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Summary

A thorough investigation of the real-space properties of topological superconducting system

Fe/Re(0001)-O(2Ö1) is conducted providing strong evidence of chiral Majorana bound states

(MBSs) along the edge of the system. We compare theoretical calculations of the local density-

of-states (LDOS) to experimental measurements of the differential conductance, measured using

scanning tunneling spectroscopy (STS) of the system and find the results to be in agreement.

Further, we calculate the Chern number over a range of parameters, covering the parameters

used to model the experimental results, and find that the model remains in a topological state

over the parameter range, thereby providing further evidence of the topological nature of the

edge states of the experimental system.

Utilizing a generic model of magnetic-superconductor hybrid materials (MSHs), we investi-

gate the transition between one-dimensional and two-dimensional topological superconductors

(TSCs). We find that by adding atoms onto 2D structures to create wires, it is possible to

adiabatically transition from 2D chiral Majorana edge modes to 1D MBSs. Additionally, we

find that each time we add a wire to the 2D system, we decrease the number of chiral Majorana

edge modes by one, suggesting that adding wires to 2D systems is a method by which we can

count the Chern number in real-space STS experiments.

Using a previously examined 5-band model of FeSe0.45Te0.55 and adding a ferromagnetic

exchange term and Rashba spin-orbit coupling, we calculate the phase diagram over a wide

range of global chemical potentials and exchange strengths. We find that the phase diagram

hosts Chern numbers ranging from -3 to 1. We then utilize a generic model of s± topological

superconductivity to investigate the appearance of MBSs at the center of a vortex core.

We consider a further extension of STS measurements where, in addition to measuring the

tunneling current from the tip to the system, the zero-frequency shot noise, corresponding to

the current-current correlation function, is measured. As a test bed of this measurement probe,

we perform theoretical calculations of the current, shot noise, and Fano factor of a magnetic

(Kondo) impurity on the surface of a simple metal. We find that, much like previously examined

differential conductance measurements on such systems, there exists a characteristic asymmetry

in the Fano factor. We also perform the same theoretical calculations on models of Kondo

impurity lattices. As with the single impurity case, we observe a characteristic asymmetry in

the Fano factor indicative of the Kondo resonance.
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Chapter 1

Introduction

Starting with the discovery of the integer Quantum Hall Effect (QHE) by Von Klitzing, Dorda,

and Pepper [1] in 1980 , topological materials have been been the subject of intense research

efforts among condensed-matter physicists. These materials are defined by the existence of

some topologically non-trivial invariant in the space of wavefunctions. In the case of QHE,

Thouless, Kohmoto, Nightingale, and den Nijs showed the quantization of conductance came

from an invariant that became known as the TKNN invariant in 1982 [2]. It was later shown

that the TKNN invariant was equivalent to the first Chern number, an invariant well known in

the mathematical theory of topology. These invariants are protected by an energy gap in the

electronic states and in order to change the invariant, the gap must close. This fact can be seen

in what is called the “bulk-boundary correspondance”. Because the vacuum has a trivial, i.e.

zero, topological invariant, but any topological material has a non-trivial, non-zero, invariant,

the gap found in the bulk of the material must close at the boundary between the material and

the vacuum. The result of this gap closure is the existence of in-gap electronic states that are

localized at the boundary of the material. If the material is one-dimensional, these states will

be zero-dimensional, if the material is two-dimensional, these states will be one-dimensional and

so on.

Topological superconductors (TSCs) are topological materials whose invariant is protected

by the superconducting gap. Due to the particle-hole symmetry intrinsic to superconductors,

TSCs have have the potential to host exotic electronic states known as Majorana bound states

(MBSs). Named after Ettore Majorana, who first theorized their existence in 1937 [3], Majorana

fermions are fermions that are their own antiparticle, i.e. γ† = γ. In addition to being their own

anti-particle, MBSs in TSCs have been theorized to exhibit non-Abelian braiding statistics [4],
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a feature that would allow their realization as fault-tolerant topological quantum bits [5–11].

The first model of a TSC exhibiting MBSs is known as the Kitaev chain, in which the

electrons were assumed spinless and electron pairing was assumed to take place between neigh-

boring sites, i.e. spinless p-wave superconductivity [12]. Kitaev showed that for a range of

parameters, it was possible to change basis to Majorana modes, written as γ1 = c + c† and

γ2 = c−c†
i and get two zero-energy MBSs, one at each end of the chain. However, electrons have

spin and p-wave superconductivity is at present difficult to observe experimentally [13]. In order

to create an experimentally feasible model, one must add spin-orbit coupling and a magnetic

field. The addition of spin-orbit coupling to s-wave superconductivity results in an effective

p-wave pairing correlation, while the magnetic field seperates the electrons of different spin in

energy level, which mimics the spinless aspect of the Kitaev chain. In practice, this can be

acheived by placing magnetic atoms on s-wave superconducting surfaces with strong spin-orbit

coupling, e.g. placing iron on lead or rhenium [17,26], in order to create magnet-superconductor

hybrid (MSH) systems, or by placing a semiconductor wire with strong spin-orbit coupling on

the surface of a superconductor and applying a magnetic field, e.g. InSb nanowires placed on a

NiTN contact [14]. This work will be concerned only with MSH systems.

Topological materials can be broken up into ten classes based on the global symmetries

of their Hamiltonian [33]. The global symmetries utilized in this classification scheme are

time-reversal, which materials without magnetic moments possess, particle-hole (or charge), a

symmetry intrinsic to superconductivity, and chiral symmetries. By knowing how the Hamilto-

nian of a given model transforms under these three symmetries, along with the dimension of the

material, we can determine the relevant topological invariant for the system under investiga-

tion. In this dissertation, we focus on class D topological materials, those without time-reversal

symmetry or chiral symmetry, but exhibiting particle-hole symmetry. In one dimensional class

D systems, the topological phases are defined by a Z2 invariant, while the topological phases of

a two-dimensional class D material are defined by a Z invariant, specifically the Chern number.

Recently, a promising new route to the creation of topological superconductors has been

opened in one-dimensional nano-scale hybrid systems. The reported observation of zero-energy

Majorana bound states at the ends of one-dimensional (1D) Rashba-nanowire heterostructures

[14–16] and of chains of magnetic adatoms on the surface of s-wave superconductors [17–20] has

provided the proof of concept for the creation of these exotic quasiparticles in condensed matter

systems. Similarly, it was proposed that two-dimensional (2D) topological superconductors can
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be created by placing islands of magnetic adatoms on the surface of s-wave superconductors

[21–25]. In such systems, chiral Majorana modes – the variant of Majorana zero-energy states

in 2D – are predicted to be localized near the edge of the island, and to form a dispersing,

one-dimensional mode along the edge that traverses the superconducting gap. While there are

strong evidence for the existence of such modes in these systems [25–27], their unambiguous

identification has been experimentally hampered by the small superconducting gaps, often only

of the order of a few hundred µeV . The recent report of topological superconductivity in the

iron-based superconductor FeSe0.45Te0.55 , as evidenced by the observation of a surface Dirac

cone [28], of MBSs in the vortex core [29, 30] and at the end of a line defect [31], and of chiral

Majorana mode near domain wall [32], has therefore been greeted with much enthusiasm as

these systems possesses significantly larger superconducting gaps of a few meV. This work will

be concerned with a theory of MBSs in vortex cores.

Theoretically predicted by Abrikosov in 1957 [34], vortices are regions in type-II super-

conductors where the superconducting gap reaches zero, allowing a magnetic flux quantum,

Φ0 = hc/2e, to penetrate through the material. The complete suppression of the supercon-

ducting gap inside the vortex core allows for MBSs to form when vortices are present in a

TSC.

FeSeTe has been shown to be well-described by a five-orbital model with 5 d-orbitals,

(dxy, dyz, dxz, dx2−y2 , d3z2−r2) [80, 81]. This results in the three experimentally observed Fermi

surfaces [35], two around the Γ [(0,0)] point and one around the M [(±π,0),(0,±π)] and with

the right choice of tight-binding parameters, can fit ARPES measurements in the vicinity of the

Fermi surfaces [80]. It was argued that the surface Dirac cone of FeSe0.45Te0.55 is a consequence

of the bulk being a topological insulator, and the onset of superconductivity that gaps the Dirac

cone. However, the observation of a single Tc that simultaneously gaps the Dirac cone and the

(so-far assumed) trivial α-, β- and γ-bands, implies a coupling between them. This coupling,

however, would destroy the topological character of the Dirac cone, raising the question as to

the origin of the observed MBSs. Here, we propose that the origin of the observed Majorana

modes lies in the emergence of topological superconductivity in the α-, β- and γ-bands, arising

from the interplay of a hard superconducting gap, a Rashba spin-orbit interaction and surface

magnetism, evidence for which has been found by ARPES experiments [82]. In this case, the

relevant topological invariant is the Chern number, as opposed to the Z2 as argued previously.

In order to probe Majorana states in TSCs, whether at the ends of nanowires, edges of
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2D structures, or in vortex cores, we need local probing techniques, most notably scanning

tunneling spectroscopy. An additional probe we could utilize in our study of MBSs is scanning

tunneling shot noise spectroscopy (STSNS). Using this technique, in addition to examining the

tunneling current, one examines the fluctuations of the tunneling current. In particular, we

examine the zero-frequency shot-noise, i.e. the current-current correlation function. In order to

understand what information we can extract from this new probe, we examine a well-understood

correlated-electron system, namely the Kondo effect.

The Kondo effect occurs in a system with a magnetic impurity placed in a sea of conduc-

tion electrons, resulting in a quantum mechnical interaction between the localized electrons of

the impurity and the delocalized conduction electrons that screen the spin of the Kondo (i.e.

magnetic) impurity [36]. Its local spectroscopic signature, the Kondo resonance, has been well

studied using scanning tunneling spectroscopy experiments [37–41]. By measuring the local

differential conductance near magnetic adatoms such as Co located on metallic Cu(111) or

Au(111) surfaces, it was observed that the Kondo resonance exhibits a lineshape (i.e., a bias

dependence) with a characteristic asymmetry that can be well described phenomenologically by

using the Fano formula [42]. A microscopic derivation of the Fano formula [42–44] has shown

that the asymmetry of the Kondo resonance arises not only from the particle-hole asymmetry

of the underlying conduction band, but also from quantum interference between electrons tun-

neling from the STS tip either into the conduction band, or the electronic levels of the magnetic

adatoms [45].

The bulk of this dissertation focuses on the theory of MSHs. In Chapter 2, we report on

a theoretical examination of the experimental system Fe/Re(0001)-O(2Ö1), and show strong

evidence for robust topological phases in the system. This system acts as an ideal candidate

system, as the interface plays a crucial role in the emergence of a topological state, allowing one

to compare topological and non-topological states in one material system. We use this system to

compare theoretical and experimental data and demonstrate the existence of chiral Majorana

states along the edge of a MSH island. In Chapter 3, we examine the link between 1D and

2D MSHs, which are known to have different topological invariants. We demonstrate that one

can adiabatically tune between the two cases, which is interesting not only because topological

superconductors in 1D and 2D are in different homotopy groups – with homotopy group Z2

in 1D, and Z in 2D [46, 47] – but also because it would potentially open new possibilities to

tune the nature of Majorana fermions between localized bound states and delocalized chiral
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edge modes.We also show that it is possible to measure the Chern number, C, using real-space

properties. In Chapter 4, we calculate the phase diagram of FeSe0.45Te0.55 , modeled as a

symmetry class D material, and find that there exists a rich phase diagram with a variety of

possible Chern numbers. Utilizing a generic model of s± superconductivity, we calculate the

local density of states at the center of a vortex, in both a topological state and a trivial state and

show that while both exhibit a series of Caroli-de Gennes-Matricon states, only the topological

state gives a zero-energy mode, an MBS, inside the vortex. Finally, in Chapter 5, we theoretically

examine the zero-frequency shot noise of single Kondo impurities on metallic surfaces as well

as lattices of Kondo impurities. Given that these are theoretically and experimentally well-

understood systems, these results provide insight into the use of STSNS as a novel measurement

probe.
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Chapter 2

Topological Superconductivity in the

magnet-superconductor hybrid

system Fe/Re(0001)-O(2Ö1)

This work was originally published as “Atomic-Scale Interface Engineering of Majorana Edge

Modes in a 2D Magnet-Superconductor Hybrid System” A. Palacio-Morales, E. Mascot, S.

