
Pliable Index Coding Problem

BY

TANG LIU
B.E., University of Electronic Science and Technology of China, 2010

M.S., Korean Advanced Institute of Science and Technology, 2013
M.S., University of Illinois at Chicago, 2019

THESIS

Submitted as partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Electrical and Computer Engineering

in the Graduate College of the
University of Illinois at Chicago, 2020

Chicago, Illinois

Defense Committee:
Daniela Tuninetti, Chair and Advisor
Natasha Devroye
Besma Smida
György Turán, MCS UIC
Christina Fragouli, UCLA



Copyright by

TANG LIU

2020



ACKNOWLEDGMENTS

I would first like to thank my Ph.D. advisor Professor Daniela Tuninetti for her hearty guide and

support. Her enthusiasm and perfectionism in academic research provided me the direction in pursuing

my Ph.D. degree. I find myself lucky to have such a wonderful supervisor to work with during my study.

I would also thank Professor György Turán, from him I learned a lot in combinatorics. The knowl-

edge I got from his class and the discussion with him eventually led me to the solution for the consecutive

complete–S PICOD(t) problem. The solution could be much messier without his teaching and help.

Last but not least, I would like to thank all my friendly labmates, especially Dr. Kai Wan. Their

help, both in academic research and private life, made my life much more productive and enjoyable

during the past years.

TL

iii



TABLE OF CONTENTS

CHAPTER PAGE

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Pliable Index Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.1 From Index Coding to Pliable Index Coding . . . . . . . . . . . . . . 3
1.1.2 Decentralized Pliable Index Coding . . . . . . . . . . . . . . . . . . . 5
1.1.3 Secure Pliable Index Coding . . . . . . . . . . . . . . . . . . . . . . . 6
1.2 Past Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.1 Pliable Index Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Decentralized Pliable Index Coding . . . . . . . . . . . . . . . . . . . 9
1.3.1 Security in Index Coding . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.4.1 Achievability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.4.1.1 Pliable Index Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.4.1.2 Decentralized Pliable Index Coding . . . . . . . . . . . . . . . . . . . 11
1.4.1.3 Secure Pliable Index Coding . . . . . . . . . . . . . . . . . . . . . . . 12
1.4.2 Converse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.4.2.1 Pliable Index Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.4.2.2 Decentralized Pliable Index Coding . . . . . . . . . . . . . . . . . . . 15
1.4.2.3 Secure Pliable Index Coding . . . . . . . . . . . . . . . . . . . . . . . 16
1.4.3 Corresponding Publications . . . . . . . . . . . . . . . . . . . . . . . . 16

2 CONSTANT FRACTION OF SATISFIED USERS IN PLIABLE INDEX
CODING PROBLEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2 Greedy Set Cover Achievability . . . . . . . . . . . . . . . . . . . . . 20
2.2.1 Problem Representation . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.2 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2.3 Randomly Generated Side Information Sets . . . . . . . . . . . . . . . 29
2.3 Comparison to Known Results . . . . . . . . . . . . . . . . . . . . . . 30

3 COMPLETE–S PICOD(T) AND PICOD(1) WITH CIRCULAR-ARC NET-
WORK TOPOLOGY HYPERGRAPH . . . . . . . . . . . . . . . . . . . . . . . 33
3.1 Main Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . 33
3.1.1 Achievability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.1.2 Converse for some complete–S PICOD(t) problems . . . . . . . . . . 34
3.1.3 Converse for PICOD(1) with circular-arc network topology hyper-

graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2 Achievability: proof of Proposition 1 . . . . . . . . . . . . . . . . . . . 39

iv



TABLE OF CONTENTS (Continued)

CHAPTER PAGE

3.3 Layer Counting Converse: Proof of Theorem 2 . . . . . . . . . . . . . 40
3.4 Critical Case: complete–{s} the PICOD(t) withm = 2s+ t messages 47
3.4.1 Converse Main Ingredient 1: Block Cover . . . . . . . . . . . . . . . . 48
3.4.2 Converse Main Ingredient 2: Maximum Acyclic Induced Subgraph

(MAIS) Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.4.3 Proof of Proposition 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.4.4 Complete–S where |S| = 1 . . . . . . . . . . . . . . . . . . . . . . . . 57
3.4.4.1 Complete–{s} PICOD(t) wherem < 2s+ t . . . . . . . . . . . . . . 57
3.4.4.2 Complete–{s} PICOD(t) wherem > 2s+ 1 . . . . . . . . . . . . . . 58
3.5 Complete–S PICOD(t) where S is consecutive: Proof of Theorem 3 . 59
3.5.1 Case smax ≤ dm/2e− 1: `∗ = smax + 1 . . . . . . . . . . . . . . . . . 59
3.5.2 Case smin ≥ bm/2c: `∗ = m− smin . . . . . . . . . . . . . . . . . . . 59
3.5.3 Case smin ≤ dm/2e− 1 ≤ bm/2c ≤ smax . . . . . . . . . . . . . . . . 59
3.6 Some other complete–S PICOD(t) problems . . . . . . . . . . . . . . 61
3.6.1 Proof of Proposition 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.6.2 Proof of Proposition 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.6.3 Proof of Proposition 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.6.4 Proof of Proposition 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.7 Proof of Theorem 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.7.1 Graph Preliminary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.7.2 On the Optimality of a Single Transmission . . . . . . . . . . . . . . . 67
3.7.3 Proof of Theorem 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.8 Proof of Lemma 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4 DECENTRALIZED COMPLETE–S PICOD(T) AND PICOD(1) WITH CIRCULAR-
ARC NETWORK TOPOLOGY HYPERGRAPH . . . . . . . . . . . . . . . . . 73
4.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.2 Main Results and Discussions . . . . . . . . . . . . . . . . . . . . . . . 74
4.2.1 Complete–S d-PICOD(t) problems . . . . . . . . . . . . . . . . . . . 75
4.2.2 Converse for d-PICOD(1) with circular-arc network topology hy-

pergraph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.3 Decentralized Complete–S PICOD(t) Problems . . . . . . . . . . . . 80
4.3.1 Proof for Theorem 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.3.1.1 Case smax + t ≤ m− smin . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.3.1.2 Case t < m− smin < smax + t . . . . . . . . . . . . . . . . . . . . . . 81
4.3.1.3 Case smin = smax = m− t . . . . . . . . . . . . . . . . . . . . . . . . 84
4.3.1.3.1 Converse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.3.1.3.2 Achievability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.3.2 Proof for Theorem 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.3.2.1 Case smin − 1+ t < smax + 1 = m− t . . . . . . . . . . . . . . . . . 91
4.3.2.2 Other Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.3.3 Extensions of Theorem 5 . . . . . . . . . . . . . . . . . . . . . . . . . 92

v



TABLE OF CONTENTS (Continued)

CHAPTER PAGE

4.3.3.1 Proof of Proposition 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.3.3.2 Proof of Proposition 10 . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.3.3.3 Proof of Proposition 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.3.4 Proof of Proposition 12 . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.4 Circular-arc PICOD(1) . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.4.1 Case 1: a 1-factor does not exist . . . . . . . . . . . . . . . . . . . . . 95
4.4.1.1 First transmission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.4.1.2 Second transmission . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.4.2 Case 2: a 1-factor exists . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.4.2.1 Converse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.4.2.2 Achievability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5 INDIVIDUALLY SECURE PICOD(1) WITH CIRCULAR-ARC NETWORK
TOPOLOGY HYPERGRAPH . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.1 Individual Security and Circular Shift Side Information . . . . . . . . 103
5.1.1 Individual Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.1.2 Size-s circular-h shift Side Information . . . . . . . . . . . . . . . . . 104
5.2 Main Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.3 Proof of Theorem 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.3.1 Impossible Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.3.1.1 Casem is odd, s = m− 2, and g = 1 . . . . . . . . . . . . . . . . . . 106
5.3.1.2 Casem is odd, s = 1, and g = 1 . . . . . . . . . . . . . . . . . . . . . 107
5.3.2 Case s < m/2 and g = 1 (herem = n) . . . . . . . . . . . . . . . . . 107
5.3.2.1 Achievability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.3.2.2 Converse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.3.2.2.1 Proof of Proposition 13 . . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.3.2.2.2 Proof of Proposition 14 . . . . . . . . . . . . . . . . . . . . . . . . . . 112
5.3.3 Case s < m/2 and g = s = 2 (here n = m/2) . . . . . . . . . . . . . 113
5.3.3.1 Achievability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
5.3.3.2 Converse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
5.3.3.2.1 Proof of Proposition 13 . . . . . . . . . . . . . . . . . . . . . . . . . . 113
5.3.4 Remaining Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
5.3.4.1 Converse for all three cases . . . . . . . . . . . . . . . . . . . . . . . . 115
5.3.4.2 Achievability for case s < m/2, g = 2, and s 6= 2 . . . . . . . . . . . 115
5.3.4.3 Achievability for case s < m/2, g ≥ 3 . . . . . . . . . . . . . . . . . 115
5.3.4.4 Achievability for case s ≥ m/2 . . . . . . . . . . . . . . . . . . . . . . 116

6 CONCLUSION AND FUTURE WORK . . . . . . . . . . . . . . . . . . . . . . . 117
6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
6.1.1 Pliable Index Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
6.1.2 Decentralize Pliable Index Coding . . . . . . . . . . . . . . . . . . . . 119
6.1.3 Secure Pliable Index Coding . . . . . . . . . . . . . . . . . . . . . . . 119

vi



TABLE OF CONTENTS (Continued)

CHAPTER PAGE

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

CITED LITERATURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

vii



LIST OF TABLES

TABLE PAGE

I COMPLETE–S PICOD(T) THAT ARE NOT COVERED BY THEOREM 2
AND PROPOSITIONS 2, 3, 4. ©IEEE 2019. . . . . . . . . . . . . . . . . . 62

II FIRST 6 TRANSMISSIONS FORM = 4, S = T = 2.©IEEE 2019. . . . . 88

III LAST 6 TRANSMISSIONS FOR M = 4, S = T = 2, CODEWORDS
AND DECODING MESSAGES AT USERS U1, U2, U3. ©IEEE 2019. . . 89

IV LAST 6 TRANSMISSIONS FOR M = 4, S = T = 2, CODEWORDS
AND DECODING MESSAGES AT USERS U4, U5, U6.©IEEE 2019. . . . 89

V OPTIMAL CODES FOR THE OTHER CASES OF COMPLETE–S D-
PICOD(T) WITHM ≤ 5MESSAGES. ©IEEE 2019. . . . . . . . . . . . . 94

VI COMPLETE-S PICOD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

VII CIRCULAR SHIFT PICOD . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

viii



LIST OF FIGURES

FIGURE PAGE

1 Bipartite graph representing the satisfaction relationship between possible trans-
mitted codewords (left side nodes) and clients (right side nodes). ©IEEE 2016. 21

2 Lower bound on the fraction of satisfied clients by one transmission for differ-
ent request set sizes. ©IEEE 2016. . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3 Lower bounds comparison for different message sizes. ©IEEE 2016. . . . . . . 32

4 Layer representation of the complete–[0 : m− 1] PICOD(1) problem. ©IEEE
2019. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5 Two transmissions scheme for circular-arc network topology hypergraph PICOD(t).
©IEEE 2019. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6 Zero pattern matrix Z. ©IEEE 2019. . . . . . . . . . . . . . . . . . . . . . . . . . 83

ix



LIST OF ABBREVIATIONS

IC Index Coding

NC Network Coding

PICOD Pliable Index Coding

d-PICOD Decentralized Pliable Index Coding.

x



SUMMARY

The Pliable Index Coding (PICOD) problem is a variant of the Index Coding (IC) problem. The IC

consists of one transmitter/server and several users/clients. The transmitter and users are connected by

a shared noiseless broadcast channel. Each user has a subset of the messages as its side information

set and requests some messages that are not in its side information set. The transmitter has all the

messages and knows the side information sets of all users. The transmitter serves all users by sending

a codeword through the noiseless broadcast channel. The codeword is encoded by the transmitter based

on the message set and the side information sets at all users. The goal for the transmitter is to send a

codeword such that all users are able to decode their desired messages. For the IC we seek to determine

the minimum number of transmissions needed for the transmitter to achieve this goal. In many practical

scenarios, such as network streaming or Internet advertising, the desired messages are not always fixed.

The transmitter is thus able to leverage this pliability to reduce the communication cost. The PICOD is

a variant of the IC model which captures this idea. In the PICOD users do not request specific messages.

Instead, they are satisfied by receiving messages that are not in their side information sets. This pliability

provides more encoding opportunities, thus can potentially reduce the number of transmissions.

For the general PICOD problem, we show that at least a constant fraction of users can be satisfied

by one transmission. We provide a constructive way to find the codeword and the users that can be

satisfied by one transmission. This shows that the number of transmissions for any PICOD is upper

bounded by O(log2(n)), where n is the number of users in the system. We also derive information

theoretic converse bounds for some cases of PICOD, shows that these bounds can be achieved by the

xi



SUMMARY (Continued)

linear codes. The converse bounds are derived by novel techniques based on combinatorics and are the

first non-trivial information theoretical converse results that are tight for a large class of the PICOD

problems.

We then study the decentralized PICOD problem, where the codewords are generated by the users

based on their own side information set. This model is motivated by decentralized networks such as

distributed computation system and Internet of Things networks. In these networks communication

occurs in a decentralized fashion without a central controller. For the cases with information theoretical

optimality in the centralized setting, we surprisingly find that the optimal number of transmissions

remains the same in the decentralized, except when the problem loses its pliability. When the problem

is no long pliable, we show that the cut-set bound is tight and can be achieved using decentralized vector

linear index codes.

Lastly, we put the security constraints into the PICOD problem. Security and privacy are some of

the major concerns in today’s communication networks. Information theoretical security guarantees of

security and privacy in the situations where information can be leaked to undesired parties. Different

from computational security, which replies on the fact that certain problems are considered hard to solve,

information theoretical security is robust against all possible attacks, regardless of the computation

capability of the attacker. For the PICOD with security constraint, we look at the problem where all

users are allowed to decode one and only one message and the side information structure is a circular-

arc hypergraph where all users have the same size of the side information sets. We show that the optimal

number of transmissions does not change when the size of side information set is large compared to the

number of messages in the system. However, it changes dramatically when the size of side information

xii



SUMMARY (Continued)

set is small. Specifically, when s < m/2 (where s is the size of side information set and m is the

number of messages), the optimal number of transmissions for a linear code is about m/2s, in contrast

to the problem without security constraint that requires no more than two transmissions.

xiii



CHAPTER 1

INTRODUCTION

1.1 Pliable Index Coding

Information Theory is the fundamental mathematical theory for the problem of communication .

The development of communication techniques started at the beginning of the civilizations. However,

a rigorous study of information flow came only in the middle of the last century. The groundbreak-

ing work of Claude Shannon [1] laid the foundation of a new field we call today Information Theory.

In information theory, the amount of information is measured by the “information entropy”, which,

loosely speaking, is a function of the amount of randomness in the source to be compresal probability

distribution. Shannon showed that the “capacity” of the channel, which solely depends on the chan-

nel’s conditional probability distribution, is the maximum amount of information that can be transfered

reliably. sed or communicated. Any “channel” through which the information is sent is modeled as a

condition This result provides a guideline to design practical communication systems: for a given chan-

nel we know that there exists a family of codes with the maximum possible rate and the probability of

unsuccessful decoding can be made as small as desired.

In [1] Shannon considered the channel where one transmitter communicates to one receiver through

a noisy channel, which is the so called the point-to-point (p2p) channel model. Shannon showed that

the capacity of the p2p channel is the largest mutual information between the input and output.

1
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Based on the result established by Shannon and motivated by practical networks, more sophisticated

channel models have been proposed and studied in the field of information theory, such as multiple

access channel [2], broadcast channel [3], and interference channel [4]. In this thesis we are concerned

with a type of broadcast channels. A broadcast channel is a channel with one input and many outputs,

motivated by the downlink of the wireless channels. Different from wired communications, in wireless

scenarios the signal is broadcasted over the air. The channel media is thus “shared” by all users in the

system. The transmitter can leverage this broadcast nature of the broadcast channel for transmissions.

Doing so is generally much better than serving each receiver one at a time, which makes the broadcast

channel to be multiple parallel p2p channels by time sharing.

In practical systems, receivers usually have some local storages where results of past communi-

cations can be stored. This is modeled as the “broadcast channel with side information at the users”.

One example can be the satellite communication systems, where the transmitter is the satellite in orbit

and the receivers are the receiving stations on earth. All stations within a certain area can receive the

signals sent by the satellite. One station can also receive the signals intended for other stations sent by

the satellite. By storing them as side information, the previous transmitted signals can be leveraged in

future transmissions.

The “broadcast channel with side information at the users” model can also be applied to other wire-

less communication systems. The broadcast channel with side information at the users model is a criti-

cal model to fully understand the potential of wireless communications. However, the general broadcast

channel remains open in terms of capacity, let alone the more sophisticated model of the broadcast
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channel with side information at the users. Therefore, more reasonably constrained and simpler models

become interesting for the study of the wireless communications.

1.1.1 From Index Coding to Pliable Index Coding

The Index Coding (IC) is one of such simpler models for the broadcast channel with side information

at the users. First proposed in [5], when considering satellite communications, the IC consists of one

transmitter withm independent messages to be delivered to n users through an error-free broadcast link

shared by all users. Each user has some messages as the side information (i.e., a subset of the message

set) set available and needs to reliably decode some messages that are not in its side information set; the

desired messages for each user are pre-determined. In the IC, one asks what is the minimum number of

transmissions (i.e., minimum code length) such that every user is able to decode its desired messages

successfully [6]. Compared to the broadcast channel with side information at the users, the IC appears

simpler because: 1) the broadcast channel is noiseless; 2) the side information set at each user is a

proper subset of the whole message set. The IC focuses on the benefits of the transmitter encoding

opportunities brought by the different side information sets at the users. However, despite its simple

form, the general IC is still open.

When one restricts attention to only linear codes, the optimal code length is fully characterized by

the so-called minrank problem. Unfortunately, the minrank problem is NP-complete [6]. In [7] it is

proved that the IC, which is a special case of the general network coding problem, is in fact equivalent

to the general network coding problem. Therefore, some properties of the general network coding

problems also apply to the IC and vice versa, e.g., in [8] it is shown that linear schemes are not sufficient
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for the IC in general; [9] shows that non-Shannon type of inequalities are necessary to characterize the

capacity region for the general IC.

The IC problem models the scenario where the transmitter can encode based on the side information

sets and the desired messages of all the users. In practical systems, the transmitter may have more

freedoms in encoding. For example, in a music radio streaming service, e.g., Spotify, users do not

request the next song that will be played. They are usually only guaranteed that it will be one from a

certain group and not repeated. Another example could be online advertisement systems. The clients do

not request a specific advertisement to be shown, it is the distributor who chooses what will be put on

the clients’ screens. However, the distributor might want to avoid repeating the same advertisement at

the client’s end, as it might decrease the client’s satisfaction. Put these scenarios into the framework of

the IC, we have a variant of the IC where the users can be satisfied by any messages that are not in their

side information sets, instead of specific ones as in the original IC setting. The transmitter thus has the

freedom to choose the desired messages of the users in order to minimize the transmission duration.

In this thesis, we study this variant of the IC where each user needs to decode t messages, known

as the Pliable Index CODing (PICOD(t)), first proposed in [10]. The PICOD(t) and the IC share

many attributes. In the PICOD(t), there is still a single transmitter with m message and there are n

users with message side information sets. The transmitter and the users are connected with a shared

noiseless capacity-bounded broadcast channel. The goal is to find the minimal number of transmissions

by the transmitter such that all users can decode their desired messages reliably. The only difference

is the definition of the “desired messages”. For the IC each user has some pre-determined desired

messages outside its side information set. For the PICOD(t) the desired messages of the users are not
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pre-determined. The desired messages for the users can be chosen based on their side information sets.

Specifically, each user can decode any t messages that are not in its side information set. By knowing

the side information at each user, the transmitter can now encode based on the optimal choice of the

desired messages of the users.

The rigorous definition of the PICOD(t) can be found in Chapter 2 and 3. The past work on

PICOD(t) is in Section 1.2.1. Our contributions on PICOD(t) in this thesis are shown in Section 1.4.1.1

and 1.4.2.1.

1.1.2 Decentralized Pliable Index Coding

In the decentralized model of network communications, a central transmitter with knowledge of

all messages is not present. Instead, in order to decode their desired messages, the users share among

themselves coded massages that depend only on their local side information sets. This decentralized

model is motivated by ad-hoc communication systems such as ad-hoc networks, peer-to-peer networks,

Internet of Things systems, as well as distributed systems such as distributed computation structures

and distributed storage systems. In these systems, there is no central controller/transmitter and the

communications are done in a decentralized way – the users generate codewords based on their own

limited knowledge of the message sets and communicate among themselves.

In the IC framework, the decentralized IC problem is the setting where the users generate the code-

words based on their own side information sets and broadcast the codewords to all the rest of the users

using a shared channel. The channel is noiseless, capacity limited, and can only be used by one user at

a single time.
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In this thesis we propose the d-PICOD, which is a decentralized IC with pliable desired messages

at the users. Specifically, the d-PICOD is a decentralized IC where each user can choose their desired

message sets based on the side information sets of all other users. All users need to reliably decode the

desired messages by exchanging the fewest possible number of coded symbols among the users. The

d-PICOD inherits the freedom of choosing the desired message sets from the PICOD, and the decen-

tralized network structure from the decentralized IC. Thus, the d-PICOD is a model for those practical

scenarios where the choice of the desired messages is flexible and the network structure is without

central control, such as coded the cooperative data exchange [11] and the distributed storage [12].

The rigorous definition of d-PICOD can be found in Chapter 4. The past work on the decentralized

IC is in Section 1.3. Our contribution on the d-PICOD is summarized in Section 1.4.1.2 and 1.4.2.2.

1.1.3 Secure Pliable Index Coding

Security and privacy are of concern to today’s communication systems. Besides receiving the mes-

sages with highest possible rate and lowest possible error probability, the users also care about the

security and privacy of their desired information. The transmitted information should not be accessible

without permission by any untrusted 3rd parties. In the broadcast channel, the information aimed for

one user can be overheard by another user since all users shared the same channel. The situation is

no different in PICOD as the channel is noiseless. For instance, in an Internet streaming service like

Spotify, users should get the content they have paid for. However, in PICOD model, the user might

be able to get some songs that are transmitted to another user in the same network without paying for

them. This brings the security problems in the PICOD. We address this problem by introducing the

information theoretical security into the PICOD problem formulation.
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The conventional information theoretical security constraint is the so-called strong security con-

straint [13]. That is, zero information leakage of all the messages that are not supposed to be decoded.

This is possible only if certain common randomness is available in the systems. The common ran-

domness works as a one-time-pad to guarantee information theoretical security. In this thesis, we use a

weaker version of information theoretical security, i.e., individual message security. The individual mes-

sage security allows for some leakage of information about the message set, but keeps each individual

message secure. In other words, a user may be able to estimate some statistics of the set of the messages

that are not allowed to be decoded. However, it can not recover any piece of any individual message that

it is not suppose to decode. The individual security constraint is thus weaker but more practical, since it

does not require common randomness, which might not be available in practical systems.

1.2 Past Work

1.2.1 Pliable Index Coding

As one would expect, the extra freedom of choosing the desired messages in the PICOD(t) reduces

the number of transmissions / code length compared to the classical IC with the same parameters: the

number of message, the number of users, and message side information sets.

When we restrict the coding scheme to be linear, [10, Lemma 2] showed finding the optimal code

is equivalent to solving a minrank problem similar to the IC, therefore is still NP-complete. The optimal

linear code for PICOD(1) offers an exponential reduction in the number of transmissions compared

to the IC problem of the same size/number of clients. In particular, [10, discussion after Theorem 4]

proved that O(log2(n)) transmissions suffice for the PICOD. In [14] a deterministic polynomial time

algorithm was proposed that requires at most O(log2(n)) transmissions. A key result in this line of
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work is [10, Lemma 3]: for a PICOD problem with n clients, such that each client misses at least

dmin messages and at most dmax messages in its side information set, a single transmission satisfies

at least a fraction dmin/(edmax) of the clients. This result implies that if the cardinalities of the side

information sets of the clients are all equal, a linear code of size O(log(n)) is sufficient to satisfy all

the clients. If the cardinalities of the side information sets are different, by grouping of the clients and

applying [10, Lemma 3] to each group, a linear code of size O(log2(n)) is sufficient to satisfy all the

clients if the number of messagesm is polynomially related to the number of clients n [10, Theorem 4].

For PICOD(t), when all users’ side information sets are of size s ≤ m − t, [10] showed that

there exits a code of length O(min{t log(n), t + log2(n)}) for the PICOD(t). When there is no con-

straint on the size of side information, and m = O(nδ) for some constant positive δ, code length

O(min{t log2(n), t log(n) + log3(n)}) is achievable. Compare it to the IC where there is one desired

message pre-determined for each user and desired message and the side information sets are randomly

generated for all users, the outer bound isΩ(
√
n) [15]. Therefore, the proposed achievability showed a

dramatic reduction in terms of the code length for the PICOD(t) when compared to the IC .

The code length of a heuristic achievable scheme for the PICOD(t) based on greedy covering pro-

posed in [10] is shown close to O(min{t log(n), t + log2(n)}) in numerical analysis. Recently in [16],

a deterministic algorithm, which runs in polynomial time, was proposed to achieve the O(log2(n)) for

t = 1 and O(t log(n) + log2(n)) in general.

Another interesting model proposed in [10] is the oblivious PICOD(t). In the oblivious PICOD(t),

the transmitter does not know the side information sets at the users. The transmitter only knows the size

of the side information sets of each user. In [10,17] the authors proved that, for the oblivious PICOD(t)
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at least a fraction 1/e of the remained unsatisfied users can be satisfied at each new transmission. This

shows that there exists an achievable scheme where the code length is the logarithm of the number of

users in the system, which is an exponential improvement in the number of transmissions compared to

the IC.

1.3 Decentralized Pliable Index Coding

The decentralized IC can be seen as a special case of the distributed IC, which is a generalization on

the IC to the case of multiple intermediate relays, or servers, with the message side information sets at

the users. In the distributed IC with m messages, there are 2m − 1 servers; each server has knowledge

of a unique subset of the message set (and can thus only encode based on the messages in this message

set) and is connected to all the users through a separated error-free rate-limited link. The objective in

the decentralized IC is to determine the shortest code length such that all users are able to decoded their

desired messages. The decentralized IC is thus a distributed IC where there are as many servers as users,

and each server has the same message knowledge as one of the users.

In [18] the single uniprior decentralized IC case was studied, where there are multiple senders

and each user has only one message in its side information. In [19] a general converse bound for the

distributed IC was derived by leveraging the submodularity of entropy, and a general achievable scheme

was proposed based on the IC composite coding scheme. For all distributed IC with no more than

four messages, the inner and outer bounds were numerically verified to match for the special case of

symmetric message rates and of symmetric server-link capacities [19]. However, applying the methods

in [19] to the settings with more than four messages becomes intractable since the number of variables

involved is the numerical evaluations is exponential in the number of servers (thus is double exponential
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in the number of messages). Recently, in [20] it was shown that knowing the length of linear code

for the classical (centralized) IC allows one to construct a linear code for the corresponding embedded

(decentralized) IC with at most a doubled codeword length. Therefore, for the decentralized IC, the

codeword length is within a multiplicative gap 2 to the optimal codeword length of the centralized IC.

1.3.1 Security in Index Coding

The problem of security and privacy in IC has been studied from different perspectives. In [21], the

authors proposed an IC model where an eavesdropper has a limited access to the side information sets of

the users and the transmitted codewords; the goal here is to prevent the eavesdropper from obtaining any

new information. In [22], the authors considered an IC model where the sender must design a code that

allows each user to decode its desired message, at the same time prevent each user from obtaining any

information of the side information and the desired messages of all other users. The latter model has the

flavor of the private information retrieval problem [23], where a user wants to hide its desired message

and/or side information set from the other users and/or the server. Similar to the private information

retrieval problem, the authors of [24] formulated the private IC problem, where a user in the IC problem

can only decode its own desired messages but no others. Recently, in [25], the authors extended the

private IC problem in [24] to the PICOD framework, where the side information structure is “circular”

and each user can decode one and only one message. Several schemes were given in [25] and shown to

provide the desired level of privacy, but the optimality is discussed under the linear encoding constraint

for some cases.

1.4 Contributions

We list our contributions in both achievability and converse for the three models discussed above.
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1.4.1 Achievability

1.4.1.1 Pliable Index Coding

For the achievability perspective, our contribution is a refined analysis of the fraction of clients that

can be satisfied by a single transmission in the PICOD(1). We provide a non-probabilistic argument

to show a lower bound on the largest fraction of clients that can be satisfied by one transmission as

a function of the cardinality of the message set and the side information set, for the case where the

cardinalities of the side information sets of the users are all equal. The worst case of our lower bound is

still 1/e as in [10, Lemma 3, with dmin = dmax]. However, with our analysis we are able to determine

the worst case given the cardinality of the message set and of the side information set. Moreover,

we can also show how many messages should be involved in the (network coded) transmission that

satisfies the largest fraction of clients in this case. In general, our lower bound is strictly better than 1/e.

The improvement is quite pronounced in the case where the cardinality of the side information set is

relatively small comparable to the number of messages. This points to the phenomenon that the largest

fraction of clients can be satisfied with one transmission when the cardinality of the side information set

is close to zero or close to the number of messages in the system. Our result can be applied to the case

where a messages is in the side information of a client with a fixed probability independent of every

other message and client, and refines the result in [10, Theorem 8, with t = 1].

1.4.1.2 Decentralized Pliable Index Coding

Our achievability scheme users both scalar and vector linear index coding. Our results show that

the optimal code-length for the d-PICOD is the same as the one for the classical (centralized) PICOD

counterpart, except when the problem is no longer pliable. That is, when the d-PICOD reduces to an IC
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problem where every user needs to decode all the messages not in its side information set (a problem also

known as the data exchange problem.) For those cases where the optimal code-length may be the same

in both centralized and decentralized settings, the actual optimal codes are not necessarily the same. For

the d-PICOD, our results show that the sparse Maximum Distance Separable (MDS) codes and vector

linear index codes are required for optimal performance, while the scale linear code is sufficient for the

centralized PICOD. Our achievable scheme is based on the recent result on MDS-condition [26]. Our

result also provides the required finite filed size for the codewords. The size is known to be the smallest

for this problem. The proposed scheme matches the converse bounds for the centralized PICOD for

the cases where there are still pliabilities of choosing the desired messages at the users. Therefore, the

proposed scheme is optimal for these cases.

1.4.1.3 Secure Pliable Index Coding

We extend the achievability scheme proposed in [25] to a more general setting of the problem.

Specifically, we consider the case with a circular shift side information sets of the users and the side

information sets of the users are of the same size. However, the shift is not necessarily 1, which is the

setting considered in [25]. For our generalized model, we proposed new achievable scheme based on

the idea of “grouping” users. Each transmission is able to satisfy two groups of the users while keeping

the message secure to all the other users. When s > m/2, our scheme is the same as the scheme

proposed in [25]. When s < m/2, our scheme groups the users and satisfies at most two groups with

one transmission and can do strictly better than the scheme proposed in [25]. The individual security is

maintained by the regular structure of the circular shift side information structure.
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1.4.2 Converse

Known achievable schemes for the PICOD(t) are based on linear code only. Few converse results

are available for the PICOD(t). All existing converse proofs are under the “linear constraint”, which

restrict the codes to be linear. In other words, an information theoretical converse does not exist. For

the oblivious PICOD(t), the optimal code length under the linear encoding restriction is shown [10,

Theorem 9]. In [16], the authors provide a worst case instance, which needsΩ(log(n)) code length for

the linear code. Our main goal is to prove information theoretic converse results for the PICOD(t) that

matches the achievability.

1.4.2.1 Pliable Index Coding

From the converse perspective, we derive information theoretic converse bounds for some the

PICOD(t)s based on their side information structure, namely (i) the Complete-S PICOD(t), and (ii)

the PICOD(t) whose network topology hypergraph is a circular-arc.

The complete–S PICOD(t), where S is a subset of [0 : m − t] (where m is the number of message

at the transmitter), is a system where all side information sets/users with size indexed by S are present.

We say that S is “consecutive” if S = [smin : smax] for some 0 ≤ smin ≤ smax ≤ m − t. The

complete–S PICOD(t) with consecutive S is also known as the oblivious PICOD(t) in [10, Section VI].

In [10] the authors proposed optimal converse bounds for the oblivious PICOD(t) when the encoding

scheme is restricted to be linear. We provide tight information theoretic converse bounds, i.e., without

any restriction on the encoding scheme been used, on some classes of the PICOD(t). Our setting of

the complete–S PICOD(t) includes and expands the oblivious PICOD(t) setting in [10] and show the

unrestricted optimality of linear codes.
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Our converse is based on showing the existence of at least one “special user” who can decode a

certain number of messages outside its side information set; the stumbling block in previous approaches

was how to find such a “special user.” The problem of finding the “special user” can be approached in

two ways: 1) constructively finding such a “special user” for each choices of the desired messages, or

2) implicitly proving its existence. We show the existence of this “special user” regardless of the choice

of desired messages using both methods. For the “complement-consecutive complete–S PICOD(t)”,

which is the complete–[0 : m − t] \ [smin : smax] PICOD(t) where 0 ≤ smin ≤ smax ≤ m − t,

we constructively find the “special user” that can decode |S| + t − 1 messages. The constructively

way is not amenable for the “consecutive complete–S PICOD(t)”, which is the complete–[smin : smax]

the PICOD(t) where 0 ≤ smin ≤ smax ≤ m − t. This is because the constructive proof has a high

complexity due to the number of sub-cases /different message assignments that must be considered

separately. Therefore, we propose a novel combinatorial proof to show the existence of the “special

user” regardless of the choices of the desired messages. By not simply focusing on the desired messages,

but on all the messages that a user will eventually be able to decode, we consider the messages that a

user can eventually know as a “block cover” for this user. The “block cover” for a user must includes the

side information sets and the desired message of this user. This is similar to the combinatorial design

structure, e.g. Steiner system. We then argue that the absence of the special user leads to a contradiction

in this “block cover”. Therefore we show the existence of the special user. This new technique greatly

reduces the complexity of the proof compared to the constructive method and enables us to obtain a

converse bound for a very general class of the complete–S PICOD(t). The keystone of the proof is to

show that, for the “critical case” of S = {s} and m = 2s + t, there exists at least one user who can
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decode s+ tmessages. From this, the extension to the “consecutive complete–S” PICOD(t) follows by

enhancing the system to a “critical case” one.

The converse idea based on showing the existence of the“special user” can also be used for the other

PICOD(t) cases. For the case t = 1 we show a tight converse for those PICOD(1) whose network

topology hypergraph is circular-arc (for a detailed definition of network topology hypergraph please

refers to Section 3.7.1). For this setting, when a 1-factor does not exist (for a detailed definition please

refers to Section 3.7.1) we show that the code length is at least 2 by finding a user that can decode 2

messages. The converse is tight by showing an achievable scheme that satisfies all users with just 2

transmissions.

1.4.2.2 Decentralized Pliable Index Coding

Converse bounds of the centralized PICOD is also valid for d-PICOD as well. Therefore, we use

the converse bounds of the corresponding centralized PICOD for d-PICOD. For the cases where we still

have pliabilities of choosing the desired messages at the users, we propose achievable schemes that can

achieve the converse bounds of the centralized PICOD. Therefore, we show the tightness of the bounds

for such cases. The only exceptional case is where pliabilities of choosing the desired message no longer

exist, i.e., the d-PICOD problem becomes a data exchange problem where all users need to decode all

message they do not have in their side information sets. For this case, we prove that the centralized

converse bound is strictly suboptimal. We provide a new converse bound based on the cut-set bound.

The new converse bound matches the proposed achievable scheme based on the sparse MDS code and

thus is tight.
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1.4.2.3 Secure Pliable Index Coding

For the cases where s ≥ m/2 or the shift is greater than 1, where m is the number of messages

and s is the size of the side information, our proposed achievable scheme takes no more than 2 trans-

missions. We use the converse bound for the PICOD problem with the circular-arc side information

structure and show that our proposed scheme is information theoretical optimal for these cases. For

the other cases, specifically, the case where s < m/2 and the shift is 1, we propose a converse bound

under the linear encoding constraint, that is, the encoding function is a linear function of the messages.

