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SUMMARY 

 

Urban logistics, especially the last mile delivery, is a major urban challenge due to the high density 

in cities and the use of diesel-powered freight vehicles, resulting in traffic congestion and other 

negative impacts such as air and noise pollution. With the rise of e-commerce and customer 

expectation of express delivery, the metropolitan areas are seeking innovative ways to better 

manage urban freight movement and create an efficient and environment friendly transportation 

system. Information and communication technology advancement is ushering in a new era of 

mobility, changing the way people and goods move.  

Traditionally, freight movement takes the so-called hub-and-spoke delivery model. While the hub-

and-spoke model is proven efficient with the economies of scale, it is ill-suited for fulfilling the 

increasing demand for same-day and even one-hour delivery in urban areas with the inflexible 

structure and is restricted by the hub capacity.  

Using real-time information technology for speedy coordination, crowdshipping brings reduction 

in the transportation costs for the last mile. Crowdshipping provides a feasible alternative in the 

first and last mile deliveries, provides flexibility of delivery time windows and uses a variety of 

transport modes for the delivery, for e.g. personal automobiles, taxis, bicycles, cargo cycles, 

walking etc. In Chapter 3 of this dissertation, an empirical investigation is presented of an existing 

crowdsourcing delivery company with respect to the operational factors such as parcel size, 

delivery distance, demand frequency and distribution, the user characteristics including customer 

and driver profiles, and the pricing model. Both quantitative and qualitative analyses are performed 

to shed light on the market demand trending and growth opportunities in crowdsourcing deliveries.  



x 

 

Another solution to reducing truck trips into busy urban centers is the use of Automated Parcel 

Station (APS). APS is an automated parcel collection (and sometimes dispatch as well) station 

located in public spaces. For the ease of access, these APS’ are located at shopping centers, transit 

stations, gas stations, etc. Parcel recipients travel on foot or by car to collect their parcels from an 

APS. In Chapter 4 of this dissertation, we propose, formulate, and evaluate a new and innovative 

delivery paradigm where the last-mile demand fulfilment is done through Microhubs with 

Crowdshipping (M+C). In this paradigm, an urban service area is divided into a number of smaller 

service zones (e.g., by zipcode). Within each zone, there is a microhub to temporarily store inbound 

and outbound parcels of small to medium size. These parcels are collected or distributed by 

automobile or bicycle crowdshippers between customers (shippers and end receivers) and the 

zonal microhub. Commercial trucks are dispatched periodically to visit the microhubs in the 

service area to transfer parcels to their respective destination microhubs. Though, an initiative 

involving microhubs and dedicated freight bikes has been field tested recently in the Citylab 

project in Europe for the first time, the performance of a microhubs and crowdshipping paradigm 

has not been analytically assessed before this dissertation. 

In Chapter 5 we show that the proposed M+C paradigm is a Many-to-Many Split Pickup and 

Delivery Problem (M-MSPDP) for truck routing between microhubs. We present a general 

formulation of M-MSPDP and a Maximum Split-Benefit with Tabu Search (MS-BTS) heuristic to 

solve the large-scale M-MSPDP. MS-BTS is evaluated with the exact solution methods and other 

existing heuristics. We further apply the MS-BTS heuristic to solve for two applications of the M-

MSPDP: parcel pickup and delivery among parcel stations (i.e., M-MSPDP-FPD) and bike 

rebalancing in a bike-sharing system (i.e., M-MSPD-OC). The computation time of MS-BTS is 
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considerably improved over the other methods while maintaining a comparable level of the 

solution quality.   

Lastly, Chapter 6 considers a futuristic delivery paradigm where all stages of the last-mile demand 

fulfillment are handled without any involvement of human factor, including for parcel 

loading/unloading, sorting and transportation between hubs and the customers. This Chapter 

presents a brief commentary on the impacts of such a proposed delivery paradigm.  
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Chapter 1 Introduction 
 

1.1 Background 

 

Urban logistics is complicated due to the high density in cities and the use of diesel-powered freight 

vehicles, resulting in congestion and other negative effects like air and noise pollution (Browne et 

al., 2011; Dablanc, 2007). The last-mile deliveries consist of a significant part of the entire 

transportation cost of a delivery (Arvidsson et al., 2013). In addition, due to the nature of the 

deliveries in urban areas, which include short trips, frequent stops, and a low load factor, the costs 

are even higher ( Zunder and Ibanez, 2004; Filippi et al., 2010; Stathopoulos et al., 2012). A variety 

of restrictions are put in place by the local authorities to manage urban deliveries. These include 

loading and unloading time-windows, designated low emission zones, consolidated distribution of 

goods, vehicle restrictions by weight and size, use of information and communication technologies 

(Anderson et al., 2005; Muñuzuri et al., 2005). 

 

With the requirement of just-in-time/express last-mile urban deliveries on one hand and the 

negative externalities associated with freight transportation on the other, there is a need for a fast, 

flexible, and sustainable urban delivery paradigm. The traditional Hub-and-Spoke paradigm (H+S 

hereafter) is ill-suited for fulfilling the express last-mile delivery demand for its fixed centralized 

structure. H+S represents centralized control at one or more transshipment centers (or hubs), with 

spokes spread over the delivery service area (Klincewicz, 1998; Zäpfel, & Wasner, 2002; Elhedhli 

and Hu, 2005). The shipment between any two nodes is transferred from the spokes connecting 
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the nodes through the transshipment center. This in turn induces additional delay at the hub and 

transportation costs for the last-mile deliveries (Pohl, 2013; Chen and Lin, 2014). 

 

With an increase in urban population density, more freight is expected to travel within urban areas, 

posing a tough challenge to the cities (Lerner and Van Audenhove, 2012). Information and 

communication technology advancement is ushering in a new era of mobility, changing the way 

people and goods move (Trentini and Mahléné, 2010). The new urban mobility solutions are now 

required to be sustainable, and address the environmental and energy concerns (Ohnishi, 2008). 

Freight transport in the United States is a major contributor of greenhouse gas (GHG) emissions, 

air pollutants like Nitrogen Oxide (NOX) and Particulate Matter (PM10) (Browne et al., 2011; 

Braunstein, 2015; Thompson, 2015). Freight transport also accounts for over two-thirds of the 

transportation energy consumption and two-fifths of the operating cost for the trucking industry 

(Crainic et al., 2009; Sahin et al. 2009). 

 

1.2 Research Motivation 

 

The traditional Hub-and-Spoke paradigms rely mostly on trucks to carry out the deliveries, which 

cause space and parking shortage, and worsen urban congestion and air pollution. Strategies to 

mitigate such problems include better routing algorithms, smaller and cleaner vehicle fleet, off-

peak deliveries, freight partnerships, and consolidated delivery (Verlinde et al., 2012; Holguín-

Veras et al., 2017). Another way to increase the efficiency of transport systems is by using a 

combination of two or more modes, also referred to as co-modality (European Commission, 2006). 

This includes non-motorized transport modes like bicycles, tricycles, and even pedestrians. Use of 
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cargo cycles and electric vehicles for the last-mile deliveries reduces the vehicle miles travelled, 

and corresponding CO2 emissions in very congested cities like New York (Leonardi et al., 2012; 

Koning and Conway, 2015; Conway et al., 2017). Co-modality can also include use of public 

transportation modes such as trains, trams, buses or taxis, which combine transport of goods and 

passengers (Thompson and Taniguchi, 2014; Ronald et al., 2015).  

 

The rapid advancements in information technology and ubiquitous computing offer opportunities 

to enable better coordination between demand and supply in the freight sector. Driven by the notion 

of shared economy, creative ways are being implemented to feasibly and profitably share 

underutilized resources, with the shared economy expected to reach $335 billion globally by 2025 

(Belk, 2014; Cohen and Kietzman, 2014; Malhotra and Van Alstyne, 2014; Bothun and 

Liebermann, 2015). Crowdshipping involves fulfilling the delivery demand by everyday 

individuals with spare time and capacity (Howe, 2006; Rai et al., 2017). Using real-time 

information technology for speedy coordination, crowdshipping brings reduction in the 

transportation costs for the last-mile (Behrend, 2011). Crowdshipping provides a feasible 

alternative in the first and last mile deliveries, and uses a variety of transport modes for the 

delivery, for e.g. personal automobiles, taxis, bicycles, cargo cycles, walking etc. (Marjanovic et 

al., 2012). Crowdshipping also provides the customers with the flexibility of selecting their 

preferred delivery time windows and reduces the negative externalities for the urban areas (Lan et 

al., 2010; Rougès and Montreuil, 2014; McKinnon et al., 2015; Paloheimo et al., 2016). In 

addition, crowdsourcing offers an opportunity to make more social connections for users (Bellotti 

et al., 2015; Hamari et al., 2015; McKinnon et al., 2015; Piscicelli et al., 2015). 
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Another solution to reduce truck trips into busy urban centers is the use of Automated Parcel 

Station (APS). APS is an automated parcel collection (and sometimes dispatch as well) station 

located in public spaces. Parcel collection from APS is made possible by entering a mobile phone 

number and the access code. For the ease of access, these APS’ are located at shopping centers, 

transit stations, gas stations, etc. Parcel recipients travel on foot or by car to collect their parcels 

from an APS. The first APS network in the world was deployed in Poland in 2009 by InPost Ltd 

(Moroz and Polkowski, 2016). Another example of APS is the Amazon Lockers, which are secure, 

self-service kiosks that allow the customers to pick up their Amazon.com parcels at a convenient 

time. These kiosks also allow process the return of any previous Amazon.com purchases that the 

customer no longer requires (Amazon, 2018). As part of the EU-funded Civitas Citylab project 

(Citylab, 2018), Amsterdam has recently field tested a system of city center microhubs in 

combination with freight bikes, which has led to reduction in delivery van stops and other negative 

effects. 

 

The classical Vehicle Routing Problem (VRP) strategies typically limit the visit to a customer once 

and only once. The implication of that is that the entire demand at the customer must be picked up 

at that single visit, i.e. no splitting of loads is allowed. Dror and Trudeau (1989) introduced the 

split delivery vehicle routing problem (SDVRP) in which the total demand at the customer could 

be served by multiple visits from the vehicles. Though this appears to lead to an increase in the 

total costs due to a greater number of visits, but this allows for dividing and allocating the customer 

demand (load) in such a way that vehicle capacity can be best utilized to serve the customer. The 

number of vehicles and the total cost of transportation can thus be reduced. The benefits of the 
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split deliveries have been shown already by several studies (Dror et al., 1994; Frizzell and Giffin, 

1995; Sierksma and Tijssen, 1998; Archetti et al., 2006; Nowak et al., 2008). 

 

1.3 Research Objectives 

 

Driven by the need of a reliable, robust and environment-friendly urban delivery paradigm, this 

dissertation focuses on understanding and assessment of new last-mile delivery paradigms such as 

crowdshipping and the use of microhubs.  

 

Crowdshipping 

 

Crowdshipping involves making use of everyday individuals with spare time and capacity to fulfill 

the variable delivery demand generated by e-commerce. Coordination occurs through real-time 

web or mobile based technology, bringing reduction in the cost of transportation and associated 

negative environmental impacts. This study performs preliminary investigation of an existing 

crowdsourcing delivery company with respect to the operational factors such as parcel size, parcel 

delivery distance, customer demand frequency and distribution, the user characteristics including 

customer and driver profiles, and the pricing model. Both quantitative and qualitative analyses are 

performed to shed light on the market demand trending and growth opportunities in crowdsourcing 

deliveries. Detailed overview of the case-study crowdsourcing delivery service, research 

questions, data analysis and findings, and key conclusions are presented in Chapter 3. 

 

Microhubs with crowdshipping without split loads 
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Building on the Citylab project (Citylab, 2018) and Amazon lockers and extending them to both 

pickup and drop-off services at any APS – call it a microhub and coupled with crowdshipping to 

provide door-to-door service – presents an emerging delivery paradigm. Though, an initiative 

involving microhubs and dedicated freight bikes has been field tested recently in the Citylab 

project for the first time, the performance of a microhubs and crowdshipping paradigm has not 

been analytically assessed before. In light of the potential benefits of microhubs and 

crowdshipping as discussed earlier, we propose a new and innovative delivery paradigm where the 

last-mile demand fulfilment is done through Microhubs with Crowdshipping (M+C). In this 

paradigm, an urban service area is divided into a number of smaller service zones (e.g., by 

zipcode). Within each zone, there is a microhub to temporarily store inbound and outbound parcels 

of small to medium size. These parcels are collected or distributed by automobile or bicycle 

crowdshippers between customers (shippers and end receivers) and the zonal microhub. 

Commercial trucks are dispatched periodically to visit all the microhubs in the service area to 

transfer parcels to their respective destination microhubs. It was observed in the past that the cost 

of the Vehicle Routing Problem (VRP) can be even halved by allowing split deliveries (Archetti, 

Savelsbergh, & Speranza, 2006). Hence, this study considers two variations of the M+C delivery 

model. The first variation does not allow the split pick up or deliveries between the microhubs for 

the trucks. The second variation of the M+C model allows this. Detailed problem definition, 

research contributions, model formulation, and evaluation are presented in Chapter 4. 

 

Many-to-Many Split Pickup and Delivery Problem (M-MSPDP) 
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The second variation of the M+C delivery model allows split deliveries between the microhubs 

for the trucks. Each microhub can be visited by several trucks and the same truck can visit more 

than one microhub. Previous studies have already established the benefits of the split deliveries 

(Dror et al., 1994; Frizzell and Giffin, 1995; Sierksma and Tijssen, 1998; Archetti et al., 2006; 

Nowak et al., 2008). However, solving VRP with split loads is more difficult that solving a 

classical VRP. In this dissertation, we introduce the general case of Many-to-Many Split Pickup 

and Delivery Problem (M-MSPDP) for truck routing between microhubs and present the 

evaluation of a Maximum Split-Benefit with Tabu Search (MS-BTS) heuristic to solve large scale 

problems, using randomly generated datasets. We further apply the MS-BTS heuristic to solve for 

two applications of the M-MSPDP: parcel pickup and delivery among parcel stations (i.e., M-

MSPDP-FPD) and bike rebalancing in a bike-sharing system (i.e., M-MSPD-OC) in Chapter 5.  

The research objectives of this study are:  

1) to empirically investigate the business model and operational characteristics of an existing 

crowdshipping delivery startup, including 

a. to identify the attributes associated with the successfully completed deliveries 

during the study period to better understand the factors to the success, and 

b. to identify the socio-demographic factors behind the motivation of participants 

(senders and drivers) in the crowdsourced delivery system.   

2) to define and formulate an innovative last mile delivery paradigm – M+C - that combines 

microhubs with crowdshipping and exploits co-modality; and 

3) to investigate the feasibility of M+C as a viable alternative to urban last mile delivery by 

analyzing the effects of key operational factors on the performance of M+C and comparing it 

with the current state-of-the-practice. 
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4) to formulate and construct a heuristic solution method for a general case of the Many-to-Many 

Split Pickup and Delivery Problem (M-MSPDP).  

 

1.4 Research Significance and Contributions 

 

The successful outcomes of this research contribute to the understanding of the new last-mile 

delivery paradigms. Individual chapters will detail the research contributions for each of the last-

mile and urban delivery paradigms analyzed in this dissertation. We briefly describe the research 

significance and contributions here.  

 

This dissertation makes a significant contribution in the crowdshipping literature in the following 

aspects: (1) analyzing the operational performance of a crowdsourced delivery company and (2) 

identification of attributes associated with successfully completed deliveries. The findings of this 

study will provide insights to crowdsourcing companies to develop pricing & matching 

mechanisms as well as reevaluate the existing strategies to reduce overall operational costs, 

improve performance, attract participation and secure a bigger market share. 

 

The significant contributions of the study on Microhubs with Crowdshipping (M+C) are two-fold: 

(1) the proposed M+C paradigm is an innovative new business model that combines a network of 

microhubs with crowdshipping in urban areas and exploits co-modality; and (2) to the best of our 

knowledge, this is the first analytical investigation of microhubs paradigm with crowdshipping.  
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This study also contributes to the vehicle routing literature by introducing a heuristic for solving 

the general case of Many-to-Many Split Pickup and Delivery Problem (M-MSPDP). We present 

the MS-BTS heuristic to solve large scale M-MSPDP and evaluate it by applying the MS-BTS 

heuristic to randomly generated datasets.  

 

The results of the evaluation of the proposed M+C delivery paradigm would help the city agencies 

to possibly reduce the negative externalities associated with freight transport in urban areas. To 

the authors’ best knowledge, this is also the first study to quantitatively investigate this new 

paradigm of Microhubs with Crowdshipping.  

 

1.5 Organization of the Dissertation 

 

This dissertation defense report contains 6 chapters and is organized in the following order: 

Chapter 1 provides an introduction to the new last-mile delivery paradigms addressed in this work 

and outlines the research objectives. Chapter 2 introduces the literature review for the current and 

emerging state-of-the-art last-mile delivery paradigms. Chapter 3 details an overview of the case 

study for the crowdsourcing delivery company’s delivery service as well as the pricing model 

employed by the company. A set of research questions to be answered in this study are presented, 

followed by an overview of the crowdsourcing data shared by the company, to be used to find 

answers for the research questions. The detailed data analysis and findings are presented next, 

followed by a further discussion of potential market growth opportunities for the case study 

crowdsourcing company and others in general. Chapter 4 presents the conceptual design of 

microhubs with crowdshipping delivery paradigm. Detailed model formulation for both the H+S 



Page 10 of 240 

 

and the M+C operation are also presented with a description of the hypothetical numerical example 

to compare the performance of the proposed M+C delivery paradigm with the H+S delivery 

paradigm. A series of sensitivity analyses for the performance of the proposed delivery paradigm 

is discussed with respect to the key factors described above. Chapter 5 presents the heuristic 

solution to a general case of Many-to-Many Split Pickup and Delivery Problem (M-MSPDP) and 

quantifies the benefits of splitting the loads. The evaluation of the MS-BTS heuristic is presented 

with its application to randomly generated datasets. The Chapter 6 considers a futuristic delivery 

paradigm where all stages of the last-mile demand fulfillment are handled without any involvement 

of human factor and presents a brief commentary on the impacts of such a proposed delivery 

paradigm. Lastly, Chapter 7 provides a commentary on the proposed direction of future research 

work.  
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Chapter 2 Literature Review of Last-mile and Urban Delivery 

Paradigms 

 

2.1 Introduction 

The relevant literatures for this dissertation can be classified into the following areas: 

crowdshipping, new last-mile delivery paradigm without split pick-up and deliveries, and new last-

mile delivery paradigm with split pick-up and deliveries. Additional literature review is provided 

in Chapter 6 to assess the impact of automation in future on the freight and logistics industry. 

 

2.2 Crowdshipping 

Crowdshipping involves making use of everyday individuals with spare time and capacity to fulfill 

the variable delivery demand generated by e-commerce (Howe, 2006; Rai et al., 2017). Using real-

time information technology for speedy coordination (see Figure 2-1), crowdshipping brings 

reduction in the transportation costs for the last-mile (Behrend, 2011). Crowdshipping also offers 

an opportunity to lower the last-mile delivery costs by employing occasional drivers and not the 

regular professional drivers who work full-time (Archetti et al., 2016), by allocating fewer 

resources (Rougès and Montreuil, 2014) and by using a variety of transport modes for the delivery, 

for e.g. personal automobiles, taxis, bicycles, cargo cycles, walking etc. (Marjanovic et al., 2012). 

Customers are also offered the flexibility to select the time windows for either pickup or for their 

parcels (Goetting and Handover, 2016; Punel and Stathopoulos, 2017; Le and Ukkusuri, 2019). 

Using the drivers already on the road, crowdshipping can reduce the VMT as well as the vehicle-

trips, especially in the congested urban areas (McKinnon et al., 2015; Chen et al., 2016). This 
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translates into fuel-savings, reduction in congestion and promotion of active modes of travel 

(Rougès and Montreuil, 2014; Kafle et al., 2017). Lastly, crowdsourcing offers an opportunity to 

make more social connections for users (Bellotti et al., 2015; Hamari et al., 2015; McKinnon et 

al., 2015; Piscicelli et al., 2015). 

 

There are already several crowdsourcing delivery startup companies operating in this domain 

providing domestic as well as international shipping options with long-haul, short haul and last-

mile delivery options. These include but are not limited to Postmates, Uber Rush, Deliv, Piggy 

Bee, Instacart, Amazon Flex, Friendshippr etc. Efforts in crowdsourced delivery have been made 

by retailers such as Walmart and Walgreens, technology companies like Google, e-retailers such 

as Amazon and eBay and even by traditional logistics companies like DHL and UPS (Rogues and 

Montreuil, 2014; Janjevic et al., 2013; IEEE 2017). However, crowdsourcing delivery service is 

still young and not well understood.  

 

Existing studies on crowdshipping focus on distributing the delivery tasks among the 

crowdshippers to minimize the additional travel effort (Archetti et al., 2016, Wang et al., 2016, 

Arslan et al., 2018, and Kafle et al., 2017). Several studies explore the successful implementation 

of dynamic ride-sharing in passenger travel (Attanasio et al., 2004; Agatz et al., 2011; Chan and 

Shaheen, 2012; Furuhata et al., 2013; Ma et al., 2013). Other studies examine the ideas of 

crowdsourced-delivering library books (Paloheimo et al., 2014), collecting e-commerce reverse 

flows by taxis (Chen et al., 2016), using trucks as a network of transshipment points for 

crowdshippers (Kafle et al., 2017), using occasional drivers for making deliveries (Archetti et a., 

2016), and combining people and parcel flows using taxis (Li et al., 2014).  
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The success of a crowdshipping model is dependent on the availability of a willing crowd to 

perform the services (Erickson and Trauth, 2013) and the area of operation (Chen et al., 2016). 

Crowdshipping requires a critical mass of participants, both senders and drivers, to be available in 

any area of operation to be successful and offer any cost savings (Archetti et al., 2016). The 

performance of crowdshipping is found to improve in dense urban areas (Li et al., 2014). The 

successful factors behind successful platforms were found to be “happy crowd” (38.24%), “good 

service” (27.36%), and “maximum profit” (18.32%) for platforms (Rai et al., 2018) and 

“compensation” (45.36%), “good working environment” (27.05%), and “good platform operation” 

(16.88%) for drivers (Stathopoulos et al., 2018) of a crowdsourced delivery system.  

 

Privacy concerns continue to be a major concern among users of crowdshipping services (Rougès 

and Montreuil, 2014). In addition, other concerns include loss, theft or damage to the parcels 

(Furuhata et al., 2013). Also, lack of access to technology could be considered a barrier for a 

segment of population to use crowdsourced delivery service (Punel and Stathopoulos, 2017).   

 

There is still a shortage of crowdshipping literature that addresses the behavior, motivation and 

goals of the participants (senders and drivers) of a crowdsourced delivery system.  
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Figure 2-1: Crowdsourced parcel delivery system 

 

2.3 Microhubs with crowdshipping delivery paradigm without split pick-up and deliveries 

A recent solution to H+S in last-mile delivery is the concept of microhub. A microhub is a small-

scale logistics facility usually located in the centre of an urban environment like city center, from 

which the local distribution demand is served by employing environment-friendly modes of 

transport (Janjevic and Ndiaye, 2014). A system of city center microhubs was recently field tested 

in Amsterdam as part of the EU-funded Civitas Citylab project (Citylab, 2018). Seven microhubs 

in the city of Amsterdam were carefully selected among the existing locations of the international 

postal mail service provider, PostNL in the city center. The microhubs were served by 50-60 

freight bikes to pick up or deliver parcels from or to the microhubs. This design was a result of an 

investigation with the partnering postal companies (e.g. PostNL), which contributed a large 

number of vehicle trips in the cities. It was the first of its kind field test at such a scale. The field 

test showed a reduction of the delivery van stops in the city center - a total of 2,000 van stops were 

accounted to have been reduced during the field test. Based on the results, PostNL decided to 

upscale the existing system in Amsterdam and rolled out similar system in other Dutch cities. The 
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microhubs are located at existing PostNL locations and are maintained by PostNL but are also 

shared with other logistics service providers.  

 

An Automated Parcel Station (APS) is considered to be the main physical element of a microhub 

(see Figure 2-2 for an example). The customers can either pick up or drop off their parcels (small 

parcels) at the APS without any manual intervention. The customers enter a mobile phone number 

and a personal code to access the APS for parcel drop or collection. Customers travel on foot or 

by car to collect their parcels from the APS, which are located in accessible public areas like 

shopping centers, transit stations, gas stations, etc. The first APS network in the world was 

deployed in Poland in 2009 by InPost Ltd (Moroz and Polkowski, 2016). A large network of 

automated parcel stations is being operated in Germany, France, Sweden and Poland by the local 

operators (Ducret, 2014; Morganti et al., 2014; Moroz and Polkowski, 2016). These initiatives 

consist of relatively small parcels and light-duty freight vehicles (Augereau and Dablanc, 2008; 

Gonzalez Feliu et al., 2012). The benefits of using the parcel stations include reduction in the 

parcel turnaround time and the delivery failure rate (Punakivi et al., 2001; Punakivi, M. and 

Tanskanen, 2002; Weltevreden 2008), reduction in vehicle miles traveled (VMT) (Brummelman 

et al., 2003; Folkert and Eichhorn, 2007), substitution of car trips with non-motorized trips 

(McLeod et al., 2006), and a decreased risk of parcel thefts (McLeod and Cherrett, 2009). Research 

has shown that these alternative delivery options could be self-sufficient by earning revenue from 

subscription, advertisements and increased visits from potential customers (Bilik, 2014).  

 

On the other hand, crowdshipping is gaining traction in last-mile delivery in recent years for its 

relatively low delivery cost and flexibility (Rai et al., 2017). It is generally believed that 



Page 16 of 240 

 

crowdshipping may enhance customer experience in terms of greater convenience, faster delivery, 

and cheaper delivery fee, and thus help retain and even expand market share of a business 

establishment (Punel et al., 2018). Crowdshipping may also bring about reduction in VMT, peak 

hour congestion, and emissions in urban areas by promoting active modes of the first and last mile 

delivery (e.g., by bicycle or by walking) (Gdowska et al., 2018).  

 

In light of the potential benefits of microhubs and crowdshipping as discussed above, we propose 

this new urban delivery paradigm where the last-mile demand fulfilment is done through a network 

of microhubs coupled with crowdshipping (or M+C for short hereafter). In this paradigm, an urban 

service area is divided into a number of service zones (e.g., by zipcode). Within each zone, there 

is a designated microhub to temporarily store inbound and outbound parcels. In this study, the 

parcels are assumed of a typical online shopping parcel size, e.g., the commonly seen Amazon 

parcels which can be carried by a regular passenger vehicle. These parcels are either collected or 

distributed by crowdshippers between the customers (shippers and end receivers) and the microhub 

of a zone. Two types of crowdshippers are considered: automobile drivers and bicyclists. 

Commercial trucks are dispatched periodically to visit only the microhubs in the service area to 

transfer parcels to their respective destination microhubs. By doing so, truck traffic on busy and 

often narrow city streets can be largely avoided. 
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Figure 2-2: A PostNL parcel station in Amsterdam (Ref: PostNL, 2019) 

 

2.4 Microhubs with crowdshipping delivery paradigm with split pick-up and deliveries 

Dror and Trudeau (1989, 1990) introduced the Split Delivery Vehicle Routing Problem (SDVRP) 

which has since received much attention, especially in recent years. SDVRP is found to reduce the 

routing cost compared to the case where each customer is visited only once in the traditional VRP 

(Frizzell and Giffin, 1992). The cost can even be halved by allowing split deliveries (Archetti et 

al., 2008). Archetti and Speranza (2012) provide a survey of the SDVRP and its variants. In the 

existing SDVRP literature, it considers only delivery tasks and does not consider the pairwise 

Pickup-and-Delivery operation during routing. Nor is it an M-M problem. Different from the 
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traditional PDVRP (Pickup and Delivery Vehicle Routing Problem), the Split Pickup and Split 

Delivery Vehicle Routing Problem (SPSDVRP) requires a decision variable of the quantity of 

demand transported between each pickup and each delivery point.  

 

Splitting of demand is generally observed in the transportation and deliveries of bulk commodities, 

e.g. cement, grains, crude oil, and natural gas (Archetti and Speranza, 2012). Another common 

practice in freight transport is parcel shipments by truck among distribution centers (DCs), 

between producers and DCs, or between producers/DCs and retail stores (Battara et al., 2014; 

Wang et al., 2017). Though branch-and-cut exact algorithms can solve small to medium size 

SDVRPs, meta-heuristic algorithms (simulated annealing, tabu-search, adaptive neighborhood 

etc.) are necessary to solve for large scale problems (Archetti and Speranza, 2012).   

 

Bicycle rebalancing can be formulated as a many-to-many SDVRP. Consider a fleet of bicycle 

shipping vans tour around the bike sharing stations, loading and unloading bicycles to redistribute 

the bicycles in response to the demand dynamics at the stations. For a given van, partial loading 

and unloading of bicycles may take place at a bike sharing station. For a given bike sharing station 

in need of bicycles, those bicycles may be unloaded from multiple vans that collect bicycles from 

multiple stations; for a station that has spare bicycles for redistribution, those extra ones may be 

split into multiple vans and distributed to multiple stations. Therefore, this problem represents a 

Many-to-Many Split Pickup-and-Delivery Problem (M-MSPDP), where both the pickup and the 

delivery demand are allowed to be split, and the pickup-delivery pairs are many-to-many (Tang et 

al., 2019). Some meta-heuristics proposed to provide an optimal solution for the BRP are: bee-

colony algorithm (Szeto and Shu, 2018), destroy and repair algorithm (Dell’Amico et al., 2016), 
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Dantzing-Wolfe and Benders’ decomposition-based heuristics (Contardo et al., 2012) and the 

Markov Decision Process (Brinkmann et al., 2018).  

 

Consider another example of the PostNL parcel stations in Amsterdam (PostNL.com, 2019). Self-

service parcel lockers were launched by the Dutch postal operator (PostNL) at several locations 

(for e.g. train stations) to allow customers to pick up parcel and commerce purchases as well as 

send parcels, 24 hours a day. Once the parcel is delivered to a secure PostNL parcel station, the 

customer receives a notification informing them of where to collect their parcel. Parcel stations 

allow reduction in missed deliveries and allow easy returns for the customers. At a given station, 

all its outgoing parcels may be loaded into more than one truck and distributed to more than one 

destination. Similarly, the incoming parcels to a station may come from multiple truckloads of 

multiple origins. It represents another application of the M-MSPDP.  

 

Note that these two applications represent two variants of the M-MSPDP. In the parcel station 

application, the demand between any pair of stations is known at a given time point because the 

origin and destination of each parcel is given. In other words, the pairwise pickup-delivery demand 

is pre-determined. We call the parcel station problem a Many-to-Many Split Pickup-and-Delivery 

Problem with Fixed Pairwise Demand (M-MSPD-FPD). In contrast, in the bike rebalancing 

problem, the load (i.e., the number of bicycles) between one station to any other station is a 

decision variable. We call the bike rebalancing problem a Many-to-Many Split Pickup-and-

Delivery Problem with One Commodity (M-MSPD-OC).  
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In this study, we focus on the static case of M-MSPDP, though the solution methods can be easily 

applied to a dynamic case. The static case of the Bike-sharing Rebalancing Problem (BRP) was 

first defined and solved by Chemla et al. (2013) and Raviv et al. (2013). Chemla et al. (2013), 

proposed a combination of branch-and-cut algorithms with tabu search algorithm for solving a 

deterministic static single vehicle BRP on instances of up to 100 bike stations. The relaxations 

considered by them including allowing vertices to be visited more than once by the vehicle and 

allowing split deliveries. For the same problem, a 3-step mathematic programming-based heuristic 

is presented by Forma et al. (2015) by using a decomposing approach to first form clusters and 

then determining optimal routes among these clusters to maintain inventory levels for each station.  

 

The optimal route is calculated by using an exact method for the single-vehicle BRP in Erdogan 

et al. (2015) for instances up to 60 bike stations. A solution to the multi-vehicle static BRP is 

proposed by Raviv et al. (2013) to minimize the system-wide ‘user dissatisfaction’ and 

‘operational costs’. This variant of the problem permits the bike stations to be visited multiple 

times, allows transshipment and considers a time limit for all routes. A single-vehicle BRP is 

formulated based on minimizing the user dissatisfaction by Di Gaspero et al. (2013), which 

determines the user dissatisfaction as the total deviation from the target inventory levels at each 

bike station. The authors (Di Gaspero et al., 2015) further propose a constraint programming model 

with Large Neighborhood Search (LNS) for the same problem, determining the routes by keeping 

the target inventories as given (Schuijbroek et al., 2017).  

 

An approach based on several construction (meta) heuristics is proposed by Rainer-Harbach et al. 

(2014) to jointly address inventory balancing and vehicle routing with the objective to minimize 
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the weighted sum of (a) the deviation from a given target inventory level for each station, (b) the 

number of (un)loading operations, and (c) total work time. The initial solution is improved by 

applying problem-specific local search moves to obtain high-quality solutions (Schuijbroek et al., 

2017). Similar problem is solved by Di Gaspero et al (2013) by combining a CP optimization 

model with Ant colony Optimization with the objective to minimize the weighted sum of the 

deviation from target inventory levels and total work time. A cluster first route-second approach, 

incorporating an exact algorithm and utilizing Benders composition, is developed by Kloimüllner 

et al. (2015) with the objective to maximize the number of stations visited over a fixed time 

window (Schuijbroek et al., 2017).  

 

The routes and the respective quantities for loading and unloading are determined by making use 

of set of loading and unloading strategies embedded in a bee-colony algorithm (Szeto and Shu, 

2018).  The objective of the problem is set to minimize the positive deviation from the tolerance 

of ‘total demand dissatisfaction’ and the service times (Dell’Amico et al., 2018). A hybrid large 

neighborhood search approach is used by Ho and Szeto (2017) to solve a multi-vehicle static BRP. 

