenance graph is being built, the policy matching engine

iterates over each rule in the rules table and its prerequisites. A particularly challenging part of

this task is to check, for each TTP, the prerequisite conditions about previously matched TTPs

and the path factor. In fact, previously matched TTPs may be located in a distant region of

the graph and the path factor value may depend on long paths, which must be traversed. We

note that a common practice in prior work [1, 9, 25, 40] on attack forensics is to do backward

tracking from a TTP matching point to reach an initial compromise point. Unfortunately, this

is a computationally expensive strategy in a real-time setting as the provenance graph might

contain millions of events.

To solve this challenge without backtracking, we use an incremental matching approach that

stores the results of the previous computations and matches and propagates pointers to those

results along the graph. When a specific TTP, which may appear as a prerequisite condition in

other TTPs, is matched, we create the corresponding node in the HSG and a pointer to that

node. The pointer is next propagated to all the low-level entities that have dependencies on

the entities of that matched TTP.

The path factor is similarly computed. In particular, given a matched TTP represented

as a node in the HSG, a path factor value is incrementally computed for the nodes of the

provenance graph that have dependencies on the entities of the matched TTP. Assuming N1 as
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a process generating an event matching a TTP, path factor(N1, N1) is initially assigned to 1.

Subsequently, when an edge (N1, N2) is added to the provenance graph, path factor(N1, N2)

will be 1 if N2 is a non-process node or if it is a process with at least one common ancestor

with N1. Otherwise, the path factor value increases by 1. In cases that an information flow

happens from N2 to N3 while both N2 and N3 already have a dependency flow from N1, a new

version of N3 is constructed, and the path factor(N1, N3 new) is set to the minimum among

the path factors calculated by both flows. Note that in the acyclic provenance graph which

is built based on this versioning system, the path factor(N1, N2) never changes once it is set.

Finally, when an event corresponding to a TTP event is encountered, we can reuse the pointer

to the prerequisite TTPs and the precomputed path factor immediately if they are available.

An expected bottleneck for this pointer-based correlation of the two layers (provenance

graph and HSG) is the space overhead and complexity it adds as the provenance graph grows

over time. Our operational observation is that, typically, a large number of entities point to the

same set of TTPs; This phenomenon is not random and is actually the result of the propagation

of pointers in the process tree, from parent processes to all their descendants. It is, in fact, rare

that new pointers get added as the analysis proceeds. In general, the key implementation insight

is to maintain an intermediate object that maps entities of the provenance graph to TTPs of

the HSG. Therefore, each entity in the provenance graph has only one pointer pointing to the

intermediate mapper, and the mapper object contains the set of pointers.

Noise Filtering and Detection Engines. The Noise Filtering Engine identifies benign TTP

matches so that they can be excluded from the HSG. It takes as input the normal behavior
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TABLE XIV: Representative TTPs. Event family denotes a set of corresponding events in

Windows, Linux, and FreeBSD. In the Severity column, L=Low, M=Moderate, H=High,

C=Critical. Entity types are shown by the characters: P=Process, F=File, S=Socket,

M=Memory, U=User.

APT Stage TTP
Event

Family
Severity Prerequisites

Initial

Compromise(P )

Untrusted Read(S, P ) READ L S.ip /∈ {Trusted IP Addresses}

Make Mem Exec(P,M) MPROTECT M $PROT EXEC$ ∈ M.flags

∧ ∃ Untrusted Read(?, P ′) :

path factor(P ′, P ) <= path thres

Make File Exec(P, F ) CHMOD H $PROT EXEC$ ∈ F.mode

∧ ∃ Untrusted Read(?, P ′) :

path factor(P ′, F ) <= path thres

∧ ∃ Untrusted Read(?, P ′′) :

path factor(P ′′, P ) <= path thres

Untrusted File Exec(F, P ) EXEC C ∃ Untrusted Read(?, P ′) : path factor(P ′, F ) <=

path thres

Establish

Foothold(P )

Shell Exec(F, P ) EXEC M F.path ∈ {Command Line Utilities}

∧ ∃ Initial Compromise(P ′) :

path factor(P ′, P ) <= path thres

CnC(P, S) SEND L S.ip /∈

{Trusted IP Addresses} ∧ ∃ Initial Compromise(P ′) :

path factor(P ′, P ) <= path thres

Privilege

Escalation(P )

Sudo Exec(F, P ) EXEC H F.path ∈

{SuperUser Tools} ∧ ∃ Initial Compromise(P ′) :

path factor(P ′, P ) <= path thres

Switch SU(U, P ) SETUID H U.id ∈

{SuperUser Group} ∧ ∃ Initial Compromise(P ′) :

path factor(P ′, P ) <= path thres

Internal

Recon(P )

Sensitive Read(F, P ) READ M F.path ∈ {Sensitive Files}

∧ ∃ Initial Compromise(P ′) :

path factor(P ′, P ) <= path thres

Sensitive Command(P, P ′) FORK H P ′.name ∈ {Sensitive Commands}

∧ ∃ Initial Compromise(P ′′) :

path factor(P ′′, P ) <= path thres

Continued on next page
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Table XIV – Continued from previous page

APT Stage TTP
Event

Family
Severity Prerequisites

Move

Laterally(P )

Send Internal(P, S) SEND M S.ip ∈ {Internal IP Range}

∧ ∃ Initial Compromise(P ′) :

path factor(P ′, P ) <= path thres

Complete

Mission(P )

Sensitive Leak(P, S) SEND H S.ip /∈ {Trusted IP Addresses}

∧ ∃ Internal Reconnaissance(P ′) :

path factor(P ′, P ) <= path thres

∧ ∃ Initial Compromise(P ′′) :

path factor(P ′′, P ) <= path thres

Destroy System(F, P )
WRITE/

UNLINK
C F.path ∈ {System Critical Files}

∧ ∃ Initial Compromise(P ′) :

path factor(P ′, P ) <= path thres

Cleanup

Tracks(P )

Clear Logs(P, F ) UNLINK H F.path ∈ {Log Files}∧ ∃ Initial Compromise(P ′) :

path factor(P ′, P ) <= path thres

Sensitive Temp RM(P, F ) UNLINK M ∃ Internal Reconnaissance(P ′) :

path factor(P ′, F ) <= path thres

∧ ∃ Initial Compromise(P ′′) :

path factor(P ′′, P ) <= path thres

Untrusted File RM(P, F ) UNLINK M ∃ Initial Compromise(P ′) :

path factor(P ′, F ) <= path thres

∧ ∃ Initial Compromise(P ′′) :

path factor(P ′′, P ) <= path thres

model learned on benign runs. This model contains a map of the TTPs that are matched in

benign runs and the threshold on the number of bytes read from or written to system objects on

these runs. When the policy matching engine matches a new TTP, the entities and prerequisites

of that TTP are searched in this model. If an entry exists in the model that contains all the

prerequisites and the matched event (having the same entity names), then the total amount

of transferred bytes is checked against the benign threshold. If the total amount of bytes
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transferred is lower than the benign threshold, then the node corresponding to the matched

TTP is filtered out; otherwise, a node corresponding to it gets added to the HSG. Finally, the

detection engine computes the weighted sums of the different HSGs and raises alarms when

that value surpasses the detection threshold.

4.6 Experimental Evaluation

Our experimental evaluation is done on red-team vs. blue-team adversarial engagements

organized by TC program. We first evaluated Holmes on a dataset that was available to us

beforehand (Sections 4.6.1,4.6.2,4.6.3,4.6.4). Using this evaluation, we calculate the optimal

threshold value for Holmes in Section 4.6.5, and measure its performance in Section 4.6.6.

Finally, in Section 4.6.7, we explored applicability of Holmes as a real-world live detection

system in a setting that we have no prior knowledge of when or how red-team is conducting the

attacks. After our live experiment, this dataset has been released in the public domain [28] to

stimulate further research in this area.

4.6.1 Datasets

Attacks. The datasets we used for evaluation are summarized in Table XV. This table shows

nine APT scenarios from 7 hosts across three OS platforms. There are three scenarios for each

platform. Collectively, the streams cover 20 days’ worth of audit logs. Streams 5 and 7 each

contain two independent APT attacks, while the remaining streams contain one APT attack

each.

In a nutshell, the adversarial goals and activities in the red team attack scenarios cover those

of high-profile APT campaigns. These include typical APT activities such as browser-induced



84

TABLE XV

Datasets. Streams 5 and 7 contain two independent attack vectors occurring on the same host.
Stream No. Duration Platform Scenario No. Scenario Name Attack Surface

1 0d1h17m Ubuntu 14.04 (64bit) 1 Drive-by Download Firefox 42.0
2 2d5h8m Ubuntu 12.04 (64bit) 2 Trojan Firefox 20.0
3 1d7h25m Ubuntu 12.04 (64bit) 3 Trojan Firefox 20.0

4 0d1h39m Windows 7 Pro (64bit) 4 Spyware Firefox 44.0
5 5d5h17m Windows 7 Pro (64bit) 5.1 Eternal Blue Vulnerable SMB

5.2 RAT Firefox 44.0

6 2d5h17m FreeBSD 11.0 (64bit) 6 Web-Shell Backdoored Nginx
7 8d7h15m FreeBSD 11.0 (64bit) 7.1 RAT Backdoored Nginx

7.2 Password Hijacking Backdoored Nginx

drive-by initial compromises, backdoor injection, privilege escalation, internal reconnaissance,

exfiltration of sensitive assets, and cleanup of attack footprints. In these attacks, sophisticated

attack vectors such as reflective loading, web-shell capabilities, and in-memory module loading

were used by a red-team to evaluate the robustness of Holmes against APT attacks.
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Figure 10. (Left): Number (millions) of published records vs. % of trace duration. (Right):
Topic Size (MB) vs. % of trace duration.
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Benign data. To build noise reduction models, we used 4 days’ worth of benign audit data

streamed from the target hosts. These programs include browsers (e.g., Firefox), web servers

(e.g., Nginx), and various daemons (e.g., postfix, syslogd).

4.6.2 Setup

Holmes subscribed to the 7 Kafka topics (one topic per host) to consume audit streams

and perform analysis and detection in real-time. The number of records published (in millions)

with regards to the percentage growth of the audit trace duration is shown in Figure 10 (left).

Note that Holmes consumes as fast as the publishing rate from the Kafka server. Figure 10

(right) shows the incremental growth in the size of records published into each Kafka topic.

We configured Holmes with TTPs mentioned in Table XIV and set path thres = 3 for

prerequisites on TTPs and weight = (10 + i)/10 for APT stage i, which takes into account

slightly higher weights for later APT stages.

4.6.3 Results in a Nutshell

Table XVI summarizes the detection of the nine attack scenarios. The second column

shows the threat tuple of each HSG matched during detection, and the third column shows

the corresponding threat score. The fourth column shows the highest score among all benign

scenarios of the machine on which the attack scenario is exercised. These benign scenarios

might contain the exact programs in the corresponding attack scenario.

The highest score assigned to benign HSGs is 338 (Scenario-3), and the lowest score assigned

to attack HSGs is 608 (Scenario-5.2) which is related to an incomplete attack with no harm
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done to the system. This shows that Holmes has separated attack and benign scenarios into

two disjoint clusters, and makes a clear distinction between them.

TABLE XVI

Scores Assigned to Attack Scenarios. L = Low, M = Moderate, H = High, C = Critical.
Note: for each scenario, Highest Benign Score in Dataset is the highest threat score assigned
to benign background activities streamed during the audit log collection of a host (pre-attack,

in parallel to attack, and post-attack).
Scenario No. Threat Tuple Threat Score Highest Benign Score in Dataset

1 〈C,M,−, H,−, H,M〉 1163881 61
2 〈C,M,−, H,−, H,−〉 55342 226
3 〈C,M,−, H,−, H,M〉 1163881 338
4 〈C,M,−, H,−,−,M〉 41780 5

5.1 〈C,L,−,M,−, H,H〉 339504 104
5.2 〈C,L,−,−,−,−,M〉 608
6 〈L,L,H,M,−, H,−〉 25162 137

7.1 〈C,L,H,H,−, H,M〉 4649220 133
7.2 〈M,L,H,H,−, H,M〉 2650614

The effect of learning noise reduction rules and path factor are shown in Figure 11. This

plot shows threat score for all benign and attack HSGs which are constructed after analyzing all

the seven streams. These scores are shown under three different settings: default which both

learning and path factor calculations are enabled, without learning, and without path factor. It

is obvious in the figure that with learning and path factor, there is a more considerable margin

between attack HSGs and benign ones. Without learning or path factor, we notice an increase

in noise, which leads to false positives or false negatives. The 10th percentile, first quartile,

and median of default box are all colliding on the bottom line of this box (score= 2.1). This
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means that more than 50% of threat scores are 2.1, which is the result of having many HSGs

with only one low severity Untrusted Read TTP.
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Figure 11. Effects of Learning and path factor on Noise Reduction. Box covers from first to
third quartiles while a bar in the middle indicates median, and whisker is extended from 10th

to 90th percentile.

4.6.4 Attack Scenarios

We now describe an additional attack scenario detected by Holmes. For reasons of space,

we include details of the rest of the scenarios and the related figures in the Appendix B. We

note that Scenario-7.2 is discussed in section 4.2 and a portion of its provenance graph and

HSG are shown in Figure 6 and Figure 8, respectively.
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Scenario-1: Drive-by Download. In this attack scenario (see Figure 12), the user visits a

malicious website with a vulnerable Firefox browser. As a result, a file named net is dropped

and executed on the victim’s host. This file, after execution, connects to a C&C server, and a

reverse shell is provided to the attacker. The attacker then launches a shell prompt and executes

commands such as hostname, whoami, ifconfig, netstat, and uname. Finally, the malicious

executable exfiltrates information to the IP address of the C&C server and then the attacker

removes the dropped malicious file.