The linear encoding constrained IC has been well studied and we know the optimality is the minrank

problem, which is NP-hard. Our proposed linear encoding constraint converse differs from our pro-

posed achievable scheme by at most one transmission. Therefore, we show that our scheme is almost

linearly for this case. Our results shows that when s < m/2 and under the linear encoding constraint,

the converse bound changes dramatically when applying the security constraint. The optimal number of

transmissions is always 1 or 2 when there is no security constraint. However, when security constraint

is imposed, the converse bound is about m/2s when s < m/2. The bound is thus linear with m/s, in

contrast to the constant bound for the problem without the security constraint.
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CHAPTER 2

CONSTANT FRACTION OF SATISFIED USERS IN PLIABLE INDEX CODING

PROBLEM

In this chapter we show that for any PICOD(1) (to be defined in Section 2.1), there exists an achiev-

ability scheme that can satisfy at least a constant fraction of users that are not satisfied yet. This result

shows the upper bound on the optimal code length for PICOD(1) is log(n), where n is the number of

users in the system.

The result of this chapter has been published in [17].

2.1 System Model

In a PICOD(t) system there is one server and n ∈ N users; the user set is denoted as U :=

{u1, u2, . . . , un}. The server is connected to all users by a rate-limited noiseless broadcast channel.

There are m ∈ N independent and uniformly distributed binary messages of κ ∈ N bits; the message

set is denoted as W := {w1, w2, . . . , wm}. The transmitter has all m messages known, while user ui

has a subset of the message set as its side information set Ai ⊂ [m], i ∈ [n]. The collection of all the

side information sets A := {A1, A2, . . . , An} is assumed globally known at the server and all users.

The code the server broadcasts to the users has length `κ bits, and is a function of the message set

W and the collection of all side information sets A, i.e., for some function ENC we have

x`κ = ENC(W,A). (2.1)

18
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Each user decodes based on the code x`κ and its own side information set; for user uj, j ∈ [n], the

decoding function is

{ŵ
(j)
1 , . . . , ŵ

(j)
t } = DECj(WAj , x

`κ). (2.2)

A code is said to be valid if and only if every user can successfully decode at least t messages not in its

side information set, i.e., the decoding functions DECj, for all j ∈ [n], is such that

Pr[∃{dj1, . . . , djt} ∩Aj = ∅ : {ŵ(j)
1 , . . . , ŵ

(j)
t } 6= {wdj1 , . . . , wdjt}] ≤ ε, (2.3)

for some ε ∈ (0, 1). For a valid code, {ŵ(j)
1 , . . . , ŵ

(j)
t } = {wdj1 , . . . , wdjt} is called the desired messages

set for user uj, j ∈ [n], and the indices of the desired message are denoted as Dj := {dj1, . . . , djt}. For

a valid code, the choice of desired messages for the users is D = {D1, D2, . . . Dn} where Dj ∩ Aj =

∅, ∀j ∈ [n]. The goal is to find a valid code with minimum length

`∗ := min{` : ∃ a valid code of length `κ, for some κ}. (2.4)

In the following we shall usually focus on the complete–S PICOD(t), for a given set S ⊆ [0 : m−t].

In this system, there are n :=
∑
s∈S
(
m
s

)
users, where no two users have the same side information set.

In other words, all possible users with distinct side information that are subsets of size s of the m

messages, for all s ∈ S, are present in the complete–S PICOD(t).
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2.2 Greedy Set Cover Achievability

2.2.1 Problem Representation

In this paper we restrict the encoding and decoding functions to be linear on the binary field, which

is motivated by practical reasons but may be suboptimal in general [14]. A client is said to be satisfied

by a single transmission if there is only one message in the broadcasted binary linear combination

that is not in its side information. In this paper we are interested in the number of clients satisfied

by a single transmission. Therefore it is enough for us to only consider binary linear encoding where

every transmission is a linear combination of a subset of the messages with coefficient either 0 or 1.

There are 2m − 1 such binary linear combinations of m messages. We can represent this satisfaction

relationship between clients and all possible binary linear combinations of messages as a bipartite graph.

Let Z := {zj, j ∈ [1 : 2m − 1]} denote the set of all binary linear combinations ofm messages (with the

exception of the one with all zero coefficients). The set Z represents the ‘left side/code’ nodes. The set

of ‘right side/client’ node is the set A of the n clients. An edge exists between ai ∈ A and zj ∈ Z if

client ai can decode one message in Ri from zj, in which case we say the ‘client ai is covered by zj’.

For example, for the PICOD(m = 3, n = 4,R1 = {b1, b2, b3},R2 = {b2, b3},R3 = {b3},R4 = {b1})

such a bipartite graph is shown in in Fig. Figure 1.

It is easy to see that for Z ′ ⊆ Z such that its neighbor N(Z ′) = A, all clients are satisfied by |Z ′|

transmissions. Thus min{|Z ′| : N(Z ′) = A} is an upper bound to the optimal PICOD solution. For the

example in Fig. Figure 1, we have min |Z ′| = 2 attained by Z ′ = {{b1}, {b3}}.

The problem of minimizing |Z ′| is the well-known set cover problem [27]. The set cover problem

is NP-hard and the best polynomial time algorithm is the greedy covering algorithm [28, 29], which
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{b1}{b1}

{b2}{b2}

{b3}{b3}

{b1, b2}{b1, b2}

{b1, b3}{b1, b3}

{b2, b3}{b2, b3}

{b1, b2, b3}{b1, b2, b3}

R1 = {b1, b2, b3}R1 = {b1, b2, b3}

R3 = {b3}R3 = {b3}

R4 = {b1}R4 = {b1}

R2 = {b2, b3}R2 = {b2, b3}

Figure 1. Bipartite graph representing the satisfaction relationship between possible transmitted
codewords (left side nodes) and clients (right side nodes). ©IEEE 2016.

approximate the optimal solution to within a factor H(n), where H(n) is the n-th harmonic number.

H(n) is known to be the best possible approximation factor for polynomial time algorithms.

The greedy covering algorithm works as follows: in every step, find the ‘left side/code’ vertex that

covers the largest number of ‘right side/client’ vertices; remove those ‘right side/client’ vertices that

have been covered by the found ‘left side/code’ vertex, and repeat until all ‘right side/client’ vertices

have been removed.
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2.2.2 Performance Analysis

We now analyze the performance of greedy covering approach. We start by considering the case

where the side information sets of all clients have the same cardinality and show that the greedy covering

approach can satisfy a constant fraction of clients for every transmission.

Theorem 1. For a PICOD instance with m messages and where the request set of all n clients has

cardinality l, the fraction of unsatisfied clients that can be satisfied by one transmission is lower bounded

by max
{(
1− l

m

)m
l
−1 (

1− 1
l

)l−1
e, lm

}
, which is at least 1/e.

To prove the theorem, we introduce a grouping of the clients based on the cardinality of their re-

quest set (see step a) next). We then provide a lower bound on the fraction of satisfied clients by one

transmission for the case where the request sets have the same cardinality; this lower bound is valid for

any m,n, l (see step b) next). Finally we show that this fraction is no less than 1/e, as in [10, Lemma

3, with dmin = dmax] (see step c) next).

Client grouping

We divide the n clients intom groups, wherem is the number of messages, based on the cardinality

of their request set. Group Sl = {ai ∈ A : |Ri| = l}, l ∈ [1 : m]. We denote the cardinality of group Sl

as Cl := |Sl|. Note that the sets Sl are disjoint and
∑m
l=1Cl = n. For the example in Fig. Figure 1, we

have S1 = {a3, a4},S2 = {a2},S3 = {a1}.

Number of satisfied clients by one transmission

Every transmission in our model is a binary linear combination of a number of messages, say k ∈

[1 : m]. A client is satisfied by such a transmission if it has k − 1 messages involved in the linear
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combination as its side information. There are 2m − 1 such binary linear combinations. Explicitly,

there are
(
m
k

)
different choices of transmission for a binary linear combination with k messages. Let

Dkj, k ∈ [1 : m], j ∈ [1 :
(
m
k

)
] denote the number of clients that can be satisfied by jth choices of

messages when the linear combination contains k messages. Based on the number of messages in a

binary linear combination we have the following:

• k = 1 (we send a single message within the message set). A client in S1 is satisfied by the

transmission of the only message that is not in its side information; there is one choice of messages

for such transmission. Thus will be counted once for all possible transmissions.

A client in S2 is satisfied by the transmission of either of the two messages not in its side infor-

mation; there are two choices of messages for such transmission. Thus will be

In general, there are l choices of messages for transmission to satisfy a client in Sl, l ∈ [1 : m].

We count the number of clients that are satisfied by the all possible
(
m
1

)
choices of messages. The

total number of satisfied clients is

(m1 )∑
j=1

D1j = C1 + 2C2 + · · ·+mCm.

Thus the maximum number of clients that can be satisfied by one transmission containing a single

message is lower bounded as

max
j
D1j ≥

C1 + 2C2 + · · ·+mCm(
m
1

) =

m∑
i=1

i

m
Ci.
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• k = 2 (we send a linear combination of two messages within the message set).

A client in S1 can be satisfied if only one of the two messages involved in the linear combination

is not in its side information. There are
(
m−1
1

)
possible choices in this case.

A client in S2 can be satisfied if only one of the two messages involved in the linear combination

is not in its side information, and the other one is. There are 2
(
m−2
1

)
choices of two messages that

satisfy such condition.

In general, the number of choices that can satisfy a client in Sl is l
(
m−l
1

)
, l ∈ [1 : m].

In this case we have

(m2 )∑
j=1

D2j =

(
m− 1

1

)
C1 + · · ·+ (m− 1)

(
1

1

)
Cm−1,

and the maximum number of satisfied clients per transmission is

max
j
D2j ≥

(
m−1
2

)
C1 + 2

(
m−2
2

)
C2 + · · ·+ (m− 1)Cm−1(
m
2

) .

• General k (we send a linear combination of kmessages within the message set, with k ∈ [1 : m]).

The total number clients that can be satisfied these choices is

(mk)∑
j=1

Dkj =

m−1∑
l=1

l

(
m− l

k− 1

)
Cl,
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and the maximum number of satisfied clients by a single transmission is

max
j
Dkj ≥

m∑
l=1

Rl,m,k Cl,

where

Rl,m,k :=
l
(
m−l
k−1

)(
m
k

) (2.5)

and the binomial coefficient is taken to be zero in (Equation 2.5) ifm− l < k− 1.

Lower bound of maximum covering

We now consider the case where the cardinality of the request size of the clients in the same, say l for

some l ∈ [1 : m]. This implies that in the analysis done in the previous paragraph we set Ci = 0, ∀i 6= l.

The goal is to show a lower bound for every pair of (l,m)

max
k∈[1:m]

Rl,m,k ≥ rl,m, (2.6)

for some positive rl,m (which can be a function of the size of request set l and the number of messages

m), and where Rl,m,k was defined in (Equation 2.5).

For k = 1 (we send a single message), Rl,m,k=1 = l
m and therefore we can always satisfy a

fraction l
m of the clients; for k = 2 (we send a linear combination of two messages), Rl,m,k=2 =

2 lm
(
1− l

m

)
m
m−1 and therefore we can always satisfy this fraction of the clients; but sending a single
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max
k∈[1:m]

Rl,m,k = max
k∈[1:m]

l
(
m−l
k−1

)(
m
k

) = max
k∈[1:m]

l (m− l) !k! (m− k) !

(k− 1) ! (m− l− k+ 1) !m!
= max
k∈[1:m]

lk
(m− l) ! (m− k) !

m! (m− l− k+ 1) !

(2.7)

> max
k∈[1:m]

lk

√
2π (m− l)

(
m−l
e

)m−l
e

1
12(m−l)+1

√
2πm

(
m
e

)m
e

1
12m

√
2π (m− k)

(
m−k
e

)m−k
e

1
12(m−k)+1√

2π (m− l− k+ 1)
(
m−l−k+1

e

)m−l−k+1
e

1
12(m−l−k+1)

(2.8)

= max
k∈[1:m]

l

m

(
1−

l

m

)m−l+ 1
2
(

m− k

m− l− k+ 1

)m−l−k+ 3
2 k(m− k)l−1

ml
eβ (2.9)

≥
(
m− l− k+ kl

m

m− l− k+ 1

)m−l−k+ 3
2
lk

m

(
1−

l

m

)k−1(
1−

k

m

)l−1
eβ | k = bm

l
c = m

l
− α (2.10)

>

(
m− l− m

l + α+ 1− α l
m

m− l− m
l + α+ 1

)m−l−m
l
+α+ 3

2 1− α l
m(

1− l
m

)α (1− l

m

)m
l
−1(

1−
1

l

)l−1
eβ (2.11)

=
1− α l

m(
1− l

m

)α (1− l

m

)m
l
−1(

1−
1

l

)l−1
e >

(
1−

l

m

)m
l
−1(

1−
1

l

)l−1
e (2.12)

message or a a linear combination of two message may not be the best strategy, so next we investigate

the case of general k ∈ [1 : m] by understanding the behavior of Rl,m,k.

The bounding steps are reported at the top of the next page; next we give a justification for the

various (in)equalities:

• step (Equation 2.7) is by definition of the binomial coefficient;

• step (Equation 2.8) follows by the Stirling’s approximation formula [30]

√
2πn

(n
e

)n
e

1
12n+1 < n! <

√
2πn

(n
e

)n
e

1
12n ;
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• step (Equation 2.9) is simple algebra and where we defined

β := 1+
1

12(m− l) + 1
+

1

12(m− k) + 1

−
1

12m
−

1

12 (m− l− k+ 1)
;

• in step (Equation 2.10) we choose k = bm/lc since the function k(m − k)l−1 is maximized by

x = m/l and the number of messages in a linear combination needs to be an integer, and where

we indicate the flooring bm/lc = m/l− α for some 0 ≤ α < 1;

• step (Equation 2.11) by replacing k with m
l − α; and

• step (Equation 2.12) follows since

(
m− l− bml c+

bm
l
cl

m

m− l− bml c+ 1

)m−l−bm
l
c+ 3

2

= 1− o(1/m),

eβ = e− o(1− e−1/m
2

),

for sufficiently largem, and 1−α l
m

(1− l
m)

α ≥ 1 for 0 ≤ α < 1.
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Since by choosing k = 1 we can satisfy a fraction Rl,m,k=1 = l
m of the clients, together with the bound

derived at the top of the page, we arrived at

max
k
Rl,m,k ≥ max

{(
1−

l

m

)m
l
−1(

1−
1

l

)l−1
e,
l

m

}

≥
(
1−

1√
m

)2√m−2

e (2.13)

> 1/e. (2.14)

where the inequality in (Equation 2.13) follows since the function
(
1− l

m

)m
l
−1 (

1− 1
l

)l−1
is minimized

by l =
√
m, and since the function in (Equation 2.14) is monotonically decreasing and converging to

1/e2. This shows that at least a fraction 1/e of the unsatisfied clients can be satisfied by one transmis-

sion. This concludes the proof.

To illustrate our bounds, in Fig. Figure 2 we plot our bound and the bound in [10, Lemma 3] for

m = 100, 400, 900 as a function of l, the size of request set. Compared to the known bound, our bound

better characterizes the fraction of satisfied clients by a single transmission whenm is finite. Our lower

bound is minimized when l =
√
m. When 1 ≤ l ≤ √m, our result shows that having more messages

in the side information set results in a larger fraction of satisfied clients with a single transmission.

However, in the range
√
m ≤ l ≤ m/2, the opposite is true. This phenomenon becomes more apparent

in the region m/2 ≤ l ≤ m and is in contrast to the bound in [10, Lemma 3], which is a strictly

decreasing function of l.
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In Fig. Figure 3 we compare our result to the known lower bound in [10, Lemma 3] as a function of

m, the number of messages at the server. Our new bound improves on the known bound whenm is not

very large.

2.2.3 Randomly Generated Side Information Sets

Consider a PICOD instance with n clients and m messages represented by a n ×m binary matrix

W, where every entry wij is i.i.d. according to a Bernoulli distribution with parameter p ∈ (0, 1).

Message bj ∈ Ii if and only ifwij = 1. This setting is usually used for generating PICOD instances and

testing the performance of achievable algorithms in numerical evaluations [10].

By applying our result, we can show the lower bound on the largest fraction of satisfied clients with

a single transmission showed previously in Thm 1 holds for the case where the side information sets are

generated in an i.i.d. fashion. In particular, we have:

Lemma 1. For a PICOD instance with m � 1 messages and n clients where each message is in the

side information set of a client according to an i.i.d. Bernoulli distribution with parameter p ∈ (0, 1),

the maximum number of clients that can be satisfied by a single transmission is at least rm,p = max{1−

p, p
1
1−p (1 − 1

m(1−p))
m(1−p)−1e} > 1/e, and the number of required transmissions to satisfy all the

clients is upper bounded by 1+ log(n)
− log(1−rm,p)

.

Proof. The detailed proof is omitted for the sake of space. The main idea is to define the set of typical

clients as

T (m)
ε =

{
ai,

∣∣∣∣ |Ri|m − (1− p)

∣∣∣∣ ≤ ε(1− p)}
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where ε = mδ− 1
2 , 0 < δ < 1

2 . Then by similar steps as done previously, we can show that one

transmission satisfies at least rm,p clients in T mε . Thus the number of required transmissions to satisfy

all the clients is at most 1+ log(n)
− log(1−rm,p)

.

2.3 Comparison to Known Results

We now compare the complexity of our proposed greedy cover approach. Our achievability needs

to check all possible choices of messages for a linear combination in order to find the one that gives

maximum coverage. However, in the scenarios where all clients have the side information set of ap-

proximately the same cardinality, we can limit the search to the choices with k = bml c messages, which

has cardinality
(
m
k

)
≤
(

m
bm/2c

)
≈ 2m√

πm
2

. Thus the running time of our algorithm is at most O( 2
m
√
m
), and

only depends only on the number of messagesm. The greedy cover algorithm proposed in [10, GRCOV]

has running timeO
(
mn2

)
. The deterministic algorithm in [14] has running timeO(nm2 log(n)). Note

that the running times of the last two algorithms depend on the number of clients n also. For a PICOD

instance 1 ≤ n ≤ 2m − 1 (i.e., we only consider clients those that have distinct side information sets).

Thus the upper bounds of running time for the last two algorithms areO(m22m) andO(m32m), respec-

tively, in the worst case. Compared to the achievability proposed in this paper, the last two algorithms

are faster when n is small, but slower when n approaching its upper bound.

One interesting observation regarding our results is that a larger side information set does not always

bring benefits in terms of number of required number of transmissions in PICOD. This is in contrast to

the classical IC, where more messages in the side information can not degrade performance. This is

because in PICOD all messages which are not in the side information are potentially desired messages.

Thus more messages in the side information means less choices for messages to decode / to satisfy a
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Figure 2. Lower bound on the fraction of satisfied clients by one transmission for different request set
sizes. ©IEEE 2016.

client. At the other extreme, like for IC, more messages in the side information set give more network

coding opportunities. There are scenarios where more messages in the side information actually reduce

the fraction of clients satisfied by one transmission. The phenomenon is shown as the U-shaped curve

in Fig. Figure 2. This shows that PICOD is not a generalization, but rather a variation of the classical

IC.
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CHAPTER 3

COMPLETE–S PICOD(T) AND PICOD(1) WITH CIRCULAR-ARC NETWORK

TOPOLOGY HYPERGRAPH

3.1 Main Results and Discussion

This section summarizes our main results and comments on their proof techniques, their relationship

with past work and their implications. We start with a simple achievable scheme based on linear codes.

The main contribution of the paper is converse bounds on the optimal code length for the two broad

families of the PICOD(t): (i) the Complete-S PICOD(t), where S is nonempty subset of [0 : m − t],

in Section 3.1.2, and (ii) the PICOD(1) with network topology hypergraph which are circular-arc in

Section 3.1.3.

The results of this chapter have appeared in [31] and [32].

3.1.1 Achievability

We give next an achievable scheme for the general complete–S PICOD(t) based on linear codes.

Proposition 1 (Achievable Scheme). Let S by a partition of S, i.e., S = ∪Si∈SSi and Si ∩ Sj = ∅ for

all i, j ∈ [|S |] such that i 6= j. The optimal number of transmission for the complete–S PICOD(t) with

m messages is upper bounded by

`∗ ≤
∑
i∈[|S |]

min
{
m− min

s∈Si
{s},max

s∈Si
{s}+ t

}
. (3.1)

33
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By minimizing over all possible partitions S, we have

`∗ ≤ min
S

∑
i∈[|S |]

min
{
m− min

s∈Si
{s},max

s∈Si
{s}+ t

}
. (3.2)

The proof can be found in Section 3.2.

Remark 1. Proposition 1 is a generalization of the scheme proposed in [10] whose main idea is as

follows. Let smin and smax denote the smallest and largest size of the side information sets, respectively.

Transmitting smax + t messages one by one can satisfy all users since each user has at most smax of the

messages in its side information. Transmitting m − smin linearly independent linear combinations of

the m messages also satisfies all users, as each user has at least smin messages in its side information.

Therefore by choosing the best of above two linear codes, we have `∗ ≤ min{smax + t,m− smin}.

We generalize this idea for the complete–S PICOD(t) by partitioning S into the collection S and

by satisfying the users in each Si ∈ S by using the above scheme. The total code length is the sum of

the code length for each partition. Finally, the shortest code length this scheme can achieve is given by

searching the best possible partition of S.

3.1.2 Converse for some complete–S PICOD(t) problems

We show that for two choices of S the achievability in Proposition 1 is information theoretic optimal.

In the following, if smin = 0 or smax = m − 1 we set [0 : smin − 1] = ∅ or [smax + 1 : m − 1] = ∅,

respectively.
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Theorem 2 (Converse for the “complement of the consecutive” complete–S PICOD(t)). For the complete–

S PICOD(t) with m messages and S = [0 : m − t]\[smin : smax] = [0 : smin − 1] ∪ [smax + 1 : m − t]

for some 0 ≤ smin ≤ smax ≤ m− t, the optimal code length is

`∗ = min{m,m+ t+ smin − smax − 2}. (3.3)

The proof can be found in Section 3.3.

Theorem 3 (Converse for the “consecutive” complete–S PICOD(t)). For the complete–S PICOD(t)

with m messages and S = [smin : smax] for some 0 ≤ smin ≤ smax ≤ m − t (S contains consecutive

integers, from smin to smax), where t is the number of messages each user needs to decode, the optimal

code length is

`∗ = min{smax + t,m− smin}. (3.4)

The proof for critical case where m = 2s + t can be found in Section 3.4. The general proof is in

Section 3.5.

Remark 2. Theorems 2 and 3 show that the simple achievable scheme in Proposition 1 can be informa-

tion theoretical optimal for a class of PICOD(t). Specifically, the consecutive complete–S PICOD(t)

is the oblivious PICOD(t) studied in [10]. Our Theorem 3 provides the tight information theoretic

converse for the achievability proposed in [10].

The basic idea in the proof of Theorem 2 is to prove the existence of a user who can decode |S| mes-

sages by a method referred to as “layer counting”. We partition all users in the complete–S PICOD(t)
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into |S| layers. Each layer consists the users with the same size of the side information set. A layer

is said to be “lower” than another if the size of the side information set of the users is smaller. The

intuition is that a user in a lower layer, after having decoded its desired messages, can mimic users in

higher layers and thus decode also the desired messages of those higher layer users.

In the “complement of the consecutive” complete–S PICOD(t) where S = [0 : smin−1]∪ [smax+1 :

m − t] for some 0 ≤ smin ≤ smax ≤ m − t, we show the user in the lowest layer (without any side

information) can mimic a user in each higher layers and eventually decodes |S|+ t messages.

However, this layer counting converse is not tight in general, as explained in Remark 6 for the

complete–S PICOD(1) with S = [1 : q] or S = [q : m− 2] for some 2 ≤ q ≤ m− 2.

To improve on the layer counting converse, we propose a novel converse technique for the “con-

secutive” complete–S PICOD(t), where S = [smin : smax] for some 0 ≤ smin ≤ smax ≤ m − t. The

“critical case” for this proof is the complete–S PICOD(t) for

m = 2s+ t messages and S = {s} (“critical case”). (3.5)

In Section 3.4 Proposition 6, we show that for this critical case, regardless of the choice of desired

messages and valid code, there always exists at least one user who can decode s + t messages. While

the proof of Theorem 2 is constructive, that is, we explicitly identify the user who can always decode

|S| + t − 1 messages (the one with no side information), the proof of Proposition 6 is not. The problem

with a “constructive argument” the critical case is that, for every specific user, it is possible for every

user to decode only t messages. Specifically, as our result shows, for any specific user, there exists
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an information theoretic optimal choice of desired messages and a corresponding code such that this

user can decode only its desired t messages. In other words, showing that a certain user can always

decode more than t messages is impossible. Therefore, in the proof of Proposition 6, we propose a

combinatorial method to show the existence of at a least a user with some desired property, namely, the

ability to decode a certain number of messages. The new method involves the Maximum Acyclic Induced

Subgraph (MAIS) converse idea for the classic index coding problem [6] as well as a combinatorial

design technique inspired by Steiner system [33]. The existence proof does not indicate which user has

the desired property, but only shows its existence regardless of the choice of desired messages at the

users. In this way we avoid the tedious case-by-case study for the various different choices of desired

messages.

Theorem 3 can be further extended to cover other complete–S PICOD(t). We have the following

results.

Proposition 2 (Not a complete–S, but all users are below the “critical case” users). For the complete–S

PICOD(t) withm messages and smax := maxs∈S{s} ≤ bm−t
2 c, the optimal code length is `∗ = smax + t.

The proof can be found in Section 3.6

Proposition 3 (Not a complete–S, but all users are above the “critical case” users). For the complete–S

PICOD(t) withm messages and smin := mins∈S{s} ≥ dm−t
2 e, the optimal code length is `∗ = m−smin.

The proofs can be found in Section 3.6

Proposition 4 (Not a complete–S, but all users in a band around the “critical case” users are present).

For the complete–S PICOD(t) with m messages, let δ := min{smax − dm−t
2 e, bm−t

2 c − smin}, where
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smax = maxs∈S{s} and smin = mins∈S{s}. If
[
bm−t

2 c− δ : dm−t
2 e+ δ

]
⊆ S then the optimal code length

is `∗ = min{smax + t,m− smin}.

The proof can be found in Section 3.6

Remark 3. Propositions 2, 3 and 4 show an interesting fact: for these settings the only relevant layer in

the layer representation are the ones closest to the “critical” middle layer m−t
2 , or the layers in a band[

bm−t
2 c− δ : dm−t

2 e+ δ
]

that is around the “critical” middle layer. The optimal code for the users in

these layers satisfies all the remaining users.

Finally, for the PICOD(t) cases that are not covered by Propositions 2, 3, 4 and Theorem 2, up to

m = 5 we have the following:

Proposition 5. For all complete–S PICOD(t) with m ≤ 5 and non-empty S ⊆ [0 : m − 1], the

achievable scheme in Proposition 1 is information theoretic optimal.

The proof can be found in Section 3.6.

Remark 4. Proposition 5 is proved by checking all cases of the complete–S PICOD(t) withm ≤ 5. In

Section 3.6, some new techniques are developed for the converse proof. However, these techniques are

not generalizable for the complete–S PICOD(t) of generalm.

3.1.3 Converse for PICOD(1) with circular-arc network topology hypergraph

We refer the reader to an introduction on graph theory terminology in Section 3.7.1. The complete–

{s} PICOD(t) has a network topology hypergraph which is the dual hypergraph of the complete (m−s)–

uniform hypergraph. For this case, we prove the converse by finding a user that can decode a certain
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number of messages, as what we do for the complete–S PICOD(t). Specifically, we show a tight

converse for the PICOD(1) whose network topology hypergraph is circular-arc.

Theorem 4. For a PICOD(1) withm messages and the network topology hypergraph is a circular-arc,

the optimal number of transmissions satisfies `∗ ≤ 2. In particular, the optimal number of transmissions

is `∗ = 2 unless network topology hypergraph is a 1-factor hypergraph.

The proof can be found in Section 3.7.

Remark 5. The achievability part of Theorem 4 is based on the following property of circular-arc

hypergraph: if two vertices belong to one edge, then all vertices (cyclic) between these two vertices

must belong to the same edge. The converse part of Theorem 4, which is in Proposition 8, is proved by

showing that there exists one user that can decode one more message other than its desired message if

a 1-factor does not exist. By showing the existence of such a user, regardless of the choices of desired

messages and code sent by the transmitter, we obtain a tight lower bound on the optimal code length.

The proofs of the main results summarized in this section will be given in the following sections.

3.2 Achievability: proof of Proposition 1

We consider the following two types of linear codes for any PICOD(t), as originally considered

in [10]:

1. Let smax be the maximum size of the side information set at the users. Transmit smax+tmessages,

one by one. With this, every user can decode at least t message not in its side information set.

2. Let smin be the minimum size of the side information set at the users. Transmitm− smin linearly

independent linear combinations of all messages, e.g., an MDS code that allows to recover from
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any smin erasures ofm symbols. Since each user has at least smin messages in its side information

set, by receivingm− smin linear combinations each user is able to decode all the messages not in

its side information set.

We can generalize this achievable scheme for the complete–S PICOD(t) as follows. Consider

the collection S that is a partition S. We say that uj belongs to the i-th group if |Aj| ∈ Si. Our

achievable scheme considers each group individually, i.e., satisfy every group by using one of the two

above schemes. The code length is then the sum of code length used for each group. This proves the

bound (Equation 3.1). The bound in (Equation 3.2) is simply proved by taking the best partition, as

explained earlier in Remark 1.

3.3 Layer Counting Converse: Proof of Theorem 2

Recall that the complete–S PICOD(t), for a given set S ⊆ [0 : m − t], comprises n =
∑
s∈S
(
m
s

)
users where the side information sets are all possible distinct subsets of size s of m messages, for all

s ∈ S. Before getting into the proof of Theorem 2, we show a general converse for any PICOD(t) based

on idea of “decoding chain.”

To begin with, let us consider t = 1 and S = {s}. In this system consider user uj, who has side

informationAj, and desires message dj. After decodingwdj , user uj knows messagesWAj∪{dj}. Besides

user uj, there are s other users whose side information sets are subsets of size s of Aj ∪ {dj}. If any

of these other users decode a message wk such that k /∈ Aj ∪ {dj}, then user uj can decode message

wk as well (because it has the same side information Ak ⊂ Aj ∪ {dj} as uk). This reasoning can be

repeated until user uj can not longer mimic any other users / decode extra messages. Therefore, we have
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identified a “decoding chain” for user uj. This idea can be extended to show the following Lemma for

any PICOD(t).

Lemma 2. In a PICOD(t), for any ordering of the n users, we have

`∗ ≥
n∑
i=1

∣∣∣Di \ ∪i−1j=1(Aj ∪Dj)∣∣∣ . (3.6)

Proof of Lemma 2. Since we have a working system, all users are satisfied by the transmission of the

code x`κ of length `. For user u1 we have

H
(
WD1 |x

`κ,WA1

)
≤ `ε`, (3.7)

where lim`→∞ ε` = 0 by Fano’s inequality. Similarly, for user u2 we have

H
(
WD2 |x

`κ,WA2

)
≤ `ε`. (3.8)
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Therefore, by “condition reduces entropy,” we have

H
(
WD1 ,WD2 |x

`κ,WA1 ,WA2\D1

)
= H

(
WD1 |x

`κ,WA1 ,WA2\D1

)
+H

(
WD2 |x

`κ,WA1 ,WA2\D1 ,WD1

)
= H

(
WD1 |x

`κ,WA1 ,WA2\D1

)
+H

(
WD2 |x

`κ,WA2 ,WA1∪D1

)
≤ H

(
WD1 |x

`κ,WA1

)
+H

(
WD2\(A1∪D1)|x

`κ,WA2

)
≤ 2`ε`.

Therefore we have

H
(
W∪ni=1Di |x

`κ,W∪ni=1(Ai\∪
i−1
j=1Dj)

)
≤ n`ε`. (3.9)
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Since the messages are independent and uniformly distributed with entropy κ bits, and since the code is

binary, we conclude

n∑
i=1

∣∣∣Di \ ∪i−1j=1(Aj ∪Dj)∣∣∣ (3.10)

=
∣∣∣∪ni=1 (Di \ ∪i−1j=1(Aj ∪Dj))∣∣∣ κ (3.11)

= H
(
W∪ni=1(Di\∪

i−1
j=1(Aj∪Dj))

)
(3.12)

= H
(
W∪ni=1(Di\∪

i−1
j=1(Aj∪Dj))

|W∪ni=1(Ai\∪
i−1
j=1Dj)

)
(3.13)

≤ I
(
W∪ni=1(Di\∪

i−1
j=1(Aj∪Dj))

; x`κ
∣∣W∪ni=1(Ai\∪i−1j=1Dj))+ n`ε` (3.14)

≤ H
(
x`κ|W∪ni=1(Ai\∪

i−1
j=1Dj)

)
+ n`ε` (3.15)

≤ H(x`κ) + n`ε` (3.16)

≤ `κ+ n`ε`, (3.17)

which implies that for all valid code

` ≥
n∑
i=1

∣∣∣Di \ ∪i−1j=1(Aj ∪Dj)∣∣∣ (3.18)

for constant (n, κ), sufficiently large `, and any valid codes. Thus this holds for the optimal code

length.

The sequence of users u1, u2, . . . , un in Lemma 2 is the “decoding chain” mentioned at the begin-

ning of this section. In fact, the converse in Lemma 2 can also be thought of as the “acyclic induced

subgraph converse” for all unicast IC [6], where each user desired multiple messages, as opposed to
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· · ·
· · ·

s = 0 (layer 0)

s = 1 (layer 1)

s = 2 (layer 2)

s = m − 2 (layer m − 2)

s = m − 1 (layer m − 1)

· · ·

Figure 4. Layer representation of the complete–[0 : m− 1] PICOD(1) problem. ©IEEE 2019.

a single message. The users with
∣∣∣Di \ ∪i−1j=1(Aj ∪Dj)∣∣∣ 6= 0 form an acyclic induced subgraph in the

graph representation of the IC. Therefore, in Lemma 2 the value of
∣∣∣∪ni=1 (Di \ ∪i−1j=1(Aj ∪Dj))∣∣∣ de-

pends on the choice of the order for the users, that is, we can re-lable the users in order to find the

best bound provided by Lemma 2. Finding such an order for Lemma 2 illustrates the intuition for the

converse proof of Theorem 2: finding the user that can decode the largest number of messages.

To illustrate the method of finding the user who can decode the largest number of messages, we

introduce the “layer representation” of the complete–S PICOD(t). As an example, the “layer represen-

tation” of the complete–[0 : m − 1] PICOD(1) problem is given in Fig. Figure 4 in order to facilitate

the understanding of the converse proof later on: all the users with the same size of the side information

set are said to form a layer; there are in total m layers; the i-th layer contains the users whose side
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information set has size i ∈ [0 : m − 1], and the number of users in the i-th layer is
(
m
i

)
. The key

observation is that, in a working system, a user ui in i-th layer can decode a message wdi it does not

have in its side information set Ai. After that, user ui is equivalent to a user ui+1 in the (i+ 1)-th layer

whose side information is Ai+1 = Ai ∪ {di}. User ui will thus be able to decode the message wdi+1

that is desired by user udi+1 , in addition to its own desired message wdi . But now user ui will have

Ai+2 = Ai ∪ {wdi , wdi+1}, which is the side information of a user ui+2 in the (i + 2)-th layer. By

continuing with the same reasoning, user ui will be able to mimic one user per layer until the last layer.

We apply this argument to the user in the 0-th layer (there is only one such user). We see that the user

in the 0-th layer is able to decode one message “per layer” without loss of generality (wlog), that is, m

messages in total. This provides a “decoding chain” of lengthm. In this decoding chain each user’s side

information set and the desired message set form the side information set of the next user. By having

such a decoding chain, we can use Lemma 2 to show that `∗ ≥ m. We use this observation, and similar

ones, to provide a lower bound on `∗ in terms of number of messages a user can decode.

The proof of Theorem 2 directly follows this idea. The key for the proof is the fact that each layer

in the “layer representation” for the complement complete–S, where S = [0 : m − t] \ [smin : smax],

contains all users with side information set of the same size. After the user decode its desired message,

we can “map” this user another user in the next layer. Such a mapping forms a decoding chain started

from a user in the 0-th layer, which provides a lower bound on `∗.