A set of four mathematical formulations for multiple-vehicle static BRP is proposed by 

Dell’Amico et al. (2014) and solved by using the branch-and-cut algorithm. Dell’Amico et al. 

(2016) provides the solution to the multiple-vehicle static BRP with route duration constraints by 

implementing the destroy and repair algorithm. 

 

Contardo et al. (2012) considers the dynamic version of BRP with a heterogenous fleet of vehicles 

and proposes a solution to the time-indexed formulations by using Dantzing-Wolfe and Benders’ 

decomposition-based heuristics. A mixed integer linear programming formulation and math-
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heuristic approach is proposed by Zhang et al. (2017) which considers the level of the inventory 

and the forecast of the arrival of the users in a time-space network flow model. A dynamic green 

bike repositioning problem is introduced by Shui and Szeto (2017) which minimizes the total 

unfulfilled demand as well as the cost of the fuel and CO2 emissions for the repositioning the 

vehicle. A hybrid rolling horizon artificial bee colony algorithm is proposed for solving this 

problem (Dell’Amico et al., 2018).  

 

Several studies also attempt to address the stochastic version of the BRP. The stochastic 

information is considered implicitly as part of their penalty function by Raviv et al. (2013). Wang 

and Wang (2013) provide an analysis on bike repositioning strategies using real-time and historical 

data in a simulation environment. Regue and Recker (2014) solve a dynamic BRP, where demand 

estimation is carried out be entering the historical data into a forecasting model. An hourly demand 

estimation is used in a proposed mathematical formulation by Saharidis et al. (2014) for making 

decisions about the locations and capacity of the bike-stations. Schuijbroek et al. (2017) models 

the bike-sharing inventory as a non-stationary Markov chain to determine bounds on inventory 

quantities and use them in MILP models. Another study (Brinkmann et al., 2018) models a 

stochastic-dynamic BRP as a Markov decision process and anticipates future demands by 

presenting a dynamic lookahead policy to minimize the expected unsatisfied demands 

(Dell’Amico et al., 2018). 

  

Dror et al. (1994) presents a mixed integer programming (MIP) formulation to obtain the exact 

solution for the SDVRP with an unlimited vehicle fleet. Another method to obtain the exact 

solution was proposed by Belenguer et al. (2000) using a cutting-plane based algorithm. Jin et al. 
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(2007) propose a two-phase exact algorithm for the SDVRP with a limited vehicle fleet, while Jin 

et al. (2008) propose a column generation algorithm for the same problem. A cut-and-price based 

approach is proposed by Moreno et al. (2010) for the SDVRP with a limited vehicle fleet. Further, 

a branch-cut and-price algorithm is developed by Archetti et al. (2012) for the SDVRP. Another 

method to obtain the exact solution for VRPSPSD for bike-sharing is proposed by Casazza (2016).   

 

Dror et al. (1994) notes that SDVRP is more difficult to solve for optimality than the traditional 

VRP, which is NP-hard (Lenstra and Kan, 1981). Hence, heuristic solution methods have been 

developed to solve SDVRP. A three-phase Tabu Search heuristic for SDVRP with unlimited 

vehicle fleet is proposed by Archetti et al. (2006). Chen et al. (2007) propose a hybrid algorithm 

for the SDVRP with an unlimited vehicle fleet. This hybrid algorithm is a combination of a MILP 

formulation, a savings-based heuristic and a record-to-record procedure. A Scatter Search based 

heuristic algorithm is proposed by Campos et al. (2008) for the SDVRP with a limited vehicle 

fleet.  A Memetic Algorithm with population management is developed by Boudia et al. (2007) 

for the SDVRP with an unlimited vehicle fleet. Another hybrid combination of a tabu search 

heuristic and an integer programming formulation is proposed by Archetti et al. (2008). Aleman 

et al. (2010) presents constructive and local search procedures for the SDVRP with a limited 

vehicle fleet, whereas Aleman and Hill (2010) implement a TS heuristic with vocabulary building 

for the SDVRP with an unlimited fleet. Derigs et al. (2010) compare the performance of several 

local search-based metaheuristics for the SDVRP with an unlimited vehicle fleet. A two-phase 

constructive procedure as well as a Genetic Algorithm for the SDVRP with a limited vehicle fleet 

is proposed by Wilck IV and Cavalier (2012).  
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The VRP with Split Pickups and Deliveries problem (VRPSPDP), with paired loads, is a more 

complex problem than the regular SDVRP, but some of the approaches used for solving SDVRP 

are applicable and should be considered. The first attempt at solving the VRPSPDP appears in 

Mitra (2005). This paper considers the problem of supplying finished goods to multiple delivery 

points and picking up returnable items for a set of customers using a homogenous fleet of vehicles. 

Thus, each customer can have demand for both pick-up and delivery and the demand can be more 

than the capacity of the vehicle. Split pick-ups and deliveries are allowed, implying that a vehicle 

could visit the same customer multiple times and each customer could be visited by multiple 

vehicles. The objective of the problem simultaneously determines the minimum number of 

vehicles required to fulfill the customer demand (pick-up and delivery) as well as to identify the 

routing strategy to minimize the total route cost. No constraints on time windows or the length of 

the route are considered. The paper presents a MILP formulation for the problem and proposes a 

heuristic (constructive algorithm) that first determines the minimum number of required vehicles 

and then creates routes based on the cheapest insertion criterion (Archetti and Speranza, 2012). An 

alternative formulation is proposed in Mitra (2008) for the same problem with an improved faster 

heuristic (parallel clustering). Nowak et al. (2008) present the formulation for a one-to-one pick-

up and delivery problem and quantify the benefit of using split loads. According to the paper, the 

maximum benefit is achieved when the size of the load is just above one-half of the vehicle 

capacity. The paper presents a heuristic based on tabu search and simulated annealing to solve the 

problem of pick-up and delivery loads with split loads. Wang et al. (2012) developed a hybrid 

heuristic algorithm to solve the VRP with simultaneous deliveries and pickups with split loads and 

time windows (VRPSDPSLTW) and test it on modified Solomon datasets. Sahin et al. (2013) 
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proposes a heuristic based on tab search and simulated annealing which improves the initial 

solution determined from Clark and Wright’s saving heuristic. 

 

The Table 2-1 provides the summary of the relevant literature review that is available for problems 

with fixed origins and destinations: 

Table 2-1. Literature Review 

Study Structure Split Paired 

demand 

Variant Solution 

Archetti et al., 

2011 

Archetti et al., 

2006 

Wilck IV and 

Cavalier, 2012 

One to Many Yes Yes SDVRP Branch and cut 

algorithm 

Heuristic using 

tabu search 

algorithm 

Heuristic using 

Genetic Algorithm 

Casazza et al., 

2016 

Many to Many Yes No VRPSPSD Exact solution 

using Dantzig-

Wolfe 

decomposition and 

column generation 
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Mitra, 2005 

 

Mitra, 2008 

Nowak et al., 

2008 

 

Wang et al., 

20012 

 

Sahin et al., 

2013 
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Chapter 3 Preliminary Investigation of a Crowdsourced 

Parcel Delivery System: A Case Study 

 

Reproduced with permission from ISTE, Copyright 2018 

Ballare, S. and Lin, J., 2018. Preliminary investigation of a crowdsourced parcel delivery system: 

A case study. City Logistics 3: Towards Sustainable and Liveable Cities, pp.109-128. 

 

3.1 Introduction 

The rise of e-commerce (US Census, 2016) and the trend of on-demand deliveries has led to the 

urban retail sector reexamining the efficiency of the associated vehicle fleet to satisfy this variable 

demand. The traditional “hub and spoke” distribution model being used extensively by large 

carriers (e.g. Fedex and UPS) is not built to cater to such variable express demand. In addition, 

much of the trunk space of passenger vehicles during routine journeys is mostly unused. The retail 

sector is feeling the need for an innovative urban mobility solution that provides reliability of 

transportation, while ensuring environmental sustainability and reduction in the cost of the last 

mile deliveries (Lee et al., 2001; Munuzuri et al., 2005; Crainic et al., 2009; Quak and Koster et 

al., 2009). 

 

This chapter is organized as follows. First, an overview is provided of the case study 

crowdsourcing delivery company’s delivery service as well as the pricing model employed by the 

company. Next, a set of research questions to be answered in this study are presented, followed by 

an overview of the crowdsourcing data shared by the company, to be used to find answers for the 
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research questions. The detailed data analysis and findings are presented next, followed by a 

further discussion of potential market growth opportunities for the case study crowdsourcing 

company and others in general. The chapter ends with the key conclusions from the study. 

 

3.2 Overview of the Case Study 

3.2.1 Types of Delivery Service 

 

The studied crowdsourcing technology company provides matching of the unused capacity in 

passenger vehicles with the delivery requests across the United States. The name of the company 

is kept confidential due to the non-disclosure agreement involved. The company’s delivery model 

enables efficient, express, flexible and low-cost delivery for customers and rewards the 

participating drivers for trips they were already scheduled to take. Several of crowdsourcing 

delivery companies operate at a regional level (for e.g. Dolly in Chicago and Wagon in Seattle), 

but the crowdsourcing technology company considered in this study operates nationally. It has 

been introduced as a shipping network between neighbors connecting the senders with drivers with 

spare capacity in their vehicles headed in the same direction. A delivery mobile app connects users 

(called “customers”) needing to send something with those who are willing to transport it to the 

specified destination (called “drivers”). The company’s business model differs from the traditional 

“hub and spoke” model in the way that there does not exist a centralized dispatch or consolidation 

center (“hub”), neither are the individuals transporting the parcels considered to be employees of 

the company. Thus, the company offers a more flexible and cost-effective alternative to traditional 

delivery methods. The company’s initial targeted market is intercity delivery and expedited or 

same-day delivery service. The crowdsourced delivery company also offers several incentives to 
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the drivers in terms of roadside discounts, free road-side assistance, and tax write-offs on miles 

driven. It is a new smartphone app now addressing the issue by providing services that operate like 

ridesharing (for e.g. Uber and Lyft), only it transports parcels instead of people.  

 

Both the customers and drivers are required to pre-register themselves with the company by 

providing basic information including preferred pickup locations. This is done by downloading 

and registering with the delivery ridesharing app of the company on their smartphones. This 

application allows the customers to post details and pictures of the goods to be transported and 

enables the drivers to choose between the various delivery service requests in their vicinity. The 

app also provides information on the location, size, price, ratings and reviews to enable both 

customers and drivers to make the right choice.  

 

For convenience of the customers and drivers, the parcels are identified based on their size rather 

than their weight. The parcels are classified into five sizes – small, medium, large, extra-large and 

super-large. The small and the medium parcel sizes can be accommodated on the front passenger 

seat whereas the medium size in the backseat of a normal passenger car. The extra-large and super-

large parcel sizes however would require a SUV or a pickup truck to accommodate them. In 

addition to normal parcels, the company also offers transfer of pets through its delivery system, 

however such deliveries have not been considered as part of this study. The company does offer 

specific instructions on permissible parcel contents. It specifies that all customers are prohibited 

from including in any parcel, and all drivers are prohibited from knowingly accepting, picking-up, 

carrying or delivering any parcel containing any illegal or contraband items, as listed on the 

company website. 
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The process is initiated when a customer submits a request for parcel pickup and delivery through 

the app, with user-specified information including the parcel size, pickup and drop off location, 

and delivery time windows etc. This posted request is marked by the app as published. The app 

then estimates the delivery fee based on the parcel size and the requested delivery distance and 

broadcasts the published request along with the delivery fee to all eligible drivers. Any driver can 

submit a bid in response to the published delivery request, upon which the customer has the choice 

to accept or decline the bid while also considering the ratings and reviews of the driver. Once the 

customer accepts the bid submitted by the driver, the status of the request changes to accepted. 

When the driver picks up the parcel and completes the delivery, the status of the delivery request 

changes to delivered. However, there may be cases where no driver responds to a published 

delivery request before the expiration of the specified delivery time window. In this case, the status 

of the delivery request changes to expired. If either customer or driver decides to refuse the request 

at any point in time before the delivery is carried out, the request is marked as cancelled. Users, 

both customers and drivers are allowed a total of 3 cancellations of accepted requests by the 

company, before their user profiles are deactivated, to deter malicious users messing with the 

system. Figure 3-1 describes the process from creation and fulfillment of a delivery request.  
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Figure 3-1: Flowchart of crowdsourced delivery system 

 

Delivery integrity is considered to be one of the most important attributes for the customers to 

select traditional couriers (Gibson et al., 2015). Hence, to ensure customer confidence, all the 

deliveries made through the app are insured by the company up to $500. Customers can purchase 

additional insurance depending on the self-declared value of the transported goods. Registered 

drivers must provide information about their vehicle type, driver’s license and insurance. They can 

start operating only after verification of these details by the company.  
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During the study period, between January 2015 and August 2018, a total of 380,951 users were 

registered with the company, including customers and drivers. For the same period, a total of 

107,505 delivery requests were received by the company, including deliveries which were 

completed, cancelled or were in process of being accepted for delivery. These deliveries, in total, 

accounted for a revenue of more than $53.8 million. 

 

3.2.2 Pricing Model 

For every delivery service request received, the delivery app estimates the delivery fee depending 

on several factors, including size of the parcel to be delivered, delivery distance and urgency status, 

with a specified minimum and maximum fee for the selected parcel size. Once the customer 

accepts the bid posted by the driver against the estimate fee and the delivery has been completed, 

the driver receives 80% of the agreed fee whereas the company receives 20% of the fee. It is 

important to note here that the pricing model does not intend to fully cover the transportation 

expenses of the selected driver, rather it aims to offset a part of her/his expenses towards a journey 

which they were already undertaking irrespective of the delivery request. A safety fee of $1 is 

applied to each delivery irrespective of the parcel size or the delivery distance, and this fee as well 

as the insurance amount is not shared with the driver. As can be seen from the Figure 3-2, the price 

of sending a parcel increases with an increase in parcel size as well as the delivery distance. 
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Figure 3-2. Pricing model used for different parcel sizes 

 

3.3. Research Questions 

The success of crowdshipping depends upon timely identification of preferences of customers and 

drivers and providing motivation to all users for participation in such a delivery system. This also 

enables the company to not only maintain the critical mass for such a delivery system, but also 

helps it to forecast the demand (Rouges and Montreuil, 2014).  

 

This study answers research questions which are of importance to the existing logistics companies 

as well as new startups which wish to employ crowdsourcing for the first or last-mile delivery. 

The research questions have been clustered under the appropriate headings – delivery attributes, 

user characteristics, market opportunities and qualitative assessment of service. The research 

questions are as follows: 
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1. What is the success percentage for the delivery requests received so far and the reasons 

behind the fulfillment/unfulfillment of these requests? 

2. Who are the regular users (customers and couriers) of a crowdsourcing delivery system and 

what are their characteristics? 

3. Which are the parcel sizes and delivery distance which are popular among the customers and 

the couriers respectively? 

4. What are the features of the pricing model and the virtual platform provided by the company 

to match the customers with interested couriers?  

5. What are the socio-demographic characteristics behind the motivation of users to participate 

in crowdsourced delivery system? 

6. How can the current crowdsourcing delivery system be improved? 

Under delivery attributes, this study answers basic questions regarding the delivery service 

requests created on the ridesharing app, including their current trend. The study also investigates 

the percentage of successful and unsuccessful deliveries, and the reasons behind them on the basis 

of the average delivery distance requested and the delivery price. For user characteristics, this 

study explores the user base for such a delivery system, including the customers and drivers. The 

study first investigates the trend of registration among the users, registered locations, age profiles 

for the most active customers and drivers, and identifies these as businesses or individuals. The 

study then uses the socio-demographic characteristics extracted from census data for zip codes to 

identify factors behind behavior of users of the crowdsourced delivery system. The study also 
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investigates the interdependency between the zipcodes in terms of spatial autocorrelation by using 

the zipcode level parcel flows – both inbound and outbound.  

 

Further, for market opportunities, the study explores the preferences of the customers in terms of 

the parcel sizes as well as the delivery distance. This section answers the important question 

regarding what the potential future strategy of the company, including which parcel sizes and the 

delivery distance will provide the company a bigger market share. Under qualitative assessment 

of service, the study explores the perceived strengths and improvement areas for the business 

model employed by the crowdsourced delivery company. Comments are provided on the entire 

delivery system, as well as the delivery ridesharing app itself.  

 

3.4. Data 

The data used in this study is obtained from one of the largest crowdsourced delivery companies 

in the United States providing coverage across the entire geographic area.  For this study, the data 

was downloaded from the company database for the past three and a half year’s operations. From 

the company database, the data for all the delivery requests and registered users was extracted in 

the CSV format for further analysis, using a free software – DB visualizer. The data was present 

in the two following subsets as shown in the Figure 3-3. The header fields present in the delivery 

data subset, user data subset and their respective description is provided in the Table 3-1 and Table 

3-2. 

.  
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Delivery Data

Customer/driver profile ID

Customer/driver age group

Business or Individual

Package size

Delivery ID/status/No. of bids

Delivery distance

Price/Insurance fee

Pickup/Delivery location

Pickup/delivery/acceptance/ 

cancellation time stamps

User Data

Customer/driver profile ID

Customer/driver age group

Business or Individual

Customer/driver signup date

Registered location

No. of delivery requests 

created/cancelled by customer

No. of deliveries completed

No. of bids created/cancelled 

by the driver

No. of bids accepted for the 

driver

 

Figure 3-3. Data structure and organization 

 

Table 3-1. Description of the field names present in the delivery data 

 

Sr. No. Field Name Description  

1 Delivery Id Serial number of the delivery request. 

2 Parcel Size Size of the goods to be transported as defined by the 

company. 

3 Delivery Status Status of the delivery request. 
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4 Delivery deadline Date and time when delivery time-window ends. 

5 Insured value Self-declared insurance value of the goods to be 

transported. 

6 Total price Total price of the delivery as estimated by the delivery 

ridesharing app. 

7 Insurance fee Insurance fee for delivery if selected by the customer. 

8 Total distance Distance between the pickup and the delivery point of 

the delivery as estimated by the app. 

9 Customer profile id Registered identification number of the customer. 

10 Customer age group Pre-defined age group bracket of the customer. 

11 Driver profile id Registered identification number of the driver. 

12 Driver age group Pre-defined age group bracket of the driver. 

13 Pickup 

city/state/zip/MSA 

City/state/US Zip code/Metropolitan Statistical Area 

where the pickup of the delivery is scheduled.  

14 Delivery 

city/state/zip/MSA 

City/state/US Zip code/Metropolitan Statistical Area 

where the delivery is scheduled.  

15 Published date Date and time when the delivery request is posted by the 

customer. 

16 Cancelled date Date and time of cancellation of a delivery request. 

17 Accepted date Date and time when the delivery request is accepted by 

the driver and the customer. 

18 Started/Pickup date Date and time when the driver initiates/completes the 

pickup of the delivery. 
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19 Delivery date Date and time when the driver completes the delivery.  

20 Sender business True or False choice based on if the customer has 

declared itself to be a business or an individual. 

21 Driver business True or False choice based on if the driver has declared 

itself to be a business or an individual. 

22 Destination Lat/Lon Latitude/Longitude of the delivery point. 

23 Pickup Lat/Lon Latitude/ Longitude of the pickup point. 

24 Bids Number of bids from drivers received per delivery 

request. 

 

 

Table 3-2. Description of the field names present in the User data 

 

Sr. No. Field Name Description  

1 Profile id Registered identification number of the 

user. 

2 Signup date Date and time of registration of the user. 

3 Age group Predefined age group bracket of the user. 

4 Registered city/state/zip/MSA location Preferred city/state/zip code/Metropolitan 

Statistical Area of operation for user.  

5 Is driver True or False choice (if the user is a driver 

or customer). 
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6 Is customer True or False choice (if the user is a 

customer or a driver). 

7 Business/Individual True or False choice (if the user is a 

business or an individual). 

8 Created/Delivered/Cancelled Number of delivery requests 

created/completed/cancelled by the user. 

9 Created/Cancelled bids Number of bids created/cancelled by the 

driver. 

10 Accepted bids Number of bids accepted for the driver. 

 

 

The delivery dataset contains the primary details about the goods transported including the parcel 

size, declared value and registration details for the customer and the driver. Detailed information 

about the pickup and the drop off locations is provided in terms of the zip code, city and state as 

well as geographical coordinates. Additionally, the data contains information about the distance 

between the pickup and drop off points, and the total fee charged by the company for the respective 

delivery. Other details include time stamps for generation of delivery service request, its 

completion, pickup of the parcel and its delivery. The user data contains the profile information of 

both customers and drivers for each completed delivery in terms of the age group, registered 

location, individual or business etc. It also contains the number of delivery requests and their status 

for the customer and the number of bids created and their respective status for the drivers. The 

socio-demographic data for the zip codes is obtained from the 2017 American Community Survey 

(U.S. Census, 2019). It is not mandatory for users, both senders and drivers, to provide their 

preferred zip code for participation in the delivery.  
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3.5. Analysis Findings 

Only the delivery service requests that were completed, cancelled, expired, and are in progress or 

awaiting pick up or delivery during this period were considered for analysis in this study. No cargo 

consolidation is considered for this data and each delivery is assumed to be an isolated set of pickup 

and delivery case between a customer and the driver involved.  

a) Delivery attributes 

A large number of delivery requests (72.56%) were successfully completed between 2015 and 

2018. However, 22.33% of the delivery requests have also been cancelled, in addition to 5.04% of 

delivery requests that expired due to not being accepted by any of the drivers before the delivery 

deadline. Overall, the completed deliveries account for only 49.48% of the total price, with the 

cancelled and expired delivery requests accounting for 49.97% of the total price combined. There 

has not been a significant change from the numbers between 2015 and 2016 (when we first 

performed the analysis), with 73.18% of deliveries successfully completed, 19.11% of delivery 

requests cancelled and 6.68% of the delivery requests expired. Between 2015 and 2016, the 

completed deliveries accounted for 47.10% of the total price, with the cancelled and expired 

delivery requests accounting for 48.98% of the total price combined. 

 

The completed delivery requests between 2015 and 2018 account for a total of 34.16% of the total 

miles travelled with an average of 63.98 miles per delivery request. Whereas, the cancelled and 

expired delivery requests account for 65.20% of the (expected) total miles travelled with an 

average of 322.69 miles per delivery. This indicates that the service requests for a longer delivery 
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distance have a difficulty finding a driver willing to complete the delivery. This is also confirmed 

in Figure 3-4, which shows that the average miles travelled and the average price ($) per delivery 

request for the completed deliveries is lower than those cancelled or expired. Between 2015 and 

2016, the completed delivery requests accounted for a total of 31.77% of the total miles travelled 

with an average of 71.04 miles per delivery request. The cancelled and expired delivery requests 

between 2015 and 2016 accounted for 63.33% of the (expected) total miles travelled with an 

average of 401.09 miles per delivery.  

 

The published delivery requests are from the period between July and August 2018. These are the 

delivery requests which have not yet received a response from the drivers. These have a high 

average delivery distance in miles and a high average price ($) per delivery. This also represents 

delivery requests for a high percentage (71.74%) of extra-large and super-large parcel sizes which 

generally have a higher delivery distance requested in comparison to the small, medium and large 

parcel sizes. The high average delivery distance for the published delivery requests during this 

period may be due to a new customer signing up to use the crowdshipping service for long distance 

deliveries. In absence of detailed information available for the customers, it is difficult to speculate 

the exact reason for this high average delivery distance for the published delivery requests. 
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Figure 3-4. Performance parameters for the different delivery request status 

 

A total of 77,845 deliveries were recorded as completed between the period of 2015-18 for the 

company. Figure 3-5 provides the growth trend for the number of deliveries, miles travelled and 

the total price during the study period. This translates to an average of approximately 5,200 number 

of parcels delivered every quarter representing a cumulative delivery distance of 332,715 miles 

and a total fee collection of $177,655. It shows a healthy growth in the number of completed 

deliveries for the company and is an indicator that such a delivery service system is acceptable to 

customers. Further investigation is needed to explore which parcel sizes and what delivery distance 

is popular among the customers, and also the nature of users responsible for the success of such a 

delivery system. Figure 3-6 shows a constant growth in delivery requests for all the parcel sizes, 

however the largest growth is observed in the medium parcel size over the study period.    
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Figure 3-5. Growth trend for the number of completed deliveries 

 

Figure 3-6. Growth trend for the number of completed deliveries 

Figure 3-7 presents the distribution of the total fee collected according to the various parcel sizes. 

There is an increase in the share of the total fee collected from the medium, extra-large and super 
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large parcel sizes between 2015-2018 as compared to between 2015-2016, whereas there is a 

decrease in the share of total fee collected from the small and large parcel sizes.  

 

Figure 3-7. Distribution of total fee collected: (a) between 2015-2016; (b) between 2015-2018 

 

Figure 3-8 presents the distribution of total completed deliveries according to the various parcel 

sizes. The large parcel size appears to be popular between 2015-2016, whereas the medium parcel 

size appears to be the most popular between 2015-2018. There is a considerable decrease in the 

share of the large parcel sizes, whereas there is a small increase the other parcel sizes except the 

small parcel size. 

 

Figure 3-8. Distribution of completed deliveries: (a) between 2015 -16; (b) between 2015-18 
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Figure 3-9 presents the performance metrics for the different parcel sizes for all the completed 

deliveries. 

 

Figure 3-9. Performance metrics for the completed deliveries 

 

 

Figure 3-10. Distribution by distance: (a) total completed deliveries by number; (b) by total fee 

collected 
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Figure 3-10 shows that majority of the deliveries (90%) and the total fee collected (55%) collected 

are restricted within a delivery distance of less than 50 miles indicating intracity travel. At the 

same time, a small percentage of deliveries (4%) over a distance of 400 miles account for a large 

portion (32%) of the total fee collected.  

 

Table 3-3 provides the distribution of the delivered parcel sizes based on the delivery distance.  

 

Table 3-3. Distance distribution for completed deliveries by parcel size 

 Percentage of total deliveries completed  

Distance in miles Small Medium Large Extra-large Super large Total 

0 to 5 3.13% 15.85% 8.87% 1.71% 1.64% 31.20% 

5 to 10 2.86% 12.63% 5.64% 1.20% 1.00% 23.34% 

10 to 20 4.43% 11.58% 2.49% 0.70% 1.30% 20.50% 

20 to 50 3.93% 6.67% 1.70% 0.87% 1.52% 14.68% 

50 to 100 0.28% 0.77% 0.49% 0.43% 0.52% 2.50% 

100 to 400 0.15% 0.56% 0.67% 0.78% 1.18% 3.33% 

400 + 0.08% 0.41% 0.84% 1.07% 2.05% 4.45% 

Total 14.85% 48.47% 20.70% 6.76% 9.22% 100% 
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Figure 3-11 shows that the medium and large parcel sizes have a large share in deliveries less than 

100 miles, whereas the extra-large and super-large parcel sizes have a larger share in deliveries 

more than 100 miles. The medium parcel size continues to remain popular irrespective of the 

delivery distance. 

 

Figure 3-11. Distribution of delivered parcels based on size and delivery distance 

 

b) User characteristics 

Figure 3-12 provides the trend for the new user registrations, both as customer and driver, for the 

eight quarters of the study period. After an initial increase in the second and the third quarter of 

2015, a decline in the number of new user registrations is observed. The number of new 

registrations appear to be stable over the recent years.  
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Figure 3-12. Trend for registration of users on the delivery ridesharing app 

 

From the age group distribution for the registered customers and the drivers of the completed 

deliveries, it was found that the age group of 35-44 years is popular among both the customers and 

the drivers. A large number of customers have not provided their age details as it is not a mandatory 

requirement by the company app, whereas it is a mandatory requirement for the drivers and hence 

a relatively low amount of undeclared age numbers for drivers.  More than half of the customers 

who have provided their age details fall into the age group of 25-44 years, whereas more than 79% 

of the drivers fall in the age range of 24-54 years. This has been found in other studies as well 

(Ermagun and Stathopoulos, 2018). The age-group of 35-44 years comprises mostly of working 

individuals who are internet savvy and open to opportunities to experiment with a new delivery 

system as well as participate as a driver in such a system to supplement their income. This has 

been found true for other collaborative systems making use of technology, where younger 
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population form a large share of the user base (Panda et al., 2015; Rayle et al., 2015; Shaheen et 

al., 2016). 

 

Most of the completed delivery requests have been made by users identifying themselves as 

businesses (95.5%) rather than individuals (4.5%) among the customers who have provided this 

declaration to the company. Less than 1% of the drivers making these deliveries have identified 

themselves as business, whereas 2.61% of the drivers identify themselves as individuals. A high 

percentage (96.8%) of them have not declared themselves to be either business or individual. This 

also indicates that the crowdsourced delivery is best suited for the Business to Consumer (B2C) 

model which focuses on business transactions between a business and a consumer via an e-

commerce website (Rougès and Montreuil, 2014). Thus, it is in the best interests of the company 

to provide a separate incentivized pricing model for the businesses interested in making use of the 

crowdsourced delivery services.  

 

Socio-economic information is sourced from the census data (U.S. Census, 2017) for the top 100 

zip codes each (majority from Atlanta region in Georgia), where the greatest number of delivery 

pick up requests have been generated from as well as where the most active drivers are registered. 

Two Regression models are developed with the number of pickup and deliveries for each zipcode 

and the number of drivers registered in each zipcode as the dependent variables. A total of 22 

independent variables are selected from the census data for each of the zip codes. These include 

population, median age, number of establishments, percentage of high school graduates or higher, 

number of household units, median household income ($), individuals below poverty level, 

number of households with no car, number of households with one car, number of households with 
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two cars, number of households with three or more cars, percentage of individuals working from 

home, percentage of individuals driving to work alone, percentage of individuals working outside 

resident county, average travel time to work, percentage of individuals in services and 

transportation occupation, percentage of individuals in the transportation industry, percentage of 

private wage workers, percentage of self-employed working individuals, unemployment rate and 

percentage of full time workers.  

 

For both the regression models, we begin by calculating the correlations between the independent 

variables and the dependent variable as well as between the independent variables. We then select 

the independent variable which is the most correlated with the dependent variable and not highly 

correlated with other independent variables. We begin by running a linear regression and check 

for the significance of the dependent variable, sign of the coefficient and the R-square value. We 

then run a logarithmic regression if the results are not satisfactory. We keep on adding the 

independent variables to the model, which are correlated to the dependent variables existing in the 

model equation.  We remove an independent variable if it is not statistically significant or does not 

improve the R-square value. Once, all the independent variables expected to impact the dependent 

variable have been tried in the model equation, the final results are checked for heteroscedasticity 

(Breusch-Pagan Test) and multi-collinearity.  

 

The Table 3-4 shows the results of the model with number of pickups and deliveries per zipcode 

as dependent variable.  
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Table 3-4: Deliveries/ Parcels Sent – Log Regression 

Variables 

Coefficient 

Estimate Std. Error p value 

(Intercept) -2.994 12.393 0.809 

 
log (Percentage of High School Graduate and 

above)a 3.738 1.710 0.03 

log (No. of Housing Units)a 0.668 0.193 0.7x10-3 

log (Percentage of Private wage worker)a 5.178 1.997 0.010 

log (Median Household Income)a -2.424 0.470 0.8x10-6 

 

log (Percentage of people working outside 

resident county)a 0.394 0.092 3.99x10-5 

log (Transportation Occupation)a -1.218 0.262 7.71x10-6 

log (Driving Alone Percentage)a -2.395 0.773 0.002 

log (Unemployment rate)a -0.893 0.337 0.009 

R-squared: 0.4494 

   
Adjusted R-squared: 0.413 

   
Studentized Breusch-Pagan test 

BP = 11.772, df = 9, p-value = 0.2264    

a
Significant at 95% confidence level 

 

The estimated model has a R-square value of 0.45, which is not great but can be considered 

reasonable for a real-world data analysis. As the p-value from Breusch-Pagan test is above 0.05, 
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alternative hypothesis can be rejected that heteroscedasticity is present.  Percentage of high school 

graduates or higher, number of housing units, percentage of private wage workers, percentage of 

households with two or more vehicles and the percentage of individuals working outside the 

resident county have a positive sign in relation to the number of pickups and deliveries in a zipcode. 

As crowdshipping requires the use of technology, it is not surprising to observe percentage of high 

school graduates or higher being significant for the number of pickups from a zipcode (Punel et 

al., 2018). The household density intuitively acts to increase the demand for crowdshipping in an 

area. And finally, individuals working outside the resident county or private wage workers may 

have limited time to use traditional logistics services and might be attracted by the flexibility 

provided by crowdshipping.   

 

Median household income has a negative sign in relation to the number of pickups and deliveries 

in a zipcode. Households with higher median household income may not find the lower costs 

associated with crowdshipping attractive. This is consistent with other studies which found to have 

connection between the income and the use of a shared system (Efthymiou et al., 2013; Dias et al., 

2016; Rayle et al., 2016). In addition, the percentage of workers involved in transportation 

occupation, percentage of workers driving alone to work, and the unemployment rate have a 

negative sign in relation to the number of pickups and deliveries in a zipcode. The workers 

involved in transportation occupation or driving alone to work may choose to travel to the 

traditional logistics service centers to fulfil their requirements. The negative sign of unemployment 

rate is intuitive, as unemployed individuals may not have parcels to be sent.   
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The Table 3-5 shows the results of the model with number of drivers registered per zipcode as 

dependent variable.  