Cocklin, H. Kim, S. Rachel, D. K. Morr, and R. Wiesendanger Science Advances Vol. 5, no. 7,

eaav6600, 2019

In this chapter, we examine and compare theoretical and experimental evidence for the

existence of topological superconductivity and chiral Majorana edge modes in the 2D magnet-

superconductor hybrid system Fe/Re(0001)-O(2Ö1). We develop a theoretical model for the

system, which we use to calculate the Chern number over a range of possible parameters, showing

a rich phase diagram. For one choice of parameters, we compare the theoretical local density-of-

states with the experimentally measured differential conductance and through good agreement

between theory and experiment, show that the system is a topological superconductor.

2.1 Theoretical Model

To investigate the electronic structure of the Fe/Re(0001)-O(2Ö1) hybrid systems, we employ a

Slater-Koster [66] tight-binding Hamiltonian which models the Re bulk system with the relevant
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surface structure as a two-dimensional system. The resulting Hamiltonian is given by:

H = HFe +HRe +HFeRe (2.1)

HFe =
∑
〈r1,r2〉

(d†r1τFe(r1 − r2)dr2 + h.c.) +
∑
r

d†rξFe(r)dr (2.2)

HRe =
∑
〈r1,r2〉

(c†r1τRe(r1 − r2)cr2 + h.c.) +
∑
r

c†rξRe(r)cr (2.3)

HFeRe =
∑
〈r1,r2〉

(d†r1τFeRe(r1 − r2)cr2 + h.c.) (2.4)

where the spinors are defined via

c†r = (c†r,↑, c
†
r,↓, cr,↓,−cr,↑) (2.5)

c†r,σ = (c†r,σ,dxy , c
†
r,σ,dyz

, c†r,σ,dzx , c
†
r,σ,dx2−y2

, c†r,σ,d3r2−z2
) (2.6)

and similarly for d†r. The electron creation operators d†r (c†r) create an electron in the Fe

3d orbitals (Re 5d orbitals) at site r. τ and ξ describe the hopping and on-site interaction

parameters, respectively. The hopping interactions are given by:

τFe(r1 − r2) = τzσ0

∑
β={σ,π,δ}

V ddβ
Fe A

ddβ(δ12) + αFeτz(σ × δ12)zL0 (2.7)

τRe(r1 − r2) = τzσ0

∑
β={σ,π,δ}

V ddβ
Re Addβ(δ12) + αReτz(σ × δ12)zL0 (2.8)

τFeRe(r1 − r2) = τzσ0

∑
β={σ,π,δ}

V ddβ
FeReA

ddβ(δ12) (2.9)

δ12 = (r1 − r2)/(|r1 − r2|) (2.10)

where τ and σ are Pauli matrices acting on particle-hole and spin degrees of freedom respec-

tively, Addβ are the Slater Koster matrices for σ, π, and δ bonds between d orbitals, V ddβ are

the tight-binding hopping integrals, and α is the Rashba spin-orbit coupling. For the results

below, the lattice structure of the above Hamiltonian (which determines the form of Addβ) is

7



Figure 2.1: (A) Schematic picture of the Fe/Re(0001)-O(2Ö1) hybrid system, indicating the
spatial structure of the Majorana edge modes and their spatial decay into the center of the
island. Here, k|| is the mode’s momentum parallel to the edge.(B) Atomic model of the hybrid
system, with the Re(0001) substrate (red spheres), p(2Ö1) oxide layer (blue spheres representing
O atoms) and Fe adatoms (green spheres). O atoms are located above the Re hcp hollow sites
and Fe adatoms are located above the Re atoms. Lattice constant of the Re(0001) surface: aRe
= 0.274 nm.

shown in Fig. 2.1B. The on-site terms are given by:

ξFe(r) = τz(µFeσ0L0 + λFeS · L) + τxσ0∆Fe + Jτ0σz/2L0 (2.11)

ξRe(r) = τz(µReσ0L0 + λReS · L) + τxσ0∆Re (2.12)

where µ is the chemical potential, λ is the spin-orbit coupling, ∆ is the superconducting s-wave

order parameter, and J is the magnetic exchange coupling. Explicitly, the spin-orbit term is
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given by:

S · L = 1/2
∑
i

σiLi = 1/2

 Lz Lx − iLy

Lx + iLy −Lz

 (2.13)

Lx =



0 0 −i 0 0

0 0 0 −i −
√

3i

i 0 0 0 0

0 i 0 0 0

0
√

3i 0 0 0


(2.14)

Ly =



0 i 0 0 0

−i 0 0 0 0

0 0 0 −i
√

3i

0 0 i 0 0

0 0 −
√

3i 0 0


(2.15)

Lz =



0 0 0 2i 0

0 0 i 0 0

0 −i 0 0 0

−2i 0 0 0 0

0 0 0 0 0


(2.16)

We use a constant pairing term between orbitals of opposite Lz, i.e. ∆
Fe(Re)
0 c†m,↑c

†
−m,↓ + h.c.

which then yields for the superconducting order parameter in the cubic harmonic basis:

∆Fe(Re) = ∆
Fe(Re)
0



1 0 0 0 0

0 −1 0 0 0

0 0 −1 0 0

0 0 0 1 0

0 0 0 0 1


(2.17)

where the sign difference between the order parameters in the ∆xz and ∆yz on one hand, and

∆xy, ∆x2−y2 and ∆3r2−z2 is due to Y m
l = (−1)mY −ml . We fix the superconducting order param-

eter of iron and rhenium, such that the energies of the coherence peaks match the experimentally

measured ones, and scale down the band parameters for iron [67] to 8% and rhenium to 10%
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of the original theoretical values such that the coherence length also matches the experimen-

tal values, as coherence length in the BCS theory, ξBCS , is directly proportional to the Fermi

velocity, ξBCS = ~vF
π∆ , and hence scaling the bandwidth scales the coherence length [68]. We

use the hopping integrals from rhenium scaled by 1/10 for the hopping integrals between iron

and rhenium to simulate the effect of the oxide layer. The parameters are listed in Table 2.1.

Note that Fe itself is not superconducting; superconductivity is only proximity-induced from

the Re substrate. In order to describe the magnet-superconductor hybrid system efficiently, we

consider only the effective two-dimensional system, as mentioned before. As a consequence, a

superconducting order parameter for Fe, ∆Fe, explicitly appears in the Hamiltonian, to account

for the proximity-induced superconductivity. As the magnetic structure of the Fe island cannot

be deduced from the experimental STS data obtained with a superconducting Nb-tip, we con-

sider two magnetic structures for the Fe magnetic moments, which are typically observed on

surfaces: a ferromagnetic, out-of-plane alignment [56] as well as a 120° Néel-ordered in-plane

structure [57]. To directly compare the theoretically computed local density of states (LDOS)

with the experimental results, we consider an Fe island with the same lattice structure and

number of atoms as studied experimentally that is located on a Re(0001)-O(2Ö1) surface. We

model the influence of the intermediate O(2Ö1) layer through a modification of the hybridization

described by HFeRe.

Fe Re Fe-Re

V ddσ -3.8561 meV -144.19 meV -14.419 meV

V ddπ 2.1134 meV 66.763 meV 6.6763 meV

V ddδ -0.19264 meV -7.4015 meV -0.74015 meV

µ -7.04 meV -71.5 meV

λ 2.4 meV 32 meV

∆0 0.528 meV 0.33 meV

J 17.473 meV

α 2.4 meV

Table 2.1: Tight binding parameters for the Fe/Re(0001)-O(2Ö1) hybrid system.

Additionally, in order to demonstrate the universality of the combined spatial and energy

evolution of Majorana edge modes shown below, we consider a previously introduced generic

model for a topological superconductor described by the Hamiltonian [21,23]
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H =
∑
r,r′,σ

(
−t− µδr,r′

)
c†rσcr′σ + ∆

∑
r

c†r↑c
†
r↓ + iα

∑
r,αβ

c†r,α

(
δ̂ × σ

)z
αβ
c
r+δ̂,β

+ J
∑
R,α,β

SR · c†RασαβcRβ + H.c. (2.18)

where c†r,α creates an electron at lattice site r with spin α, and σ is the vector of spin Pauli

matrices. Moreover, α denotes the Rashba spin-orbit coupling arising from the breaking of the

inversion symmetry at the surface [17] with δ being the vector connecting nearest neighbor

sites. Due to the full superconducting gap, which suppresses Kondo screening, we consider the

magnetic moments to be static in nature, such that SR is a classical vector representing the

direction of the adatom’s spin located at R, and J is its exchange coupling with the conduction

electron spin.

2.2 Calculation of Local Density of States

The orbital and spin resolved LDOS at site r, orbital α, spin σ, and energy E is obtained from

the retarded Green’s function via

ρ(r, α, σ, E) = − 1

π
ImGret(r, α, σ, r, α, σ, E) (2.19)

where the retarded Green’s function is given by

Gret(r, α, σ, r’, α
′, σ′, E) = 〈r, α, σ|(E + iδ −H)−1|r’, α′, σ′〉 (2.20)

=
∑
k

(〈r, α, σ|k〉〈k|r’, α′, σ′〉)
(E + iδ − Ek)

(2.21)

and k and Ek are the eigenvectors and eigenvalues of the Hamiltonian matrix H. The local

density of states at site r and energy E are the sum of the orbital and spin resolved LDOS at

site r and energy E.

ρ(r, E) =
∑
α,σ

ρ(r, α, σ, E) (2.22)

Only states with Ek ≈ E contribute to the sum in equation 2.21, and we therefore calculated

100 eigenvectors for each E using the Lanczos algorithm. The spatial LDOS was calculated for

each site and smoothed using a Gaussian kernel convolution to simulate the STM tip interacting

11



with nearby sites calculated as ρsmooth =
∫
sites

dr′

σ
√

2π
e
−(r−r′)2

2σ . To match the spatial resolution

of the experiment, the spatial LDOS was pixelated where the pixel width, wp, is the spatial

resolution and the LDOS for sites inside a pixel were summed. We used wp = 1 nm, and

wp = 0.33 nm for Figs. 3.3 and 3.5, respectively, and wp = 0.7 nm for Fig. 2.6.

2.3 Calculation of the Chern number

Let P (k) denote the projector onto occupied states in crystal momentum space

P (k) =
∑

En(k)<0

|Ψn(k)〉〈Ψn(k)| (2.23)

where n(k) is the band index at crystal wave vector k and Θ(−En(k)) is the Heaviside function

at energy −En(k). The Chern number is given by the formula:

C =
1

2πi

∫
BZ

Tr(P (k)[∂kxP (k), ∂kyP (k)])dkxdky (2.24)

where Tr denotes the trace, square brackets denote the commutator, and the integral runs over

the full Brillouin zone. The phase diagram in Fig. 3.4C was generated by computing P(k)

at points in the neighborhood of k to approximate the partial derivatives using the central

difference method [69], then integrated using an adaptive quadrature rule [70]. The parameter

VFeRe/VRe used in Fig. 3.4C is the ratio of hybrid coupling to rhenium coupling which is kept

the same for each bond, i.e. V ddα
FeRe/V

ddα
Re = VFeRe/VRe for α ∈ {σ, π, δ}.