As can be seen from Figure 12, in the Initial Compromise APT stage, an untrusted file

is executed, which matches a TTP with the critical severity level. The final threat tuple for

this graph looks like 〈C,M,−, H,−, H,M〉 for all APT stages (see Table XVI). Consequently,

the converted quantitative values are 〈10, 6, 1, 8, 1, 8, 6〉, which results in a threat score equal to

1163881.

4.6.5 Finding the Optimal Threshold Value

To determine the optimal threshold value, we measured the precision and recall by varying

threshold values as shown in Figure 13. F-score, the harmonic mean of precision and recall, is

maximum at the interval [338.25, 608.26], which is the range from the maximum score of benign

subgraphs to the minimum score of attack subgraphs. Therefore, by choosing any threshold

in this range, Holmes makes a clear distinction between attack and benign subgraphs in the

tested datasets, with accuracy and recall equal to 1.

To find the optimal value, we first transform the threat scores to a linear scale by getting their

nth root, where n equals to
∑7

i=1wi. The transformed value shows the average contribution
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Figure 12. HSG of Scenario-1 (Drive-by Download). Notations: A= Untrusted External
Address; B= Firefox; C= Malicious dropped file (net); D= RAT process; E= bash; F=

whoami; G= uname; I= netstat; J= company secret.txt;

of each APT step to the overall threat score, and it is a value in the range [1,10]. As all our

tested datasets so far belong to single hosts, we exclude the weight of lateral movement step
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Figure 13. Precision, Recall, and F-score of attack detection by varying the threshold value.

(w5), which leads to n = 8.3. After getting the nth root, the interval of maximum F-score

would change to [2.01, 2.16]. Finally, we consider the middle of this range (2.09) as the average

severity that each APT step is allowed to contribute to the overall threat score, in a benign

setting.

4.6.6 Performance

Graph Size. Figure 14 shows the comparison of the growth trends for provenance graph in

thousands of edges (left) and the HSG in the number of edges (right). The graph size ratio

measured in edges is 1875:1, i.e., an 1875-fold reduction is achieved in the process of mapping

from the provenance graph to the HSG.
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Figure 14. (Left): Provenance graph growth vs. consumed records. (Right): HSG growth vs.

consumed records.

Memory Use. Holmes was tested on an 8 core CPU with a 2.5GHz speed each and a 150GB

of RAM. Figure 15 (left) shows the memory consumption of Holmes with the number of audit

records. It shows a nearly linear growth in memory consumption since our system operates on

audit records in-memory. Figure 15 (right) shows extrapolation of how many hosts Holmes

can support (regarding memory consumption) with scalability to an enterprise of hundreds of

hosts. It is evident that as the number of hosts is increased, the duration that we can keep the

full provenance graph in memory decreases. Notice that both x and y-axes are in log-2 scale.
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Figure 15. (Left): Memory footprint (MB) vs. % of records consumed. (Right): Number of

Days vs. extrapolated number of hosts that can be handled by Holmes in respect to Memory

consumption

Runtime. While Holmes consumes and analyzes audit records from a Kafka server as the

records become available in real-time, to stress-test its performance, we assumed that all the

audit records were available at once. Then, we measured the CPU time for consuming the

records, building the provenance graph, constructing the HSG, and detecting APTs. We define

“CPU Utilization” as the ratio of required CPU time to the total duration of a scenario. In

Figure 16, the bars show CPU Utilization for each scenario, and the line shows an extrapolation

of how many hosts (of comparable audit trace durations with the scenarios) Holmes can

support if CPU was the limiting factor. This chart shows that our single CPU can support an

enterprise with hundreds of hosts.
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Figure 16. CPU Utilization and the extrapolated number of hosts that can be handled by

Holmes in respect to CPU time.

4.6.7 Live Experiment

To explore how Holmes would respond to attacks embedded within a predominantly benign

stream of events, we evaluated it as a live detection system. This experiment spanned 2 weeks,

and during this period, audit logs of multiple systems, running Windows, Linux, or BSD, were

collected and analyzed in real-time by Holmes. In this experiment, an enterprise is simulated

with security-critical services such as a web server, E-mail server, SSH server, and an SMB

server for providing shared access to files. Similar to the previous datasets, an extensive set

of normal activities are conducted during this experiment, and red-team carried out a series
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of attacks. However, this time, we configured all the parameters beforehand and had no prior

knowledge of the attacks planned by the red-team. Moreover, we had cross host internal

connectivity, which makes APT stage 5 (Move laterally) a possible move for attackers. To this

end, we set the detection threshold equal to 2.09
∑7

i=1 wi = 2.099.8 = 1378. Figure 17 shows the

cumulative distribution function for attack and benign HSGs that Holmes constructs during

this experiment. Note that there are some points representing threat score of benign HSGs,

that have bypassed the threshold. We explain them as false positives in the following and then

discuss some potential false negative scenarios.
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False Positives. We noticed some false alarms because of SSH connections made by sys-

tem administrators. These connections come from untrusted IP addresses, and subsequently,

Holmes aggregates the severity scores of all the actions issued by the system administrator via

an SSH connection. In some cases, the threat score bypasses our threshold. The solution is to

define a custom tagging policy for servers such as ssh that perform authentication so that the

children of such servers aren’t marked as untrusted [1].

To further evaluate our system for false alarms, we also evaluated it on another two weeks

benign activity period. During this time, a diverse set of normal activities were conducted,

(including software updates and upgrades through package managers) and Holmes generated

no false alarms.

Based on our results, we claim that the false positive of Holmes is at an acceptable rate

considering the benefits it adds to an enterprise. Security analysts can manually check the

raised alarms and neutralize HSGs that are falsely constructed.

False Negatives. Although we did not observe any false negatives during our experiments,

here we discuss potential scenarios Holmes might miss.

Implicit causality between TTPs: For information flow that avoids system calls, Holmes

have no direct visibility to the causal relations between system entities. However, if the rest of

the attack unfolds with visibility through system calls, Holmes will still partially reconstruct

the attack.

Multiple entry points: As an active evasion technique, attackers might exploit multiple

entry points that result in detached subgraphs. Holmes follows every single entry point until
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our detection threshold is satisfied and correlates TTPs from disjoint subgraphs when there

is information flow between them. Nevertheless, some additional analyses might be needed to

completely correlate attack steps, which are coming from different entry points and have no

information flow in between.

4.7 Summary

We present Holmes, a real-time APT detection system that correlates tactics, techniques,

and procedures that might be used to carry out each APT stage. Holmes generates a high-

level graph that summarizes the attacker’s steps in real-time. We evaluate Holmes against

nine real-world APT threats and deploy it as a real-time intrusion detection tool. The results

show that Holmes successfully detects APT campaigns with high precision and low false alarm

rates.



CHAPTER 5

Poirot: ALIGNING ATTACK BEHAVIOR WITH KERNEL AUDIT

RECORDS FOR CYBER THREAT HUNTING

This chapter includes excerpts and figures from material that is published in [3].

5.1 Introduction

In general, threat hunting inside an enterprise presents several challenges:

• Search at scale: To remain under the radar, an attacker often performs the attack steps

over long periods (weeks, or in some cases, months). Hence, it is necessary to design

an approach that can link related IOCs together even if they are conducted over a long

period of time. To this end, the system should be capable of searching among millions of

log events (99.9% of which often correspond to benign activities).

• Robust identification and linking of threat-relevant entities: Threat hunting must be sound

in identifying whether an attack campaign has affected a system, even though the attacker

might have mutated the artifacts like file hashes and IP addresses to evade detection.

Therefore, a robust approach should not merely look for matching IOCs in isolation, but

uncover the entire threat scenario, which is harder for an attacker to mutate.

• Efficient Matching: For a cyber analyst to understand and react to a threat incident in a

timely fashion, the approach must efficiently conduct the search and not produce many

97
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false positives so that appropriate cyber-response operations can be initiated in a timely

fashion.

Commonly, knowledge about the malware employed in APT campaigns is published in

cyber threat intelligence (CTI) reports and is presented in a variety of forms such as natural

language, structured, and semi-structured form. To facilitate the smooth exchange of CTI in

the form of IOCs and enable characterization of adversarial techniques, tactics, and procedures

(TTPs), the security community has adopted open standards such as OpenIOC [45], STIX [46],

and MISP [47]. To provide a better overview of attacks, these standards often incorporate

descriptive relationships showing how indicators or observables are related to each other [48].

However, a vast majority of the current threat hunting approaches operates only over frag-

mented views of cyber threats [11, 12], such as signatures (e.g., hashes of artifacts), suspicious

file/process names, and IP addresses (domain names), or by using heuristics such as times-

tamps to correlate suspicious events [49]. These approaches are useful but have limitations,

such as (i) lacking the precision to reveal the complete picture as to how the threat unfolded

especially over long periods (weeks, or in some cases, months), (ii) being susceptible to false

signals when adversaries use legitimate-looking names (like svchost in Windows) to make their

attacks indistinguishable from benign system activities, and (iii) relying on low-level signatures,

which makes them ineffective when attackers update or re-purpose [50,51] their tools or change

their signatures (IP addresses or hash values) to evade detection. To overcome these limitations

and build a robust detection system, the correlation among IOCs must be taken into account.

In fact, the relationships between IOC artifacts contain essential clues on the behavior of the
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attacks inside a compromised system, which is tied to attacker goals and is, therefore, more

difficult to change [52,53].

This chapter formalizes the threat hunting problem from CTI reports and IOC descriptions,

develops a rigorous approach for deriving the confidence score that indicates the likelihood of

success of an attack campaign, and describes a system called Poirot that implements this

approach. In a nutshell, given a graph-based representation of IOCs and relationships among

them that expresses the overall behavior of an APT, which we call a query graph, our approach

efficiently finds an embedding of this query graph in a much larger provenance graph, which

contains a representation of kernel audit logs over a long period of time. Kernel audit logs

are free of unauthorized tampering as long as system’s kernel is not compromised, and reliably

contain relationships between system entities (e.g., processes, files, sockets, etc.), in contrast to

its alternatives (e.g., firewall, network monitoring, and file access logs) which provide partial

information. We assume that to maintain the integrity of kernel audit logs, a real-time kernel

audit storage on a separate and secure log server is used as a precaution against log tampering.

More precisely, we formulate threat hunting as a graph pattern matching (GPM) problem

searching for causal dependencies or information flows among system entities that are similar

to those described in the query graph. To be robust against evasive attacks (e.g., mimicry

attacks [54, 55]) which aim to influence the matching, we prioritize flows based on the cost

they have for an attacker to produce. Given the NP-completeness of the graph matching

problem [56], we propose an approximation function and a novel similarity metric to assess an

alignment between the query and provenance graph.
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We test Poirot’s effectiveness and efficiency using three different datasets, particularly,

red-team/blue-team adversarial engagements performed by TC program [28], publicly available

real-world incident reports, and attack-free activities generated by ordinary users. In addition,

we simulate several attacks from real-world scenarios in a controlled environment and compare

Poirot with other tools that are currently used to do threat hunting. We show that Poirot

outperforms these tools. We have implemented different kernel log parsers for Linux, FreeBSD,

and Windows, and our evaluation results show that Poirot can search inside graphs containing

millions of nodes and pinpoint the attacks in a few minutes.

This chapter is organized as follows: An overall architecture of Poirot appears in Section

5.2. In Section 5.3, we provide the formal details of the graph alignment algorithm. Section 5.4

discusses the evaluation, and we conclude in Section 5.5.

5.2 Approach Overview

A high-level view of our approach is shown in Figure 18. We provide a brief overview of the

components of Poirot next, with more detailed discussions relegated to Section 5.3.

5.2.1 Provenance Graph Construction

Poirot currently supports consuming kernel audit logs from Microsoft Windows, Linux,

and FreeBSD and constructs a provenance graph in memory, similar to the system described in

Chapter 3. To support efficient searching on this graph, we leverage additional methods such

as fast hashing techniques and reverse indexing for mapping process/file names to unique node

IDs.
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Figure 18. Poirot Approach Overview.

5.2.2 Query Graph Construction

We extract IOCs together with the relationships among them from CTI reports related to

a known attack. These reports appear in security blogs, threat intelligence reports by industry,

underground forums on cyber threats, and public and private threat intelligence feeds. In

addition to natural language, the attacks are often described in structured and semi-structured
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standard formats as well. These formats include OpenIOC [45], STIX [46], MISP [47], etc.

Essentially, these exchange formats are used to describe the salient points of the attacks, the

observed IOCs, and the relationships among them. For instance, using OpenIOC the behavior

of a malware sample can be described as a list of artifacts such as the files it opens, and the

DLLs it loads [57]. These standard descriptions are usually created by the security operators

manually [58, 59]. Additionally, automated tools have also been built to automatically extract

IOCs from natural language and complement the work of human operators [60–62]. These tools

can be used to perform an initial extraction of features to generate the query graph and later

refined manually by a security expert. We believe that manual refinement is an important

component of the query graph construction because automated methods may often generate

noise and reduce the quality of the query graphs.

We model the behavior appearing in CTI reports also as a labeled, typed, and directed graph,

which we call query graph (Gq). If a description in a standard format is present, the creation

of the query graph can be easily automated and further refined by humans. In particular,

the entities appearing in the reports (e.g., processes, files) are transformed into nodes while

relationships are transformed into directed edges [63]. Nodes and edges of the query graph

may be further associated with additional information such as labels (or names), types (e.g.,

processes, files, sockets, pipes, etc) and other annotations (e.g., hash values, creation time, etc)

depending on the information that an analyst may deem necessary for matching. In the current

Poirot implementation, we use names and types for specifying explicit mappings between

nodes in the query graph and nodes in the provenance graph.
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Figure 19. Query Graph of DeputyDog Malware. A=∗.%exe%, B=∗, C=%APPDATA%\∗,
D=%HKCU%\Software\Microsoft\Windows\CurrentVersion\ Run\∗, E=%External IP

address%.