We are now ready to prove Theorem 2 for the complement complete–S with m messages and S =

[0 : m− t] \ [smin : smax].



46

Proof of Theorem 2. Consider the PICOD(t) where S = [0 : m − t]\[smin : smax] = [0 : smin −

1] ∪ [smax + 1 : m − t] for some 0 ≤ smin ≤ smax + 1 ≤ m − t. Assume all users are satisfied

by the transmission of x`κ. Let u1 be the user with empty set information, i.e., A1 = ∅. Since all

users are satisfied, u1 can decode a message not in its side information set, with index d11. Layer

1 contains the users with side information set of size 1. There exists a user in layer 1, say u2, with

side information A2 = {d11} and desired message d21 /∈ A2. By continuing with this reasoning we

can find users u1, . . . , usmin , usmin+1, . . . , um+1−max{smax+1,smin−1+t} such that Aj = Aj−1 ∪ {d(j−1)1},

j ∈ [2 : m+ 1− max{smax + 1, smin − 1+ t}] \ {smin + 1} and Asmin+1 ⊇ Asmin ∪Dsmin .

We have thus constructed a chain of n′ := m+ 1− max{smax + 1, smin − 1+ t} users. These users

satisfy Aj ⊃ Aj−1, for all j ∈ [2 : n′], therefore
∣∣∣Di \ ∪i−1j=1(Aj ∪Dj)∣∣∣ ≥ 1 for all i ∈ [n′]. By Lemma 2

we have

`∗ ≥
n′∑
i=1

∣∣∣Di \ ∪i−1j=1(Aj ∪Dj)∣∣∣
≥ smin − 1+ t+m− max{smin − 1+ t, smax + 1}

= min{m,m+ t+ smin − smax − 2}.

The value `∗ = min{m,m+ t+ smin − smax − 2} can be achieved by the scheme in Proposition 1 by

using the following partition. Partition S into two groups as S = S1 ∪ S2 with S1 := [0 : smin − 1] and

S2 := [smax + 1 : m− t]. All users in group S1 are satisfied with smin + t− 1 transmissions. All users in

group S2 are satisfied with m − smax − 1 transmissions. Therefore, we have an achievability with code
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length m + smin + t − smax − 2. By (Equation 3.3) we have `∗ ≤ min{m,m + smin + t − smax − 2},

which coincides the converse.

This concludes the proof of Theorem 2.

Remark 6. The above proof constructively builds a “decoding chain”. The “decoding chain” starts

from the user in the lowest layer. The next user in the chain is chosen in the next layer, based on the side

information and desired message of the previous one. The chain ends at the highest layer. However,

this construction, where each layer contributes at most one user to the decoding chain, does not always

work.

As shown in [31], for the complete–S PICOD(1) where S = [1 : q] or S = [q : m − 2], 1 ≤ q ≤

m−2, the optimal number of transmission is `∗ = |S|−1. In other words, there exists a decoding chain

which includes two users with the same size of side information, where one of the users can mimic the

other one.

However, the proofs in [31] use a “case-by-case” reasoning, where the different cases are for dif-

ferent choices of desired messages of the users. For the complete–S PICOD(1) for general S = [smin :

smax], the number of cases becomes too many to be tractable. Thus the method is not easily generaliz-

able. The two cases considered in [31] are covered by Theorem 3.

3.4 Critical Case: complete–{s} the PICOD(t) withm = 2s+ t messages

To overcome the limitation of the “case-by-case” reasoning highlighted in Remark 6, we shall use

the “existence proof” technique for Theorem 3. Loosely speaking, when dealing with general S =

[smin : smax], to avoid the numerous sub-cases need to be considered in [31], we treat all users and all the

various desired message choices at once. Before we prove Theorem 3 in full generality, we consider the
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“critical case” in (Equation 3.5). We shall see that all other cases can be deduced from the critical one.

Therefore this section contains the proof of the major result for the consecutive complete–S PICOD(t),

which is largely based on combinatorics.

Specifically, in the rest of this section we prove the following result:

Proposition 6. For the complete–{s} PICOD(t) with m = 2s + t messages, the optimal code length is

`∗ = s+ t. Specifically, given a valid code, there always exists a user that can decode s+ t messages.

The fundamental part of the proof idea is similar to the layer counting converse used in Theorem 2:

we show that under the assumption that all users can decode at least one message outside their side

information, there must exist a user that can mimic the other users thus decodes `∗ messages regardless

of the desired messages of all the users. Note that in the complete–S PICOD(t) where |S| = 1, only one

layer exists. Thus by the constructive method in Theorem 2, we only obtain the trivial bound `∗ ≥ 1.

However, we really need is not to find the specific user that can decode s + t messages, but only show

its existence. So we turn to an existence proof. Specifically, for all possible desired message choices

for the users, given a valid code that satisfies all users, we show that there exists a user that can decode

s + t messages. We start by introducing the two main ingredients needed in the converse proof of

Proposition 6.

3.4.1 Converse Main Ingredient 1: Block Cover

So far we used the idea of decoding chain to show that a user can decode more than its desired

messages. The decoding chain depends on the choice of desired messages at the users. Once the desired

messages change, the decoding chain may change as well. Here we are only interested in the existence
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of such a decoding chain. In other words, we show the existence of the decoding chain of certain length

regardless of the choice of desired messages at the users.

Example 1. Consider the complete–{1} PICOD(1), i.e., s = t = 1, m = 2s + 1 = 3, n =
(
m
s

)
= 3

and `? = s + 1 = 2. Say that u1 knows A1 = {1} and desires d1 = 2; u2 knows A2 = {2} and desires

d2 = 1; and u3 knows A3 = {3} and desires d3 = 1. By sending w1, users u2 and u3 are satisfied;

by sending w2, user u1 is satisfied. By the “decoding chain” argument, user u3 is able to mimic u1

(because he decodes the message that is the side information set of user u1) and therefore can also

decode w2; on the contrary, users u2 and u3 can not decode any more messages other than the desired

one. However, another choice of desired messages can be d1 = 3, d2 = 1, d3 = 1. By this choice of

desired message, users u1 and user u3 can only decode their desired messages while user u2 can mimic

user u1 thus is able to decode two messages.

As in Example 1 shows for t = 1, for a specific user, there is always a choice of desired messages

such that this user cannot decode any message other the desired one. However, we also note that for any

choice of desired message, there always exists one user that can decode one more message. Then in the

critical case setting, we shall prove that regardless of the choice of desired messages, there always exists

a user who can decode s + t messages. Since there are
(
s+t
t

)(2s+ts ) (doubly exponential in s) possible

choices of desired messages, finding explicitly such a user for every case is intractable. Therefore, our

converse is an existence proof of such a user. The main idea of the existence proof is as follows.

Instead of checking all possible different possible choices of desired messages at a user, we reason

on the size of the decoding chain for that user. By condition every user can decode t messages outside

its side information. Some users may be able to decode more by mimicking other users. After receiving
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a valid code, every user eventually knows at least s + t messages, including the s messages in its side

information set. Let user uj, with side information Aj, eventually can decode the messages indexed by

Bj ⊇ Dj. One can think of the set Cj := Aj ∪ Bj as a “block” that “covers” the side information set

Aj, by which we mean that the set Cj is a proper superset of Aj. User uj can also mimic any users uk

whose side information Ak ⊂ Cj. Therefore the desired message set for all the users uk whose side

information Ak ⊂ Cj is Dk ⊂ Cj. For any subset of users we can find a collection C such that, for

every side information set Aj, there is a cover Cj ∈ C such that Cj = Aj ∪ Bj where Bj is the set of

the messages that user uj can decode. By this definition, when consider all
(
m
s

)
users, this collection C

satisfies the following conditions:

1. For every s-element subset of [m], there exists at least one C ∈ C that contains this subset.

2. s < |C| ≤ m for all C ∈ C.

3. For all P ⊆ [|C|], we have | ∩i∈P Ci| 6= s.

1 and 2 follow by the definition of block cover C. While 3 holds because if we have | ∩i∈P Ci| = s

for some P ⊆ [|C|], we have some j ∈ P and Ai = ∩i∈PCi such that Ai ⊂ Cj and Di * Cj, which

contradicts to the definition of C.

This “block cover” idea was inspired by the called generalized Steiner system in combinatorial

design [33]. An S(s, ∗,m) generalized Steiner system consists of blocks/sets such that each subset

of size s from the ground set of size m is covered exactly once. In a critical PICOD(t) setting, the

collection of “blocks” C also cover all s-element subsets of [m] (i.e., all users’ side information sets). But

our problem is not exactly a generalized Steiner system because an s-element subset may be contained
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in more than one block as long as it is not an exact intersection of the blocks. Therefore, our “block

cover” can be seen as a relaxed generalized Steiner system.

For the “critical case” we aim to show that there is a user who can decode s + t messages (as in

Example 1). We argue it by contradiction. Assume no user can decode s + t messages, that is, every

user can decode at least t and at most s + t − 1 messages by mimicking other users. In terms of block

cover, this indicates that we can have a block cover C with maxC∈C{|C|} < m. Our argument of showing

that there always exists one user that can decode t + s messages for the “critical case” is equivalent to

showing that a “block cover” with size at most 2s+ t− 1 cannot exist. Our combinatorial proof shows

that the existence of a choice of desired messages such that s+ t ≤ |Cj| ≤ 2s+ t− 1, ∀j ∈ [|C|] leads to

the existence of a user that can decode t+ s messages, thus max |Cj| = 2s+ t, which is a contradiction.

Therefore must exists a user whose block cover has sizem = 2s+ t.

3.4.2 Converse Main Ingredient 2: Maximum Acyclic Induced Subgraph (MAIS) Bound

Recall that for a PICOD(t), each user chooses t desired messages outside its side information set.

The indices of the desired messages for all users users is denoted as D = {D1, . . . , Dn}, where n =(
2s+t
s

)
. OnceD is chosen, the PICOD(t) reduces to a multi-cast IC where each user requests tmessages.

We can make one user to be t users with the same side information but each has a distinct desired

message. The IC with n users becomes a multi-cast IC with tn users, each requesting one message.

Similarly to the classic all-unicast IC, we can represent the side information sets and the desired

messages in a digraph [6]. Pick a subset U ⊆ [tn] of users who desire different messages and create a

digraph G(U) as follows. The vertices V(G) ⊆W represent the desired messages by the users in U. A

directed arc (wi, wj) ∈ E(G) exists if and only if the user who desireswi haswj in its side information
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set. G is called acyclic if it does not contain a directed cycle. The size of G is the number of the vertices

in, i.e. |V(G)| = |U|. For the all-unicast IC, the maximum size ofU such that the corresponding digraph

G(U) is acyclic serves as a converse bound on the optimal code length. This converse is known as

“maximum acyclic induced subgraph” (MAIS) bound [6]. For the PICOD(t), the same MAIS bound

exists, which is the maximum size of the acyclic digraph G(U) created by the choice of users U ⊆ [tn]

such that they all desire different messages. Since MAIS depends on the desired message set D, we

denote its size as |MAIS(D)|.

For the PICOD(t), as for multi-cast IC, the size of MAIS is a converse bound on ` [6], i.e., ` ≥

|MAIS(D)|. Finding MAIS fpr the all-unicast IC is an NP-hard problem [34] in general. Finding MAIS

for the multi-cast IC will be more difficult since one needs to check every possible choice of users with

distinct desired messages. For the PICOD(t) problem it is even more complicated since each choice

of D in the PICOD(t) corresponds to a multi-cast IC. To find the MAIS for the PICOD(t) we need

to find the best D in terms of code length. Finding the MAIS for the PICOD(t) appears intractable.

Therefore, our existence proof does not find the exact MAIS for the PICOD(t), but only its size, i.e.,

maxD |MAIS(D)|. Towards this goal, we have the following observations on MAIS for the “critical

case”.

Claim 1. For the complete–{s} PICOD(t) withm = 2s+ t messages, |MAIS(D)| = s+ t for certain D

if and only if there exists a user who decodes s+ t messages.

Proof of Claim 1. On the one hand, if |MAIS(D)| = s + t, there are s + t users who desire different

messages. These users form an acyclic induced subgraph. We can obtain a decoding chain from the

acyclic induced subgraph, in which the first user has side information of all s messages that are not
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desired by these s + t users. The first user, by decoding its desired message, can mimic all the other

users and eventually decode s+ t messages.

On the other hand, if there is one user who can decode s + t messages, there are s + t − 1 users

that can be mimicked by it with different desired messages. These s + t users form an acyclic induced

subgraph of size s+ t. Then |MAIS(D)| = s+ t.

Claim 2. For the complete–{s} PICOD(t) with m = 2s + t messages, if there exists a D such that

|MAIS(D)| < s+ t, there exists a D′ where |MAIS(D′)| = s+ t− 1.

Proof of Claim 2. Let the choice of desired message for the complete–{s} PICOD(t) to beD = {D1, . . . , Dn}.

Consider it as a PICOD(1) with tn users. Let there be an order of the m messages, starting from 1 to

m. For user uj, we let the index of the desired message dj represents the order of the message in the set

of messages not in its side information, instead of the whole message set. Therefore, dj ∈ [s+ t], for all

j ∈ [tn]. We use D̂ = {d1, d2, . . . , dtn} as the representation of D, where di < di+ 1 for i ∈ [1 : t− 1]

(mod t). We can see that |MAIS(D)| = |MAIS(D̂)|.

Let D̂1 = {d11, . . . , d
1
tn} = {1, 2, . . . , t}. For the choice of desired message D̂1, the original

PICOD(t) becomes a complete–[0 : s] PICOD(t) with m = s + t, therefore |MAIS(D̂1)| = s + t.

Assume there is D̂k with |MAIS(D̂k)| ≤ s + t − 1. D̂k can be obtained from D̂1 by checking each dji

using the following rules:

1. Start from d11. For i ∈ [tn] and j ∈ [k], if dji = d
k
i , skip dji and move to dji+1.

2. Else, let dj+1i to be dki , i.e., create D̂j+1 = {d
j+1
1 , . . . , d

j+1
tn } such that dj+1p = djp for all p 6= i and

d
j+1
i = dki . Then move to dj+1i+1.
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3. Iterate until the last.

The iteration eventually obtains D̂k. By these steps we create an order of desired messages D̂1, D̂2, . . . , D̂k.

In this order, the adjacent D̂j, D̂j+1, j ∈ [k − 1] differ only in one desired message index, i.e., all users

but one desire the same messages.

Recall that |MAIS(D̂i)| is the maximum size of the subgraph by choosing some users Ui in the

system such that the subgraph is acyclic. From D̂i to D̂i+1 only one user changes its desired message.

Only one vertex changes in the digraph representation. As a result, for any induced acyclic subgraph,

at most one vertex changes. Therefore the size of the maximum acyclic subgraph is changed by at most

1. We have |MAIS(Di+1)| ∈ [MAIS(Di) − 1 : MAIS(Di) + 1], i.e., the MAIS bounds of two adjacent

choice of desired messages in the order differ by at most one. Since we have |MAIS(D̂1)| = s + t and

|MAIS(D̂k)| ≤ s+ t− 1, there exists D̂′ such that |MAIS(D̂′)| = s+ t− 1, i.e., we have |MAIS(D′)| =

s+ t− 1.

3.4.3 Proof of Proposition 6

Our proof is by contradiction. Specifically, we prove that under the assumption that there exists D′

such that |MAIS(D′)| = s + t − 1, given a valid code there must exist one user that can decode s + t

messages. This contradicts the Claim 1. Therefore D′ does not exist, which implies that there must

exists one user that can decode s + t messages and |MAIS(D)| = s + t for all D. This proves that for

the critical case where S = {s} andm = 2s+ t, the optimal number of transmission is `∗ = s+ t.

Specifically, the assumption that |MAIS(D′)| = s+ t− 1 implies that one can find a set of s+ t− 1

users, denoted by V , who desire different messages and with a strict partial order on V given by: for

distinct i, j ∈ V , if i < j then dj /∈ Ai. Without loss of generality, let the desired messages by the users
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V be [s+ 2 : 2s+ t]. It is easy to see (by the definition of MAIS) that with side information [s+ 1], one

is able to decode all the remaining messages in [s+ 2 : 2s+ t]. Consider the following s+ 1 users: for

i ∈ [s+ 1] user ui has side information Ai = [s+ 1] \ {i}. We have two cases.

Case a)

Assume that for some k ∈ [s+1] we have Bk∩ [s+1] = [s+1]\Ak (recall Bk is the set of messages

that user uk can decode and Ak its side information). Since this user knows all messages W[s+1], it can

decode all the remaining messages W[s+2:2s+t]. Eventually this user decodes s + t messages, therefore

Ck = [2s+ t].

Case b)

For every user ui, i ∈ [s+ 1], we have Bi ⊆ [s+ 2 : 2s+ t]. We have the following claims:

Claim 3. For the setting in Case b, for any P ⊆ [s+ 1], we have | ∩i∈P Bi| /∈ [|P|− 1 : |P|+ t− 2].

Proof of Claim 3. We assume that Bi ⊆ [s + 2 : 2s + t]. Note Bi is the set of indices of the messages

decoded by user ui; by the “decoding chain,” for any user uk with Ak ⊂ Ci = Ai ∪ Bi, we have

Dk ⊂ Ci. By definition of “decoding chain,” we have | ∩i∈P Ci| /∈ [s : s + t − 1] for any P ⊆ [s + 1].

This is so because if | ∩i∈P Ci| ∈ [s : s + t − 1], we have Ak ⊆ ∩i∈PCi for some k ∈ [n]. Then

(Dk ∪ Ak) ⊂ Ci, ∀i ∈ P since all users indexed by P can mimic user uk. However, |Bk ∪ Ak| ≥ s + t

since user uk can decode at least tmessages outside its side information. This implies |∩i∈PCi| ≥ s+t.

While we have | ∩i∈P Ci| ≤ s+ t− 1. We have a contradiction.

Therefore | ∩i∈P Ci| /∈ [s : s + t − 1] for all P ⊆ [s + 1]. Note that | ∩i∈P Ai| = s + 1 − |P| and

Ai ∩ Bi = ∅, thus we have | ∩i∈P Bi| /∈ [|P|− 1 : |P|+ t− 2].
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Claim 4. For s + 1 arbitrary subsets Bi from a ground set of size s, there exists a set P ⊆ [s + 1] such

that | ∩i∈P Bi| = |P|− 1.

To prove Claim 4 we need the following Lemma.

Lemma 3. Let B1, B2, . . . , Bx are non-empty subsets of set {v1, v2, . . . , vy}, for some positive integers

x, y. Let Cj be the collection of subsets that contain vj, i.e., vj ∈ Bi if and only if i ∈ Cj. Let cj = |Cj|.

There always exists a pair (i, j) such that cj
|Bi|
≥ x

y and vj ∈ Bi.

The proof can be found at the end of this chapter in Section 3.8.

Proof of Claim 4. When |Bi| = 0 for some i, take P = {i}, we have | ∩i∈P Bi| = 0 = |P|− 1. Claim 4 is

proven. Therefore we just need to consider the case where all Bi are non-empty.

For the initial case s = 1 the statement in Claim 4 is true. It can be easily seen since B1 = B2 = {1}.

Take P = [2] we have | ∩i∈[2] Bi| = 1 = 2− 1.

Assume the statement in Claim 4 is true for all s ≤ t − 1. We construct a P such that | ∩i∈P Bi| =

|P|−1 for s = t. In Lemma 3, substitute x by s+1 and y by s, we have a pair (i, j) such that j ∈ Bi and

cj
|Bi|
≥ s+1

s , where cj = |Cj| and Cj ⊆ [s + 1] is the collection of subsets that contain j. By reordering

the label, without loss of generality, let i = 1 and Bi = B1 = [j]. Since cj
|B1|
≥ s+1

s > 1, we have cj > j,

|Cj \ {1}| > j − 1. Consider B′i′ := Bi′ ∩ [j − 1], i′ ∈ Cj \ {1} where B′i′ are subsets of [j − 1]. Since

j− 1 < s, by the inductive hypothesis there exists P′ such that | ∩i′∈P′ B′i′ | = |P′|− 1. Let P = P′ ∪ {1}.

Note that j ∈ Bq for all q ∈ P and k /∈ ∩q∈PBq for all k ∈ [j + 1 : s]. We have ∩q∈PBq = ∩j′P′ ∪ {j}.

Then | ∩q∈P Bq| = |P′|− 1+ 1 = |P|− 1 as |P| = |P′|+ 1.

Therefore we can always find a P such that | ∩i∈P Bi| = |P|− 1 for all positive integer s.
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In Case b Bi, i ∈ [s + 1] are non-empty subsets of a ground set [s + 2 : 2s + t]. By Claim 4 it

is guaranteed that there is a P such that |[s + 2 : 2s + 1] ∩ (∩i∈PBi)| = |P| − 1. Therefore we have

| ∩i∈P Bi| ∈ [|P| − 1 : |P| + t − 2] for some P ⊆ [s + 1]. However this contradicts Claims 3. Case b is

thus impossible.

Therefore only Case a is possible. It shows the existence of a user whose block cover is [m] =

[2s + t]. This user can decode s + t messages. It contradicts the assumption that the MAIS bound is

|MAIS(D′)| = 2s + t − 1. Overall, this shows that for all possible choices of D one must have the

MAIS bound |MAIS(D)| = 2s+t, which implies `∗ ≥ s+t. This, with the achievability in Section 3.2,

concludes the proof of Proposition 6.

3.4.4 Complete–S where |S| = 1

With Proposition 6, we can prove a more general case.

Proposition 7. For the complete–{s} PICOD(t), the optimal code length is `∗ = m−min{s+ t,m−s}.

Proof of Proposition 7. Proposition 6 solves the case where S = {s} and m = 2s+ t. Therefore, in the

following we study the remaining two cases: m < 2s+ t andm > 2s+ t.

3.4.4.1 Complete–{s} PICOD(t) wherem < 2s+ t

Consider the complete–{s} PICOD(t) with m < 2s + t and an integer α ≤ s. The n =
(
m
s

)
users

in the system can be split into two categories: users ui with [α] ⊂ Ai, and the other users. The users

in the first category do not decode any message in [α] (since they have all these messages in their side

information set); these users together form a complete–{s− α} PICOD(t) withm− α messages. Since

this complete–{s − α} PICOD(t) is a subset of the original complete–{s} PICOD, its optimal number
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of transmissions is a lower bound on the number of transmissions in the original system. If we take

m − α = 2(s − α) + t ⇐⇒ α = 2s + t − m > 0 then, by Proposition 6, the optimal number of

transmissions for the complete–{s− α} PICOD(t) withm− α messages is (s− α) + t = m− s.

Therefore the original complete–{s} PICOD(t) requires at least m − s transmissions, i.e., `∗ ≥

m− s = min{m− s, s+ t}.

3.4.4.2 Complete–{s} PICOD(t) wherem > 2s+ 1

The proof is by contradiction.

Assume there exists aD′ such that |MAIS(D′)| = s+ t− 1 and, without loss of generality, that the

maximum acyclic induced subgraph is formed by users with desired messages [s+ t− 1]. Specifically,

we have users ui, i ∈ [s+ t− 1] such that di = i and dj /∈ Ai for any j, i ∈ [s], j > i (by the definition

of MAIS and its induced partial order).

LetU′ index the users whose side information is a subset of [s+t : m], i.e., i ∈ U′ ifAi ⊂ [s+t : m].

Apparently 1 ∈ U′. We distinguish two cases.

Case c) If there is a user ut ∈ U′ with desired message dt ∈ [s + t : m], we have dj /∈ At for

all j ∈ [s]. Thus users ut, u1, u2, . . . , us+t−1 form an acyclic induced subgraph of length s + t. This

contradicts to the assumption that |MAIS(D′)| = s+ t− 1.

Case d) For all t ∈ U′ we have dt ∈ [s]. By a similar reasoning as in proof of Proposition 6, we can

show that there exists a user who can decode s+ tmessages. This again contradicts the assumption that

|MAIS(D)| = s+ t− 1.

By combining the two above cases, we conclude that |MAIS(D)| > s. By Claims 1 and 2 we thus

have `∗ ≥ s+ 1.
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The achievability follows directly the schemes in Proposition 1. Since |S| = 1, no partition is

needed.

3.5 Complete–S PICOD(t) where S is consecutive: Proof of Theorem 3

With Proposition 7, we are ready to prove Theorem 3 in full generality. We consider the following

three cases.

3.5.1 Case smax ≤ dm/2e− 1: `∗ = smax + 1

Drop all the users except those with side information set of size smax, thereby obtaining a compete-

{smax} PICOD(t) with m messages. For this system the optimal number of transmissions is min{m −

smax, smax + 1} = smax + 1 (because smax + 1 ≤ dm/2e in this case), which is a lower bound on the

number of transmissions in the original system. By Proposition 1, we have `∗ = smax + 1.

3.5.2 Case smin ≥ bm/2c: `∗ = m− smin

As for the case in Section 3.5.1, drop all the users except those with side information of size smin,

thereby obtaining a compete-{smin} PICOD(t) with m messages and optimal number of transmissions

is min{m − smin, smin + 1} = m − smin (because smin ≥ bm/2c in this case). This lower bound on

the number of transmissions in the original systems is attained by our second type of achievability in

Proposition 1.

3.5.3 Case smin ≤ dm/2e− 1 ≤ bm/2c ≤ smax

Define δ := min{smax − dm−t
2 e, bm−t

2 − sminc}, drop all users except those with side information of

size s ∈ [bm−t
2 c − δ : dm−t

2 e + δ], thereby obtaining a complete–[bm−t
2 c − δ : dm−t

2 e + δ] PICOD(t)

with m messages. Create dummy messages W[m+1:m′], where m′ = m + 2δ + bm/2c − dm/2e + 1.
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Dummy messages will not be desired by any user. To every user, with side information of size s, who

was not dropped and has size information set of size s ∈ [bm−t
2 c − δ : dm−t

2 e + δ] give, as extra side

information, an (dm−t
2 e + δ − s)-subset of [m + 1 : m′]; each such user generates

(2δ+bm/2c−dm/2e+1
dm−t
2
e+δ−s

)
new users. The new users created by this procedure form a complete–{dm−t

2 e + δ} PICOD(t) with m′

messages, whose optimal number of transmissions is

min
{
dm− t

2
e+ δ+ t,m′ − (dm− t

2
e+ δ)

}
= min

{
dm− t

2
e+ δ+ t,m+ 2δ+ bm/2c− dm/2e+ 1− dm− t

2
e− δ

}
= δ+ t+ min

{
dm− t

2
e, bm− t

2
c+ t+ bm/2c− dm/2e+ 1

}
= δ+ t+ dm− t

2
e

= min
{
bm− t

2
c− smin, smax − d

m− t

2
e
}
+ t+ dm− t

2
e

= min {smax + t,m− smin}

= `′.

Although the new system contains more users, any valid code for the original system works for the new

one. Therefore the optimal code length `′ is a lower bound on the optimal code length for the original

system. This lower bound can be attained by the scheme described in Proposition 1.

This concludes Theorem 3.
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3.6 Some other complete–S PICOD(t) problems

Note that in Section 3.4.4, the proof starts with dropping some users in the system. This shows

that there exists “non-critical” users that do not affect the optimal code length. Therefore, by adding

non-critical users, we can obtain a “non-consecutive complete–S” PICOD(t) where the proof used for

Theorem 3 can still provide a tight converse.

3.6.1 Proof of Proposition 2

The converse depends only on the users with side information of size smax. Therefore adding any

users with smaller size of side information does not change the converse. The optimal transmission that

satisfies the complete–{smax} PICOD(t), i.e., transmit smax + t messages one at a time, also satisfies all

the users with smaller size of side information.

3.6.2 Proof of Proposition 3

The converse depends only on the users with side information of size smin. Therefore adding any

users with larger size of side information does not change the converse. The optimal transmission that

satisfies the complete–{smin} PICOD(t), i.e., transmitm−smin linearly independent linear combinations

of all messages, also satisfies all the users with larger size of side information.

3.6.3 Proof of Proposition 4

The converse depends only on the users with side information of size in [bm−t
2 c − δ : dm−t

2 e + δ].

Therefore adding any users with either larger or smaller size of side information does not change the

converse. The optimal transmission that satisfies the complete–[bm−t
2 c− δ : dm−t

2 e+ δ] PICOD(t) also

satisfies all the users with larger size of side information. That is, either transmit smax + t messages one

at a time, orm− smin linearly independent linear combinations of all messages.
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3.6.4 Proof of Proposition 5

Proposition 5 states that the achievable scheme in Proposition 1 is information theoretically optimal

for the complete–S PICOD(t) with m ≤ 5. The main idea behind these proofs follows the one in

converse proof of Theorem 2: construct a decoding chain by providing proper messages to the user as

genie, in a way that the user can mimic other users and decode the desired number of messages.

Table Table I lists the optimal code length `∗ of all complete–S PICOD(t) instances that are not

covered by Theorem 2 and Propositions 2, 3, 4.

TABLE I

COMPLETE–S PICOD(t) THAT ARE NOT COVERED BY THEOREM 2 AND PROPOSITIONS 2,
3, 4. ©IEEE 2019.

m = 4
S = {0, 2} t = 1, 2 `∗ = t+ 2
S = {1, 3} t = 1 `∗ = 3

m = 5
S = {0, 3} t = 1, 2 `∗ = t+ 2
S = {1, 4} t = 1 `∗ = 3
S = {1, 3} t = 1, 2 `∗ = 4
S = {0, 1, 3} t = 1, 2 `∗ = t+ 3
S = {1, 3, 4} t = 1 `∗ = 4
S = {0, 2, 3} t = 1, 2 `∗ = t+ 3
S = {0, 2, 4} t = 1 `∗ = 4
S = {1, 2, 4} t = 1 `∗ = 4

Unfortunately, the converse proofs are based on a “case-by-case” reasoning, i.e., constructively find

a user that can decode a certain number of messages. They can not be straightforwardly extended to



63

the complete–S PICOD(t) for general m. Here we show proofs of two cases. The other cases can be

proved using the similar methods.

Corollary 1. For the complete–S PICOD(1) where S = {1, 3} and m = 5, the optimal code has length

`∗ = 4.

Proof of Corollary 1. We show that there exists one user with a message in its side information set who

can decode the remaining 4 messages.

By Proposition 7 we claim there exists a user u1 with side information set of size 1, say A1 = {1},

can decode 2 messages, say B1 ⊇ {2, 3}. User u1 thus can mimic user u2 with side information A2 =

{1, 2, 3} and decode its desired message. Therefore user u1 can decode at least 3 messages, |B1| ≥ 3.

Denote the last message that has not been decoded by user u1 as w5. Now, if w5 is desired by some

users, i.e., we have a user u3 with d3 = 5, user u1 can mimic user u3 and decode w5 since A3 ⊂ [4].

Therefore user u1 can decode 4 messages and `∗ ≥ 4

Otherwise,w5 is not desired by any users in the system. Since the message that is not desired by any

users does not have any effects, by deleting it, the system becomes the complete–{0, 1, 2, 3} PICOD(1)

withm = 4. By Theorem 2 we have the user with A = {5} can decode 4 messages and `∗ ≥ 4.

We apply the achievability for the complete–{1, 2, 3} PICOD(1). This achievability works since

{1, 3} ⊂ {1, 2, 3}. By Theorem 3 we have `∗ ≤ 4. This achievability is optimal.

Corollary 2. For the complete–S PICOD(1) problem where S = {0, 2, 4} and m = 5, the optimal code

has length `∗ = 4.

The following lemma, which is a refined version of Proposition 7, is used in the proof of Corollary 2.
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Lemma 4. For a complete–{s} PICOD(t), let A′ ⊂ [m], |A′| ≤ s, UA′ be the group of users who have

A′ in their side information, i.e., ui ∈ UA′ if and only if A′ ⊆ Ai. For any A′, there exists a user inUA′

that can decode at least min{m − s, s + t − |A′|} messages. Note that it recovers Proposition 7 when

A′ = ∅.

Proof of Lemma 4. The users in UA′ alone can be seen as the users in a new complete–S′ PICOD(t),

where S′ = {s − |A′|}, m′ = m − |A′|. By Proposition 7 we have that there exists a user in this system

that can decode min{s′ + t,m′ − s′} = min{s + t − |A′|,m − s} messages. The above argument holds

for all A′ ⊂ [m], |A′| ≤ s.

Proof of Corollary 2. We show that by giving one message as a genie, the user with no side information

can decode the other 4 messages.

Since every user can decode one message, user u1 with A1 = ∅ can decode message wd1 . By

Lemma 4, we see that there exists a user u2 ∈ U{d1} that can decode 2 messages, where U{d1} is the

group of users who have side information sets of size 2 and wd1 in their side information sets. Without

loss of generality let A2 = {d1, 2} and the two messages that u2 can decode be w3, w4, d1 /∈ {2, 3, 4}.

Therefore, giving message w2 to user u1 allows it to decode w3, w4. Also, there exists a user with side

information {d1, 2, 3, 4} and decodes wd5 /∈ {d1, 2, 3, 4}. So user u1 can decode wd5 as well. Overall,

user u1 can decode 4 messages with the proper genie w2. The code length is therefore lower bounded

by `∗ ≥ 4.

For the achievability, we split the users into two groups: S{0,2} where users have side information of

size 0 or 2; S{4} where users have side information of size 4. By Proposition 2 we can satisfy all users
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in S{0,2} with 3 transmission; by Proposition 7 we can satisfy all users in S{4} with one transmission. In

total we use 4 transmissions to satisfy all users.

Remark 7. In fact the existence proof based on block cover used for Proposition 6 is also workable for

Proposition 5 as well. For instance, for the complete–{1, 3} PICOD(1), we can define the block cover

C = {Ci, i ∈ [5]} for each user with side information Ai = {i}, i ∈ [5]. The block cover satisfies

1. i ∈ Ci for all i ∈ [5].

2. ∀P ⊆ [5], | ∩i∈P Ci| 6= 1, 3.

By a similar reasoning used in the proof of Proposition 6, we can show that these two conditions lead

to the block cover with maxC |Ci| = 5, meaning that there always exists one user that can decode 4

messages. However, this existence proof can not be generalized as an universal converse proof for

all cases. It is also more complex compared to the constructive proofs we showed in Corollary 1 and

Corollary 2.

3.7 Proof of Theorem 4

In this section, we prove a tight converse bound on `∗ for the PICOD(1) whose network topology

hypergraph is circular-arc. We start by introducing some graph theory terminologies.

3.7.1 Graph Preliminary

Let H = (V, E) denote a hypergraph with vertex set V and edge set E , where an edge E ∈ E is

a subset of V , i.e., E ⊆ V . The hypergraph is called r-uniform if all edges have cardinality r, i.e.,

|E| = r, ∀E ∈ E . For R ⊆ [|V |], the hypergraph is called R-uniform if all edges have cardinality of

some r ∈ R, i.e., |E| ∈ R, ∀E ∈ E . The hypergraph is called complete r-uniform if all edges with
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cardinality r exit, i.e., for all E such that |E| = r, E ⊆ V , we have E ∈ E . The hypergraph is called

complete R-uniform if all edges with cardinality r ∈ R exist. The dual hypergraph H∗ = (V∗, E∗) of H

is a hypergraph where the vertices and edges are interchanged, i.e., E∗ = V , V∗ = E .

The degree of a vertex v ∈ V is the number of its incident edges, i.e., δ(v) = |{E : v ∈ E, E ∈ E}|.

The hypergraph is called k-regular if the degree of all vertices is k. A factor of H is a spanning edge

induced subgraph of H, i.e., an edge induced subgraph of H with the same vertex set of V . A k-factor

is a factor which is k-regular. A hypergraph H is called an circular-arc hypergraph if there exists an

ordering of the vertices v1, v2, . . . , vn such that if vi, vj, i ≤ j, then the vq for either all i ≤ q ≤ j or all

q ≤ i and a ≥ j are incident to an edge E,

For a PICOD(t), its network topology hypergraph is a hypergraph H = (V, E) such that: i) V =

{u1, . . . , un}, i.e., vertices represent the users; ii) E = {E1, . . . , Em}, i.e., edges represent the messages;

iii) ui ∈ Ej if wj /∈ Ai, i.e., a vertex is incident to an edge if the user does not have the message in

the side information. This definition of network topology hypergraph is a generalization of the network

topology graph in [35].