 

Table 3-5: Drivers- Log Regression 

Variables 

Coefficient 

Estimate Std. Error p value 

(Intercept)a 25.3919 5.3778 5.86 x 10-6 

log (No. of Establishments)a 0.7288 0.186 1.42 x 10-4 

log (Driving Alone Percentage)a -3.3479 0.8995 2.91 x 10-4 

 

log (Percentage of people working outside 

resident county)a 0.7537 0.1285 3.38 x 10-8 

log (Transportation Occupation)a 1.2169 0.2746  1.93 x 10-5 

log (Self Employed Workers Percentage)a 0.7273 0.3352 0.031 

log (Median Household Income)a -1.9956 0.4889 7.68 x 10-5 

log (Full Time Workers 

Percentage)a -2.0244 1.1271 0.074742 

R-squared: 0.3949 

Adjusted R-squared: 0.363 

Studentized Breusch-Pagan test 

BP = 11.96, df = 7, p-value = 0.102 

a
Significant at 95% confidence level 
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The estimated model above has a R-square value of 0.39, which is again reasonable for a real-

world data analysis. As the p-value from Breusch-Pagan test is above 0.05, alternative hypothesis 

can be rejected that heteroscedasticity is present.  The number of establishments, the percentage 

of individuals working outside resident county, percentage of self-employed workers and 

percentage of individuals in the transportation occupation have a positive sign in relation with the 

dependent variable. Self-employed workers percentage is also found to be significant in other 

studies (Punel et al., 2018). We speculate that the number of establishments would indicate an 

employment zone, where workers are inclined to engage in crowdshipping during their trips from 

home to work and vice versa. The high amount of travel incurred by the percentage of individuals 

working outside resident county and the percentage of individuals involved in the transportation 

occupation would make participation in crowdshipping attractive.  

 

The percentage of workers driving alone, the median household income and the percentage of full-

time workers have a negative sign in relation with the dependent variable. The median income has 

already been found to have little connection with participation in crowdshipping (Rayle et al., 

2016; Punel 2018). The workers driving alone and the full-time workers may not have enough 

spare time to participate in crowdshipping (Le and Ukkusuri, 2019). 

 

The drivers participating in the crowdsourced delivery are generally either professional drivers 

(working for themselves or for a traditional logistics carrier) or members of the public (e.g. 

commuters, students etc.) (Botsman, 2014).  
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The high frequency pickup zip codes have a lower average population than the driver zip codes 

indicating that they are situated in non-residential areas. Based on a two-sample t-test, it was found 

that the difference in the median household incomes for customers and drivers was not significant 

(p=0.346), however it is less than the national average of $53,889 (U.S. Census, 2016). This is 

consistent with other studies which found to have little connection between the income and the use 

of a shared system (Efthymiou et al., 2013; Dias et al., 2016; Rayle et al., 2016). 

 

Both customer and driver zip codes show a similar level of literacy in terms of percentage 

population having a bachelor’s degree or higher, as this indicates the IT literate users who 

participate in online commerce activities. Though, it still lower than the national average of 29.8% 

(U.S. Census, 2017). Again, similar trend is observed in a study addressing shared personal 

mobility (Rayle et al., 2016) with more literate population being the most likely users. The 

dominant employment sectors for the pickup zip codes include hospitality, retail and 

manufacturing sector.  

 

Thus, the users registering as drivers are from neighborhoods that have a large population but are 

economically better than the neighborhoods where the customers are registered at. This is due to 

the customers being in the commercial and industrial neighborhoods with the drivers based out of 

residential areas. This is consistent with other studies that indicate that places with high job 

accessibility support crowdshipping (Mladenow et al., 2016). The difference also indicates that 

most of the drivers are professionals either from passenger transport or delivery business, looking 

for an additional income. 
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3.6. Further Discussion 

3.6.1 Market Opportunities 

As seen in Error! Reference source not found. and Error! Reference source not found., the me

dium and large parcel sizes accounts for 69% of the deliveries and 46% of the total fee collected. 

Additionally, Figure 3-10 indicates that more than 90% of the completed deliveries are restricted 

within a delivery distance less than 50 miles. This also represents more than 55% share of the total 

fee collected for the completed deliveries. Thus, initial market opportunities in new markets are in 

shorter delivery distances and with the medium and large parcel sizes preferred.   

 

Figure 3-4 shows that the average delivery distance requested for the cancelled and the expired 

delivery requests is more than 200 miles. In addition, from Figure 3-9, it can be seen that the extra-

large and super-large parcel sizes have the largest per mile revenue among all parcel sizes. Table 

3-3 shows that the extra-large and super-large deliveries tend to longer distance deliveries (> 50 

miles), indicating inter-city travel. Thus, the future market growth areas are in deliveries over 

longer distance and for extra-large and super-large parcel sizes. 

As majority (95.5%) of the active customers are registered as businesses, small businesses present 

a potential growth area both in the present and future markets. Also, as most of the participants in 

crowdshipping are considered young, the demand for crowdshipping can be assumed to grow with 

this generation becoming older.  

We also conduct an investigation in the spatial autocorrelations between and among the outbound 

and inbound parcel deliveries, at the zipcode level for all parcel deliveries in the United States. We 
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adopt a generally used standard measure of spatial autocorrelation, called Moran’s I statistic 

(Thompson et al., 2018) for our study. Global Moran’s I statistic is defined as follows:  
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Where,  

N: Number of spatial units indexed by i and j; 

ijw : Spatial weight (connectivity) between units i and j; 

iy , jy : Attribute value of unit i and j, respectively; 

y : Mean value of the attribute of interest. 

 

The value of the Global Moran’s I ranges between -1 (negative spatial autocorrelation) and +1 

(positive autocorrelation), with 0 indicating randomness. In our study, the value of N is equal to 

the number of zipcodes having inbound and/or outbound parcels. The spatial weight matrix can be 

created based on the distances between the centroids of individual zipcodes. 
iy  (or 

jy )
 
represents 

the inbound or outbound parcels in zipcode i (or j).  We use the above to calculate the multivariate 

Moran’s I to determine the spatial autocorrelation as well as cross-correlation among the inbound 

and outbound parcels at zipcode level. Furthermore, to evaluate the significance of spatial 

autocorrelation at a local scale, we also determine the local indicators of spatial association (LISA) 

(Anselin et al., 2006). LISA visualizes the spatial autocorrelation as either the High-High and Low-

Low combination (positive autocorrelation) or High-Low and Low-High combination (negative 

autocorrelation). We make use of the GeoDa (Ruan and Lin et al., 2010, Nguyen and Vu, 2019) 
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software in this study to determine the global autocorrelation and LISA. The weight matrix for the 

study is created based on the distance using the k-nearest neighbors’ option.  

 

The total number of parcel deliveries is analyzed, and two major parcel delivery types are identified 

as food and flower delivery. Together, these represent approximately one third of all the deliveries 

made in the study. The bivariate Global Moran I value for the food deliveries is 2.47x x 10-6 and 

the flower deliveries is 2.74 x 10-7. The Global Moran I values provide an explanation of the extent 

to which the outbound parcels from a zipcode are correlated with the inbound shipments to the 

zipcode from other nearby zipcodes. As the Global Moran I values for both food and flower 

deliveries is closer to 0 than +1 or -1, it indicates no spatial autocorrelation. This is understandable 

as food and flowers are examples of final products ready for consumption by customers and hence 

do not require any processing downstream, thus eliminating any dependence on any intermediate 

location or services (except transportation) before reaching the customer.  

 

Figure 3-13 and Figure 3-14 capture the local component of spatial autocorrelation using Local 

Moran’s I for food and flower delivery respectively. As seen from the two plots, we do not observe 

any significant amount of local autocorrelation for either food or flower delivery. We also did not 

observe any spatial concentration of the food and delivery parcels, as these economic activities are 

generally not clustered. More information is required about the remaining parcels delivered to 

identify the kind of products being delivered and to conduct a spatial autocorrelation for these 

based on the new information.  
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Figure 3-13. Result of the bivariate LISA for food deliveries (Outbound – Inbound) 
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Figure 3-14. Result of the bivariate LISA for flower deliveries (Outbound – Inbound) 

3.6.2 Qualitative Assessment of Service 

The usability of the crowdshipping platform, customer trust and satisfaction (Frehe et al., 2017), 

safety of parcels and the quality of pickup and delivery (flexible, personalized) (Rai et al., 2018; 

Le and Ukkusuri, 2018) are the factors considered to play an important role for customer demand.  

The business model deployed by the crowdsourcing delivery company has several good features. 

The easy to use mobile app classifies the parcels based on sizes rather than weight to make it 

simple for customers to post their delivery service requests.  Unlike ride-sharing the customer gets 

to pick the driver for a delivery from the choices available. Only the verified drivers are eligible 

to submit a bid against a delivery request. The information regarding a particular driver’s bid, 

availability, rating and review are available on the app for the customers, which improves the 

quality of the service. The customer and driver can also communicate about the flexibility of 
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pickup and delivery timings, availability and parcel details over the app. The app also helps the 

customer in deciding upon the parcel size and provides an estimate of the fee to be expected for 

the delivery.  

 

The company ensures the safety of the delivery by verifying the driver details as well as provides 

a standard insurance with the option of purchasing more insurance for the parcel. The provision of 

rating and review system for users has been found to ensure the quality of the service and is an 

indicator of the user performance (Esper et al., 2003; Cabral and Hortacsu, 2010; Panda et al., 

2015). The company has a system in place to discourage cancellations, either by customers or 

drivers, once the delivery request has been accepted. Overall, the system is transparent, safe, 

efficient and most importantly flexible, both for the customers and the drivers.  

 

Several areas of improvement for the company’s business model are identified. Most importantly, 

the delivery ridesharing app makes it possible for the customer and driver to negotiate their own 

terms and arrange payment outside of the app, once the initial contact has been made. This results 

in a loss to the company if both the parties choose to make payment outside the app, as well as is 

a potential safety concern for the customers as well as the drivers. Drivers may also form a 

temporary coalition to bid higher than the fee estimate which would make the delivery system less 

attractive. Since there is no mechanism to verify the contents of the parcel, the risk of delivering 

contraband items arises. In the absence of consolidation capability provided by the app, there is a 

loss in system efficiency as some delivery requests on the same route remain unfulfilled due to the 

discretion of the driver. There is also a possibility of the sender being inundated with bids from 
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numerous drivers and the need to invest considerable time in evaluating and responding to the 

communication from the drivers.  

 

3.7. Conclusion 

Crowdshipping has been on rise in the last few years, and both industry and academics have been 

equally interested in analyzing this new delivery paradigm. Crowdsourced delivery offers a 

potential solution to mitigate the negative impacts of urban logistics, with more flexibility and 

lower cost than traditional delivery options. 90% of the deliveries are within a distance of 50 miles 

accounting for 55% of the total revenue indicating that initial market opportunities in new markets 

are in the shorter delivery distances. The medium and large parcel sizes are most popular as they 

account of 69% of deliveries and 46% of the total revenue. Future market growth areas are in 

deliveries over longer distances and for extra-large and super-large parcel sizes. As majority of 

current active customers are registered as businesses, small businesses should be the target 

customer population for the deliveries.  

 

With all its advantages, many potential challenges are also identified. Crowdsourcing may suffer 

from issues such as safety, privacy concerns, damaged parcels, matching algorithm constraints, 

liability, additional insurance costs, unexpected delays and transport of contraband (Schreieck et 

al. 2016; Marx, 2016; Heller, 2017). In addition, the success of crowdsourcing delivery system 

depends on achieving and maintaining critical mass of the customers and drivers due to the reliance 

on occasional drivers (Rouges and Montreuil, 2014; Archetti et al., 2016). The challenge lies in 

identifying the behavior and motivation of crowdshipping participants, both senders and drivers, 

as well as the correct pricing and compensation mechanism (Ermagun and Stathopoulos, 2018). 
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Another area of concern is the rebound effect of increased vehicle miles for monetary 

compensation, thus negatively impacting the targeted environmental benefits (Paloheimo et al., 

2014). Crowdsourcing is a very disruptive service and is likely to be impacted by regulations in 

the future, as has been the case in the ride-sharing and housing rental sector.  

 

The existing logistics providers may see crowdsourcing both as a threat in terms of competition 

for the market share and an opportunity in terms of opening up new possibilities. Insights should 

be drawn from the performance of and challenges faced by ridesharing and housing rental sectors. 

This study adds to the literature of crowdshipping and illustrates the operational performance of a 

real-world crowdshipping company. This would be of use to academic researchers to improve their 

model assumptions regarding user behavior, delivery distances, parcel sizes etc.  For industry and 

startups, by providing the first-hand observations of crowdsourcing delivery operations, the 

findings of this study will help understand the demand for and the growth areas of crowdsourcing 

delivery service. 
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Chapter 4 A Last-mile Delivery Paradigm using Microhubs 

with Crowdshipping 

 

4.1 Introduction 

Although microhubs have been implemented in several European cities, its combination with 

crowdshipping to provide the door-to-door service has not been field tested. By providing this last-

leg service, it gives even greater convenience to customers and may further attract more customers 

to use this service. It also consolidates the parcel pickup and drop-off trips and thus reduces the 

VMT otherwise incurred by customers individually. Moreover, the performance of microhubs 

coupled with crowdshipping has not been analytically assessed in the literature.  

 

In light of the potential benefits of microhubs and crowdshipping as discussed earlier, we propose 

this new urban delivery paradigm where the last-mile demand fulfilment is done through a network 

of microhubs coupled with crowdshipping (or M+C for short hereafter). In this paradigm, an urban 

service area is divided into a number of service zones (e.g., by zipcode). Within each zone, there 

is a designated microhub to temporarily store inbound and outbound parcels1. These parcels are 

either collected or distributed by crowdshippers between customers (shippers and end receivers) 

and the zonal microhub. The crowdshippers may be automobile drivers or cyclists. Commercial 

trucks are dispatched periodically to visit only the microhubs in the service area to transfer parcels 

 
1 In this study, the parcels are assumed of a typical online shopping parcel size, e.g., the commonly seen Amazon 

parcels. They can be carried by a regular passenger vehicle.  
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to their respective destination microhubs. Thus, truck traffic and VMT on busy and often narrow 

city streets can be largely avoided. 

 

In this proof-of-concept paper, we first define the M+C paradigm and its operating characteristics, 

then formulate the paradigm mathematically and solve for its optimal vehicle and crowdshipper 

dispatching and routing strategies. To evaluate the cost and other operational aspects (e.g., VMT, 

fuel consumption, fleet size, floor area) of the M+C, we compare it with the traditional H+S 

paradigm (e.g., FedEx, UPS, USPS), in which all parcels must be collected and shipped to a sorting 

center (i.e., the central hub) to be sorted before being shipped out to their respective final receivers.  

The performance metrics used for comparison in this study are labor cost associated with travel 

time, number of trucks or crowdshippers dispatched, total vehicle miles traveled (VMT), total daily 

operating cost, and fuel consumption. They will be defined later in the chapter. 

 

In addition, this study investigates the effects of the following key factors on the performance of 

M+C:  

• Service area size: keeping the customer demand and other parameters constant, how does 

the network size affect the performance of M+C?  

• Number of customers: keeping the size of the service area and other parameters constant, 

how does the number of customers affect the M+C operation? This and the service area 

size investigation are equivalent to looking into the effect of customer density (the 

economy of scale) on the M+C operation. 
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• Crowdshipper compensation: how does the crowdshipper compensation affect the 

performance of M+C? Is there a tipping point at which M+C becomes either more or less 

costly to operate? 

• Penalty rate: crowdshippers may receive monetary penalty if they pick up or deliver 

parcels outside the preferred windows by the customers. How is the on-time performance 

of M+C? How does the penalty rate affect its overall operating cost? 

 

The chapter is organized as follows. After the introduction, Section 4.2 presents the conceptual 

design of microhubs with crowdshipping delivery paradigm. Detailed model formulation for both 

the M+C and the H+S operation are presented in sections 4.3 and 4.4. Section 4.5 describes the 

hypothetical numerical example to compare the performance of the proposed M+C delivery 

paradigm with the H+S delivery paradigm. Section 4.6 discusses a series of sensitivity analyses 

for the performance of the proposed delivery paradigm with respect to the key factors described 

above. Lastly, research conclusion is drawn in Section 4.7 with future research work. 

 

4.2 Conceptual Design of Microhubs with Crowdshipping (M+C) 

In this study setting, the service area covered by a logistics carrier is divided into so-called the 

‘service zones’ and each zone has a designated microhub that handles the parcels in and out of the 

zone. Figure 4-1 is an example of the service area, service zones, and microhubs. In this example, 

the entire service area (the square) is divided into nine service zones. Each zone has a microhub 

located at the zonal centroid.  

 

Specifically, the M+C consists of the following elements. 
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Service area: service area is a predefined region of service by a carrier of interest. In this study, 

we focus on an urban area of service. 

 

Service zone: a service area is divided into a number of smaller geographic service zones according 

to a predefined criteria. For example, these zones may be defined by zipcode. A service zone is 

the smallest geographic area served by a designated microhub. 

 

Microhub: a microhub is a designated zonal transshipment center equipped with APS, where 

parcels going to and coming from other zones are sorted and stored in lock boxes labeled by the 

destination zipcode after the first mile or before the last mile of delivery. There are two basic 

functions of a microhub: sorting and storing.  

 

• Sorting at the microhub is completed by depositing the parcels into respective lock boxes 

labeled by the destination zipcode. This sorting task can be readily automated with barcode 

(or RFID code) on the parcel and a barcode or RFID reader. This is carried out by the 

crowdshippers every time when they collect and bring the parcels to the microhub. In other 

words, sorting in the M+C paradigm is also crowdsourced to the individual crowdshippers 

at individual microhubs. This is in contrast to H+S, where sorting takes place centrally at 

the hub (also called sorting center or transshipment center). This crowdsourced sorting 

model in the M+C enables shorter parallel processing (sorting) time, and hence faster 

throughput and reduced delay.  
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• After the parcels are sorted at the microhub, they are temporally stored at the microhub till 

they are picked up and transshipped to their respective destination microhubs (zipcodes) 

by truck.  

 

Figure 4-1 illustrates the relationships between service area, service zones, and microhubs. In this 

example, the entire service area is divided into nine service zones; each zone has a microhub to 

serve the customers in the zone. Parcels are collected and stored at microhubs, and transshipped 

(indicated by the blue arrows) among them.  

 

Figure 4-1. Microhubs, service zones, and truck routing in M+C 

 

Request: all parcel pickup and delivery requests are classified into two categories according to the 

zonal relationship between the pickup and the delivery location: intra-zonal and inter-zonal 

requests.  
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• An intra-zonal request refers to one in which both the pickup and delivery addresses are 

within the same service zone (e.g., (P1,D1), (P2,D2), and (P3,D3) in Figure 4-2). For this 

type of request, transshipment may not take place. That is, an intra-zonal parcel may be 

picked up and delivered en-route by a single crowdshipper without going through the zonal 

microhub, e.g., (P1,D1) and (P2,D2) in Figure 4-2. On the other hand, if the destination 

address is not on the current crowdshipper’s best route, then the parcel would be deposited 

in the microhub and delivered by another crowdshipper, e.g., (P3,D3) in Figure 4-2.  

• An inter-zonal request refers to one in which the pickup and delivery addresses are not in 

the same service zone. For this type of request, transshipment service is necessary; in other 

words, an inter-zonal parcel is picked up by a crowdshipper at its shipper’s and deposited 

in its microhub of origin, and then transferred by truck to its microhub of destination, and 

finally delivered by another crowdshipper to its final receiver. 

 

Courier.  In M+C, there are two types of couriers, namely trucks and crowdshippers.  

• Delivery trucks belong to a carrier’s fleet and carry out routine visits to microhubs only to 

pick up and deliver parcels among the microhubs. In other words, delivery trucks in the 

M+C paradigm do not navigate the busy and often narrow city streets to visit end customers 

(both shippers and receivers who can be either residents or business entities); the only 

places the trucks visit are the microhubs in the service area. As such, congestion due to 

truck traffic or truck parking on urban streets could be largely avoided. Figure 4-2 

graphically illustrates the truck routing among microhubs. As we describe later in Section 

3, this is a Many-to-Many Split Pickup and Delivery Problem (M-MSPSDP).  
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• In M+C, the first and last mile deliveries within a service zone are performed by 

crowdshippers. Crowdshipper routing is a vehicle routing problem (VRP). That is, a 

crowdshipper is assumed to start and end a route at the microhub, and visit multiple 

customers to pick up and/or drop off parcels. Figure 3 illustrates crowdshipper routing in a 

service zone. It could be a pure pickup (or delivery) routing problem (e.g., the routing of 

P3 and P4), a pairwise pickup-delivery routing problem (e.g., the routing of P1 and D1), 

or a mixed pickup and delivery routing problem (e.g., the routing of D5, P2, and D2), all 

of which have been extensively studied in the literature. It is assumed that a crowdshipper 

visits only customers within the same service zone on a service route. In other words, any 

crowdshipping route does not cross zonal boundaries. 

 

Figure 4-2 illustrates the kinds of crowdshipper routing in a service zone. It could be a pure pickup 

(or delivery) routing problem (e.g., the routing of P3 and P4), or a pairwise pickup-delivery routing 

problem (e.g., the routing of P1 and D1), or a mixed pickup and delivery routing problem (e.g., 

the routing of D5, P2, and D2), all of which have been extensively studied in the literature. It is 

assumed that a crowdshipper visits only customers within a service zone on a route. However, 

there is no restriction for a crowdshipper to move to another service zone after completion of 

his/her previous routing to look for more work.  

 

A crowdshipper can be an automobile driver, a bicyclist, or even a pedestrian. A crowdshipper’s 

travel speed, payload capacity, service range, and compensation rate vary by the mode of 

transportation. 
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Figure 4-2. Crowdshipper routing in M+C 

 

Based on the above description, we formulate the M+C paradigm as two separate and connected 

routing problems. One concerns the crowdshipper routing within a service zone; and the other 

concerns the truck routing among microhubs. The complete model formulations are provided next 

in Section 4.3. 

 

4.3 Model Formulation and Solution Method 

The formulation presented in this study is a static problem in which all shipment requests within a 

service area and the crowdshippers are known in advance. Each shipment request consists of the 

quantity, the pickup and delivery addresses, and the customer-preferred pickup time window 

within one-hour limit. We assume that the microhubs have sufficient capacity to temporarily store 

all the inbound and outbound parcels. 
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Observe that the crowdshipper routing within a service zone is independent of any other service 

zones. Therefore, crowdshipper routing is formulated and solved at the zonal level independently. 

Between crowdshippers and trucks, we further assume the following about their daily operations 

in this study for simplicity:  

• Trucks visit the microhubs only after all crowdshippers have completed their first mile 

pickup tasks. In other words, all the parcels that must route through the microhubs in the 

service area have been collected and deposited at their respective origin microhubs.  

• Crowdshippers carry out their last mile delivery tasks after the trucks have completed all 

transshipments among the microhubs. That is, all parcels have been transferred from 

their origin microhubs to their destination microhubs.  

 

Thus, truck routing and crowdshipper routing can be formulated and solved separately. Their 

formulations are presented in Sections 4.3.1 and 4.3.2.  

 

First, we define the general model notations as follows: 

𝐇 set of microhubs or zones (one designated microhub per zone), 𝐇 =  {1,2, … 𝑖, … 𝑗 … . , 𝑟} 

𝐇𝐎 set of all microhubs and truck depot {O}, 𝐇𝐎 = 𝐇 ∪ {O} 

𝐍𝐡 set of all customers in zone ℎ (∈ 𝐇) including intra-zonal pairs (i.e., both pickup and 

delivery customers are in zone h) and inter-zonal customers (shippers or receivers), 𝐍𝐡 =

{1,2, … 𝑖, … 𝑗 … . , 𝑛ℎ} 

𝐍𝐡𝟎 set of all nodes associated with zone ℎ (∈ 𝐇) including the customers, the zonal 

microhub, and the truck depot, 𝐍𝐡𝟎 = 𝐍𝐡 ∪ {ℎ} ∪ {O} 
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𝐍 set of all nodes in the network including all customers, all microhubs, and the truck 

depot, 𝐍 =∪ 𝐍𝐡 ∪ 𝐇𝐎 

𝐀𝐡  set of all possible links in zone ℎ (∈ 𝐇), 𝐀𝐡 = {(𝑖, 𝑗),⩝ 𝑖, 𝑗 ∊ 𝐍𝐡𝟎, 𝑖 ≠ 𝑗} 

𝐀𝐇  set of all possible links connecting all microhubs, 𝐀𝐇 = {(𝑖, 𝑗),⩝ 𝑖, 𝑗 ∊ 𝐇𝐎, 𝑖 ≠ 𝑗} 

𝐀  set of all possible links in the network, i.e., 𝐀 =∪ 𝐀𝐡 ∪ 𝐀𝐇, ∀ℎ ∈ 𝐇 

𝐅 set of available trucks, 𝐅 = {1,2, … , M}, where M is the maximum number of trucks 

𝑆ℎ
A maximum number of automobile crowdshippers in zone ℎ (∈ 𝐇)  

𝑆ℎ
B maximum number of bicycle crowdshippers in zone ℎ (∈ 𝐇)  

𝑑𝑖𝑗 length of link (𝑖, 𝑗)(∈ 𝐀) 

𝑡𝑖𝑗 travel time on link (𝑖, 𝑗)(∈ 𝐀); 𝑡𝑖𝑗 = 𝑑𝑖𝑗/𝑉𝑇 for both truck and automobile at a constant 

speed of 𝑉𝑇 – assuming truck and automobile travel at the same speed, and 𝑡𝑖𝑗 = 𝑑𝑖𝑗/𝑉𝐵 

for bicycle at constant speed of 𝑉𝐵. 

𝑡𝑐   pickup or drop-off handling time at a customer location (assumed fixed) 

𝑡ℎ   pickup or drop-off handling time at a microhub (assumed fixed) 

𝑞𝑖 parcel weight at node 𝑖 (∈ 𝐍𝐡𝟎); 𝑞𝑖 > 0 for pickup demand and 𝑞𝑖 < 0 for delivery 

demand; 𝑞0 = 0 at the depot (i.e., 𝑖 = 0) 

𝑞𝑖𝑗 pairwise demand from origin microhub 𝑖 to destination microhub 𝑗 

𝐾𝑇 truck capacity 

𝐾𝐴 automobile crowdshipper capacity 

𝐾𝐵 bicycle crowdshipper capacity 

𝐶𝑇 truck operating cost per hour 

𝐶𝐴 hourly compensation rate to automobile crowdshippers 

𝐶𝐵  hourly compensation rate to bicycle crowdshippers 
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𝐸𝑖, 𝐿𝑖 desired earliest and latest pickup time, respectively, for customer 𝑖 (∈ 𝐍𝐡) 

P constant hourly penalty rate 

 

Decision variables 

𝑡𝑖
𝑣 arrival time at microhub 𝑖 (∈ 𝐇) by truck 𝑣 (∈ 𝐅) 

𝑙𝑖𝑗
𝑣  load of truck 𝑣 (∈ 𝐅) when traversing on link (𝑖, 𝑗) (∈ 𝐀𝐇)  

𝑥𝑖𝑗
𝑣  binary variable, 𝑥𝑖𝑗

𝑣 = 1 if truck 𝑣 (∈ 𝐅) traverses on link (𝑖, 𝑗) (∈ 𝐀𝐇), and 𝑥𝑖𝑗
𝑣 = 0 

otherwise 

𝑝𝑖𝑗
𝑣  binary variable, 𝑝𝑖𝑗

𝑣 = 1 if transshipment from microhub 𝑖 to microhub 𝑗 is done by truck 

𝑣, and 𝑝𝑖𝑗
𝑣 = 0 otherwise. 

𝑡𝑖   arrival time at node 𝑖 (∈ 𝐍𝐡𝟎) by a crowdshipper 

𝑙𝑖𝑗 crowdshipper load on link (𝑖, 𝑗) (∈ 𝐀𝐡)  

𝑦𝑖𝑗
A binary variable, 𝑦𝑖𝑗

A = 1 if an automobile crowdshipper traverses on link (𝑖, 𝑗) (∈ 𝐀𝐡), 

and 𝑦𝑖𝑗
A = 0 otherwise 

𝑦𝑖𝑗
B  binary variable, 𝑦𝑖𝑗

B = 1 if a bicycle crowdshipper traverses on link (𝑖, 𝑗) (∈ 𝐀𝐡), and 

𝑦𝑖𝑗
B = 0 otherwise 

𝜋(𝑡𝑖, 𝐸𝑖 , 𝐿𝑖), penalty for early/late service of customer 𝑖 (∈ 𝐍𝐡), which is a function of the 

crowdshipper arrival time 𝑡𝑖, and the preferred time window 𝐸𝑖 , and 𝐿𝑖, i.e., 

where, 

𝜋(𝑡𝑖, 𝐸𝑖, 𝐿𝑖) = {

P × (𝑡𝑖 − 𝐿𝑖),   for 𝑡𝑖 >  𝐿𝑖

P × (𝐸𝑖 − 𝑡𝑖  ), for 𝑡𝑖 <  𝐸𝑖

0,                for  𝐸𝑖 < 𝑡𝑖 <  𝐿𝑖
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4.3.1 Crowdshipper Routing 

Observe that crowdshipper routing of the first and the last mile is a mixed pickup and delivery 

VRP. We make the following assumptions/constraints to simplify the model formulation in this 

study: 

1. There are two types of crowdshippers, automobile drivers and bicyclists;  

2. There are sufficient numbers of automobile and bicycle crowdshippers; 

3. Crowdshippers of the same type are homogeneous and heterogeneous across types, in terms 

of travel speed, load capacity, service range and compensation rate;  

4. The crowdshipper assignment and routing are centrally determined by the carrier in 

advance to the crowdshippers’ routing activities; 

5. All crowdshippers within a service zone start and end their routes at the designated zonal 

microhub; 

6. A crowdshipper has an initial empty load departing the microhub at the start of the first 

mile routing; 

7. A crowdshipper has an empty load returning to the microhub at the end of the last mile 

routing; 

8. A crowdshipper must pay penalty for late pickup (i.e., outside the user specified time 

window); there is no penalty for delivery so long as the parcel is delivered by the end of 

the daily operation (i.e., same day delivery) in this study; 

9. A crowdshipper only serves one service zone at a time; after a route is completed, a 

crowdshipper may move to another service zone; 

10. There is an 8-hour work limit for crowdshippers. 
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As explained earlier, crowdshippers of a service zone operate exclusively and independently of 

any other zones. Hence, it suffices to present crowdshipping for a given zone ℎ (∈ 𝐇) within the 

service area as follows. 

 

The objective function minimizes the total payment made to the crowdshippers in zone h and the 

late pickup penalty cost: 

 

𝑀𝑖𝑛𝑍ℎ = ∑ (𝐶𝐴𝑦𝑖𝑗
A + 𝐶𝐵𝑦𝑖𝑗

B)(𝑡𝑖𝑗 + 𝑡𝑐)
(∀𝑖,𝑗 𝜖 𝐍𝐡𝟎)

+ ∑ 𝜋(𝑡𝑖, 𝐸𝑖 , 𝐿𝑖)
(∀𝑖 𝜖 𝐍𝐡𝟎)

 
(4.1) 

s.t., 

(i) Crowdshipper route constraints: 

∑ 𝑦𝑖𝑗
A

(∀𝑖 𝜖 𝐍𝐡,𝑖≠𝑗)

≤ 1        ∀𝑗 ∊ 𝐍𝐡 (4.2) 

∑ 𝑦𝑖𝑗
B

(∀𝑖 𝜖 𝐍𝐡,𝑖≠𝑗)

≤ 1        ∀𝑗 ∊ 𝐍𝐡 (4.3) 

∑ (𝑦𝑖𝑗
A + 𝑦𝑖𝑗

B)
(∀(𝑖,𝑗)𝜖 𝐀𝐡)

≤ 1 (4.4) 

∑ 𝑦0𝑗
A ≤ Sℎ

A 

(∀𝑗 𝜖 𝐍𝐡) 

 (4.5) 

∑ 𝑦0𝑗
B ≤ Sℎ

B 

(∀𝑗 𝜖 𝐍𝐡) 

 (4.6) 

∑ 𝑦𝑖𝑗
A

(∀𝑖𝜖 𝐍𝐡𝟎)

= ∑ 𝑦𝑗𝑖
A

(∀𝑖𝜖 𝐍𝐡𝟎)

        ∀𝑗 ∊ 𝐍𝐡𝟎 (4.7) 

∑ 𝑦𝑖𝑗
B

(∀𝑖𝜖 𝐍𝐡𝟎 )

= ∑ 𝑦𝑗𝑖
B

(∀𝑖𝜖 𝐍𝐡𝟎)

             ∀𝑗 ∊ 𝐍𝐡𝟎 (4.8) 
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(ii) Crowdshipper schedule constraints: 

𝑡𝑗 = (𝑡𝑖 + 𝑡𝑐 + 𝑡𝑖𝑗)(𝑦𝑖𝑗
A + 𝑦𝑖𝑗

B) ≤ 8       ∀𝑖, 𝑗 ∈ 𝐍𝐡𝟎 (4.9) 

𝑡𝑖 < 𝑡𝑗       if 𝑖 and 𝑗 are a pickup-delivery pair in zone ℎ, 𝑖, 𝑗 ∈ 𝐍𝐡 (4.10) 

 

(iii) Crowdshipper load and capacity constraints:  

∑ 𝑙ℎ𝑗(𝑦ℎ𝑗
A + 𝑦ℎ𝑗

B )
(𝑗 ∊ 𝐍𝐡)

= 0      for first mile routing 
(4.11a) 

or,  

∑ 𝑙𝑗ℎ(𝑦𝑗ℎ
A + 𝑦𝑗ℎ

B )
(𝑗 ∊ 𝐍𝐡)

= 0      for last mile routing 
(4.11b) 

𝑙𝑖𝑗 = ( ∑ 𝑙𝑠𝑖𝑥𝑠𝑖

∀𝑠∈𝐍𝐡𝟎,𝑠≠𝑖

+ 𝑞𝑖) 𝑦𝑖𝑗
A ≤  𝐾𝐴         ∀𝑖, 𝑗 ∈ 𝐍𝐡𝟎 

(4.12) 

𝑙𝑖𝑗 = ( ∑ 𝑙𝑠𝑖𝑥𝑠𝑖

∀𝑠∈𝐍𝐡𝟎,𝑠≠𝑖

+ 𝑞𝑖) 𝑦𝑖𝑗
B ≤  𝐾𝐵         ∀𝑖, 𝑗 ∈ 𝐍𝐡𝟎 

(4.13) 

(𝑙𝑖𝑗 +  𝑞𝑗 −  𝑙𝑗𝑘 )(𝑦𝑗𝑘
A + 𝑦𝑗𝑘

B ) ≥ 0       ∀𝑖, 𝑗, 𝑘 ∈ 𝐍𝐡𝟎 (4.14) 

 

(iv) Non negativity and binary constraints of decision variables: 

𝑦𝑖𝑗
A , 𝑦𝑖𝑗

B  ∊ {0,1}         ∀𝑖, 𝑗 ∊ 𝐍𝐡𝟎 (4.15) 

𝑙𝑖𝑗, 𝑡𝑖 ≥ 0                   ∀𝑖, 𝑗 ∊ 𝐍𝐡𝟎 (4.16) 

 

Eqs (4.2) through (4.8) ensures that (i) each customer is visited once and only once by any 

crowdshipper regardless of its type (A or B); (ii) the number of crowdshippers on duty does not 

exceed the maximum available number of crowdshippers for both types; and (iii) the inflow and 
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outflow at any node are balanced. Eq.(4.9) restricts crowdshipper’s working hours to 8 hours in a 

day. Eq.(4.10) ensures that the pickup of a parcel occurs prior to its delivery (for intra-zonal 

demand). Eqs (4.11a) and (4.11b) satisfy the empty load assumption at the start of the first mile 

and at the end of the last mile. Eqs (4.12) and (4.13) ensure a crowdshipper’s load does not exceed 

its capacity. Eq.(4.14) ensures the load conservation.  