As an example of query graph construction, consider the following excerpt from a report [64]

about the DeputyDog malware, used in our evaluation.

Upon execution, 8aba4b5184072f2a50cbc5ecfe326701 writes “28542CC0.dll” to this

location: “C:\Documents and Settings\All Users\Application Data\28542CC0.dll”.

In order to maintain persistence, the original malware adds this registry key:

“%HKCU%\Software\Microsoft\Windows\CurrentVersion\Run\ 28542CC0”. The malware

then connects to a host in South Korea (180.150.228.102).

The excerpt mentions several actions and entities that perform them and is readily trans-

formed into a graph by a security analyst. For instance, the first sentence clearly denotes a

process writing to a file (upon execution the malware writes a file to a location). We point out

that the level of detail present in this excerpt is common across a large majority of CTI reports

and can be converted to a reliable query graph by a qualified cyber analyst. In particular, the

verbs that express actions carried out by subjects can often be easily mapped to reads/writes
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from/to disk or network and to interactions among processes (e.g., a browser downloads a file,

a process spawns another process, a user clicks on a spear-phishing link, etc).

Figure 19 shows the query graph corresponding to the above excerpt. Ovals, diamonds,

rectangles, and pentagons represent processes, sockets, files, and registry entries, respectively.

In Figure 19, node B represents the malware process or group of processes (we use a ∗ to denote

that it can have any name), node A represents the image file of the malware, while nodes C, D

and E represent a dropped file, a registry and an Internet location, respectively. We highlight

at this point that the query graph that is built contains only information about information

flows among specific entities as they appear in the report (processes, files, IP addresses, etc)

and is not intended to be a precise subgraph of all the malicious entities that actually appear

during the attack. In a certain sense, the query graph is a summary of the actual attack graph.

In our experiments, the query graphs we obtained were usually small, containing between 10-40

nodes and up to 150 edges.

5.2.3 Graph Alignment

Finally, we model threat hunting as determining whether the query graph Gq for the attack

“manifests” itself inside the provenance graph Gp. We call this problem Graph Alignment

Problem.

We note at this point that Gq expresses several high-level flows between the entities (pro-

cesses to files, etc.). In contrast, Gp expresses the complete low-level activity of the system.

As a result, an edge in Gq might correspond to a path in Gp consisting of multiple edges.

For instance, if Gq represents a compromised browser writing to a system file, in Gp this may
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correspond to a path where a node representing a Firefox process forks new processes, only

one of which ultimately writes to the system file. Often, this kind of correspondence may be

created by attackers adding noise to their activities to escape detection. Therefore, we need a

graph alignment technique that can match single edges in Gq to paths in Gp. This requirement

is critical in the design of our algorithm.

In graph theory literature, there exist several versions of the graph matching problem. In

exact matching, the subgraph embedded in a larger graph Gp must be isomorphic to Gq [65].

In contrast, in the graph pattern matching (GPM) problem, some of the restrictions of exact

matching are relaxed to extract more useful subgraphs. However, both problems are NP-

complete in the general case [56]. Even though a substantial body of work dedicated to GPM

exists [66–72], many have limitations that make them impractical to be deployed in the field

of threat hunting. Specifically, they (i) are not designed for directed graphs with labels and

types assigned to each node, (ii) do not scale to millions of nodes, or (iii) are designed to

align all nodes or edges in the query graph exhaustively. Moreover, these approaches are not

intended for the context of threat hunting, taking into account an evasive adversary which

tries to remain stealthy utilizing the knowledge of the underlying matching criteria. Due to

these considerations, we devise a novel graph pattern matching technique that addresses these

limitations.

In Figure 18, graph nodes are represented in different shapes to model different node types,

such as a file, process, and socket, however, the labels are omitted for brevity. In particular,

Poirot starts by finding the set of all possible candidate alignments i : j where i and j represent
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nodes in V (Gq) and V (Gp), respectively. Then, starting from the alignment with the highest

likelihood of finding a match, called a seed node, we expand the search to find further node

alignments. The seed nodes are represented by hexagons in Figure 18 while matching nodes

in the two graphs are connected by dotted lines. To find an alignment that corresponds to

the attack represented in CTI relationships, the search is expanded along paths that are more

likely to be under the influence of an attacker. To estimate this likelihood, we devise a novel

metric named influence score. Using this metric allows us to largely exclude irrelevant paths

from the search and efficiently mitigate the dependency explosion problem. Prior works have

also proposed approaches to prioritize flows based on a score computed as length [70, 71] or

cost [1]. However, they can be defeated by attacks [54,55] in which attackers frequently change

their ways to evade the detection techniques. For instance, a proximity-based graph matching

approach [70,71] might be easily evaded by attackers, who, being aware of the underlying system

and matching approach, might generate a long chain of fork commands to affect the precision of

proximity-based graph matching. In contrast, our score definition explicitly takes the influence

of a potential attacker into account. In particular, we increase the cost for the attacker to evade

our detection, by prioritizing flows based on the effort it takes for an attacker to produce them.

Our search for alignment uses such prioritized flows and is described in Section 5.3.

After finding an alignment Gq :: Gp, a score is calculated, representing the similarity between

Gq and the aligned subgraph of Gp. When the score is higher than a threshold value, Poirot

raises an alert which declares the occurrence of an attack and presents a report of aligned nodes

to a system analyst for further forensic analysis. Otherwise, Poirot starts an alignment from
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TABLE XVII

Notations.
Notation Description

i : k Node alignment. Node i is aligned to node k (i and k are in two distinct graphs).
i 99K j Flow. A path starting at node i and ending at node j.

i
label−−−−→ j An edge from node i to node j with a specific label.

Gq :: Gp Graph alignment. A set of node alignments i : k where i is a node of Gq and k is a node of Gp.
V (G) Set of all vertices in graph G.
E(G) Set of all edges in graph G.
F (G) Set of all flows i 99K j in graph G such that i 6= j.

the next seed node candidate. After finding an attack subgraph in Gp, Poirot generates a

report containing the aligned nodes, information flows between them, and the corresponding

timestamps. In an enterprise setting, such visually compact and semantic-rich reports provide

actionable intelligence to cyber analysts to plan and execute cyber-threat responses. We discuss

the details of our approach in Section 5.3.

5.3 Algorithms

In this section, we discuss our main approach for alignment between Gq and Gp by (a)

defining an alignment metric to measure how proper a graph alignment is, and (b) designing a

best-effort similarity search based on specific domain characteristics.

5.3.1 Alignment Metric

We introduce some notations (in Table XVII), where we define two kinds of alignments,

i.e., a node alignment between two nodes in two different graphs, and a graph alignment which

is a set of node alignments. Typically, two nodes i and j are in a node alignment when they

represent the same entity, e.g., a node representing a commonly used browser mentioned in the

CTI report (node %browser% in the query graph Gq of Figure 20) and a node representing
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Figure 20. Simplified Provenance Graph (Gp), Query Graph (Gq), and two sample graph
alignments (Gq :: Gp). Node types are shown with different shapes, and possible alignments

for each node is shown with the same color. The numbers on the edges are merely to illustrate
possible paths/flows and do not have additional meaning.

a Firefox process in the provenance graph. We note that, in general, the node alignment

relationship is a many-to-many relationship from V(Gq) to V(Gp), where V(Gq) and V(Gp) are

the set of vertices of Gq and Gp respectively. Therefore, given a query graph Gq, there may be
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a large number of graph alignments between Gq and many subgraphs of Gp. Another thing to

point out is that each of these graph alignments can correspond to different subgraphs of Gp.

Each of these subgraphs contains the nodes that are aligned with the nodes of Gq; however,

they may contain different paths among those nodes. Among these subgraphs, we are interested

in finding the subgraph that best matches the graph Gq.

Based on these definitions, the problem is to find the best possible graph alignment among a

set of candidate graph alignments. To illustrate this problem, consider the query and provenance

graphsGq andGp, and two possible aligned graphs in Figure 20, where the node shapes represent

entity types (e.g., process, file, socket), and the edges represent information flow (e.g., read,

write, IPC) and causal dependencies (e.g., fork, clone) between nodes. The numbers shown

on the edges of Gp are not part of the provenance graph but serve to identify a single path in

our discussion. In addition, the subgraphs of Gp determined by these two graph alignments

with Gq are represented by dotted edges in Gp. Each flow in Gp and corresponding edge in

Gq is labeled with the same number. The problem is, therefore, to decide which among many

alignments is the best candidate. Intuitively, for this particular figure, alignment (Gq :: Gp)2 is

closer to Gq than (Gq :: Gp)1, mainly because the number of its aligned nodes is higher than

that of (Gq :: Gp)1, and most importantly, its flows have a better correspondence to the edges

of the query graph Gq.

5.3.1.1 Influence Score

Before formalizing the intuition expressed above, we must introduce a path scoring function,

which we call influence score and which assigns a number to a given flow between two nodes.
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This score will be instrumental in defining the “goodness” of a graph alignment. In practice,

the influence score represents the likelihood that an attacker can produce a flow. To illustrate

this notion, consider the two nodes firefox2 and %registry%\firefox in the graph Gp in Figure 20.

There exist two flows from firefox2 to %registry%\firefox, one represented by the edges labeled

with the number 2 (and passing through nodes java1 and java2), and another represented by the

edges labeled 3, 3, and 5 (and passing through nodes tmp.doc and word1). Assuming firefox2

is under the control of an attacker, it is more likely for the attacker to execute the first flow

rather than the second flow. In fact, in order to exercise the second flow, an attacker would

have to take control over process launcher2 or word1 in addition to firefox2. Since launcher2

or word1 share no common ancestors in the process tree with firefox2, such takeover would

have to involve an additional exploit for launcher2 or word1, which is far more unlikely than

simply exercising the first flow, where all processes share a common ancestor launcher1. We

point out that this likelihood does not depend on the length of the flow, rather on the number

of processes in that flow and on the number of distinct ancestors those processes share in the

process tree. One can, in fact, imagine a long chain of forked processes, which are however

all under the control of the attacker because they all share a common ancestor in the process

tree, i.e., the first process of the chain. Another possible scenario of attacks present in the

wild involves remote code loading from a single compromised process, where all the code with

malicious functionality is loaded in main memory and the same process (e.g., firefox) executes

all the actions on behalf of the attacker. While this technique leaves no traces on the file system
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and may evade some detection tools, Poirot would be able to detect this kind of attack. In

fact the influence score remains trivially unchanged.

One additional important point to note is that this notion of measuring the potential influ-

ence of an attacker is very robust concerning evasion methods from an attacker. Every activity

that an attacker may use to add noise and try to evade detection will likely have the same

common ancestors, namely the initial compromise points of the attack, unless the attacker pays

a higher cost to perform more distinct compromises. Thus, such efforts will be ineffective in

changing the influence score of the paths.

Based on these observations, we define the influence score, Γi,j , between a node i and a

node j as follows:

Γi,j =


max
i99Kj

1

ACmin(i 99K j)
∃i 99K j | ACmin(i 99K j) ≤ ACthr

0 otherwise

(5.1)

In above equation, we use the notion of minimum ancestral cover (ACmin(i 99K j)) which

is defined in 4.4.4 and represents the minimum number of distinct, independent compromises

an attacker has to conduct to be able to generate the flow i 99K j. This value captures the

extent of the attacker’s control over the flow and is calculated based on the minimum number

of common ancestors of the processes present in the flow. For instance, if there is a flow from a

node i to a node j, and all the processes involved in that flow have one common ancestor in the

process tree, an attacker needs to compromise only that common ancestor process to initiate

such flow, and therefore ACmin(i 99K j) is equal to 1. Note that if a node i represents a process
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and node j a child process of i, then ACmin(i 99K j) will be equal to 1 as i is parent of j. If

the number of common ancestors is larger than one (e.g., there are two ancestors in the path

firefox2 → tmp.doc→ word1 → %registry%\firefox ), an attacker has to compromise at least as

many (unrelated) processes independently; therefore it is harder for the attacker to construct

such flow. For instance, for the attacker to control the flow firefox2 → tmp.doc → word 1→

%registry%\firefox ), (s)he needs to control both launcher1 and launcher2; therefore ACmin is

equal to 2.

We also reasonably assume that it is not practical for an attacker to compromise more than

a small number of processes with distinct exploits. In a vast majority of documented APTs,

there is usually a single entry point or a very small number of entry points into a system for

an attacker, e.g., a spear phishing email, or a drive-by download attack on the browser. We

have confirmed that this is true also based on a review of a large number of white papers on

APTs [5]. Once an attacker has an initial compromise, it is highly unlikely that they will invest

additional resources in discovering and exploiting extra entry points. Therefore, we can place

a limit ACthr on the ACmin(i 99K j) values and reasonably assume that any flow between two

nodes that has a ACmin(i 99K j) greater than ACthr can not have been initiated by an attacker.

While the value of ACmin(i 99K j) expresses how hard it is for an attacker to control a

specific path, the influence score expresses how easy it is for an attacker to control that path, and

it is defined as a value that is inversely proportional to ACmin(i 99K j). If there is more than

one flow between two nodes i and j with ACmin less than or equal to ACthr, the influence score

will be the maximum
1

ACmin(i 99K j)
over all those flows. Therefore, if there exists a path with
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ACmin(i 99K j) less than or equal to ACthr from i to j, the influence score would be inverse of

path factor which is defined in 4.4.4; otherwise, the influence score would be equal to 0. Given

that, the value of Γi,j is maximal (equal to 1) when there is a flow whose ACmin(i 99K j) equals

1 and is minimal (equal to 0) when there is no flow with a ACmin(i 99K j) less than or equal

to ACthr.