2.4 Results

To demonstrate the creation of topological superconductivity and the ensuing chiral Majo-

rana modes through interface engineering in 2D magnet-superconductor hybrid structure, the

Wiesendanger group have grown nano-scale Fe islands of monoatomic height on the (2Ö1)

oxygen-reconstructed (0001) surface of the s-wave superconductor Re under ultra-high vac-

uum (UHV) conditions. The insertion of an atomically thin oxide separation layer between

magnetic Fe island and the superconducting Re surface is shown to be crucial for the emer-

gence of a topologically non-trivial superconducting state, which is absent when the Fe island

is deposited directly on the surface of the superconducting Re substrate. The spatially- and
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Figure 2.2: (A) Constant-current STM image of a small Fe island located on the O(2Ö1)
surface (scale bar: 5 nm). (B) Experimentally measured dI/dV spectrum on the O(2Ö1) surface
(black line), in the center (blue line) and at the edge (red line) of the Fe island. As all STS
measurements were performed with a superconducting Nb tip whose gap size is ∆Nb

tip = 1.41meV ,

the coherence peaks are located at ∆Nb
tip + ∆O(2×1) or ∆Nb

tip + ∆Fe, respectively. This yields a
measured superconducting gap of ∆O(2×1) ≈ 280µeV in the O(2Ö1) layer, and of ∆Fe ≈ 240µeV
in the center of the Fe island. (C) Deconvoluted dI/dV spectrum on the O(2Ö1) surface (black
line), in the center (blue line) and at the edge (red line) of the Fe island. Parameters for
constant-current STM images and stabilization conditions for STS measurements: U= 2.5 mV,
I= 1.0 nA, T= 360 mK.

energy-resolved differential tunneling conductance, dI/dV, was measured in situ using a low-

temperature scanning tunneling microscope (STM) with a superconducting Nb tip to improve

the energy resolution.

A constant-current STM image of the Fe/Re(0001)-O(2Ö1) hybrid system with a single

nano-scale Fe island is shown in Fig. 2.2A. In general, it is not possible to identify the relative

positions of the Fe- and O-atoms with respect to the Re surface atoms from STM images.

However, DFT studies [49] suggest that the O-atoms are located above the hcp hollow sites of

the Re(0001) surface, forming a p(2Ö1)structure, as confirmed by topographic surface profiles

from the STM image.

Moreover, our theoretical analysis discussed below suggests that the Fe atoms are located

directly above the surface Re atoms, thereby continuing the ABAB stacking of the Re bulk

lattice with the intermediate O atoms located above the Re hcp hollow sites. The resulting

atomic structure of the hybrid system is displayed in Fig. 2.1B. The raw dI/dV measured

above the O(2Ö1) surface with a superconducting tip is shown in Fig. 2.2B. To account for

the energy dependence of the density of states in the tip, the Wiesendanger group deconvolute

the raw dI/dV using standard methods (see SI sec. S3 of ref. [26]), yielding the deconvoluted

dI/dV shown in Fig. 2.2C. The energies of the coherence peaks reveal a superconducting gap

of ∆O(2×1) ≈ 280µeV which is slightly lower than that measured on the pure Re(0001) surface
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Figure 2.3: Theoretically computed LDOS. Theoretically computed LDOS on the Re(0001)-
O(2Ö1) surface (black line) and on the Fe ML (blue line). The position of the coherence peaks
is shifted from ∆O(2×1) ≈ 280µeV on the Re(0001)-O(2Ö1) surface to ∆Fe ≈ 240µeV on the
Fe ML. The finite LDOS at zero energy arises from the finite electronic damping, Γ, introduced
for computational reasons in the calculations.

(∆Re ≈ 330µeV ). Spectroscopic measurements on different structural domains of the O(2Ö1)

layer indicate a uniform spatial distribution of the superconducting gap.

A necessary requirement for the emergence of topological superconductivity is that the Fe

islands couple magnetically to the superconducting Re surface. The observation in dI/dV of a

Yu-Shiba-Rusinov (YSR) in-gap state [50–54] near an isolated magnetic Fe adatom located on

top of the O(2Ö1) surface demonstrates the existence of the magnetic coupling to the supercon-

ducting Re surface, despite the presence of an intermediate oxide layer. Moreover, the presence

of the nanoscale Fe island gives rise to the formation of a band of YSR states near the O(2Ö1)

gap edge [23]. As a result, dI/dV measured in the middle of the Fe island reveals a smaller

superconducting gap ∆Fe ≈ 240µeV than that of the O(2Ö1) layer (see Fig. 2.2C). In Fig. 2.3,

we present the resulting theoretical LDOS on the Re(0001)-O(2Ö1) surface, and on the Fe ML,

which reproduce the experimentally measured positions of the coherence peaks.

A hallmark of 2D topological superconductors is the existence of dispersive, in-gap Majorana

modes that are spatially located along the edges of the system [23,55] (Fig. 2.1A). To visualize

the existence of such modes, we present in Figs. 3.3A-F (Figs. 3.3G-L) the raw (deconvoluted)

spatially resolved differential tunneling conductance, in and around the nano-scale Fe island

shown in Fig. 2.2A, with increasing energy, from EF up to the energy of the coherence peak

at ∆Fe. At EF (Fig. 3.3G), the dI/dV map exhibits a large intensity along the edge of the Fe

island (confined to within a distance of 5 nm from the edge), clearly indicating the existence

of an in-gap edge mode expected for a topological superconductor. With increasing energy
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Figure 2.4: Evolution of the edge states for the hybrid system Fe/Re(0001)-O(2Ö1) with in-
creasing energy. (A-F) Experimentally measured differential tunneling conductance maps and
corresponding deconvoluted data sets (G-L) for the Fe island shown in Fig. 2.2A from the
Fermi level EF = ∆Nb

tip to ∆Fe = 240µeV above EF . At low energies (A-C and G-I), the dI/dV
map reveals states that are localized along the edges of the Fe island (edge modes). Once the
localization length of the edge modes becomes of the size of the island (D and J), the dI/dV in
the center of the island is comparable to that along the edges. (M-R) Theoretically computed
spatially resolved local density of states for the same energies as in G-L. The theoretical data
have been spatially convoluted to reproduce the experimental resolution. STS measurement
conditions: U= 2.5 mV, I= 1.0 nA, T= 360 mK. The intensity scale is adjusted for each figure
separately. Scale bars in A and, M: 5 nm.
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Figure 2.5: Topological phase diagram. (A) 120° Néel-ordered in-plane configuration of the Fe
moments. (B) Superconducting gap (black) and Chern number (red) for a range of µFe. The
Chern number is 3 when the system is gapped and 0 when the gap closes. The hybrid couplings
VFeRe are set to zero and αFe = 1.6meV , λFe = 0.48meV , and ∆Fe = 2.24meV . As expected,
the Chern number changes when the gap closes.

(Fig. 3.3H and, I) the edge mode begins to extend further into the island, consistent with an

increase in the mode’s localization length, λ(E) (Fig. 2.1A) (see discussion below). Note that

the dI/dV measured inside the Fe island and along the edge are of similar intensity already

for energies below ∆Fe, when the localization length becomes comparable to the size of the

Fe island (Fig. 2J, E ≈ ±140µeV , see discussion below). Increasing the energy even further

reverses the intensity pattern, such that at the energy of the coherence peaks ∆Fe ≈ ±240µeV

(Fig. 3.3L) the dI/dV intensity at the edge is smaller than that in the island’s center.

For a ferromagnetic structure, the theoretically computed spatial and energy dependence of

the LDOS (Figs. 3.3M-R) agrees well with that of the deconvoluted experimental differential

tunneling conductance (Figs. 3.3G-L). Similarly, the theoretically computed LDOS inside the Fe

island and of the bare Re(0001)-O(2Ö1) surface also shows a reduction of the superconducting

gap in the former (see Section 5.1), in agreement with the experimental findings (Fig. 2.2C).

Moreover, computing the topological invariant [58] for the parameters used in Figs. 3.3M-R,

we obtain a Chern number C=20. These results taken together strongly suggest that the edge

modes shown in Fig. 3.3 are chiral Majorana modes arising from an underlying topological

superconducting state in the Fe/Re(0001)-O(2Ö1) hybrid system. Note that uncertainties in

the band parameters, and in particular in the hybridization strength, might affect the actual

value of the Chern number, but will not result in a topologically trivial phase (see discussion

below). Similarly, we find that the system is a topological superconductor for a 120° Néel-

ordered in-plane structure [57] [Fig. 2.5A] of the Fe moments with Chern number C=3 [Fig.

2.5B].
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Figure 2.6: Energy evolution of the spatially resolved LDOS for a generic topological supercon-
ductor. (A) Schematic picture of a ferromagnetic Shiba island with large black circles denoting
magnetic defect sites. (B-G) Spatially resolved LDOS from EF to ∆ for µ = −4t, α = 0.8t,
∆ = 1.2t, and J = 2t. Such a large value of ∆ is necessary in order to obtain a coherence
length that is smaller than the size of the island, otherwise no well- defined edge modes can
be observed. As the energy increases, the weight of the LDOS moves from the edge of the
magnetic island toward the center, similar to the results shown in Fig.3.3. (H) Intensity plot of
the LDOS as a function of position (along a cut through the island) and energy, showing the
energy evolution of the edge modes.

In order to show that the observed behavior of the LDOS is not particular to the system

observed and modeled here, we examine the corresponding behavior of our generic model. We

consider a two-dimensional square lattice, with a circular magnetic island of radius 15a0, as

shown in Fig. 2.6A. In Fig. 2.6B-G, we present the energy evolution of the LDOS, which is

qualitatively similar to that shown in Fig. 3.3 for the Fe/Re(0001)-O(2Ö1) hybrid structure.

Moreover, a plot of the LDOS as a function of position (along a cut through the island) and

energy shown in Fig. 2.6H reveals that the chiral Majorana mode is located at the edge of

the island for all energies up to the superconducting gap edge. We therefore conclude that the

combined spatial and energy evolution of the topological Majorana edge modes, as reflected in

the LDOS, is universal, and does not depend on a particular band structure.

A further important signature of Majorana modes is that they are topologically protected

against edge disorder according to the bulk-boundary correspondence [55]. Indeed, edge modes

that possess a trivial, non-topological origin can easily be moved away from the Fermi energy,

or even be destroyed by disorder. However, the experimentally studied Fe island does not

only possess a spatial symmetry different from the underlying Re(0001)-O(2Ö1) surface, but

also exhibits a large degree of disorder along its edges (Fig. 2.2A). The fact that despite this
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Figure 2.7: Decay of the edge states inside an Fe island. (A) Deconvoluted LDOS profiles
obtained from the experimentally measured dI/dV spectra along the red dotted line in the
inset for several different energies: EF , +40 µeV, +60 µeV, +80 µeV, and +100 µeV. (B)
Theoretically computed LDOS along the red line in the inset for the same energies as in A.
The corresponding surface profiles of the island are depicted in the lower panels of A and B.
The theoretical results have been spatially convoluted to reproduce the experimental resolution.
Inset in A and B: the STM topography image and theoretically considered model structure of
an Fe island, respectively. All LDOS profiles in A and B are normalized by their maximum
values at the island’s edge. (C) Theoretical phase diagram of the hybrid system. Chern number
for an out-of-plane ferromagnetic structure of the Fe layer, as a function of VFeRe/VRe and µFe.
The phase diagram reveals an abundance of topological phases near the parameter set used to
describe the Fe/Re(0001)-O(2Ö1) hybrid system (yellow dot with crossed dotted lines).

disorder, edge modes are observed at EF , further supports our conclusion that these modes are

topologically protected chiral Majorana modes.

To further elucidate the properties of the Majorana edge modes, we present in Fig. 3.4 the

deconvoluted differential tunneling conductance (Fig. 3.4A) and the theoretically calculated

LDOS (Fig. 3.4B) for increasing energy along a cut through the Fe island, as shown in the insets

(the surface profile of the island is shown in the lower panels of Fig. 3.4A and B). Both quantities

agree quantitatively and decay as expected exponentially into the island with a localization

length λ(E) that increases with increasing energy (as sketched in Fig. 2.1A). The maxima in

dI/dV and the LDOS are located right at the edge of the island for all energies, as expected

from generic models of topological superconductors with a dominant s-wave order parameter [25]

18



(see discussion below). This very good agreement between the topographically determined edge

of the Fe island and the maximum in dI/dV therefore provides additional evidence for the

topological nature of the edge modes. Note that the recently reported spatial splitting of the

edge mode [25] can only be understood if one assumes a topological superconductor with a

predominant p-wave order parameter [25], or if the edge mode starts to hybridize with bulk

states [24].