Note that the network topology hypergraph is defined solely on user set U, message setW, and side

information set A. For the IC, the network topology hypergraph does not uniquely define an instance

of the problem, since it does not contain the information about desired messages of the users. However,

the network topology hypergraph uniquely defines a PICOD(t) for a given t, due to the property that

the PICOD(t) does not specify the desired messages for the users.
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3.7.2 On the Optimality of a Single Transmission

We give the necessary and sufficient condition on the network topology hypergraph of a PICOD(1)

problem for which one transmission is optimal. This result applies to all PICOD(1) instances, thus

serves as a general converse bound for the PICOD(1).

Proposition 8. A PICOD(1) has `∗ = 1 if and only if its network topology hypergraph has a 1-factor.

Otherwise `∗ ≥ 2.

Proof of Proposition 8. Achievability: The network topology hypergraph H has a 1-factor if it has an

edge induced sub-hypergraph whose vertices are the same as the vertices of H and all have degree one.

In other words, in this induced sub-hypergraph, all vertices are adjacent to one and only one edge. Since

H is the network topology hypergraph , its vertices represent users and edges represent messages. A

vertex is adjacent to an edge if and only if the user does not have that message in its side information.

For the PICOD(1), that message can be a desired message by the incident users. Therefore, among all

the messages corresponding to the edges in the 1-factor, every user has one and only one message that

is not in its side information. Transmitting the sum of all these messages satisfies all users. By this

transmission we achieve `∗ = 1.

Converse: We aim to show that if the network topology hypergraph does not have a 1-factor hyper-

graph, then we can create a user that can decode two messages by any valid code, thus two transmissions

are needed. For any valid code, consider the sub-hypergraph induced by the edges corresponding to all

the desired messages by all users, i.e., the edge induced sub-hypergraph of H where the edges corre-

spond to the messages that are decoded by at least one user. This sub-hypergraph is always a factor, i.e.,

spanning sub-hypergraph, since all users can decode at least one message. Assume no 1-factor exists
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in H. There exists a vertex whose degree is at least 2 in the sub-hypergraph. In other word, there is

a user with an undesired message that is not in its side information. This message is desired by some

other users. Let this user to be u1 and the undesired message to be wd2 . That is, user u1 desires wd1 ,

user u2 desires message wd2 . By the condition that 1-factor does not exist, we have d2 /∈ A1 and

A1 ⊆ [m] \ {d1, d2}. Therefore, we can construct a user u′ with A′ = [m] \ {d1, d2}. Given any valid

code, user u′ can mimic user u1 then user u2, thus can decode wd1 , wd2 . By Lemma 2, we conclude

that `∗ ≥ 2.

3.7.3 Proof of Theorem 4

We show a case where the converse proposed in Proposition 8 is tight. To do that we propose an

achievable scheme based on the properties of circular-arc hypergraph.

First we show the following claim, which will be used in the proof.

Claim 5. For a circular-arc hypergraph H without isolated vertex and the vertices are in a cyclic order

{v1, v2, . . . , vn}, if there exist two edges Ei = {vi1 , . . . , vip}, Ej = {vj1 , . . . , vjq}, such that

1. ip + 1 < j1,

2. every edge in E that contains vj1 contains vip ,

then there exists an edge Ek ∈ E : {vip+1, . . . , vj1−1} ⊆ Ek.

Proof of Claim 5. SinceH does not have any isolated vertices, there exists Ek ∈ E such that vj1−1 ∈ Ek.

By the condition vip ∈ Ek, the property of circular-arc hypergraph that if vip and vj1−1 are contained in

Ek, all the vertices between are contained in Ek as well. We have {vip+1, . . . , vj1−1} ⊆ Ek.
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u2
<latexit sha1_base64="uCxdJhY5rWI8T1tfXcl4QUEZCu4=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKUI9FLx4r2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJaPZpqgH9GR5CFn1FjpIR3UBuWKW3UXIOvEy0kFcjQH5a/+MGZphNIwQbXueW5i/Iwqw5nAWamfakwom9AR9iyVNELtZ4tTZ+TCKkMSxsqWNGSh/p7IaKT1NApsZ0TNWK96c/E/r5ea8NrPuExSg5ItF4WpICYm87/JkCtkRkwtoUxxeythY6ooMzadkg3BW315nbRrVc+tevdXlcZNHkcRzuAcLsGDOjTgDprQAgYjeIZXeHOE8+K8Ox/L1oKTz5zCHzifPwiijZ4=</latexit><latexit sha1_base64="uCxdJhY5rWI8T1tfXcl4QUEZCu4=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKUI9FLx4r2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJaPZpqgH9GR5CFn1FjpIR3UBuWKW3UXIOvEy0kFcjQH5a/+MGZphNIwQbXueW5i/Iwqw5nAWamfakwom9AR9iyVNELtZ4tTZ+TCKkMSxsqWNGSh/p7IaKT1NApsZ0TNWK96c/E/r5ea8NrPuExSg5ItF4WpICYm87/JkCtkRkwtoUxxeythY6ooMzadkg3BW315nbRrVc+tevdXlcZNHkcRzuAcLsGDOjTgDprQAgYjeIZXeHOE8+K8Ox/L1oKTz5zCHzifPwiijZ4=</latexit><latexit sha1_base64="uCxdJhY5rWI8T1tfXcl4QUEZCu4=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKUI9FLx4r2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJaPZpqgH9GR5CFn1FjpIR3UBuWKW3UXIOvEy0kFcjQH5a/+MGZphNIwQbXueW5i/Iwqw5nAWamfakwom9AR9iyVNELtZ4tTZ+TCKkMSxsqWNGSh/p7IaKT1NApsZ0TNWK96c/E/r5ea8NrPuExSg5ItF4WpICYm87/JkCtkRkwtoUxxeythY6ooMzadkg3BW315nbRrVc+tevdXlcZNHkcRzuAcLsGDOjTgDprQAgYjeIZXeHOE8+K8Ox/L1oKTz5zCHzifPwiijZ4=</latexit><latexit sha1_base64="uCxdJhY5rWI8T1tfXcl4QUEZCu4=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKUI9FLx4r2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJaPZpqgH9GR5CFn1FjpIR3UBuWKW3UXIOvEy0kFcjQH5a/+MGZphNIwQbXueW5i/Iwqw5nAWamfakwom9AR9iyVNELtZ4tTZ+TCKkMSxsqWNGSh/p7IaKT1NApsZ0TNWK96c/E/r5ea8NrPuExSg5ItF4WpICYm87/JkCtkRkwtoUxxeythY6ooMzadkg3BW315nbRrVc+tevdXlcZNHkcRzuAcLsGDOjTgDprQAgYjeIZXeHOE8+K8Ox/L1oKTz5zCHzifPwiijZ4=</latexit>

u3
<latexit sha1_base64="qKv9gLQ5kn8A2uUJD2fppqSC8j4=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0oMeiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilh7R/2S9X3Ko7B1klXk4qkKPRL3/1BjFLI66QSWpM13MT9DOqUTDJp6VeanhC2ZgOeddSRSNu/Gx+6pScWWVAwljbUkjm6u+JjEbGTKLAdkYUR2bZm4n/ed0Uw2s/EypJkSu2WBSmkmBMZn+TgdCcoZxYQpkW9lbCRlRThjadkg3BW355lbQuqp5b9e5rlfpNHkcRTuAUzsGDK6jDHTSgCQyG8Ayv8OZI58V5dz4WrQUnnzmGP3A+fwAKJo2f</latexit><latexit sha1_base64="qKv9gLQ5kn8A2uUJD2fppqSC8j4=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0oMeiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilh7R/2S9X3Ko7B1klXk4qkKPRL3/1BjFLI66QSWpM13MT9DOqUTDJp6VeanhC2ZgOeddSRSNu/Gx+6pScWWVAwljbUkjm6u+JjEbGTKLAdkYUR2bZm4n/ed0Uw2s/EypJkSu2WBSmkmBMZn+TgdCcoZxYQpkW9lbCRlRThjadkg3BW355lbQuqp5b9e5rlfpNHkcRTuAUzsGDK6jDHTSgCQyG8Ayv8OZI58V5dz4WrQUnnzmGP3A+fwAKJo2f</latexit><latexit sha1_base64="qKv9gLQ5kn8A2uUJD2fppqSC8j4=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0oMeiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilh7R/2S9X3Ko7B1klXk4qkKPRL3/1BjFLI66QSWpM13MT9DOqUTDJp6VeanhC2ZgOeddSRSNu/Gx+6pScWWVAwljbUkjm6u+JjEbGTKLAdkYUR2bZm4n/ed0Uw2s/EypJkSu2WBSmkmBMZn+TgdCcoZxYQpkW9lbCRlRThjadkg3BW355lbQuqp5b9e5rlfpNHkcRTuAUzsGDK6jDHTSgCQyG8Ayv8OZI58V5dz4WrQUnnzmGP3A+fwAKJo2f</latexit><latexit sha1_base64="qKv9gLQ5kn8A2uUJD2fppqSC8j4=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0oMeiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilh7R/2S9X3Ko7B1klXk4qkKPRL3/1BjFLI66QSWpM13MT9DOqUTDJp6VeanhC2ZgOeddSRSNu/Gx+6pScWWVAwljbUkjm6u+JjEbGTKLAdkYUR2bZm4n/ed0Uw2s/EypJkSu2WBSmkmBMZn+TgdCcoZxYQpkW9lbCRlRThjadkg3BW355lbQuqp5b9e5rlfpNHkcRTuAUzsGDK6jDHTSgCQyG8Ayv8OZI58V5dz4WrQUnnzmGP3A+fwAKJo2f</latexit>

uj�1
<latexit sha1_base64="A6glTauybCunull9WAVfbqLL560=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBiyWRgh6LXjxWsB/QhrLZbtq1m03YnQgl9Ed48aCIV3+PN/+N2zYHbX0w8Hhvhpl5QSKFQdf9dgpr6xubW8Xt0s7u3v5B+fCoZeJUM95ksYx1J6CGS6F4EwVK3kk0p1EgeTsY38789hPXRsTqAScJ9yM6VCIUjKKV2mk/e7zwpv1yxa26c5BV4uWkAjka/fJXbxCzNOIKmaTGdD03QT+jGgWTfFrqpYYnlI3pkHctVTTixs/m507JmVUGJIy1LYVkrv6eyGhkzCQKbGdEcWSWvZn4n9dNMbz2M6GSFLlii0VhKgnGZPY7GQjNGcqJJZRpYW8lbEQ1ZWgTKtkQvOWXV0nrsuq5Ve++Vqnf5HEU4QRO4Rw8uII63EEDmsBgDM/wCm9O4rw4787HorXg5DPH8AfO5w/+qY9U</latexit><latexit sha1_base64="A6glTauybCunull9WAVfbqLL560=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBiyWRgh6LXjxWsB/QhrLZbtq1m03YnQgl9Ed48aCIV3+PN/+N2zYHbX0w8Hhvhpl5QSKFQdf9dgpr6xubW8Xt0s7u3v5B+fCoZeJUM95ksYx1J6CGS6F4EwVK3kk0p1EgeTsY38789hPXRsTqAScJ9yM6VCIUjKKV2mk/e7zwpv1yxa26c5BV4uWkAjka/fJXbxCzNOIKmaTGdD03QT+jGgWTfFrqpYYnlI3pkHctVTTixs/m507JmVUGJIy1LYVkrv6eyGhkzCQKbGdEcWSWvZn4n9dNMbz2M6GSFLlii0VhKgnGZPY7GQjNGcqJJZRpYW8lbEQ1ZWgTKtkQvOWXV0nrsuq5Ve++Vqnf5HEU4QRO4Rw8uII63EEDmsBgDM/wCm9O4rw4787HorXg5DPH8AfO5w/+qY9U</latexit><latexit sha1_base64="A6glTauybCunull9WAVfbqLL560=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBiyWRgh6LXjxWsB/QhrLZbtq1m03YnQgl9Ed48aCIV3+PN/+N2zYHbX0w8Hhvhpl5QSKFQdf9dgpr6xubW8Xt0s7u3v5B+fCoZeJUM95ksYx1J6CGS6F4EwVK3kk0p1EgeTsY38789hPXRsTqAScJ9yM6VCIUjKKV2mk/e7zwpv1yxa26c5BV4uWkAjka/fJXbxCzNOIKmaTGdD03QT+jGgWTfFrqpYYnlI3pkHctVTTixs/m507JmVUGJIy1LYVkrv6eyGhkzCQKbGdEcWSWvZn4n9dNMbz2M6GSFLlii0VhKgnGZPY7GQjNGcqJJZRpYW8lbEQ1ZWgTKtkQvOWXV0nrsuq5Ve++Vqnf5HEU4QRO4Rw8uII63EEDmsBgDM/wCm9O4rw4787HorXg5DPH8AfO5w/+qY9U</latexit><latexit sha1_base64="A6glTauybCunull9WAVfbqLL560=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBiyWRgh6LXjxWsB/QhrLZbtq1m03YnQgl9Ed48aCIV3+PN/+N2zYHbX0w8Hhvhpl5QSKFQdf9dgpr6xubW8Xt0s7u3v5B+fCoZeJUM95ksYx1J6CGS6F4EwVK3kk0p1EgeTsY38789hPXRsTqAScJ9yM6VCIUjKKV2mk/e7zwpv1yxa26c5BV4uWkAjka/fJXbxCzNOIKmaTGdD03QT+jGgWTfFrqpYYnlI3pkHctVTTixs/m507JmVUGJIy1LYVkrv6eyGhkzCQKbGdEcWSWvZn4n9dNMbz2M6GSFLlii0VhKgnGZPY7GQjNGcqJJZRpYW8lbEQ1ZWgTKtkQvOWXV0nrsuq5Ve++Vqnf5HEU4QRO4Rw8uII63EEDmsBgDM/wCm9O4rw4787HorXg5DPH8AfO5w/+qY9U</latexit>

uj
<latexit sha1_base64="vosOYbAkYusExwFTo2/K22NZtJA=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cKpi20oWy2k3btZhN2N0IJ/Q1ePCji1R/kzX/jts1BWx8MPN6bYWZemAqujet+O6W19Y3NrfJ2ZWd3b/+genjU0kmmGPosEYnqhFSj4BJ9w43ATqqQxqHAdji+nfntJ1SaJ/LBTFIMYjqUPOKMGiv5WT9/nParNbfuzkFWiVeQGhRo9qtfvUHCshilYYJq3fXc1AQ5VYYzgdNKL9OYUjamQ+xaKmmMOsjnx07JmVUGJEqULWnIXP09kdNY60kc2s6YmpFe9mbif143M9F1kHOZZgYlWyyKMkFMQmafkwFXyIyYWEKZ4vZWwkZUUWZsPhUbgrf88ippXdQ9t+7dX9YaN0UcZTiBUzgHD66gAXfQBB8YcHiGV3hzpPPivDsfi9aSU8wcwx84nz8iWo7i</latexit><latexit sha1_base64="vosOYbAkYusExwFTo2/K22NZtJA=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cKpi20oWy2k3btZhN2N0IJ/Q1ePCji1R/kzX/jts1BWx8MPN6bYWZemAqujet+O6W19Y3NrfJ2ZWd3b/+genjU0kmmGPosEYnqhFSj4BJ9w43ATqqQxqHAdji+nfntJ1SaJ/LBTFIMYjqUPOKMGiv5WT9/nParNbfuzkFWiVeQGhRo9qtfvUHCshilYYJq3fXc1AQ5VYYzgdNKL9OYUjamQ+xaKmmMOsjnx07JmVUGJEqULWnIXP09kdNY60kc2s6YmpFe9mbif143M9F1kHOZZgYlWyyKMkFMQmafkwFXyIyYWEKZ4vZWwkZUUWZsPhUbgrf88ippXdQ9t+7dX9YaN0UcZTiBUzgHD66gAXfQBB8YcHiGV3hzpPPivDsfi9aSU8wcwx84nz8iWo7i</latexit><latexit sha1_base64="vosOYbAkYusExwFTo2/K22NZtJA=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cKpi20oWy2k3btZhN2N0IJ/Q1ePCji1R/kzX/jts1BWx8MPN6bYWZemAqujet+O6W19Y3NrfJ2ZWd3b/+genjU0kmmGPosEYnqhFSj4BJ9w43ATqqQxqHAdji+nfntJ1SaJ/LBTFIMYjqUPOKMGiv5WT9/nParNbfuzkFWiVeQGhRo9qtfvUHCshilYYJq3fXc1AQ5VYYzgdNKL9OYUjamQ+xaKmmMOsjnx07JmVUGJEqULWnIXP09kdNY60kc2s6YmpFe9mbif143M9F1kHOZZgYlWyyKMkFMQmafkwFXyIyYWEKZ4vZWwkZUUWZsPhUbgrf88ippXdQ9t+7dX9YaN0UcZTiBUzgHD66gAXfQBB8YcHiGV3hzpPPivDsfi9aSU8wcwx84nz8iWo7i</latexit><latexit sha1_base64="vosOYbAkYusExwFTo2/K22NZtJA=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cKpi20oWy2k3btZhN2N0IJ/Q1ePCji1R/kzX/jts1BWx8MPN6bYWZemAqujet+O6W19Y3NrfJ2ZWd3b/+genjU0kmmGPosEYnqhFSj4BJ9w43ATqqQxqHAdji+nfntJ1SaJ/LBTFIMYjqUPOKMGiv5WT9/nParNbfuzkFWiVeQGhRo9qtfvUHCshilYYJq3fXc1AQ5VYYzgdNKL9OYUjamQ+xaKmmMOsjnx07JmVUGJEqULWnIXP09kdNY60kc2s6YmpFe9mbif143M9F1kHOZZgYlWyyKMkFMQmafkwFXyIyYWEKZ4vZWwkZUUWZsPhUbgrf88ippXdQ9t+7dX9YaN0UcZTiBUzgHD66gAXfQBB8YcHiGV3hzpPPivDsfi9aSU8wcwx84nz8iWo7i</latexit>

uj+1
<latexit sha1_base64="2OhOukcvDjx7Qo4dCCzRuPdbR4k=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBZBEEoiBT0WvXisYD+gDWWz3bRrN5uwOxFK6I/w4kERr/4eb/4bt20O2vpg4PHeDDPzgkQKg6777RTW1jc2t4rbpZ3dvf2D8uFRy8SpZrzJYhnrTkANl0LxJgqUvJNoTqNA8nYwvp357SeujYjVA04S7kd0qEQoGEUrtdN+9njhTfvlilt15yCrxMtJBXI0+uWv3iBmacQVMkmN6Xpugn5GNQom+bTUSw1PKBvTIe9aqmjEjZ/Nz52SM6sMSBhrWwrJXP09kdHImEkU2M6I4sgsezPxP6+bYnjtZ0IlKXLFFovCVBKMyex3MhCaM5QTSyjTwt5K2IhqytAmVLIheMsvr5LWZdVzq959rVK/yeMowgmcwjl4cAV1uIMGNIHBGJ7hFd6cxHlx3p2PRWvByWeO4Q+czx/7nY9S</latexit><latexit sha1_base64="2OhOukcvDjx7Qo4dCCzRuPdbR4k=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBZBEEoiBT0WvXisYD+gDWWz3bRrN5uwOxFK6I/w4kERr/4eb/4bt20O2vpg4PHeDDPzgkQKg6777RTW1jc2t4rbpZ3dvf2D8uFRy8SpZrzJYhnrTkANl0LxJgqUvJNoTqNA8nYwvp357SeujYjVA04S7kd0qEQoGEUrtdN+9njhTfvlilt15yCrxMtJBXI0+uWv3iBmacQVMkmN6Xpugn5GNQom+bTUSw1PKBvTIe9aqmjEjZ/Nz52SM6sMSBhrWwrJXP09kdHImEkU2M6I4sgsezPxP6+bYnjtZ0IlKXLFFovCVBKMyex3MhCaM5QTSyjTwt5K2IhqytAmVLIheMsvr5LWZdVzq959rVK/yeMowgmcwjl4cAV1uIMGNIHBGJ7hFd6cxHlx3p2PRWvByWeO4Q+czx/7nY9S</latexit><latexit sha1_base64="2OhOukcvDjx7Qo4dCCzRuPdbR4k=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBZBEEoiBT0WvXisYD+gDWWz3bRrN5uwOxFK6I/w4kERr/4eb/4bt20O2vpg4PHeDDPzgkQKg6777RTW1jc2t4rbpZ3dvf2D8uFRy8SpZrzJYhnrTkANl0LxJgqUvJNoTqNA8nYwvp357SeujYjVA04S7kd0qEQoGEUrtdN+9njhTfvlilt15yCrxMtJBXI0+uWv3iBmacQVMkmN6Xpugn5GNQom+bTUSw1PKBvTIe9aqmjEjZ/Nz52SM6sMSBhrWwrJXP09kdHImEkU2M6I4sgsezPxP6+bYnjtZ0IlKXLFFovCVBKMyex3MhCaM5QTSyjTwt5K2IhqytAmVLIheMsvr5LWZdVzq959rVK/yeMowgmcwjl4cAV1uIMGNIHBGJ7hFd6cxHlx3p2PRWvByWeO4Q+czx/7nY9S</latexit><latexit sha1_base64="2OhOukcvDjx7Qo4dCCzRuPdbR4k=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBZBEEoiBT0WvXisYD+gDWWz3bRrN5uwOxFK6I/w4kERr/4eb/4bt20O2vpg4PHeDDPzgkQKg6777RTW1jc2t4rbpZ3dvf2D8uFRy8SpZrzJYhnrTkANl0LxJgqUvJNoTqNA8nYwvp357SeujYjVA04S7kd0qEQoGEUrtdN+9njhTfvlilt15yCrxMtJBXI0+uWv3iBmacQVMkmN6Xpugn5GNQom+bTUSw1PKBvTIe9aqmjEjZ/Nz52SM6sMSBhrWwrJXP09kdHImEkU2M6I4sgsezPxP6+bYnjtZ0IlKXLFFovCVBKMyex3MhCaM5QTSyjTwt5K2IhqytAmVLIheMsvr5LWZdVzq959rVK/yeMowgmcwjl4cAV1uIMGNIHBGJ7hFd6cxHlx3p2PRWvByWeO4Q+czx/7nY9S</latexit>

un�2
<latexit sha1_base64="fjdrJov21CzmMOhgMaXhAPjdoQM=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBiyUpBT0WvXisYD+gDWWz3bRLN5uwOxFK6I/w4kERr/4eb/4bt20O2vpg4PHeDDPzgkQKg6777RQ2Nre2d4q7pb39g8Oj8vFJ28SpZrzFYhnrbkANl0LxFgqUvJtoTqNA8k4wuZv7nSeujYjVI04T7kd0pEQoGEUrddJBpq5qs0G54lbdBcg68XJSgRzNQfmrP4xZGnGFTFJjep6boJ9RjYJJPiv1U8MTyiZ0xHuWKhpx42eLc2fkwipDEsbalkKyUH9PZDQyZhoFtjOiODar3lz8z+ulGN74mVBJilyx5aIwlQRjMv+dDIXmDOXUEsq0sLcSNqaaMrQJlWwI3urL66Rdq3pu1XuoVxq3eRxFOINzuAQPrqEB99CEFjCYwDO8wpuTOC/Ou/OxbC04+cwp/IHz+QMGWY9Z</latexit><latexit sha1_base64="fjdrJov21CzmMOhgMaXhAPjdoQM=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBiyUpBT0WvXisYD+gDWWz3bRLN5uwOxFK6I/w4kERr/4eb/4bt20O2vpg4PHeDDPzgkQKg6777RQ2Nre2d4q7pb39g8Oj8vFJ28SpZrzFYhnrbkANl0LxFgqUvJtoTqNA8k4wuZv7nSeujYjVI04T7kd0pEQoGEUrddJBpq5qs0G54lbdBcg68XJSgRzNQfmrP4xZGnGFTFJjep6boJ9RjYJJPiv1U8MTyiZ0xHuWKhpx42eLc2fkwipDEsbalkKyUH9PZDQyZhoFtjOiODar3lz8z+ulGN74mVBJilyx5aIwlQRjMv+dDIXmDOXUEsq0sLcSNqaaMrQJlWwI3urL66Rdq3pu1XuoVxq3eRxFOINzuAQPrqEB99CEFjCYwDO8wpuTOC/Ou/OxbC04+cwp/IHz+QMGWY9Z</latexit><latexit sha1_base64="fjdrJov21CzmMOhgMaXhAPjdoQM=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBiyUpBT0WvXisYD+gDWWz3bRLN5uwOxFK6I/w4kERr/4eb/4bt20O2vpg4PHeDDPzgkQKg6777RQ2Nre2d4q7pb39g8Oj8vFJ28SpZrzFYhnrbkANl0LxFgqUvJtoTqNA8k4wuZv7nSeujYjVI04T7kd0pEQoGEUrddJBpq5qs0G54lbdBcg68XJSgRzNQfmrP4xZGnGFTFJjep6boJ9RjYJJPiv1U8MTyiZ0xHuWKhpx42eLc2fkwipDEsbalkKyUH9PZDQyZhoFtjOiODar3lz8z+ulGN74mVBJilyx5aIwlQRjMv+dDIXmDOXUEsq0sLcSNqaaMrQJlWwI3urL66Rdq3pu1XuoVxq3eRxFOINzuAQPrqEB99CEFjCYwDO8wpuTOC/Ou/OxbC04+cwp/IHz+QMGWY9Z</latexit><latexit sha1_base64="fjdrJov21CzmMOhgMaXhAPjdoQM=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBiyUpBT0WvXisYD+gDWWz3bRLN5uwOxFK6I/w4kERr/4eb/4bt20O2vpg4PHeDDPzgkQKg6777RQ2Nre2d4q7pb39g8Oj8vFJ28SpZrzFYhnrbkANl0LxFgqUvJtoTqNA8k4wuZv7nSeujYjVI04T7kd0pEQoGEUrddJBpq5qs0G54lbdBcg68XJSgRzNQfmrP4xZGnGFTFJjep6boJ9RjYJJPiv1U8MTyiZ0xHuWKhpx42eLc2fkwipDEsbalkKyUH9PZDQyZhoFtjOiODar3lz8z+ulGN74mVBJilyx5aIwlQRjMv+dDIXmDOXUEsq0sLcSNqaaMrQJlWwI3urL66Rdq3pu1XuoVxq3eRxFOINzuAQPrqEB99CEFjCYwDO8wpuTOC/Ou/OxbC04+cwp/IHz+QMGWY9Z</latexit>

un�1
<latexit sha1_base64="3f8K8nbiljqrXqo7cCjmh7zTHY8=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBiyURQY9FLx4r2A9oQ9lsJ+3SzSbsboQS+iO8eFDEq7/Hm//GTZuDtj4YeLw3w8y8IBFcG9f9dkpr6xubW+Xtys7u3v5B9fCoreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJXe53nlBpHstHM03Qj+hI8pAzaqzUSQeZvPBmg2rNrbtzkFXiFaQGBZqD6ld/GLM0QmmYoFr3PDcxfkaV4UzgrNJPNSaUTegIe5ZKGqH2s/m5M3JmlSEJY2VLGjJXf09kNNJ6GgW2M6JmrJe9XPzP66UmvPEzLpPUoGSLRWEqiIlJ/jsZcoXMiKkllClubyVsTBVlxiZUsSF4yy+vkvZl3XPr3sNVrXFbxFGGEziFc/DgGhpwD01oAYMJPMMrvDmJ8+K8Ox+L1pJTzBzDHzifPwTUj1g=</latexit><latexit sha1_base64="3f8K8nbiljqrXqo7cCjmh7zTHY8=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBiyURQY9FLx4r2A9oQ9lsJ+3SzSbsboQS+iO8eFDEq7/Hm//GTZuDtj4YeLw3w8y8IBFcG9f9dkpr6xubW+Xtys7u3v5B9fCoreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJXe53nlBpHstHM03Qj+hI8pAzaqzUSQeZvPBmg2rNrbtzkFXiFaQGBZqD6ld/GLM0QmmYoFr3PDcxfkaV4UzgrNJPNSaUTegIe5ZKGqH2s/m5M3JmlSEJY2VLGjJXf09kNNJ6GgW2M6JmrJe9XPzP66UmvPEzLpPUoGSLRWEqiIlJ/jsZcoXMiKkllClubyVsTBVlxiZUsSF4yy+vkvZl3XPr3sNVrXFbxFGGEziFc/DgGhpwD01oAYMJPMMrvDmJ8+K8Ox+L1pJTzBzDHzifPwTUj1g=</latexit><latexit sha1_base64="3f8K8nbiljqrXqo7cCjmh7zTHY8=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBiyURQY9FLx4r2A9oQ9lsJ+3SzSbsboQS+iO8eFDEq7/Hm//GTZuDtj4YeLw3w8y8IBFcG9f9dkpr6xubW+Xtys7u3v5B9fCoreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJXe53nlBpHstHM03Qj+hI8pAzaqzUSQeZvPBmg2rNrbtzkFXiFaQGBZqD6ld/GLM0QmmYoFr3PDcxfkaV4UzgrNJPNSaUTegIe5ZKGqH2s/m5M3JmlSEJY2VLGjJXf09kNNJ6GgW2M6JmrJe9XPzP66UmvPEzLpPUoGSLRWEqiIlJ/jsZcoXMiKkllClubyVsTBVlxiZUsSF4yy+vkvZl3XPr3sNVrXFbxFGGEziFc/DgGhpwD01oAYMJPMMrvDmJ8+K8Ox+L1pJTzBzDHzifPwTUj1g=</latexit><latexit sha1_base64="3f8K8nbiljqrXqo7cCjmh7zTHY8=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBiyURQY9FLx4r2A9oQ9lsJ+3SzSbsboQS+iO8eFDEq7/Hm//GTZuDtj4YeLw3w8y8IBFcG9f9dkpr6xubW+Xtys7u3v5B9fCoreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJXe53nlBpHstHM03Qj+hI8pAzaqzUSQeZvPBmg2rNrbtzkFXiFaQGBZqD6ld/GLM0QmmYoFr3PDcxfkaV4UzgrNJPNSaUTegIe5ZKGqH2s/m5M3JmlSEJY2VLGjJXf09kNNJ6GgW2M6JmrJe9XPzP66UmvPEzLpPUoGSLRWEqiIlJ/jsZcoXMiKkllClubyVsTBVlxiZUsSF4yy+vkvZl3XPr3sNVrXFbxFGGEziFc/DgGhpwD01oAYMJPMMrvDmJ8+K8Ox+L1pJTzBzDHzifPwTUj1g=</latexit>

un
<latexit sha1_base64="GFG+GSFlDEvvXnNes/wPmU21GMA=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48VTFtoQ9lsN+3SzSbsToQS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MJXCoOt+O6WNza3tnfJuZW//4PCoenzSNkmmGfdZIhPdDanhUijuo0DJu6nmNA4l74STu7nfeeLaiEQ94jTlQUxHSkSCUbSSnw1yNRtUa27dXYCsE68gNSjQGlS/+sOEZTFXyCQ1pue5KQY51SiY5LNKPzM8pWxCR7xnqaIxN0G+OHZGLqwyJFGibSkkC/X3RE5jY6ZxaDtjimOz6s3F/7xehtFNkAuVZsgVWy6KMkkwIfPPyVBozlBOLaFMC3srYWOqKUObT8WG4K2+vE7aV3XPrXsP17XmbRFHGc7gHC7BgwY04R5a4AMDAc/wCm+Ocl6cd+dj2VpyiplT+APn8wcobo7m</latexit><latexit sha1_base64="GFG+GSFlDEvvXnNes/wPmU21GMA=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48VTFtoQ9lsN+3SzSbsToQS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MJXCoOt+O6WNza3tnfJuZW//4PCoenzSNkmmGfdZIhPdDanhUijuo0DJu6nmNA4l74STu7nfeeLaiEQ94jTlQUxHSkSCUbSSnw1yNRtUa27dXYCsE68gNSjQGlS/+sOEZTFXyCQ1pue5KQY51SiY5LNKPzM8pWxCR7xnqaIxN0G+OHZGLqwyJFGibSkkC/X3RE5jY6ZxaDtjimOz6s3F/7xehtFNkAuVZsgVWy6KMkkwIfPPyVBozlBOLaFMC3srYWOqKUObT8WG4K2+vE7aV3XPrXsP17XmbRFHGc7gHC7BgwY04R5a4AMDAc/wCm+Ocl6cd+dj2VpyiplT+APn8wcobo7m</latexit><latexit sha1_base64="GFG+GSFlDEvvXnNes/wPmU21GMA=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48VTFtoQ9lsN+3SzSbsToQS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MJXCoOt+O6WNza3tnfJuZW//4PCoenzSNkmmGfdZIhPdDanhUijuo0DJu6nmNA4l74STu7nfeeLaiEQ94jTlQUxHSkSCUbSSnw1yNRtUa27dXYCsE68gNSjQGlS/+sOEZTFXyCQ1pue5KQY51SiY5LNKPzM8pWxCR7xnqaIxN0G+OHZGLqwyJFGibSkkC/X3RE5jY6ZxaDtjimOz6s3F/7xehtFNkAuVZsgVWy6KMkkwIfPPyVBozlBOLaFMC3srYWOqKUObT8WG4K2+vE7aV3XPrXsP17XmbRFHGc7gHC7BgwY04R5a4AMDAc/wCm+Ocl6cd+dj2VpyiplT+APn8wcobo7m</latexit><latexit sha1_base64="GFG+GSFlDEvvXnNes/wPmU21GMA=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48VTFtoQ9lsN+3SzSbsToQS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MJXCoOt+O6WNza3tnfJuZW//4PCoenzSNkmmGfdZIhPdDanhUijuo0DJu6nmNA4l74STu7nfeeLaiEQ94jTlQUxHSkSCUbSSnw1yNRtUa27dXYCsE68gNSjQGlS/+sOEZTFXyCQ1pue5KQY51SiY5LNKPzM8pWxCR7xnqaIxN0G+OHZGLqwyJFGibSkkC/X3RE5jY6ZxaDtjimOz6s3F/7xehtFNkAuVZsgVWy6KMkkwIfPPyVBozlBOLaFMC3srYWOqKUObT8WG4K2+vE7aV3XPrXsP17XmbRFHGc7gHC7BgwY04R5a4AMDAc/wCm+Ocl6cd+dj2VpyiplT+APn8wcobo7m</latexit>

. .
.