5.3.1.2 Alignment Score

We are now ready to define a metric that specifies the score of a graph alignment Gq :: Gp.

Based on the notion of influence score, we define the scoring function S(Gq :: Gp), representing

the score for an alignment Gq :: Gp as follows:

S(Gq :: Gp) =
1

|F (Gq)|
∑

(i99Kj)∈F (Gq)

Γk,l | i : k & j : l (5.2)

In Equation 5.2, nodes i and j are members of V (Gq), and nodes k and l are members of V (Gp).

The flow i 99K j is a flow defined over Gq. In particular, the formula starts by computing the

sum of the influence scores among all the pairs of nodes (k, l) with at least one path from k

to l in the graph Gp such that k is aligned with i and l is aligned with j. This sum is next

normalized by dividing it with the maximal value possible for that sum. In fact, |F (Gq)| is the

number of flows in Gq. Since the maximal value of the influence score between two nodes is

equal to 1, then the number of flows automatically represents the maximal value of the sum of

the influence scores.

From Equation 5.2, intuitively, the larger the value of S(Gq :: Gp), the larger the number of

node alignments and the larger the similarity between flows in Gq and flows in Gp, which are
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likely to be under the influence of a potential attacker. In particular, the value of S(Gq :: Gp)

is between 0 and 1. When S(Gq :: Gp) = 0, either no proper alignment is found for nodes in

V (Gq), or no similar flows to those of Gq appear between the aligned nodes in Gp. On the

contrary, when S(Gq :: Gp) = 1, all the nodes in Gq are aligned to the nodes in Gp, and all the

flows existing in Gq also appear between the aligned nodes in Gp, and they all have an influence

score equal to 1, i.e., it is highly likely that they are under the attacker’s control.

Finally, when the alignment score S(Gq :: Gp) bypasses a predetermined threshold value

(τ), we raise the alarm. To determine the optimal value of this threshold, recall that ACthr is

the maximum number of distinct entry point processes we are assuming an attacker is willing to

exploit independently. Therefore, an attacker is assumed to be able to influence any information

flow with influence score of 1
ACthr

or higher. On the other hand, S(Gq :: Gp) is the average of

all influence scores. Therefore, we define the threshold τ as follows:

S(Gq :: Gp) ≥ τ (5.3)

τ =
1

ACthr
(5.4)

If S(Gq :: Gp) bypasses τ , we declare a match and raise the alarm.

5.3.2 Best-Effort Similarity Search

After defining the alignment score, we describe our procedure to search for an alignment

that maximizes that score. In particular, given a query graph Gq, we need to search a very large

provenance graph Gp to find an alignment Gq :: Gp with the highest alignment score based on

Equation 5.2.
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The first challenge in doing this is the size of Gp, which can reach millions of nodes and

edges. Therefore, it is not practical to store influence scores between all pairs of nodes of Gp.

We need to perform graph traversals on demand to find the influence scores between nodes or

even to find out whether there is a path between two nodes. Besides, we are assuming that all

analytics are being done on a stationary snapshot of Gp, and no changes happen to its nodes

or edges from the moment when a search is initiated until it terminates.

Our search algorithm consists of the following four steps, where steps 2-4 are repeated until

finding alignment with a score higher than the threshold value τ (Equation 5.4).

Step 1. Find all Candidate Node Alignments: We start by searching among nodes of

Gp to find candidate alignments for each node in Gq. These candidate alignments are chosen

based on the name, type, and annotations on the nodes of the query graph. For instance, nodes

of the same type (e.g., two process nodes) with the same label (e.g., Firefox) appearing in Gq

and Gp may form candidate alignments, nodes whose labels match a regular expression (e.g.,

a file system path and file name), and so on. A user may also manually annotate a node in

the provenance graph and explicitly specify an alignment with a node in the query graph. In

general, a node in Gq may have any number of possible alignments in Gp, including 0. Note

that in this first step, we do not have enough information about paths and flows and are looking

at nodes in isolation. In Figure 20, the candidate node alignments are represented by the pairs

of nodes having the same color.

Step 2. Selecting Seed Nodes: To find a good-enough alignment Gq :: Gp, we need

to explore connections between candidate alignments found in Step 1, by performing graph
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traversals on Gp. However, due to the structure and large size of Gp, starting a set of graph

traversals from randomly aligned nodes in Gp might lead to costly and unfruitful searches. To

determine a good starting point, a key observation is that the attack activities usually comprise

a tiny portion of Gp, while benign activities are usually repeated multiple times. Therefore, it

is more likely for artifacts that are specific to an attack to have fewer alignments than artifacts

of benign activities. Based on this observation, we sort the nodes of Gq by an increasing order

in the number of candidate alignments related to each node. We select the seed nodes with

fewest alignments first. For instance, with respect to the example in Figure 20, the seed node

will be %browser%, since it has the smallest number of candidate node alignments. If there are

seed nodes with the same number of candidate alignments, we choose one of them randomly.

Step 3. Expanding the Search: In this step, starting from the seed node chosen at

Step 2, we iterate over all the nodes in Gp aligned to it and initiate a set of graph traversals,

going forward or backward, to find out whether we can reach other aligned nodes among those

found in Step 1. For instance, after choosing node %browser% as a seed node, we start a series

of forward and backward graph traversals from the nodes in Gp aligned to %browser%, that

is firefox1 and firefox2. In theory, these graph traversals can be very costly both because of

the size of the graph and also the number of candidate aligned nodes, which can be located

anywhere in the graph. In practice, however, we can stop expanding the search along a path

once the influence score between the seed node and the last node in that path reaches 0. For

instance, suppose we decide that ACthr is equal to 2 in Figure 20. Then, the search along the

path (firefox2 → tmp.doc → word1 → %registry%\firefox→ word2) will not expand past the
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node word2, since the ACmin between firefox2 and any node along that path becomes greater

than 2 at word2, and thus the influence score becomes 0. Note that there is an additional path

from firefox2 to word2 via %registry%\firefox and along this path, the ACmin between firefox2

and word2 is still 2. Therefore, because of this path, the search will continue past word2. Using

the influence score as an upper bound in the graph traversals dramatically reduces the search

complexity and enables a fast exploration of the graph Gp.

Based on the shape of the query graph Gq, multiple forward/backward tracking cycles

might be required to visit all nodes (for instance, if we choose %browser% as a seed node in our

example, then node 240.2.1.1 in Gp is unreachable with only one forward or backward traversal

starting at firefox1 or firefox2). In this case, we repeat the backward and forward traversals

starting from nodes that are adjacent to the unvisited nodes but that have been visited in a

previous traversal (for instance, node spoolsv3 in our example). We iterate this process until we

cover all the nodes of the query graph Gq.

Step 4. Graph Alignment Selection: This step is responsible for producing the final

result or for starting another iteration of the search from step 2, in case a result is not found.

In particular, after performing backward/forward traversals, we identify a subset of candidate

nodes in Gp for each node in Gq. For instance, with respect to our example, we find that

node%browser% has candidates firefox1 and firefox2, node External IP has candidate alignments

240.1.1.1, 240.1.1.2, 240.1.1.3, and 240.2.1.1, and so on. However, the number of possible

candidate graph alignments that these candidate nodes can form can be quite large. If each

node i in Gq has ni candidate alignments, then the number of possible graph alignments is
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equal to
∏
i

ni. For instance, in our example, we can have 216 possible graph alignments

(2×3×3×3×4). In this step, we search for the graph alignment that maximizes the alignment

score (Equation 5.2).

A naive method for doing this is a brute-force approach that calculates the alignment score

for all possible graph alignments. However, this method is very inefficient and does not fully take

advantage of domain knowledge. To perform this search efficiently, we devise a procedure that

iteratively chooses the best candidate for each node in Gq based on an approximation function

that measures the maximal contribution of each alignment to the final alignment score.

In particular, starting from a seed node in Gq, we select the node in Gp that maximizes

the contribution to the alignment score and fix this node alignment (we discuss the selection

function in the next paragraph). For instance, starting from seed node %Browser% in our

example, we fix the alignment with node firefox1. From this fixed node alignment, we follow

the edges in Gq to fix the alignment of additional nodes connected to the seed node. The specific

node alignment selected for each of these nodes is the one that maximizes the contribution to the

alignment score. For instance, from node %Browser% (aligned to firefox1), we can proceed to

node ∗.exe and fix the alignment of that with one node among cmd.exe, tmp.exe, and Word.exe,

such that the contribution to the alignment score is maximized.

Selection Function. The key intuition behind the selection function, which selects and fixes

one among many node alignments, is to approximate how much each alignment would con-

tribute to the final alignment score and to choose the one with the highest contribution. For

a given candidate aligned node k in Gp, this contribution is calculated as the sum of the max-
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imum influence scores between that node and all the other candidate nodes l in Gp that: 1)

are reachable from k or that have a path to k, and 2) whose corresponding aligned node j

in Gq has a flow from/to the node in Gq that corresponds to node k. For instance, consider

node %Browser% and the two candidate alignment nodes firefox1 and firefox2 in our exam-

ple. To determine the contribution of firefox1, we measure for every flow (%Browser% 99K

∗.exe, %Browser% 99K spoolsv, %Browser% 99K %registry% ) from/to %Browser% in Gq, the

maximum influence score between firefox1 and the candidate nodes aligned with ∗.exe, spoolsv,

and %registry%, respectively. In other words, we compute the maximum influence score be-

tween firefox1 and each of the node alignment candidates of ∗.exe, the maximum influence score

between firefox1 and each of the node alignment candidates of spoolsv, and the maximum in-

fluence score between firefox1 and each of the node alignment candidates of %registry%. Each

of these three maximums provides the maximal contribution to the alignment score of each of

the possible future alignments (which are not fixed yet) for ∗.exe, spoolsv, and %registry%, re-

spectively. Next, we sum these three maximum values to obtain the maximal contribution that

firefox1 would provide to the alignment score. We repeat the same procedure for firefox2 and,

finally select the alignment with the highest contribution value. This contribution is formally

computed by the following equation, which approximates A(i : k) the contribution of a node

alignment i : k.
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A(i : k)

=
∑

j:(i99Kj)∈F (Gq)

(
1{j:l} × Γk,l + (1− 1{j:l})× max

m∈candidates(j)
(Γk,m)

)
+

∑
j:(j99Ki)∈F (Gq)

(
1{j:l} × Γl,k + (1− 1{j:l})× max

m∈candidates(j)
(Γm,k)

) (5.5)

where 1A is an indicator function, which is 1 if the alignment expressed in A is fixed, and is

0 otherwise. In other words, if the alignment between node j and l, has been fixed, l{j:l} equals

to 1, and otherwise, if node j is not aligned to any node yet, 1{j:l} equals to 0. Note that 1{j:l}

and (1− 1{j:l}) are mutually exclusive, and at any moment, only one of them equals 1, and the

other one equals to 0.

We note that the first summation is performed on outgoing flows from node i, while the

second summation is performed on flows that are incoming to node i. Inside each summation,

the first term represents a fixed alignment while the second term represents the maximum

among potential alignments that have not been fixed yet, as discussed above.

Finally, for each node i having a set K of candidate alignments as produced by Step 3, the

selection function, which fixes the alignment of i is as follows:

arg max
k∈K

A(i : k) (5.6)

The intuition behind equations Equation 5.5 and Equation 5.6 is that once a node alignment

is fixed, the other possible alignments of that node are ignored by future steps of the algorithm

and the calculation of the maximum influence score related to that alignment is reduced to a
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table lookup instead of an iteration over candidate node alignments. In particular, the search

starts as a brute force search, but as more and more node alignments are fixed, the search

becomes faster by reusing results of previous searches stored in the table. Using equations

Equation 5.5 and Equation 5.6 dramatically speeds up the determination of a proper graph

alignment. While in theory, this represents a greedy approach, which may not always lead to

the best results, in practice, we have found that it works very well.

Finally, after fixing all node alignments, the alignment score is calculated as in Equation 5.2.

If the score is below the threshold, the steps 2-4 are executed again. Our evaluation results in

Section 5.4 show that the attack graph is usually found within the first few iterations.

5.4 Evaluation

We evaluate Poirot’s efficacy and reliability in three different experiments. In the first

experiment, we use a set of TC program red-team vs. blue-team adversarial engagement sce-

narios which are set up in an isolated network simulating an enterprise network. In the second

experiment, we further test Poirot on real-world incidents whose natural language descrip-

tions are publicly available on the internet. To reproduce the attacks described in the public

threat reports, we obtained and executed their binary samples in a controlled environment and

collected kernel audit logs from which we build the provenance graph. In the third experiment,

we evaluate Poirot’s robustness against false signals in an attack-free dataset.

In all the experiments, we set the value of ACthr to 3 (and thus a threshold of 1
3). This

choice is validated in Section 5.4.3. We note, however, that one can configure Poirot with

higher or lower values depending on the confidence about the system’s protection mechanisms
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or the effort cyber-analysts are willing to spend to check the alarms. In fact, the value of ACthr

influences the number of false positives and potential false negatives. A higher ACthr will

increase the number of false positives while a lower ACthr will reduce it. On the other hand, a

higher value of ACthr may detect sophisticated attacks, with multiple initial entry points, while

a smaller value may miss them. After finding alignment with a score bypassing the threshold,

we manually analyzed all the matched attack subgraphs to confirm that they were correctly

pinpointing the actual attacks present in the query graphs.