The question naturally arises to what extent the observed topological superconducting phase

of the Fe/Re(0001)-O(2Ö1) hybrid system is robust against variations in the strength of pa-

rameters, such as the hybridization between the Re surface and the Fe island, VFeRe, which

is mediated by the O(2Ö1) oxide layer, or the chemical potentials, µFe or µRe. To investi-

gate this question, we present in Fig. 3.4C the topological phase diagram of the system, as a

function of VFeRe and µFe (the Chern number was calculated as described in Section 2.3, and

the parameters for the system considered above are indicated by a yellow circle). The phase

diagram clearly reveals an abundance of topological superconducting phases in close proximity

to each other that are characterized by different Chern numbers. While the uncertainty in the

electronic band parameters we have used to describe the Fe/Re(0001)-O(2Ö1) system can result

in an uncertainty of the actual Chern number in the experimentally realized system, the fact

that the system resides in a topological phase is robust. This substantiates our conclusion that

the observed edge modes directly reflect the topological nature of the magnet-superconductor

hybrid system.

To demonstrate that interface engineering using an atomically thin oxide layer is crucial for

the emergence of topological superconductivity in the Fe/Re(0001)-O(2Ö1) hybrid system, we

contrast the above results with those obtained when the Fe layer is directly deposited on the

Re(0001) surface without an intermediate oxide layer [57] (see Fig. 3.5). In this case, with

the Fe atoms being located directly above the Re(0001) hcp hollow sites (Fig. 3.5H), dI/dV

measured on the Fe islands exhibits no signature of edge modes in the raw data (Fig. 3.5E-G) as

well as in the deconvoluted data (Fig. 3.5I-K); rather it reflects delocalized, bulk-like excitations

throughout the entire Fe island at EF . Our theoretical analysis of this system reveals (using

the same set of parameters as for Fig. 3.3M-R) that the change in the spatial location of the Fe

atoms with respect to the Re(0001) surface (arising from the missing intermediate oxide layer)

renders the electronic structure of this hybrid system gapless. As a result, the LDOS at EF is

non-zero, leading to the delocalized excitations observed experimentally. Moreover, the absence
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Figure 2.8: Topological trivial Fe island on a bare Re(0001) surface. (A) The STM image of the
Fe island being placed directly on the superconducting Re substrate (scale bar: 10 nm). (B)
Experimentally measured dI/dV spectra on the clean Re(0001) surface (black), at the center
(blue) and at the edge (red) of the Fe island using a superconducting Nb-tip whose gap size is
∆Nb
tip = 0.86meV . (Tunneling conditions for STM/STS measurements: U = 2.0 mV, I = 1.0 nA,

T= 360 mK). (C) The deconvoluted surface LDOS derived from the spectra shown in B taking
into account the superconducting gap of the Nb tip used for the STS measurements. (D) A
zoomed-in STM image of the Fe island shown in A (yellow boxed area in A); (scale bar: 5 nm).
(E-G) Experimentally measured dI/dV maps for the Fe island shown in D at U=+0.86, +0.91
and +0.96 mV, which are corresponding to the energy of EF , 50 and 100 µeV, respectively.
(H) Atomic model of the Fe island on the bare Re(0001) substrate. Fe adatoms are located at
the hollow sites of the Re substrate. (I-K) The spatial distribution of the deconvoluted surface
LDOS for the island shown in D. (L) The zoomed-in image of the theoretically considered Fe
island structure, reproducing the experimental Fe island in D. (M-O) Calculated LDOS of the
island shown in L at the same energies as the experimental results. The theoretical data have
been spatially convoluted to reproduce the experimental resolution.
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of a gap implies that the system is in a trivial, non-topological phase, explaining the absence

of edge modes, as observed experimentally. Thus the change in the relative position of the

Fe and Re atoms induced by the presence of the oxide layer is crucial for realizing topological

superconductivity in the hybrid system.
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Chapter 3

Dimensional Tuning of Majorana

Fermions and the Real Space

Counting of the Chern Number

This work was originally published as “Dimensional tuning of Majorana fermions and real space

counting of the Chern number” E. Mascot, S. Cocklin, S. Rachel, and D. K. Morr, Physical

Review B 100, 184510, 2019

In this chapter, we explore the transition between one- and two- dimensional topological

superconductors. We demonstrate that it is possible to use atomic manipulation techniques to

adiabatically tune between one-dimensional and two-dimensional topological superconductors

in magnet-superconductor hybrid (MSH) structures. By adding Shiba wires to Shiba islands

and observing the spatial distribution of the local density-of-states, we show that we can count

the Chern number using real-space measurements. Additionally, we extend these results from a

toy model to the experiementally relevant model used in the previous chapter for Fe/Re(0001)-

O(2× 1).

3.1 Model

To investigate the engineering of Majorana fermions, we consider MSH structures in which

magnetic adatoms are placed on the surface of a conventional s-wave superconductor with a

Rashba spin-orbit interaction. Realizations of such MSH structures include Fe on Pb(110) [17,

19,20] as well as Fe on Re(0001) [18] or Re(0001)-O(2×1) [26]. While the Fe-Pb systems form
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a rectangular lattice the Fe-Re systems form a hexagonal lattice. Such systems are described

by the Hamiltonian previously introduced in Ch. 2, eqn. 2.18. For concreteness and linkage

with the above mentioned experiments, we consider both square and triangular lattices. We

emphasize that all results remain true for other lattice geometries as expected for topologically

non-trivial matter.

While the topological phases of macroscopic, translationally-invariant systems are well char-

acterized by the topological invariant – the Chern number, see eqn. 2.24, the topological phases

of inhomogeneous [77] or finite-size systems can be characterized by the spatial Chern number

density given by

C(r) =
N2

2πi
Trτ,σ[P [δxP, δyP ]]r,r . (3.1)

with the Chern number in real space then give by [69, 76] C = 1/N2
∑

rC(r). Here, Trτ,σ

denotes the partial trace over spin σ and Nambu space τ ,

δiP =

Q∑
m=−Q

cme
−2πimx̂i/NPe2πimx̂i/N , (3.2)

and the projector P onto the occupied bands is given by P =
∑

α=occ. |ψα〉 〈ψα| for a real-space

N ×N lattice. The cm’s are central finite difference coefficients for approximating the partial

derivatives. The coefficients for positive m can be calculated by solving the following linear set

of equations for c = (c1, . . . , cQ): Âc = b, Aij = 2j2i−1, bi = δi,1, i, j ∈ {1, ..., Q}. For negative

m, we have c−m = −cm. We have taken the largest possible value of Q = N/2. C(r) as defined

above thus represents the real-space analog of the Berry curvature F(k), and was previously

introduced to discuss the topological phases of Chern insulators [78].

3.2 Dimensional tuning and counting of Majorana modes

The observation of zero-dimensional (0D) Majorana modes at the ends of Shiba chains, and

chiral 1D majorana modes at the edges of Shiba islands have raised the question of whether

atomic manipulation techniques can be used to tune Majorana modes between these two limits.

To address this question, we consider a system in which both the 1D chains and 2D islands

of magnetic adatoms induce topological superconductivity, with Chern number C = −1 in the

latter case. To interpolate between Shiba chains and islands, we attach an increasingly longer

chain of magnetic adatoms to a Shiba island, as shown in Figs. 3.1(a)-(c). With no chain present,
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Figure 3.1: MSH hybrid structure consisting of a Shiba island of radius R = 15a0 (with C = −1)
and chain with parameters (µ,∆, α, J) = (−4t, 1.2t, 0.45t, 2.6t) (black circles denote sites with
magnetic adatoms.). (a)-(c) LDOS of the lowest energy Majorana mode with increasing chain
length, corresponding to arrows (1)-(3) in (e). (d) LDOS of the second lowest energy Majorana
mode, corresponding to arrow (4) in (e). (e) Evolution of the 4 lowest energy levels with
increasing chain length, in units of the island radius, R0 = 15a0, of the Shiba island. Inset:
log-plot of the lowest energy level with increasing chain length, red line represents a linear fit.
(f) Evolution of the 4 lowest energy levels with decreasing island radius, in units of R0. (g),(h)
LDOS of the lowest energy Majorana mode with decreasing radius, corresponding to arrows
(5),(6) in (f).

the Shiba island possesses a chiral Majorana mode that is localized near the edge of the island,

and forms a dispersing, 1D edge mode that traverses the superconducting gap. Each chiral edge

mode is comprised of two Majorana fermions, which for the lowest energy mode are located at

small, but finite energy E = ±ε [Fig. 3.1(e)] (this non-zero energy, and the discreteness of the

modes arises from the finite size of the island [23]). The LDOS of the lowest energy mode is

shown in Fig. 3.1(a). When a chain is attached to the island, and its length is increased, spectral

weight is transferred from the island’s lowest energy Majorana edge mode to the end of the chain

[Fig. 3.1(b)]. When the chain is sufficiently long [Fig. 3.1(c)] it possesses a localized Majorana

fermion at its end, while a second Majorana fermion remains delocalized along the edge of the

island. Note that the spatially integrated spectral weight of the zero-energy state is exactly split

between the dispersive Majorana edge fermion and the bound state at the end of the chain.

Concomitant with the increasing separation between these two Majorana fermions, the energy

of the lowest energy states decreases smoothly and monotonically [Fig. 3.1(e)], implying that

the system remains in a topological phase throughout this evolution, i.e., without undergoing

a phase transition. Moreover, as expected for two Majorana fermions localized at the end of
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a chain, the log-plot of their energy shown in the inset of Fig. 3.1(e) reveals that it decreases

exponentially with the length of the chain. At the same time, the higher energy Majorana

modes remain entirely localized along the edge of the island, as shown in Fig. 3.1(d) for the

second lowest energy state. We note that as there is no zero-energy crossing of the lowest

energy states with increasing chain length, no parity transitions occurs [74]. To finally arrive

at a purely one-dimensional chain, we next reduce the radius of the Shiba island, while keep the

length of the chain fixed. In Fig. 3.1(f), we present the evolution of the four lowest energy states

with decreasing island radius. As expected, we find that the lowest energy state, corresponding

to the Majorana fermions located at the end of the chain and around the edge of the island,

remains located near zero energy with decreasing R, while the other states move up in energy.

The corresponding lowest energy LDOS are shown in Figs.3.1(g),(h), demonstrating that the

Majorana fermions remain located at the end of the chain with decreasing R. The smooth

evolution of the lowest energy states shown in Fig. 3.1(f) demonstrates that the system can

be adiabatically tuned, i.e., without undergoing a phase transition, between the island-chain

structure shown in Fig. 3.1(c), and a purely 1D chain shown in Fig. 3.1(h). This implies that

the entire transition from the 2D Shiba island in Fig. 3.1(a) [corresponding to the left hand side

in Fig. 3.1(f)] to the 1D chain [corresponding to the right hand side of Fig. 3.1(g)] is adiabatic,

and the system does not undergo a phase transition.

Figure 3.2: (a) Linecut of the Chern density C(r) through a Shiba islands of different radii R.
Spatial plot of C(r) for the MSH structures in Fig. 3.1 with chain length (b) L = 0, (c) L = 10
and (d) L = 20. Parameters are the same as in Fig. 3.1 with C = −1.

Further evidence for the adiabatic evolution of the system come from considering the Chern

number density, C(r) of the MSH structure. C(r) can be employed to characterize the topolog-

ical nature of finite-size (or disordered [77]) systems, as it adiabatically connects the topological

state of finite size systems to the Chern number of translationally invariant, macroscopic sys-

tems. To demonstrate this, we compare in Fig. 3.2(a) the Chern number density along a line
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cut through Shiba islands with increasing radius, with C(r) of an infinitely large system. Al-

ready for an island with radius R = 15a0, C(r) in the center of the island is close to that of

the infinitely large system, an agreement which improves with increasing island radius. At the

same time, the island exhibits chiral edge modes, thus demonstrating that the Chern number

density is a suitable property to characterize the topological nature of a finite-size Shiba island.