 

4.3.2 Truck Routing 

As described in Section 4.2, in the M+C paradigm, a truck 𝑣 

- always starts and ends at the truck depot {0}; 

- has empty load leaving and returning to the depot; in other words, at end of the route truck 

𝑣 must deliver all parcels it collects on the route to their designated destination microhubs; 

- at each microhub h, first unloads all the parcels bounded for h (if not zero), and then loads 

the outgoing parcels from h, if not zero, as permitted by its remaining capacity. 

 

As such, this truck routing differs from the classical VRP in three key aspects: 

(1) Many-to-many pickup and delivery: each microhub can be an origin to many destination 

microhubs and at the same time a destination to many origin microhubs; 

(2) Split pickup: at each microhub 𝑖, the total pickup demand (∑ 𝑞𝑖𝑗∀𝑗∈𝐇 ) may exceed the 

available capacity of a single truck and therefore not all parcels will be picked up by one 

truck visit; and 

(3) At least one visit to a microhub by any truck: a microhub may be visited by more than one 

truck. This is due to the split pickup operation described in (2). 

 



Page 79 of 240 

 

This truck routing defines a Many-to-Many Split Pickup-and-Delivery Problem (M-MSPDP). In 

the classical Vehicle Routing Problem (VRP) where a set of known customers with fixed demand 

are served by a fleet of capacitated vehicles, the objective is to minimize the total route cost such 

that each customer is visited by only one vehicle. This implies that (1) no splitting of loads is 

allowed; and (2) it is a one-to-one shipment problem (either depot-to-customer for a delivery 

problem, or customer-to-depot for a pickup problem, or customer-to-customer for a pairwise 

pickup-delivery problem). Though, in the real world, truck operators allow the excess capacity in 

the truck to be filled using partial loads in order to use the truck capacity more efficiently. This 

may require multiple trips by trucks to service the same load by allowing the load to be split such 

that a dedicated trip to deliver the load may be avoided.  

 

In the Split Delivery Vehicle Routing Problem (SDVRP), the restriction that each stop, which can 

be a customer, a warehouse, a distribution center, etc., needs to be visited only once is dropped. 

That is, split deliveries are permitted to better utilize the capacity of the delivery fleet. Because the 

demand (total load) at a stop may at times be greater than the delivery vehicle’s available capacity, 

splitting the demand among the vehicles may be a better strategy in terms of minimizing the total 

travel cost of the delivery fleet. As such, the stop may be visited by multiple vehicles if found to 

be beneficial. Several (one-to-many) studies have found that the SDVRP reduces the routing cost 

compared to the case where only a single visit to each customer is imposed in the traditional VRP 

(Frizzell and Giffin, 1995; Archetti and Speranza, 2008).  

 

M-M VRP Problems have been studied in the literature, such as the Swapping Problem (Anily and 

Hassin, 1992). However, in a typical M-M setting, demand does not split at any customer point. 
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On the other hand, Split Delivery Vehicle Routing Problem (SDVRP) has also been studied (see a 

literature survey on the subject by Archetti and Speranza (2008)). Though branch-and-cut exact 

algorithms are able to solve small to medium size SDVRPs, meta-heuristic algorithms (simulated 

annealing, tabu-search, adaptive neighborhood etc.) are more popular in obtaining optimal solution 

for large problem sizes (Archetti and Speranza, 2012).   

 

In this investigation, we simplify the truck routing by requiring that a truck visit all microhubs 

(total of r) at least once on its route unless there is no pickup nor delivery demand at a microhub. 

In other words, each truck will visit all microhubs in the service area and complete all 

transshipments among them in the same route.  

 

In addition to the truck operation activities described above, we assume in this study that the 

pairwise demand 𝑞𝑖𝑗 is known and fixed, and that 𝑞𝑖𝑗 cannot be split when shipped between 

microhubs i and j. In other words, each pairwise demand 𝑞𝑖𝑗 is the smallest quantity in 

transshipment and cannot be split any further– it must be either picked up as a whole by a truck or 

left entirely to another truck. In other words, while the total pickup demand at a microhub i 

(∑ 𝑞𝑖𝑗∀𝑗 ) can be split, each pairwise demand 𝑞𝑖𝑗 that makes up the total pickup demand cannot be 

split – it must be either picked up as a whole by a truck or left entirely to another truck. On the 

other hand, the total pickup demand at a microhub i (∑ 𝑞𝑖𝑗∀𝑗 ) can be split – a partial sum of the 

total pickup demand may be picked up by a truck at a time. To facilitate the demand split, a new 

binary decision variable 𝑝𝑖𝑗
𝑣  is introduced in the model. 𝑝𝑖𝑗

𝑣  takes the value of 1 if demand 𝑞𝑖𝑗 is 

picked up by truck v at microhub i; and zero otherwise. 
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We further assume a fixed loading and unloading time at a microhub (𝑡ℎ), and that the trucks have 

the same operating parameters (capacity, hourly rate, work hour limit, etc.). 

 

The objective function for the truck routing among the microhubs minimizes the total truck 

driver’s cost:  

𝑀𝑖𝑛𝑍𝐻 = ∑ ∑ 𝐶𝑇(𝑡𝑖𝑗 + 𝑡ℎ)𝑥𝑖𝑗
𝑣

∀𝑣∈𝐅∀(𝑖,𝑗) 𝜖 𝐀𝐇

 (4.17) 

s.t.,  

(i) Truck routes constraints: 

∑ ∑ 𝑥𝑖𝑗
𝑣

∀𝑣∈𝐅(∀𝑖 𝜖𝐇)

≥ 1                ∀𝑗 ∊ 𝐇 (4.18) 

∑ 𝑥𝑖𝑗
𝑣

∀𝑗∈𝐇𝐎

≥ 1                         ∀𝑖 ∈ 𝐇𝐎, 𝑣 ∈ 𝐅 (4.19) 

∑ 𝑥0𝑗
𝑣  ≤ M

(∀𝑗 𝜖 𝐇) 

                   ∀𝑣 ∈ 𝐅 (4.20) 

∑ 𝑥𝑖𝑗
𝑣  ≤ 2𝑟 − 2 

(∀𝑖,𝑗 𝜖 𝐇) 

        ∀𝑣 ∈ 𝐅 (4.21) 

∑ 𝑥𝑖𝑗
𝑣

(∀𝑖𝜖 𝐇𝐎 )

= ∑ 𝑥𝑗𝑖
𝑣

(∀𝑖𝜖 𝐇𝐎)

     ∀𝑗 ∊ 𝐇𝐎, ∀𝑣 ∈ 𝐅  (4.22) 

 

(ii) Truck schedule constraints: 

𝑡𝑗
𝑣 = (𝑡𝑖

𝑣 + 𝑡ℎ + 𝑡𝑖𝑗)𝑥𝑖𝑗
𝑣 ≤ 8       ∀𝑖, 𝑗 ∈ 𝐇𝐎, ∀𝑣 ∈ 𝐅 (4.23) 

 

(iii) Truck load and capacity constraints: 
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∑ 𝑙0𝑗
𝑣

(𝑗 ∊ 𝐇)

𝑥0𝑗
𝑣  = 0       ∀𝑣 ∈ 𝐅 (4.24) 

∑ 𝑙𝑗0
𝑣

(𝑗 ∊ 𝐇)

𝑥𝑗0
𝑣  = 0       ∀𝑣 ∈ 𝐅  (4.25) 

∑ 𝑞𝑖𝑗𝑝𝑖𝑗
𝑣

∀𝑗∈𝐇

≤ ∑ 𝑞𝑖𝑗

∀𝑗∈𝐇

               ∀𝑖 ∈ 𝐇, ∀𝑣 ∈ 𝐅 (4.26) 

∑ 𝑝𝑖𝑗
𝑣

∀𝑣∈𝐅

= 1          ∀𝑖, 𝑗 ∈ 𝐇 (4.27) 

𝑙𝑖𝑗
𝑣 = ( ∑ 𝑙𝑠𝑖𝑥𝑠𝑖

𝑣

∀𝑠∈𝐇𝐎

+ ∑ 𝑞𝑖𝑘𝑝𝑖𝑘
𝑣

∀𝑘∈𝐇

− ∑ 𝑞𝑘𝑖𝑝𝑘𝑖
𝑣

∀𝑘∈𝐇

) 𝑥𝑖𝑗
𝑣 ≤  𝐾𝑇       ∀𝑖, 𝑗 ∈ 𝐇𝐎, ∀𝑣 ∈ 𝐅 (4.28) 

(𝑙𝑖𝑗
𝑣 +  ∑ 𝑞𝑗𝑘𝑝𝑗𝑘

𝑣

∀𝑘∈𝐇

− ∑ 𝑞𝑘𝑗𝑝𝑘𝑗
𝑣

∀𝑘∈𝐇

−  𝑙𝑗𝑘 ) 𝑥𝑗𝑘
𝑣 ≥ 0       ∀𝑖, 𝑗, 𝑘 ∈ 𝐇𝐎, ∀𝑣 ∈ 𝐅 (4.29) 

 

(iv) Non negativity and binary constraints of decision variables: 

𝑥𝑖𝑗
𝑣 , 𝑝𝑖𝑗

𝑣 ∊ {0,1}         ∀𝑖, 𝑗 ∊ 𝐇𝐎, ∀𝑣 ∈ 𝐅 (4.30) 

𝑙𝑖𝑗
𝑣 , 𝑡𝑖

𝑣 ≥ 0           ∀𝑖, 𝑗 ∊ 𝐇𝐎, ∀𝑣 ∈ 𝐅 (4.31) 

 

Only the differences from a classical VRP are highlighted here. Eq.(4.18) says that each microhub 

must be visited at least once; Eq.(4.19) ensures that each microhub be visited by the same truck at 

least once – in other words each truck must visit all the microhubs. Eq.(4.21) says that a truck 

needs to traverse at most 2(𝑟 − 1) number of links to visit all microhubs and complete its tasks, 

where 𝑟 is the number of microhubs. This is a direct derivation from the truck routing operation 

described above. Eq.(4.26) ensures that all the demand picked up by a truck at a microhub is no 

greater than the total pickup demand at the microhub. Lastly, Eq.(4.27) ensures that the pairwise 
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demand between any two microhubs is only fulfilled once. This is a direct derivation of the 

assumption that the pairwise demand 𝑞𝑖𝑗 cannot be split.  

 

4.3.3 Solution Method 

For the crowdshipper routing problem presented in Section 4.3.1, it is a classical mixed integer 

programming (MIP) problem and is solved exactly using the MOSEK solver in Matlab 

environment.  

 

For the truck routing problem presented in Section 4.3.2, it is a special case of the Many-to-Many 

(M-M) Split Pickup-and-Delivery Problem (M-MSPDP), because in this study we assume that 

each truck must visit all the microhubs at least once until it delivers all the pairwise transshipment 

demand that it carries. As a result, the minimum-cost routing among all microhubs can be easily 

determined. Generally speaking, Dror et al. (1994) finds that SDVRP is more difficult to solve for 

optimality than the traditional VRP, which is NP-hard (Lenstra and Kan, 1981). Some exact 

solution methods for the SDVRP have been suggested in the literature (Dror et al., 1994; Belenguer 

et al., 2000; Jin et al., 2007, 2008; Moreno et al., 2010; Archetti et al., 2012; Casazza, and Ceselli, 

2016).  
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4.4 Comparison Baseline: Hub-and-Spoke 

 

Figure 4-3. Hub and Spoke delivery paradigm considered in this study 

 

Figure 4-3 illustrates the H+S paradigm considered in this paper. In this paradigm, there are only 

one type of couriers, i.e., trucks belonging to a carrier’s fleet. The truck fleet serves the entire 

service area with peddling runs to minimize the total labor cost (truck driver cost) associated with 

travel time. In this study, we consider that the trucks start at the hub where the sorting center and 

truck depot are located and visit the customers to perform either the pickup or the delivery tasks. 

All parcels must be transshipped via the central hub between the shippers and receivers in the 

service area.  

 

Specifically, this study considers the following daily operation by the trucks in H+S:  

• All trucks start and end their routing at the central hub (which is also where the truck depot 

is located); 
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• Truck routing consists of inbound and outbound routing: 

o Inbound routing involves dispatching trucks at the start of the operation to collect 

parcels at the customers’ and bringing them to the central hub. For simplicity this study 

assumes that trucks are dispatched with an empty load and inbound routing involves 

only pickup activities.  

o Outbound routing involves dispatching trucks to deliver parcels to their final 

destinations after being sorted at the hub. Similar to the inbound routing, only delivery 

activities are involved during outbound routing. At the end of the routing, trucks return 

to the depot (hub) empty loaded.  

 

As such, the above defined inbound and outbound routing can each be formulated as a classical 

vehicle routing problem (VRP) with pickup or delivery. The objective function is to minimize the 

total daily operating cost. The inbound and outbound routing are solved separately with the same 

formulation used for both.  

 

The model notations are listed below, followed by the formulation. 

 

𝐍𝐜 customer set, 𝐍𝐜 = {1,2, … 𝑖, … 𝑗 … . , 𝑛} 

𝐍  set of all nodes including all customers and the hub {0}, i.e., 𝐍 =  𝐍𝐜 ∪ {0}  

𝐀  set of all possible links, i.e., 𝐀 =  {(𝑖, 𝑗),⩝ 𝑖, 𝑗 ∊ 𝐍, 𝑖 ≠ 𝑗} 

𝐅 set of at most M trucks in the fleet 

𝑡𝑖𝑗 truck travel time on link (𝑖, 𝑗) ∈ 𝐀; 𝑡𝑖𝑗= 𝐷𝑖𝑗/𝑉𝑇, where 𝐷𝑖𝑗 is the distance between nodes 

and 𝑉𝑇 is the truck velocity in miles per hour.  
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𝑡𝑐   Pick up or drop off handling time (fixed minutes per customer location) 

𝑞𝑖 parcel weight (demand) at customer 𝑖 (∈ 𝐍𝐜); 𝑞𝑖 > 0 for pickup demand and 𝑞𝑖 < 0 for 

delivery demand  

𝐾𝑇 truck capacity 

𝐶𝑇 truck operating cost per hour ($/hour) 

𝐸𝑖, 𝐿𝑖 desired earliest and latest pickup time, respectively, for customer 𝑖 (∈ 𝐍𝐜) 

P constant penalty rate ($/hour) 

 

Decision variables 

𝑡𝑖   arrival time at customer 𝑖 ∈ 𝐍𝐜; start time at the hub {0} is set at zero: 𝑡0 = 0 for all 

trucks 

𝑙𝑖𝑗 truck load on link (𝑖, 𝑗) 

𝑥𝑖𝑗 binary variable taking value 1 if link (𝑖, 𝑗) is traversed, and 0 otherwise 

𝜋(𝑡𝑖, 𝐸𝑖 , 𝐿𝑖) Penalty for early/late service of customer 𝑖 (∈ 𝐍𝐜), which is a function of the truck 

arrival time 𝑡𝑖, and preferred time window 𝐸𝑖 , and 𝐿𝑖. 

where, 

𝜋(𝑡𝑖, 𝐸𝑖 , 𝐿𝑖) = {

P × (𝑡𝑖 − 𝐿𝑖),   for 𝑡𝑖 >  𝐿𝑖

P × (𝐸𝑖 − 𝑡𝑖   ), for 𝑡𝑖 <  𝐸𝑖

0,                for  𝐸𝑖 < 𝑡𝑖 <  𝐿𝑖

 

The objective function aims to minimize the total inbound or outbound drivers’ cost and the 

penalty accrued: 

𝑀𝑖𝑛𝑍1 = ∑ 𝐶𝑇𝑡𝑖𝑗𝑥𝑖𝑗

(∀𝑖,𝑗 𝜖 𝐍)

+ ∑ 𝜋(𝑡𝑖, 𝐸𝑖 , 𝐿𝑖)
(∀𝑖 𝜖 𝐍)

 (4.32) 

s.t.,  
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(i) Truck routes constraints: 

∑ 𝑥𝑖𝑗

(∀𝑖 𝜖 𝐍𝐜)

≤ 1        ∀𝑗 ∊ 𝐍𝐜 (4.33) 

∑ 𝑥0𝑗  ≤ M 

(∀𝑗 𝜖 𝐍𝐜) 

 (4.34) 

∑ 𝑥𝑖𝑗

(∀𝑖𝜖 𝐍)

= ∑ 𝑥𝑗𝑖

(∀𝑖𝜖 𝐍)

     ∀𝑗 ∊ 𝐍  (4.35) 

 

(ii) Truck schedule constraints: 

𝑡𝑗 = (𝑡𝑖 + 𝑡𝑐 + 𝑡𝑖𝑗)𝑥𝑖𝑗 ≤ 8       ∀𝑖, 𝑗 ∈ 𝐍 (4.36) 

 

(iii) Truck load and capacity constraints: 

    ∑ 𝑙0𝑗

(∀𝑗 ∊ 𝐍𝐜)

𝑥0𝑗  = 0      for inbound routing 
(4.37a) 

or,  

   ∑ 𝑙𝑗0

(∀𝑗 ∊ 𝐍𝐜)

𝑥𝑗0  = 0      for outbound routing 
(4.37b) 

𝑙𝑖𝑗 = ( ∑ 𝑙𝑠𝑖𝑥𝑠𝑖

∀𝑠∈𝐍

+ 𝑞𝑖) 𝑥𝑖𝑗 ≤  𝐾𝑇         ∀𝑖, 𝑗 ∈ 𝐍 
(4.38) 

(𝑙𝑖𝑗 +  𝑞𝑗 −  𝑙𝑗𝑘 )𝑥𝑗𝑘 ≥ 0       ∀𝑖, 𝑗, 𝑘 ∈ 𝐍 (4.39) 

 

(iv) Non negativity and binary constraints of decision variables: 

𝑥𝑖𝑗  ∊ {0,1}         ∀𝑖, 𝑗 ∊ 𝐍 (4.40) 

𝑙𝑖𝑗, 𝑡𝑖 ≥ 0           ∀𝑖, 𝑗 ∊ 𝐍 (4.41) 
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Similar to the crowdshipper routing problem, we obtained the optimal solutions for H+S using 

the MOSEK solver in the Matlab environment. 

 

4.5 Numerical Experiments 

We evaluate the performance of the proposed M+C paradigm by comparing it with the H+C 

paradigm described in Section 4.4, through numerical examples. We first define the operational 

measures in Section 4.5.1, followed by the numerical example settings in Section 4.5.2. We also 

perform a series of sensitivity analyses to investigate the M+C operational characteristics. The 

setup of sensitivity analysis is described in Section 4.5.3.  

 

4.5.1 Operational measures 

The operational measures considered are  

• daily operating cost defined below,  

• vehicle miles traveled (VMT),  

• number of trucks and crowdshippers dispatched respectively, and  

• fuel consumption.  

Total vehicle miles traveled (VMT) pertains to trucks and crowdshippers in the study. Number of 

trucks dispatched reflects the level of capital investment in the fleet size. 

 

The total daily operating cost consists of three parts:  

(1) the daily total routing cost as determined in the routing models presented earlier,  
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(2) the lease and operation and maintenance costs of a hub (i.e., the central hub in H+S and the 

microhubs in M+C), and  

(3) the labor and administrative cost at a hub. In H+S, this includes labor costs associated with 

sorting and other administrative support. In M+C, sorting at the microhubs is handled in a 

decentralized fashion by crowdshippers; we also assume there is negligible 

administrative/staff cost at a microhub. In other words, this cost is zero in M+C. 

 

Specifically, the total daily operating cost for the M+C and H+S delivery paradigms, 

respectively, is given by: 

 

𝑍𝑀+𝐶 = {𝑍ℎ + 𝑍𝐻} + {𝑁𝑃𝐴𝑃(𝐶𝐿 + 𝐶𝑂𝑀)} + {(𝐶𝐴𝑁𝑝
𝐴 + 𝐶𝐵𝑁𝑝

𝐵)𝑡𝑠} (4.42) 

(1)                      (2)                                  (3) 

 

𝑍𝐻+𝑆 = {𝑍1} + {𝑁𝑃𝐴𝑃(𝐶𝐿 + 𝐶𝑂𝑀)} + {𝑁𝑃𝐴𝑃𝐶𝐻}  

(4.43) 

                 (1)                  (2)                          (3) 

 

where the additional notations are as follows, 

𝑁𝑃 Total number of parcels processed, 

𝑁𝑝
𝐴 Total number of parcels picked up by automobile crowdshipper (A), 

𝑁𝑝
𝐵 Total number of parcels picked up by bicyclist crowdshipper (B), 

𝐴𝑃 Hub area required for every parcel processed (sq.ft./parcel), 

𝐶𝐿 Per square foot hub leasing rate ($/sq.ft.), 

𝐶𝑂𝑀 Per square foot hub operation and maintenance ($/sq.ft.), 
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𝐶𝐻 Per square foot labor cost for activities associated with the central hub operation and 

maintenance such as sorting and administrative support in H+S ($/sq.ft.),  

𝑡𝑠   Sorting time in minutes per parcel. 

 

The floor area of a hub (in sq.ft.) is assumed to be proportional to the number of parcels processed 

at the hub. The floor area and the total number or parcels processed in a day is obtained from the 

literature (Janjevic and Ndiaye, 2017) to derive 𝐴𝑃. Multiplying this metric with the number of 

parcels to be processed provides the required floor area of the central hub in the H+S and the floor 

area of the microhubs in the M+C.  

 

The fixed costs associated with the hub – lease cost and operation and maintenance (O&M) costs, 

are derived in a similar way. The following metrics, (a) 𝐶𝐿 - per square foot hub leasing rate 

($/sq.ft.) and (b) 𝐶𝑂𝑀 - per square foot hub operation and maintenance ($/sq.ft.), are derived as 

averages from the leasing rates and the annual operating and maintenance rates for such 

facilities/distribution centers in the United States (Distribution group, 2018). The annual costs are 

divided by 365 to arrive at the daily cost.  

 

The third cost associated with parcel processing at the hub is the daily labor cost. For the H+S, 𝐶𝐻 

is again calculated by using the average of values available for such facilities/distribution centers 

in the United States (Distribution group, 2018). This metric, when multiplied with the facility size 

of the hub provides the absolute value of the labor cost associated with the hub. The annual costs 

are again divided by 365 to arrive at the daily cost. For the M+C, the daily labor cost associated 

with the microhubs is calculated based on the sorting effort needed at the microhubs. Assuming a 
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standard sorting time (𝒕𝒔) of 1 min per parcel (USPS, 2018), the value of time spent by the 

crowdshippers in sorting parcels at a microhub is calculated by multiplying the number of parcels 

processed in a day at the microhub by either crowdshipper (automobile or bicycle) and the 

respective crowdshipper compensation (𝐶𝐴/𝐶𝐵). 

 

Lastly, fuel consumption is determined in Eq. (4.44) adopted from Barth et al. (2005) and Barth 

and Boriboonsomsin (2009): 

 

𝐸 = ∑ [(𝑤 + 𝑙𝑖𝑗)(𝑎𝑖𝑗 + 𝑔𝑠𝑖𝑛𝜃𝑖𝑗 + 𝑔𝐶𝑟𝑐𝑜𝑠𝜃𝑖𝑗)𝑑𝑖𝑗 + 0.5𝐶𝑑𝐴𝜌𝑣𝑖𝑗
2 𝑑𝑖𝑗]

∀𝑖,𝑗∈𝐍

 
(4.44) 

where 𝑤 is the vehicle curb weight (tons); 𝑙𝑖𝑗 is the vehicle load (in tons) on link (i,j), 𝑎𝑖𝑗 is the 

link acceleration rate (m/s2); 𝑔 is the gravitational constant (m/s2); 𝐶𝑟 is the coefficient of rolling 

resistance; 𝜃𝑖𝑗 is the road slope of link (i,j); 𝑑𝑖𝑗 is the link length (miles); 𝐶𝑑 is the coefficient of 

rolling drag; 𝐴 is the frontal surface area of a vehicle (m2);   is the air density (kg/m3); and 𝑣𝑖𝑗 

is the vehicle speed on link (i,j) (mph).  Fuel consumptions of both trucks and crowdshipping 

automobiles are calculated with Eq.(4.44). 

 

4.5.2 Network Setting 

A default numerical example is generated for a study area of 15 miles by 15 miles, similar in size 

to the City of Chicago, which has an area of 234 square miles. A total of 900 sender-receiver pairs 

or 1,800 customer points are randomly and uniformly distributed in the study area. The parcels to 

be delivered in the study are assumed to be small in size and vary between 1 and 30 lbs. A single 

truck depot is located at the center of the study area. Euclidean distances are used.  
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In the H+S, the truck depot is also where the central hub is located. The truck fleet is assumed 

homogeneous in size and capacity. For simplicity, a constant travel speed is assumed for all links. 

This can be easily relaxed to incorporate time varying speeds (see Zhou et al., 2017).  

 

In the M+C, the study area is further divided into service zones; the default number of zones in the 

experiment is a 3 x 3 grid resulting in nine zones (Figure 4-4). A designated microhub exists at the 

centroid of each zone. The customer points in the study area are randomly distributed across the 

entire study area. For the customers located in a given zone, there are randomly generated paired 

intra-zonal customers, with pickup and corresponding drop-off points within the zone. For the 

remaining customer points in the zone, half of them are considered pickup points with the 

corresponding drop-off points outside the zone, and the other half as delivery points with their 

pickup points from the other zones. Constant travel speed is assumed among the trucks and the 

crowdshippers, respectively.  
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Figure 4-4. M+C numerical network 

 

Table 4-1 summarizes the parameter values assumed in the numerical examples. 

Table 4-1. Model parameter values 

Parameter Description Value Source 

𝑪𝑻 Hourly truck driver wage ($/hr) 16.73 (Bls.gov, 2018a) 

𝑪𝑨 Automobile crowdshipper hourly 

compensation ($/hr) 

13.54 (Bls.gov, 2018b) 

𝑪𝑩 Bicyclist crowdshipper hourly 

compensation ($/hr) 

10.74 (Bls.gov, 2018b) 

𝑲𝑻 Truck capacity (lbs) 3,200 (Isuzu, 2017) 

𝑲𝑨 Carrying capacity of automobile 

crowdshipper (lbs) 

50 (Uberrush, 2017) 

𝑲𝑩 Carrying capacity of bicyclist 

(lbs) 

30 (Uberrush, 2017) 

𝑽𝑻 Speed of the Truck and 

automobile (mph) 

20 (Lee et al., 2013) 

𝑽𝑩 Speed of the bicyclist 

crowdshipper (mph) 

10 (Jensen et al., 2010) 

P Penalty rate ($/hr) 3 (Postmates, 2016) 

𝒒𝒊 Parcel weight (lbs) at customers [1,30] (Uberrush, 2017) 

𝑨𝑷 Per parcel required hub area 

(sq.ft./parcel)  

2.74 (Janjevic, and Ndiaye, 

2017) 
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𝑪𝑳 Hub annual leasing rate ($/sq.ft.) 10.8 (Distribution group, 

2018) 

𝑪𝑯 Hub annual labor cost ($/sq.ft.) 15.94 (Distribution group, 

2018) 

𝑪𝑶𝑴 Hub annual operation and 

maintenance ($/sq.ft.) 

54.41 (Distribution group, 

2018) 

𝒕𝒄 Pick up or drop off handling time 

(minutes/customer 

2 (USPS, 2018) 

𝒕𝒔 Sorting time (minutes/parcel) 1 (USPS, 2018) 

𝒕𝒉 Truck handling time at each 

microhub (fixed minutes) 

10 Assumption 

𝑪𝒅 Coefficient of air drag 0.7 (truck) 

0.29 (car) 

(Akçelik and Besley, 

2003) 

(Toyota, 2017) 

𝑨 Frontal surface area (m2) 5 (truck) 

2.09 (car) 

(Akçelik and Besley, 

2003) 

(Toyota, 2017) 

𝒂 Acceleration (m/s2) 0 (Genta, 1997) 

𝜽𝒊𝒋 Road angle (degree) 0 (Genta, 1997) 

𝝆 Air density (kg/m3) 1.2041 (Genta, 1997) 

𝑪𝒓 Rolling resistance 0.01 (Genta, 1997) 

𝒈 Gravitational constant (m/s2) 9.81  

𝒘 Curb weight (lbs) 8,800 (truck) (Isuzu, 2017) 
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2,840 (car) (Toyota, 2017) 

 

4.5.3 Sensitivity Analysis 

The M+C is compared with the H+S for their operational differences in a series of sensitivity 

analyses of key operational factors of interest. They are: number of customers, service area size, 

crowdshipper compensation rate, and late pickup penalty rate. Table 4-2 summarizes the 

sensitivity analyses (scenarios) performed in this study. 

 

Table 4-2. Sensitivity Analysis (values in bold are defaults) 

Scenario ID Factor Values to be tested 

1 to 7 Number of customers 108, 180, 432, 1,800, 18,000, 180,000 and 

1,800,000 

8 to 13 Service area (square 

miles) 

15 mi × 15 mi, 18 mi × 18 mi, and 23 mi × 23 mi 

14 to 19 Crowdshipper 

compensation ($/hr) 

Automobile:  $12.54, $13.54, and $14.54; 

Bicycle: $9.74, $10.74, and $11.74 

20 to 22 Penalty rate ($/hr) $2.00, $3.00, and $4.00 

 

 

A service area of 15 mi × 15 mi is equivalent to the size of City of Chicago (234 sq. mi.). The 

service areas of 18 mi × 18 mi and 23 mi × 23 mi represent the cities of New York (area = 301.5 

sq. mi.) and Los Angeles (area = 468.7 sq. mi.) respectively.  
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For each scenario tested, 30 instances of randomly distributed customer locations with respective 

random demand and pick up time windows are generated and solved. These customer locations 

are randomly spread out across the entire service area. The pickup time window is limited to a 

one-hour interval, and randomly generated between 9:00AM and 03:00 PM. A $3/hr penalty fee 

applies after the time window expires. For example, suppose the pickup window at a customer 

location is between 10:00 and 11:00 AM. If the pickup takes place between 11:01 AM and 

12:00AM, a penalty charge of $3 is applicable. For the pickup between, 12:01 and 01:00 PM, the 

penalty charge would be an additional $3 and so on for every hour. 

 

4.6 Results and discussion 

 

4.6.1 Effect of Number of Customers 

In this analysis, the service area is set at 15 mi × 15 mi. The total number of customers in the 

service area varies from 108 to 1,800,000 according to Table 2.  