5.4.1 Evaluation on the TC Dataset

TABLE XVIII

Characteristics of Query Graphs.
Scenario subjects ∈ |V (Gq)| objects ∈ |V (Gq)| |E(Gq)| |F (Gq)|

BSD-1 4 9 19 81
BSD-2 1 7 10 32
BSD-3 3 18 34 159
BSD-4 2 8 13 43
Win-1 13 8 26 149
Win-2 1 13 19 94

Linux-1 2 9 19 62
Linux-2 5 12 24 112
Linux-3 2 8 22 48
Linux-4 4 11 22 96

This experiment was conducted on a dataset released by the TC program, generated during

a red-team vs. blue-team adversarial engagement in April 2018 [28]. In the engagement,

different services were set up, including a web server, an SSH server, an email server, and

an SMB server. An extensive amount of benign activities was simulated, including system
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administration tasks, web browsing to many web sites, downloading, compiling, and installing

multiple tools. The red-team relies on threat descriptions to execute these attacks. We obtained

these threat descriptions and used them to extract a query graph for each scenario (summary

shown in Table XVIII).

In total, we evaluated Poirot on ten attack scenarios including four on BSD, two on

Windows, and four on Linux. Due to space restrictions, we are not able to show all the query

graphs; however, their characteristics are described in Table XVIII, where subjects indicate

processes, and objects indicate files, memory objects, and sockets. BSD-1-4 pertain to attacks

conducted on a FreeBSD 11.0 (64-bit) web-server which was running a back-doored version of

Nginx. Win-1&2 pertain to attacks conducted on a host machine running Windows 7 Pro (64-

bit). The Win-1 scenario contains a phishing email with a malicious Excel macro attachment,

while the Win-2 scenario contains exploitation of a vulnerable version of the Firefox browser.

Linux1&2 and Linux3&4 pertain to attacks conducted on hosts running Ubuntu 12.04 (64-bit)

and Ubuntu 14.04 (64-bit), respectively. Linux1&3 contain in-memory browser exploits, while

Linux2&4 involve a user who is using a malicious browser extension.

Alignment Score. As discussed in Section 5.3.2, Poirot iteratively repeats the node align-

ment procedure starting from the seed nodes with fewer candidates. Figure 21 shows the number

of candidate aligned nodes for each node of Gq. Most of the nodes of Gq have less than ten

candidate nodes in Gp, while there are also nodes with thousands of candidate nodes. These

nodes, which appear thousands of times, are usually ubiquitous processes and files routinely

accessed by benign activities, such as Firefox or Thunderbird. We remind the reader that our
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Figure 21. Cumulative Distribution Function (CDF) of number of candidates in |Gp| for each
node of |Gq|. From left to right: BSD, Windows, and Linux Scenarios.

seed nodes are chosen first from the nodes with fewer alignments. In each iteration, an align-

ment is constructed, and its alignment score is compared with the threshold value, which is set

to 1
3 .

Table XIX shows Poirot’s matching results for each TC scenario after producing an align-

ment of the query graphs with the corresponding provenance graphs. We stop the search after
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the first alignment that surpasses the threshold value. The second and third columns of Ta-

ble XIX show the number of iterations of the steps 2-4 presented in Section 5.3.2 and the actual

score obtained for the first alignment that bypasses the threshold value. In 9 out of 10 scenarios,

an alignment bypassing the threshold value was found in the first iteration. In one case, the

exact matching of Gq could be found in Gp (see BSD-4).

The fourth column of Table XIX shows the maximum alignment score among the 20 align-

ments constructed by iterating steps 2-4 of our search algorithm 20 times while the last column

shows the earliest iteration-number that resulted in the maximum value. As can be seen, on

average, our search converges quickly to a perfect solution. In 7 out of 10 scenarios, the max-

imum alignment score is calculated in the first iteration, while in the other 3, the maximum

alignment scores are calculated in the fourth or fifth iterations. The latter is due to slight

differences between the attack reports and the red team’s implementation of the attacks, which

result in information flows and causal dependencies that differ slightly between the query graph

and the provenance graph. As an example, in Figure 22, we show the query graph and its

TABLE XIX

Poirot’s Graph Alignment Scores.
Scenario Earliest iteration

bypassing threshold
Earliest score

bypassing threshold
Max score in 20

iterations
Earliest iteration

resulting Max score
BSD-1 1 0.45 0.64 5
BSD-2 1 0.81 0.81 1
BSD-3 1 0.89 0.89 1
BSD-4 1 1 1 1
Win-1 1 0.63 0.63 1
Win-2 1 0.47 0.63 4

Linux-1 1 0.58 0.58 1
Linux-2 2 0.55 0.71 5
Linux-3 1 0.54 0.54 1
Linux-4 1 0.87 0.87 1
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aligned subgraph for the Linux-2 scenario. In this scenario, the attacker exploits Firefox via a

malicious password manager browser extension, to implant an executable to disk. Then, the

attacker runs the dropped executable to exfiltrate some confidential information and perform a

port scan of known hosts on the target network. We tag the aligned nodes in each graph with

the same letter label. Some nodes on the query graph are not aligned with any nodes in the

provenance graph. This reduces the score of the graph alignment to a value that is less than

1. Although Gq largely overlaps with a subgraph in Gp, some nodes have no alignment, and

some information flows and causal dependencies do not appear in the provenance graph. The

percentage of these nodes is small, however. As long as the reports are mainly matching the

actual attack activities, our approach will not suffer from this.

5.4.2 Evaluation on Public Attacks

In this section, we describe the evaluation of Poirot on attacks performed by real-world

malware families and compare its effectiveness with that of other similar tools. We show the

results of this evaluation in Table XX. The names of these malware families, the CTI reports

we used as descriptions of their behavior, and the year in which the report is published are

shown in the first three columns.

Mutation Detection Evaluation. As mentioned earlier, a common practice among attackers

is that of mutating malware to evade detection or to add more features to it. Therefore, a CTI

report may describe the behavior of a different version of the malware that is actually present

in the system, and it is vital for a threat hunting tool to be able to detect different mutations

of a malware sample. To this end, we execute several real-world malware families, containing
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TABLE XX

Malware reports. In the Detection Results, B=Behavior, PE=PE-Sieve, F=File Name,
H=Hash, P=Process Name, R=Registry, S=Windows Security Event.

Malware Report
Year

Reported Analyzed Sample Isolated Detection Results
Name Source Samples Malware MD5 Relation IOCs RedLine Loki Splunk Poirot

njRAT Fidelis
[73]

2013 30 2013385034e5c8df-
bbe47958fd821ca0

different 153 F+H F+H P B
(score=0.86)

DeputyDog FireEye
[64]

2013 8 8aba4b5184072f2a-
50cbc5ecfe326701

subset 21 F×2
+H+R

F×2
+H

P+R B
(score=0.71)

Uroburos Gdata
[74]

2014 4 51e7e58a1e654b6e-
586fe36e10c67a73

subset 26 F+H F+H R B
(score=0.76)

Carbanak Kaspersky
[75]

2015 109 1e47e12d11580e93-
5878b0ed78d2294f

different 230 - PE S B
(score=0.68)

DustySky Clearsky
[76]

2016 79 0756357497c2cd7f-
41ed6a6d4403b395

different 250 - - - B
(score=1.00)

OceanLotus Eset [77] 2018 9 d592b06f9d112c86-
50091166c19ea05a

subset 117 F+R F+PE P+R B
(score=0.65)

HawkEye Fortinet
[78]

2019 3 666a200148559e4a-
83fabb7a1bf655ac

different 3 - PE - B
(score=0.62)

different mutated versions of the same malware, in a controlled environment. The fourth column

of Table XX, shows the number of malware samples with different hash values belonging to the

family mentioned in the corresponding CTI report. We note that the reports describe the

behavior of only a few samples. The fifth column of Table XX shows our selected sample’s hash

value, while the sixth column shows the relation between our selected sample and the ones the

CTI report is based on. For instance, the reports of DeputyDog, Uroburos, and OceanLotus

cover different activities performed by a set of different samples, and our selected sample is

one of them. We have aggregated all those activities in one query graph. For the other test

cases, the sample we have executed is different from the ones that the report is based on,

which could be considered as detecting a mutated malware. njRAT and DustySky explicitly

mention their analyzed sample, which are different from the one we have chosen. The Carbanak

report mentions 109 samples, from which we have randomly selected one. Finally, the sample of
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TABLE XXI: Node labels of the query graphs in Figure 23 and their alignments.

Malware Node Label Aligned Node Label

Carbanak

A %Mail Application% Thunderbird

B ∗.%exe% invitation.exe

C ∗ invitation

D %system32%\svchost C:\Windows\SysWOW64\svchost.exe:WofCompressedData

E svchost svchost

F ∗Sys$ None

G %COMMON APPDATA%\Mozilla\∗.%exe% C:\ProgramData\Mozilla\BwgWXFhfbVpfWgJfBg.bin

H [HKCU]\Software\Microsoft\Windows\

CurrentVersion \Internet Settings

[HKCU]\Software\Microsoft\Windows\CurrentVersion

\Internet Settings

I %AppData%\Mozilla\Firefox\∗\prefs.js C:\Users\test user\AppData\Roaming\Mozilla\Firefox\

Profiles\ddl1t72n.default\prefs.js

J %External IP address% None

A ∗ contract.exe

B %APPDATA%\Microsoft\credprov.tlb C:\Users\test user\AppData\Roaming\Microsoft\credprov.tlb

C %APPDATA%\Microsoft\shdocvw.tlb C:\Users\test user\AppData\Roaming\Microsoft\shdocvw.tlb

Uroburos

D rundll32 rundll32

E [HKCU]\Software\Classes\CLSID\42aedc87-

2188-41fd-b9a3-0c966feabec1\

[HKCU]\Software\Classes\CLSID\42aedc87-2188-41fd-b9a3-

0c966feabec1\

F ∗\winview.ocx None

G ∗\mskfp32.ocx None

H ∗\msvcrtd.tlb None

I %APPDATA%\Microsoft\oleaut32.dll C:\Users\test user\AppData\Roaming\Microsoft\oleaut32.dll

J %APPDATA%\Microsoft\oleaut32.tlb C:\Users\test user\AppData\Roaming\Microsoft\oleaut32.tlb

K %APPDATA%\Microsoft\libadcodec.dll C:\Users\test user\AppData\Roaming\Microsoft\libadcodec.dll

L %APPDATA%\Microsoft\libadcodec.tlb C:\Users\test user\AppData\Roaming\Microsoft\libadcodec.tlb

DustySky

A ∗.%exe% News.docx.exe

B ∗ News

C %Microsoft Word% C:\Program Files\Microsoft Office\Office12\Winword.exe

D ∗\vboxmrxnp.dll C:\WINDOWS\vboxmrxnp.dlls

E ∗\vmbusres.dll C:\WINDOWS\vmbusres.dlls

F ∗\vmGuestlib.dll C:\WINDOWS\SysWOW64\vmGuestLib.dll

G %TEMP%\∗.%exe% C:\Users\test user\AppData\Local\Temp

\1371372533114561232114361100131187183149253.exe

H ∗ 1371372533114561232114361100131187183149253

I %TEMP%\temps C:\Users\test user\AppData\Local\Temp\temps

A ∗.%exe% Chi tiet don khieu nai gui saigontel.exe

Continued on next page
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Table XXI – Continued from previous page

Malware Node Label Aligned Node Label

OceanLotus

B ∗ Chi tiet don khieu nai gui saigontel

C %temp%\∗ C:\Users\test user\AppData\Local\Temp\tmp.docx

D %temp%\[0-9].tmp.%exe% None

E %Microsoft Word% C:\Program Files\Microsoft Office\Office12\Winword.exe

F ∗\rastlsc.%exe% C:\Program Files (x86)\Symantec\Officewordtask\rastlsc.exe

G ∗\rastls.dll C:\Program Files (x86)\Symantec\Officewordtask\rastls.dll

H ∗\(Sylog.bin|OUTLFLTR.DAT) C:\Program Files (x86)\Symantec\

Officewordtask\OUTLFLTR.DAT

I rastlsc rastlsc

J \SOFTWARE\Classes\AppX∗ None

K ∗\HTTPProv.dll None

L SOFTWARE\Classes\CLSID\{E3517E26-

8E93-458D-A6DF-8030BC80528B}

SOFTWARE\Classes\CLSID\{E3517E26-8E93-458D-A6DF-

8030BC80528B}

M %External IP address% None

A ∗ Authorization

B ∗.exe.config C:\Users\test user\Desktop\Authorization.exe.config

C ∗.tmp C:\Users\test user\AppData\Roaming\ja33kk.exe.tmp

njRAT

D C:\WINDOWS\Prefetch\∗.EXE-∗.pf C:\Windows\Prefetch\AUTHORIZATION.EXE-69AD75AA.pf

E %APPDATA%\∗ C:\Users\test user\AppData\Roaming\ja33kk.exe

F ∗ ja33kk

G C:\WINDOWS\Prefetch\∗.EXE-∗.pf C:\Windows\Prefetch\JA33KK.EXE-7FA5E873.pf

H %USER PROFILE%\Start Menu\

Programs\Startup\∗

C:\Users\test user\AppData\Roaming\Microsoft\Windows\

Start Menu\Programs\Startup\-

9758a8dfbe15a00f55a11c8306f80da1.exe

I netsh netsh

J C:\WINDOWS\Prefetch\NETSH.EXE-∗.pf C:\Windows\Prefetch\NETSH.EXE-CD959116.pf

K [HKCU]\Software\Microsoft\Windows\

CurrentVersion\Run\

[HKCU]\Software\Microsoft\Windows\CurrentVersion\Run\

L [HKLM]\Software\Microsoft\Windows\

CurrentVersion\Run\

[HKLM]\Software\Microsoft\Windows\CurrentVersion\Run\

M [HKLM]\SYSTEM\CurrentControlSet\

Services\SharedAccess\Parameters\

FirewallPolicy\StandardProfile\Authorized-

Applications\List\APPDATA\

None

N %External IP address% None

A ∗.%Compressed% PROFORMA INVOICE 20190423072201 pdf.bin.zip

B %Unachiever% WinRAR.exe

Continued on next page
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Table XXI – Continued from previous page