Thus, we can now employ C(r) to further demonstrate that the MSH system shown in

Figs. 3.1(a)-(c) can be adiabatically tuned between 1D and 2D without undergoing a phase

transition. To this end, we present in Fig.3.2 the Chern number density for different chain

lengths, ranging from an island without chain [Fig. 3.2 (a)], to islands with chain lengths L = 10

[Fig. 3.2 (b)] and L = 20 [Fig. 3.2 (c)]. Throughout this evolution, C(r) not only remains close

to −1 inside the Shiba island, but the end of the chains also exhibits some non-zero negative

value for C(r), again demonstrating the adiabatic evolution of the MSH structure. Thus, the

results shown in Figs. 3.1 and 3.2 demonstrate that it is not only possible to adiabatically tune

between 1D and 2D topological superconductivity via atomic manipulation (and hence spatially

separate Majorana fermions without the creation of magnetic vortices [7]), but also to design

a single system exhibiting both localized and dispersive Majorana zero modes.

The above results open a new paths to the long sought goal for identifying the topological

invariant — the Chern number — through measurements, as attaching chains to a magnetic

island via atomic manipulation allows one to count the Chern number. To demonstrate this, we

attach a second chain to the island–chain hybrid system of Fig. 3.1(c), and present the resulting

lowest energy LDOS in Fig. 3.3(a). As expected, we find that by attaching a second chain,

the dispersive Majorana mode moves from the edge of the Shiba island [see Fig. 3.1(c)] to the

end of the second chain where it forms a bound state. Thus, attaching two chains to a Shiba

island that is in a topological phase with C = ±1 relocates the zero-energy Majorana modes

from the edge of the island to the end of the chains, as shown in Fig. 3.3(a). Coincidentally,

this result also demonstrates that the localization of Majorana modes at the end of a chain is

insensitive to the particular shape of the chain in its middle. Next, we consider a Shiba island

that is in a topological superconducting phase with Chern number C = 2, implying that the

island possesses two degenerate chiral Majorana edge modes. We note that these two modes are

topologically protected from combining into a complex Dirac fermion [23], due to the absence of

any coupling between them. When two chains are attached to such an island with C = 2, one

of the Majorana modes is separated into two zero energy Majorana fermions which are located
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Figure 3.3: (a) LDOS of the lowest energy Majorana mode for a Shiba island with C = −1 and
two chains of length L = 30a0 attached (same parameters as in Fig. 3.1). (b)-(e) MSH structure
with C = 2 and parameters (µ,∆, α, J) = (−0.5t, 0.7t, 0.45t, 2t). Lowest energy LDOS for a
Shiba island with radius R = 15a0 and with (b) two, (c) three, and (d) four chains of length
L = 30a0 attached. (e) The points where the chains are attached are rotated by 45◦ from (d).

at each of the ends of the two chains, as shown in Fig. 3.3(b) [we note that for this particular

set of parameters, the chains are only in a topological phase when they are oriented along the

diagonal, but not when they are oriented along the bond directions, which is opposite to the case

considered in Fig. 3.1]. At the same time, the second Majorana mode remains localized along

the edge of the Shiba island, with large spectral weight concentrated at those points along the

edge where the chains are attached. This result is qualitatively different from the C = −1 case

where in the presence of two chains, no low-energy Majorana mode remains along the edge of

the Shiba island [see Fig. 3.3(a)]. When a third chain is attached to the island [see Fig. 3.3(c)],

the second Majorana mode is spatially split into two Majorana fermions, one that is located

at the end of the third chain, and one that remains located along the edge of the island. Only

when four chains are attached to the island [Fig. 3.3(d)] we find that four zero-energy Majorana

fermions (arising from the two lowest energy Majorana modes of the island) are located at the

end of the chains, with no mode remaining along the edge of the island. We note that this

result does not depend on the particular locations where the chains are attached to the island.

This is shown in Fig. 3.3(e), being a variant of the geometry in Fig. 3.3(d).

The results shown in Figs. 3.1(c),(d) and Fig. 3.3 suggest a new real space approach to

detecting the Chern number of a two-dimensional topological superconductor through atomic
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manipulation: if spectral weight for a zero-energy state remains located at the edge of the island

when N − 1 chains are attached, but vanishes for N chains, then the Chern number of the 2D

topological superconductors is given by C = N/2. Our results also imply that by attaching

chains to the island, one can effectively change the number of Majorana zero modes in the

island, and in particular tune the island to possess an odd number of zero-energy Majorana

modes.

Figure 3.4: Shiba island with radius R = 20a0 on a triangular lattice with parameters
(µ,∆, α, J) = (0.4, 1.2, 0.45, 2.6)t yielding a topological phase with C = 3. Zero energy LDOS
for the island with (a) one, (b) five and (c) six chains of length L = 20a0 attached. Zero energy
LDOS for the island with (d) the ends of two neighboring chains connected, giving rise to a
windmill-like structure and junctions with an even number of chains (even junction), (e) the
ends of neighboring chains connected, giving rise to a spiderweb-like structure and junctions
with an odd number of chains (odd junction), and (f) the ends of two opposite chains connected
with the ends of their two neighboring chains giving rise to a tie fighter-like structure with both
even and odd junctions.

To demonstrate that these findings also hold for higher Chern numbers and different lattice

structures, we next consider a Shiba island in the C = 3 phase located on a triangular lattice,

and present in Figs. 3.4(a)-(c) the resulting lowest-energy LDOS for an increasing number of

chains. Such an island possesses 3 degenerate Majorana modes, or 6 Majorana fermions. As

expected, we find that with each added chain, a Majorana fermion is removed from the Shiba

island and relocated to the end of the chain, leading to a decrease in the spectral weight around

the edge of the island, as shown in Figs. 3.4(a),(b). When six chains are attached to the island,
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all low-energy Majorana modes are removed from the edge of the island [Fig. 3.4(c)]. These

results again fully support the validity of the real space approach to counting the Chern number

introduced above, as for N = 6 chains no zero-energy spectral weight remains around the edge

of the island, implying that it is in the C = N/2 = 3 phase.

Atomic manipulation can be employed to further tune the location of the Majorana fermions

between the end of the chains and the edge of the island. For example, connecting the ends

of two neighboring chains by another chain – giving rise to the windmill-like structure shown

in Fig. 3.4(d) – leads to junctions where an even number of chains meet (even junctions).

Such junctions cannot sustain the existence of Majorana fermions [79], such that all Majorana

fermions are relocated back to the edge of the Shiba island. On the other hand, connecting

the ends of all chains with ends of their nearest neighbor chains [see Fig. 3.4(e)] gives rise to

six junctions where an odd number of chains meet (odd junctions). Such junctions can sustain

the existence of a Majorana fermion, such that all Majorana fermions remain located at the

end of the chains, i.e., at the junctions. Finally, connecting the ends of two opposite chains

with the ends of their two neighboring chains – leading to the tie fighter-like structure shown in

Fig. 3.4(f) – produces 4 even and 2 odd junctions, such that 4 Majorana fermions are relocated

to the edge of the island, and 2 Majorana fermions remain located at the odd junctions.

Figure 3.5: Experimentally realized Fe/Re-O(2× 1) MSH structure (see Ref. [26]) with C = 4.
LDOS of zero-energy Majorana modes with (a) no attached chain, (b) one, (c) seven, and (d)
eight attached chains. Hamiltonian and parameters for this 10-band model are given in the
supplemental material of Ref. [26] and appendix 3.3.
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To demonstrate that dimensional tuning and real space counting of Chern numbers can also

be achieved in experimentally relevant MSH structures, we consider the MSH structure described

by the 10-band model that was employed in the previous chapter to explain the emergence

of topological superconductivity in Fe islands deposited on a Re(0001)-O(2x1) surface. The

Fe island considered below possesses the same form and spatial extent as the experimentally

studied one [26]. However, while the experimentally observed island is in a topological phase

with C = 20, we have slightly altered the parameters to tune the island into a topological phase

with a smaller Chern number of C = 4. In this case, the above counting argument predicts that

only 8 chains need to be attached to the island remove all zero-energy Majorana fermions from

the edge of the island, rather than the 40 chains required in the C = 20 phase.

As the island is in the C = 4 topological phase, it exhibits four chiral Majorana modes

along the edge of the island, with the corresponding E = 0 LDOS shown in Fig. 3.5 (a). As

before we find that a single chain of magnetic adatoms attached to the island, possesses a

Majorana bound state that is localized at the end of the chain, with all other Majorana fermions

remaining localized along the edge of the island, as follows from the zero-energy LDOS shown

in Fig. 3.5(b). For an island with 7 chains attached [see Fig. 3.5(c)], substantial spectral weight

has been removed from the edge of the island as 7 Majorana bound states are now located at

the end of the chains, with only a single chiral Majorana fermion remaining located along the

edge of the island. We note that as expected the integrated spectral weight along the edge of

the island is the same as that around each end of the chains. However, as the spectral weight of

the Majorana fermion is extended over the entire length of the edge, the peak intensity in the

LDOS along the edge is significantly smaller than that at the end of the chains [see Fig. 3.5(c)].

Finally, adding an 8th chain to the island relocates the last Majorana fermion to the end of

the chain, leading to a vanishing zero-energy LDOS at the edge of the island [Fig. 3.5 (d)]. We

therefore conclude that proposed real space approach to counting the Chern number holds even

for experimentally relevant MSH structures, thus further supporting its validity.

The above results also suggest how the dimensional tuning of Majorana fermions between 1D

and 2D can be generalized to MSH structures with Chern numbers different from C = ±1 which

was discussed in Fig. 3.1. Specifically, we find that it is possible to use atomic manipulation

techniques to adiabatically tune between a Shiba island with |C| chiral Majorana modes, and

a network of chains that host 2|C| localized Majorana bound states, as shown in Figs. 3.1(g),

3.3(c), 3.4(c),(d) and 3.5(d). Atomic manipulation techniques thus provide a promising new
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approach to the quantum engineering of Majorana fermions.

3.3 Parameters for the Fe/Re-O(2× 1) MSH structure

To reduce the Chern number from experimentally relevant case of C = 20 for experimentally

realized Fe/Re-O(2 × 1) structure in Ref. [26] to C = 4 discussed in Fig. 3.5, the following

parameters were changed from those given in the supplemental material of Ref. [26]: ∆Re = 33

meV, µFe = −10.96 meV, λFe = 0.64 meV, αFe = 3.36 meV, and ∆Fe = 3.28 meV.
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Chapter 4

Topological Surface

Superconductivity in FeSe1−xTex

This chapter investigates a new possibile explanation for the modeling of topological supercon-

ductivity in FeSe0.45Te0.55 , in which we extend a previous model of FeSe0.45Te0.55 to include

both surface magnetism and Rashba spin-orbit coupling. By then calculating the phase diagram

over a range of magnetism strengths and global chemical potentials, we demonstrate the exis-

tence of a range of topological phases in this model. We then use a generic model of s±-wave

superconductivity to calculate the local density-of-states (LDOS) as an STS moves across a

vortex in both a topological and trivial superconductor. We find that only in the topological

case is there a zero-energy state, a Majorana zero mode (MZM). Additionally, this MZM is

strongly spin-polarized providing a strong spectroscopic indicator for experimentalists verifying

the existence of such MZMs.