 

The results are shown in both Table 4-3 and Figure 4-5. The total VMT is sum of miles traveled 

by trucks, and automobile and bicycle crowdshippers. If normalized by the number of customers, 

we find that per customer fleet size (trucks and crowdshippers) and per customer VMT generally 

hold constant or even go down slightly. This indicates the economies of scale for the M+C. 
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Table 4-3. Effect of number of customers on the M+C fleet size and total VMT 

ID # 

customers 

# trucks 

dispatched 

# auto crowdshippers 

dispatched 

# bike crowdshippers 

dispatched 

Total VMT 

(std dev) 

1 108 2 8 -13 13 to 24 183 (7.8) 

2 180 2 15 to 20 27 to 36 230 (8.5) 

3 432 4 35 to 51 61 to 93 617 (35.5) 

4 1,800 16 155 to 166 312 to 345 2,479 (15.2) 

5 18,000 160 1,517 to 1,618 3101 to 3249 25,054 (301.0) 

6 180,000 1600 14,858 to 15,645 29,474 to 31,248 247,512 (2,444.2) 

7 1,800,000 16,000 158,376 to 162,727 329,689 to 347,868 2,489,852 (12,828.4) 

 

 

Figure 4-5 shows the normalized fuel consumption in gallons per mile (gal/mi) and daily operating 

cost in $ per mile ($/mi). Except when the number of customers is low (108 and 180), per mile 

fuel consumption and per mile daily operating cost are fairly consistent across all of the number 

of customers scenarios. This feature also works in favor of the M+C as a feasible alternative to the 

last mile delivery service.  
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Figure 4-5: Effect of number of customers on the M+C: (a) fuel consumption (gal/mi) and (b) 

daily operating cost ($/mi) 

 

Comparison with H+C 

 

As compared to the H+S, the M+C delivers 63-81% reduction in the number of trucks dispatched, 

43-60% reduction in total VMT (Figure 4-6), and 54-70% reduction in both total fuel consumption 

(gallons) and in gallons per dollar of daily operating cost (Figure 4-7), respectively, across all 

customer sizes considered.  
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Figure 4-6: Comparison of the effect of number of customers on VMT (in Log scale) 

 

 

Figure 4-7: Comparison of the effect of number of customers on fuel consumption per dollar of 

daily operating cost (gal/$) 
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As in Figure 4-8, the M+C paradigm initially witnesses an increase (21.08%) in total daily 

operating cost from the H+S when the number of customers is low (108 customer locations in the 

service area). As the number of customers increases, the M+C has a lower average daily operating 

cost than the H+S paradigm. The saving rises as the number of customers increases.  

 

Figure 4-8: Comparison of the effect of number of customers on daily operating cost (in Log 

scale) 

 

Figure 4-9 presents the average breakdowns of the total daily operating cost in the H+S and the 

M+C. For the H+S, the only courier cost is of the truck drivers, accounting for almost 88% of the 

daily operating cost (Figure 10(a)). For the M+C, the courier cost is about 91% of the daily 

operating cost, splitting among the truck drivers (12.76%) and the crowdshippers (25.24% for 

automobile crowdshippers and 53.32% for bicycle crowdshippers) (Figure 10(b)). 
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The lease and the O&M costs account for a small portion of the overall total daily operating cost 

for both the H+S (8.7%) and the M+C (6%). Therefore, the distributed nature of microhubs does 

not appear to impose cost burdens on the entire system.  

 

 

  

(a) H+S (b) M+C 

Figure 4-9: Distribution of total daily operating cost 

 

Overall the results reveal that the M+C gains increasing cost advantage over the traditional H+S 

as the number of customers increases. When the number of customers is low, the H+S is evidently 

more cost efficient.  

 

4.6.2 Effect of Service Area Size 

4.6.2.1 with a fixed number of microhubs in the service area 

 

In this analysis, operational measures are generated for three square service area sizes, 15 mi × 15 

mi, 18 mi × 18 mi, and 23 mi × 23 mi, with a fixed number of 1,800 customers distributed 
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randomly across the entire service area. A total of 9 microhubs are located in each of the service 

area sizes as shown in Figure 4-10. 

 

Table 4-4. Effect of the service area size on the M+C fleet size 

ID Service 

area (sq. 

mi.) 

# 

microhubs 

# trucks 

dispatched 

# auto 

crowdshippers 

dispatched 

# bike 

crowdshippers 

dispatched 

8 15 x 15 9 16 155 - 168 312 - 345 

9 18 x 18 9 16 239 - 268 401 - 456 

10 23 x 23 9 16 388 - 422 698 - 792 

 

As shown in Table 4-4, despite the increase in service area, the number of trucks dispatched does 

not increase; instead, the absolute number of crowdshippers, both automobile and bicycle, 

increases. However, if normalizing the number of crowdshippers by service area, the value remains 

fairly consistent:  

• Number of automobile crowdshippers per sq. mi.: 0.69 – 0.75, 0.74 – 0.83, and 0.73 – 0.80, 

respectively.  

• Number of bicycle crowdshippers per sq. mi.: 1.39 – 1.53, 1.24 – 1.41, and 1.32 – 1.50, 

respectively.  
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Figure 4-10: Effect of service area size on the M+C total VMT  

 

  

Figure 4-11:. Effect of service area size on the M+C: (a) fuel consumption (gal/mi) and (b) daily 

operating cost ($/mi) 

 

As expected, the total VMT increases significantly as the service area expands (Figure 4-10). On 

the other hand, on a per mile basis, both the fuel consumption (gal/mi) and the daily operating cost 

($/mi) for the M+C show significant reductions as the service area expands (Figure 4-11). Again, 

this is a desirable feature for the M+C.  
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Comparison to H+C 

 

Compared to the H+S, the M+C delivers a large reduction in the number of trucks dispatched 

(77%, 84% and 90%, respectively for the three service area sizes), average VMT (60%, 59% and 

61%, respectively), and total fuel consumption (70%, 73% and 78%, respectively). These translate 

into considerable reductions in the daily operating cost (4%, 8%, 13%, respectively). More 

importantly, the cost reduction increases as the service area grows.  

 

There is no penalty incurred in the M+C, however, penalty is incurred in the H+S for the service 

areas of 18 mi by 18 mi and 23 mi by 23 mi, increasingly as the service area expands. 

 

The average floor area of the central hub in the H+S is 2,466.7 sq.ft. with the associated daily labor 

cost of $107.72 at the hub. The average floor area of the 9 microhubs in the M+C is 1,316.6 sq.ft. 

with the associated daily labor cost of $684.58 at the microhubs.  

 

Figure 4-12 demonstrates that the M+C has the cost advantage over the H+C in terms of both per 

customer daily operating cost ($/cu) and per mile daily operating cost ($/mi) when the customer 

density is sufficiently large, i.e., the economies of scale. When the customer density is low, the 

traditional H+C is more cost efficient.  
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Figure 4-12. Comparison of the effect of customer density on daily operating cost: (a) 

$/customer and (b) $/mile 

 

Overall the findings confirm that the M+C delivery paradigm may be a feasible alternative to the 

traditional H+S delivery paradigm with the economies of scale.  
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4.6.2.2 with a constant zone area served by each microhub 

 

In Section 4.6.2.1, the number of microhubs is fixed despite the increase in service area. In this 

section, we vary the number of microhubs in keeping the zone area nearly constant, for the same 

three square service area sizes, 15 mi × 15 mi, 18 mi × 18 mi, and 23 mi × 23 mi. The total of 

customers is kept at 1,800 distributed randomly across the entire service area.  

 

Specifically, there are a total of 9 microhubs in the 15 mi × 15 mi service area. This gives an 

average of 25 sq. mi. in each zone. Keeping the zone area as close to constant as possible, we 

determine that it results in 12 zones for the 18 mi × 18 mi and 21 zones for the 23 mi × 23 mi, as 

defined in Figure 4-13.  

 
 

(a) (b) 

Figure 4-13. Location of M+C microhubs in service area of (a) 18 mi x 18 mi and (b) 23 mi x 23 

mi 
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The results presented in Table 4-5 are found to be very close to those presented in Table 4-4. Even 

the total floor area of the microhubs remains constant at 1,316.6 sq. ft. with $684.58 of the labor 

cost. Noticeably the numbers of automobile crowdshippers and bicycle crowdshippers decrease 

from Table 4-4 as a result of keeping the zone areas near constant, which effectively increases the 

customer density.  

 

Again, similar patterns are found in VMT, per mile fuel consumption, and per mile daily operating 

cost as shown in Figures 4-10 and 4-11 of Section 4.6.2.1.  

 

Table 4-5. Effect of service area size on the M+C fleet size 

ID Service area 

(sq. mi.) 

# 

microhubs 

# trucks 

dispatched 

# auto crowdshippers 

dispatched 

# bike crowdshippers 

dispatched 

11 15 x 15 9 16 155 - 168 312 - 345 

12 18 x 18 12 16 203 - 247 386 - 435 

13 23 x 23 21 16 379 - 411 671 - 756 
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4.6.3 Effect of Crowdshipper compensation 

In this investigation, the service area is kept at 15 mi by 15 mi with 1,800 customer locations in 

the service area. The automobile and the bicycle crowdshipper compensation rates vary separately 

accordingly to the values shown in Table 2. 

 

4.6.3.1 Effect of automobile crowdshipper compensation rate 

 

As seen in Table 4-6, when the automobile crowdshipper compensation rate goes up, the number 

of automobile crowdshippers is reduced by about 3.58% to 4.64%, as expected, while the number 

of bicycle crowdshippers goes up slightly by 1.86% to 1.37%. This implies that a portion of the 

delivery jobs are shifted from automobile to bicycle crowdshippers. The average VMT initially 

goes up when the automobile crowdshipper compensation rate goes up and then drops slightly as 

the compensation rate continues to go up, but the changes are statistically insignificant (Figure 4-

14). The total fuel consumption, on the other hand, decreases significantly as the automobile 

crowdshipper compensation increases resulting in the reduction of automobile crowdshippers 

dispatched (Figure 4-15a). However, that reduction in the number of automobile crowdshippers 

dispatched is not enough to offset the increases in the automobile crowdshipper compensation rate 

and the number of bicycle crowdshippers dispatched. As a result, the total daily operating cost 

goes up by 1.34 - 6.07% (Figure 4-15b). 
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Table 4-6. Effect of the automobile crowdshipper compensation on the M+C fleet size 

ID Auto 

crowdshipper 

compensation 

($/hr) 

# trucks 

dispatched 

# auto crowdshippers 

dispatched 

# bike 

crowdshippers 

dispatched 

14 12.54 16 161 - 174 307 - 338 

15 13.54 16 155 - 168 312 - 345 

16 14.54 16 147 - 161 317 - 349 

 

 

Figure 4-14. Effect of automobile crowdshipper compensation rate on the M+C total VMT 
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Figure 4-15. Effect of automobile crowdshipper compensation on the M+C: (a) fuel consumption 

(gallons) and (b) daily operating cost ($) 

 

 

4.6.3.2 Effect of bicycle crowdshipper compensation rate 

 

With an increase in the bicycle crowdshipper compensation rate, a slight decrease (2.52-2.74%) is 

observed in the number of bicycle crowdshippers dispatched and at the same time a slight increase 

(2.79-3.19%) in the number of automobile crowdshippers dispatched (Table 4-7). The VMT 

increases significantly when the compensation rate increases from $9.74 to $11.74 (Figure 4-16); 

there is little effect on fuel consumption (Figure 4-17a) or daily operating cost (Figure 4-17b). This 

may be due to the very slight changes in the overall fleet size dispatched.  
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Table 4-7. Effect of bicycle crowdshipper compensation rate on the M+C fleet size 

ID Bike crowdshipper 

compensation rate 

($/hr) 

# trucks 

dispatched 

# auto crowdshippers 

dispatched 

# bike crowdshippers 

dispatched 

17 9.74 16 151 - 162 319 - 355 

18 10.74 16 155 - 168 312 - 345 

19 11.74 16 159 - 173 302 - 337 

 

 

 

Figure 4-16. Effect of bicycle crowdshipper compensation rate on M+C total VMT 
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Figure 4-17. Effect of bicycle crowdshipper compensation rate on the M+C: (a) fuel 

consumption (gallons) and (b) daily operating cost ($) 

 

4.6.4 Effect of Late Pickup Penalty Rate 

For this analysis, the service area size is maintained at 15 mi × 15 mi with 1,800 customers. The 

late pickup penalty rate changes from $2/hr to $3/hr and $4/hr sequentially.  

 

For the M+C, no penalty incurs in any of the three penalty rate scenarios. This may be due to the 

flexibility of crowdshippers and the assumption that there are always sufficient crowdshippers 

available for delivery, which is not an impractical one as in the case of Uber drivers. Therefore, 

crowdshipping does provide the advantage of being flexible. 

 

In contrast, for the H+S, the average penalty ($/mi) increases by 50% and 100% respectively with 

the increases in the penalty rate (Table 4-8). This results in an increase in the respective daily 

operating cost ($/mi) for the H+S. 
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Table 4-8. Effect of late pickup penalty rate on the H+S 

ID Penalty rate 

($/hr) 

# trucks 

dispatched 

Fuel consumption 

(gal/mi) 

Penalty 

($/mi) 

Daily operating cost 

($/mi) 

20 2 82 to 92 0.059 0.0086 0.951 

21 3 82 to 92 0.059 0.0129 0.955 

22 4 82 to 92 0.059 0.0172 0.959 

 

4.6.5 Summary findings 

According to our study, as the customer demand increases with the fixed network size, all 

performance measures increase due to the additional customer locations that need to be served. 

The M+C delivery paradigm proves to incur more cost than the H+S paradigm for low customer 

demand. A minimum customer demand is therefore needed for the M+C to be more attractive than 

the H+S paradigm. Beyond this minimum customer demand, the percentage of savings in the 

average total daily operating cost achieved by using the M+C paradigm over the H+S paradigm 

increase with an increase in the customer demand. This suggests that the M+C delivery paradigm 

may be a feasible alternative to the conventional H+S delivery paradigm for customer demand 

beyond a certain minimum customer demand only and the savings in the total daily operating cost 

increase with an increase in customer demand. 

 

Our study shows that as the network size increases, with the number of customer locations per 

zone maintained constant, all the performance measures increase as well due to the additional 

distance needed to be travelled to serve the customer locations. A slight reduction is achieved in 

the number of crowdshippers, average total fuel consumption, average VMT and average total 

daily operating cost if the number of microhubs is increased in proportion to the network size. The 
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percentage of savings in the average total daily operating cost achieved by using the M+C 

paradigm over the H+S paradigm remains approximately constant, even with an increase in 

network size. In addition, larger network size with a low customer density still does not incur any 

penalty cost. This suggests that the M+C delivery paradigm may be a feasible alternative to the 

conventional H+S delivery paradigm irrespective of the network size and customer density. 

 

According to our study, an increase in the automobile and bicyclist compensation results in the 

decrease in the number of the respective crowdshippers and an increase in the number of the 

alternate crowdshippers. Simultaneously, it results in an increase in the average total daily 

operating cost making the M+C paradigm less attractive than H+S paradigm.  

 

Lastly, our study shows that increasing the penalty rate makes the M+C paradigm more attractive 

than the H+S paradigm.  

 

4.7 Conclusion 

This study first proposes and formulates a combined microhubs with crowdshipping (M+C) last 

mile delivery paradigm, and then evaluates its operational characteristics as a feasible alternative 

to the traditional hub-and-spoke paradigm. It is a special case of the Many-to-Many Split Pickup-

and-Delivery Problem (M-MSPDP), because in this study we assume that each truck must visit all 

the microhubs at least once until it delivers all the pairwise transshipment demand that it carries. 

That allows us to solve it exactly even though the general M-MSPDP is NP hard. The operational 

measures used for comparison include total vehicle miles traveled (VMT), number of trucks and 

crowdshippers dispatched, total daily operating cost and total fuel consumption. Sensitivity 
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analysis is conducted to investigate the effect of key operational factors such as the size of the 

service area, the number of customers, crowdshipper payment and penalty rate. The study 

considers time windows for the customer demand and cost of central hub and microhubs.  

 

The analysis results demonstrate that the M+C could be a feasible alternative to the traditional 

H+C in that  

(1) the M+C gains cost advantage over the H+C with the economies of scale;  

(2) using crowdshippers gives flexibility to the M+C in meeting the customer time window 

constraints over the H+C;  

(3) the M+C significantly reduces the number of trucks dispatched and the associated truck 

VMT, as well as total VMT, which is good for truck parking challenges and congestion in 

urban areas;  

(4) consequently, the M+C consumes less fuel than the H+S, which is good for the 

environment and sustainability in general; and  

(5) the M+C requires less floor area of the microhubs than that of the central hub in the H+C, 

which makes the M+C attractive in space limited urban areas.  

 

On the other hand, the M+C is more costly to operate when the number of customer (or customer 

density) is low than the H+S.  

 

The M+C delivery paradigm could be made more cost-competitive by suitably locating the 

microhubs in the urban areas based on the historical demand data. This initiative may find support 

in the urban areas by displaying the reduction in the truck VMT and associated congestion. In 
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addition, with the rise in demand for the same-day deliveries, crowdshipping is expected to become 

more competitive due to the economies of scale.  

 

The presented research could be extended in several directions. Crowdshippers are not restricted 

to one mode of transport and every mode of transport provides a different carrying capacity to the 

crowdshipper. Thus, it is important to study the impact of a heterogeneous fleet available to 

crowdshippers. This could include cleaner electric vehicles, as well as the walking mode. Another 

study area, includes the possibility of a relay between the crowdshippers, thus extending the 

service area for a respective zone. In addition, routing of crowdshippers could be performed with 

the objective of minimizing the emissions in the urban areas. A hybrid hub-and-spoke model 

combined with crowdshipping may also be studied in future for comparison. 
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Chapter 5 Many-to-Many Split Pickup-and-Delivery Problem 

 

5.1 Introduction 

In the classical Vehicle Routing Problem (VRP), (1) no splitting of customer loads is allowed; and 

(2) it is a one-to-one shipment problem (either depot-to-customer for a delivery problem, or 

customer-to-depot for a pickup problem, or customer-to-customer for a pairwise pickup-delivery 

problem). Though, in the real world, truck operators allow the remaining capacity in the truck to 

be filled with partial customer loads in order to use the truck capacity more efficiently. This may 

require multiple trips by a single truck or multiple trucks to service the demand at a given 

customer’s by allowing the demand to be split.  

 

Figure 5-1 illustrates the benefit of split load. In this example, there are three origin customers, A, 

B, and C. Each has a demand equivalent to 0.6 Truck Loaded (TL) Capacity. There is one common 

destination customer D. There is one single truck serving all customers. When split load is not 

allowed, it takes three direct shipments (A-D, B-D, and C-D) and seven trips (defined between two 

stops) for the truck to complete the deliveries. When split load is allowed, the truck goes to A to 

pick up the 0.6 TL, then goes to B to pick up an additional 0.4 TL before heading to D; after that, 

the truck returns to B to pick up the remaining 0.2 TL and heads to C to pick up the 0.6 TL. In the 

latter, the truck capacity is much better utilized. If the origin customers are relatively close to each 

other, compared to D, the latter strategy (with split load) also results in VMT savings. 
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Figure 5-1: Illustration of benefit of split loads 

 

To the best of our knowledge, a general case of Many-to-Many Split Pickup and Delivery Problem 

(M-MSPDP) has not been investigated in the literature. To this end, we define a general Many-to-

Many Split Pickup-and-Delivery Problem (M-MSPDP) in this paper. Because the problem is NP-

hard (Dror et al., 1994), we propose a heuristic called Maximum Split-Benefit with Tabu Search 

(MS-BTS) to efficiently solve for a large-scale M-MSPDP-FPD, which can be applied iteratively 

to solve for M-MSPD-OC. We then apply the MS-BTS to solve for two applications: parcel pickup 

and delivery among parcel stations (i.e., M-MSPDP-FPD) and bike rebalancing in a bike-sharing 

system (i.e., M-MSPD-OC). This study contributes to the vehicle routing literature by introducing 

a heuristic for solving the general case of M-MSPDP. 
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This chapter is organized as follows. Section 5.2 defines a general M-MSPDP. Section 5.3 presents 

the Maximum Split-Benefit with Tabu Search (MS-BTS) heuristic. Section 5.4 investigates the 

performance of MS-BTS via numerical experiments. Section 5.5 presents the results of two 

application case studies: bike rebalancing in a bike-sharing system and parcel pickup and delivery 

with microhubs. Finally, Section 5.6 presents the conclusions. 

 

5.2 Problem Definition  

A general Many-to-Many Split Pickup-and-Delivery Problem (M-MSPDP) consists of a single 

truck depot (0), a truck fleet (𝐕 =  {𝑣𝑙 , ∀𝑙 ∈ (1,2, … , 𝑚)}, where m is the upper bound of the fleet 

size), and a set of customers (or parcel stations) (𝐂 =  {𝑐𝑖, ∀𝑖 ∈ (1,2, … , 𝑛)}, where n is the total 

number of customers). Note that each customer can be a shipper of goods (pickup point) to one or 

more other customers, and a receiver of goods (delivery point) from one or more other customers 

at the same time, and hence it is a Many-to-Many Pickup-and-Delivery problem. We denote the 

pickup (or outgoing) demand as 𝑝𝑖 and delivery (or incoming) demand as 𝑞𝑖 at customer 𝑐𝑖 (∈ 𝐂). 

(Note that 𝑝0 = 𝑞0 = 0 at the depot 0). We further denote the pairwise demand 𝑞𝑖𝑗 from customer 

𝑐𝑖 to customer 𝑐𝑗. In other words, 𝑝𝑖 = ∑ 𝑞𝑖𝑗
𝑛
𝑗=1 , and 𝑞𝑗 = ∑ 𝑞𝑖𝑗

𝑛
𝑖=1 . 

 

Furthermore, at each customer 𝑐𝑖, both the total outgoing demand and incoming demand can be 

handled by multiple visits of either a single truck or multiple trucks. Specifically, for the outgoing 

demand, 𝑝𝑖 = ∑ ∑ 𝑝𝑖𝑘
𝑙𝑛

𝑘=1
𝑚
𝑙=1 , where 𝑝𝑖𝑘

𝑙  is the load shipped from 𝑐𝑖 to 𝑐𝑘 by truck 𝑣𝑙; similarly for 

the incoming demand, 𝑞𝑗 = ∑ ∑ 𝑝𝑘𝑗
𝑙𝑛

𝑘=1
𝑚
𝑙=1 . In other words, for a given pair of pickup and delivery 
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demand, 𝑞𝑖𝑗 = ∑ 𝑝𝑖𝑗
𝑙𝑚

𝑙=1 , i.e., the demand is split into m truck shipments. The split load 𝑝𝑖𝑗
𝑙  is a 

decision variable. 

 

A truck 𝑣𝑙 always starts and ends at the truck depot {0} empty. In other words, all parcels collected 

on the route by 𝑣𝑙 must be delivered to their designated destinations by end of the route. At each 

customer 𝑐𝑖, truck 𝑣𝑙 unloads all of the onboard parcels bounded for 𝑐𝑖, i.e., ∑ 𝑝𝑘𝑖
𝑙𝐾𝑖

𝑘=1 , and then 

loads outgoing parcels from 𝑐𝑖, i.e., ∑ 𝑝𝑖𝑘
𝑙𝐾𝑖𝑜

𝑘=1 , as permitted by its remaining capacity. 

 

In general, M-MSPDP is represented with a directed complete graph, 𝐆 =  {𝐍, 𝐀}, where N is a 

set of vertices, 𝐍 =  𝐂 + {0}, and A is a set of edges, 𝐀 =  {𝑎𝑖𝑗 = (𝑐𝑖, 𝑐𝑗), ∀𝑐𝑖, 𝑐𝑗 ∈ 𝐂, 𝑖 ≠ 𝑗}. For 

each edge 𝑎𝑖𝑗, there is a cost associated with it. This cost can be measured in terms of distance or 

travel time between 𝑐𝑖 and 𝑐𝑗, or labor cost (driver’s wage), or some generalized cost. Thus, 

solving the M-MSPDP finds a strategy of truck dispatching and routing and load splitting in order 

to minimize total cost incurred by truck routing.  

 

Other model notations are defined as follows: 

𝐅 set of available trucks, 𝐅 = {1,2, … , M}, where M is the maximum number of trucks 

𝑑𝑖𝑗 length of link (𝑖, 𝑗)(∈ 𝐀) 

𝑡𝑖𝑗 travel time on link (𝑖, 𝑗)(∈ 𝐀); 𝑡𝑖𝑗 = 𝑑𝑖𝑗/𝑉𝑇 for the truck at a constant speed of 𝑉𝑇. 

𝑞𝑖 parcel weight at node 𝑖 (∈ 𝑪); 𝑞𝑖 > 0 for pickup demand and 𝑞𝑖 < 0 for delivery demand; 

𝑞0 = 0 at the depot (i.e., 𝑖 = 0) 

𝐾𝑇 truck capacity 
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Decision variables 

𝑡𝑖
𝑣 arrival time at customer 𝑖 (∈ 𝐂) by truck 𝑣 (∈ 𝐅) 

𝑙𝑖𝑗
𝑣  load of truck 𝑣 (∈ 𝐅) when traversing on link (𝑖, 𝑗) (∈ 𝑵)  

𝑥𝑖𝑗
𝑣  binary variable, 𝑥𝑖𝑗

𝑣 = 1 if truck 𝑣 (∈ 𝐅) traverses on link (𝑖, 𝑗) (∈ 𝑵), and 𝑥𝑖𝑗
𝑣 = 0 

otherwise 

𝑝𝑖𝑗
𝑣  binary variable, 𝑝𝑖𝑗

𝑣 = 1 if transshipment from customer 𝑖 to customer 𝑗 is done by truck 𝑣, 

and 𝑝𝑖𝑗
𝑣 = 0 otherwise. 

 

The objective function for the truck routing to serve all the customers minimizes the total truck 

driver’s cost:  

𝑀𝑖𝑛𝑍 = ∑ ∑ 𝐶𝑇(𝑡𝑖𝑗)𝑥𝑖𝑗
𝑣

∀𝑣∈𝐅∀(𝑖,𝑗) 𝜖 𝐀

 (5.1) 

s.t.,  

(i) Truck routes constraints: 

∑ ∑ 𝑥𝑖𝑗
𝑣

∀𝑣∈𝐅(∀𝑖 𝜖𝐂)

≥ 1                ∀𝑗 ∊ 𝐂 (5.2) 

∑ 𝑥0𝑗
𝑣  ≤ M

(∀𝑗 𝜖𝐂) 

                   ∀𝑣 ∈ 𝐅 (5.3) 

∑ 𝑥𝑖𝑗
𝑣

(∀𝑖𝜖 𝑵 )

= ∑ 𝑥𝑗𝑖
𝑣

(∀𝑖𝜖 𝐍)

     ∀𝑗 ∊ 𝐍, ∀𝑣 ∈ 𝐅  (5.4) 

 

(ii) Truck schedule constraints: 
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𝑡𝑗
𝑣 = (𝑡𝑖

𝑣 + 𝑡𝑖𝑗)𝑥𝑖𝑗
𝑣 ≤ 8       ∀𝑖, 𝑗 ∈ 𝐍, ∀𝑣 ∈ 𝐅 (5.5) 

 

(iii) Truck loading and capacity constraints: 

∑ 𝑙0𝑗
𝑣

(𝑗 ∊ 𝐂)

𝑥0𝑗
𝑣  = 0       ∀𝑣 ∈ 𝐅 (5.6) 

∑ 𝑙𝑗0
𝑣

(𝑗 ∊ 𝐂)

𝑥𝑗0
𝑣  = 0       ∀𝑣 ∈ 𝐅  (5.7) 

∑ 𝑞𝑖𝑗𝑝𝑖𝑗
𝑣

∀𝑗∈𝐂

≤ ∑ 𝑞𝑖𝑗

∀𝑗∈𝐂

               ∀𝑖 ∈ 𝐂, ∀𝑣 ∈ 𝐅 (5.8) 

∑ 𝑝𝑖𝑗
𝑣

∀𝑣∈𝐅

= 1          ∀𝑖, 𝑗 ∈ 𝐂 (5.9) 

𝑙𝑖𝑗
𝑣 = ( ∑ 𝑙𝑠𝑖𝑥𝑠𝑖

𝑣

∀𝑠∈𝑵

+ ∑ 𝑞𝑖𝑘𝑝𝑖𝑘
𝑣

∀𝑘∈𝐂

− ∑ 𝑞𝑘𝑖𝑝𝑘𝑖
𝑣

∀𝑘∈𝐂

) 𝑥𝑖𝑗
𝑣 ≤  𝐾𝑇       ∀𝑖, 𝑗 ∈ 𝐍, ∀𝑣 ∈ 𝐅 (5.10) 

(𝑙𝑖𝑗
𝑣 +  ∑ 𝑞𝑗𝑘𝑝𝑗𝑘

𝑣

∀𝑘∈𝐂

− ∑ 𝑞𝑘𝑗𝑝𝑘𝑗
𝑣

∀𝑘∈𝐂

−  𝑙𝑗𝑘 ) 𝑥𝑗𝑘
𝑣 ≥ 0       ∀𝑖, 𝑗, 𝑘 ∈ 𝐍, ∀𝑣 ∈ 𝐅 (5.11) 

 

(iv) Non negativity and binary constraints of decision variables: 

𝑥𝑖𝑗
𝑣 , 𝑝𝑖𝑗

𝑣 ∊ {0,1}         ∀𝑖, 𝑗 ∊ 𝑵, ∀𝑣 ∈ 𝐅 (5.12) 

𝑙𝑖𝑗
𝑣 , 𝑡𝑖

𝑣 ≥ 0           ∀𝑖, 𝑗 ∊ 𝑵, ∀𝑣 ∈ 𝐅 (5.13) 

 

Only the differences from a classical VRP are highlighted here. Eq.(5.2) says that each customer 

must be visited at least once. Eq.(5.8) ensures that all the demand picked up by a truck at a customer 

is no greater than the total pickup demand at the customer. Lastly, Eq.(5.9) ensures that the 
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pairwise demand between any two microhubs is only fulfilled once. This is a direct derivation of 

the assumption that the pairwise demand 𝑞𝑖𝑗 cannot be split.  

 

5.3 Maximum Split-Benefit with Tabu Search (MS-BTS) Heuristic 

We propose the Maximum Split-Benefit with Tabu Search (MS-BTS) heuristic to solve the M-

MSPDP (Many to Many Split Pickup and Delivery Problem). MS-BTS is built on the Pickup and 

Delivery Problem with Split Loads (PDPSL) heuristic presented in Nowak et al. (2008). The 

primary difference between PDPSL heuristic and the MS-BTS heuristic is that while a load is 

randomly selected to be split in the PDPSL heuristic, in the MS-BTS heuristic, the selection of the 

load follows a hierarchical order based on the savings delivered if that load is selected (in a 

descending order of savings).  

 

In the rest of the section, we first briefly describe the PDPSL heuristic presented in Nowak et al. 

(2008) that is used as the basis for our MS-BTS heuristic. We then explain in detail how MS-BTS 

works.  

 

5.3.1 The PDPSL Heuristic 

 

The PDPSL heuristic is presented by Nowak et al. (2008) to solve pickup and delivery problems 

with split loads. The general idea of the PDPSL heuristic is as follows.  
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Step 1: First, an initial solution is generated by creating dedicated routes for each pickup-delivery 

pair in the problem, with load splits being considered whenever the load is larger than 

vehicle capacity. 

Step 2: A load is then randomly selected to be split, and the additional cost associated with 

generating the split is recorded in the tabu list. 

Step 3: The routes are then combined based on the reduction in cost and subject to vehicle capacity 

along the route, using the Clarke and Wright’s savings algorithm with the combinations 

leading to a reduced cost and subject to vehicle capacity along the route. The Clark and 

Wright Savings algorithm uses a criterion based on the savings in cost achieved by 

combining two routes and using one vehicle instead of two, to investigate the feasibility of 

merging of any sub-tours (Doyuran, and Çatay 2011).  

Step 4: Local search techniques then follow to improve the solution: intra-route load swaps, inter-

route load swaps, intra-route load insertions, inter-route load insertions, reordering of 

origins and destinations. 

Step 5: Another load not present in the tabu list is selected and the process is repeated from Step 

2. 

 

The heuristic is developed to solve large scale problems within reasonable amount of time and has 

been tested on hypothetical problem sets. Nowak et al. (2008) show that savings of up to 50% are 

achieved by allowing split loads.  
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5.3.2 Proposed Maximum Split-Benefit with Tabu Search (MS-BTS) Heuristic  

 

5.3.2.1 Theorem on optimal split load size 

 

Nowak et al. (2008) present and prove the following theorem on the optimal split load size.   

 

Theorem 1: Given the origin and destination locations of a set of k loads (where load is defined 

as the set of origin and destination), a vehicle of capacity Q, and a very small value, ε, let 

v(PDPSL) be the cost of the optimal Pickup and Delivery Problem with Split Loads (PDPSL) 

solution to deliver these loads and v(PDP) be the cost of the optimal Pickup and Delivery Problem 

(PDP) solution. Then the ratio of v(PDP)/v(PDPSL) is maximized when the loads are all of size 

Q/2+ ε as k → ∞ .  

 

What this Theorem reveals is that, when the loads are slightly over half of vehicle capacity, the 

optimal split load pickup and delivery strategy will yield the maximum cost saving from the 

baseline optimal pickup and delivery strategy without split loads.  

 

Similar to Nowak et al. (2008), we conduct an experiment to test the PDPSL heuristic and quantify 

the benefits of allowing split loads, by generating random sets of problems. Three problem sizes 

are considered with 5 origins and 15 (75 requests), 20 (100 requests) and 25 (125 requests) 

destinations, all randomly generated with uniform distribution over a grid of [-40,40] with depot 

located at [0,0]. Every origin-destination combination is allocated an equal load from a preselected 

load range (as fraction of the Truck Loading Capacity, TL). The load range is randomly selected 
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for each set and is either less than or equal to TL. Eight ranges are used to bound the load sizes, 

with five different sets of load sizes generated for each range. These ranges indicate the upper and 

lower bound (inclusive of the bound) on the fraction of the vehicle capacity that the load can 

occupy, and these are [0.11-0.2], [0.21-0.3], [0.31-0.4], [0.41-0.5], [0.51-0.6], [0.61-0.7], [0.71-

0.8], and [0.81-0.9]. The load sizes are randomly generated over each range with a uniform 

distribution. The vehicle is considered to have a unit capacity. The problem is solved using the 

PDPSL heuristic and by omitting the split loads steps in the PDPSL heuristic to compare the cost 

for with and without allowing split loads. Each of the three location configurations is matched with 

each of the five load sets within a load range, resulting in 15 different instances for each load range, 

and 120 instances overall. For detailed experimental design, please refer to Nowak et al. (2008). 