Malware Node Label Aligned Node Label

HawkEye

C ∗.%exe% C:\Users\test user\Desktop\PROFORMA INVOICE

20190423072201 pdf.bin

D ∗ PROFORMA INVOICE 20190423072201 pdf

E RegAsm RegAsm

F vbc vbc (PID1)

G vbc vbc (PID2)

H1 ∗Opera∗ C:\Users\test user\AppData\Roaming\Opera\Opera7\

profile\wand.dat

H2 ∗Chrome∗ C:\Users\test user\AppData\Local\Google\Chrome\User

Data\Default\Login Data

H3 ∗Chromium∗ C:\Users\test user\AppData\Local\Chromium\User Data

H4 ∗Chrome SxS∗ C:\Users\test user\AppData\Local\Google\Chrome SxS\User

Data

H5 ∗Thunderbird∗ C:\Users\test user\AppData\Roaming\Thunderbird\Profiles

H6 ∗SeaMonkey∗ C:\Users\test user\AppData\Roaming\Mozilla\SeaMonkey\

Profiles

H7 ∗SunBird∗ None

H8 ∗IE∗ C:\Users\test user\AppData\Local\Microsoft\Windows\

History\History.IE5

H9 ∗Safari∗ None

H10 ∗Firefox∗ C:\Users\test user\AppData\Roaming\Mozilla\Firefox\

profiles.ini

H11 ∗Yandex∗ C:\Users\test user\AppData\Local\Yandex\YandexBrowser\

User Data\Default\Login Data

H12 ∗Vivaldi∗ C:\Users\test user\AppData\Local\Vivaldi\User

Data\Default\Login Data

I1 ∗Yahoo∗ [HKLM]\Software\Yahoo\Pager

I2 ∗GroupMail∗ None

I3 ∗Thunderbird∗ C:\Users\test user\AppData\AppData\Roaming\

Thunderbird\Profiles

I4 ∗MSNMessenger∗ [HKLM]\Software\Microsoft\MSNMessenger

I5 ∗Windows Mail∗ C:\Users\test user\AppData\Local\Microsoft\Windows Mail

I6 ∗IncrediMail∗ [HKLM]\Software\WOW6432Node\IncrediMail\Identities

I7 ∗Outlook∗ [HKLM]\Software\Microsoft\Office\16.0\Outlook\Profiles

I8 ∗Eudora∗ [HKLM]\Software\Qualcomm\Eudora\CommandLine

J %temp%\∗.tmp C:\Users\test user\AppData\Local\Temp\tmp8FC3.tmp

K %temp%\∗.tmp C:\Users\test user\AppData\Local\Temp\tmp8BAB.tmp

L http[s]:\\whatismyipaddress.com\∗ None

Continued on next page
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Table XXI – Continued from previous page

Malware Node Label Aligned Node Label

M %External IP address% None

DeputyDog

A ∗.%exe% C:\Users\test user\Desktop\img20130823.jpg.exe

(Figure 19)

B ∗ img20130823

C %APPDATA%\∗ C:\ProgramData\28542CC0.dll

D [HKCU]\Software\Microsoft\Windows\

CurrentVersion\ Run\

None

E %External IP address% 180.150.228.102
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Figure 23. Query Graphs of Carbanak, DustySky, Uroburos, OceanLotus, njRAT, and

HawkEye malware extracted from their CTI reports.
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HawkEye malware is selected from an external source and is not among the samples mentioned

in the report.

Comparison with Existing Tools. We compare Poirot with the results of three other

tools, namely RedLine [12], Loki [11], and Splunk [15]. The input to these tools is extracted

from the same report we extract the query graphs and contains IOCs in different types such

as hash values, process names, file names, and registries. We have transformed these IOCs

to the accepted format of each tool (e.g., RedLine accepts input in OpenIOC format [45]).

The number of IOCs submitted to Redline, Loki, and Splunk are shown in column-7, while

the query graphs submitted to Poirot are shown in Figure 23. A detailed explanation of

these query graphs demonstrating how they are constructed can be found in Appendix C. The

correspondence between node labels in the query graphs and their actual names is represented

in the second and third columns of Table XXI, while the alignments produced by Poirot are

shown in the last column.

As shown in the extracted query graphs, the design of Poirot ’s search method, which is

based on the information flow and causal dependencies, makes us capable to include benign

nodes (nodes C, D, E, and F in DustySky) or attack nodes with exact same names of benign

entities (node E in Carbanak) in the query graph. However, these entity names could not be

defined as an IOC in the other tested tools as will lead to many false positive alarms. As Redline,

Loki, and Splunk look for each IOC in isolation, they expect IOCs as input that are always

malicious regardless of their connection with other entities. To this end, we do a preliminary

search for each isolated IOC in a clean system and make sure that we have only extracted IOCs
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that have no match in a clean system. As a result, for some test cases, like HawkEye, although

the behavior graph is rich, there are not so many isolated IOCs except a few hash values that

could be defined. This highlights the importance of the dependencies between IOCs, which is

the foundation of Poirot’s search algorithm, and is not considered by other tools.

Detection Results. The last four columns of Table XX contain the detection results, which

show how each tool could detect the tested samples. Keywords B, F, H, P, and R represent

detection based on the behavior, file name, hash value, process name, and registry, respectively.

In addition, some of the tested tools feature other methods to detect anomalies, injection, or

other security incidents. Among these, we encountered some alarms from Windows Security

Mitigation and PE-Sieve [79], which are represented by keywords S and PE, respectively. While

for Poirot, a score is shown which shows the goodness of the overall alignment of each query

graph, for the other tools, ×N indicates the number of hits when there has been more than one

hit for a specific type of IOC.

As shown in Table XX, for all the test cases, Poirot has found an alignment that bypasses

the threshold value of 1
3 . After running the search algorithm, in most of the cases, Poirot

found a node alignment for only a subset of the entities in the query graph, except for DustySky,

where Poirot found a node alignment for every entity. The information flows and causal

dependencies that appear among the aligned nodes are often the same as the query graph with

some exceptions. For example, in contrast to how it appears in the query graph of njRAT,

where node A generates most of the actions, in our experiment, node F generated most of the

actions, such as the write event to nodes C, G, K, L, and the fork event of node I. However,
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since there is a path from node A to node F in the query graph, Poirot was able to find these

alignments and measure a high alignment score.

The samples of njRAT, DeputyDog, Uroburous, and OceanLotus are also detected by all the

other tools, as these samples use unique names or hash values that are available in the threat

intelligence and could be attributed to those malwares. For the other three test cases, none of the

isolated IOCs could be detected because of different reasons such as malware mutations, using

random names in each run (nodes J and K in HawkEye query graph), and using legitimate

libraries or their similar names. Nevertheless, Splunk found an ETW event related to the

Carbanak sample, which is generated when Windows Security Mitigation service has blocked

svchost from generating dynamic code. Loki’s PE-Sieve has also detected some attempts of code

implants which have resulted in raising some warning signal and not an alert. PE-Sieve detects

all modifications done to a process even though they may not necessarily be malicious. As such

modifications happen regularly in many benign scenarios, PE-Sieve detections are considered

as warning signals that need further investigations.

Conclusions. Our analysis results show that other tools usually perform well when the sample

is a subset of the ones the report is written based on. This situation is similar to when there

is no mutations, and therefore, there are unique hash values or names that could be used as

signature of a malware. For example, DeputyDog sample drops many files with unique names

and hash values that do not appear in a benign system, and finding them is a strong indication

of this malware. However, its query graph (Figure 19) is not very rich, and Poirot has not been

able to correlate the modified registry (node D) with the rest of the aligned nodes. Although
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the calculated score is still higher than the threshold, but the other tools might perform better

when the malware is using well-known IOCs that are strong enough to indicate an attack in

isolation.

On the contrary, when the chosen sample is different from the samples analyzed by the

report, which is similar to the case that malware is mutated, other tools usually are not able

to find the attacks. In such situations, Poirot has a better chance to detect the attack as the

behavior often remains constant among the mutations.

5.4.3 Evaluation on Benign Datasets

To stress-test Poirot on false positives, we used the benign dataset generated as part of the

adversarial engagement in the TC program and four machines (a client, a SSH server, a mail

server and a web server) we monitored for one month. Collectively, these datasets contained

over seven months worth of benign audit records and billions of audit records on Windows,

Linux, and FreeBSD. During this time, multiple users used these systems and typical attack-

free actions were conducted including web browsing, installing security updates (including kernel

updates), virus scanning, taking backups, and software uninstalls.

After collecting the logs, we run Poirot to construct the provenance graph, and then

search for all the query graphs we have extracted from the TC reports and the public malware

reports. We try up to 20 iterations starting from different seed node selections per each query

graph per each provenance graph and select the highest score. Note that although these logs

are attack-free, they share many nodes and events with our query graphs, such as confidential

files, critical system files, file editing tools, or processes related to web browsing/hosting, and
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Figure 24. Selecting the Optimal Threshold Value.

email clients, all of which were accessed during the benign data collection period. However,

even in cases where similar flows appear by chance, the influence score prunes away many of

these flows. Consequently, the graph alignment score Poirot calculates among all the benign

datasets is at most equal to 0.16, well below the threshold.

Validating the Threshold Value. The selection of the threshold value is critical to avoid

false signals. Too low a threshold could result in premature matching (false positives) while

too high a threshold could lead to missing reasonable matches (false negatives). Thus, there is

a trade-off in choosing an optimal threshold value. To determine the optimal threshold value,

we measured the F-score using varying threshold values, as shown in Figure 24. This analysis

is done based on the highest alignment score calculated in 20 iterations of Poirot’s search

algorithm for all the attack and benign scenarios we have evaluated. As it is shown, the highest
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F-score value is achieved when the threshold is at the interval [0.17, 0.54], which is the range in

which all attack subgraphs are correctly found, and no alarm is raised for benign datasets. The

middle of this interval, i.e., 0.35, maximizes the margin between attack and benign scores, and

choosing this value as the optimal threshold minimizes the classification errors,. Therefore, we

set the ACthr to 3 which results in 1
ACthr

= 1
3 which is close to the optimal value.

5.4.4 Efficiency

The overheads and search times for the different tools we used are shown in Table XXII.

Redline and Loki are offline tools, searching for artifacts that are left by the attacker on the

system, while Splunk and Poirot are online tools, searching based on system events collected

during runtime. Hence, Redline and Loki have no runtime overhead due to audit log collection.

The runtime overheads of Splunk and Poirot due to log collection are measured using Apache

benchmark [80], which measures web server responsiveness, JetStream [81], which measures

browser execution times, and HDTune [82], which measures heavy hard drive transactions. As

shown in Table XXII, both tools have shown negligible runtime overhead, while the runtime

TABLE XXII

Efficiency Comparison with Related Systems.
Detection

Type
Runtime Overhead Search

Method Apache [80] JetStream [81] HDTune [82] Time (min)
Redline offline - - - 124

Loki offline - - - 215
Splunk online 3.70% 2.94% 4.37% ¡ 1
Poirot online 0.82% 1.86% 0.64% ¡ 1
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of Splunk can be further improved by setting it up in a distributed setting and offloading the

data indexing task to another server.

The last column of Table XXII shows the time it took searching for IOCs per each tool.

The search time of offline tools highly depends on the number of running processes and volume

of occupied disk space, which was 500 GB in our case. On the other hand, the search time of

online methods highly depends on the log size, type and number of activities represented by

the logs. As our experiments with real-world malware samples were running in a controlled

environment without many background benign activities and Internet connection, both Splunk

and Poirot spend less than one minute to search for all the IOCs mentioned in Table XX. In the

following, we perform an in-depth analysis of Poirot ’s efficiency on the TC scenarios, which

overall contain over a month worth of log data with combined attack and benign activities. The

analysis is done on an 8-core CPU with a 2.5GHz speed each and a 150GB of RAM.

Audit Logs Consumption. In Table XXIII, the second column shows the initial size of the

logs on disk, the third column represents the time it takes to consume all audits log events

TABLE XXIII

Statistics of logs, Consumption and Search Times.
Scenario Size on Disk

(Uncompressed)
Consumption

time
Occupied
Memory

Log
Duration

sub ∈
|V (Gp)|

obj ∈
|V (Gp)|

|E(Gp)| Search
Time (s)

BSD-1 3022 MB 0h-34m-59s 867 MB 03d-18h-01m 110.66 K 1.48 M 7.53 M 3.28
BSD-2 4808 MB 0h-58m-05s 1240 MB 05d-01h-15m 213.10 K 2.25 M 12.66 M 0.04
BSD-3

1828 MB 0h-21m-31s 638 MB 02d-00h-59m 84.39 K 897.63 K 4.65 M
26.09

BSD-4 1.47
Win-1

54.57 GB 4h-58m-30s 3790 MB 08d-13h-35m 1.04 M 2.38 M 70.82 M
125.26

Win-2 46.02
Linux-1

9436 MB 1h-26m-37s 4444 MB 03d-04h-20m 324.68 K 30.33 M 51.98 M
1279.32

Linux-2 1170.86
Linux-3 131.1 GB 2h-30m-37s 21.2 GB 10d-15h-52m 374.71 K 5.32 M 69.89 M 385.16
Linux-4 4952 MB 0h-04m-00s 1095 MB 00d-07h-13m 35.81 K 859.03 K 13.06 M 20.72
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from disk for building the provenance graph in memory. This time is measured as the wall-

clock time and varies depending on the size of each audit log and the structure of audits logs

generated in each platform (BSD, Windows, Linux). The fourth column shows the total memory

consumption by each provenance graph. Comparing the size on disk versus memory, we notice

that we have an average compression of 1:4 (25%) via a compact in-memory provenance graph

representation based on [1]. However, if memory is a concern, it is still possible to achieve

better compression using additional techniques proposed in this area [36, 83, 84]. The fifth

column shows the duration during which the logs were collected while columns 6, 7, and 8 show

the total number of subjects (i.e. processes), objects, and events in the provenance graph that

is built from the logs, respectively. We note that the query graphs are on average 209K times

smaller than the provenance graph for these scenarios. Nevertheless, Poirot is still able to

find the exact embedding of Gq in Gp very fast, as shown in the last column. We note that

some scenarios are joined (e.g., Win-1&2) because they were executed concurrently on the same

machines.