4.1 Model

To investigate the emergence of topological superconductivity on the surface of FeSe1−xTex, we

consider a 5-orbital model extracted from an analysis of STS experiments on clean FeSe1−xTex

[80,81]. In addition, we include in this model (a) the effects of surface magnetism, evidence for

which was recently reported by ARPES experiments [82], through an exchange field, and (b) a

Rashba spin orbit interaction that arises from the breaking of the inversion symmetry on the
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surface, yielding the real-space Hamiltonian H = H0 +HSC , with

H0 =−
∑
r,r′,σ

5∑
β,γ=1

tβγr,r′c
†
r,β,σcr′,γ,σ + iα

∑
r,r′,σ,σ′

5∑
β=1

c†r,σ,β

(
δ̂ × σ

)z
σσ′

c
r+δ̂,σ′,β

+ J
∑

r,r′,σ,σ′

5∑
β=1

SR · c†R,σ,βσσσ′cR,σ,β + µ
∑
r,r′,σ

5∑
β=1

c†r,β,σcr,β,σ + H.c. (4.1)

HSC = −
∑
〈r,r′〉

5∑
β=1

Iβr,r′ c
†
r,β,↑c

†
r′,β,↓cr,β,↓cr′,β,↑ . (4.2)

Here α, β = 1, ..., 5 are the orbital indices corresponding to the dxz-, dyz-, dx2−y2-, dxy-, and

d3z2−r2-orbitals, respectively, −tαβr,r′ represents the electronic hopping amplitude between orbital

β at site r and orbital γ at site r′, c†r,α,σ(cr,α,σ) creates (annihilates) an electron with spin σ at site

r in orbital α, iα represents the Rashba spin-orbit interaction amplitude, µ represents a global

chemical potential, and σ is the vector of spin Pauli matrices. Due to the full superconducting

gap, which suppresses Kondo screening, we consider the magnetic moments to be static in

nature, such that SR is a classical vector representing the direction of the surface atom’s spin

located at R, and J is its exchange coupling with the conduction electron spin. The opening

of a gap at the Dirac point, assuming a helical spin-structure of the Dirac cone, implies that

the magnetic moments are aligned perpendicular to the surface, such that for concreteness, we

assume an out-of-plane ferromagnetic alignment. To obtain a superconducting order parameter

with s±-wave symmetry [83], we take HSC to describe superconducting intra-orbital pairing

between next-nearest neighbor Fe sites (in the 2 Fe unit cell, Fig. 4.1), with Iαr,r′ being the

pairing interaction. Using a mean-field decoupling of HSC , we obtain

HMF
SC =

∑
〈r,r′〉

5∑
β=1

∆ββc
†
r,β,↑c

†
r′,β,↓ +H.c. (4.3)

To obtain the topological phase diagram, we compute the Chern number using eqn. 2.24.

4.2 Phase diagram

In Fig. 4.2(a) we present the resulting phase diagram for α = 7 meV, as a function of µ and J .

We here restrict our attention to µ > 0 to preserve the topology of the Fermi surfaces, ensuring
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Figure 4.1: The 2 Fe unit cell for FeSe0.45Te0.55

that the Fermi surfaces remain closed around the Γ and X/Y -points and that the system still

exhibits a full s±-wave SC gap. As we can see in Fig. 4.2(b) and (c), both the C=2, -3 phases

preserve this Fermi surface topology and maintain the full SC gap. Interestingly enough, we

find that already for small exchange interactions of J of the order of a few meV, a variety of

topological phases exist. Specifically phases for C = −3,−2,−1, 1 can all be found over the

range of the diagram. The grey region in the upper left hand corner is the region in which the

Fermi surface touches the nodal lines of the superconducting order parameter, causing the gap

to close and thus destroy the topological order.

4.3 MZM in a vortex core

The detailed spatial, energy and spin-structure of MZMs inside vortex cores [29, 30] provides

another clue as to the potential origin of topological superconductivity in FeSe0.45Te0.55 . Due

to the large number of orbitals per site, the self-consistent calculation of a vortex in the full

FeSe0.45Te0.55 model is computationally too demanding. We have therefore consider a simplified

model for a topological s±-wave superconductor, given by the Hamiltonian

H = −t
∑
r,r′,σ

c†r,σcr′,σ − µ
∑
r,σ

c†r,σcr,σ +
∑
〈〈r,r′〉〉

∆0c
†
r,↑c
†
r′,↓ + iα

∑
r,σσ′

c†r,σ

(
δ̂ × σ

)z
σσ′

c
r+δ̂,σ′

+
∑
r,σ,σ′

c†r,σ(Sr · σ)σσ′cr,σ′ +H.c. , (4.4)

where −t is the hopping amplitude between nearest neighbor sites on a triangular lattice, µ

is the chemical potential, and ∆0 is the superconducting s±-wave order parameter. J is the
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Figure 4.2: (a) Topological phase diagram of FeSe0.45Te0.55 in the (µ − J)-plane with α = 7
meV. Inside the greyed out region, the gap is closed and there is no topological order. Fermi
surfaces in the (b) C = 2 and (c) C = −3 phases.

magnetic exchange coupling, and c†r,σ creates an electron with spin σ at site r. Sr represents

the magnetic moment’s spin S at site r. 〈〈r, r′〉〉 denotes a sum over next nearest-neighbor sites.

In Fig. 4.3(a) we present the self-consistently computed superconducting order parameter

near a vortex core in a topological superconducting phase with C = 1. A linecut of the LDOS

through the vortex core shown in Fig. 4.3(b) shows the presence of a zero-energy state, which we

associate with the MZM, mirroring recent experimental results [29]. This conclusion is supported

by the fact that a zero-energy state in a vortex core is absent when the superconductor is in

the trivial phase, as shown in Fig. 4.3(c).

In addition to the MZM, the LDOS near the vortex core reveals trivial Caroli-de Gennes-

Matricon (CdGM) in-gap states which show a characteristic energy dependence with distance

from the vortex core. The observation of these CdGM states in our model closely matches

recent experimental results [84]. These trivial states are also present in the topological trivial

phase, as shown in Fig. 4.3(d). Of particular interest is the spin structure of the MZM: a plot of

the spin-resolved LDOS shown in Fig. 4.3(c) reveals that the MZM is strongly spin-polarized.

Interestingly enough, the two spin-components are out-of-phase: the spin-↑ LDOS exhibits a

maximum, where the spin-↓ LDOS vanishes, and vice versa. This strong spin-polarization of

the MZM is a direct consequence of the surface magnetism, and hence a characteristic signature
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of the here proposed origin of the topological superconductivity in FeSe0.45Te0.55 , in stark

contrast to the previously proposed origin in the presence of a bulk topological insulator that

does not break the time-reversal invariance.

Figure 4.3: Linecut of the LDOS, N(r, E), through the center of the vortex core for in the
(a) topological phase with (µ, J, α,∆) = (−5, 1.7, 0.625, 0.25)t yielding C = 1 (the MZM is
indicated by a yellow arrow), and (b) the trivial phase with (µ, J, α,∆) = (−4, 0.8, 0.25, 0.25)t.
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Chapter 5

Scanning Tunneling Shot Noise

Spectroscopy in Kondo systems

This work was previously published as “Scanning tunneling shot-noise spectroscopy in Kondo

systems” S. Cocklin and D. K. Morr Physical Review B 100, 125146, 2019.

As we have seen in the previous chapters, STS is a powerful probe for understanding real-

space properties of condensed matter systems. A further extension of STS for investigating

such systems is scanning tunneling shot noise spectroscopy (STSNS). In a demonstration of the

use of this probe, we theoretically examine the shot noise for one well-studied, well-understood,

correlated electron system, namely Kondo systems.

In this chapter, we will investigate the relation between the bias dependence of the current,

the differential conductance, the zero-frequency shot-noise, and the Fano factor, defined as

F =
S(ω = 0)

2e|I|
(5.1)

around magnetic adatoms located on metallic surfaces exhibiting a Kondo effect, as well as in

Kondo lattices, as observed by scanning tunneling shot noise spectroscopy. We will show that

the Fano factor exhibits a characteristic lineshape that reflects not only the strong correlations

arising from Kondo screening, but also quantum interference effects due to multiple tunnel-

ing paths. This characteristic lineshape of F is not unlike the Kondo resonance observed in

the differential conductance (for example in ref. [40]), and presents an additional test for our

understanding of the Kondo effect.
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The rest of this chapter is organized as follows. In Sec. 5.1 we present our theoretical model

and derive the form of the current and shot-noise measured by an STS tip. This model was

previously employed to successfully describe the Kondo resonance of a Co adatom located on a

Au(111) surface. In Sec. 5.2 we discuss our results for the shot noise around a single magnetic

adatom, the relation between the differential conductance and the shot noise lineshape, and the

effects of tunneling interference. Finally, in Sec. 5.3 we discuss the form of the shot noise and

Fano factor in Kondo lattice systems.

5.1 Theoretical Model

We begin by discussing the model for the current and shot noise around a single Kondo impurity.

To study the properties of a single Kondo impurity, we employ the theoretical model of Ref. [43]

which was used to successfully describe the lineshape of the Kondo resonance in the differential

conductance, dI/dV , measured around a single magnetic Co adatom located on a metallic

Au(111) surface [37]. Such a system is described by the Hamiltonian [36]

Ĥ = −
∑
r,r′,σ

trr′c
†
r,σcr′,σ + JSKR · scR (5.2)

where c†r,σ (cr,σ) creates (annihilates) a conduction electron with spin σ at site r on the Au(111)

surface. Here, trr′ = 1.3 eV is the fermionic hopping element between nearest-neighbor sites

in the triangular Au(111) surface lattice, and µ = −7.34 eV is its chemical potential. These

parameters describe the dispersion of the experimentally observed Au(111) surface state [103]

that takes part in the Kondo screening of the Co adatom. Moreover, J > 0 is the Kondo

coupling, and SKR and scR are the spin operators of the magnetic Co adatoms and the conduction

electron at site R, respectively.

To describe the Kondo screening of the Co adatom by the two-dimensional Au(111) surface

state, we employ a large-N expansion [104–110]. Here, SKR is generalized to SU(N) and rep-

resented via Abrikosov pseudofermions f †m, fm which obey the constraint
∑

m=1..N f
†
mfm = 1

with N = 2S+1 being the spin degeneracy of the magnetic adatom. This constraint is enforced

by means of a Lagrange multiplier εf , while the exchange interaction in Eq.(5.2) is decoupled

via the hybridization field, s. The hybridization represents the hopping between the conduction

electron states and the pseudofermion f -electron states with the resulting Kondo temperature
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Figure 5.1: Paths of electrons tunneling from the STS tip either into the conduction band or
into the magnetic level of the Kondo impurity, with tunneling amplitudes tc and tf , respectively.

scaling as [105], TK ∼ s2. For fixed J , εf and s are obtained on the saddle point level by

minimizing the effective action [108]. Finally, the tunneling of electrons from the STS tip into

the system is described by the Hamiltonian

Ĥ =
∑
σ

tcc
†
R,σdσ + tff

†
R,σdσ +H.c. (5.3)

where tc (tf ) are the amplitudes for tunneling of electrons from the tip into the Au(111) surface

band (the magnetic f -level), as schematically shown in Fig. 5.1, and dσ annihilates a fermion

in the STS tip.

To compute the current and associated shot-noise measured by the STS tip, we employ

the non-equilibrium Keldysh Greens function formalism [111,112]. Unless otherwise stated, all

results presented in Sec. 5.2 were obtained at zero temperature. When the STS tip is positioned

above the magnetic adatom at site R, the current flowing from the STS tip into the system is

given by [113]

IR(V ) = −2e

~
Re

∫ V

0

dω

2π

[
tc Ĝ

<
12(ω) + tf Ĝ

<
13(ω)

]
, (5.4)
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with the full lesser Greens function matrix given by

Ĝ<(ω) = [1̂− ĝr(ω)t̂]−1ĝ<(ω)[1̂− t̂ĝa(ω)]−1 ;

ĝ<(ω) = −2in̂F (ω)Im [ĝr(ω)] ;

ĝr(ω) =


grt (ω) 0 0

0 grcc(R,R, ω) grcf (R,R, ω)

0 grfc(R, r, ω) grff (R,R, ω)

 . (5.5)

Here, t̂ is the symmetric hopping matrix with non-zero elements t̂12 = tc, t̂13 = tf . n̂F is diagonal

containing the Fermi-distribution functions of the tip, ntF (ω), and of the f - and c-electron states,

nF (ω). grt is the retarded Greens function of the tip, and gαβ(r′, r, τ) = −〈Tταr′(τ)β†r(0)〉

(α, β = c, f) describes the many-body effects arising from the hybridization of the conduction

band with the f -electron level, and the concomitant screening of the magnetic moment, with

grff (R,R, ω) =
[
ω − εf − s2gr0(R,R, ω)

]−1
;

grcc(R,R, ω) =

{
[gr0(R,R, ω)]−1 − s2

ω − εf + iδ

}−1

grcf (R,R, ω) = gr0(R,R, ω)sgrff (R,R, ω) , (5.6)

where gr0 is the retarded Greens function of the unhybridized conduction electron band. For a

more in-depth discussion, see Ref. [44].