 

Figure 5-2: Average percentage cost increase without split loads relative to cost with split loads 

in three O-D matrices for 75, 100 and 125 pairs 

 



Page 127 of 240 

 

Figure 5-2 presents the average percentage increase in cost when split loads are not allowed for 

the 75, 100 and 125 request problem sets with different load size ranges for an average of 30 

instances for each load range of every problem set. The costs both with and without split loads are 

based on the distance traveled by the vehicle. These numerical results support the theoretical result 

presented earlier. That is, the most significant benefit with split load is found when the load sizes 

are just above one half of vehicle capacity, in the range [0.51-0.6]. When splitting is allowed with 

these load sizes, two of these load sizes are combined to fill the truck capacity, with the remainder 

of the loads delivered on an additional route. The benefit becomes almost negligible in the range 

[0.41-0.5] as two loads can be simultaneously serviced by the vehicle without any splitting. The 

loads are large enough that when two unsplit loads are placed on the vehicle, there is little room 

for a split load to be inserted. The benefit increases in the range [0.31 – 0.4], as there is more space 

for split loads when two unsplit loads are simultaneously on the vehicle. Further decreasing the 

load sizes results in less of a need for splitting, as unsplit loads can more easily be combined on a 

capacitated vehicle. The PDPSL heuristic is able to find more benefit with split loads for smaller 

load sizes as there are more potential combinations of loads to be placed on the vehicle at the same 

time, even without splitting. A similar result is shown empirically for the Split Delivery VRP in 

Archetti et al. (2006). 

 

Building on the above theorem, we propose our MS-BTS heuristic as follows. 

 

5.3.2.2 MS-BTS heuristic 

 

The general idea of MS-BTS is as follows.  
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First, an initial solution is generated by creating dedicated routes for each pickup-delivery pair in 

the problem.  

 

Second, these routes are split and consolidated by performing the following.  

i. Based on the Theorem in 4.2.1, a random load is selected from the range of 0.51 – 0.6 TL 

to be considered for split, based on the additional cost of generating the split. The load and 

the associated cost are recorded in the tabu list to prevent the same load being selected 

repeatedly.  

ii. The routes are then combined based on the reduction in cost and subject to vehicle capacity 

along the route. This is similar to the Clarke and Wright’s savings algorithm.  

iii. The local search techniques are applied in the following order: 

1) Intra-route load swaps 

2) Inter-route load swaps 

3) Intra-route load insertions 

4) Inter-route load insertions 

5) Reordering of the origins and destinations 

iv. Once the loads in the range of 0.51 – 0.6 TL are exhausted, loads are selected from the 

range of 0.61 – 0.7 TL and the above process is repeated. This is followed by selection of 

loads from the range of 0.31 – 0.4 TL and finally 0.71 – 0.8 TL.  

The tabu list is maintained for a number of iterations to avoid selecting the same loads repeatedly 

and to allow search of a broader neighborhood within the solution space. The tabu list only records 
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the first and the second loads being split as Nowak (2005) has shown that there is no benefit from 

recording beyond the second loads being split.  

 

A pseudo code is presented here for the MS-BTS heuristic. The variables used are as follows: 

 

range – variable that defines the load-range to be used in the loop 

range1 – range of loads between the range of 0.51 – 0.6 TL 

range 2 - range of loads between the range of 0.61 – 0.7 TL 

range 3 - range of loads between the range of 0.31 – 0.4 TL 

range 4 - range of loads between the range of 0.71 – 0.8 TL 

iter1 - counter for the number of iterations for first split load generated 

iter2 - counter for the number of iterations for second split load generated 

iter3 - counter for the number of iterations before a restart is forced 

iter4 - counter for the number of iterations for improvements to be made 

ITERMAIN1 - upper bound on the number of iterations for iter1 

ITERMAIN2 - upper bound on the number of iterations for iter2 

ITERMAIN3 - upper bound on the number of iterations for iter3 

ITERMAIN4 - upper bound on the number of iterations for iter4 

TEMPCOST - cost of the solution that is being updated 

BASECOST - cost of a solution with no split loads created 

GOODCOST - cost of the best-known solution for the current first and second split loads 

created 

BESTCOST - cost of the best-known solution overall 
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WORKCOST - cost used for comparison to determine if improvements were made after 

iter4 loop 

______________________________________________________________________________ 

Algorithm MS-BTS 

______________________________________________________________________________ 

1: Input: range, range1, range2, range3, range4, iter1, iter2, iter3, iter4, ITERMAIN1, 

ITERMAIN2, ITERMAIN3, ITERMAIN4, TEMPCOST, BASECOST, GOODCOST, WORKCOST 

2: Output: BESTCOST 

3: Generate routes: Create (dedicated) feasible initial solution, base solution 

4: Set GOODCOST=BESTCOST=BASECOST and iter1= iter2= iter3= iter4=0 

5: while (iter1 < ITERMAIN1) and (iter2 < ITERMAIN2) 

6: Set TEMPCOST = BASECOST 

7:  while (iter3 < ITERMAIN3) 

8:  Set WORKCOST = TEMPCOST 

9:   while (iter4 < ITERMAIN4) 

10:   Set range = range1 

11:   Create Split Loads: Update TEMPCOST 

12:  if iter1>0 and iter4=0, add split load created to tabulevel1 

13:   if iter2>0 and iter1=0, add split load created to tabulevel2 

14:  if iter4=0, add split load created to tabulevel3 

15:   Combine Routes: Update TEMPCOST 

16:   Intra-Route Load Swap. Update TEMPCOST. 

17:    Intra-Route Load Insertion. Update TEMPCOST. 
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18:    Inter-Route Load Swap. Update TEMPCOST. 

19:    Inter-Route Load Insertion. Update TEMPCOST. 

20:    Increment range  

21:    Increment iter4. 

22:   if TEMPCOST < WORKCOST, GOODCOST = TEMPCOST, and iter3 = 0. 

23:  if TEMPCOST ≥ WORKCOST, increment iter3 and TEMPCOST = GOODCOST. 

24:  if GOODCOST < BESTCOST, BESTCOST = GOODCOST. 

25:   iter2 = iter2 + 1 and iter3 = 0 

26:  iter1 = iter1 + 1 

27: end while 

28: return BESTCOST 

______________________________________________________________________________ 

 

We now describe the procedures involved in the proposed MS-BTS heuristic in detail. 

 

Step 1.  Initial solution: dedicated route Generation (Line 3 of the pseudo code) 

 

For a dedicated route for each load request equal to or below the truck capacity, a route is created 

starting from the depot and traveling through the origin and destination returning to the depot. 

When the load request is greater than the truck capacity, the load request is split into fully-loaded 

truck routes until the remaining load request becomes equal to or smaller than the truck capacity.  

 

Step 2 Creating Split Loads (Line 11 of the pseudo code) 
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The loads are randomly selected from the load range in the following order: 0.51 – 0.6 TL, 0.61 – 

0.7 TL, 0.31 – 0.4 TL and finally 0.71 – 0.8 TL. Once the load is selected from the load range, it 

is compared to all other route segments having excess capacity. If the selected load is found to be 

greater than the excess capacity on any of the route segments, the load may be then split. The load 

is split in such a way that the excess capacity identified on another route segment is satisfied, while 

the original load reduces by the excess capacity. The split load can be either moved to another 

route or moved to another position in the same route. By intuition, the split load cannot be added 

to the end of the route as the excess capacity in this case would be equal to the truck capacity. 

Before moving the split load, it is checked with the tabu list and confirmed to have not been moved 

earlier in a fixed number of iterations. Loads previously selected and rejected are also not 

considered. A load previously inserted as part of the insertion local improvement technique is also 

not considered. The modification of the route can be rejected if the maximum route length is 

exceeded.  

 

If the load split has not been recently considered and is not present in the tabu list, the route 

modification costs (≥ 0) are calculated due to the load split. A random number is generated based 

on the ratio of the route modification cost to the overall route cost. This random number is used to 

select the split load that generates the smallest route modification cost.  

 

Once the load to be split is selected, it is tested for maximum route length constraint and then 

recorded in the tabulevel1 list. The first split load is tracked using the tabulevel1 list and the second 

split load is tracked using the tabulevel2 list. If the maximum route length constraint is not met, 
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the load selected is rejected and another load is considered. This process is determined for a fixed 

number of iterations. If during these fixed number of iterations, an appropriate load to be split 

cannot be determined, the algorithm moves to the local improvement phase, before looking for 

loads to be split again. The algorithm also moves forward once all the loads to be split have been 

considered, and no more iterations are repeated.  

 

Step 3 Combining routes (Line 15 of the pseudo code) 

 

The cost of combining the selected routes is first determined and then routes are combined. The 

routes can either be combined by placing them one after the another or a route may be inserted 

after an origin or a destination of another route, subject to truck capacity constraints at all locations 

within the route.  This process of combining routes is similar to the Clarke and Wright’s algorithm. 

Before combining the routes, the length of the new route is checked for the maximum route length 

limitation. Only the route combinations are selected that have not been previously selected and 

rejected for maximum route length violation. During the route combination stage, the new route is 

tested for the maximum route length with allowance for a small buffer, while no buffer allowance 

is provided during the testing in the local improvement stage. This allows those route combinations 

to be tested which may exceed the maximum route length criteria during the route combination 

stage but might benefit from the route length reduction during the local improvement stage.  

 

A list of all the feasible route combinations with associated reduction in cost is created. The route 

combination with the maximum reduction in the overall cost is selected. This is followed by a local 

improvement step of swapping origins or destinations along the new route. Only consecutive 
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origins and destinations are swapped resulting in no impact on the truck capacity constraint. This 

step is computationally less intensive and is repeated after every local search improvement step 

(load swap and insertions). This process is repeated until all feasible route combinations have been 

tested.  

 

Step 3(a) Intra-route insertion of load (Line 17 of the pseudo code) 

 

A loaded segment of any route is defined as the segment of the route where the truck is empty 

before and after the segment (for e.g. the route starting with an empty vehicle serving a customer 

pick up origin followed by visiting customer delivery destination to empty the load). This means 

that any changes to the loading within a loading segment will result in impacting that segment, 

without impacting the entire route. The insertion of load requires the entire selected load to be 

moved to another part of the route. This step is only carried out if there are more than two or more 

loaded segments on the route.  

 

Before carrying out the insertion of the load, the truck capacity constraints are checked to not be 

violated along the route. It is also checked if the insertion move of the particular load has been 

attempted previously, or if the insertion move would result in returning a previously split load back 

to its original position. Once these conditions are satisfied, the load to be inserted can be inserted 

anywhere within the loaded segment. Insertion of the load requires its origin and destination to be 

placed consecutively in the loaded segment. The origin and destination of the inserted load are 

removed from their previous positions in the earlier loaded segment. 
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The feasible load insertion moves are determined with the reduction in overall cost. The load 

insertion move with the maximum reduction in the overall cost of the route is selected. The selected 

load insertion move is tested for truck capacity constraint violation. Swapping of origins and 

destinations is carried out as the local improvement step. The swapping move resulting in the 

reduction in the route length is selected. The loads insertion moves are evaluated and conducted 

for each route until there is no further improvement in the overall route cost.  

 

Step 3(b) Intra-route swapping of loads (Line 16 of the pseudo code) 

 

This local improvement step considers the potential swapping of loads between two loaded 

segments of a route. This requires the position of origins and destinations to be swapped between 

the two loads selected in the different loaded segments. The origins and destinations of the selected 

loads may either be located consecutively or may have other stops in between. If an origin has 

more than one load to be picked up, the other loads are retained in the loaded segment or else the 

origin of the load in the first loaded segment is replaced by the origin of the load from the second 

loaded segment. Same is true for the destinations.  

 

The load-swap move between the loaded segments is evaluated for having been considered earlier 

and for violations of the truck capacity along the route. A recent load-swap move is also rejected. 

The reduction in cost is estimated for all feasible load-swap moves and the move with the 

maximum reduction in the overall route cost is selected. Swapping of origins and destinations is 

carried out as the local improvement step and the swapping move resulting in the reduction in the 
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route length is selected. The load-swap moves are evaluated and conducted for each route until 

there is no further improvement in the overall route cost.  

 

Step 3(c) Inter-route insertion of loads (Line 19 of the pseudo code) 

 

This local improvement step is similar to the intra-route insertion of loads, except that instead of 

inserting loads between loaded segments, in this case the loads are inserted from one route to 

another. A load-insertion move involves moving the entire load including the load origin and 

destination from one route to another. All the possible load-insertion moves are evaluated for the 

truck capacity constraints. The load-insertion move is rejected if it was attempted recently or would 

result in returning a split load back into its original position.  

 

The reduction in cost is estimated for all feasible load-insertion moves and the move with the 

maximum reduction in the overall cost is selected. Swapping of origins and destinations is carried 

out as the local improvement step and the swapping move resulting in the reduction in the route 

length is selected. The load-insertion moves are evaluated and conducted for each route until there 

is no further improvement in the overall route cost.  

 

Step 3(d) Inter-route swapping of loads (Line 18 of the pseudo code) 

 

This local improvement step is similar to the intra-route swapping of loads, except that instead of 

swapping loads between loaded segments, in this case the loads are swapped between two routes. 

A load-swapping move involves moving the entire load including the load origin and destination 
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from one route to another, thereby replacing the respective origin and destination of the load being 

swapped out with the origin and the destination of the load being swapped in. All the possible 

load-swapping moves are evaluated for the truck capacity constraints. The load-swapping move is 

rejected if it was attempted recently or would result in returning a split load back into its original 

position.  

 

The reduction in cost is estimated for all feasible load-swapping moves and the move with the 

maximum reduction in the overall cost is selected. Swapping of origins and destinations is carried 

out as the local improvement step and the swapping move resulting in the reduction in the route 

length is selected. The load-swapping moves are evaluated and conducted for each route until there 

is no further improvement in the overall route cost.  

 

Step 4 Go back to Step 2 until no further improvement in the overall cost can be made. 

 

5.3.3 Number of iterations  

 

The number of iterations govern the loads to be selected for split in the heuristic. Nowak et al. 

(2008) observed that tracking split loads beyond the second split load brought minimal 

improvement to the solution while also increased the computational time. The maximum number 

of iterations are set by the four iteration parameters of the heuristic. The first iteration parameter 

(iter1) controls the variations of the first split load created so that the same first split load is not 

repeated, while the second iteration parameter (iter2) controls the variations of the second split 

load created.  The first split load is tracked using the tabulevel1 list and the second split load is 
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tracked using the tabulevel2 list. Solution reset is dictated by the third iteration parameter(iter3), 

which forces the heuristic to start again from an earlier solution if no improvement in solution is 

observed after the specified number of iterations. The first split load attempted after this reset is 

tracked using the tabulevel3 list, thus ensuring that the same split load is not created for an older 

solution after the reset. And finally, a fourth iteration parameter (iter4) controls the number of 

times a solution undergoes the split load creation and local improvement procedure.  

 

After finishing all the iterations of the fourth inner loop, the solution may either improve or not. If 

the solution has improved the iteration counter for the third loop is reset to zero to allow more 

improvements in the solution. The new solution is recorded as the new best solution and the 

procedures for split load creation and local improvements continue. However, if no improvement 

in solution is observed, the iteration counter for the third loop is incremented and the previous best 

solution is reinstated as the new best solution. If after all the iterations of the third loop have been 

completed and no improvement in the solution is observed, this solution is compared against the 

overall best solution determined so far. This process is repeated as the algorithm continues to select 

different loads to be split at the first and the second level.  

 

The maximum number of iterations and the order of the local improvement procedures is selected 

as stated by Nowak (2005). These were finalized by Nowak (2005) through testing and considering 

cost improvements and computation time burden. The maximum number of iterations for the first, 

second, third and the fourth loop were selected at 10, 10, 5 and 10 respectively. In local 

improvement procedures, intra-route and swapping procedures were performed before inter-route 

and insertion procedures. 
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5.4. Numerical Experiment 

5.4.1. Experimental Design 

The experimental design is maintained similar to the one given in Nowak (2005) to allow fair 

comparison between the MS-BTS and the PDPSL heuristic. Fourteen scenarios of different 

transportation requests are tested as given in Table 5-1. Each transportation request comprises of 

the location of the origin and destination pair and the demand relative to the truck capacity (i.e., 

one full truck loading capacity or TL). The coordinates for the origins and destinations are 

randomly and uniformly generated over the range of [-40,40] (miles) for both X and Y coordinates. 

The depot is located at [0,0] for all scenarios and Nowak (2005) states that relocating the depot 

has no significant impact on the results. 

 

Each origin-destination pair has a load demand generated randomly and uniformly between the 

range of 0.1 – 0.9 TL. The minimal total length of the route obtained at the end is considered the 

final solution. The maximum route length is set at 500 miles which is similar to Nowak (2005). 

For each scenario, a total of 30 instances were generated. 

 

Table 5-1: Fourteen scenarios considered 

Scenario ID Total number of nodes Number of origins x Number of 

destinations 

1 20 5 x 15 

2 30 10 x 20 
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3 60 20 x 40 

4 90 30 x 60 

5 100 30 x 70 

6 110 40 x 70 

7 120 40 x 80 

8 130 50 x 80 

9 140 50 x 90 

10 150 60 x 90 

11 200 80 x 120 

12 250 110 x 140 

13 300 120 x 180 

14 350 150 x 200 

 

In addition to the PDPSL heuristic, the performance of the M-MSPDP heuristic is also compared 

with the heuristic provided in Sahin et al. (2013), which uses a Tabu search and simulated 

annealing based (TESA) heuristic to improve the initial feasible solution computed from Clark and 

Wright’s savings algorithm.  

 

The heuristics are coded in Matlab environment and all experiments are run on 2.60 GHz Intel 

core i7 processor with 16 GB RAM. The exact solution for feasible cases is obtained using the 

MOSEK Solver.  
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5.4.2. Experimental Results 

 

Tables 5-2 to 5-19 present the results of the evaluation of MS-BTS heuristic in comparison with 

the PDPSL heuristic and the exact solution (where available) in terms of solution quality and 

computational time. 

 

Table 5-2: Comparison of the MS-BTS heuristic and the PDPSL heuristic in terms of solution 

quality for Scenario 1 

  PDPSL Heuristic MS-BTS Heuristic 

Instance 

No 

Exact 

Soln. 

PDPSL 

heuristic 

Soln. 

Error w.r.t. 

Exact Soln. 

MS-BTS heuristic 

Soln. 

Error w.r.t. 

Exact Soln. 

Error w.r.t. 

PDPSL Soln. 

1 294.91 294.91 0.00% 294.91 0.00% 0.00% 

2 268.73 268.73 0.00% 275.18 2.40% 2.40% 

3 269.59 269.59 0.00% 291.74 8.22% 8.22% 

4 295.62 295.62 0.00% 314.54 6.40% 6.40% 

5 277.86 277.86 0.00% 297.7 7.14% 7.14% 

6 285.86 285.86 0.00% 285.86 0.00% 0.00% 

7 261.77 261.77 0.00% 281.28 7.45% 7.45% 

8 263.11 263.11 0.00% 273.11 3.80% 3.80% 

9 281.93 281.93 0.00% 281.93 0.00% 0.00% 

10 274.14 274.14 0.00% 283.18 3.30% 3.30% 

11 268.93 268.93 0.00% 268.93 0.00% 0.00% 

12 297.31 297.31 0.00% 308.31 3.70% 3.70% 
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13 268.31 268.31 0.00% 268.31 0.00% 0.00% 

14 262.95 262.95 0.00% 276.36 5.10% 5.10% 

15 297.8 297.8 0.00% 297.8 0.00% 0.00% 

16 283.97 283.97 0.00% 295.61 4.10% 4.10% 

17 292.13 292.13 0.00% 292.13 0.00% 0.00% 

18 270.04 270.04 0.00% 284.43 5.33% 5.33% 

19 278.92 278.92 0.00% 294.49 5.58% 5.58% 

20 271.54 271.54 0.00% 294.69 8.53% 8.53% 

21 274.36 274.36 0.00% 274.36 0.00% 0.00% 

22 282.99 282.99 0.00% 282.99 0.00% 0.00% 

23 283.84 283.84 0.00% 298.88 5.30% 5.30% 

24 287.74 287.74 0.00% 300.92 4.58% 4.58% 

25 279.41 279.41 0.00% 279.41 0.00% 0.00% 

26 291.2 291.2 0.00% 300.81 3.30% 3.30% 

27 291.56 291.56 0.00% 293.56 0.69% 0.69% 

28 288.75 288.75 0.00% 311.98 8.05% 8.05% 

29 265.97 265.97 0.00% 279.27 5.00% 5.00% 

30 295.64 295.64 0.00% 310.31 4.96% 4.96% 

Average 280.23 280.23 0.00% 289.77 3.43% 3.43% 

 

 

 

 

 



Page 143 of 240 

 

Table 5-3: Comparison of the MS-BTS heuristic and the PDPSL heuristic in terms of 

computational time for Scenario 1 

 Computational Time (min) 

  PDPSL Heuristic MS-BTS Heuristic 

Instance 

No 

Exact 

Soln. 

PDPSL 

heuristic 

Soln. 

Improvement 

w.r.t. Exact 

Soln. 

MS-BTS 

heuristic Soln. 

Improvement 

w.r.t. Exact 

Soln. 

Improvement 

w.r.t. PDPSL 

Soln. 

1 5.85 1.01 -82.74% 0.94 -83.93% -6.93% 

2 6.84 1.48 -78.36% 1.31 -80.85% -11.49% 

3 4.58 0.86 -81.22% 0.75 -83.62% -12.79% 

4 6.26 1.01 -83.87% 0.92 -85.30% -8.91% 

5 6.41 0.8 -87.52% 0.73 -88.61% -8.75% 

6 6.79 0.89 -86.89% 0.8 -88.22% -10.11% 

7 7.86 1.41 -82.06% 1.28 -83.72% -9.22% 

8 4.67 1.27 -72.81% 1.12 -76.02% -11.81% 

9 6.51 1.24 -80.95% 1.13 -82.64% -8.87% 

10 4.12 1.03 -75.00% 0.92 -77.67% -10.68% 

11 6.3 0.91 -85.56% 0.77 -87.78% -15.38% 

12 5.51 0.85 -84.57% 0.78 -85.84% -8.24% 

13 7.24 1.27 -82.46% 1.09 -84.94% -14.17% 

14 6.21 1.43 -76.97% 1.23 -80.19% -13.99% 

15 6.11 0.79 -87.07% 0.68 -88.87% -13.92% 

16 6.98 0.84 -87.97% 0.75 -89.26% -10.71% 

17 6.91 1.24 -82.05% 1.1 -84.08% -11.29% 
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18 5.75 0.84 -85.39% 0.77 -86.61% -8.33% 

19 5.66 1.5 -73.50% 1.34 -76.33% -10.67% 

20 5.26 0.8 -84.79% 0.69 -86.88% -13.75% 

21 4.67 1.17 -74.95% 1.03 -77.94% -11.97% 

22 6.51 1.53 -76.50% 1.39 -78.65% -9.15% 

23 4.12 1.11 -73.06% 1.02 -75.24% -8.11% 

24 4.58 0.98 -78.60% 0.85 -81.44% -13.27% 

25 6.26 0.93 -85.14% 0.83 -86.74% -10.75% 

26 6.41 1.39 -78.32% 1.24 -80.66% -10.79% 

27 7.86 1.04 -86.77% 0.9 -88.55% -13.46% 

28 4.67 1.03 -77.94% 0.93 -80.09% -9.71% 

29 5.85 1.5 -74.36% 1.35 -76.92% -10.00% 

30 6.25 0.88 -85.92% 0.75 -88.00% -14.77% 

Average 5.97 1.10 -81.11% 0.98 -83.19% -11.07% 

 

Table 5-4: Comparison of the MS-BTS heuristic and the PDPSL heuristic in terms of solution 

quality for Scenario 2 

  PDPSL Heuristic MS-BTS Heuristic 

Instance 

No 

Exact 

Soln. 

PDPSL 

heuristic 

Soln. 

Error w.r.t. 

Exact Soln. 

MS-BTS 

heuristic Soln. 

Error w.r.t. 

Exact Soln. 

Error w.r.t. 

PDPSL Soln. 

1 706.56 706.56 0.00% 706.56 0.00% 0.00% 

2 675.33 675.33 0.00% 740.62 9.67% 9.67% 

3 681.88 681.88 0.00% 732.88 7.48% 7.48% 
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4 718.2 718.2 0.00% 738.96 2.89% 2.89% 

5 675.73 675.73 0.00% 749.85 10.97% 10.97% 

6 675.99 675.99 0.00% 703.97 4.14% 4.14% 

7 720.74 720.74 0.00% 747.98 3.78% 3.78% 

8 695.09 695.09 0.00% 719.52 3.51% 3.51% 

9 721.81 721.81 0.00% 705.56 -2.25% -2.25% 

10 700.61 700.61 0.00% 692.86 -1.11% -1.11% 

11 714.01 714.01 0.00% 736.24 3.11% 3.11% 

12 691.15 691.15 0.00% 747.65 8.17% 8.17% 

13 701.94 701.94 0.00% 741.42 5.62% 5.62% 

14 683.61 683.61 0.00% 703.03 2.84% 2.84% 

15 677.81 677.81 0.00% 729.17 7.58% 7.58% 

16 700.02 700.02 0.00% 715.3 2.18% 2.18% 

17 716.26 716.26 0.00% 701.72 -2.03% -2.03% 

18 712.04 712.04 0.00% 739.07 3.80% 3.80% 

19 688.95 688.95 0.00% 736.47 6.90% 6.90% 

20 697.54 697.54 0.00% 704.51 1.00% 1.00% 

21 703.64 703.64 0.00% 699.14 -0.64% -0.64% 

22 682.79 682.79 0.00% 742.31 8.72% 8.72% 

23 685.75 685.75 0.00% 731.07 6.61% 6.61% 

24 693.16 693.16 0.00% 711.37 2.63% 2.63% 

25 718.35 718.35 0.00% 714.22 -0.57% -0.57% 

26 704.49 704.49 0.00% 717.91 1.90% 1.90% 

27 716.54 716.54 0.00% 710.44 -0.85% -0.85% 

28 692.66 692.66 0.00% 734.09 5.98% 5.98% 
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29 700.19 700.19 0.00% 729.35 4.16% 4.16% 

30 697.01 697.01 0.00% 708.17 1.60% 1.60% 

Average 698.33 698.33 0.00% 723.05 3.59% 3.59% 

 

Table 5-5: Comparison of the MS-BTS heuristic and the PDPSL heuristic in terms of 

computational time for Scenario 2 

 Computational Time (min) 

  PDPSL Heuristic MS-BTS Heuristic 

Instance 

No 

Exact 

Soln. 

PDPSL 

heuristic 

Soln. 

Improvement 

w.r.t. Exact 

Soln. 

MS-BTS 

heuristic Soln. 

Improvement 

w.r.t. Exact 

Soln. 

Improvement 

w.r.t. PDPSL 

Soln. 

1 36.4 7.67 -78.93% 8.22 -77.42% 7.17% 

2 38.49 7.98 -79.27% 7.36 -80.88% -7.77% 

3 37.89 8.32 -78.04% 8.83 -76.70% 6.13% 

4 41.5 7.36 -82.27% 7.64 -81.59% 3.80% 

5 36.92 7.4 -79.96% 8.5 -76.98% 14.86% 

6 39.89 8.51 -78.67% 7.39 -81.47% -13.16% 

7 38.62 6.28 -83.74% 7.68 -80.11% 22.29% 

8 36.55 8.76 -76.03% 8.95 -75.51% 2.17% 

9 43.58 7.78 -82.15% 7.25 -83.36% -6.81% 

10 39.54 8.58 -78.30% 8.16 -79.36% -4.90% 

11 37.85 7.91 -79.10% 6.58 -82.62% -16.81% 

12 41.45 7.02 -83.06% 9.44 -77.23% 34.47% 

13 42.74 6.01 -85.94% 9.11 -78.69% 51.58% 
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14 37.72 7.64 -79.75% 8.31 -77.97% 8.77% 

15 42.79 8.65 -79.78% 8.5 -80.14% -1.73% 

16 38.37 6.21 -83.82% 8.71 -77.30% 40.26% 

17 40.66 8.93 -78.04% 8.16 -79.93% -8.62% 

18 41.09 7.33 -82.16% 8.42 -79.51% 14.87% 

19 41.94 6.09 -85.48% 7.1 -83.07% 16.58% 

20 42.95 6.68 -84.45% 8.23 -80.84% 23.20% 

21 41.18 6.71 -83.71% 8.82 -78.58% 31.45% 

22 42.99 6.65 -84.53% 8.6 -80.00% 29.32% 

23 42.86 8.55 -80.05% 7.96 -81.43% -6.90% 

24 40.61 6.2 -84.73% 8.03 -80.23% 29.52% 

25 41.77 7.75 -81.45% 8.82 -78.88% 13.81% 

26 42.18 8.95 -78.78% 7.92 -81.22% -11.51% 

27 37.89 7.25 -80.87% 8.14 -78.52% 12.28% 

28 41.97 6.12 -85.42% 8.13 -80.63% 32.84% 

29 40.28 6.59 -83.64% 8.91 -77.88% 35.20% 

30 38.81 8.53 -78.02% 7.92 -79.59% -7.15% 

Average 40.25 7.48 -81.34% 8.19 -79.59% 11.51% 
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Table 5-6: Comparison of the MS-BTS heuristic and the PDPSL heuristic in terms of solution 

quality for Scenario 3 

  PDPSL Heuristic MS-BTS Heuristic 

Instance 

No 

Exact 

Soln. 

PDPSL 

heuristic 

Soln. 

Error w.r.t. 

Exact Soln. 

MS-BTS 

heuristic 

Soln. 

Error w.r.t. 

Exact Soln. 

Error w.r.t. 

PDPSL Soln. 

1 1,763.10 1,763.10 0.00% 1,847.73 4.80% 4.80% 

2 1,739.64 1,739.64 0.00% 1,739.64 0.00% 0.00% 

3 1,669.20 1,669.20 0.00% 1,784.12 6.88% 6.88% 

4 1,779.30 1,779.30 0.00% 1,829.12 2.80% 2.80% 

5 1,697.88 1,697.88 0.00% 1,774.28 4.50% 4.50% 

6 1,771.14 1,771.14 0.00% 1,854.38 4.70% 4.70% 

7 1,791.66 1,791.66 0.00% 1,871.20 4.44% 4.44% 

8 1,691.70 1,691.70 0.00% 1,763.20 4.23% 4.23% 

9 1,786.44 1,786.44 0.00% 1,786.44 0.00% 0.00% 

10 1,632.12 1,632.12 0.00% 1,714.94 5.07% 5.07% 

11 1,597.56 1,597.56 0.00% 1,597.56 0.00% 0.00% 

12 1,608.66 1,608.66 0.00% 1,718.61 6.83% 6.83% 

13 1,756.80 1,756.80 0.00% 1,815.32 3.33% 3.33% 

14 1,739.82 1,739.82 0.00% 1,848.57 6.25% 6.25% 

15 1,573.20 1,573.20 0.00% 1,573.20 0.00% 0.00% 

16 1,579.20 1,579.20 0.00% 1613.94 2.20% 2.20% 

17 1,583.82 1,583.82 0.00% 1687.36 6.54% 6.54% 

18 1,700.70 1,700.70 0.00% 1,700.70 0.00% 0.00% 
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19 1,782.54 1,782.54 0.00% 1,782.54 0.00% 0.00% 

20 1,719.42 1,719.42 0.00% 1821.82 5.96% 5.96% 

21 1,694.52 1,694.52 0.00% 1755.77 3.61% 3.61% 

22 1,694.16 1,694.16 0.00% 1,694.16 0.00% 0.00% 

23 1,707.12 1,707.12 0.00% 1767.35 3.53% 3.53% 

24 1,793.76 1,793.76 0.00% 1924.17 7.27% 7.27% 

25 1,722.12 1,722.12 0.00% 1,722.12 0.00% 0.00% 

26 1,660.50 1,660.50 0.00% 1695.35 2.10% 2.10% 

27 1,634.04 1,634.04 0.00% 1759.08 7.65% 7.65% 

28 1,723.98 1,723.98 0.00% 1832.93 6.32% 6.32% 

29 1,738.38 1,738.38 0.00% 1811.16 4.19% 4.19% 

30 1,749.12 1,749.12 0.00% 1856.81 6.16% 6.16% 

Average 1702.72 1702.72 0.00% 1764.79 3.65% 3.65% 

 

Table 5-7: Comparison of the MS-BTS heuristic and the PDPSL heuristic in terms of 

computational time for Scenario 3 

 Computational Time (min) 

  PDPSL Heuristic MS-BTS Heuristic 

Instance 

No 

Exact 

Soln. 

PDPSL 

heuristic 

Soln. 

Improvement 

w.r.t. Exact 

Soln. 

MS-BTS 

heuristic Soln. 

Improvement 

w.r.t. Exact 

Soln. 

Improvement 

w.r.t. PDPSL 

Soln. 