Graph Analytics. In the last column of Table XXIII, we show the runtime of graph analytics

for Poirot’s search algorithm. These times are measured from the moment a search query

is submitted until we find a similar graph in Gp with an alignment score that surpasses the

threshold. Therefore, for Linux-2, the time includes the sum of the times for two iterations.

The main bottleneck is on the graph search expansion (Step 3), and the time Poirot spends

on graph search depends on several factors. Obviously, the sizes of both query and provenance

graph are proportional to the runtime. However, we notice that the node names in Gq and the
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shape of this graph have a more significant effect. In particular, when there are nodes with

many candidate alignments, there is a higher chance to reverse the direction multiple times and

runtime increases accordingly.

5.5 Summary

Poirot formulates cyber threat hunting as a graph pattern matching problem to reliably

detect known cyber attacks. Poirot is based on an efficient alignment algorithm to find

an embedding of a graph representing the threat behavior in the provenance graph of kernel

audit records. We evaluate Poirot on real-world cyber attacks and on ten attack scenarios

conducted by a professional red-team, over three OS platforms, with tens of millions of audit

records. Poirot successfully detects all the attacks with high confidence, no false signals, and

in a matter of minutes.



CHAPTER 6

RELATED WORK

This chapter includes excerpts and figures from material that is published in [1–3].

In this chapter, we discuss the closely related work to the approaches presented in this dis-

sertation. Specifically, we cover the related research in the areas of provenance graph, intrusion

detection, alert correlation, query processing systems, behavior discovery, and graph pattern

matching.

6.1 Provenance Graph

Several logging and provenance tracking systems have been built to monitor the activities

of a system [38,39,85–89] and build provenance graphs. Among these, Backtracker [8,9] is one

of the first works that used dependence graphs to trace back to the root causes of intrusions.

These graphs are built by correlating events collected by a logging system and by determining

the causality among system entities, to help in forensic analysis after an attack is detected.

Sleuth improves on the techniques of Backtracker in two important ways. First, Back-

tracker was meant to operate in a forensic setting, whereas our analysis and data representation

techniques are designed towards real-time detection. Setting aside hardware comparisons, we

note that Bactracker took 3 hours for analyzing audit data from a 24-hour period, whereas

Sleuth was able to process 358 hours of logs in a little less than 3 minutes. Secondly, Back-

tracker relies on alarms generated by external tools, therefore its forensic search and pruning

143
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cannot leverage the reasons that generated those alarms. In contrast, our analysis procedures

leverage the results from our principled tag-based detection methods and therefore are inher-

ently more precise. For example, if an attack deliberately writes into a well-known log file,

Backtracker’s search heuristics may remove the log file from the final graph, whereas our tag-

based analysis will prevent that node from being pruned away.

To have a more efficient and effective use of provenance graphs, several approaches have

introduced compression, summarization, and log reduction techniques [36,83,84,90] to differen-

tiate worthy events from uninformative ones and consequently reduce the storage size. Dividing

processes into smaller units is one of the approaches to add more granularity into the prove-

nance graphs, and to this end, researchers have utilized different methods, such as dynamic

binary analysis [25,40], source code annotation [91], or modeling-based inference [4,92,93]. Ad-

ditionally, record-and-replay [94,95] and parallel execution methods [96] are proposed for more

precise tracking. Similar to our proposed methods, some recent studies have leveraged prove-

nance graphs for different objectives, such as timely Causality Analysis [97], alert triage [98]

and zero-day attack path identification [99].

While the majority of the aforementioned systems operate at the system call level, several

other systems track information flows at finer granularities [23–25]. They typically instrument

applications (e.g., using Pin [26]) to track information flows through a program. Such fine-

grained tainting can provide much more precise provenance information, at the cost of higher

overhead. fine-grained taint tracking not only can mitigate memory corruption vulnerabilities in

low-level languages [29], but also can cover a much broader range of vulnerabilities that afflicted
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programs in higher-level and scripting languages [30]. It was also demonstrated to be a very

powerful technique for malware analysis and automated generation of patches. Finally, it has

been shown that the power of IDS techniques can be significantly enhanced using fine-grained

taint [100].

6.2 Intrusion Detection

Offline intrusion detection using logs has been studied for a long period [101–103], and

different sources of logs are considered. BotHunter [104] analyzes network traffic to detect

malware infections. Opera et al. [105] leverage DNS or web proxy logs for detecting early-stage

infection in an enterprise. Disclosure [106] extracts statistical features from NetFlow logs to

detect botnet C&C channels. DNS logs have also been extensively used [107,108] for detecting

malicious domains.

Host-based IDS using system-call monitoring and/or audit logs has been investigated by

numerous research efforts [109–112]. These approaches fall under three classes: (1) misuse-

based [41, 42], which detect behavior associated with known attacks; (2) anomaly-based [103,

110, 113–119], which learn a model of benign behavior and detect deviations from it; and (3)

specification-based [120,121], which detect attacks based on policies specified by experts. While

the techniques of the first class cannot deal with unknown attacks, those of the second class

can produce many false positives. At a superficial level, the use of TTPs in Holmes can be

seen as an instance of misuse detection. However, our approach goes beyond classic misuse

detection [41, 42] in the use of prerequisite-consequence patterns that are matched when there

exist information flow dependencies between the entities involved in the matched TTP patterns.
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6.3 Alert Correlation

Network IDSs often produce myriad alerts. Alert correlation analyzes relationships among

alerts, to help users deal with the deluge. The main approaches, often used together, are to

cluster similar alerts, prioritize alerts, and identify causal relationships between alerts [122–126].

Hercule [49] uses community discovery techniques to correlate attack steps that may be

dispersed across multiple logs. Moreover, industry uses similar approaches for building SIEMs

[15–17] for alert correlation and enforcement based on logs from disparate data sources. These

approaches rely on logs generated by third-party applications running in user-space. Moreover,

alert correlation based on statistical features like alert timestamps does not help in precise

detection of multi-stage APT attacks as they usually span a long duration.

In contrast to these approaches, Holmes builds on information flows that exist between

various attack steps for the purpose of alert correlation. The use of kernel audit data in this

context was first pursued in [127]. However, differently from Holmes, that work is purely

misuse-based, and its focus is on using the correlation between events to detect steps of an attack

that are missed by an IDS. Holmes uses the same kernel audit data but pursues a different

approach based on building a main-memory dependency graph with low memory footprint,

followed by the derivation of an HSG based on the high-level specification of TTPs to raise

alerts, and finally correlate alerts based on the information flow between them. An additional

line of work on alert correlation relies on the proximity of alerts in time [128]. Holmes, in

contrast, relies on information flow and causality connections to correlate alerts and is therefore

capable of detecting even attacks where the steps are executed very slowly.
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6.4 Query Processing Systems

Prior works have incorporated novel optimization techniques, graph indexing, and query

processing methods [129–131] to support timely attack investigations. SAQL [132] is an anomaly

query engine that queries specified anomalies to identify abnormal behaviors among system

events. AIQL [133] can be used as a forensic query system that has a domain-specific language

for investigating attack campaigns from historical audit logs. Pasquier et al. [134] propose a

query framework, called CamQuery, that supports real-time analysis on provenance graphs, to

address problems such as data loss prevention, intrusion detection, and regulatory compliance.

Shu et al. [135] also propose a human-assisted query system equipping threat hunters with

a suite of potent new tools. These works are orthogonal to Poirot and can be used as a

foundation to implement our search algorithm.

6.5 Behavior Discovery

Extracting malicious behaviors such as information flows and causal dependencies and

searching for them as robust indicators have been investigated in prior works. Christodor-

escu et al. [136] have proposed an approach for mining malware behavior from dynamic traces

of that malware’s samples. Similarly, Kolbitsch et al. [52] automatically generate behavior mod-

els of malware using symbolic execution. They represent this behavior as a graph and search for

it among the runtime behavior of unknown programs. On the contrary, Poirot does not rely

on symbolic expressions but looks for correlations and information flows on the whole system.

TGMiner [53] is a method to mine discriminative graph patterns from training audit logs and

search for their existence in test data. The focus of this work is query formulation instead of
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pattern query processing, and the authors have used a subsequence matching solution [65] for

their search, which is different from our graph pattern matching approach.

6.6 Graph Pattern Matching

Graph Pattern Matching (GPM) has proved useful in a variety of applications [66]. GPM

can be defined as a search problem inside a large graph for a subgraph containing similar

connections conjunctively specified in a small query graph. This problem is NP-complete in

the general case [56]. Fan et. al. [67] proposed a polynomial time approach assuming that each

connection in the pattern could only be mapped to a path with a predefined number of hops.

Other works [68,69] have tackled the problem by using a sequence of join functions in the vector

space. NeMa [70] is a neighborhood-based subgraph matching technique based on the proximity

of nodes. In contrast, G-Ray and later Mage [71,72] take into account the shape of the query

graph and edge attributes and are more similar to our approach, where similar information

flows and causal dependencies play a crucial role. However, these approaches work based on

random-walk, which is not reliable against attackers (with knowledge of the threat-hunting

method) who generate fake events (as explained in 5.3.1). While our graph alignment notions

are similar to these works, the graph characteristics Poirot analyzes present new challenges

such as being labeled, directed, typed, in the order of millions of nodes, and constructed in

an adversarial setting. Moreover, many of these related works are looking for a subgraph that

contains exactly one alignment for each node and each edge of the query graph and cannot

operate in a setting where there might not be an alignment for certain nodes or edges. As a

result, we develop a new best-effort matching technique aimed at tackling these challenges.



CHAPTER 7

CONCLUSION AND FUTURE WORK

The causal linkage among system events plays a crucial role to make reasoning in cybersecu-

rity tasks. In this dissertation, we proposed efficient and effective methods utilizing the causal

linkage among kernel audit logs to boost cybersecurity tasks, such as APT detection, scenario

reconstruction, and threat-hunting. The proposed systems leverage a platform-neutral graph

representation stored in the main memory, which is constructed by processing the sequence of

kernel audit logs.

In chapter 3, we presented an approach and a system called Sleuth for real-time detection

of attacks and attack reconstruction from kernel audit logs. Sleuth uses a rich tag-based policy

framework that make its analysis both efficient and precise. We evaluated Sleuth on large

datasets from 3 major OSes under attack by an independent red team, efficiently reconstructing

all the attacks with very few errors.

In chapter 4, we present Holmes, a real-time APT detection system that correlates tactics,

techniques, and procedures that might be used to carry out each APT stage. Holmes generates

a high-level graph that summarizes the attacker’s steps in real-time. We evaluate Holmes

against nine real-world APT threats and deploy it as a real-time intrusion detection tool. The

results show that Holmes successfully detects APT campaigns with high precision and low

false alarm rates.

149
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Chapter 5 formulates cyber threat-hunting as a graph pattern matching problem to reliably

detect known cyberattacks. The proposed system, called Poirot, is based on an efficient

alignment algorithm to find an embedding of a graph representing the threat behavior in the

provenance graph of kernel audit records. We evaluate Poirot on real-world cyberattacks

and on ten attack scenarios conducted by a professional red-team, over three OS platforms,

with tens of millions of audit records. Poirot successfully detects all the attacks with high

confidence, no false signals, and in a matter of minutes.

Taken together, by proposing the aforementioned systems in this dissertation, we demon-

strated that the low-level causal information inferred from kernel audit logs could be utilized to

achieve robust and reliable threat detection methods that efficiently pinpoint threats and reveal

the high-level picture of attacks by producing compact visual graphs of attack steps. While

Sleuth, Holmes and Poirot focus on scenario reconstruction, APT detection and cyber

threat-hunting, respectively, there are also other security-related tasks that might be enhanced

leveraging the semantically-meaningful connections in the kernel audit logs. For example, ker-

nel audit logs are shown to be useful for expediting forensic analysis [97], alert triage [98],

and zero-day attack path identification [99]. In addition to these recent works, there are other

objectives we believe can benefit from this type of analytics in future:

• Lateral movement Detection: it is a common practice among attackers to progressively

move across different machines in a network to get access to high value assets. In these

attacks, the attacker compromises one machines and tries to laterally compromise other

machines to establish a foothold or to access more sensitive data. Detecting lateral move-
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ments is a big challenge for the current state-of-the-art systems as it seems like a legitimate

communication from an insider machine.

• Similarity Search: when we detect a compromise on a machine, it is very likely that multi-

ple machines in an organization or across multiple organizations are also compromised by

the same incident. Extracting an attack pattern from the detected instance and search-

ing for similar instances can help to enhance security and improve the current detection

systems.

• Hypothesis testing: security admins often come up with different hypotheses in their daily

tasks and are interested to validate them. For example, system admin notices a suspicious

executable file on Desktop and the existence of many running svchost processes in the

background. A hypothesis can be that the svchost processes have a correlation with the

suspicious file that has appeared on the Desktop. kernel audit logs can be a great source to

validate whether an entity has affected another entity or whether there is any correlation

among some entities.

In this dissertation, we took the first step towards utilizing kernel audit logs for designing

efficient threat detection systems. Nevertheless, this research area still has many challenges

and open problems to solve. One major challenges would be to scale the proposed methods to

an enterprise with thousands of machines where bandwidth, storage and processing limitations

abound. In this situation, the cyber defenders often end up with a partially collected provenance

graph in which it might not be possible to find the connectivity between entities by performing

backward/forward traversals. As a future work, we can incorporate some characteristics of
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the entities (such as similarity between their names) in addition to backward/forward tracking

results to make the correlation on a partially collected provenance graph.
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Appendix A

Sleuth’S ADDITIONAL ATTACKS DISCUSSION

In this section, we provide graphs that reconstruct attack campaigns that weren’t discussed

in Section 3.6.4. Specifically, we discuss attacks L-1, F-1, F-2, W-1, and L-3.