<latexit sha1_base64="eU8Ci1Y/pURL1pAwGegDUXNN6hU=">AAAB7HicbVBNS8NAFHypX7V+VT16WSyCp5KIUI9FLx4rmLbQhrLZbtqlm03YfRFK6G/w4kERr/4gb/4bt20O2jqwMMy8Yd+bMJXCoOt+O6WNza3tnfJuZW//4PCoenzSNkmmGfdZIhPdDanhUijuo0DJu6nmNA4l74STu7nfeeLaiEQ94jTlQUxHSkSCUbSS3x8maAbVmlt3FyDrxCtIDQq0BtUvm2NZzBUySY3peW6KQU41Cib5rNLPDE8pm9AR71mqaMxNkC+WnZELqwxJlGj7FJKF+juR09iYaRzayZji2Kx6c/E/r5dhdBPkQqUZcsWWH0WZJJiQ+eVkKDRnKKeWUKaF3ZWwMdWUoe2nYkvwVk9eJ+2ruufWvYfrWvO2qKMMZ3AOl+BBA5pwDy3wgYGAZ3iFN0c5L86787EcLTlF5hT+wPn8AfFojsI=</latexit><latexit sha1_base64="eU8Ci1Y/pURL1pAwGegDUXNN6hU=">AAAB7HicbVBNS8NAFHypX7V+VT16WSyCp5KIUI9FLx4rmLbQhrLZbtqlm03YfRFK6G/w4kERr/4gb/4bt20O2jqwMMy8Yd+bMJXCoOt+O6WNza3tnfJuZW//4PCoenzSNkmmGfdZIhPdDanhUijuo0DJu6nmNA4l74STu7nfeeLaiEQ94jTlQUxHSkSCUbSS3x8maAbVmlt3FyDrxCtIDQq0BtUvm2NZzBUySY3peW6KQU41Cib5rNLPDE8pm9AR71mqaMxNkC+WnZELqwxJlGj7FJKF+juR09iYaRzayZji2Kx6c/E/r5dhdBPkQqUZcsWWH0WZJJiQ+eVkKDRnKKeWUKaF3ZWwMdWUoe2nYkvwVk9eJ+2ruufWvYfrWvO2qKMMZ3AOl+BBA5pwDy3wgYGAZ3iFN0c5L86787EcLTlF5hT+wPn8AfFojsI=</latexit><latexit sha1_base64="eU8Ci1Y/pURL1pAwGegDUXNN6hU=">AAAB7HicbVBNS8NAFHypX7V+VT16WSyCp5KIUI9FLx4rmLbQhrLZbtqlm03YfRFK6G/w4kERr/4gb/4bt20O2jqwMMy8Yd+bMJXCoOt+O6WNza3tnfJuZW//4PCoenzSNkmmGfdZIhPdDanhUijuo0DJu6nmNA4l74STu7nfeeLaiEQ94jTlQUxHSkSCUbSS3x8maAbVmlt3FyDrxCtIDQq0BtUvm2NZzBUySY3peW6KQU41Cib5rNLPDE8pm9AR71mqaMxNkC+WnZELqwxJlGj7FJKF+juR09iYaRzayZji2Kx6c/E/r5dhdBPkQqUZcsWWH0WZJJiQ+eVkKDRnKKeWUKaF3ZWwMdWUoe2nYkvwVk9eJ+2ruufWvYfrWvO2qKMMZ3AOl+BBA5pwDy3wgYGAZ3iFN0c5L86787EcLTlF5hT+wPn8AfFojsI=</latexit><latexit sha1_base64="eU8Ci1Y/pURL1pAwGegDUXNN6hU=">AAAB7HicbVBNS8NAFHypX7V+VT16WSyCp5KIUI9FLx4rmLbQhrLZbtqlm03YfRFK6G/w4kERr/4gb/4bt20O2jqwMMy8Yd+bMJXCoOt+O6WNza3tnfJuZW//4PCoenzSNkmmGfdZIhPdDanhUijuo0DJu6nmNA4l74STu7nfeeLaiEQ94jTlQUxHSkSCUbSS3x8maAbVmlt3FyDrxCtIDQq0BtUvm2NZzBUySY3peW6KQU41Cib5rNLPDE8pm9AR71mqaMxNkC+WnZELqwxJlGj7FJKF+juR09iYaRzayZji2Kx6c/E/r5dhdBPkQqUZcsWWH0WZJJiQ+eVkKDRnKKeWUKaF3ZWwMdWUoe2nYkvwVk9eJ+2ruufWvYfrWvO2qKMMZ3AOl+BBA5pwDy3wgYGAZ3iFN0c5L86787EcLTlF5hT+wPn8AfFojsI=</latexit>

. . .
<latexit sha1_base64="eU8Ci1Y/pURL1pAwGegDUXNN6hU=">AAAB7HicbVBNS8NAFHypX7V+VT16WSyCp5KIUI9FLx4rmLbQhrLZbtqlm03YfRFK6G/w4kERr/4gb/4bt20O2jqwMMy8Yd+bMJXCoOt+O6WNza3tnfJuZW//4PCoenzSNkmmGfdZIhPdDanhUijuo0DJu6nmNA4l74STu7nfeeLaiEQ94jTlQUxHSkSCUbSS3x8maAbVmlt3FyDrxCtIDQq0BtUvm2NZzBUySY3peW6KQU41Cib5rNLPDE8pm9AR71mqaMxNkC+WnZELqwxJlGj7FJKF+juR09iYaRzayZji2Kx6c/E/r5dhdBPkQqUZcsWWH0WZJJiQ+eVkKDRnKKeWUKaF3ZWwMdWUoe2nYkvwVk9eJ+2ruufWvYfrWvO2qKMMZ3AOl+BBA5pwDy3wgYGAZ3iFN0c5L86787EcLTlF5hT+wPn8AfFojsI=</latexit><latexit sha1_base64="eU8Ci1Y/pURL1pAwGegDUXNN6hU=">AAAB7HicbVBNS8NAFHypX7V+VT16WSyCp5KIUI9FLx4rmLbQhrLZbtqlm03YfRFK6G/w4kERr/4gb/4bt20O2jqwMMy8Yd+bMJXCoOt+O6WNza3tnfJuZW//4PCoenzSNkmmGfdZIhPdDanhUijuo0DJu6nmNA4l74STu7nfeeLaiEQ94jTlQUxHSkSCUbSS3x8maAbVmlt3FyDrxCtIDQq0BtUvm2NZzBUySY3peW6KQU41Cib5rNLPDE8pm9AR71mqaMxNkC+WnZELqwxJlGj7FJKF+juR09iYaRzayZji2Kx6c/E/r5dhdBPkQqUZcsWWH0WZJJiQ+eVkKDRnKKeWUKaF3ZWwMdWUoe2nYkvwVk9eJ+2ruufWvYfrWvO2qKMMZ3AOl+BBA5pwDy3wgYGAZ3iFN0c5L86787EcLTlF5hT+wPn8AfFojsI=</latexit><latexit sha1_base64="eU8Ci1Y/pURL1pAwGegDUXNN6hU=">AAAB7HicbVBNS8NAFHypX7V+VT16WSyCp5KIUI9FLx4rmLbQhrLZbtqlm03YfRFK6G/w4kERr/4gb/4bt20O2jqwMMy8Yd+bMJXCoOt+O6WNza3tnfJuZW//4PCoenzSNkmmGfdZIhPdDanhUijuo0DJu6nmNA4l74STu7nfeeLaiEQ94jTlQUxHSkSCUbSS3x8maAbVmlt3FyDrxCtIDQq0BtUvm2NZzBUySY3peW6KQU41Cib5rNLPDE8pm9AR71mqaMxNkC+WnZELqwxJlGj7FJKF+juR09iYaRzayZji2Kx6c/E/r5dhdBPkQqUZcsWWH0WZJJiQ+eVkKDRnKKeWUKaF3ZWwMdWUoe2nYkvwVk9eJ+2ruufWvYfrWvO2qKMMZ3AOl+BBA5pwDy3wgYGAZ3iFN0c5L86787EcLTlF5hT+wPn8AfFojsI=</latexit><latexit sha1_base64="eU8Ci1Y/pURL1pAwGegDUXNN6hU=">AAAB7HicbVBNS8NAFHypX7V+VT16WSyCp5KIUI9FLx4rmLbQhrLZbtqlm03YfRFK6G/w4kERr/4gb/4bt20O2jqwMMy8Yd+bMJXCoOt+O6WNza3tnfJuZW//4PCoenzSNkmmGfdZIhPdDanhUijuo0DJu6nmNA4l74STu7nfeeLaiEQ94jTlQUxHSkSCUbSS3x8maAbVmlt3FyDrxCtIDQq0BtUvm2NZzBUySY3peW6KQU41Cib5rNLPDE8pm9AR71mqaMxNkC+WnZELqwxJlGj7FJKF+juR09iYaRzayZji2Kx6c/E/r5dhdBPkQqUZcsWWH0WZJJiQ+eVkKDRnKKeWUKaF3ZWwMdWUoe2nYkvwVk9eJ+2ruufWvYfrWvO2qKMMZ3AOl+BBA5pwDy3wgYGAZ3iFN0c5L86787EcLTlF5hT+wPn8AfFojsI=</latexit>

E1(1)
<latexit sha1_base64="Xp/XWkBak+pxRvi0fMaejA6ZIOU=">AAAB8nicbVBNS8NAEN34WetX1aOXYBHqpWRF0GNRBI8V7AeksWy2m3bpZjfsToQS8jO8eFDEq7/Gm//GbZuDtj4YeLw3w8y8MBHcgOd9Oyura+sbm6Wt8vbO7t5+5eCwbVSqKWtRJZTuhsQwwSVrAQfBuolmJA4F64Tjm6nfeWLacCUfYJKwICZDySNOCVjJv+1n+DGr4bM871eqXt2bwV0muCBVVKDZr3z1BoqmMZNABTHGx14CQUY0cCpYXu6lhiWEjsmQ+ZZKEjMTZLOTc/fUKgM3UtqWBHem/p7ISGzMJA5tZ0xgZBa9qfif56cQXQUZl0kKTNL5oigVLih3+r874JpREBNLCNXc3urSEdGEgk2pbEPAiy8vk/Z5HXt1fH9RbVwXcZTQMTpBNYTRJWqgO9RELUSRQs/oFb054Lw4787HvHXFKWaO0B84nz857ZCN</latexit><latexit sha1_base64="Xp/XWkBak+pxRvi0fMaejA6ZIOU=">AAAB8nicbVBNS8NAEN34WetX1aOXYBHqpWRF0GNRBI8V7AeksWy2m3bpZjfsToQS8jO8eFDEq7/Gm//GbZuDtj4YeLw3w8y8MBHcgOd9Oyura+sbm6Wt8vbO7t5+5eCwbVSqKWtRJZTuhsQwwSVrAQfBuolmJA4F64Tjm6nfeWLacCUfYJKwICZDySNOCVjJv+1n+DGr4bM871eqXt2bwV0muCBVVKDZr3z1BoqmMZNABTHGx14CQUY0cCpYXu6lhiWEjsmQ+ZZKEjMTZLOTc/fUKgM3UtqWBHem/p7ISGzMJA5tZ0xgZBa9qfif56cQXQUZl0kKTNL5oigVLih3+r874JpREBNLCNXc3urSEdGEgk2pbEPAiy8vk/Z5HXt1fH9RbVwXcZTQMTpBNYTRJWqgO9RELUSRQs/oFb054Lw4787HvHXFKWaO0B84nz857ZCN</latexit><latexit sha1_base64="Xp/XWkBak+pxRvi0fMaejA6ZIOU=">AAAB8nicbVBNS8NAEN34WetX1aOXYBHqpWRF0GNRBI8V7AeksWy2m3bpZjfsToQS8jO8eFDEq7/Gm//GbZuDtj4YeLw3w8y8MBHcgOd9Oyura+sbm6Wt8vbO7t5+5eCwbVSqKWtRJZTuhsQwwSVrAQfBuolmJA4F64Tjm6nfeWLacCUfYJKwICZDySNOCVjJv+1n+DGr4bM871eqXt2bwV0muCBVVKDZr3z1BoqmMZNABTHGx14CQUY0cCpYXu6lhiWEjsmQ+ZZKEjMTZLOTc/fUKgM3UtqWBHem/p7ISGzMJA5tZ0xgZBa9qfif56cQXQUZl0kKTNL5oigVLih3+r874JpREBNLCNXc3urSEdGEgk2pbEPAiy8vk/Z5HXt1fH9RbVwXcZTQMTpBNYTRJWqgO9RELUSRQs/oFb054Lw4787HvHXFKWaO0B84nz857ZCN</latexit><latexit sha1_base64="Xp/XWkBak+pxRvi0fMaejA6ZIOU=">AAAB8nicbVBNS8NAEN34WetX1aOXYBHqpWRF0GNRBI8V7AeksWy2m3bpZjfsToQS8jO8eFDEq7/Gm//GbZuDtj4YeLw3w8y8MBHcgOd9Oyura+sbm6Wt8vbO7t5+5eCwbVSqKWtRJZTuhsQwwSVrAQfBuolmJA4F64Tjm6nfeWLacCUfYJKwICZDySNOCVjJv+1n+DGr4bM871eqXt2bwV0muCBVVKDZr3z1BoqmMZNABTHGx14CQUY0cCpYXu6lhiWEjsmQ+ZZKEjMTZLOTc/fUKgM3UtqWBHem/p7ISGzMJA5tZ0xgZBa9qfif56cQXQUZl0kKTNL5oigVLih3+r874JpREBNLCNXc3urSEdGEgk2pbEPAiy8vk/Z5HXt1fH9RbVwXcZTQMTpBNYTRJWqgO9RELUSRQs/oFb054Lw4787HvHXFKWaO0B84nz857ZCN</latexit>

E2(1)
<latexit sha1_base64="2tzXUDkzBg/lcioRKY0aYOUviCI=">AAAB8nicbVBNSwMxEM3Wr1q/qh69BItQL2W3CHosiuCxgv2Adi3ZNNuGZpMlmRXKsj/DiwdFvPprvPlvTNs9aOuDgcd7M8zMC2LBDbjut1NYW9/Y3Cpul3Z29/YPyodHbaMSTVmLKqF0NyCGCS5ZCzgI1o01I1EgWCeY3Mz8zhPThiv5ANOY+REZSR5ySsBKvdtBWn9Mq955lg3KFbfmzoFXiZeTCsrRHJS/+kNFk4hJoIIY0/PcGPyUaOBUsKzUTwyLCZ2QEetZKknEjJ/OT87wmVWGOFTalgQ8V39PpCQyZhoFtjMiMDbL3kz8z+slEF75KZdxAkzSxaIwERgUnv2Ph1wzCmJqCaGa21sxHRNNKNiUSjYEb/nlVdKu1zy35t1fVBrXeRxFdIJOURV56BI10B1qohaiSKFn9IreHHBenHfnY9FacPKZY/QHzucPO3iQjg==</latexit><latexit sha1_base64="2tzXUDkzBg/lcioRKY0aYOUviCI=">AAAB8nicbVBNSwMxEM3Wr1q/qh69BItQL2W3CHosiuCxgv2Adi3ZNNuGZpMlmRXKsj/DiwdFvPprvPlvTNs9aOuDgcd7M8zMC2LBDbjut1NYW9/Y3Cpul3Z29/YPyodHbaMSTVmLKqF0NyCGCS5ZCzgI1o01I1EgWCeY3Mz8zhPThiv5ANOY+REZSR5ySsBKvdtBWn9Mq955lg3KFbfmzoFXiZeTCsrRHJS/+kNFk4hJoIIY0/PcGPyUaOBUsKzUTwyLCZ2QEetZKknEjJ/OT87wmVWGOFTalgQ8V39PpCQyZhoFtjMiMDbL3kz8z+slEF75KZdxAkzSxaIwERgUnv2Ph1wzCmJqCaGa21sxHRNNKNiUSjYEb/nlVdKu1zy35t1fVBrXeRxFdIJOURV56BI10B1qohaiSKFn9IreHHBenHfnY9FacPKZY/QHzucPO3iQjg==</latexit><latexit sha1_base64="2tzXUDkzBg/lcioRKY0aYOUviCI=">AAAB8nicbVBNSwMxEM3Wr1q/qh69BItQL2W3CHosiuCxgv2Adi3ZNNuGZpMlmRXKsj/DiwdFvPprvPlvTNs9aOuDgcd7M8zMC2LBDbjut1NYW9/Y3Cpul3Z29/YPyodHbaMSTVmLKqF0NyCGCS5ZCzgI1o01I1EgWCeY3Mz8zhPThiv5ANOY+REZSR5ySsBKvdtBWn9Mq955lg3KFbfmzoFXiZeTCsrRHJS/+kNFk4hJoIIY0/PcGPyUaOBUsKzUTwyLCZ2QEetZKknEjJ/OT87wmVWGOFTalgQ8V39PpCQyZhoFtjMiMDbL3kz8z+slEF75KZdxAkzSxaIwERgUnv2Ph1wzCmJqCaGa21sxHRNNKNiUSjYEb/nlVdKu1zy35t1fVBrXeRxFdIJOURV56BI10B1qohaiSKFn9IreHHBenHfnY9FacPKZY/QHzucPO3iQjg==</latexit><latexit sha1_base64="2tzXUDkzBg/lcioRKY0aYOUviCI=">AAAB8nicbVBNSwMxEM3Wr1q/qh69BItQL2W3CHosiuCxgv2Adi3ZNNuGZpMlmRXKsj/DiwdFvPprvPlvTNs9aOuDgcd7M8zMC2LBDbjut1NYW9/Y3Cpul3Z29/YPyodHbaMSTVmLKqF0NyCGCS5ZCzgI1o01I1EgWCeY3Mz8zhPThiv5ANOY+REZSR5ySsBKvdtBWn9Mq955lg3KFbfmzoFXiZeTCsrRHJS/+kNFk4hJoIIY0/PcGPyUaOBUsKzUTwyLCZ2QEetZKknEjJ/OT87wmVWGOFTalgQ8V39PpCQyZhoFtjMiMDbL3kz8z+slEF75KZdxAkzSxaIwERgUnv2Ph1wzCmJqCaGa21sxHRNNKNiUSjYEb/nlVdKu1zy35t1fVBrXeRxFdIJOURV56BI10B1qohaiSKFn9IreHHBenHfnY9FacPKZY/QHzucPO3iQjg==</latexit>

E3(1)
<latexit sha1_base64="9oYkTXz+nEEfxq+1aeFYNlTKQMw=">AAAB8nicbVBNSwMxEM3Wr1q/qh69BItQL2VXBT0WRfBYwX7Adi3ZNG1Ds8mSzApl2Z/hxYMiXv013vw3pu0etPXBwOO9GWbmhbHgBlz32ymsrK6tbxQ3S1vbO7t75f2DllGJpqxJlVC6ExLDBJesCRwE68SakSgUrB2Ob6Z++4lpw5V8gEnMgogMJR9wSsBK/m0vPX9Mq95plvXKFbfmzoCXiZeTCsrR6JW/un1Fk4hJoIIY43tuDEFKNHAqWFbqJobFhI7JkPmWShIxE6SzkzN8YpU+HihtSwKeqb8nUhIZM4lC2xkRGJlFbyr+5/kJDK6ClMs4ASbpfNEgERgUnv6P+1wzCmJiCaGa21sxHRFNKNiUSjYEb/HlZdI6q3luzbu/qNSv8ziK6Agdoyry0CWqozvUQE1EkULP6BW9OeC8OO/Ox7y14OQzh+gPnM8fPQOQjw==</latexit><latexit sha1_base64="9oYkTXz+nEEfxq+1aeFYNlTKQMw=">AAAB8nicbVBNSwMxEM3Wr1q/qh69BItQL2VXBT0WRfBYwX7Adi3ZNG1Ds8mSzApl2Z/hxYMiXv013vw3pu0etPXBwOO9GWbmhbHgBlz32ymsrK6tbxQ3S1vbO7t75f2DllGJpqxJlVC6ExLDBJesCRwE68SakSgUrB2Ob6Z++4lpw5V8gEnMgogMJR9wSsBK/m0vPX9Mq95plvXKFbfmzoCXiZeTCsrR6JW/un1Fk4hJoIIY43tuDEFKNHAqWFbqJobFhI7JkPmWShIxE6SzkzN8YpU+HihtSwKeqb8nUhIZM4lC2xkRGJlFbyr+5/kJDK6ClMs4ASbpfNEgERgUnv6P+1wzCmJiCaGa21sxHRFNKNiUSjYEb/HlZdI6q3luzbu/qNSv8ziK6Agdoyry0CWqozvUQE1EkULP6BW9OeC8OO/Ox7y14OQzh+gPnM8fPQOQjw==</latexit><latexit sha1_base64="9oYkTXz+nEEfxq+1aeFYNlTKQMw=">AAAB8nicbVBNSwMxEM3Wr1q/qh69BItQL2VXBT0WRfBYwX7Adi3ZNG1Ds8mSzApl2Z/hxYMiXv013vw3pu0etPXBwOO9GWbmhbHgBlz32ymsrK6tbxQ3S1vbO7t75f2DllGJpqxJlVC6ExLDBJesCRwE68SakSgUrB2Ob6Z++4lpw5V8gEnMgogMJR9wSsBK/m0vPX9Mq95plvXKFbfmzoCXiZeTCsrR6JW/un1Fk4hJoIIY43tuDEFKNHAqWFbqJobFhI7JkPmWShIxE6SzkzN8YpU+HihtSwKeqb8nUhIZM4lC2xkRGJlFbyr+5/kJDK6ClMs4ASbpfNEgERgUnv6P+1wzCmJiCaGa21sxHRFNKNiUSjYEb/HlZdI6q3luzbu/qNSv8ziK6Agdoyry0CWqozvUQE1EkULP6BW9OeC8OO/Ox7y14OQzh+gPnM8fPQOQjw==</latexit><latexit sha1_base64="9oYkTXz+nEEfxq+1aeFYNlTKQMw=">AAAB8nicbVBNSwMxEM3Wr1q/qh69BItQL2VXBT0WRfBYwX7Adi3ZNG1Ds8mSzApl2Z/hxYMiXv013vw3pu0etPXBwOO9GWbmhbHgBlz32ymsrK6tbxQ3S1vbO7t75f2DllGJpqxJlVC6ExLDBJesCRwE68SakSgUrB2Ob6Z++4lpw5V8gEnMgogMJR9wSsBK/m0vPX9Mq95plvXKFbfmzoCXiZeTCsrR6JW/un1Fk4hJoIIY43tuDEFKNHAqWFbqJobFhI7JkPmWShIxE6SzkzN8YpU+HihtSwKeqb8nUhIZM4lC2xkRGJlFbyr+5/kJDK6ClMs4ASbpfNEgERgUnv6P+1wzCmJiCaGa21sxHRFNKNiUSjYEb/HlZdI6q3luzbu/qNSv8ziK6Agdoyry0CWqozvUQE1EkULP6BW9OeC8OO/Ox7y14OQzh+gPnM8fPQOQjw==</latexit>

E4(1)
<latexit sha1_base64="yQ+8UZ/Kbj813BshtN38vRb69Qw=">AAAB8nicbVBNSwMxEJ2tX7V+VT16CRahXsquFPRYFMFjBfsB7VqyabYNzSZLkhXKsj/DiwdFvPprvPlvTNs9aOuDgcd7M8zMC2LOtHHdb6ewtr6xuVXcLu3s7u0flA+P2lomitAWkVyqboA15UzQlmGG026sKI4CTjvB5Gbmd56o0kyKBzONqR/hkWAhI9hYqXc7SOuPadU7z7JBueLW3DnQKvFyUoEczUH5qz+UJImoMIRjrXueGxs/xcowwmlW6ieaxphM8Ij2LBU4otpP5ydn6MwqQxRKZUsYNFd/T6Q40noaBbYzwmasl72Z+J/XS0x45adMxImhgiwWhQlHRqLZ/2jIFCWGTy3BRDF7KyJjrDAxNqWSDcFbfnmVtC9qnlvz7uuVxnUeRxFO4BSq4MElNOAOmtACAhKe4RXeHOO8OO/Ox6K14OQzx/AHzucPPo6QkA==</latexit><latexit sha1_base64="yQ+8UZ/Kbj813BshtN38vRb69Qw=">AAAB8nicbVBNSwMxEJ2tX7V+VT16CRahXsquFPRYFMFjBfsB7VqyabYNzSZLkhXKsj/DiwdFvPprvPlvTNs9aOuDgcd7M8zMC2LOtHHdb6ewtr6xuVXcLu3s7u0flA+P2lomitAWkVyqboA15UzQlmGG026sKI4CTjvB5Gbmd56o0kyKBzONqR/hkWAhI9hYqXc7SOuPadU7z7JBueLW3DnQKvFyUoEczUH5qz+UJImoMIRjrXueGxs/xcowwmlW6ieaxphM8Ij2LBU4otpP5ydn6MwqQxRKZUsYNFd/T6Q40noaBbYzwmasl72Z+J/XS0x45adMxImhgiwWhQlHRqLZ/2jIFCWGTy3BRDF7KyJjrDAxNqWSDcFbfnmVtC9qnlvz7uuVxnUeRxFO4BSq4MElNOAOmtACAhKe4RXeHOO8OO/Ox6K14OQzx/AHzucPPo6QkA==</latexit><latexit sha1_base64="yQ+8UZ/Kbj813BshtN38vRb69Qw=">AAAB8nicbVBNSwMxEJ2tX7V+VT16CRahXsquFPRYFMFjBfsB7VqyabYNzSZLkhXKsj/DiwdFvPprvPlvTNs9aOuDgcd7M8zMC2LOtHHdb6ewtr6xuVXcLu3s7u0flA+P2lomitAWkVyqboA15UzQlmGG026sKI4CTjvB5Gbmd56o0kyKBzONqR/hkWAhI9hYqXc7SOuPadU7z7JBueLW3DnQKvFyUoEczUH5qz+UJImoMIRjrXueGxs/xcowwmlW6ieaxphM8Ij2LBU4otpP5ydn6MwqQxRKZUsYNFd/T6Q40noaBbYzwmasl72Z+J/XS0x45adMxImhgiwWhQlHRqLZ/2jIFCWGTy3BRDF7KyJjrDAxNqWSDcFbfnmVtC9qnlvz7uuVxnUeRxFO4BSq4MElNOAOmtACAhKe4RXeHOO8OO/Ox6K14OQzx/AHzucPPo6QkA==</latexit><latexit sha1_base64="yQ+8UZ/Kbj813BshtN38vRb69Qw=">AAAB8nicbVBNSwMxEJ2tX7V+VT16CRahXsquFPRYFMFjBfsB7VqyabYNzSZLkhXKsj/DiwdFvPprvPlvTNs9aOuDgcd7M8zMC2LOtHHdb6ewtr6xuVXcLu3s7u0flA+P2lomitAWkVyqboA15UzQlmGG026sKI4CTjvB5Gbmd56o0kyKBzONqR/hkWAhI9hYqXc7SOuPadU7z7JBueLW3DnQKvFyUoEczUH5qz+UJImoMIRjrXueGxs/xcowwmlW6ieaxphM8Ij2LBU4otpP5ydn6MwqQxRKZUsYNFd/T6Q40noaBbYzwmasl72Z+J/XS0x45adMxImhgiwWhQlHRqLZ/2jIFCWGTy3BRDF7KyJjrDAxNqWSDcFbfnmVtC9qnlvz7uuVxnUeRxFO4BSq4MElNOAOmtACAhKe4RXeHOO8OO/Ox6K14OQzx/AHzucPPo6QkA==</latexit>

E1(2)
<latexit sha1_base64="GAtmG8O2aZ6K4vxZJ87TTAg6xSI=">AAAB8nicbVBNSwMxEM3Wr1q/qh69BItQL2W3CHosiuCxgv2Adi3ZNNuGZpMlmRXKsj/DiwdFvPprvPlvTNs9aOuDgcd7M8zMC2LBDbjut1NYW9/Y3Cpul3Z29/YPyodHbaMSTVmLKqF0NyCGCS5ZCzgI1o01I1EgWCeY3Mz8zhPThiv5ANOY+REZSR5ySsBKvdtB6j2m1fp5lg3KFbfmzoFXiZeTCsrRHJS/+kNFk4hJoIIY0/PcGPyUaOBUsKzUTwyLCZ2QEetZKknEjJ/OT87wmVWGOFTalgQ8V39PpCQyZhoFtjMiMDbL3kz8z+slEF75KZdxAkzSxaIwERgUnv2Ph1wzCmJqCaGa21sxHRNNKNiUSjYEb/nlVdKu1zy35t1fVBrXeRxFdIJOURV56BI10B1qohaiSKFn9IreHHBenHfnY9FacPKZY/QHzucPO3SQjg==</latexit><latexit sha1_base64="GAtmG8O2aZ6K4vxZJ87TTAg6xSI=">AAAB8nicbVBNSwMxEM3Wr1q/qh69BItQL2W3CHosiuCxgv2Adi3ZNNuGZpMlmRXKsj/DiwdFvPprvPlvTNs9aOuDgcd7M8zMC2LBDbjut1NYW9/Y3Cpul3Z29/YPyodHbaMSTVmLKqF0NyCGCS5ZCzgI1o01I1EgWCeY3Mz8zhPThiv5ANOY+REZSR5ySsBKvdtB6j2m1fp5lg3KFbfmzoFXiZeTCsrRHJS/+kNFk4hJoIIY0/PcGPyUaOBUsKzUTwyLCZ2QEetZKknEjJ/OT87wmVWGOFTalgQ8V39PpCQyZhoFtjMiMDbL3kz8z+slEF75KZdxAkzSxaIwERgUnv2Ph1wzCmJqCaGa21sxHRNNKNiUSjYEb/nlVdKu1zy35t1fVBrXeRxFdIJOURV56BI10B1qohaiSKFn9IreHHBenHfnY9FacPKZY/QHzucPO3SQjg==</latexit><latexit sha1_base64="GAtmG8O2aZ6K4vxZJ87TTAg6xSI=">AAAB8nicbVBNSwMxEM3Wr1q/qh69BItQL2W3CHosiuCxgv2Adi3ZNNuGZpMlmRXKsj/DiwdFvPprvPlvTNs9aOuDgcd7M8zMC2LBDbjut1NYW9/Y3Cpul3Z29/YPyodHbaMSTVmLKqF0NyCGCS5ZCzgI1o01I1EgWCeY3Mz8zhPThiv5ANOY+REZSR5ySsBKvdtB6j2m1fp5lg3KFbfmzoFXiZeTCsrRHJS/+kNFk4hJoIIY0/PcGPyUaOBUsKzUTwyLCZ2QEetZKknEjJ/OT87wmVWGOFTalgQ8V39PpCQyZhoFtjMiMDbL3kz8z+slEF75KZdxAkzSxaIwERgUnv2Ph1wzCmJqCaGa21sxHRNNKNiUSjYEb/nlVdKu1zy35t1fVBrXeRxFdIJOURV56BI10B1qohaiSKFn9IreHHBenHfnY9FacPKZY/QHzucPO3SQjg==</latexit><latexit sha1_base64="GAtmG8O2aZ6K4vxZJ87TTAg6xSI=">AAAB8nicbVBNSwMxEM3Wr1q/qh69BItQL2W3CHosiuCxgv2Adi3ZNNuGZpMlmRXKsj/DiwdFvPprvPlvTNs9aOuDgcd7M8zMC2LBDbjut1NYW9/Y3Cpul3Z29/YPyodHbaMSTVmLKqF0NyCGCS5ZCzgI1o01I1EgWCeY3Mz8zhPThiv5ANOY+REZSR5ySsBKvdtB6j2m1fp5lg3KFbfmzoFXiZeTCsrRHJS/+kNFk4hJoIIY0/PcGPyUaOBUsKzUTwyLCZ2QEetZKknEjJ/OT87wmVWGOFTalgQ8V39PpCQyZhoFtjMiMDbL3kz8z+slEF75KZdxAkzSxaIwERgUnv2Ph1wzCmJqCaGa21sxHRNNKNiUSjYEb/nlVdKu1zy35t1fVBrXeRxFdIJOURV56BI10B1qohaiSKFn9IreHHBenHfnY9FacPKZY/QHzucPO3SQjg==</latexit>

E2(2)
<latexit sha1_base64="Xgcvz4N4leQprQcFRv/Iq2aKEZ8=">AAAB8nicbVBNSwMxEJ2tX7V+VT16CRahXspuEfRYFMFjBfsB7VqyabYNzSZLkhXKsj/DiwdFvPprvPlvTNs9aOuDgcd7M8zMC2LOtHHdb6ewtr6xuVXcLu3s7u0flA+P2lomitAWkVyqboA15UzQlmGG026sKI4CTjvB5Gbmd56o0kyKBzONqR/hkWAhI9hYqXc7SOuPabV+nmWDcsWtuXOgVeLlpAI5moPyV38oSRJRYQjHWvc8NzZ+ipVhhNOs1E80jTGZ4BHtWSpwRLWfzk/O0JlVhiiUypYwaK7+nkhxpPU0CmxnhM1YL3sz8T+vl5jwyk+ZiBNDBVksChOOjESz/9GQKUoMn1qCiWL2VkTGWGFibEolG4K3/PIqaddrnlvz7i8qjes8jiKcwClUwYNLaMAdNKEFBCQ8wyu8OcZ5cd6dj0VrwclnjuEPnM8fPP+Qjw==</latexit><latexit sha1_base64="Xgcvz4N4leQprQcFRv/Iq2aKEZ8=">AAAB8nicbVBNSwMxEJ2tX7V+VT16CRahXspuEfRYFMFjBfsB7VqyabYNzSZLkhXKsj/DiwdFvPprvPlvTNs9aOuDgcd7M8zMC2LOtHHdb6ewtr6xuVXcLu3s7u0flA+P2lomitAWkVyqboA15UzQlmGG026sKI4CTjvB5Gbmd56o0kyKBzONqR/hkWAhI9hYqXc7SOuPabV+nmWDcsWtuXOgVeLlpAI5moPyV38oSRJRYQjHWvc8NzZ+ipVhhNOs1E80jTGZ4BHtWSpwRLWfzk/O0JlVhiiUypYwaK7+nkhxpPU0CmxnhM1YL3sz8T+vl5jwyk+ZiBNDBVksChOOjESz/9GQKUoMn1qCiWL2VkTGWGFibEolG4K3/PIqaddrnlvz7i8qjes8jiKcwClUwYNLaMAdNKEFBCQ8wyu8OcZ5cd6dj0VrwclnjuEPnM8fPP+Qjw==</latexit><latexit sha1_base64="Xgcvz4N4leQprQcFRv/Iq2aKEZ8=">AAAB8nicbVBNSwMxEJ2tX7V+VT16CRahXspuEfRYFMFjBfsB7VqyabYNzSZLkhXKsj/DiwdFvPprvPlvTNs9aOuDgcd7M8zMC2LOtHHdb6ewtr6xuVXcLu3s7u0flA+P2lomitAWkVyqboA15UzQlmGG026sKI4CTjvB5Gbmd56o0kyKBzONqR/hkWAhI9hYqXc7SOuPabV+nmWDcsWtuXOgVeLlpAI5moPyV38oSRJRYQjHWvc8NzZ+ipVhhNOs1E80jTGZ4BHtWSpwRLWfzk/O0JlVhiiUypYwaK7+nkhxpPU0CmxnhM1YL3sz8T+vl5jwyk+ZiBNDBVksChOOjESz/9GQKUoMn1qCiWL2VkTGWGFibEolG4K3/PIqaddrnlvz7i8qjes8jiKcwClUwYNLaMAdNKEFBCQ8wyu8OcZ5cd6dj0VrwclnjuEPnM8fPP+Qjw==</latexit><latexit sha1_base64="Xgcvz4N4leQprQcFRv/Iq2aKEZ8=">AAAB8nicbVBNSwMxEJ2tX7V+VT16CRahXspuEfRYFMFjBfsB7VqyabYNzSZLkhXKsj/DiwdFvPprvPlvTNs9aOuDgcd7M8zMC2LOtHHdb6ewtr6xuVXcLu3s7u0flA+P2lomitAWkVyqboA15UzQlmGG026sKI4CTjvB5Gbmd56o0kyKBzONqR/hkWAhI9hYqXc7SOuPabV+nmWDcsWtuXOgVeLlpAI5moPyV38oSRJRYQjHWvc8NzZ+ipVhhNOs1E80jTGZ4BHtWSpwRLWfzk/O0JlVhiiUypYwaK7+nkhxpPU0CmxnhM1YL3sz8T+vl5jwyk+ZiBNDBVksChOOjESz/9GQKUoMn1qCiWL2VkTGWGFibEolG4K3/PIqaddrnlvz7i8qjes8jiKcwClUwYNLaMAdNKEFBCQ8wyu8OcZ5cd6dj0VrwclnjuEPnM8fPP+Qjw==</latexit>

E3(2)
<latexit sha1_base64="VbnbKe2MqAKFryC+dPBZjeK1KTc=">AAAB8nicbVBNSwMxEJ31s9avqkcvwSLUS9mtgh6LInisYD9gu5Zsmrah2WRJskJZ9md48aCIV3+NN/+NabsHbX0w8Hhvhpl5YcyZNq777aysrq1vbBa2its7u3v7pYPDlpaJIrRJJJeqE2JNORO0aZjhtBMriqOQ03Y4vpn67SeqNJPiwUxiGkR4KNiAEWys5N/20vPHtFI7y7JeqexW3RnQMvFyUoYcjV7pq9uXJImoMIRjrX3PjU2QYmUY4TQrdhNNY0zGeEh9SwWOqA7S2ckZOrVKHw2ksiUMmqm/J1IcaT2JQtsZYTPSi95U/M/zEzO4ClIm4sRQQeaLBglHRqLp/6jPFCWGTyzBRDF7KyIjrDAxNqWiDcFbfHmZtGpVz6169xfl+nUeRwGO4QQq4MEl1OEOGtAEAhKe4RXeHOO8OO/Ox7x1xclnjuAPnM8fPoqQkA==</latexit><latexit sha1_base64="VbnbKe2MqAKFryC+dPBZjeK1KTc=">AAAB8nicbVBNSwMxEJ31s9avqkcvwSLUS9mtgh6LInisYD9gu5Zsmrah2WRJskJZ9md48aCIV3+NN/+NabsHbX0w8Hhvhpl5YcyZNq777aysrq1vbBa2its7u3v7pYPDlpaJIrRJJJeqE2JNORO0aZjhtBMriqOQ03Y4vpn67SeqNJPiwUxiGkR4KNiAEWys5N/20vPHtFI7y7JeqexW3RnQMvFyUoYcjV7pq9uXJImoMIRjrX3PjU2QYmUY4TQrdhNNY0zGeEh9SwWOqA7S2ckZOrVKHw2ksiUMmqm/J1IcaT2JQtsZYTPSi95U/M/zEzO4ClIm4sRQQeaLBglHRqLp/6jPFCWGTyzBRDF7KyIjrDAxNqWiDcFbfHmZtGpVz6169xfl+nUeRwGO4QQq4MEl1OEOGtAEAhKe4RXeHOO8OO/Ox7x1xclnjuAPnM8fPoqQkA==</latexit><latexit sha1_base64="VbnbKe2MqAKFryC+dPBZjeK1KTc=">AAAB8nicbVBNSwMxEJ31s9avqkcvwSLUS9mtgh6LInisYD9gu5Zsmrah2WRJskJZ9md48aCIV3+NN/+NabsHbX0w8Hhvhpl5YcyZNq777aysrq1vbBa2its7u3v7pYPDlpaJIrRJJJeqE2JNORO0aZjhtBMriqOQ03Y4vpn67SeqNJPiwUxiGkR4KNiAEWys5N/20vPHtFI7y7JeqexW3RnQMvFyUoYcjV7pq9uXJImoMIRjrX3PjU2QYmUY4TQrdhNNY0zGeEh9SwWOqA7S2ckZOrVKHw2ksiUMmqm/J1IcaT2JQtsZYTPSi95U/M/zEzO4ClIm4sRQQeaLBglHRqLp/6jPFCWGTyzBRDF7KyIjrDAxNqWiDcFbfHmZtGpVz6169xfl+nUeRwGO4QQq4MEl1OEOGtAEAhKe4RXeHOO8OO/Ox7x1xclnjuAPnM8fPoqQkA==</latexit><latexit sha1_base64="VbnbKe2MqAKFryC+dPBZjeK1KTc=">AAAB8nicbVBNSwMxEJ31s9avqkcvwSLUS9mtgh6LInisYD9gu5Zsmrah2WRJskJZ9md48aCIV3+NN/+NabsHbX0w8Hhvhpl5YcyZNq777aysrq1vbBa2its7u3v7pYPDlpaJIrRJJJeqE2JNORO0aZjhtBMriqOQ03Y4vpn67SeqNJPiwUxiGkR4KNiAEWys5N/20vPHtFI7y7JeqexW3RnQMvFyUoYcjV7pq9uXJImoMIRjrX3PjU2QYmUY4TQrdhNNY0zGeEh9SwWOqA7S2ckZOrVKHw2ksiUMmqm/J1IcaT2JQtsZYTPSi95U/M/zEzO4ClIm4sRQQeaLBglHRqLp/6jPFCWGTyzBRDF7KyIjrDAxNqWiDcFbfHmZtGpVz6169xfl+nUeRwGO4QQq4MEl1OEOGtAEAhKe4RXeHOO8OO/Ox7x1xclnjuAPnM8fPoqQkA==</latexit>

Figure 5. Two transmissions scheme for circular-arc network topology hypergraph PICOD(t). ©IEEE
2019.
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Proof of Theorem 4. We propose an achievability scheme that uses two transmissions to satisfy all users

for all PICOD(1) instances whose network topology is a circular-arc hypergraph. The scheme consists

two steps.