1 79.43 16.53 -79.19% 15.33 -80.70% -7.26% 

2 109.13 20.3 -81.40% 17.65 -83.83% -13.05% 

3 73.46 15.03 -79.54% 12.84 -82.52% -14.57% 
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4 64.16 11.17 -82.59% 9.63 -84.99% -13.79% 

5 94.24 19.73 -79.06% 17.31 -81.63% -12.27% 

6 88.99 15.68 -82.38% 13.64 -84.67% -13.01% 

7 87.59 16.73 -80.90% 15.21 -82.64% -9.09% 

8 88.21 16.31 -81.51% 13.82 -84.33% -15.27% 

9 107.54 20.25 -81.17% 18.46 -82.83% -8.84% 

10 97.83 20.5 -79.05% 18.81 -80.77% -8.24% 

11 85.14 18.62 -78.13% 16.33 -80.82% -12.30% 

12 75.90 14.14 -81.37% 12.51 -83.52% -11.53% 

13 99.65 17.22 -82.72% 15.51 -84.44% -9.93% 

14 105.92 16.49 -84.43% 14.33 -86.47% -13.10% 

15 86.38 22.63 -73.80% 19.85 -77.02% -12.28% 

16 98.67 23.06 -76.63% 20.59 -79.13% -10.71% 

17 77.33 13.01 -83.19% 11.21 -85.50% -13.77% 

18 95.46 21.47 -77.51% 19.58 -79.49% -8.80% 

19 89.82 14.91 -83.40% 13.32 -85.17% -10.66% 

20 95.48 18.77 -80.34% 17.06 -82.13% -9.11% 

21 90.04 21.7 -75.90% 19.2 -78.68% -11.52% 

22 98.96 20.83 -78.95% 18.27 -81.54% -12.29% 

23 82.76 17.54 -78.81% 15.12 -81.73% -13.80% 

24 87.50 17.36 -80.16% 15.23 -82.59% -12.27% 

25 94.97 18.11 -80.93% 16.08 -83.07% -11.21% 

26 94.51 21.83 -76.90% 18.82 -80.09% -13.79% 

27 84.55 21.33 -74.77% 18.71 -77.87% -12.28% 

28 81.13 14.23 -82.46% 12.94 -84.05% -9.07% 
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29 76.52 11.7 -84.71% 10 -86.93% -14.53% 

30 89.66 19.18 -78.61% 17.6 -80.37% -8.24% 

Average 89.36 17.88 -80.02% 15.83 -82.32% -11.55% 

 

Table 5-8: Comparison of the MS-BTS heuristic and the PDPSL heuristic in terms of solution 

quality for Scenario 4 

  PDPSL Heuristic MS-BTS Heuristic 

Instance 

No 

Exact 

Soln. 

PDPSL 

heuristic 

Soln. 

Error w.r.t. 

Exact Soln. 

MS-BTS 

heuristic Soln. 

Error w.r.t. 

Exact Soln. 

Error w.r.t. PDPSL 

Soln. 

1 3,272.91 3,283.80 0.33% 3,396.62 3.78% 3.44% 

2 3,376.08 3,572.88 5.83% 3,572.88 5.83% 0.00% 

3 3,382.38 3,383.40 0.03% 3,430.17 1.41% 1.38% 

4 3,348.45 3,538.32 5.67% 3,791.85 13.24% 7.17% 

5 3,365.84 3,479.52 3.38% 3,608.26 7.20% 3.70% 

6 3,371.52 3,399.92 0.84% 3,399.92 0.84% 0.00% 

7 3,337.73 3,512.52 5.24% 3,744.63 12.19% 6.61% 

8 3,293.49 3,296.24 0.08% 3,476.72 5.56% 5.48% 

9 3,360.86 3,527.16 4.95% 3,527.16 4.95% 0.00% 

10 3,390.70 3,416.28 0.75% 3,416.28 0.75% 0.00% 

11 3,339.29 3,487.92 4.45% 3,794.63 13.64% 8.79% 

12 3,341.09 3,411.96 2.12% 3,674.92 9.99% 7.71% 

13 3,382.32 3,382.44 0.00% 3,382.44 0.00% 0.00% 

14 3,293.17 3,348.96 1.69% 3,626.69 10.13% 8.29% 
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15 3,346.22 3,585.12 7.14% 3,585.12 7.14% 0.00% 

16 3,356.46 3,472.20 3.45% 3,809.00 13.48% 9.70% 

17 3,258.02 3,334.32 2.34% 3,334.32 2.34% 0.00% 

18 3,372.79 3,474.36 3.01% 3,474.36 3.01% 0.00% 

19 3,399.10 3,420.24 0.62% 3,590.47 5.63% 4.98% 

20 3,367.10 3,376.76 0.29% 3,396.76 0.88% 0.59% 

21 3,329.94 3,335.60 0.17% 3,565.12 7.06% 6.88% 

22 3,398.56 3,398.52 0.00% 3,398.52 0.00% 0.00% 

23 3,387.28 3,395.20 0.23% 3,556.22 4.99% 4.74% 

24 3,370.67 3,397.84 0.81% 3,429.13 1.73% 0.92% 

25 3,317.96 3,528.48 6.34% 3,528.48 6.34% 0.00% 

26 3,380.72 3,396.40 0.46% 3,459.46 2.33% 1.86% 

27 3,364.82 3,569.40 6.08% 3,851.38 14.46% 7.90% 

28 3,327.65 3,332.48 0.15% 3,656.98 9.90% 9.74% 

29 3,288.79 3,299.16 0.32% 3,508.01 6.67% 6.33% 

30 3,323.31 3,410.16 2.61% 3,627.64 9.16% 6.38% 

Average 3,348.17 3,425.59 2.31% 3,553.80 6.15% 3.75% 
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Table 5-9: Comparison of the MS-BTS heuristic and the PDPSL heuristic in terms of 

computational time for Scenario 4 

  Computational Time (min) 

  PDPSL Heuristic MS-BTS Heuristic 

Instance 

No 

Exact 

Soln. 

PDPSL 

heuristic 

Soln. 

Improvement 

w.r.t. Exact 

Soln. 

MS-BTS 

heuristic Soln. 

Improvement 

w.r.t. Exact Soln. 

Improvement 

w.r.t. PDPSL 

Soln. 

1 159.33 44.02 -72.37% 39.4 -75.27% -10.50% 

2 165.65 46.58 -71.88% 42.01 -74.64% -9.81% 

3 158.1 47.05 -70.24% 44.74 -71.70% -4.91% 

4 150.18 46.59 -68.98% 45.93 -69.42% -1.42% 

5 155.03 45.61 -70.58% 44.45 -71.33% -2.54% 

6 159.83 44.14 -72.38% 39.51 -75.28% -10.49% 

7 152.45 46.59 -69.44% 40.67 -73.32% -12.71% 

8 157.21 45.03 -71.36% 42.74 -72.81% -5.09% 

9 154.01 45.6 -70.39% 43.29 -71.89% -5.07% 

10 160.53 47.16 -70.62% 39.87 -75.16% -15.46% 

11 155.52 46.03 -70.40% 38.57 -75.20% -16.21% 

12 165.52 45.98 -72.22% 41.37 -75.01% -10.03% 

13 156.26 47.46 -69.63% 39.46 -74.75% -16.86% 

14 154.66 49.13 -68.23% 40.04 -74.11% -18.50% 

15 160.3 50.6 -68.43% 42.19 -73.68% -16.62% 

16 158.77 46.39 -70.78% 43.57 -72.56% -6.08% 

17 160.06 49.74 -68.92% 40.82 -74.50% -17.93% 
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18 155.44 44.5 -71.37% 41.96 -73.01% -5.71% 

19 158.83 51.46 -67.60% 42.95 -72.96% -16.54% 

20 157.25 44.02 -72.01% 42.36 -73.06% -3.77% 

21 160.66 51.89 -67.70% 41.22 -74.34% -20.56% 

22 164.67 49.8 -69.76% 43.27 -73.72% -13.11% 

23 158.62 50.29 -68.30% 40.6 -74.40% -19.27% 

24 158.51 47.88 -69.79% 43.38 -72.63% -9.40% 

25 154.17 46.69 -69.72% 43.32 -71.90% -7.22% 

26 159.02 46.57 -70.71% 42.85 -73.05% -7.99% 

27 158.04 45.85 -70.99% 38.08 -75.90% -16.95% 

28 159.07 48.02 -69.81% 40.08 -74.80% -16.53% 

29 159.6 44.07 -72.39% 39.75 -75.09% -9.80% 

30 160.41 50.33 -68.62% 39.17 -75.58% -22.17% 

Average 158.26 47.17 -70.19% 41.59 -73.70% -11.64% 

 

 

Table 5-10: Comparison of the MS-BTS heuristic and the PDPSL heuristic in terms of solution 

quality and computational time for Scenario 5 

 Solution Quality Computational Time 

Instance 

No 

PDPSL 

heuristic 

MS-BTS 

heuristic 

Error w.r.t. 

PDPSL 

PDPSL 

heuristic 

MS-BTS 

heuristic 

Improvement w.r.t. 

PDPSL 

1 3,711.01 3,705.93 -0.14% 60.19 49.03 -18.54% 

2 3,656.33 3,873.27 5.93% 57.68 48.1 -16.61% 

3 3,693.20 3,715.93 0.62% 53.83 46.45 -13.71% 
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4 3,659.62 3,820.48 4.40% 59.32 52.38 -11.70% 

5 3,776.80 3,770.45 -0.17% 59.34 50.61 -14.71% 

6 3,673.34 3,873.28 5.44% 59.03 50.56 -14.35% 

7 3,652.68 3,764.52 3.06% 50.47 51.55 2.14% 

8 3,606.51 3,726.82 3.34% 52.05 50.07 -3.80% 

9 3,641.25 3,808.56 4.59% 61.94 48.81 -21.20% 

10 3,600.19 3,774.52 4.84% 55.73 45.21 -18.88% 

11 3,693.93 3,838.98 3.93% 56.71 49.23 -13.19% 

12 3,646.73 3,789.78 3.92% 52.65 47.62 -9.55% 

13 3,619.62 3,797.62 4.92% 56.75 51.4 -9.43% 

14 3,585.44 3,796.10 5.88% 50.37 47.44 -5.82% 

15 3,651.42 3,826.59 4.80% 54.8 46.29 -15.53% 

16 3,743.37 3,741.62 -0.05% 55.95 49.73 -11.12% 

17 3,698.11 3,763.96 1.78% 54.23 46.87 -13.57% 

18 3,664.47 3,766.05 2.77% 56.25 49.97 -11.16% 

19 3,693.04 3,825.91 3.60% 50.6 47.99 -5.16% 

20 3,600.89 3,785.62 5.13% 54.45 48.23 -11.42% 

21 3,594.62 3,892.00 8.27% 52.91 49.18 -7.05% 

22 3,788.68 3,811.20 0.59% 50.37 48.99 -2.74% 

23 3,567.65 3,817.38 7.00% 53.37 45.64 -14.48% 

24 3,757.58 3,813.31 1.48% 57.18 49.18 -13.99% 

25 3,752.95 3,785.90 0.88% 58.81 52.42 -10.87% 

26 3,557.44 3,822.98 7.46% 58.72 52.14 -11.21% 

27 3,572.45 3,828.14 7.16% 51.45 47.72 -7.25% 

28 3,568.73 3,753.48 5.18% 54.41 46.07 -15.33% 
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29 3,721.40 3,895.29 4.67% 58.73 46.63 -20.60% 

30 3,610.77 3,750.35 3.87% 55.07 47.27 -14.16% 

Average 3,658.67 3,797.87 3.84% 55.45 48.76 -11.83% 

 

Table 5-11: Comparison of the MS-BTS heuristic and the PDPSL heuristic in terms of solution 

quality and computational time for Scenario 6 

 Solution Quality Computational Time 

Instance 

No 

PDPSL 

heuristic 

MS-BTS 

heuristic 

Error w.r.t. 

PDPSL 

PDPSL 

heuristic 

MS-BTS 

heuristic 

Improvement 

w.r.t. PDPSL 

1 3,734.78 3,815.56 2.16% 62.92 55.07 -12.48% 

2 3,768.05 3,816.49 1.29% 68.32 58.79 -13.95% 

3 3,660.09 3,887.74 6.22% 59.75 57.99 -2.95% 

4 3,686.55 3,833.84 4.00% 66.46 60.78 -8.55% 

5 3,788.70 3,886.90 2.59% 59.37 58.63 -1.25% 

6 3,728.63 3,911.29 4.90% 67.91 57.08 -15.95% 

7 3,656.11 3,838.30 4.98% 69.72 61.11 -12.35% 

8 3,676.06 3,842.40 4.52% 65.25 58.79 -9.90% 

9 3,741.61 3,900.61 4.25% 66.6 56.2 -15.62% 

10 3,674.72 3,838.74 4.46% 58.31 58.11 -0.34% 

11 3,666.63 3,916.90 6.83% 60.14 54.85 -8.80% 

12 3,672.76 3,929.14 6.98% 59.76 58.92 -1.41% 

13 3,731.31 3,922.07 5.11% 59.17 52.61 -11.09% 

14 3,713.28 3,858.92 3.92% 66.32 55.91 -15.70% 

15 3,721.39 3,825.60 2.80% 59.52 52.07 -12.52% 
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16 3,707.46 3,784.38 2.07% 66.92 56.47 -15.62% 

17 3,702.67 3,914.97 5.73% 58.21 58.01 -0.34% 

18 3,794.95 3,882.25 2.30% 58.46 50.54 -13.55% 

19 3,733.62 3,763.90 0.81% 68.67 52.19 -24.00% 

20 3,672.38 3,813.48 3.84% 59.98 56.75 -5.39% 

21 3,686.55 3,940.18 6.88% 58.23 51.39 -11.75% 

22 3,662.24 3,810.90 4.06% 64.63 57.91 -10.40% 

23 3,709.84 3,756.44 1.26% 58.01 57.22 -1.36% 

24 3,709.55 3,880.16 4.60% 61.19 60.96 -0.38% 

25 3,778.53 3,786.24 0.20% 70.57 54.51 -22.76% 

26 3,722.94 3,875.37 4.09% 65.54 52.41 -20.03% 

27 3,703.55 3,774.71 1.92% 70.66 58.66 -16.98% 

28 3,707.42 3,924.34 5.85% 63.73 51.93 -18.52% 

29 3,725.86 3,795.50 1.87% 71.89 57.26 -20.35% 

30 3,685.18 3,851.98 4.53% 71.09 54.79 -22.93% 

Average 3,710.78 3,852.64 3.83% 63.91 56.26 -11.57% 

 

Table 5-12: Comparison of the MS-BTS heuristic and the PDPSL heuristic in terms of solution 

quality and computational time for Scenario 7 

 Solution Quality Computational Time 

Instance 

No 

PDPSL 

heuristic 

MS-BTS 

heuristic 

Error w.r.t. 

PDPSL 

PDPSL 

heuristic 

MS-BTS 

heuristic 

Improvement 

w.r.t. PDPSL 

1 4,062.94 4,136.58 1.81% 66.17 58.78 -11.17% 

2 4,105.36 4,150.86 1.11% 70.99 59.67 -15.95% 
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3 4,041.58 4,187.32 3.61% 71.48 62.95 -11.93% 

4 4,103.43 4,115.54 0.30% 69.32 62.35 -10.05% 

5 3,958.35 4,103.14 3.66% 66.35 59.86 -9.78% 

6 3,997.05 4,228.75 5.80% 68.80 59.70 -13.23% 

7 4,015.04 4,175.86 4.01% 73.42 63.78 -13.13% 

8 3,942.98 4,240.96 7.56% 71.81 59.52 -17.11% 

9 3,967.38 4,145.75 4.50% 66.78 61.66 -7.67% 

10 4,006.17 4,193.24 4.67% 66.32 59.36 -10.49% 

11 3,974.47 4,178.22 5.13% 67.00 62.55 -6.64% 

12 4,112.17 4,285.05 4.20% 71.17 60.07 -15.60% 

13 4,027.25 4,187.23 3.97% 71.66 63.23 -11.76% 

14 3,955.58 4,190.89 5.95% 70.37 62.46 -11.24% 

15 3,900.54 4,060.85 4.11% 70.77 62.75 -11.33% 

16 3,922.35 4,108.47 4.75% 68.76 61.14 -11.08% 

17 4,096.72 4,134.51 0.92% 66.63 59.35 -10.93% 

18 3,952.37 4,135.29 4.63% 71.83 62.14 -13.49% 

19 4,057.65 4,224.04 4.10% 69.47 60.86 -12.39% 

20 3,993.65 4,203.30 5.25% 71.93 61.30 -14.78% 

21 4,144.29 4,147.38 0.07% 66.14 59.05 -10.72% 

22 3,962.55 4,179.52 5.48% 69.08 58.46 -15.37% 

23 4,125.89 4,285.60 3.87% 72.63 63.36 -12.76% 

24 4,139.59 4,262.91 2.98% 70.80 59.96 -15.31% 

25 3,940.68 4,100.78 4.06% 66.41 63.36 -4.59% 

26 3,925.71 4,073.46 3.76% 70.85 62.48 -11.81% 

27 4,021.38 4,231.97 5.24% 72.84 59.12 -18.84% 
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28 3,994.27 4,149.59 3.89% 71.91 61.50 -14.48% 

29 4,116.81 4,239.73 2.99% 68.15 59.09 -13.29% 

30 4,076.00 4,178.51 2.51% 69.36 64.34 -7.24% 

Average 4,021.34 4,174.51 3.83% 69.64 61.14 -12.14% 

 

Table 5-13: Comparison of the MS-BTS heuristic and the PDPSL heuristic in terms of solution 

quality and computational time for Scenario 8 

 Solution Quality Computational Time 

Instance 

No 

PDPSL 

heuristic 

MS-BTS 

heuristic 

Error w.r.t. 

PDPSL 

PDPSL 

heuristic 

MS-BTS 

heuristic 

Improvement 

w.r.t. PDPSL 

1 5,129.37 5,298.82 3.30% 72.88 64.02 -12.16% 

2 5,119.94 5,364.72 4.78% 73.83 61.06 -17.30% 

3 4,888.57 5,340.70 9.25% 71.20 65.55 -7.94% 

4 5,146.61 5,381.17 4.56% 71.09 62.09 -12.66% 

5 5,097.99 5,368.44 5.31% 72.52 62.12 -14.34% 

6 5,147.77 5,151.27 0.07% 72.46 63.95 -11.74% 

7 5,081.18 5,393.06 6.14% 73.89 64.90 -12.17% 

8 4,943.34 5,186.25 4.91% 75.58 62.67 -17.08% 

9 4,857.30 5,176.94 6.58% 75.19 66.72 -11.26% 

10 5,033.84 5,119.13 1.69% 70.92 61.28 -13.59% 

11 5,146.55 5,298.54 2.95% 76.14 67.92 -10.80% 

12 4,997.09 5,072.03 1.50% 73.68 62.72 -14.88% 

13 5,071.45 5,378.05 6.05% 73.63 64.35 -12.60% 

14 5,177.03 5,183.37 0.12% 73.62 62.27 -15.42% 
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15 5,055.79 5,246.01 3.76% 70.36 65.11 -7.46% 

16 4,855.86 5,171.84 6.51% 71.00 63.99 -9.87% 

17 4,974.97 5,394.29 8.43% 72.06 66.74 -7.38% 

18 5,148.02 5,295.42 2.86% 75.43 65.50 -13.16% 

19 5,109.94 5,395.42 5.59% 75.74 67.44 -10.96% 

20 4,835.62 5,180.08 7.12% 74.65 62.93 -15.70% 

21 5,023.75 5,249.27 4.49% 70.84 62.63 -11.59% 

22 5,188.67 5,236.13 0.91% 70.02 65.29 -6.76% 

23 5,083.43 5,132.95 0.97% 73.80 61.29 -16.95% 

24 4,900.44 5,185.15 5.81% 73.87 63.87 -13.54% 

25 4,875.05 5,113.56 4.89% 75.70 65.01 -14.12% 

26 4,970.73 5,311.50 6.86% 73.77 65.71 -10.93% 

27 5,110.93 5,117.31 0.12% 72.68 66.73 -8.19% 

28 5,167.09 5,176.97 0.19% 71.88 66.81 -7.05% 

29 5,167.62 5,232.33 1.25% 72.29 61.97 -14.28% 

30 4,976.56 5,199.68 4.48% 72.88 64.17 -11.95% 

Average 5,042.75 5245.01 4.05% 73.12 64.23 -12.13% 

 

Table 5-14: Comparison of the MS-BTS heuristic and the PDPSL heuristic in terms of solution 

quality and computational time for Scenario 9 

 Solution Quality Computational Time 

Instance 

No 

PDPSL 

heuristic 

MS-BTS 

heuristic 

Error w.r.t. 

PDPSL 

PDPSL 

heuristic 

MS-BTS 

heuristic 

Improvement 

w.r.t. PDPSL 

1 5,795.22 5,780.54 -0.25% 81.09 70.70 -12.81% 
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2 5,486.83 5,804.22 5.78% 83.64 71.59 -14.41% 

3 5,480.74 5,908.79 7.81% 82.17 71.09 -13.48% 

4 5,710.17 5,767.62 1.01% 83.32 74.57 -10.50% 

5 5,749.00 5,835.75 1.51% 81.02 72.25 -10.82% 

6 5,706.07 5,945.60 4.20% 81.10 74.57 -8.05% 

7 5,628.00 5,808.81 3.21% 83.32 74.06 -11.11% 

8 5,510.37 5,913.87 7.32% 81.40 70.38 -13.54% 

9 5,630.82 5,801.51 3.03% 82.73 71.25 -13.88% 

10 5,677.29 5,879.54 3.56% 82.34 72.49 -11.96% 

11 5,647.02 5,952.59 5.41% 80.11 72.26 -9.80% 

12 5,491.81 5,880.49 7.08% 83.36 71.96 -13.68% 

13 5,477.47 5,704.30 4.14% 83.66 70.83 -15.34% 

14 5,601.73 5,953.02 6.27% 80.83 70.86 -12.33% 

15 5,592.23 5,816.07 4.00% 83.24 74.30 -10.74% 

16 5,636.87 5,925.95 5.13% 84.64 73.36 -13.33% 

17 5,610.59 5,826.27 3.84% 82.58 73.22 -11.33% 

18 5,615.15 5,888.02 4.86% 82.10 71.18 -13.30% 

19 5,769.86 5,955.16 3.21% 80.62 74.43 -7.68% 

20 5,746.27 5,828.32 1.43% 82.87 70.20 -15.29% 

21 5,519.70 5,933.91 7.50% 83.80 71.25 -14.98% 

22 5,527.33 5,936.69 7.41% 80.88 74.59 -7.78% 

23 5,559.88 5,829.27 4.85% 83.47 72.47 -13.18% 

24 5,684.28 5,768.05 1.47% 80.78 72.90 -9.75% 

25 5,752.81 6,056.04 5.27% 80.84 72.20 -10.69% 

26 5,698.27 5,912.62 3.76% 80.11 71.11 -11.23% 
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27 5,735.21 5,854.13 2.07% 83.37 71.98 -13.66% 

28 5,619.59 5,738.99 2.12% 81.38 70.28 -13.64% 

29 5,573.76 5,922.75 6.26% 84.71 71.96 -15.05% 

30 5,555.86 5,857.41 5.43% 79.62 71.03 -10.79% 

Average 5,626.34 5,866.21 4.29% 82.17 72.18 -12.14% 

 

Table 5-15: Comparison of the MS-BTS heuristic and the PDPSL heuristic in terms of solution 

quality and computational time for Scenario 10 

 Solution Quality Computational Time 

Instance 

No 

PDPSL 

heuristic 

MS-BTS 

heuristic 

Error w.r.t. 

PDPSL 

PDPSL 

heuristic 

MS-BTS 

heuristic 

Improvement 

w.r.t. PDPSL 

1 7,149.41 7,152.09 0.04% 93.31 77.80 -16.62% 

2 6,819.61 6,992.54 2.54% 90.38 80.40 -11.04% 

3 6,918.09 7,043.71 1.82% 90.76 80.90 -10.86% 

4 6,589.25 7,130.05 8.21% 89.87 80.97 -9.90% 

5 6,683.59 7,120.43 6.54% 89.55 81.28 -9.24% 

6 7,120.51 7,130.56 0.14% 88.13 78.65 -10.76% 

7 6,917.81 7,113.65 2.83% 94.01 79.09 -15.87% 

8 6,674.57 7,002.81 4.92% 89.64 79.91 -10.85% 

9 6,511.64 6,923.27 6.32% 93.79 80.89 -13.75% 

10 6,734.04 6,918.12 2.73% 92.24 79.65 -13.65% 

11 6,526.20 7,034.24 7.78% 89.62 81.59 -8.96% 

12 6,580.55 7,052.85 7.18% 91.26 81.86 -10.30% 

13 6,553.77 6,951.46 6.07% 88.30 81.65 -7.53% 



Page 163 of 240 

 

14 6,889.91 7,038.82 2.16% 88.25 78.58 -10.96% 

15 6,911.72 7,146.47 3.40% 93.46 80.43 -13.94% 

16 6,719.36 7,177.09 6.81% 88.87 76.02 -14.46% 

17 6,647.21 7,118.26 7.09% 94.78 80.34 -15.24% 

18 6,950.92 7,137.00 2.68% 94.82 81.50 -14.05% 

19 6,585.61 7,194.47 9.25% 90.25 82.14 -8.99% 

20 6,720.19 7,234.52 7.65% 91.03 80.43 -11.64% 

21 7,161.53 7,228.25 0.93% 88.27 82.05 -7.05% 

22 6,850.46 6,868.17 0.26% 93.23 79.35 -14.89% 

23 6,740.91 7,225.05 7.18% 88.38 80.36 -9.07% 

24 6,840.57 7,149.45 4.52% 93.51 79.54 -14.94% 

25 7,015.51 7,212.06 2.80% 93.11 79.72 -14.38% 

26 6,650.47 6,885.43 3.53% 94.47 80.11 -15.20% 

27 6,383.38 6,770.65 6.07% 92.63 77.67 -16.15% 

28 6,759.34 7,053.01 4.34% 90.93 80.83 -11.11% 

29 6,901.03 6,960.10 0.86% 92.10 81.63 -11.37% 

30 7,073.14 7,252.97 2.54% 90.65 79.86 -11.90% 

Average 6,786.01 7,073.92 4.31% 91.32 80.17 -12.16% 
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Table 5-16: Comparison of the MS-BTS heuristic and the PDPSL heuristic in terms of solution 

quality and computational time for Scenario 11 

 Solution Quality Computational Time 

Instance 

No 

PDPSL 

heuristic 

MS-BTS 

heuristic 

Error w.r.t. 

PDPSL 

PDPSL 

heuristic 

MS-BTS 

heuristic 

Improvement 

w.r.t. PDPSL 

1 12,692.11 12,692.11 0.00% 104.69 91.83 -12.28% 

2 12,514.82 13,753.79 9.90% 115.24 103.82 -9.91% 

3 12,502.44 12,865.01 2.90% 171.18 148.85 -13.04% 

4 12,147.43 12,499.71 2.90% 121.77 104.08 -14.53% 

5 11,130.27 11,942.78 7.30% 134.87 120.42 -10.71% 

6 11,674.09 11,674.09 0.00% 138.26 123.45 -10.71% 

7 11,512.19 12,329.55 7.10% 154.32 134.19 -13.04% 

8 12,329.85 13,673.80 10.90% 126.40 115.97 -8.25% 

9 12,331.13 12,331.13 0.00% 94.42 80.02 -15.25% 

10 12,128.21 13,474.44 11.10% 128.80 117.09 -9.09% 

11 11,328.92 11,328.92 0.00% 117.41 100.35 -14.53% 

12 11,747.15 12,404.99 5.60% 86.64 73.42 -15.26% 

13 12,449.89 12,449.89 0.00% 136.63 123.09 -9.91% 

14 12,168.79 12,168.79 0.00% 152.52 134.98 -11.50% 

15 11,571.14 11,571.14 0.00% 92.45 81.81 -11.51% 

16 12,618.21 13,690.75 8.50% 144.67 124.71 -13.80% 

17 12,625.04 12,625.04 0.00% 101.06 89.44 -11.50% 

18 12,397.34 12,397.34 0.00% 129.69 114.77 -11.50% 

19 12,530.63 13,520.55 7.90% 113.11 103.77 -8.26% 
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20 11,666.40 11,666.40 0.00% 119.77 102.37 -14.53% 

21 12,279.44 12,979.36 5.70% 90.58 83.11 -8.25% 

22 11,905.21 11,905.21 0.00% 103.21 90.53 -12.29% 

23 11,725.36 12,886.17 9.90% 107.93 92.25 -14.53% 

24 11,594.64 12,638.15 9.00% 167.68 145.81 -13.04% 

25 12,032.09 12,032.09 0.00% 163.82 138.83 -15.25% 

26 11,489.54 12,075.51 5.10% 162.23 146.15 -9.91% 

27 11,340.88 12,055.35 6.30% 131.19 116.10 -11.50% 

28 11,505.35 12,138.14 5.50% 105.26 89.97 -14.53% 

29 12,640.42 14,081.43 11.40% 105.96 92.95 -12.28% 

30 12,539.60 14,132.13 12.70% 101.46 88.13 -13.14% 

Average 12,037.29 12,599.46 4.66% 124.11 109.08 -12.13% 

 

 

 

Table 5-17: Comparison of the MS-BTS heuristic and the PDPSL heuristic in terms of solution 

quality and computational time for Scenario 12 

 Solution Quality Computational Time 

Instance 

No 

PDPSL 

heuristic 

MS-BTS 

heuristic 

Error w.r.t. 

PDPSL 

PDPSL 

heuristic 

MS-BTS 

heuristic 

Improvement 

w.r.t. PDPSL 

1 16,448.70 17,344.39 5.45% 146.03 135.24 -7.39% 

2 16,664.84 17,330.22 3.99% 149.53 129.12 -13.65% 

3 16,554.90 17,420.89 5.23% 146.23 128.94 -11.82% 

4 16,364.89 17,426.98 6.49% 149.87 132.45 -11.62% 

5 16,513.64 17,499.84 5.97% 150.46 130.04 -13.57% 

6 16,742.23 17,505.25 4.56% 148.83 128.57 -13.61% 
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7 16,241.31 17,214.73 5.99% 149.39 130.15 -12.88% 

8 16,698.19 17,230.02 3.18% 147.92 133.84 -9.52% 

9 16,330.71 17,260.35 5.69% 147.29 130.50 -11.40% 

10 16,375.74 17,468.93 6.68% 151.36 130.85 -13.55% 

11 16,598.21 17,384.14 4.74% 152.10 135.66 -10.81% 

12 16,748.68 17,492.10 4.44% 150.57 131.14 -12.90% 

13 16,404.68 17,271.92 5.29% 146.56 132.39 -9.67% 

14 16,667.67 17,422.09 4.53% 149.30 135.13 -9.49% 

15 16,504.55 17,379.06 5.30% 148.57 133.18 -10.36% 

16 16,736.51 17,485.92 4.48% 148.26 132.75 -10.46% 

17 16,567.80 17,464.26 5.41% 151.14 134.46 -11.04% 

18 16,547.50 17,290.28 4.49% 148.34 133.81 -9.80% 

19 16,607.77 17,249.53 3.86% 149.72 130.59 -12.78% 

20 16,688.93 17,456.60 4.60% 149.64 134.66 -10.01% 

21 16,538.47 17,394.29 5.17% 153.48 133.48 -13.03% 

22 16,740.60 17,447.84 4.22% 155.83 129.73 -16.75% 

23 16,316.44 17,250.65 5.73% 145.42 129.20 -11.15% 

24 16,514.28 17,347.22 5.04% 147.67 129.63 -12.22% 

25 16,454.66 17,388.26 5.67% 145.81 130.58 -10.45% 

26 16,325.06 17,226.84 5.52% 147.33 130.49 -11.43% 

27 16,298.11 17,360.70 6.52% 149.41 129.25 -13.49% 

28 16,325.27 17,481.64 7.08% 148.11 132.56 -10.50% 

29 16,535.59 17,422.10 5.36% 148.55 135.34 -8.89% 

30 16,655.07 17,162.26 3.05% 149.38 127.47 -14.67% 

Average 16,523.70 17,369.31 5.12% 149.07 131.71 -11.63% 
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Table 5-18: Comparison of the MS-BTS heuristic and the PDPSL heuristic in terms of solution 

quality and computational time for Scenario 13 

 Solution Quality Computational Time 

Instance 

No 

PDPSL 

heuristic 

MS-BTS 

heuristic 

Error w.r.t. 

PDPSL 

PDPSL 

heuristic 

MS-BTS 

heuristic 

Improvement 

w.r.t. PDPSL 

1 19,025.33 19,826.26 4.21% 165.10 146.63 -11.19% 

2 18,932.06 20,142.85 6.40% 165.70 146.20 -11.77% 

3 19,118.93 20,099.39 5.13% 160.60 146.54 -8.75% 

4 18,966.48 20,439.20 7.76% 161.26 142.91 -11.38% 

5 19,085.09 19,967.92 4.63% 161.56 145.24 -10.10% 

6 19,041.32 20,238.21 6.29% 161.31 141.61 -12.21% 

7 19,083.59 19,931.45 4.44% 163.83 144.03 -12.09% 

8 19,166.49 19,962.56 4.15% 160.42 142.86 -10.95% 

9 19,010.35 19,859.09 4.46% 162.54 147.51 -9.25% 

10 19,215.63 20,083.07 4.51% 165.89 144.78 -12.73% 

11 19,104.13 20,490.16 7.26% 162.93 143.68 -11.81% 

12 19,037.09 20,052.23 5.33% 162.67 144.35 -11.26% 

13 18,900.12 19,952.96 5.57% 165.33 146.71 -11.26% 

14 18,976.26 19,850.08 4.60% 164.88 140.94 -14.52% 

15 19,196.43 19,705.50 2.65% 166.59 143.26 -14.00% 

16 18,955.63 19,967.54 5.34% 161.17 141.74 -12.06% 

17 19,114.28 20,256.23 5.97% 162.05 140.86 -13.08% 

18 19,196.55 20,342.51 5.97% 160.05 141.62 -11.52% 

19 19,248.75 19,906.26 3.42% 166.68 143.57 -13.86% 
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20 19,105.76 20,100.13 5.20% 163.21 143.59 -12.02% 

21 19,159.74 19,733.72 3.00% 160.96 141.67 -11.98% 

22 19,219.21 19,962.24 3.87% 165.07 140.39 -14.95% 

23 19,241.82 19,802.70 2.91% 164.99 144.37 -12.50% 

24 18,662.29 20,408.78 9.36% 161.83 141.94 -12.29% 

25 19,220.50 19,990.23 4.00% 161.45 143.81 -10.93% 

26 19,078.35 19,712.15 3.32% 161.64 142.06 -12.11% 

27 18,995.56 19,961.85 5.09% 163.59 145.55 -11.03% 

28 19,123.95 20,079.42 5.00% 161.24 141.60 -12.18% 

29 18,916.57 19,915.16 5.28% 164.53 146.18 -11.15% 

30 18,229.24 19,836.75 8.82% 162.73 144.30 -11.33% 

Average 19,044.25 20,019.22 5.13% 163.06 143.68 -11.88% 

 

Table 5-19: Comparison of the MS-BTS heuristic and the PDPSL heuristic in terms of solution 

quality and computational time for Scenario14 

 Solution Quality Computational Time 

Instance 

No 

PDPSL 

heuristic 

MS-BTS 

heuristic 

Error w.r.t. 