It is instructive to consider the weak-tunneling limit (tc, tf → 0) of the current by expanding

Eq.(5.4) up to second order in the tunneling amplitudes, in which case one obtains from Eq.(5.4)

IR(V ) = −4πe

~
πNt

∫ ∞
−∞

dε

2π

[
ntF (ε)− nF (ε)

]
×
[
t2cImg

r
cc(ε) + 2tctf Imgrcf (ε) + t2f Imgrff (ε)

]
where all grα,β (α, β = c, f) are the local retarded Greens’ functions at the site of the magnetic

adatom, and Nt is the density of states on the tip. We previously demonstrated [43] that the

experimental dI/dV lineshape measured at the site of a Co adatom on a Au(111) surface [37]

can be described by computing the differential conductance from Eq.(5.7) using the parameters

J = 1.39 eV, tf/tc = −0.066, and N = 4.
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We next consider the shot-noise which is defined as the current-current correlation function

[90,91]

S(t, t′) = 〈{δI(t), δI(t′)}〉 = 〈{I(t), I(t′)}〉 − 2〈I〉2 . (5.7)

We then obtain for the zero frequency noise S0 = S(ω = 0) at the site of the adatom

S0 = 2

(
ie

~

)2 ∫ ∞
−∞

dε

2π
t2c{2G>dc(ε)G

<
dc(ε)−G

>
dd(ε)G

<
cc(ε)−G<dd(ε)G

>
cc(ε)}

+2tctf{G>df (ε)G<dc(ε) +G<df (ε)G>dc(ε)−G
>
dd(ε)G

<
fc(ε)−G

<
dd(ε)G

>
fc(ε)}

+t2f{2G>df (ε)G<df (ε)−G>dd(ε)G
<
ff (ε)−G<dd(ε)G

>
ff (ε)} (5.8)

where all Greens functions in Eq.(5.8) are local Greens function at the site of the adatom.

Considering again the weak-tunneling limit tc, tf → 0, the expression for the shot noise in

Eq.(5.8) up to second order in the tunneling amplitudes simplifies to

S0 = −8π

(
e

~

)2

NT

∫ ∞
−∞

dε

2π

{[
1− nTF (ε)

]
nF (ε) + [1− nF (ε)]nTF (ε)

}
×
[
t2cImg

r
cc(ε) + 2tctf Imgrcf (ε) + t2f Imgrff (ε)

]
(5.9)

By comparing the expressions for the current, Eq.(5.7), and shot-noise, Eq.(5.9) in the

weak-tunneling limit, i.e., up to second order in the tunneling amplitudes, we find that at zero

temperature the Fano factor, Eq.(5.1), is given by F = 1, implying that the noise is Poissonian.

However, the inclusion of higher order tunneling terms in the calculation of the current and shot-

noise using Eqs.(5.4) and (5.8) respectively, yields not only deviations of F from the Poissonian

limit, but also a characteristic bias dependence, that similar to the differential conductance,

reflects the Kondo screening process, as shown below. Finally, we note that the definition of

the Fano factor given in Eq.(5.1) differs from that used in Refs. [97, 100], as Eq.(5.1) involves

the total current and noise measured by the STS tip, without any subtraction.

To study the shot noise in Kondo lattice systems, we generalize the Hamiltonian in Eq.(5.2)

to

Ĥ = −
∑
r,r′,σ

trr′c
†
r,σcr′,σ + J

∑
r

SKr · scr +
∑
〈r,r′〉

Ir,r′S
K
r SKr′ (5.10)

where the sums in the run over all sites r of the conduction electron lattice. The last term
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represents the antiferromagnetic interaction between the magnetic moments where we assume

that Ir,r′ > 0 is non-zero for nearest-neighbor sites only. Introducing again an Abrikosov

pseudo-fermion representation of SKr , the antiferromagnetic interaction term can be decoupled

using χ0 = I〈f †r,αfr′,α〉, which is a measure for the strength of the magnetic correlations in the

system. With this decoupling, the full Green’s functions in momentum space, which describe

the hybridization between the c- and f -electron bands, are given by

gff (k, α, ω) =
[
(g0
ff (k, α, ω))−1 − s2g0

cc(k, α, ω)
]−1

;

gcc(k, α, ω) =
[
(g0
cc(k, α, ω))−1 − s2g0

ff (k, α, ω)
]−1

;

gcf (k, α, ω) = −g0
cc(k, α, ω)sgff (k, α, ω) , (5.11)

where

g0
cc =

1

ω + iδ − εck

g0
ff =

1

ω + iδ − εfk

εfk = −2χ0(cos kx + cos ky) + εf

εck = −2t(cos kx + cos ky)− µc . (5.12)

Here, εfk and εck are the dispersions of the unhybridized conduction electron and f -electron

bands, respectively. The dispersions of the hybridized conduction and f -electron bands are

then given by

E±k =
εck + εfk

2
±

√√√√(εck − εfk
2

)2

+ s2 . (5.13)

Finally, we note that the formal expressions for the current and the shot-noise in the Kondo

lattice are the same as given in Eqs.(5.4) and (5.8), respectively, with the local Greens functions

in Eq.(5.6) being computed via Fourier transform from their momentum space form in Eq.(5.11).

5.2 Shot Noise around a Kondo impurity

We begin by considering the current and shot-noise around a single Kondo impurity, using the

parameters previously employed to explain the differential conductance of a Kondo-screened
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Co adatom located on a Au(111) surface [37, 43]. While the Fano factor is unity in the weak

tunneling limit, i.e., up to second order in the tunneling amplitudes, it deviates from this result

with increasing tunneling amplitude tc, tf , exhibiting a characteristic lineshape that sensitively

depends on the ratio of the tunneling amplitudes tf/tc. Thus, in order to be able to measure

experimentally a characteristic Fano factor, it is desirable to have large tunneling amplitudes,

corresponding to small distances between STS tip and sample and sufficiently large currents.

Figure 5.2: (a) dI/dV , (b) current I, (c) noise S0, and (d) Fano factor F for two different
values of tf/tc = −0.066 and tf/tc = 0, as well as far removed r =∞ from the Kondo impurity.
Results are shown for zero temperature.

While the ratio tf/tc can be determined by fitting the experimental dI/dV lineshape, as

was done for the case of a Co adatom on a Au(111) surface in Ref. [43], it is difficult to extract

the absolute values of the tunneling amplitudes. Therefore, in order to determine whether

deviations of F from unity can be observed experimentally, it is necessary to treat tc, tf as

implicit parameters, and correlate the IV -curves that result from given values for tc, tf with the

form of the Fano factor. We therefore present below the current, differential conductance and

noise in absolute units for different sets of tc, tf . We note that increasing tc with constant tf/tc

leads to an increase in the current between the tip and the system, and thus corresponds to

decreasing the distance between tip and sample in experiments. Current state-of-the-art STS

experiments can achieve currents in the tunneling regime of hundreds of nA for bias of a few
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mV [114,115], rendering all theoretical results shown below within the experimental accessible

region.

Using the same set of parameters as previously employed in Ref. [43], we present in Fig.5.2(a)

the differential conductance at the site of a single Kondo impurity for two values of tf/tc. For

tf/tc = −0.066, we obtain the dI/dV lineshape that was previously employed to fit the dI/dV

lineshape measured above a Co adatom on a Au(111) surface (black line). For comparison

addition, we also present dI/dV for tf/tc = +0.01 (red dashed line), whose lineshape exhibits

an asymmetry that is reversed from that obtained for tf/tc = −0.066, as well as dI/dV away

from the adatom at r = ∞ (blue dotted-dashed line) which is that of the unhybridized con-

duction band. To understand the difference in the asymmetry of the dI/dV lineshapes, we

consider the IV -curves for these three cases in Fig.5.2(b). We find that the Kondo correlations

lead to a suppression of the current for tf/tc = −0.066 from its value for r = ∞, but to an

enhancement for tf/tc = +0.01. This in turn accounts for the change in the asymmetry of the

differential conductance curves between tf/tc = −0.066 and +0.01. The origin of this enhance-

ment/suppression can be understood from the weak tunneling limit of the current, Eq.(5.7), as

it lies in the interference term ∼ tctf . For tf < 0, this interference term leads to a backflow of

current from the system into the tip, reducing the overall magnitude of the current, as shown

in Fig. 5.3(a) where we present the contributions arising from the three terms proportional to

t2c , t
2
f and 2tctf in Eq.(5.7). In contrast, for tf > 0, the interference term leads to an additional

current flowing from the tip into the system as shown in Fig. 5.3(b), thus increasing the total

current.

Figure 5.3: The three contributions to the total current from the weak-tunneling limit of Eq.(5.7)
which are proportional to t2c , t

2
f and 2tctf for (a) tf/tc = −0.066, and (b) tf/tc = +0.01.

It also follows from the IV -curves that the magnitude of the current for bias of a few

mV falls within the experimentally accessible range, implying that the value of tc = 0.1eV is
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experimentally achievable.

In Fig.5.2(c) we present the zero-frequency shot-noise, S0, for the cases tf/tc = −0.066,+0.01

and r = ∞. Similar to the current, we find that the Kondo correlations either suppress (for

tf/tc = −0.066) or enhance (for tf/tc + 0.01) the shot-noise with respect to its form at r =∞.

The reason for suppression/enhacement is similar to that for the current: due to the backflow

of the current from the system into the tip arising from the interference term for tf/tc < 0, the

contribution to the noise arising from the current-current correlation between the current flowing

directly from the tip into the system, and the backflow is negative, thus reducing the overall

noise. In contrast, for tf/tc > 0 the contribution to the noise ∼ tctf is positive, leading to an

enhanced noise in the vicinity of the Kondo resonance. Finally, in Fig.5.2(d) we present the Fano

factor for all three cases, which exhibits a peak near the Kondo resonance for tf/tc = −0.066, and

a dip for tf/tc = 0.01. Moreover, the Fano factor for tf/tc = −0.066 near the Kondo resonance

is enhanced over its value for r = ∞, while it is suppressed for tf/tc = 0.01. To understand

this difference in the Fano factor near V = 0, we consider the Landauer formula [116] for the

current

I =
e2

π~
V Teff (5.14)

where Teff is the effective transmission coefficient between the tip and the system. A comparison

with the weak-tunneling expression for the current, Eq.(5.7), shows that to leading order in V

Teff = −2πNt

[
t2cImg

r
cc(εF ) + 2tctf Imgrcf (εF ) +t2f Imgrff (εF )

]
=
π~
e2

dI

dV

∣∣∣∣
V=0

(5.15)

It follows from Fig. 5.2(a) that Teff ∼ dI
dV

∣∣
V=0

is smaller for tf/tc = −0.066 than for tf/tc =

0.01. Similarly, the shot-noise can be written in terms of Teff as [117]

S =
2e3

π~
|V |Teff (1− Teff ) . (5.16)

A comparison of Eq.(5.16) with the weak tunneling limit for S0 in Eq.(5.9) yields the same Teff

as in Eq.(5.15) to leading order in tc, tf . We note that the term ∼ T 2
eff in Eq.(5.16) scales as the

hopping amplitudes to the fourth power, and is therefore not contained in the weak-tunneling

limit of S0 in Eq(5.9). By combining Eqs.(5.14) and (5.16), we obtain for the Fano factor

near V = 0 F = (1 − Teff ), which is thus larger for tf/tc = −0.066 than for tf/tc = 0.01, in
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agreement with our numerical results shown in Fig.5.2(d). We thus conclude that there exist an

interesting correlation between the lineshape of the Kondo resonance (as determined by tf/tc)

and the enhancement or suppression of the Fano factor with respect to the r =∞ result.