Step 1

In a PICOD(1), the side information set for any user is a proper subset of the message set, i.e, there

exists at least one message not in the side information set. Therefore the network topology hypergraph

does not have isolated vertex for any PICOD(1). We only consider the edges that are not a subset of

the union of rest of the edges, i.e., for the set of edges E we consider, Ei * ∪Ej∈E ,j 6=iEj for any Ei ∈ E .

That is to say, every edge has at least one vertex that is not in all the other edges. The message that does

not satisfy this condition is not going to be considered in this achievability scheme. After applying the

condition, the remaining edges E still span all vertices, i.e., | ∪Ej∈E Ej| = n.

Recall that in circular-arc hypergraph there exists a cyclic order on the vertices u1, u2, . . . , un. Let

E1(1) be the edge with largest cardinality that is incident to u1. Assume without loss of generality,

E1(1) = {u1, . . . , ui} for some i ≥ 1. The algorithm runs as follows:

1. Check if there exists an edge E incident to ui+1 such that E1(1) ∩ E = ∅.

(a) If so, choose it to be E2(1) . Note that E will be unique since no E is a subset of the others.

(b) Otherwise, check the edges incident on next vertex ui+2.

2. After find Ej(1) , get back to 1) to check each vertex after Ej(1) to find E(j+1)(1) .

3. Iterate until un has been checked.
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The result of this step is a set of k edges E (1) = {E1(1) , . . . , Ek(1)}. (see Fig. Figure 5). By sending the

sum of the corresponding messages, the users that are “spanned” by these edges are satisfied, excluding

the users whose vertices are in E1(1) ∩Ek(1) when E1(1) ∩Ek(1) 6= ∅. This is because all edges in E (1) are

pairwise disjoint except E1(1) and Ek(1) . We then are left with the users whose corresponding vertices

are contained in (U \ (∪E(1)Ei(1))) ∪ (E1(1) ∩ Ek(1)).

Step 2

The users who are not satisfied by the first transmission are users whose side information contain

either all the chosen messages in Step 1, or bothw1(1) andwk(1) . In other words, they are the users who

lie “between” the edges, or in the intersection of the first and last edges, in E (1) chosen in Step 1.

For the unsatisfied users between Ei(1) ∈ E (1) and E(i−1)(1) ∈ E (1), there exists an edge Ej(2) that

includes all those users because | ∪Ej∈E Ej| = n. We find a set of edges E (2) = {E1(2) , . . . , E(k−1)(2)}

such that U \ (∪E(1)Ei(1)) ⊆ ∪Ej∈E(2)Ej (see Fig. Figure 5). Note that all edges in E (2) are pairwise

disjoint, since if Ej(2) ∩ Ej+1(2) 6= ∅ then we have Ej+1(1) ⊆ Ej(2) ∪ Ej+1(2) .

We send the sum
(∑k−1

j=1 wj(2)
)
+w1(1) as the second transmission. The users that are not satisfied

yet by the first transmission have all but one of the messages in {w1(2) , . . . , wk−1(2) , w1(1)} in their

side information sets. Therefore all the unsatisfied user after Step 1 can be satisfied by the second

transmission. All the users are satisfied with two transmissions.

This, together with the converse in Proposition 8, conclude Theorem 4.

3.8 Proof of Lemma 3

Proof of Lemma 3. Construct a x × y matrix W. wij = 1/|Bi| if vj ∈ Bi, otherwise wij = 0. Since

|Bi| 6= 0 for all i, matrix W can be constructed. Note that the sum of each row is one. We have the
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summation of all elements in W is
∑
i∈[x],j∈[y]wij =

∑
i∈[x](

∑
j∈[y]wij) = x, which is the number of

rows. The summation of all elements in W can also be obtained by adding up the summation of the

columns. Since there are y columns, there exists a column whose summation is no less than the average,

i.e., exists j such that

∑
k∈[x]

wkj =
∑

k:vj∈Bk

1

|Bk|
≥ x

y
. (3.19)

Let Bi be the smallest subset that contains vj. We have

∑
k:vj∈Bk

1

|Bk|
≤
∑

k:vj∈Bk

1

|Bi|
=
cj

|Bi|
. (3.20)

Therefore, for the pair (i, j) we have vj ∈ Bi and

cj

|Bi|
≥ x

y
. (3.21)



CHAPTER 4

DECENTRALIZED COMPLETE–S PICOD(T) AND PICOD(1) WITH

CIRCULAR-ARC NETWORK TOPOLOGY HYPERGRAPH

This chapter studies the decentralized setting of the PICOD which have been studied in Chapter

3. We show that when there are still pliability of choosing the desired message at some users, the

centralized bound can be achieved. Otherwise, strictly more number of transmissions are needed to

satisfy all users in the decentralized setting. The achievable scheme is also more complex, as we need

vector index code in order to achieve the optimality in d-PICOD.

This chapter has appeared in [36].

4.1 System Model

The difference between PICOD and d-PICOD systems is the absence of the centralized transmitter.

Due to this change, the encoding function will be different since it is now the function of the messages

that are in the side information of a particular user. We here list the difference to the centralized PICOD

channel model introducted in Chapter 3.

1. There are n ∈ N users but no central transmitter.

2. User ui knows the messages indexed by its side information setAi ⊂ [m], i ∈ [n]. The collection

of all side information sets is denoted as A := (A1, A2, . . . , An), which is assumed globally

known at all users.

73
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Note that for a d-PICOD problem to have a solution, one must have ∪ni=1Ai 6= Aj, ∀j ∈ [n], that

is, every user must have at least one unknown message in the side information set of another user

(so that the transmission of that message can satisfy said user).

3. The codeword xκ` :=
(
xκ`1 , xκ`2 , . . . , xκ`n

)
is eventually received by all users, where ` :=∑

j∈[n] `j is the total (normalized by the message length) code length and where

xκ`j := ENCj(WAj ,A), ∀j ∈ [n], (4.1)

is the encoding function at user uj.

Note that `j are not necessarily integers when f 6= 1, i.e., messages are split before encoding.

Also, the code is referred to a ‘scalar index code’ if the number of sub-message split f = 1, and it

is called ‘vector index code’ otherwise.

The goal is still to find the shortest code-length with vanishing-error, that is,

`∗ := inf{` : ∃ a reliable code such that lim
κ→∞ εκ = 0}. (4.2)

4.2 Main Results and Discussions

In the rest of the chapter we focus on two classes of d-PICOD: the complete–S d-PICOD(t), for a

given set S ⊆ [0 : m− t], and the circular-arc d-PICOD(1). These two classes have been studied in the

centralized setting in Chapter 3, their information theoretical optimalities are known.
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4.2.1 Complete–S d-PICOD(t) problems

Theorem 5 (Converse for the consecutive complete–S d-PICOD(t)). For the complete–S d-PICOD(t)

withm messages and S = [smin : smax] for some 0 ≤ smin ≤ smax ≤ m− t, the optimal code-length is

`∗ =


( m
m−t)

( m
m−t)−1

t, smax = smin = m− t,

min{smax + t,m− smin}, otherwise.

(4.3)

Theorem 6 (Converse for the complement-consecutive complete–S d-PICOD(t)). For the complete–S

d-PICOD(t) with m messages and S = [0 : m − t]\[smin : smax] = [0 : smin − 1] ∪ [smax + 1 : m − t]

for some 0 < smin ≤ smax < m− t, the optimal code-length is

`∗ = min{m, |S|+ 2t− 2}. (4.4)

Remark 8. The detailed proofs for Theorem 5 and 6 are in Sections 4.3.1 and 4.3.2, respectively. Here

are some interesting observations when we compare Theorem 5 and 6 with their centralized counterparts

in [37].

1. Surprisingly, Theorem 6 says that, for the same (m,S, t) the centralized and the decentralized

settings have the same optimal code-length; similarly for Theorem 5, except for the case smax =

smin = m − t. In other words, for most cases the d-PICOD(t) has the same optimal code-length

as the centralized PICOD(t) with the same parameters of (m,S, t). In other words, lacking a

powerful centralized transmitter does not reduce the code-length is these cases.
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2. Having the same optimal code-length does not necessarily imply that the same code is optimal

in both cases. In [37], we showed that for the centralized setting simple scalar linear codes are

optimal; in particular, the central transmitter either sends `∗ distinct messages one by one, or `∗

random linear combinations of all the messages. Clearly, the former strategy can be implemented

in a decentralized setting, but not the latter. In this latter case we show that we need more so-

phisticated coding scheme. In particular, our achievable scheme uses sparse Maximum Distance

Separable (MDS) codes. We also show that vector linear codes are necessary for optimality.

3. When compare the classical (centralized) PICOD and d-PICOD(t) with the same parameters

(m,S, t), we shall use the notation `∗,cen and `∗,dec, respectively, to distinguish the optimal code

lengths of the centralized and decentralized setting when necessary. For the situation without

ambiguity, we use `∗ to notate the optimal number of transmission of the d-PICOD(t), which is

the objective of this paper.

Among all d-PICOD(t) cases studied in this paper, the only case where the decentralized optimal

code-length `∗,dec is strictly larger than the corresponding centralized optimal code-length `∗,cen

is when

smin = smax = m− t.

This is the only studied case in centralized PICOD(t) where `∗,cen = t, which is a trivial converse

bound for the optimal number of transmissions. Since `∗,dec > t for all d-PICOD(t) (as what is
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sent by a user is not useful for that user), our results show that for the consecutive and complete

consecutive complete–S d-PICOD(t)

`∗,dec 6= `∗,cen if only if `∗,cen = t.

Interestingly, when `∗,cen = t, the d-PICOD problem looses its pliability. That is, it reduces

to a decentralized IC problem where every user needs to decode all messages not in its side

information set – a setting knows as data exchange problem. Our result recovers the previously

result from [11]. However, by using the recent result on the “MDS condition” in [26], we provide

a sufficient condition on the field size of the MDS code used by our achievable scheme, which was

not known before.

By Proposition 12 next we show that for m ≤ 5, the optimal number of transmissions for d-

PICOD(t) is different from the centralized PICOD(t) with the same parameter (m,S, t) if and

only if S = {s} andm = s+t. An intriguing open question is whether it is true for all complete–S

PICOD(t) that `∗,dec 6= `∗,cen if and only if S = {s} andm = s+ t.

We can extend Theorem 5 to some non-consecutive complete–S d-PICOD(t). The following cases

are some complete–S d-PICOD(t) that are not covered by either Theorem 5 or Theorem 6.

Proposition 9 (All users have side information size less or equal to bm−t
2 c). For the complete–S d-

PICOD(t) withm messages and smax := maxs∈S{s} ≤ bm−t
2 c, the optimal code length is `∗ = smax + t.

The proof can be found in Section 4.3.3.1.
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Proposition 10 (All users have side information size greater or equal to dm−t
2 e). For the complete–S

d-PICOD(t) with m messages, smin := mins∈S{s} ≥ dm−t
2 e and smin 6= m− t, the optimal code length

is `∗ = m− smin.

The proofs can be found in Section 4.3.3.2.

Proposition 11 (Users with side information size in a band around m−t
2 ). For the complete–S d-

PICOD(t) withm messages, let

δ := min
{
smax − d

m− t

2
e, bm− t

2
c− smin

}
, (4.5)

where smax := maxs∈S{s} and smin := mins∈S{s}. If
[
bm−t

2 c− δ : dm−t
2 e+ δ

]
⊆ S then the optimal

code length is `∗ = min{smax + t,m− smin}.

The proof can be found in Section 4.3.3.3.

Remark 9. Propositions 9, 10 and 11 show an interesting fact: for these settings the only relevant users

are those with side information sets of size closest to the “critical” middle one m−t
2 , or the ones in a

band
[
bm−t

2 c− δ : dm−t
2 e+ δ

]
around the “critical” middle one. The optimal code for the users in

these layers satisfies all the remaining users.

For the complete–S d-PICOD(t) problems withm ≤ 5 messages, we have the following:

Proposition 12. With m ≤ 5, if S = {s} and s = m − t, the optimal number of transmissions for

the complete–S d-PICOD(t) is `∗ = m
m−1 . Otherwise it is the same as the centralized complete–S

PICOD(t) with the same parameters (m,S, t) as derived in [37].
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The proof can be found in Section 4.3.4.

Remark 10. Proposition 12 is proved by checking all complete–S d-PICOD(t) problems. Some cases

have been covered by Theorem 6 and Propositions 9, 10, 11. Therefore, we only need to check the rest

of the cases that have not been covered. Unfortunately we have not been able to find a systematic way

to prove the converse for general m. So even our method can be applied to some cases where m > 5,

since the method is a case-by-case study, at this point we can not generalize our results to the general

complete–S d-PICOD(t).

4.2.2 Converse for d-PICOD(1) with circular-arc network topology hypergraph

Theorem 7. For a d-PICOD(1) with m messages and with circular-arc network topology hypergraph,

the optimal number of transmissions is `∗ = 2 if the network topology hypergraph does not contain a

1-factor sub-hypergraph; otherwise, `∗ = γ
γ−1 , where γ is the size of the largest 1-factor of the network

topology hypergraph.

The proof can be found in Section 4.4.

Remark 11. Similar to the centralized case, we show that for all d-PICOD(1) with m messages and

with circular-arc network topology hypergraph, the number of transmissions is at most 2. The difference

in the decentralized setting is that the optimal number of transmissions is always strictly greater than

t = 1. Therefore, for the case where the 1-factor exists, the optimal number of transmissions is a

rational number between 1 and 2. This is in contrast to the centralized setting, where the `∗ can only be

either 1 or 2.
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4.3 Decentralized Complete–S PICOD(t) Problems

In this section we show tight bounds for those complete–S d-PICOD(t) problems whose centralized

version was solved in Chapter 3.

4.3.1 Proof for Theorem 5

We proof the theorem by splitting it into various sub-cases:

1. smax + t ≤ m− smin;

2. t < m− smin < smax + t; and

3. smin = smax = m− t.

For the first two cases we have `∗,cen = min{smax + t,m − smin} < t. We study separately the cases

smax + t ≤ m− smin (Section 4.3.1.1) and t < m− smin < smax + t (Section 4.3.1.2). The third case we

have `∗,cen = t; in Section 4.3.1.3 we show that in such a case we have `∗,cen < `∗,dec = `∗ =
( m
m−t)

( m
m−t)−1

t,

where the trivial centralized converse bound is not tight anymore for the decentralized setting.

4.3.1.1 Case smax + t ≤ m− smin

For the achievable scheme we send smax + t messages, one at a time. This can be done in a decen-

tralized setting since each message is in the side information set of at least one user. Therefore, such

a user can transmit the message to the rest of the users in one channel use. This achievable scheme is

optimal since smax + t is the optimal code-length for the corresponding centralized setting. We thus

conclude `∗ = smax + t for smax + t ≤ m− smin.
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4.3.1.2 Case t < m− smin < smax + t

We show that in this case a decentralized scheme with m− smin transmissions can satisfy all users;

being m − smin the optimal code-length for the corresponding centralized setting, such a scheme is

thus optimal. In the centralized case, the optimal code involves m − smin linearly independent linear

combinations of all the messages, or alternatively a scalar linear MDS code; this is not possible in a

decentralized setting as no user knows all messages.

When describing achievable schemes, we treat each message as a symbol of κ bits in the finite field

F2κ . In other words, we use κ channel extensions. With an abuse of notation, we also let x` denote

the codeword of length ` symbols from the finite field F2κ , and where each symbol corresponds to a

transmission by a user. Therefore `∗ is the optimal number of transmitted symbol per message. Once

normalized by the channel extension number κ, it is equivalent to the optimal number of transmission

in the bit-pipe per bit in the definition of Section 2.1. A linear code for the decentralized system is thus

x` = Gwm, where G is the code generator matrix of size ` ×m and wm of length m is the messages

vector over F2κ .

For a decentralized linear code, we look for a code generator matrix G = [C, 0], where 0 is a zero

matrix of size `∗ × (m − smax − t) with `∗ = m − smin, and C is a matrix of size `∗ × (smax + t) that

satisfies two conditions:

1. [Condition 1] each row has at most smax non-zero elements, and

2. [Condition 2] all submatrices formed by any p columns, with t ≤ p ≤ `∗, have rank p / are full

rank.
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Since the encoding is done in a decentralized fashion, each row of G is the encoding vector used by

a user. Condition 1 holds because a user knows at most smax messages (in its side information set).

Condition 2 is for successful decoding at the users; once the contribution of the messages in the side

information set has been subtracted off from the received code, each user sees a subset of the remaining

messages encoded by a full rank submatrix of p columns; the range of p is because each user must

decode at least t messages, thus t ≤ p, and at most all messages in the code that are not in the side

information, thus p ≤ `∗.

Note that Condition 2 is equivalent to require all `∗ × `∗ submatrices of G to be full rank. This is

because any submatrix obtained by taking a subset of columns of a full rank square matrix is full rank.

We therefore only look at all submatrices of size `∗ × `∗ and require all of them to be full rank. This

condition is the so-called the MDS-property of a linear code of dimension `∗.

In an MDS code of dimension a, every a codewords are separable, i.e., linear independent. Thus

the code generation matrix of an MDS code of dimension `∗ satisfies the requirements we imposed here.

We now show that such an MDS code generation matrix exists for our problem setting. Specifically, we

show that the desired matrix G exists as a sparse MDS code generator matrix for sufficiently large κ,

which is the field size of the elements in matrix G.

For better explanation, we introduce the “zero pattern” matrix for the sparse MDS code generator

matrix. The zero pattern matrix Z ∈ {0, 1}(m−smin)×(smax+t) of C is a matrix whose entry is 1 if the

corresponding entry in C is 0, and 0 otherwise. Therefore, the ones in the zero pattern matrix indicate

the zero pattern in the corresponding matrix C. Consider the zero pattern matrix Z in Fig. Figure 6
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Z =
<latexit sha1_base64="QvZpiDM/h9HsMGN4Kh/EkfxO+SQ=">AAAB8nicbVBNS8NAFHypX7V+VT16WSyCp5KIoBeh4MWTVLC1mJay2W7apZtN2H0RSujP8OJBEa/+Gm/+GzdtDto6sDDMvMfOmyCRwqDrfjulldW19Y3yZmVre2d3r7p/0DZxqhlvsVjGuhNQw6VQvIUCJe8kmtMokPwhGF/n/sMT10bE6h4nCe9FdKhEKBhFK/ndiOIoCLPH6VW/WnPr7gxkmXgFqUGBZr/61R3ELI24QiapMb7nJtjLqEbBJJ9WuqnhCWVjOuS+pYpG3PSyWeQpObHKgISxtk8hmam/NzIaGTOJAjuZRzSLXi7+5/kphpe9TKgkRa7Y/KMwlQRjkt9PBkJzhnJiCWVa2KyEjaimDG1LFVuCt3jyMmmf1T237t2d1xq3RR1lOIJjOAUPLqABN9CEFjCI4Rle4c1B58V5dz7moyWn2DmEP3A+fwBY2JFR</latexit><latexit sha1_base64="QvZpiDM/h9HsMGN4Kh/EkfxO+SQ=">AAAB8nicbVBNS8NAFHypX7V+VT16WSyCp5KIoBeh4MWTVLC1mJay2W7apZtN2H0RSujP8OJBEa/+Gm/+GzdtDto6sDDMvMfOmyCRwqDrfjulldW19Y3yZmVre2d3r7p/0DZxqhlvsVjGuhNQw6VQvIUCJe8kmtMokPwhGF/n/sMT10bE6h4nCe9FdKhEKBhFK/ndiOIoCLPH6VW/WnPr7gxkmXgFqUGBZr/61R3ELI24QiapMb7nJtjLqEbBJJ9WuqnhCWVjOuS+pYpG3PSyWeQpObHKgISxtk8hmam/NzIaGTOJAjuZRzSLXi7+5/kphpe9TKgkRa7Y/KMwlQRjkt9PBkJzhnJiCWVa2KyEjaimDG1LFVuCt3jyMmmf1T237t2d1xq3RR1lOIJjOAUPLqABN9CEFjCI4Rle4c1B58V5dz7moyWn2DmEP3A+fwBY2JFR</latexit><latexit sha1_base64="QvZpiDM/h9HsMGN4Kh/EkfxO+SQ=">AAAB8nicbVBNS8NAFHypX7V+VT16WSyCp5KIoBeh4MWTVLC1mJay2W7apZtN2H0RSujP8OJBEa/+Gm/+GzdtDto6sDDMvMfOmyCRwqDrfjulldW19Y3yZmVre2d3r7p/0DZxqhlvsVjGuhNQw6VQvIUCJe8kmtMokPwhGF/n/sMT10bE6h4nCe9FdKhEKBhFK/ndiOIoCLPH6VW/WnPr7gxkmXgFqUGBZr/61R3ELI24QiapMb7nJtjLqEbBJJ9WuqnhCWVjOuS+pYpG3PSyWeQpObHKgISxtk8hmam/NzIaGTOJAjuZRzSLXi7+5/kphpe9TKgkRa7Y/KMwlQRjkt9PBkJzhnJiCWVa2KyEjaimDG1LFVuCt3jyMmmf1T237t2d1xq3RR1lOIJjOAUPLqABN9CEFjCI4Rle4c1B58V5dz7moyWn2DmEP3A+fwBY2JFR</latexit><latexit sha1_base64="QvZpiDM/h9HsMGN4Kh/EkfxO+SQ=">AAAB8nicbVBNS8NAFHypX7V+VT16WSyCp5KIoBeh4MWTVLC1mJay2W7apZtN2H0RSujP8OJBEa/+Gm/+GzdtDto6sDDMvMfOmyCRwqDrfjulldW19Y3yZmVre2d3r7p/0DZxqhlvsVjGuhNQw6VQvIUCJe8kmtMokPwhGF/n/sMT10bE6h4nCe9FdKhEKBhFK/ndiOIoCLPH6VW/WnPr7gxkmXgFqUGBZr/61R3ELI24QiapMb7nJtjLqEbBJJ9WuqnhCWVjOuS+pYpG3PSyWeQpObHKgISxtk8hmam/NzIaGTOJAjuZRzSLXi7+5/kphpe9TKgkRa7Y/KMwlQRjkt9PBkJzhnJiCWVa2KyEjaimDG1LFVuCt3jyMmmf1T237t2d1xq3RR1lOIJjOAUPLqABN9CEFjCI4Rle4c1B58V5dz7moyWn2DmEP3A+fwBY2JFR</latexit>

m � smin
<latexit sha1_base64="mjT4KHQ75rP88bYmsGOWOGx0158=">AAAB8XicbVDLSgNBEOyNrxhfUY9eBoPgxbArgp4k4MVjBPPAZAmzk0kyZGZ2mekVwpK/8OJBEa/+jTf/xskD0cSChqKqm+6uKJHCou9/ebmV1bX1jfxmYWt7Z3evuH9Qt3FqGK+xWMamGVHLpdC8hgIlbyaGUxVJ3oiGNxO/8ciNFbG+x1HCQ0X7WvQEo+ikB3VmO1lbCT3uFEt+2Z+C/JBgkZRgjmqn+NnuxixVXCOT1NpW4CcYZtSgYJKPC+3U8oSyIe3zlqOaKm7DbHrxmJw4pUt6sXGlkUzV3xMZVdaOVOQ6FcWBXfQm4n9eK8XeVZgJnaTINZst6qWSYEwm75OuMJyhHDlCmRHuVsIG1FCGLqSCC2Hp5WVSPy8Hfjm4uyhVrudx5OEIjuEUAriECtxCFWrAQMMTvMCrZ71n7817n7XmvPnMIfyB9/ENpFKQ3w==</latexit><latexit sha1_base64="mjT4KHQ75rP88bYmsGOWOGx0158=">AAAB8XicbVDLSgNBEOyNrxhfUY9eBoPgxbArgp4k4MVjBPPAZAmzk0kyZGZ2mekVwpK/8OJBEa/+jTf/xskD0cSChqKqm+6uKJHCou9/ebmV1bX1jfxmYWt7Z3evuH9Qt3FqGK+xWMamGVHLpdC8hgIlbyaGUxVJ3oiGNxO/8ciNFbG+x1HCQ0X7WvQEo+ikB3VmO1lbCT3uFEt+2Z+C/JBgkZRgjmqn+NnuxixVXCOT1NpW4CcYZtSgYJKPC+3U8oSyIe3zlqOaKm7DbHrxmJw4pUt6sXGlkUzV3xMZVdaOVOQ6FcWBXfQm4n9eK8XeVZgJnaTINZst6qWSYEwm75OuMJyhHDlCmRHuVsIG1FCGLqSCC2Hp5WVSPy8Hfjm4uyhVrudx5OEIjuEUAriECtxCFWrAQMMTvMCrZ71n7817n7XmvPnMIfyB9/ENpFKQ3w==</latexit><latexit sha1_base64="mjT4KHQ75rP88bYmsGOWOGx0158=">AAAB8XicbVDLSgNBEOyNrxhfUY9eBoPgxbArgp4k4MVjBPPAZAmzk0kyZGZ2mekVwpK/8OJBEa/+jTf/xskD0cSChqKqm+6uKJHCou9/ebmV1bX1jfxmYWt7Z3evuH9Qt3FqGK+xWMamGVHLpdC8hgIlbyaGUxVJ3oiGNxO/8ciNFbG+x1HCQ0X7WvQEo+ikB3VmO1lbCT3uFEt+2Z+C/JBgkZRgjmqn+NnuxixVXCOT1NpW4CcYZtSgYJKPC+3U8oSyIe3zlqOaKm7DbHrxmJw4pUt6sXGlkUzV3xMZVdaOVOQ6FcWBXfQm4n9eK8XeVZgJnaTINZst6qWSYEwm75OuMJyhHDlCmRHuVsIG1FCGLqSCC2Hp5WVSPy8Hfjm4uyhVrudx5OEIjuEUAriECtxCFWrAQMMTvMCrZ71n7817n7XmvPnMIfyB9/ENpFKQ3w==</latexit><latexit sha1_base64="mjT4KHQ75rP88bYmsGOWOGx0158=">AAAB8XicbVDLSgNBEOyNrxhfUY9eBoPgxbArgp4k4MVjBPPAZAmzk0kyZGZ2mekVwpK/8OJBEa/+jTf/xskD0cSChqKqm+6uKJHCou9/ebmV1bX1jfxmYWt7Z3evuH9Qt3FqGK+xWMamGVHLpdC8hgIlbyaGUxVJ3oiGNxO/8ciNFbG+x1HCQ0X7WvQEo+ikB3VmO1lbCT3uFEt+2Z+C/JBgkZRgjmqn+NnuxixVXCOT1NpW4CcYZtSgYJKPC+3U8oSyIe3zlqOaKm7DbHrxmJw4pUt6sXGlkUzV3xMZVdaOVOQ6FcWBXfQm4n9eK8XeVZgJnaTINZst6qWSYEwm75OuMJyhHDlCmRHuVsIG1FCGLqSCC2Hp5WVSPy8Hfjm4uyhVrudx5OEIjuEUAriECtxCFWrAQMMTvMCrZ71n7817n7XmvPnMIfyB9/ENpFKQ3w==</latexit>

smax + t
<latexit sha1_base64="9+zW7kqmHhuXYEIbWR6Pm31is/0=">AAAB8nicbVDJSgNBEO2JW4xb1KOXxiAIQpgRQU8S8OIxgllgMoSeTk/SpJehu0YMQz7DiwdFvPo13vwbOwuiiQ8KHu9VUVUvTgW34PtfXmFldW19o7hZ2tre2d0r7x80rc4MZQ2qhTbtmFgmuGIN4CBYOzWMyFiwVjy8mfitB2Ys1+oeRimLJOkrnnBKwEmh7eYdSR7H+Ay65Ypf9afAPyRYJBU0R71b/uz0NM0kU0AFsTYM/BSinBjgVLBxqZNZlhI6JH0WOqqIZDbKpyeP8YlTejjRxpUCPFV/T+REWjuSseuUBAZ20ZuI/3lhBslVlHOVZsAUnS1KMoFB48n/uMcNoyBGjhBquLsV0wExhIJLqeRCWHp5mTTPq4FfDe4uKrXreRxFdISO0SkK0CWqoVtURw1EkUZP6AW9euA9e2/e+6y14M1nDtEfeB/fCd+REA==</latexit><latexit sha1_base64="9+zW7kqmHhuXYEIbWR6Pm31is/0=">AAAB8nicbVDJSgNBEO2JW4xb1KOXxiAIQpgRQU8S8OIxgllgMoSeTk/SpJehu0YMQz7DiwdFvPo13vwbOwuiiQ8KHu9VUVUvTgW34PtfXmFldW19o7hZ2tre2d0r7x80rc4MZQ2qhTbtmFgmuGIN4CBYOzWMyFiwVjy8mfitB2Ys1+oeRimLJOkrnnBKwEmh7eYdSR7H+Ay65Ypf9afAPyRYJBU0R71b/uz0NM0kU0AFsTYM/BSinBjgVLBxqZNZlhI6JH0WOqqIZDbKpyeP8YlTejjRxpUCPFV/T+REWjuSseuUBAZ20ZuI/3lhBslVlHOVZsAUnS1KMoFB48n/uMcNoyBGjhBquLsV0wExhIJLqeRCWHp5mTTPq4FfDe4uKrXreRxFdISO0SkK0CWqoVtURw1EkUZP6AW9euA9e2/e+6y14M1nDtEfeB/fCd+REA==</latexit><latexit sha1_base64="9+zW7kqmHhuXYEIbWR6Pm31is/0=">AAAB8nicbVDJSgNBEO2JW4xb1KOXxiAIQpgRQU8S8OIxgllgMoSeTk/SpJehu0YMQz7DiwdFvPo13vwbOwuiiQ8KHu9VUVUvTgW34PtfXmFldW19o7hZ2tre2d0r7x80rc4MZQ2qhTbtmFgmuGIN4CBYOzWMyFiwVjy8mfitB2Ys1+oeRimLJOkrnnBKwEmh7eYdSR7H+Ay65Ypf9afAPyRYJBU0R71b/uz0NM0kU0AFsTYM/BSinBjgVLBxqZNZlhI6JH0WOqqIZDbKpyeP8YlTejjRxpUCPFV/T+REWjuSseuUBAZ20ZuI/3lhBslVlHOVZsAUnS1KMoFB48n/uMcNoyBGjhBquLsV0wExhIJLqeRCWHp5mTTPq4FfDe4uKrXreRxFdISO0SkK0CWqoVtURw1EkUZP6AW9euA9e2/e+6y14M1nDtEfeB/fCd+REA==</latexit><latexit sha1_base64="9+zW7kqmHhuXYEIbWR6Pm31is/0=">AAAB8nicbVDJSgNBEO2JW4xb1KOXxiAIQpgRQU8S8OIxgllgMoSeTk/SpJehu0YMQz7DiwdFvPo13vwbOwuiiQ8KHu9VUVUvTgW34PtfXmFldW19o7hZ2tre2d0r7x80rc4MZQ2qhTbtmFgmuGIN4CBYOzWMyFiwVjy8mfitB2Ys1+oeRimLJOkrnnBKwEmh7eYdSR7H+Ay65Ypf9afAPyRYJBU0R71b/uz0NM0kU0AFsTYM/BSinBjgVLBxqZNZlhI6JH0WOqqIZDbKpyeP8YlTejjRxpUCPFV/T+REWjuSseuUBAZ20ZuI/3lhBslVlHOVZsAUnS1KMoFB48n/uMcNoyBGjhBquLsV0wExhIJLqeRCWHp5mTTPq4FfDe4uKrXreRxFdISO0SkK0CWqoVtURw1EkUZP6AW9euA9e2/e+6y14M1nDtEfeB/fCd+REA==</latexit>