Attack L-1. In this attack (Figure 25), firefox is exploited to drop and execute via

a shell the file mozillanightly. The process mozillanightly first downloads and executes

mozillaautoup, then starts a shell, which spawns several other processes. Next, the information

gathered in file netrecon.log is exfiltrated and the file removed.

Attack F-1. In this attack (Figure 26), the nginx server is exploited to drop and execute

via shell the file dropper. Upon execution, the dropper process forks a shell that spawns several

processes, which write to a file and reads and writes to sensitive files. In addition, dropper

communicates with the IP of the attacker. We report in the figure the graph related to the

restoration and administration carried out after the engagement, as discussed in Section 3.6.5.

Attack F-2. The start of this attack (Figure Figure 27) is similar to F-1. However, upon

execution, the dropper process downloads three files named recon, sysman, and mailman.

Later, these files are executed and used which are used to exfiltrate data gathered from the

system.

Attack W-1. In this attack (Figure 28), firefox is exploited twice to drop and execute

a file mozillanightly. The first mozillanightly process downloads and executes the file

photosnap.exe, which takes a screenshot of the victim’s screen and saves it to a png file.
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Appendix A (Continued)
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Figure 25. Scenario graph reconstructed from campaign L-1.

Subsequently, the jpeg file is exfiltrated by mozillanightly. The second mozillanightly

process downloads and executes two files: 1) burnout.bat, which is read, and later used to

issue commands to cmd.exe to gather data about the system; 2) mnsend.exe, which is executed

by cmd.exe to exfiltrate the data gathered previously.
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/etc/shadow

/etc/sudoers

/var/tmp/nginx/
client_body_temp/dropper

<unknown>

/etc/passwd

129.55.12.167:443

129.55.12.167:8000

dropper

cat

nginxsh

sh

opensslwhoami

2. send

1. receive

3. write

4. fork

5. fork

6. execute

7. send8. receive 9. fork
10. send

10. fork

11. write

14. read

18. fork

19. read

21. write

15. write
12. fork

13. write

16. write

20. read

17. write

sudo

sshdbash

vi

23. fork

24. fork

25. fork sudobash

make

27. fork

28. fork

29. fork

cc33. fork

cc

30. fork

/usr/ports/www/nginx/work/nginx-1.10.1/
src/http/ngx_http_request_body.c

26. write

31. mmap

/usr/ports/www/nginx/work/nginx-1.10.1/
objs/src/http/ngx_http_request_body.o

32. write

ld

34. fork

35. read

cp

/usr/ports/www/nginx/work/
nginx-1.10.1/objs/nginx_191

36. write

37. mmap

/usr/local/sbin/nginx38. write

43. execute

sudo

bash

39.fork

40. fork

41. fork

sh

42. fork

nginx

???22. receive

???

44. receive

45. send

Missing Audit Data!

Figure 26. Scenario graph reconstructed from campaign F-1.

Attack L-3. In this attack (Figure 29), the file dropbearLINUX.tar is downloaded and

extracted. Next, the program dropbearkey is executed to create three keys, which are read by

a program dropbear, which subsequently performs exfiltration.
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Figure 27. Scenario graph reconstructed from campaign F-2.
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Figure 28. Scenario graph reconstructed from campaign W-1.
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Figure 29. Scenario graph reconstructed from campaign L-3.
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Holmes ATTACK SCENARIOS

Scenario-2: Trojan. This attack scenario (Fig. Figure 30) begins with a user downloading

a malicious file. The user then executes the file. The execution results in a C&C communi-

cation channel with the attacker’s machine. The attacker then launches a shell and executes

some information gathering commands such as hostname, whoami, ifconfig, netstat, and uname.

Finally, the attacker exfiltrates some secret files. Note that this attack scenario is similar to the

Drive-by Download scenario discussed earlier except that the initial compromise happens via a

program that the user downloads. Another important insight from the detection results of this

scenario is that it was missing important events that are relevant to the C&C communication

(connect) and final cleanup (unlink) activity of the attack. Even with such incomplete data,

Holmes was able to flag this as an APT since the Threat score surpassed the threshold.

Scenario-3: Trojan. In this attack (Fig. Figure 31), a user is convinced to download a

malicious Trojan program (texteditor) via Firefox. Next, the user moves the executable file to

another directory, changes its name (tedit), and finally executes it. After the execution, a C&C

channel is created, and a reverse shell is provided to the attacker. The attacker launches a shell

prompt and executes information gathering commands like hostname, whoami, ifconfig, and

netstat. The attacker then deploys another malicious file, exfiltrates information, and finally

cleans up his footprints. This scenario differs from Trojan-1 because it has an additional activity

that remotely deploys a new malicious executable.
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Figure 30. HSG of Scenario-2. Notations: A= Untrusted External Address; B= Firefox; C=
Trojan File (diff); D= Executed Trojan Process; E= /bin/dash; F= ifconfig; G= hostname;

H= netstat; I= password.txt;

Scenario-4: Spyware. This attack (Fig. Figure 32) begins when the red-team com-

promises Firefox. The user on the victim host then loaded a hijacked remote URL. Next, a

shellcode from the URL is executed to connect to a C&C server from which it downloaded a

malicious binary, wrote it to disk, and executed it. The execution of the malicious binary results

in a reverse shell channel for C&C communications. The attacker then ran the shell command,
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resulting in a new cmd.exe process and a new connection to the C&C server. The operator

ran reconnaissance commands (hostname, whoami, ipconfig, netstat, uname). The attacker then

exfiltrated the password.txt file and then deleted it. Finally, the malicious binary drops a batch

file that deletes attack footprints, including the malicious binary itself.

Scenario-5.1: Eternal Blue. This APT exploits vulnerable SMB [137] services in

Windows. In this scenario (see Fig. Figure 33), Meterpreter [138] was used with the recently

implemented Eternal Blue exploit and Double Pulsar reflective loading capabilities. The at-

tacker exploited the listening SMB service on port 445 of the target. A shellcode was then

downloaded and executed on the target. The shellcode performed process injection into the

lsass.exe process. lsass.exe then launched rundll32.exe, which connected to the C&C server

and downloaded-and-executed Meterpreter. Next, Meterpreter exfiltrated a sensitive file and

cleared Windows event logs.

Scenario-5.2: RAT. In this attack (Fig. Figure 34), Firefox navigates to a malicious

website and gets exploited. Then, a Remote Access Trojan (RAT) is uploaded to the victim’s

machine and executed. After execution, a connection to the C&C server has happened, and

the malicious RAT is deleted. This attack scenario is incomplete, and no harm is done.

Scenario-6: Web-Shell. The assumption in this attack (Fig. Figure 35) is that Nginx

web server has a vulnerability that gives the attacker access to run arbitrary commands on the

server (similar to Shellshock bug). As a result, the attacker exfiltrates a sensitive file. The

important insight here is that by capturing sufficiently strong APT signals of an ongoing attack
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through TTP matching, Holmes accurately flags an APT, even when a critical APT step is

missing (initial compromise in this case).

Scenario-7.1: RAT. A vulnerable Nginx server was installed during the setup period.

The attacker exploits the Nginx server by throwing a malicious shell-code. Nginx runs the

malicious shell-code which results in the download and execution of a malicious RAT. Next,

RAT connects to a C&C server and gives administrative privileges to the remote attacker. The

attacker remotely executes some commands. It then deploys some malicious Python scripts

and exfiltrates information. The HSG of this attack is shown in Fig. Figure 36.
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Poirot CTI DESCRIPTIONS

In this section, we provide a brief history of each malware and a summary of the statements

from their corresponding reports which we have used to construct the query graphs.

njRAT. njRAT is a publicly available Remote Access Trojan (RAT) that gives the attacker

full control over the victim system. Although the source code of njRAT is publicly available,

attacks leveraging njRAT have mostly targeted organizations based in or focused on the Middle

East region in the government, telecom, and energy sectors. When the malware is executed, it

tries to read its configuration from a file with the extension of “.exe.config” (edge 1). njRAT

malware stores the logged keystrokes in a “.tmp” file (edge 2), and also writes to a “.pf” file

(edge 3). To gain persistence, njRAT malware creates some copies of itself (edges 4&8). After

execution (edges 5&6), one of the copies writes to a “.pf” file (edge 7). njRAT malware also

start a netsh process located at (edge 9), which results in creation of another “.pf” file (edge

10). Finally, the malware sets some registry values (edges 11-13) and beacons to a C&C server

at 217.66.231.245 (edge 14).

DeputyDog. DeputyDog refers to a malware appearing to have targeted organizations in

Japan, based on a report by FireEye. The query graph that we extracted from the report of

this malware is shown in Figure 19, and it is described in 5.2.

Uroburos. Uroburos, ComRAT, Snake, Turla, and Agent.BTZ are all referring to a family of

rootkit which is responsible for the most significant breach of U.S. military computers. The
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malware starts by dropping two Microsoft Windows dynamic libraries (edges 1&2) and calling

rundll32.exe (edge 3) to install these libraries (edges 4&5). Then, to be started during the boot

process, the malware creates a registry key (edge 6). The malware creates three log files (edges

7-9) and removes a set of file (edges 10-14).

Carbanak. Carbanak is a remote backdoor to provide remote access to infected machines. The

main motivation of the attackers appears to be financial gain, which has resulted in cumulative

losses up to one billion dollars [75]. The compromise initially starts using a spear phishing email

that appears to be legitimate banking communications (edge 1). After the exploit, Carbanak

copies itself into “%system32%” with the name “svchost.exe” (edges 2-4) and deletes the original

file created by the exploit payload (edge 5). To access autorun privileges, the malware creates

a new service with a name in the format of “<ServiceName>Sys”, where ServiceName is any

existing service randomly chosen (edge 6). Carbanak creates a file with a random name and

a .bin extension where it stores commands to be executed (edge 7). Then, the malware gets

the proxy configuration from a registry entry (edge 8) and the Mozilla Firefox configuration file

(edge 9). Finally, Carbanak communicates with its C&C server (edge 10).

DustySky. DustySky is a multi-stage malware whose main objective is intelligence gathering

for political purposes. The malware sample is disguised as a Microsoft Word file, and once it

is executed (edge 1), a lure Microsoft word document in the Arabic language is opened (edges

2&3) while the malware performs intelligence gathering in the background. For VM evasion,

the dropper checks the existence of some DLL files, specifically vboxmrxnp.dll and vmbusres.dll

which indicate existence of VirtualBox (edges 4&5) and vmGuestlib.dll which indicates existence
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of VMware (edge 6). DustySky Core is dropped to %TEMP% (edges 7&8&9), and keystroke

logs are saved to %TEMP%\temps (edge 10).

OceanLotus. OceanLotus, also known as APT32, is believed to be a Vietnam-based APT

group targeting Southeast Asian countries. After execution of this malware (edge 1), a decoy

document and an eraser application are dropped (edges 2&3), and the decoy document is

lunched in Microsoft Word (edges 4&5). Then, the executable decrypts its resources and drops

a copy of legitimate Symantec Network Access Control application (edge 6), an encrypted

backdoor (edge 7), and a malicious DLL file (edge 8). The Symantec application, which is

signed and legitimate, loads all the libraries in the same folder by default. In this case, after

execution (edges 9&10), this application loads the malicious DLL file which has been dropped in

the same directory (edge 11). It then reads the backdoor file (edge 12) which results in accessing

a registry (edge 13), loading the HTTPProv.dll library (edge 14), and creating a registry key

(edge 15). Finally, the malware connects to its mothership (edges 16&17).

HawkEye. HawkEye is a malware-as-a-service credential stealing malware and is a popular

tool among APT campaigns. The new variant of this malware uses process hollowing to inject its

code into the legitimate signed .NET framework executables and ships with many sophisticated

functions to evade detection. This new variant is usually delivered as a compressed file, and

after decompression (edges 1&2) and execution(edge 3), it spawns a child process (edge 4),

called RegAsm, which is an assembly registration tool from the Microsoft .Net framework.

HawkEye extracts a PE file into its memory and then injects it into the RegAsm process. After

sleeping for 10 seconds, the RegAsm process spawns two child processes named vbc both from
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the .Net framework as well (edges 5&6). One of these processes collects credentials of browsers,

while the other one focuses on email and Instant Messaging (IM) appllications. We have added

one node, typed as a file or registry, corresponding to the name of each browser (edges 7-18)

or email/IM (edges 19-26) application mentioned in the report. Note that these applications

might store some confidential information of interest to attackers into both files or registries,

and that is why we did not limit our search to only files or registries. The collected credentials

are regularly saved into ∗.tmp files in the %temp% directory (edges 27&28), while after a while,

the RegAsm process reads the entire data of these tmp files into its memory (edges 29&30) and

deletes them immediately (edges 31&32). Finally, RegAsm looks up the machines public IP

from “http[s]:\\whatismyipaddress.com\” web service (edges 33&34) and then exfiltrates the

collected information to the attacker’s email address (edge 35).

It is important to note that there are some nodes with exactly same label and type in the

query graph of HawkEye, such as F&G or J&K. However, these nodes get aligned to different

nodes based on their dependencies with other entities. For example, node F interacts with

browser applications while node G interacts with the email/IM applications. In addition, the

alignment of browser or mail application nodes is independent of their installation on the system.

Many of these applications are not installed on the test machine, however when the malware

attempts to check whether these applications are installed on the system, it initiates an OPEN

event which gets detected by Poirot.
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