Figure 5.4: Evolution of the Fano factor F with increasing tc for (a) tf/tc = −0.066, and (b)
tf/tc = 0.01

A unique feature of the Fano factor is that its overall lineshape, i.e, its bias dependence,

is essentially independent of tc, varying only with tf/tc. To demonstrate this, we present in

Fig. 5.4 F for several values of tc with constant tf/tc. While the overall lineshape of the Fano

factor does not change with increasing tc (for constant tf/tc), its overall variation increases,

thus becoming easier to observe experimentally. It is interesting to note that the maximum of

the Fano factor for tf/tc = −0.066 remains close to unity in the Kondo resonance, implying

that the transmission amplitude Teff remains approximately zero. On the other hand, for

tf/tc = +0.01, the suppression of the Fano factor near the Kondo resonance increases, implying

that Teff increases with increasing tc.

Figure 5.5: (a) Linecut of F through the site the magnetic adatom for tc = 0.1 eV, V = 5mV
and tf/tc = −0.066. (b) Spatial plot of F .

The Fano factor exhibits spatial oscillations, as shown in Fig. 5.5, where we present a linecut

of the Fano factor through the magnetic adatom [Fig. 5.5(a)] as well as a spatial plot of F (r)
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[Fig. 5.5(b)]. The spatial plot of F (r) reveals nearly isotropic oscillations whose wavelength is

given by λ ≈ 6.5a0 which is half of the Fermi wave-length. We can therefore conclude that the

spatial oscillations of the Fano factor are 2kF r-oscillations, arising from scattering of the surface

conduction electrons from the magnetic adatom. Similar spatial oscillations in the conductance

fluctuations were interpreted as a signature of the Kondo screening cloud [89].

Figure 5.6: Comparison of the zero-frequency noise, S(ω = 0), at T = 0 and T = 4K for
tc = 0.1eV and (a) tf/tc = −0.066, and (b) tf/tc = 0.01 (note the different x- and y-axes
scales). Temperature evolution of the Fano factor for tc = 0.1eV and (c) tf/tc = −0.066, and
(d) tf/tc = 0.01.

Finally, we briefly comment on the temperature dependence of the Fano factor. For any

non-zero temperature, there are thermal contributions to the zero-frequency noise which are non-

zero even at V = 0, as shown in Figs. 5.6(a) and (b) for tf/tc = −0.066 and 0.01, respectively

(note the different x- and y-axes scales). On the other hand, the current vanishes for V = 0,

independent of temperature. This implies that for any non-zero temperature, the Fano factor

exhibits a divergence at V = 0, as shown in Fig. 5.6(c) and (d). We note that the bias range

over which the Fano factor at T = 4K is enhanced over its T = 0 value is significantly larger

for tf/tc = 0.01.
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5.3 Shot noise in a Kondo lattice

We next study the form of the current and shot-noise in a Kondo lattice. To this end, we

consider two different sets of parameters for the Kondo lattice model of Eq.(5.10) previously

considered in Ref. [43]: one in which the antiferromagnetic interaction is sufficiently small

[I/J = 0.001, Kondo lattice 1 (KL1)], such that the system exhibits a hard hybridization gap

[see Figs. 5.7(a) and 5.8(a)], and one in which the antiferromagnetic interaction is so strong

enough [I/J = 0.015, Kondo lattice 2 (KL2)] such that the system’s dispersion does not any

longer exhibit an indirect gap [see Fig. 5.7(b)] and the hybridization gap is seen as a suppression

in dI/dV rather than hard gap (see Fig. 5.10(a), for a more in-depth review, see Ref. [44]).

Figure 5.7: The dispersions E±k from Eq.(5.13) along (0, 0) → (π, π) with t = 500meV , µ =
−3.618t, N = 2, J = 500meV, Nt = 1eV −1, for (a) Kondo lattice 1 with I/J = 0.001 yielding
s = 48.5meV, εf = 1.2meV, and χ0 = 0.17meV, and (b) Kondo lattice 2 with I/J = 0.015
yielding s = 48.0meV, εf = 0.94meV, and χ0 = 2.59meV.

We begin by considering the form of the noise and Fano factor for Kondo lattice 1 and

present in Fig. 5.8(a) the differential conductance for two different values of tf/tc = ±0.015. As

expected, dI/dV exhibits a hard hybridization gap, and very different asymmetries for the two

values of tf/tc, similar to the case of a single Kondo impurity shown in Fig. 5.2.

In Figs. 5.8(b) and (c), we present the resulting current and shot-noise. Both the current and

the shot-noise are essentially bias independent inside the hybridization gap, but overall show a

very similar bias dependence to that of the single Kondo impurity. Finally, in Fig. 5.8(d) we show

the resulting Fano factor. Similar to the single Kondo impurity, the Fano factor is correlated

with the asymmetry of the differential conductance. For tf/tc = −0.015, the Fano factor is

close to unity in the hybridization gap, implying that the transmission coefficient is small. In

contrast, for tf/tc = +0.015, the Fano factor is strongly suppressed near the hybridization gap,

implying a much larger transmission coefficient. Comparing the Fano factor with that of an
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Figure 5.8: For Kondo lattice 1: (a) dI/dV , (b) current, (c) noise, and (d) Fano factor with
tc = 0.1 eV and two different values of tf/tc.

uncorrelated metal shows that the strong correlations arising from Kondo screening lead to an

overall suppression of the Fano factor independent of the value of tf/tc, except for the immediate

vicinity of the hybridization gap for tf/tc = −0.015, where the Fano factor is slightly larger

than that of the metallic systems.

Figure 5.9: Evolution of the Fano factor F with increasing tc in Kondo lattice 1 for (a) tf/tc =
−0.015, and (b) tf/tc = 0.015.

Similar to the case of the single impurity, we find that the overall shape of the Fano factor

is independent of the tunneling amplitudes tc, tf (for fixed tf/tc), as shown in Fig. 5.9, and that

only the overall variation of the Fano factor increases with increasing tunneling amplitudes.

We next consider the form of the noise and Fano factor in Kondo lattice 2, and present in
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Fig. 5.10(a) the resulting differential conductance for two different values of tf/tc = −0.03, 0.01.

The larger antiferromagnetic interaction (in comparison to KL1), and the resulting larger value

of χ0, give rise to two interesting effects: (a) dI/dV does not any longer show a hard hybridiza-

tion gap, but only a suppression, and (b) the van-Hove singularity of the heavy f -electron band

has been moved inside the hybridization gap, as particularly evident for tf/tc = 0.01. Both

features are qualitatively similar to the ones found in the differential conductance of the heavy

fermion material URu2Si2 [118,119].

Figure 5.10: For Kondo lattice 2: (a) dI/dV , (b) current, (c) noise, and (d) Fano factor with
tc = 0.1 eV and two different values of tf/tc.

Similar to the dI/dV , the current and shot-noise shown in Figs. 5.10(b) and (c) differ

significantly for negative bias V < 0, while being quite similar for positive bias V > 0. In

Fig. 5.10(d) we present the resulting Fano factor. For tf/tc = −0.03 where the suppression of

dI/dV is the more pronounced, the Fano factor is close to unity, implying a vanishing Teff .

Interestingly enough, the van-Hove singularity inside the hybridization gap leads to a strong

suppression of the Fano factor at the same bias for tf/tc = 0.01. This strong correlation between

the form of the differential conductance and the Fano Factor represents an important test for

future STSNS experiments.
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Conclusions

This work has investigated magnetic-superconductor hybrid (MSH) systems in order to discern

their topological properties and understand the possibilities for engineering various Majorana

states. We began by reporting the engineering of topological superconductivity and direct visu-

alization of theoretically predicted Majorana edge modes in a nano-scale Fe island located on a

Re(0001)-O(2Ö1) substrate. The combination of spatially resolved spectroscopy and topogra-

phy allowed the Wiesendanger group to not only to correlate for the first time the energy and

spatial dependence of the observed in-gap edge modes with the physical edge of the Fe island,

but also to demonstrate the robustness of these edge modes against edge disorder. Both of these

experimental observations, which are in very good agreement with our theoretical calculations,

represent hallmarks of the modes’ topological nature. Our theoretical studies demonstrate that

the emergence of topological superconductivity in Fe/Re(0001)-O(2Ö1) does not require any

fine-tuning of parameters, but is expected over a wide range of band parameters and magnetic

structures. Moreover, we demonstrated that the emergence of topological superconductivity in

such a hybrid magnet-superconductor system is only made possible through interface engineer-

ing using an atomically thin separation layer.

Additionally, we have demonstrated that it is possible to use atomic manipulation techniques

to adiabatically tune MSH structures between 1D and 2D topological superconducting phases.

Specifically, we showed that while two-dimensional chiral topological superconductors (with Z

classification) and one-dimensional topological superconductors (with Z2 classification) are in

different universality classes, the system does not undergo a phase transition if one transforms

a 2D Shiba island via a hybrid chain-island structure into a 1D chain by adding or removing

adatoms. Moreover, by attaching Shiba chain networks to Shiba islands, we showed that one

can arbitrarily transform chiral Majorana edge modes into localized Majorana bound states,

and vice versa. This, in turn, opens a new real space approach to counting the Chern number of

topological superconductors. In particular, when a Shiba island is in a topological phase with

Chern number C, then the spectral weight of the zero-energy chiral Majorana edge modes com-

pletely vanishes when 2|C| chains are attached to it, as the Majorana modes are transformed

into Majorana bound states localized at the end of the chains. We have explicitly demonstrated

these results for a series of Chern numbers (C = 1, 2, 3, 4) and for different lattice geometries,

as well as in the experimentally relevant MSH model that was successfully employed to explain
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the emergence of chiral Majorana edge modes in Fe/Re-O(2 × 1). Finally, we demonstrated

that the topological nature of MSH structures can the characterized through the Chern number

density, which adiabatically connects between finite-size MSH structures and translationally

invariant, macroscopic systems that are characterized by an integer Chern number. The direct

real space visualization of Majorana edge modes demonstrated in Ch. 2, in combination with

STM-based single-atom manipulation techniques [18,48], opens unprecedented opportunities to

realize topological phases in artificial 2D magnetic adatom arrays on elemental superconduct-

ing substrates providing fascinating building blocks for future topological quantum computer

architectures.

Further, we proposed and developed a model of FeSe0.45Te0.55 that combined Rashba spin-

orbit coupling and surface magnetism with a previously formulated 5-band model based on

results of STS experiments. Using our extended model, we calculated the phase diagram of

FeSe0.45Te0.55 over a range of global chemical potentials and exchange couplings and found Chern

numbers ranging from -3 to 1. Our model poses an alternative explanation of the emergence of

topological superconductivity in FeSe0.45Te0.55 , in contrast to prior explanations that rely on

the bulk material being a topological insulator. In addition, we calculated the local density of

states across a vortex in a generic s± superconductor model and find that parameter sets both

in and out of a topological phase exhibit regularly spaced trivial Caroli-de Gennes-Matricon

states. By contrast, only the topological phase exhibits a state at zero energy in the vortex

core, indicating a MBS. This MBS is strongly spin-polarized giving experimentalists a powerful

benchmark for verifying the existence of MBSs in real systems.

Finally, we have investigated the relation between the differential conductance, current, noise

and the resulting Fano factor measured via shot noise scanning tunneling spectroscopy around a

single Kondo impurity as well as in a Kondo lattice. We demonstrated that the lineshape of the

Fano factor, i.e., its bias dependence, represents a characteristic variation arising from Kondo

screening, similar to the Kondo resonance observed in the differential conductance. Moreover,

the lineshape of F is strongly dependent on the ratio of the tunneling amplitudes tf/tc and can

be enhanced or suppressed due to interference effects arising from tunneling into the conduction

and f -electron levels. As such, it is not only a sensitive probe for the correlation effects arising

from Kondo screening, but also for quantum interference between tunneling electrons. Moreover,

we showed that near the Fermi energy, there exists a correlation between the form of dI/dV and

F through the effective transmission coefficient Teff , such that a suppression in dI/dV leads
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to a value of F near unity, while a peak in dI/dV gives rise to a strong suppression in F . We

also predicted that around a single Kondo impurity, the Fano factor exhibits spatial oscillations

whose wavelength arises from 2kF r oscillations of the scattered conduction electrons. In Kondo

lattices, we find that the Fano factor possesses a correlation with the differential conductance

that is similar to that in the single Kondo impurity case. This correlation represents a prediction

of the effects of quantum interference arising from multiple tunneling paths that could be tested

in future STSNS experiments.
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