0 . . . 0 1 . . . 1 1
<latexit sha1_base64="C5BQI4/JmoIQKi9RxApwdNo0e1I=">AAACA3icbZDLSgMxFIbP1Futt1F3ugkWwVWZiKDLohuXFewF2qFk0kwbmskMSUYoQ8GNr+LGhSJufQl3vo2ZdhbaeiDk4z/nJzl/kAiujed9O6WV1bX1jfJmZWt7Z3fP3T9o6ThVlDVpLGLVCYhmgkvWNNwI1kkUI1EgWDsY3+T99gNTmsfy3kwS5kdkKHnIKTFW6rtHyEO9QWx0fiNcMM6571a9mjcrtAy4gCoU1ei7X9ZN04hJQwXRuou9xPgZUYZTwaaVXqpZQuiYDFnXoiQR034222GKTq0yQGGs7JEGzdTfjoxEWk+iwE5GxIz0Yi8X/+t1UxNe+RmXSWqYpPOHwlQgE6M8EDTgilEjJhYIVdz+FdERUYQaG1vFhoAXV16G1nkNezV8d1GtXxdxlOEYTuAMMFxCHW6hAU2g8AjP8ApvzpPz4rw7H/PRklN4DuFPOZ8/LZiUpg==</latexit><latexit sha1_base64="C5BQI4/JmoIQKi9RxApwdNo0e1I=">AAACA3icbZDLSgMxFIbP1Futt1F3ugkWwVWZiKDLohuXFewF2qFk0kwbmskMSUYoQ8GNr+LGhSJufQl3vo2ZdhbaeiDk4z/nJzl/kAiujed9O6WV1bX1jfJmZWt7Z3fP3T9o6ThVlDVpLGLVCYhmgkvWNNwI1kkUI1EgWDsY3+T99gNTmsfy3kwS5kdkKHnIKTFW6rtHyEO9QWx0fiNcMM6571a9mjcrtAy4gCoU1ei7X9ZN04hJQwXRuou9xPgZUYZTwaaVXqpZQuiYDFnXoiQR034222GKTq0yQGGs7JEGzdTfjoxEWk+iwE5GxIz0Yi8X/+t1UxNe+RmXSWqYpPOHwlQgE6M8EDTgilEjJhYIVdz+FdERUYQaG1vFhoAXV16G1nkNezV8d1GtXxdxlOEYTuAMMFxCHW6hAU2g8AjP8ApvzpPz4rw7H/PRklN4DuFPOZ8/LZiUpg==</latexit><latexit sha1_base64="C5BQI4/JmoIQKi9RxApwdNo0e1I=">AAACA3icbZDLSgMxFIbP1Futt1F3ugkWwVWZiKDLohuXFewF2qFk0kwbmskMSUYoQ8GNr+LGhSJufQl3vo2ZdhbaeiDk4z/nJzl/kAiujed9O6WV1bX1jfJmZWt7Z3fP3T9o6ThVlDVpLGLVCYhmgkvWNNwI1kkUI1EgWDsY3+T99gNTmsfy3kwS5kdkKHnIKTFW6rtHyEO9QWx0fiNcMM6571a9mjcrtAy4gCoU1ei7X9ZN04hJQwXRuou9xPgZUYZTwaaVXqpZQuiYDFnXoiQR034222GKTq0yQGGs7JEGzdTfjoxEWk+iwE5GxIz0Yi8X/+t1UxNe+RmXSWqYpPOHwlQgE6M8EDTgilEjJhYIVdz+FdERUYQaG1vFhoAXV16G1nkNezV8d1GtXxdxlOEYTuAMMFxCHW6hAU2g8AjP8ApvzpPz4rw7H/PRklN4DuFPOZ8/LZiUpg==</latexit><latexit sha1_base64="C5BQI4/JmoIQKi9RxApwdNo0e1I=">AAACA3icbZDLSgMxFIbP1Futt1F3ugkWwVWZiKDLohuXFewF2qFk0kwbmskMSUYoQ8GNr+LGhSJufQl3vo2ZdhbaeiDk4z/nJzl/kAiujed9O6WV1bX1jfJmZWt7Z3fP3T9o6ThVlDVpLGLVCYhmgkvWNNwI1kkUI1EgWDsY3+T99gNTmsfy3kwS5kdkKHnIKTFW6rtHyEO9QWx0fiNcMM6571a9mjcrtAy4gCoU1ei7X9ZN04hJQwXRuou9xPgZUYZTwaaVXqpZQuiYDFnXoiQR034222GKTq0yQGGs7JEGzdTfjoxEWk+iwE5GxIz0Yi8X/+t1UxNe+RmXSWqYpPOHwlQgE6M8EDTgilEjJhYIVdz+FdERUYQaG1vFhoAXV16G1nkNezV8d1GtXxdxlOEYTuAMMFxCHW6hAU2g8AjP8ApvzpPz4rw7H/PRklN4DuFPOZ8/LZiUpg==</latexit>

1 0 . . . 0 1 . . . 1
<latexit sha1_base64="ExbkkU5/RDgIVgXr414XC+Adjkc=">AAACA3icbVDLSgMxFL1TX7W+Rt3pJlgEV2Uigi6LblxWsA9oh5JJM21oJjMkGaEMBTf+ihsXirj1J9z5N2baWWjrgZDDOfeQ3BMkgmvjed9OaWV1bX2jvFnZ2t7Z3XP3D1o6ThVlTRqLWHUCopngkjUNN4J1EsVIFAjWDsY3ud9+YErzWN6bScL8iAwlDzklxkp99wijHvJQbxAbnd8IFxyjvlv1at4MaJngglShQKPvftkoTSMmDRVE6y72EuNnRBlOBZtWeqlmCaFjMmRdSyWJmPaz2Q5TdGqVAQpjZY80aKb+TmQk0noSBXYyImakF71c/M/rpia88jMuk9QwSecPhalAJkZ5IWjAFaNGTCwhVHH7V0RHRBFqbG0VWwJeXHmZtM5r2Kvhu4tq/bqoowzHcAJngOES6nALDWgChUd4hld4c56cF+fd+ZiPlpwicwh/4Hz+ACnvlKY=</latexit><latexit sha1_base64="ExbkkU5/RDgIVgXr414XC+Adjkc=">AAACA3icbVDLSgMxFL1TX7W+Rt3pJlgEV2Uigi6LblxWsA9oh5JJM21oJjMkGaEMBTf+ihsXirj1J9z5N2baWWjrgZDDOfeQ3BMkgmvjed9OaWV1bX2jvFnZ2t7Z3XP3D1o6ThVlTRqLWHUCopngkjUNN4J1EsVIFAjWDsY3ud9+YErzWN6bScL8iAwlDzklxkp99wijHvJQbxAbnd8IFxyjvlv1at4MaJngglShQKPvftkoTSMmDRVE6y72EuNnRBlOBZtWeqlmCaFjMmRdSyWJmPaz2Q5TdGqVAQpjZY80aKb+TmQk0noSBXYyImakF71c/M/rpia88jMuk9QwSecPhalAJkZ5IWjAFaNGTCwhVHH7V0RHRBFqbG0VWwJeXHmZtM5r2Kvhu4tq/bqoowzHcAJngOES6nALDWgChUd4hld4c56cF+fd+ZiPlpwicwh/4Hz+ACnvlKY=</latexit><latexit sha1_base64="ExbkkU5/RDgIVgXr414XC+Adjkc=">AAACA3icbVDLSgMxFL1TX7W+Rt3pJlgEV2Uigi6LblxWsA9oh5JJM21oJjMkGaEMBTf+ihsXirj1J9z5N2baWWjrgZDDOfeQ3BMkgmvjed9OaWV1bX2jvFnZ2t7Z3XP3D1o6ThVlTRqLWHUCopngkjUNN4J1EsVIFAjWDsY3ud9+YErzWN6bScL8iAwlDzklxkp99wijHvJQbxAbnd8IFxyjvlv1at4MaJngglShQKPvftkoTSMmDRVE6y72EuNnRBlOBZtWeqlmCaFjMmRdSyWJmPaz2Q5TdGqVAQpjZY80aKb+TmQk0noSBXYyImakF71c/M/rpia88jMuk9QwSecPhalAJkZ5IWjAFaNGTCwhVHH7V0RHRBFqbG0VWwJeXHmZtM5r2Kvhu4tq/bqoowzHcAJngOES6nALDWgChUd4hld4c56cF+fd+ZiPlpwicwh/4Hz+ACnvlKY=</latexit><latexit sha1_base64="ExbkkU5/RDgIVgXr414XC+Adjkc=">AAACA3icbVDLSgMxFL1TX7W+Rt3pJlgEV2Uigi6LblxWsA9oh5JJM21oJjMkGaEMBTf+ihsXirj1J9z5N2baWWjrgZDDOfeQ3BMkgmvjed9OaWV1bX2jvFnZ2t7Z3XP3D1o6ThVlTRqLWHUCopngkjUNN4J1EsVIFAjWDsY3ud9+YErzWN6bScL8iAwlDzklxkp99wijHvJQbxAbnd8IFxyjvlv1at4MaJngglShQKPvftkoTSMmDRVE6y72EuNnRBlOBZtWeqlmCaFjMmRdSyWJmPaz2Q5TdGqVAQpjZY80aKb+TmQk0noSBXYyImakF71c/M/rpia88jMuk9QwSecPhalAJkZ5IWjAFaNGTCwhVHH7V0RHRBFqbG0VWwJeXHmZtM5r2Kvhu4tq/bqoowzHcAJngOES6nALDWgChUd4hld4c56cF+fd+ZiPlpwicwh/4Hz+ACnvlKY=</latexit>

 smax !
<latexit sha1_base64="cQ55z1JYREa9tesbZF1eGt+XB7M=">AAACCHicdZBLSwMxFIUzPmt9jbp0YbAIrsqMiLosuHFZwT6gM5RMmmlDk8yQ3FHL0KUb/4obF4q49Se489+YPoT6OhA4fOdekpwoFdyA5304c/MLi0vLhZXi6tr6xqa7tV03SaYpq9FEJLoZEcMEV6wGHARrppoRGQnWiPrno7xxzbThibqCQcpCSbqKx5wSsKjt7gWCxUC0Tm6waeeBJLdDHGje7U1g2y35ZW8s7P0yX1EJTVVtu+9BJ6GZZAqoIMa0fC+FMCcaOBVsWAwyw1JC+6TLWtYqIpkJ8/FHhvjAkg6OE22PAjymsxs5kcYMZGQnJYGe+ZmN4F9ZK4P4LMy5SjNgik4uijOBIcGjVnCHa0ZBDKwhVHP7Vkx7RBMKtrvibAn/m/pR2ffK/uVxqXIyraOAdtE+OkQ+OkUVdIGqqIYoukMP6Ak9O/fOo/PivE5G55zpzg76JuftE699mlk=</latexit><latexit sha1_base64="cQ55z1JYREa9tesbZF1eGt+XB7M=">AAACCHicdZBLSwMxFIUzPmt9jbp0YbAIrsqMiLosuHFZwT6gM5RMmmlDk8yQ3FHL0KUb/4obF4q49Se489+YPoT6OhA4fOdekpwoFdyA5304c/MLi0vLhZXi6tr6xqa7tV03SaYpq9FEJLoZEcMEV6wGHARrppoRGQnWiPrno7xxzbThibqCQcpCSbqKx5wSsKjt7gWCxUC0Tm6waeeBJLdDHGje7U1g2y35ZW8s7P0yX1EJTVVtu+9BJ6GZZAqoIMa0fC+FMCcaOBVsWAwyw1JC+6TLWtYqIpkJ8/FHhvjAkg6OE22PAjymsxs5kcYMZGQnJYGe+ZmN4F9ZK4P4LMy5SjNgik4uijOBIcGjVnCHa0ZBDKwhVHP7Vkx7RBMKtrvibAn/m/pR2ffK/uVxqXIyraOAdtE+OkQ+OkUVdIGqqIYoukMP6Ak9O/fOo/PivE5G55zpzg76JuftE699mlk=</latexit><latexit sha1_base64="cQ55z1JYREa9tesbZF1eGt+XB7M=">AAACCHicdZBLSwMxFIUzPmt9jbp0YbAIrsqMiLosuHFZwT6gM5RMmmlDk8yQ3FHL0KUb/4obF4q49Se489+YPoT6OhA4fOdekpwoFdyA5304c/MLi0vLhZXi6tr6xqa7tV03SaYpq9FEJLoZEcMEV6wGHARrppoRGQnWiPrno7xxzbThibqCQcpCSbqKx5wSsKjt7gWCxUC0Tm6waeeBJLdDHGje7U1g2y35ZW8s7P0yX1EJTVVtu+9BJ6GZZAqoIMa0fC+FMCcaOBVsWAwyw1JC+6TLWtYqIpkJ8/FHhvjAkg6OE22PAjymsxs5kcYMZGQnJYGe+ZmN4F9ZK4P4LMy5SjNgik4uijOBIcGjVnCHa0ZBDKwhVHP7Vkx7RBMKtrvibAn/m/pR2ffK/uVxqXIyraOAdtE+OkQ+OkUVdIGqqIYoukMP6Ak9O/fOo/PivE5G55zpzg76JuftE699mlk=</latexit><latexit sha1_base64="cQ55z1JYREa9tesbZF1eGt+XB7M=">AAACCHicdZBLSwMxFIUzPmt9jbp0YbAIrsqMiLosuHFZwT6gM5RMmmlDk8yQ3FHL0KUb/4obF4q49Se489+YPoT6OhA4fOdekpwoFdyA5304c/MLi0vLhZXi6tr6xqa7tV03SaYpq9FEJLoZEcMEV6wGHARrppoRGQnWiPrno7xxzbThibqCQcpCSbqKx5wSsKjt7gWCxUC0Tm6waeeBJLdDHGje7U1g2y35ZW8s7P0yX1EJTVVtu+9BJ6GZZAqoIMa0fC+FMCcaOBVsWAwyw1JC+6TLWtYqIpkJ8/FHhvjAkg6OE22PAjymsxs5kcYMZGQnJYGe+ZmN4F9ZK4P4LMy5SjNgik4uijOBIcGjVnCHa0ZBDKwhVHP7Vkx7RBMKtrvibAn/m/pR2ffK/uVxqXIyraOAdtE+OkQ+OkUVdIGqqIYoukMP6Ak9O/fOo/PivE5G55zpzg76JuftE699mlk=</latexit>

Figure 6. Zero pattern matrix Z. ©IEEE 2019.

constructed as following

zij =


0, for 2 ≤ (i+ j) (mod (smax + t)) ≤ smax + 1,

1, otherwise.

Let Zi := {j ∈ [smax + t] : zij = 1} be the set of the one entries in the ith row, |Zi| = t, ∀i ∈ [m− smin].

Since smax + t > m− smin, we have Zi 6= Zj, i 6= j. Therefore, all Zi can be seen as different “shifted”

versions of Z1.

For a set P ⊆ [m−smin], there are |P|−1 “shifts” in ∩i∈PZi, which reduce the size of the intersection

by at least |P|− 1. We then have the inequality

|P|+ | ∩i∈P Zi| ≤ |P|+ t− (|P|− 1) = t+ 1 ≤ `∗,
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which is known as the “MDS condition” (which is sufficient for the existence of an MDS generator

matrix over some finite field [26, Eq. ∗]). Therefore, there exists a matrix C that satisfies conditions C1

and C2 with the specified zero pattern Z. By [26, Thm. 1.2], a finite field of sizem−smin +smax + t−1

suffices. Since G satisfies condition C1, this code thus can be generated in a distributed way when the

message size κ ≥ m− smin + smax + t− 1.

After receiving the codeword of length `∗ = m− smin, user ui subtracts off the messages in its side

information set Ai and is left with a linear code for the messagesW[smax+t]\Ai . Condition C2 guarantees

that all user can decode at least t messages that are not in their side information. Therefore all users can

be satisfied by this code of lengthm− smin. This concludes the proof for this case.

4.3.1.3 Case smin = smax = m− t

Let s := smin = smax = m − t. This is the case where the trivial centralized converse bound

`∗,cen = min{m−s, s+t} = t ≤ `∗ is not tight, and for which we want to show `∗ = (ms )
(ms )−1

t > t = `∗,cen.

4.3.1.3.1 Converse

An intuitive explanation for the converse proof is as follows. The n :=
(
m
s

)
users in the system are

symmetric, i.e., by relabeling the messages we can swap any pair of users. Therefore all users have the

same “chance” 1/n to be the one who sends part of the overall codeword x`. In the decentralized setting,

the part of x` sent by a user is generated based on its own side information set, and such a transmission

cannot benefit the transmitting user. Therefore, at most a fraction n−1
n of x` can be useful for each user.

Since each transmission can convey at most one message, in order to let each user decode at least t

messages, the total number of transmissions satisfies n−1n ` ≥ t.
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We next provide the formal proof for the converse. Let `iκ be the number of bits sent by user

ui, i ∈ [n], and xκ` := (xκ`1 , xκ`2 , . . . , xκ`n) be the overall codeword used for decoding by the users,

with ` :=
∑
i∈[n] `i. With an abuse of notation, let x(`−`i)κ indicate the bits in the transmit codeword x`κ

that were not sent by user ui, i ∈ [n].

By Fano’s inequality, with limκ→∞ εκ = 0, we have

`κεκ ≥ H(WDi |x
`κ,WAi) = H(WDi |x

(`−`i)κ,WAi)

= H(WDi |WAi) − I(WDi ; x
(`−`i)κ|WAi)

= H(WDi) − I(WDi ; x
(`−`i)κ|WAi).

Therefore, for ∀i ∈ [n], we have

(`− `i)κ ≥ H(x(`−`i)κ) ≥ H(x(`−`i)κ|WDi)

≥ I(WDi ; x
(`−`i)κ|WAi)

≥ H(WDi) − `κεκ

≥ tκ− `κεκ,

and therefore, for large enough κ, by summing the above inequalities we obtain the converse bound

` ≥ nt

n− 1
=

(
m
s

)(
m
s

)
− 1

t. (4.6)
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4.3.1.3.2 Achievability

The achievability involves message splitting and random linear coding. i.e., we use a vector linear

code, in contrast to the scalar linear code used in Section 4.3.1.2.

We split each message into f sub-messages, wi = (wi,1, wi,2, . . . , wi,f), i ∈ [m]. The size of the

sub-message is κ/f bits, which is assumed to be an integer. The parameter f will be appropriately

chosen later. Each sub-message is thus on the finite field F2κ/f . Each user uses `′ = f`
n sub-timeslots

(as the messages are split into f pieces, the time slots are split into f pieces as well) to transmit. In each

sub-timeslot the user transmits a linear combination of all the sub-messages it has in its side information

set, i.e., at sub-timeslot h, user ui transmits
∑
g∈Ai,j∈[f] agj(h)wg,j, where the coefficients agj(h) are on

F2κ/f . The linear code has generator matrix G, which consists of agj(h) for g ∈ [m], j ∈ [f], h ∈ [f`],

is of size n`′ ×mf. Each row of G has at most sf nonzero entries.

For each user, among all n`′ sub-timeslots, only (n− 1)`′ are useful for its decoding since the other

`′ sub-timeslots are used for transmission by itself. Therefore, we choose `′ and f such that

(n− 1)`′ = (m− s)f, n =

(
m

s

)
, `′ =

f`

n
.

For each user, the submatrix of G corresponding to what all other users have sent needs to be a full

rank square matrix of size (n − 1)`′ = (m − s)f so that each user can successfully decode. In other
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words, every submatrix of G formed by (m − s)f columns must be full rank. Similarly to the proof in

Section 4.3.1.2, the “MDS condition” on its zero-pattern matrix is as follows

|P|+ | ∩i∈P Zi| ≤ |P|+

(
(m− s) − (d |P|

`′
e− 1)

)
f

≤ n`′ + |P|− `′ −
|P|− `′

`′
f

≤ n`′.

Therefore the proposed code generator matrix G exists for some large enough κ. By this scheme each

user decodes all the (m− s)f sub-messages that are not in its side information set.

The total number of transmissions by this scheme is

` =
`′

f
n =

1

f

f(m− s)

n− 1
n = t

n

n− 1
, (4.7)

which coincides with the converse bound in (Equation 4.6). Therefore the achievability scheme is infor-

mation theoretically optimal.

Remark 12. Note that in this case, the d-PICOD(t) becomes a multicast decentralized IC problem,

which is a special case of the data exchange problem [11]. Our results recover the results of the data

exchange problem for this specific setting. The converse proof we have in Section 4.3.1.3.1 follows

the same idea of the converse bounds in Section [11] (i.e., cut-set bound). Our achievability proof in

Section 4.3.1.3.2, however, uses the “MDS condition” idea in Section 4.3.1.2. By the result on the “MDS
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TABLE II

FIRST 6 TRANSMISSIONS FORM = 4, S = t = 2.©IEEE 2019.
# Tx Code u1 decodes u2 decodes u3 decodes u4 decodes u5 decodes u6 decodes
1 u1 w111 ⊕w121 ∅ w121 w121 w111 w111 w111 +w

1
21

2 u2 w112 ⊕w132 w132 ∅ w132 w112 w112 +w
1
32 w112

3 u3 w113 ⊕w143 w143 w143 ∅ w113 +w
1
43 w113 w113

4 u4 w122 ⊕w131 w131 w122 w122 +w
1
31 ∅ w131 w122

5 u5 w123 ⊕w141 w141 w123 +w
1
41 w123 w141 ∅ w123

6 u6 w133 ⊕w142 w133 +w
1
42 w142 w133 w142 w133 ∅

condition” in [26], we can provide a sufficient condition on field size of the code and message size κ,

which was not studied in [11].

However, the scheme proposed in Section 4.3.1.3.2 can be suboptimal in terms the required κ. Con-

sider the case m = 4, s = t = 2 as an example. The proposed scheme in Section 4.3.1.3.2 splits each

message into 5 sub-messages and the sufficient field size for the sub-message is 31. In other words, we

have κ ≥ 5dlog 31e = 25. However, we show that there is an optimal linear code requiring smaller κ.

Let us label the users asA1 = {1, 2}, A2 = {1, 3}, A3 = {1, 4}, A4 = {2, 3}, A5 = {2, 4}, A6 = {3, 4}.

Split the messages as wi = {whij : i ∈ [4], j ∈ [3], h ∈ [5]} and whij ∈ {0, 1}. Therefore each message

wi, i ∈ [m] is 15 bits.

We list the first 6 (i.e., for h = 1; the same can be done for all h ∈ [5]) transmissions in Table II.

After the first 30 transmissions (for all h ∈ [5]), we have the last 6 transmissions shown in Table III

and Table IV. In total this scheme uses 36 transmissions. Note for the first 30 transmissions, after each

group of 6 transmissions, each user can decode 4 sub-messages and obtain a sum of 2 sub-messages that

it will still need to decode. Among the last 6 transmissions, each transmission allows 5 users, which are
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TABLE III

LAST 6 TRANSMISSIONS FORM = 4, S = t = 2, CODEWORDS AND DECODING MESSAGES AT
USERS U1, U2, U3. ©IEEE 2019.

# Tx Code u1 decodes u2 decodes u3 decodes
31 u1 w111 ⊕w112 ⊕w113 ⊕w122 ⊕w123 ∅ w123, w

1
41 w122, w

1
31

32 u2 w211 ⊕w212 ⊕w213 ⊕w231 ⊕w233 w233, w
2
42 ∅ w222, w

2
31

33 u3 w311 ⊕w312 ⊕w313 ⊕w341 ⊕w342 w333, w
3
42 w323, w

3
41 ∅

34 u4 w421 ⊕w422 ⊕w423 ⊕w432 ⊕w433 w433, w
4
42 w423, w

4
41 w422, w

4
31

35 u5 w521 ⊕w522 ⊕w523 ⊕w542 ⊕w543 w533, w
5
42 w523, w

5
41 w522, w

5
31

36 u6 w142 ⊕w241 ⊕w331 ⊕w443 ⊕w532 w133, w
1
42 w223, w

2
41 w322, w

3
31

TABLE IV

LAST 6 TRANSMISSIONS FORM = 4, S = t = 2, CODEWORDS AND DECODING MESSAGES AT
USERS U4, U5, U6.©IEEE 2019.

# Tx Code u4 decodes u5 decodes u6 decodes
31 u1 w111 ⊕w112 ⊕w113 ⊕w122 ⊕w123 w113, w

1
43 w112, w

1
32 w111, w

1
21

32 u2 w211 ⊕w212 ⊕w213 ⊕w231 ⊕w233 w213, w
2
43 w212, w

2
32 w211, w

2
21

33 u3 w311 ⊕w312 ⊕w313 ⊕w341 ⊕w342 w313, w
3
43 w312, w

3
32 w311, w

3
21

34 u4 w421 ⊕w422 ⊕w423 ⊕w432 ⊕w433 ∅ w412, w
4
32 w411, w

4
21

35 u5 w521 ⊕w522 ⊕w523 ⊕w542 ⊕w543 w513, w
5
43 ∅ w511, w

5
21

36 u6 w142 ⊕w241 ⊕w331 ⊕w443 ⊕w532 w413, w
4
43 w512, w

5
32 ∅
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all users except the user who generates the code, to resolve one sum of two sub-messages that still needs

to be decoded. Therefore, 6 transmissions let all 6 users decode the 5 sum of two sub-messages that

they got from the first 30 transmissions. In total we use 36 transmissions to convey 2 messages for each

user, with each message of size 15 bits. The number of transmissions, in multiple of the message size, is

` = 36
15 =

(42)
(42)−1

2 = n
n−1t = `

∗, thus proposed scheme is optimal in terms of number of transmissions.

Note that this scheme only needs message size to be κ = 15, which is less than the one proposed in

Section 4.3.1.3.2. Indeed, the MDS condition only provides a sufficient condition of the minimum field

size and not a necessary one. Deriving a lower bound on the field size such that a linear code with

vanishing error exists is an interesting open question for further study.

4.3.2 Proof for Theorem 6

Also for this complement-consecutive complete–S d-PICOD(t), where S = [0 : m−1]\[smin : smax]

for some 0 < smin ≤ smax < m − t, we need to show a decentralized achievable scheme that meet the

trivial centralized converse bound.

In the centralized case, the achievable scheme consists of two scalar linear codes: one to serve all

the users with side information of size in [0 : smin − 1], and the other to serve all the users with side

information of size in [smax + 1 : m− t]. Also for the decentralized scheme, we separate the users into

these two groups: U1 = {ui : |Ai| ∈ [0 : smin − 1]} and U2 = {ui : |Ai| ∈ [smax + 1 : m − t]}. The

analysis of the achievability scheme is divided into two parts: smin − 1+ t < smax + 1 = m− t, and the

remaining case.
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4.3.2.1 Case smin − 1+ t < smax + 1 = m− t

In this case the decentralized scheme is different from the centralized one proposed in [19]. This is

because the users in U2 are a consecutive complete–S case as discussed in Section 4.3.1.3, where the

trivial centralized converse bound is not tight. Therefore, we can not treat the problem of serving the

users in U1 and U2 as two independent subproblems, as the centralized scheme does.

The decentralized achievability scheme takes two steps:

• Step 1: Send messagesW[smin−1+t] one by one. All users in U1 are satisfied with smin − 1+ t ≥ t

(since smin > 0) messages are sent in this step. Since all users in U2 have side information sets of

size smax + 1 = m− t, there exists at least one user in U2 that has been satisfied in the first step.

This step takes smin − 1+ t transmissions.

• Step 2: The user inU2 that was satisfied in Step 1 has knowledge of all messages and can thus act

as the centralized transmitter of the corresponding centralized PICOD(t) [37], sending t linearly

independent linear combinations of all messages. Since all users in U2 have t messages not

in the side information, by having t linear independent linear combinations of all messages, all

remaining users in U2 are satisfied. This step takes t transmissions.

It thus takes in total smin − 1+ t+ t = |S|+ 2t− 2 number of transmissions to satisfy all users.

4.3.2.2 Other Case

The achievable scheme in Section 4.3.1.1 satisfies the users in U1 with smin − 1 + t transmissions.

The achievable scheme in Section 4.3.1.2 satisfies the users in U2 with m − (smax + 1) transmissions.

Therefore, the total number of transmissions is smin − 1+ t+m− smax − 1 = |S|+ 2t− 2.
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Note that ` = m is a trivially achievable number of transmissions for the decentralized setting as

well, we conclude for complement-consecutive complete–S d-PICOD(t) the optimal number of trans-

missions is `∗ = min{m, |S|+ 2t− 2}, which is the same as the corresponding centralized setting.

4.3.3 Extensions of Theorem 5

Similar to the centralized case, there are cases where we can drop some users from the system while

maintain the optimality of the original bounds. As we did in the centralized case, these users are called

non-critical users, which do not affect the optimal code length. Therefore, we can add or drop these

non-critical users without changing the optimal code-length. This allow us to extend Theorem 5 to some

non-consecutive or non-complement-consecutive complete–S d-PICOD(t) cases.

4.3.3.1 Proof of Proposition 9

The converse for the centralized setting is smax + t. The decentralized achievable scheme transmits

smax + t messages, one at a time. This is a feasible decentralized scheme since all messages are in the

side information of at least one user. Therefore we have `∗ = smax + t for this case.

4.3.3.2 Proof of Proposition 10

The converse for the centralized setting ism− smin. The achievable scheme in Section 4.3.1.1 only

needs the users with side information of size smax. Thus the achievable scheme is applicable in the

non-consecutive case here as well. Moreover, note that the set users of the consecutive case studied in

Section 4.3.1.1 is a superset of the set of the users in this case, the achievable scheme can satisfy all

users here as well. Therefore, we have `∗ = m− smin.
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4.3.3.3 Proof of Proposition 11

The converse depends only on the users with side information of size in [bm−t
2 c − δ : dm−t

2 e + δ].

The code that satisfies the complete–[bm−t
2 c− δ : dm−t

2 e+ δ] PICOD(t) also satisfies all the users with

the larger size of side information set. If smin ≤ bm−t
2 c − δ, we have smax = dm−t

2 e + δ. This case is

similar to the one in Proposition 9. We transmit smax + t messages one at a time. If smax ≥ dm−t
2 e+ δ,

we have smin = bm−t
2 c − δ. This case is similar to the one in Proposition 10. We adopt the achievable

scheme in Section 4.3.1.1, which usesm− smin transmissions.

4.3.4 Proof of Proposition 12

Proposition 12 states that for the complete–S d-PICOD(t) cases not covered by the results in the

previous sections and with m ≤ 5 messages, the trivial centralized converse bound is information

theoretically optimal for the decentralized setting as well. If the optimal centralized achievable scheme

is also feasible in the decentralized setting, then the trivial centralized converse bound is then obviously

tight. This is the case for those cases where the centralized achievability scheme involves sending

messages one by one, i.e., when optimal number of transmissions is `∗ = `∗,cen = min{m, smax + t}

(which corresponds the cases: (a) m = 4, S = {0, 2}, t = 2, (b) m = 5, S = {0, 1, 3}, t = 2, and (c)

m = 5, S = {0, 2, 3}, t = 2). Thus, we only need to consider the cases where `∗,cen < min{m, smax + t};

Table Table V lists the optimal codes for those cases.

Remark 13. Our achievable schemes in Section 4.3.1.3 use vector linear index code (while the corre-

sponding centralized setting used a scalar linear index code). An interesting question is whether vector

index codes are necessary to achieve optimality in the decentralized setting. From the definition of scalar

index code in Section 2.1, a code is scalar if it operates over F2κ , in other words, f = 1. Therefore, for
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TABLE V

OPTIMAL CODES FOR THE OTHER CASES OF COMPLETE–S d-PICOD(t) WITHM ≤ 5
MESSAGES. ©IEEE 2019.

m = 4 S = {1, 3} t = 1 w1 ⊕w2, w2 ⊕w3, w3 ⊕w4

m = 5
S = {0, 3} t = 1 w1, w2 ⊕w3, w3 ⊕w4
S = {0, 3} t = 2 w1, w2 ⊕w3, w3 ⊕w4, w5
S = {1, 4} t = 1 w1, w2, w3 ⊕w4 ⊕w5
S = {1, 3} t = 2 w1 ⊕w2, w2 ⊕w3, w3 ⊕w4, w4 ⊕w5
S = {1, 3, 4} t = 1 w1 ⊕w2, w2 ⊕w3, w3 ⊕w4, w4 ⊕w5
S = {0, 2, 4} t = 1 w1, w2 ⊕w3, w3 ⊕w4, w4 ⊕w5
S = {1, 2, 4} t = 1 w1 ⊕w2, w2 ⊕w3, w3 ⊕w4, w4 ⊕w5

a scalar index code, the number of transmissions is always an integer. The number of transmissions by

each user defined in (Equation 4.1) are integers and the overall codeword length ` is also an integer. In

the case smin = smax = m − t, the converse bound gives `∗ ≥ nt
n−1 , which is not an integer in general.

Thus a scalar index code can not achieve nt
n−1 in general. For the case smin = smax = m − t, a vector

index code is thus necessary to achieve optimality.

4.4 Circular-arc PICOD(1)

Theorem 7 provides the information theoretical optimality of the d-PICOD(1) with circular-arc

network topology hypergraph. We split the problem into two cases: 1) the circular-arc does not have a

1-factor, analyzed in in Section 4.4.1, in which case we show that the optimal number of transmissions

is 2; and 2) the circular-arc has a 1-factor, analyzed in in Section 4.4.2, in which case we show that the

optimal number of transmissions is γ
γ−1 , where γ is the size of the largest 1-factor. For each case we

propose schemes of achievability and converse and show that they coincide.
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4.4.1 Case 1: a 1-factor does not exist

In the centralized setting, `∗,cen = 2 when the 1-factor does not exist. We show that this is still

optimal in the decentralized setting. Specifically, we show that the proposed achievable scheme in

Section 3.7 for the centralized circular-arc PICOD(1) is still feasible in the corresponding decentralized

setting with a small modification.

Remark 14 (Example when a 1-factor does not exist). To highlight the idea of the proof, we provide

here a toy example. The general achievable scheme is the same as [19, Algorithm 1]. The extra work

we need to do here is to show that this scheme is also feasible in the circular-arc d-PICOD(1).

Consider the case with n = 5 users and m = 5 messages, with Ai = [i : (i + 2) (mod 5)], i ∈ [5],

(each user has 3 messages in its side information set).

In the centralized case, following [19, Algorithm 1] the centralized transmitter sends w5 ⊕ w2 as

the first transmission, and w4 as the second transmission. This centralized scheme is feasible in the

decentralized case, i.e., user u5 can do the first transmission, and user u4 the second transmission.

In general, in order to show that the centralized scheme is feasible in the corresponding decentral-

ized setting, we must find a set of messages such that the following holds:

1. [Condition 1] no two messages in the set are in the side information set of the same user, and

2. [Condition 2] the sum of the messages in the set satisfies the maximal number of users.

Condition 1 guarantees that there exists one user whose side information set contains all the messages in

the set; the summation of all the messages in such a set is the first transmission. The second transmission

is a summation of another set of messages that can satisfy the remaining users who were not satisfied
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by the first transmission; its existence is guaranteed by the circular-arc network topology hypergraph

structure.

For our specific example we have:

• First we find the first message that can satisfy user u1 but not u5; we find it to be w5.

• We then determine the users that w5 can satisfy; these users are u1 and u2.

• Next we try to find a message that can satisfy u3; we realize that w2 can satisfy u3 and u4.

• Note that there are no more messages that can be added into the set such that Condition 1 still

holds; we set the first transmission to be w5 +w2 (which can be sent by user u5 as {2, 5} ⊂ A5).

• The remaining unsatisfied user is u5, who can be satisfied by receiving w4 (which can be sent by

u4, for example).

For completeness, we briefly show the achievable scheme proposed as [19, Algorithm 1] in the

following.

4.4.1.1 First transmission

The first step of the achievable scheme is shown as Algorithm 1 next. Recall that the hyperedges

in the network topology hypergraph represent the messages in the system. We drop those edges that

are proper subsets of the union of other edges, obtaining the edge set E . These are the messages we are

going to use in the achievable schemes. Note that every vertex is incident to at least one of the remaining

edges. The remaining messages are sufficient to satisfy all users. We relabel the users such that the first

edge E1 in E starts at v1, i.e., E1 = {v1, v2, . . . , v|E1|}.
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Algorithm 1: Algorithm for finding E (1) in the first transmission.
Data: User set: V = {v1, . . . , vn}, message set: E = {E1, . . . , Em} where

E1 = {v1, v2, . . . , v|E1|}.
Result: Message set: E (1) = {E1(1) , . . . Ee(1)}.
Initialization: set i = |E1|+ 1, E (1) = {E1}.
while i ≤ n do

Seek an edge that starts at vi and does not contain v1, i.e., an edge {vi, . . . , vj}, for some
j ≤ n;

if Such an edge is found then
Let E (1) include the edge found;
i becomes the index of the vertex right after the found edge, that is, i = j+ 1 ;

else
i = i+ 1;

end
end

We find a set of messages E (1) ⊆ E for the first transmission by using Algorithm 1. Let E (1) =

{E1, E2, . . . , Ee} and Ei = {vi1, vi2, . . . , vi|Ei|}. In the first transmission we send the sum of the messages

in E (1), i.e.,
∑e
i=1wi. By Algorithm 1, all edges in E (1) are disjoint, i.e., they pairwise do not have

common incident vertex. Therefore, the users either have all of these messages in the side information,

or all but one of the messages in the side information.

The users who have all but one of these messages in their side information are shown as the vertices

in ∪Ei∈E(1)Ei \ (E1(1) ∩ Ee). They are the users that will be satisfied by the first transmission.

The users that were not satisfied by the first transmission have the corresponding vertices contained

in G := U \ (∪E(1)Ei(1)) = ∪|E
(1)|

i=1 Gi, where Gi = {vi|Ei|+1, . . . , v(i+1)1−1}. Since a 1-factor does not

exist, there must exists a user who has all of these messages in its side information, that is, G 6= ∅. That

user can perform the summation and the first transmission.
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4.4.1.2 Second transmission

The unsatisfied users after the first transmission can be seen as the users that are in the “gap” between

the edges E (1) chosen by Algorithm 1. We show that one transmission can satisfy all the remaining

unsatisfied users and it can be generated by a user in the system.

By Algorithm 1, for all i ∈ [e], there exists Ei′ such that Gi ⊂ Ei′ . This is because all vertices in Gi

are incident to at least one E ∈ E . If no such Ei′ exists then there exists Ei′ /∈ E (1) such that Ei′ ∩Ei = ∅

and Ei′ ∩Gi 6= ∅. However, by Algorithm 1, such Ei′ ∈ E (1), which is a contradiction.

Moreover, since in E all edges are not proper subsets of the union of the other edges, we have

Ei′ ∩ Ej′ = ∅, ∀i 6= j. Therefore, we find a set of edges E (2) = {E1′ , . . . , E1′} such that G ⊆ ∪Ei∈E(2)Ei.

In the second transmission, we send the sum
∑e
j=1wj′ . All users in G have all but one messages in

the sum in their side information. Thus all the remaining users are satisfied by the second transmission.

Also, since there is not 1-factor, G ⊂ V . There exists one user who has all the messages in E (2) in its

side information. The proposed summation can be computed in the decentralized setting. All the users

are satisfied with two transmissions.

We conclude `∗ = 2 for the d-PICOD(1) with circular-arc network topology hypergraph that has no

1-factor, as in the corresponding centralized case.

4.4.2 Case 2: a 1-factor exists

In the centralized setting when 1-factor exists we have `∗,cen = t = 1, which is clearly not feasible

in a decentralized case. We show next that 2 ≥ `∗ = `∗,dec > 1, by developing both converse and

achievability bounds that differ from their centralized counterparts.
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4.4.2.1 Converse

For the PICOD(1) whose network topology hypergraph has a 1-factor, let Ê ⊂ E be the subset of

the edges of the network topology hypergraph that represent the messages that are desired by at least

one user. In other words, hyperedge Ei ∈ Ê if and only if wi is the desired message of a user. Ê is a

spanning sub-hypergraph of the network topology hypergraph, since every user has at least one message

known in Ê .

If Ê is not 1-regular, i.e., there exists one user who has two messages in Ê that are not in its side

information, by the converse argument for the case where 1-factor does not exist, `∗ ≥ 2.

If Ê is 1-regular, i.e., Ê is a 1-factor, the converse argument is as follows: choose |Ê | users with

different desired messages; for all |Ê | messages that are desired in the system, each user has all but one

message in its side information. For these |Ê | users, the converse bound for the decentralized complete–

{m − 1} PICOD(1), where m = |Ê |, applies. To satisfy these |Ê | users, |Ê |
|Ê |−1 transmissions are needed.

Therefore, to satisfy all users in the system, we have `∗ ≥ |Ê |
|Ê |−1 . |Ê | is an integer greater than 1. |Ê |

|Ê |−1

is a decreasing function on |Ê |. Recall that γ is the size of the largest 1-factor in network topology

hypergraph . We have `∗ ≥ γ
γ−1 .

4.4.2.2 Achievability

To highlight the idea of the proposed scheme, we provide here a toy example.

Remark 15 (Example when a 1-factor exists). Consider the case withn = 6 users andm = 6messages,

withAi = [i : (i+3) (mod 6)], (each user has 4 messages in its side information set). In the centralized

setting, one transmission, for examplew1 +w3 +w5, is sufficient to satisfies all users. However, this is

not feasible in the decentralized setting as no users knows all three messages w1, w3, w5. Note that in
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this case we have a 1-factor of size γ = 3; the converse bound is `∗ ≥ 3/2; we show next an achievable

scheme that uses 3 transmissions to convey 2 messages to each user.

Let us split the messages as wi = (wi1, wi2), wij ∈ F2κ , i ∈ [6], j ∈ [2]. As desired message

assignments, let d1 = d6 = 5, d2 = d3 = 1, d4 = d5 = 3. The 3 transmissions (each involving

sub-messages that are half the size of a message) are:

x1 = α11w11 + α12w12 + α13w31 + α14w32, generated by u1,

x2 = α21w31 + α22w32 + α23w51 + α24w52, generated by u3,

x3 = α31w11 + α32w12 + α33w51 + α34w52, generated by u5,

where αij, i ∈ [3], j ∈ [4] are drawn independently uniformly at random over F2κ . For each user,

there are two unknown sub-messages as the desired messages that are involved in a random linear

combinations, while the other 4 sub-messages are already in the side information sets (thus can be

subtracted off). Eventually, each user gets two random linear combinations of two desired messages.

With probability that can be made as close to one as desired for sufficiently large κ, these two random

linear combinations are linearly independent. The users are thus able to decode two sub-messages.

This achievable scheme allows all users to recover the two sub-messages that compose the desired

message by using three transmissions (each of size of a sub-message), thus achieves ` = 3
2 .

Let the number of desired messages be m′. If the edges of the desired messages is a 1-factor of

the network topology hypergraph, all users have all but one of these messages in their side information.

Following the achievability of the complete–{m′ − 1} d-PICOD(1) with m = m′, we have `∗ ≤ m′

m′−1 .
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Therefore, by choosing the desired messages of the users such that the corresponding hyperedges are

the largest 1-factor of the network topology hypergraph , we can achieve ` = γ
γ−1 using the achievable

scheme of the complete–{γ− 1} d-PICOD(1) withm = γ.

We conclude `∗ = γ
γ−1 , where γ is the size of the largest 1-factor, for the d-PICOD(1) with circular-

arc network topology hypergraph that has 1-factor. Together with the result in Section 4.4.1, we con-

clude the proof of Theorem 7.



CHAPTER 5

INDIVIDUALLY SECURE PICOD(1) WITH CIRCULAR-ARC NETWORK

TOPOLOGY HYPERGRAPH

This chapter we study the individual information theoretical security problem for a special class of

PICOD(1) problem with circular-arc network topology hypergraph.

This chapter studies the PICOD problem where users are subject to a individual security constraint.

In particular, the following spacial class of private PICODs is investigated: 1) the side information

structure is circular, and 2) each user can decode one and only one message. The first condition is a

special case of the PICOD(1) with circular-arc network topology hypergraph studied in Chapter 3, for

which an optimal solution was given without the privacy constraint. The second condition was first

studied in [25] and was motivated by the need to keep content privacy is some distribution networks.

We propose both converse and achievable bounds. The proposed achievable scheme not only strictly

outperforms the one in [25] for some values of the system parameters, but it is also information theoret-

ically optimal in some settings. For the remaining cases, the proposed linear code is shown to require at

most one more transmission than the converse bound derived by restricting the sender to only use linear

codes.

This chapter has appeared in [38].

102
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5.1 Individual Security and Circular Shift Side Information

5.1.1 Individual Security

The model follows the general PICOD model with m messages, n users, and t number of desired

messages for each user. Each user has side information set, indexed by A. We do not repeat the channel

model here as it is stated in Chapter 3. The extra individual information theoretical security constraint

is defined as the following: The individual security is modeled here as follows: user uj can not decode

any particular message other than the t messages indexed by Dj. Specifically, we impose that for all

j ∈ [n],

H(wi|x
κ`,WAj ,A)

≥H(wi) − κε,∀i ∈ [m] \ (Dj ∪Aj). (5.1)

A code is called valid for the individual secure (n,m,A) PICOD(t) if it allows each user to decode

its desired messages listed in D and satisfies the condition in (Equation 5.1). The goal is to find a valid

code and a desired message assignment that result in the smallest possible codelength, i.e.,

`? := min{` : ∃ a valid xκ` for some κ}. (5.2)

Finally, if the encoding function at the sender is restricted to be a linear map from the message set, the

length of shortest possible such valid codewords is denoted as `?lin.
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5.1.2 Size-s circular-h shift Side Information

We shall consider the (n,m,A) individual secure PICOD(1) with a special side information set

structure: the sets in A are size-s circular-h shift of the message set. More precisely, The side informa-

tion set of user ui is of the form

Ai = {(i− 1)h+ 1, . . . , (i− 1)h+ s}, (5.3)

for i ∈ [n] where all indices are intended modulo the size of the message set, i.e., denoted as (modm)

when needed, where 0 ≤ s ≤ m− t and h ≥ 1, here t = 1.

Let g := gcd(m,h). In this private PICOD(1) there are n = m/g users, since all users have distinct

side information sets. Note that the size-s circular-h shift side information setup is a special case of the

side information structure with circular-arc. Also, the model studied in [25] is the special case when

g = 1 (and thus n = m).

5.2 Main Result

For the size-s circular-h shift side information private PICOD(1) problem, we have the following

main result.

Theorem 8. For the private PICOD(1) where the side information sets are as in (Equation 5.3) we have

the following.

Impossibility: when m is odd, g = 1, and either s = m − 2 or s = 1, a valid code does not exists

(i.e., it is not possible to satisfy the privacy constraint).

For the remaining possible cases, we have:
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• For s ≥ m/2, and either 1 ≤ s < m/2, g ≥ 3, or 1 ≤ s < m/2, s 6= 2, g = 2

`∗ =


1, if the NTH has a 1-factor,

2, otherwise.

(5.4)

• For 1 ≤ s < m/2, and either g = 1 or s = g = 2

dbm
s
c/2e ≤ `?lin ≤


dbms c/2e, m

s ∈ Z,

dbms c/2e+ 1, m
s /∈ Z.

(5.5)

A few observations are in order. When s ≥ m/2, the achievable scheme provided in [25] is indeed

information theoretical optimal given (Equation 5.4), which is our converse bound in Chapter 3 for the

case without privacy constraint. Therefore, our main contribution in Theorem 8 is three-fold compared

to [25]: 1) for s ≥ m/2 we provide information theoretic optimality of the scheme in [25]; 2) for

s < m/2 we provide a new achievable scheme, and show it is almost linear optimal; 3) we generalize

the side information structure to any g > 1.

In (Equation 5.5), if we fix s and g, bms c is monotonic in the message set size m. One interesting

observation is that, although the lower bound on `?lin is monotonic with m, the upper bound is not. For

instance, consider the case s = 2, g = 1; when m = 10 or m = 12, we have `?lin ≤ 3, while when

m = 11 we have `?lin ≤ 4. In other words, from the point of m = 11, both increasing and decreasing

the message set size may result in an increase of the required number of transmissions. Note that this is

the point where the upper and the lower bounds differ. It is not clear at this point whether this means the
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achievable scheme here is not optimal, or the optimal private linear PICOD solution is not monotonic

inm.

5.3 Proof of Theorem 8

We divide the proof of Theorem 8 into various cases. Specifically, the impossibility result is proved

in Section 5.3.1, the case s < m/2, g = 1 in Section 5.3.2, and the case s < m/2, g = s = 2 in

Section 5.3.3. The schemes that achieve (Equation 5.4) are in Section 5.3.4.

5.3.1 Impossible Cases

First we show that in some cases the privacy constraint can not be satisfied. The proof of the same

under a linear encoding constraint was provided in [25]. Here we provide a simple information theoretic

proof of the same. The main idea is to proof the existence of a “decoding chain” (as defined in Chapter 3)

regardless of the choices of the desired messages at the users. This “decoding chain” technique was used

for the converse proof of so called consecutive complete–S PICOD(t). Since this argument does not

rely on any assumption on the encoding function at the server, the resulting bound is truly information

theoretical (as opposed to a form of ‘restricted converse’).

5.3.1.1 Casem is odd, s = m− 2, and g = 1

User ui has two possible choices for its desired message (because all the others are in its side

information set); these messages are di = (i + s) (mod m) or di = (i − 1) (mod m). If di =

(i + s) (mod m), by decoding wdi , user ui can mimic u(i−1) (mod m) since A(i−1) (mod m) ⊂ {(i +

s) (mod m)} ∪ Ai. Therefore, user ui can decode wd(i−1) (mod m)
. To make sure user ui can decode

only one message, we need d(i−1) (mod m) ∈ Ai so that user ui does not decode another message that

is not in its side information set. We thus have di ∈ A(i−1) (mod m) and d(i−1) (mod m) ∈ Ai can mimic
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each other. We say that two user mimicking each other form a “loop”. The same argument holds for the

other choice of di as well. To make sure all users can decode one message only, every user must be in a

“loop”. However, one user can be in only one loop. Thus, there must be one user that is not contained

in any loop because here we have taken m to be odd. Therefore, there exists one user that can mimic

another user and thus decode two messages, which violates the privacy constraint.

5.3.1.2 Casem is odd, s = 1, and g = 1

User ui, by decoding its desired message di = j, j 6= i, can mimic user uj and thus also decode dj.

To make sure user ui can decode only one message, we must have dj = i. Therefore user ui and uj

form a “loop”. Similarly, every user can be in only one loop. We need all users to be in a loop to make

sure that every user can decode at most one message. Since m is odd, this is impossible. Thus, there

must exists one user that can decode two messages, which violates the privacy constraint.

5.3.2 Case s < m/2 and g = 1 (herem = n)

5.3.2.1 Achievability

Let m = 2sq + r for some q, r ∈ Z such that 0 ≤ r < 2s, i.e., r is the remainder of m modulo

2s, and q is the maximum number of users who can have disjoint side information sets. We can have

2q + b rsc groups of s users such that the users in each group have at least one message in common in

their side information sets. Also, r − sb rsc is the number of users that are not contained in any of these

groups.

The intuition of our achievable scheme is as follows. Under the privacy constraint, we can satisfy

the users in two groups with one transmission, therefore 2sq users can be satisfied by q transmissions. If

r = 0, q transmissions suffice; if 0 < r ≤ s, we can satisfy the remaining r users by one transmission;
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and if s < r < 2s, we can satisfy the remaining r users by two transmissions. Therefore the total

number of transmissions is q + d rse. Based on this intuition, we distinguish three sub-cases: a) r = 0;

b) 0 < r ≤ s; and c) s < r < 2s.

Case r = 0

This is the case where m is divisible by 2s, therefore is divisible by s. We partition the users into

groups G1, G2, . . . , G2q, such that all users in Gi have message wis in their side information. Set the

desired message of the users in G2i, i ∈ [q], to be w(2i−1)s, and the desired message of the users in

G2i−1, i ∈ [q] to be w2is There are q transmissions, each of them is w2is + w(2i−1)s, i ∈ [q], that

satisfies the users in Gi and Gi+1 while it does not provide any useful information for the users in other

groups. Therefore, q = m
2s transmissions suffice to satisfy all them users.

Case 0 < r ≤ s

We partition the users into 2q + 1 groups. As for to the case r = 0, the first 2q groups contain s

users. The users in Gi, i ∈ [2q], all have wis in their side information. Group G2q+1 has r users. The

first q transmissions are w2is +w(2i−1)s, i ∈ [q], and satisfy the users in groups Gi, i ∈ [2q]. We next

satisfy the users in G2q+1.

If r = 1, we have G2q+1 = {um}. Let dm = s + 1 and the (q + 1)-th transmission be ws+1 +∑
j∈Am wj. Note that s ≥ r + 1 = 2, therefore user um can decode ws+1 while the other users can not

decode any new messages one they receive the last transmission.

If r ≥ 2, the users in G2q+1 all have W[1:s−r]∪{m} in their side information. Let d2sq+1 = s − r + 1

and dj = 2sq+ 1, j ∈ [2sq+ 2 : m]. The (q+ 1)-th transmission isw2sq+1+wm+
∑s−r+1
j=1 wj. Since

user u2sq+1 can computew2sq+1+wm+
∑s−r
j=1 wj and users uj, j ∈ [2sq+ 2 : m], can computewm+
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∑s−r+1
j=1 wj, these users have the message that is not in their side information set as their desired message.

All the other users who are not in G2q+1 have at least two messages unknown in the transmission and

thus cannot decode it. Therefore, each user can decode only one message by the achievable scheme

with q + 1 transmissions. If m is divisible by s, then r = s and q + 1 = dm2se; if m is not divisible by

s, q+ 1 = dbms c/2e+ 1.

Case s < r < 2s

We partition the users into 2q + 2 groups. The users in group Gi, i ∈ [2q + 1], all have message

w(is), while the users in group G2q+2 all have W[1:2s−r]∪{m}. We satisfy the first 2q groups by sending

w2is + w(2i−1)s, i ∈ [q]. We satisfy all users in G2q+1 by sending w2sq+1 + w2sq+s + w2sq+s+1. If

r = s + 1, G2q+2 = {um} and we let dm = s + 1 and send as last transmission ws+1 +
∑
j∈Am ;

otherwise, we let d2sq+s+1 = 2s − r + 1 and dj = 2sq + s + 1, j ∈ [2sq + s + 1 : m] and send

w2sq+s+1 +wm +
∑2s−r+1
i=1 wi. One can verify that all users can decode one and only one message by

using a code of length q+ 2 = dbms c/2e+ 1.

5.3.2.2 Converse

Messages are bit vectors of length κ, for some κ; we thus see each message as an element in F2κ .

When the sender uses a linear code (on F2κ), we can write the transmitted codeword as x` = Ewm,

where wm = (w1, w2, . . . , wm)
T is the vector containing all the messages, and where E ∈ F`×m2κ is the

generator matrix of the code. We denote the linear span of the row vectors of E as Span(E). Recall that

in this setting, user ui, i ∈ [n], must to be able to decode one and only one message outside its side

information set Ai; the index of the decoded message is di. Let vi,j be a vector whose j-th element is

non-zero and all elements with index not in Ai are zeros.
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A valid generator matrix E must satisfy the following two conditions:

1. Decodability: vi,di ∈ Span(E), for all i ∈ [m];

2. Privacy: vi,j /∈ Span(E) for all i ∈ [m], j ∈ [m] \ (Ai ∪ {di}).

The decodability condition guarantees successful decoding of the desired message wdi by user ui as

argued in [6]. The privacy condition must hold because the existence of a vector vi,j ∈ Span(E) for

some j ∈ [m] \ (Ai ∪ {di}) implies that user ui is able to decode message wj in addition to its desired

message wdi .

The optimal linear code length `?lin is the smallest rank of the generator matrix E, which by definition

is the maximum number of pairwise linearly independent vectors in Span(E). We prove the linear

converse bound by giving a lowered bound on the maximum number of pairwise linearly independent

vectors in Span(E), i.e., the rank of E. To do so, we need the following two propositions. These

propositions are the key technical novelty of this work.

Proposition 13. In a working system (where every user can decode without violating the privacy con-

dition) with g = 1 we must have ei /∈ Span(E) for all i ∈ [m], where ei are standard bases of

m-dimensional linear space.

Proposition 14. For a working system with g = 1, among all n users, consider k users whose side

information sets are pairwise disjoint. The number of transmissions of any linear code that satisfies

these k users must be `lin ≥ dk/2e.
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5.3.2.2.1 Proof of Proposition 13

Recall that, for g = 1, the side information sets areAi = (i, . . . , i+ s−1 (modm)) for all i ∈ [m],

as here n = m. The proof is by contradiction. Assume without loss of generality (wlog) that we have a

working systems with e1 ∈ Span(E), that is, every user can decode message w1 without even using its

side information. Then, all users ui, i ∈ [2 : m − s + 1] (who do not have w1 in their side information

sets) must have desired message w1, in order to make sure that privacy constraint is not violated. This

implies Fact 1: user u1 can only have wd1 = ws+1 as desired message.

Fact 1 is true because u2 desires w1, therefore A2 ∪ {d2} ⊃ A1. After decoding w1, user u2

can mimic user u1 and thus decode message d2. Since user u2 can decode only one message, then

d1 ∈ A2 \ A1 = {s + 1}. Therefore d1 = s + 1. By taking d1 = s + 1, we conclude that there must

exist vector v1,d1 = v1,s+1 = c + αs+1es+1, where α ∈ F2κ , α 6= 0 and c ∈ Span(A1), where with an

abuse of notation we let Span(Ai) denote Span({ej : j ∈ Ai}).

Given that we established Fact 1, let j be the position of the fist non-zero element in the so found

v1,s+1. Clearly, j ≤ s + 1 since the (s + 1)-th element of v1,s+1 is αs+1 6= 0. We have the following

cases:

1. If j = s + 1, all the users who do not have ws+1 in their side information sets, can decode ws+1.

This is because in this case v1,s+1 = αes+1. Thus user us+2, who has neither w1 nor ws+1 in its

side information set, can decode both w1 and ws+1.

2. If 1 < j < s + 1, then user uj+1 can decode wj, since s + 1 ∈ Aj. But user uj+1 decodes w1 by

assumption. Therefore, user uj can decode both w1 and wj.

3. If j = 1, user us+2 can decode both ws+1 and w1. Therefore, us+2 can decode two messages.
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In all the three above cases, there exists at least one user who can decode at least two messages, thus

violating the privacy constraint. Therefore, the original assumption e1 ∈ Span(E) must be impossible

in a working system. The same reasoning applies to any ej, j ∈ [m]. This proves the claim.

5.3.2.2.2 Proof of Proposition 14

By Proposition 13, for all i ∈ [k] there exists vi,di = αiedi + ci ∈ Span(E), where ci ∈ Span(Ai)

and αi 6= 0. Since the side information sets Ai are assumed to be disjoint, the vectors ci are linearly

independent. vi,di are linearly dependent only if di ∈ Aj and dj ∈ Ai for some i 6= j. In other words,

there exists a “loop” between ui and uj. Note that since the side information sets are disjoint, one user

can be in at most one “loop”, and the number of “loops” is at most bk/2c. Therefore the number of

vi,di that are linearly dependent is at most bk/2c, and thus the number of linearly independent vi,di is at

least k− bk/2c = dk/2e. Therefore, the number of transmissions that is needed to satisfy k users with

disjoint side information sets must satisfy ` = rk(E) ≥ dk/2e.

Proposition 13 states that in this case, a trivial ‘uncoded scheme’ (that consists of sending `?lin mes-

sages one by one) always violates the privacy constraint. In other words, no user is allowed to decode

without using its side information.

Proposition 14 provides a lower bound on the code-length of a linear code for a subset of the users in

the system (those with pairwise disjoint side information sets), thus for all users. Therefore, among allm

users in the system, there are bms c users with pairwise disjoint side information sets. By Proposition 14,

we need at least dbms c/2e transmissions to satisfy these users. Therefore, in order to satisfy all the users

in the system, we must have `?lin ≥ dbms c/2e. This provides the claimed lower bound.
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5.3.3 Case s < m/2 and g = s = 2 (here n = m/2)

5.3.3.1 Achievability

In this case we show `?lin = dm/4e. We use the achievable scheme for case s = 2 < m/2 and g = 1

from Section 5.3.2.1, where we need dm/4e transmissions to satisfy all n = m users. We users we

have in this case are a proper subset of the users in the case g = 1. The achievable scheme for g = 1

still satisfies all users and meets the privacy constraint. We have ` ≤ dm/4e in this case.

5.3.3.2 Converse

The converse proof in Section 5.3.2.2 does not directly apply in this case, mainly because the proof

of Proposition 13 requires g = 1. Therefore we show that the same result holds for g = 2, stated as

Proposition 15.

Proposition 15. In a working system (where every user can decode without violating the privacy con-

dition) with g = s = 2 we must have ei /∈ Span(E) for all i ∈ [m], where ei are standard bases of

m-dimensional linear space.

5.3.3.2.1 Proof of Proposition 13

Similar to the proof of Proposition 13, Wlog assume e1 is in Span(E). All users ui, i ∈ [2 : m−s+1]

in this case need to desire messagew1. Let d1 ∈ Aj, for some j 6= 1 For the decoding at u1, there exists

a vector v1,d1 ∈ Span(E) such that: 1) the d1-th element is non-zero; 2) all elements with indices that

are not 1, 2 or d1 are zeros. We check the first and second element of v1,d1 and have the following cases:

1. Both the first and second elements of v1,d1 are zeros, v1,d1 = edi . Therefore all users withoutwdi

in their side information sets can decode wdi .
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2. The first element is zero while the second element is non-zero. By v1,d1 the user uj is able decode

w2 since uj already decodes w1 and has wd1 in its side information sets. uj can decodes two

messages.

3. The first element is non-zero while the second element is zero. Since all users that do not have

w1 can decode w1, all users can decode wd1 if they do not have it in their side information sets.

4. Both the first and second elements of v1,d1 are non-zeros. uj decodes w1 by assumption. It also

has wdi in its side information set. Therefore uj can decode w2.

All possible cases show that there exists at least one user that can decode at least two messages. The

assumption that e1 is in Span(E) is impossible. The reasoning applies to all ej, j ∈ [m]. Therefore we

conclude that ei /∈ Span(E) for all i ∈ [m].

Hence the converse follows the same argument in Section 5.3.2.2 by replacing Proposition 13 with

Proposition 15. We show that for k user with pairwise disjoint side information sets, dk/2e transmissions

are needed for this case under the linear encoding restriction. Note that in this case all n = m/2 users

are with pairwise disjoint side information sets. Therefore, the total number of transmissions that satisfy

all users is at least dm/4e.

5.3.4 Remaining Cases

For the following three cases: s < m/2, g = 2, s 6= 2; s < m/2, g ≥ 3; s ≥ m/2, we aim to prove

`∗ =


1, if the NTH has 1-factor,

2, otherwise.
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5.3.4.1 Converse for all three cases

By the converse bound for circular-arc PICOD without the privacy constraint, `∗ ≥ 1when the NTH

has 1-factor, and `∗ ≥ 2 when the NTH has no 1-factor.

5.3.4.2 Achievability for case s < m/2, g = 2, and s 6= 2

If s = 1, the NTH has 1-factor. Thus `∗ = 1, in which case we send the sum of all messages.

If 2 < s < m/2, we send ws+1 as the first transmission. This transmission satisfies all users but

ui, i = 2, . . . , bs/2c+1, since they all havews+1 in their side information set. When s is even, they have

common side information set {s+1, s+2}. We send the second transmission asw3+ws+1+ws+2+ws+3.

u2 can decodews+3, ui, i = 3, . . . , bs/2c+ 1 can decodew3. All the other users, after decodingws+1,

still have at least two messages known in the summation, therefore can not decode any more messages.

When s is odd, we send the second transmission asw3+ws+ws+1+ws+2+ws+3. By similar argument

we can show that ui, i = 2, . . . , bs/2c+1 can decode one messages from the second transmission while

the other users can not.

5.3.4.3 Achievability for case s < m/2, g ≥ 3

It is trivial that if the NTH has 1-factor we have `∗ = 1, in which case we send the sum of all

messages. Therefore, we show that if the NTH does not have 1-factor we can satisfy all users with

two transmissions while satisfying the privacy constraint. Send ws+1 as the first transmission. All

users who do not have ws+1 in the side information sets are satisfied. The users that have ws+1 in

the side information sets are ui, i = 2, . . . , bs/gc, bs/gc + 1. They have common side information

set [bs/gcg + 1 : s + g]. |[s + 2 : s + g]| ≥ 2 since g ≥ 3. For the second transmission we send

wm +
∑s+g
i=s+2wi. By the condition s < m/2, all users ui, i = 2, . . . , bs/gc, bs/gc + 1 do not have
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wm in the side information sets. Therefore these users can decode wm as the desired message. For the

second transmission, all the other users have at least two messages known in the summation, therefore

can not decode any information from the second transmission. The privacy constraint is satisfied.

5.3.4.4 Achievability for case s ≥ m/2

We use the proposed achievable scheme in [25] for this case. When g = 1, [25] showed one can

achieve ` = 1 if the NTH has 1-factor, and ` = 2 otherwise. When g > 1, the users are in a proper

subset of the users of g = 1. Therefore the users can still be satisfied by the scheme that can satisfy

strictly more users. The privacy constraint is still satisfied as less users can not decode more messages.

Therefore, the achievable scheme can achieve ` = 1 when NTH has 1-factor, and ` = 2 when NTH does

not have 1-factor.



CHAPTER 6

CONCLUSION AND FUTURE WORK

6.1 Conclusion

The main results of this work are summarized in Table VI and Table VII.

6.1.1 Pliable Index Coding

We provided information theoretic converse bounds for some cases of the PICOD(t).

Because the only difference between the IC and the PICOD is the pliablity of choosing the de-

sired messages at users, the converse of the PICOD(t) can be obtained by solving all the IC instances

with the same users in the PICOD(t) while choosing all possible desired messages at the users. Ob-

viously, solving the converse for the PICOD(t) in this way becomes intractable when there are more

users/messages in the system. In this thesis we show that there are alternative ways to find tight lower

bounds. The key idea for the converse is to show that for the PICOD(t) with some certain structures

of side information set, regardless of the choice of desired message at the users, there exists a user that

TABLE VI

COMPLETE-S PICOD
centralized decentralized

without
security

`∗ = min{m− smin, smax + t} `∗ = min{m− smin, smax + t} when pliable;

`∗ =
(ms )
(ms )−1

t when non-pliable

individual security unknown unknown

117
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TABLE VII

CIRCULAR SHIFT PICOD
centralized decentralized

without
security

`∗ = 1 whenm/(m− s) is an integer; `∗ = γ/(γ− 1) whenm/(m− s) is an integer;
`∗ = 2 otherwise `∗ = 2 otherwise

individual
security

`∗ = 1 whenm/(m− s) is an integer;
otherwise `∗ = 2 if s > m/2; not yet studied
`∗ = m/2s if s < m/2

can decode a certain number of messages beside its desired ones by receiving any valid code that allows

every user to decode its desired message. We showed two methods to prove the existence of such a

user: constructive proof and existence proof. The constructive proof works for the PICOD(t) where

network topology hypergraph is a circular-arc hypergraph and the complete–S PICOD(t) with m mes-

sages where S = [0 : m − t] \ [smin : smax], 0 ≤ smin ≤ smax ≤ m − 1. However, the constructive

proof in [31] becomes intractable for general complete–S PICOD(t) withmmessages, even for S = {s},

0 < s < m− t.

To circumvent the difficulty, we turn to the existence proof: implicitly showing the existence of a

user by proving its nonexistence leads to a contradiction. Inspired by the similarity of the side informa-

tion set structure of the complete–{s} PICOD(t) to the Steiner system, we brought the idea of “block

cover” in combinatorial design as the tool for the proof. Combinatorial design studies the properties

of a family of subsets, called blocks, that “cover” all s-element subsets of the same ground set. The

results are usually established on the high symmetry of the structure of all s-element subsets. In the

complete–{s} PICOD(t), we consider the union of decoded messages and side information set of a user



119

as the “block” that cover this user. Therefore, we show that there exists a user who can decode s + t

messages in the complete–{s} PICOD(t) with 2s + t messages by showing that the “block cover” with

maximum block size strictly less than 2s+ t does not exist.

For the other cases, we prove the converse by showing that they can be enhanced to the critical case:

the complete–{s} PICOD(t) withm = 2s+ t messages. Therefore the converse bound we obtained for

the critical case extends to all the consecutive complete–S PICOD(t) and some other cases.

6.1.2 Decentralize Pliable Index Coding

We solved the d-PICODproblems whose corresponding centralized versions have been solved. One

of the purpose is to study the decentralization impact on the PICOD. Recently, [20] showed that opti-

mality of a decentralized IC problem has a multiplicative gap at most 2 to its centralized IC instance.

For the PICOD cases we have studied the optimality, the gap is much smaller. We find the gap at most

(ms )
(ms )−1

, which is usually much smaller than 2. Also, for most of the cases, the d-PICOD problem has the

same number of transmissions to its centralized version. That is, the gap is in fact 1.

Another interesting observation is that although linear code is still optimal, we need the vector linear

codes to achieve the optimality in many cases. The scaler linear code is proved to be strictly suboptimal

for some cases of the d-PICOD.

6.1.3 Secure Pliable Index Coding

We considered the individual secure PICOD(1) with circular shift side information. Our model

is a generalization of the problem modeled in [25]. We proposed a new achievable scheme for our

generalized model. Our scheme can recover the existing scheme proposed in [25] and can perform

strictly better in some cases. The intuition of the scheme is to satisfy “group” of users one at a time while
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maintaining the security of the messages to all the other users that do not desire the messages. Moreover,

we provide a linear encoding constrained converse, which is based on the vector space spaning argument.

Our linear achievable scheme is information theoretical optimal for some parameters, or is at most

one more transmission away from the linear encoding constrainted converse. Therefore, the proposed

scheme is almost linearly optimal.

6.2 Future Work

Our results show the fundamental different behavior of PICOD compared to the classical IC where

the desired messages at the users are pre-determined. We have several interesting observations and

related open problems for the PICOD.

• The main contribution of the converse for the complete–S PICOD(t) in this thesis is a method

to prove the existence of a user that can decode the desired number of messages: constructive

and existence proofs. While the later shows an advantage over the former on the complexity of

the proof, it is based on the strong symmetric structure of the side information set of the users.

Like combinatorial design, for the result to hold we need exactly all the s-element subsets of

ground set [m]. Therefore, this method suits the complete–{s} PICOD(t). For the other cases,

we need some extra tools. We showed the proof for the consecutive complete–S PICOD(t) by

a reduction to the critical case. However, not all the PICOD(t), even all complete–S PICOD(t),

can be reduced in the same fashion without loss of optimality in terms of the code length. There-

fore we still lack an efficient method to obtain a general optimal converse bound for the general

PICOD(t). In Section 3.6.4 we showed the optimality of the proposed achievability up to m = 5

for the complete–S PICOD(t). The converse is obtained by checking all the cases that are not
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covered by the Theorem 2 and Propositions 2, 3, 4. Therefore the method is not systematic and

straightforwardly generalizable to larger m. The information theoretical optimal code length for

the general complete–S PICOD(t) withm messages is still open.

• We notice that in the complete–S PICOD(t) considered in this work, removing/adding some

users does not change the optimal code length. In fact, in some cases (e.g., S = [0 : m/2])

roughly half of the users can be removed without affecting `∗. These users can be considered as

“non-critical”, in contrast to the other “critical” users who will change the optimal code length

if removed/added. The PICOD(t) is called “critical” if all of its users are critical. We can see

the “critical” consecutive complete–S PICOD(t) are those with m ≥ smin + smax + t. In other

words, the ones with “small” size of side information/number of desired messages. In this case

the optimal code length is smax + t. For this setting, removing any single user reduces the optimal

code length by 1. Ifm < smin + smax +1, there are
∑smax
s=smin

(
m
s

)
−
(
2m−2smin−1
m−smin−1

)
users non-critical.

It is worth to mention that due to the symmetric structure of the complete–S PICOD(t) where

|S| = 1, all users are essentially the same, i.e., all users are critical if any user is critical. The

question about the critical users in the PICOD(t) is interesting because it shows the redundancy

embedded in the system structure. The condition for a complete–S PICOD(t) problem to be

critical, the number of the non-critical users for a complete–S PICOD(t) problem, and in general,

the condition for a general PICOD(t) problem to be critical, are interesting topics of future works

for the PICOD(t) problem.

• Our results on the d-PICODproblem shows that there is little difference between the centralized

PICOD problem and the d-PICODproblem in terms of the optimal number of transmissions, for
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the cases which we have the information theoretical optimality. Since for the IC the difference

between centralized and decentralized setting is upper bounded by a multiplicative gap 2, for

PICOD we expect a gap no greater than 2. Our result provides one example that the multiplicative

gap is indeed 2. This shows that on the extreme, the multiplicative gap 2 between the IC and the

decentralized IC can not be further reduced by allowing the pliability of choosing of the desired

messages at the user. However, we also notice that the maximum multiplicative gap for the cases

that we have studied is (ms )
(ms )−1

, which is usually much less than 2. One interesting question to

ask is for the PICOD, what is the expected number of transmission when turning it into a d-

PICODproblem. Fundamentally, will the pliability of desired message have a impact or not.

• One of the contributions on the secure PICOD is the linear encoding constraint converse bound.

The converse bound allows us to show the fundamental difference between the centralized PICOD

and the d-PICODwhen the security constraint is taken into consideration. However, the converse

is based on the extra assumption that the encoding function is a linear function. We are interested

in removing this constraint. Doing so would allow us to have a converse bound without any

assumption on the encoding function and provide us the information theoretical converse bound.

• Our converse is combinatorial and based on contradiction. The proof idea is basically extremal

combinatorics. Although graph theory has been extensively used to derive achievability schemes

in the IC problem, there are few converse proofs purely based on graph theory or combinatorics.

Our proposed technique is thus new and different from all the other converse proof techniques

that have been developed in the IC. Since the IC can be very much treated as a problem in com-

binatorics, it is interesting to seek for the applications of our proof techniques to a broader range
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of more general IC and network coding problems. Furthermore, the connection between extremal

combinatorics and index coding is a very interesting and important question to study for the future

direction.
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