PDPSL 

PDPSL 

heuristic 

MS-BTS 

heuristic 

Improvement w.r.t. 

PDPSL 

1 20,758.02 22,013.29 6.05% 187.57 167.54 -10.68% 

2 21,514.44 22,652.99 5.29% 186.88 167.34 -10.46% 

3 21,164.65 22,593.26 6.75% 194.11 165.68 -14.65% 

4 20,455.04 21,716.88 6.17% 194.44 164.04 -15.63% 

5 20,660.69 22,605.58 9.41% 192.34 169.62 -11.81% 

6 20,560.16 22,010.69 7.06% 186.96 169.05 -9.58% 
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7 21,124.16 22,536.12 6.68% 194.07 165.06 -14.95% 

8 21,625.63 22,565.72 4.35% 190.21 170.68 -10.27% 

9 20,451.21 22,331.59 9.19% 188.55 169.31 -10.20% 

10 21,480.83 22,184.52 3.28% 193.04 168.60 -12.66% 

11 21,563.32 22,437.36 4.05% 188.60 163.37 -13.38% 

12 22,137.74 22,374.90 1.07% 190.64 164.47 -13.73% 

13 21,357.43 21,573.75 1.01% 191.08 170.34 -10.85% 

14 20,571.23 22,108.18 7.47% 193.48 168.21 -13.06% 

15 22,360.17 22,514.46 0.69% 187.82 166.32 -11.45% 

16 20,958.80 21,612.04 3.12% 189.76 169.68 -10.58% 

17 22,414.47 22,539.76 0.56% 186.26 168.60 -9.48% 

18 22,493.62 23,406.05 4.06% 189.43 166.18 -12.27% 

19 21,305.20 22,186.10 4.13% 184.68 163.68 -11.37% 

20 20,896.06 23,452.47 12.23% 191.12 165.79 -13.25% 

21 20,337.41 22,821.14 12.21% 181.16 162.77 -10.15% 

22 21,548.81 21,642.20 0.43% 186.10 168.79 -9.30% 

23 20,542.98 22,140.22 7.78% 186.02 163.63 -12.04% 

24 21,611.71 21,927.45 1.46% 193.90 163.30 -15.78% 

25 20,758.33 22,194.67 6.92% 187.58 166.39 -11.30% 

26 20,718.23 21,753.92 5.00% 189.79 164.23 -13.47% 

27 20,720.74 23,090.94 11.44% 188.54 166.19 -11.85% 

28 20,889.70 22,101.78 5.80% 185.02 168.32 -9.03% 

29 22,301.95 22,505.29 0.91% 186.17 164.80 -11.48% 

30 21,186.17 21,194.58 0.04% 185.88 164.84 -11.32% 

Average 21,215.63 22,292.93 5.15% 189.04 166.56 -11.87% 
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We successfully obtain the exact solution for up to 90 nodes, beyond which the computational 

time to determine the exact solution becomes excessive. For the larger problems, the comparison 

of the MS-BTS heuristic is done with the results of the PDPSL heuristic. Table 5-2 to Table 5-19 

provide the results regarding the solution (route cost) and the computational time for exact solution 

(Branch and Bound method), PDPSL heuristic and the MS-BTS heuristic. The PDPSL heuristic is 

able to obtain the exact solution for the smaller cases, unlike the MS-BTS heuristic. Overall, the 

MS-BTS heuristic delivers an inferior solution to the PDPSL heuristic but is faster.  This indicates 

that there is some potential for improvement in the MS-BTS heuristic.  

 

Tables 5-20 – 27 present the comparison of the performance of the PDPSL and M-MSPDP 

heuristic with TESA heuristic from Sahin et al. (2013) for selected small size (Case 1 and Case 4) 

and large size (Case 10 and Case 14).  

 

Table 5-20: Comparison of the MS-BTS heuristic, PDPSL heuristic and the TESA heuristic in 

terms of solution quality for Scenario 1 

 
Solution 

Instance 

No 

Exact 

Soln. 

PDPSL 

heuristic 

Soln. 

Error w.r.t. 

Exact Soln. 

MS-BTS 

heuristic 

Soln. 

Error w.r.t. 

Exact Soln. 

TESA 

heuristic 

Soln. 

Error w.r.t. 

Exact Soln. 

1 294.91 294.91 0.00% 294.91 0.00% 294.91 0.00% 

2 268.73 268.73 0.00% 275.18 2.40% 268.73 0.00% 

3 269.59 269.59 0.00% 291.74 8.22% 269.59 0.00% 

4 295.62 295.62 0.00% 314.54 6.40% 299.41 1.28% 
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5 277.86 277.86 0.00% 297.7 7.14% 281.92 1.46% 

6 285.86 285.86 0.00% 285.86 0.00% 285.86 0.00% 

7 261.77 261.77 0.00% 281.28 7.45% 261.77 0.00% 

8 263.11 263.11 0.00% 273.11 3.80% 263.11 0.00% 

9 281.93 281.93 0.00% 281.93 0.00% 281.93 0.00% 

10 274.14 274.14 0.00% 283.18 3.30% 278.14 1.46% 

11 268.93 268.93 0.00% 268.93 0.00% 268.93 0.00% 

12 297.31 297.31 0.00% 308.31 3.70% 297.31 0.00% 

13 268.31 268.31 0.00% 268.31 0.00% 271.55 1.21% 

14 262.95 262.95 0.00% 276.36 5.10% 262.95 0.00% 

15 297.8 297.8 0.00% 297.8 0.00% 298.99 0.40% 

16 283.97 283.97 0.00% 295.61 4.10% 283.97 0.00% 

17 292.13 292.13 0.00% 292.13 0.00% 292.13 0.00% 

18 270.04 270.04 0.00% 284.43 5.33% 274.62 1.70% 

19 278.92 278.92 0.00% 294.49 5.58% 278.92 0.00% 

20 271.54 271.54 0.00% 294.69 8.53% 271.54 0.00% 

21 274.36 274.36 0.00% 274.36 0.00% 274.58 0.08% 

22 282.99 282.99 0.00% 282.99 0.00% 282.99 0.00% 

23 283.84 283.84 0.00% 298.88 5.30% 283.84 0.00% 

24 287.74 287.74 0.00% 300.92 4.58% 292.21 1.55% 

25 279.41 279.41 0.00% 279.41 0.00% 279.41 0.00% 

26 291.2 291.2 0.00% 300.81 3.30% 292.30 0.38% 

27 291.56 291.56 0.00% 293.56 0.69% 296.34 1.64% 

28 288.75 288.75 0.00% 311.98 8.05% 288.75 0.00% 

29 265.97 265.97 0.00% 279.27 5.00% 265.97 0.00% 
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30 295.64 295.64 0.00% 310.31 4.96% 295.64 0.00% 

Average 280.23 280.23 0.00% 289.77 3.43% 281.28 0.37% 

 

Table 5-21: Comparison of the MS-BTS heuristic, PDPSL heuristic and the TESA heuristic in 

terms of computational time for Scenario 1 

 
Computational Time 

Instance 

No 

Exact 

Soln. 

PDPSL 

heuristic 

Improvement 

w.r.t. Exact 

Soln. 

MS-

BTS 

heuristic 

Reduction 

w.r.t. Exact 

Soln. 

TESA 

heuristic 

Improvement 

w.r.t. Exact 

Soln. 

1 5.85 1.01 -82.74% 0.94 -83.93% 0.99 -83.08% 

2 6.84 1.48 -78.36% 1.31 -80.85% 1.44 -78.95% 

3 4.58 0.86 -81.22% 0.75 -83.62% 0.86 -81.22% 

4 6.26 1.01 -83.87% 0.92 -85.30% 0.95 -84.82% 

5 6.41 0.8 -87.52% 0.73 -88.61% 0.80 -87.52% 

6 6.79 0.89 -86.89% 0.8 -88.22% 0.84 -87.63% 

7 7.86 1.41 -82.06% 1.28 -83.72% 1.37 -82.57% 

8 4.67 1.27 -72.81% 1.12 -76.02% 1.27 -72.81% 

9 6.51 1.24 -80.95% 1.13 -82.64% 1.18 -81.87% 

10 4.12 1.03 -75.00% 0.92 -77.67% 1.00 -75.73% 

11 6.3 0.91 -85.56% 0.77 -87.78% 0.86 -86.35% 

12 5.51 0.85 -84.57% 0.78 -85.84% 0.84 -84.75% 

13 7.24 1.27 -82.46% 1.09 -84.94% 1.21 -83.29% 

14 6.21 1.43 -76.97% 1.23 -80.19% 1.32 -78.74% 

15 6.11 0.79 -87.07% 0.68 -88.87% 0.73 -88.05% 
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16 6.98 0.84 -87.97% 0.75 -89.26% 0.80 -88.54% 

17 6.91 1.24 -82.05% 1.1 -84.08% 1.16 -83.21% 

18 5.75 0.84 -85.39% 0.77 -86.61% 0.81 -85.91% 

19 5.66 1.5 -73.50% 1.34 -76.33% 1.47 -74.03% 

20 5.26 0.8 -84.79% 0.69 -86.88% 0.76 -85.55% 

21 4.67 1.17 -74.95% 1.03 -77.94% 1.12 -76.02% 

22 6.51 1.53 -76.50% 1.39 -78.65% 1.47 -77.42% 

23 4.12 1.11 -73.06% 1.02 -75.24% 1.06 -74.27% 

24 4.58 0.98 -78.60% 0.85 -81.44% 0.96 -79.04% 

25 6.26 0.93 -85.14% 0.83 -86.74% 0.93 -85.14% 

26 6.41 1.39 -78.32% 1.24 -80.66% 1.36 -78.78% 

27 7.86 1.04 -86.77% 0.9 -88.55% 1.01 -87.15% 

28 4.67 1.03 -77.94% 0.93 -80.09% 1.02 -78.16% 

29 5.85 1.5 -74.36% 1.35 -76.92% 1.49 -74.53% 

30 6.25 0.88 -85.92% 0.75 -88.00% 0.86 -86.24% 

Average 5.97 1.10 -81.11% 0.98 -83.19% 1.06 -81.71% 

 

Table 5-22: Comparison of the MS-BTS heuristic, PDPSL heuristic and the TESA heuristic in 

terms of solution quality for Scenario 4 

 
Solution 

Instance 

No 

Exact 

Soln. 

PDPSL 

heuristic 

Soln. 

Error w.r.t. 

Exact Soln. 

MS-BTS 

heuristic 

Soln. 

Error w.r.t. 

Exact Soln. 

TESA 

heuristic 

Soln. 

Error w.r.t. 

Exact Soln. 

1 3,272.91 3,283.80 0.33% 3,396.62 3.78% 3537.68 8.09% 
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2 3,376.08 3,572.88 5.83% 3,572.88 5.83% 3475.96 2.96% 

3 3,382.38 3,383.40 0.03% 3,430.17 1.41% 3468.65 2.55% 

4 3,348.45 3,538.32 5.67% 3,791.85 13.24% 3451.78 3.09% 

5 3,365.84 3,479.52 3.38% 3,608.26 7.20% 3503.66 4.09% 

6 3,371.52 3,399.92 0.84% 3,399.92 0.84% 3463.38 2.72% 

7 3,337.73 3,512.52 5.24% 3,744.63 12.19% 3492.57 4.64% 

8 3,293.49 3,296.24 0.08% 3,476.72 5.56% 3541.69 7.54% 

9 3,360.86 3,527.16 4.95% 3,527.16 4.95% 3498.76 4.10% 

10 3,390.70 3,416.28 0.75% 3,416.28 0.75% 3488.86 2.89% 

11 3,339.29 3,487.92 4.45% 3,794.63 13.64% 3499.25 4.79% 

12 3,341.09 3,411.96 2.12% 3,674.92 9.99% 3457.97 3.50% 

13 3,382.32 3,382.44 0.00% 3,382.44 0.00% 3454.45 2.13% 

14 3,293.17 3,348.96 1.69% 3,626.69 10.13% 3539.03 7.47% 

15 3,346.22 3,585.12 7.14% 3,585.12 7.14% 3511.68 4.94% 

16 3,356.46 3,472.20 3.45% 3,809.00 13.48% 3502.53 4.35% 

17 3,258.02 3,334.32 2.34% 3,334.32 2.34% 3454.11 6.02% 

18 3,372.79 3,474.36 3.01% 3,474.36 3.01% 3539.32 4.94% 

19 3,399.10 3,420.24 0.62% 3,590.47 5.63% 3528.18 3.80% 

20 3,367.10 3,376.76 0.29% 3,396.76 0.88% 3480.50 3.37% 

21 3,329.94 3,335.60 0.17% 3,565.12 7.06% 3541.01 6.34% 

22 3,398.56 3,398.52 0.00% 3,398.52 0.00% 3511.80 3.33% 

23 3,387.28 3,395.20 0.23% 3,556.22 4.99% 3495.41 3.19% 

24 3,370.67 3,397.84 0.81% 3,429.13 1.73% 3497.00 3.75% 

25 3,317.96 3,528.48 6.34% 3,528.48 6.34% 3489.54 5.17% 

26 3,380.72 3,396.40 0.46% 3,459.46 2.33% 3535.73 4.59% 
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27 3,364.82 3,569.40 6.08% 3,851.38 14.46% 3466.53 3.02% 

28 3,327.65 3,332.48 0.15% 3,656.98 9.90% 3485.90 4.76% 

29 3,288.79 3,299.16 0.32% 3,508.01 6.67% 3547.21 7.86% 

30 3,323.31 3,410.16 2.61% 3,627.64 9.16% 3512.17 5.68% 

Average 3348.17 3425.59 2.31% 3553.80 6.15% 281.28 4.52% 

 

Table 5-23: Comparison of the MS-BTS heuristic, PDPSL heuristic and the TESA heuristic in 

terms of computational time for Scenario 4 

 
Computational Time 

Instance 

No 

Exact 

Soln. 

PDPSL 

heuristic 

Improvement 

w.r.t. Exact 

Soln. 

MS-BTS 

heuristic 

Reduction 

w.r.t. Exact 

Soln. 

TESA 

heuristic 

Improvement 

w.r.t. Exact 

Soln. 

1 159.33 44.02 -72.37% 39.4 -75.27% 41.79 73.77% 

2 165.65 46.58 -71.88% 42.01 -74.64% 45.80 72.35% 

3 158.1 47.05 -70.24% 44.74 -71.70% 47.15 70.18% 

4 150.18 46.59 -68.98% 45.93 -69.42% 44.09 70.64% 

5 155.03 45.61 -70.58% 44.45 -71.33% 42.82 72.38% 

6 159.83 44.14 -72.38% 39.51 -75.28% 43.23 72.95% 

7 152.45 46.59 -69.44% 40.67 -73.32% 46.08 69.77% 

8 157.21 45.03 -71.36% 42.74 -72.81% 47.46 69.81% 

9 154.01 45.6 -70.39% 43.29 -71.89% 41.84 72.83% 

10 160.53 47.16 -70.62% 39.87 -75.16% 45.50 71.66% 

11 155.52 46.03 -70.40% 38.57 -75.20% 47.25 69.62% 

12 165.52 45.98 -72.22% 41.37 -75.01% 41.00 75.23% 
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13 156.26 47.46 -69.63% 39.46 -74.75% 43.93 71.89% 

14 154.66 49.13 -68.23% 40.04 -74.11% 45.63 70.50% 

15 160.3 50.6 -68.43% 42.19 -73.68% 45.53 71.60% 

16 158.77 46.39 -70.78% 43.57 -72.56% 46.27 70.86% 

17 160.06 49.74 -68.92% 40.82 -74.50% 44.96 71.91% 

18 155.44 44.5 -71.37% 41.96 -73.01% 41.69 73.18% 

19 158.83 51.46 -67.60% 42.95 -72.96% 44.63 71.90% 

20 157.25 44.02 -72.01% 42.36 -73.06% 42.43 73.02% 

21 160.66 51.89 -67.70% 41.22 -74.34% 42.58 73.50% 

22 164.67 49.8 -69.76% 43.27 -73.72% 44.22 73.15% 

23 158.62 50.29 -68.30% 40.6 -74.40% 44.68 71.83% 

24 158.51 47.88 -69.79% 43.38 -72.63% 42.63 73.11% 

25 154.17 46.69 -69.72% 43.32 -71.90% 42.86 72.20% 

26 159.02 46.57 -70.71% 42.85 -73.05% 42.33 73.38% 

27 158.04 45.85 -70.99% 38.08 -75.90% 46.33 70.68% 

28 159.07 48.02 -69.81% 40.08 -74.80% 46.10 71.02% 

29 159.6 44.07 -72.39% 39.75 -75.09% 44.90 71.87% 

30 160.41 50.33 -68.62% 39.17 -75.58% 43.48 72.89% 

Average 158.26 47.17 -70.19% 41.59 -73.70% 44.31 71.99% 
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Table 5-24: Comparison of the MS-BTS heuristic, PDPSL heuristic and the TESA heuristic in 

terms of solution quality for Scenario 10 

 Solution 

Instance 

No 

PDPSL 

heuristic 

MS-BTS 

heuristic 

Error w.r.t. 

PDPSL 

TESA 

heuristic 

Error w.r.t. 

PDPSL 

1 7,149.41 7,152.09 0.04% 7,191.34 0.59% 

2 6,819.61 6,992.54 2.54% 6,965.80 2.14% 

3 6,918.09 7,043.71 1.82% 7,072.82 2.24% 

4 6,589.25 7,130.05 8.21% 7,073.19 7.34% 

5 6,683.59 7,120.43 6.54% 7,103.26 6.28% 

6 7,120.51 7,130.56 0.14% 7,188.98 0.96% 

7 6,917.81 7,113.65 2.83% 7,158.07 3.47% 

8 6,674.57 7,002.81 4.92% 6,971.35 4.45% 

9 6,511.64 6,923.27 6.32% 7,117.66 9.31% 

10 6,734.04 6,918.12 2.73% 7,081.45 5.16% 

11 6,526.20 7,034.24 7.78% 7,050.83 8.04% 

12 6,580.55 7,052.85 7.18% 7,149.44 8.65% 

13 6,553.77 6,951.46 6.07% 7,078.65 8.01% 

14 6,889.91 7,038.82 2.16% 7,098.72 3.03% 

15 6,911.72 7,146.47 3.40% 7,001.34 1.30% 

16 6,719.36 7,177.09 6.81% 7,146.30 6.35% 

17 6,647.21 7,118.26 7.09% 6,935.72 4.34% 

18 6,950.92 7,137.00 2.68% 6,955.16 0.06% 

19 6,585.61 7,194.47 9.25% 7,078.69 7.49% 
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20 6,720.19 7,234.52 7.65% 6,924.35 3.04% 

21 7,161.53 7,228.25 0.93% 7,213.59 0.73% 

22 6,850.46 6,868.17 0.26% 6,907.48 0.83% 

23 6,740.91 7,225.05 7.18% 7,029.09 4.28% 

24 6,840.57 7,149.45 4.52% 6,910.49 1.02% 

25 7,015.51 7,212.06 2.80% 7,097.40 1.17% 

26 6,650.47 6,885.43 3.53% 6,949.91 4.50% 

27 6,383.38 6,770.65 6.07% 7,136.19 11.79% 

28 6,759.34 7,053.01 4.34% 6,936.61 2.62% 

29 6,901.03 6,960.10 0.86% 7,079.25 2.58% 

30 7,073.14 7,252.97 2.54% 7,084.78 0.16% 

Average 6,786.01 7,073.92 4.31% 7,056.26 4.06% 

 

Table 5-25: Comparison of the MS-BTS heuristic, PDPSL heuristic and the TESA heuristic in 

terms of computational time for Scenario 10 

 Computational Time 

Instance 

No 

PDPSL 

heuristic 

MS-BTS 

heuristic 

Error w.r.t. 

PDPSL 

TESA 

heuristic 

Improvement w.r.t. 

PDPSL 

1 93.31 77.80 -16.62% 87.11 -6.64% 

2 90.38 80.40 -11.04% 83.03 -8.13% 

3 90.76 80.90 -10.86% 89.34 -1.56% 

4 89.87 80.97 -9.90% 86.28 -3.99% 

5 89.55 81.28 -9.24% 90.36 0.90% 

6 88.13 78.65 -10.76% 85.81 -2.63% 
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7 94.01 79.09 -15.87% 87.96 -6.44% 

8 89.64 79.91 -10.85% 87.86 -1.99% 

9 93.79 80.89 -13.75% 91.24 -2.72% 

10 92.24 79.65 -13.65% 85.52 -7.29% 

11 89.62 81.59 -8.96% 84.34 -5.89% 

12 91.26 81.86 -10.30% 83.23 -8.80% 

13 88.30 81.65 -7.53% 90.59 2.59% 

14 88.25 78.58 -10.96% 87.82 -0.49% 

15 93.46 80.43 -13.94% 90.05 -3.65% 

16 88.87 76.02 -14.46% 91.90 3.41% 

17 94.78 80.34 -15.24% 91.99 -2.94% 

18 94.82 81.50 -14.05% 84.34 -11.05% 

19 90.25 82.14 -8.99% 85.66 -5.09% 

20 91.03 80.43 -11.64% 88.30 -3.00% 

21 88.27 82.05 -7.05% 91.93 4.15% 

22 93.23 79.35 -14.89% 85.26 -8.55% 

23 88.38 80.36 -9.07% 91.44 3.46% 

24 93.51 79.54 -14.94% 86.27 -7.74% 

25 93.11 79.72 -14.38% 89.67 -3.69% 

26 94.47 80.11 -15.20% 90.07 -4.66% 

27 92.63 77.67 -16.15% 84.17 -9.13% 

28 90.93 80.83 -11.11% 83.06 -8.66% 

29 92.10 81.63 -11.37% 88.23 -4.20% 

30 90.65 79.86 -11.90% 85.53 -5.65% 

Average 91.32 80.17 -12.16% 87.61 -4.00% 
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Table 5-26: Comparison of the MS-BTS heuristic, PDPSL heuristic and the TESA heuristic in 

terms of solution quality for Scenario 14 

 Solution 

Instance 

No 

PDPSL 

heuristic 

MS-BTS 

heuristic 

Error w.r.t. 

PDPSL 

TESA 

heuristic 

Error w.r.t. 

PDPSL 

1 20,758.02 22,013.29 6.05% 21,647.50 4.28% 

2 21,514.44 22,652.99 5.29% 21,733.22 1.02% 

3 21,164.65 22,593.26 6.75% 21,564.27 1.89% 

4 20,455.04 21,716.88 6.17% 21,800.42 6.58% 

5 20,660.69 22,605.58 9.41% 21,628.96 4.69% 

6 20,560.16 22,010.69 7.06% 21,833.85 6.19% 

7 21,124.16 22,536.12 6.68% 21,784.92 3.13% 

8 21,625.63 22,565.72 4.35% 21,744.78 0.55% 

9 20,451.21 22,331.59 9.19% 21,922.51 7.19% 

10 21,480.83 22,184.52 3.28% 21,642.41 0.75% 

11 21,563.32 22,437.36 4.05% 21,687.51 0.58% 

12 22,137.74 22,374.90 1.07% 22,576.45 1.98% 

13 21,357.43 21,573.75 1.01% 21,932.53 2.69% 

14 20,571.23 22,108.18 7.47% 21,812.49 6.03% 

15 22,360.17 22,514.46 0.69% 22,702.59 1.53% 

16 20,958.80 21,612.04 3.12% 21,932.53 4.65% 

17 22,414.47 22,539.76 0.56% 22,818.81 1.80% 

18 22,493.62 23,406.05 4.06% 22,595.79 0.45% 
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19 21,305.20 22,186.10 4.13% 21,626.94 1.51% 

20 20,896.06 23,452.47 12.23% 21,816.53 4.40% 

21 20,337.41 22,821.14 12.21% 21,535.81 5.89% 

22 21,548.81 21,642.20 0.43% 21,645.21 0.45% 

23 20,542.98 22,140.22 7.78% 21,654.79 5.41% 

24 21,611.71 21,927.45 1.46% 22,603.49 4.59% 

25 20,758.33 22,194.67 6.92% 21,707.23 4.57% 

26 20,718.23 21,753.92 5.00% 21,524.14 3.89% 

27 20,720.74 23,090.94 11.44% 21,627.28 4.38% 

28 20,889.70 22,101.78 5.80% 21,759.62 4.16% 

29 22,301.95 22,505.29 0.91% 22,825.38 2.35% 

30 21,186.17 21,194.58 0.04% 21,876.18 3.26% 

Average 21,215.63 22,292.93 5.15% 21,918.80 3.36% 

 

Table 5-27: Comparison of the MS-BTS heuristic, PDPSL heuristic and the TESA heuristic in 

terms of computational time for Scenario 14 

Instance 

No 

PDPSL 

heuristic 

M-MSPDP 

heuristic 

Error w.r.t. 

PDPSL 

TESA 

heuristic 

Error w.r.t. 

PDPSL 

1 187.57 167.54 -10.68% 173.96 -7.26% 

2 186.88 167.34 -10.46% 177.35 -5.10% 

3 194.11 165.68 -14.65% 177.91 -8.35% 

4 194.44 164.04 -15.63% 182.87 -5.95% 

5 192.34 169.62 -11.81% 173.21 -9.95% 

6 186.96 169.05 -9.58% 178.60 -4.47% 
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7 194.07 165.06 -14.95% 176.20 -9.21% 

8 190.21 170.68 -10.27% 171.42 -9.88% 

9 188.55 169.31 -10.20% 175.31 -7.02% 

10 193.04 168.60 -12.66% 176.75 -8.44% 

11 188.60 163.37 -13.38% 181.67 -3.67% 

12 190.64 164.47 -13.73% 174.25 -8.60% 

13 191.08 170.34 -10.85% 181.19 -5.18% 

14 193.48 168.21 -13.06% 182.13 -5.87% 

15 187.82 166.32 -11.45% 181.96 -3.12% 

16 189.76 169.68 -10.58% 179.63 -5.34% 

17 186.26 168.60 -9.48% 171.27 -8.05% 

18 189.43 166.18 -12.27% 179.28 -5.36% 

19 184.68 163.68 -11.37% 180.92 -2.04% 

20 191.12 165.79 -13.25% 172.65 -9.66% 

21 181.16 162.77 -10.15% 177.53 -2.00% 

22 186.10 168.79 -9.30% 172.95 -7.07% 

23 186.02 163.63 -12.04% 180.85 -2.78% 

24 193.90 163.30 -15.78% 174.61 -9.95% 

25 187.58 166.39 -11.30% 176.59 -5.86% 

26 189.79 164.23 -13.47% 175.71 -7.42% 

27 188.54 166.19 -11.85% 177.33 -5.95% 

28 185.02 168.32 -9.03% 177.59 -4.02% 

29 186.17 164.80 -11.48% 172.80 -7.18% 

30 185.88 164.84 -11.32% 175.39 -5.64% 

Average 189.04 166.56 -11.87% 177.00 -6.35% 
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5.4.2.1 Comparison to the exact solution method 

 

The comparison between the MS-BTS heuristic and the exact solution method is limited to the 

scenarios no more than 90 number of nodes (i.e., Scenarios 1 through 4 in Table 5-1), since the 

computation time for the exact solution is found to be more than 6 hours after 90 nodes. 

 

Figure 5-3 shows the total vehicle miles traveled (VMT) obtained by MS-BTS in comparison to 

the exact solution method in the MOSEK solver. As observed, the MS-BTS heuristic solution 

coincides with the exact solution for the small-scale problems and the error in the MS-BTS 

heuristic solution w.r.t the exact solution varies between 3-8% for larger problem sizes. 

  

Figure 5-4 shows the average computation time (in minutes) of the MS-BTS heuristic of 30 

instances for each scenario. The MS-BTS heuristic delivers 73-83% savings in the computation 

time compared to the exact solution.  
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Figure 5-3. Solution of the MS-BTS heuristic in comparison to the exact solution 

 

Figure 5-4. Computational time of the MS-BTS heuristic in comparison to the exact solution 
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5.4.2.2 Comparison between MS-BTS and other heuristics (PDPSL and TESA) 

 

Table 5-2 presents the results of MS-BTS and PDPSL and TESA in terms of solution quality and 

computational time. Each scenario is again run for 30 instances and the average results are 

presented in Table 5-28. Figures 5-5 and 5-6 display the relative difference (% difference in VMT 

and % difference in computational time) of MS-BTS with respect to PDPSL and TESA.   

 

In terms of VMT, the relative difference is within 8%. Specifically, the average % difference of 

MS-BTS relative to PDPSL is 5.13%, and 1.16% relative to TESA. That is, MS-BTS gives an 

average 5.13% higher VMT than PDPSL, and 1.16% higher VMT than TESA. Noticeable, Figure 

5-5 shows that when the number of nodes increases after 200 the relative differences are stabilized, 

an indication of convergence among the heuristics.  

 

In terms of computation time, MS-BTS outperforms both PDPSL and TESA by an average of 

10.14% and 5.91%, respectively. In other words, on average MS-BTS takes 10.14% less time to 

find the solution than PDPSL, and 5.91% less time than TESA. Again, Figure 5-6 shows the 

convergence when the number of nodes is greater than 100.  

 

Based on the two-sample t-test, it is found that the differences in the solution and the computation 

time for the MS-BTS heuristic and the TESA heuristic are not significant (p >0.05).  

 

 



Page 186 of 240 

 

Table 5-28: Comparison among MS-BTS, PDPSL and TESA 

SID No. 

nodes 

O x D VMT Computation Time (minutes) 

MS-BTS  

(A) 

PDPSL  

(B) 

TESA  

(C) 

MS-BTS  

(A) 

PDPSL  

(B) 

TESA  

(C) 

1 20 5 x 15 297.05 280.3 291.68 0.98 1.10 1.10 

2 30 10 x 20 723.41 698.33 720.54 8.34 7.48 7.64 

3 60 20 x 40 1,809.54 1,702.72 1,780.63 15.83 17.88 16.22 

4 90 30 x 60 3,604.60 3,348.17 3,582.25 41.65 47.16 48.20 

5 100 30 x 70 3,799.29 3,658.79 3,759.79 48.89 55.45 52.04 

6 110 40 x 70 3,852.91 3,710.79 3,817.48 56.52 63.91 59.33 

7 120 40 x 80 4,338.51 4,021.34 4,208.24 61.19 69.64 65.81 

8 130 50 x 80 5,246.98 5,042.75 5,238.46 64.25 73.12 68.29 

9 140 50 x 90 5,867.71 5,626.34 5,777.76 72.19 82.17 77.37 

10 150 60 x 90 7,078.49 6,786.01 7,061.52 80.22 91.32 87.06 

11 200 80 x 120 12,598.23 12,037.29 12,427.64 109.08 124.11 117.09 

12 250 110 x 140 17,369.71 16,523.7 17,229.88 131.73 149.07 142.52 

13 300 120 x 180 20,021.22 19,044.25 19,860.99 143.69 163.06 152.88 

14 350 150 x 200 22,308.23 21,215.63 21,928.47 166.60 189.04 177.75 
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Figure 5-5. Solution quality of the MS-BTS heuristic in % difference with respect to that of the 

PDPSL and the TESA heuristic 

 

 

 

Figure 5-6. % computational time savings of the MS-BTS heuristic with respect to that of the 

PDPSL and the TESA heuristic 
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5.5. Case Studies 

 

In this section, we apply the MS-BTS heuristic to solve for two case studies of the M-MSPDP: 

parcel pickup and delivery among parcel stations (i.e., M-MSPDP-FPD) and bicycle rebalancing 

in a bike-sharing system (i.e., M-MSPD-OC).   

 

5.5.1 Case Study 1: Parcel Station Pickup and Delivery 

 

An emerging last-mile delivery paradigm is the concept of microhub. A microhub is a small-scale 

logistics facility usually located in the centre of an urban environment like city center, from which 

the local distribution demand is served by employing environment-friendly modes of transport 

(Janjevic and Ndiaye, 2014). The field test of a system of microhubs implemented in the city of 

Amsterdam showed a reduction of the delivery van stops in the city center - a total of 2,000 van 

stops were accounted to have been reduced during the field test as part of the EU-funded Civitas 

Citylab project (Citylab, 2018). At the same time, crowdshipping is gaining traction in last-mile 

delivery in recent years for its relatively low delivery cost and flexibility (Rai et al., 2017). 

 

In light of the potential benefits of microhubs and crowdshipping, we propose this new urban 

delivery paradigm where the last-mile demand fulfilment is done through a network of microhubs 

coupled with crowdshipping (or M+C for short hereafter). In this paradigm, an urban service area 

is divided into a number of service zones (e.g., by zipcode). Within each zone, there is a designated 

microhub to temporarily store inbound and outbound parcels2. These parcels are either collected 

 
2 In this study the parcels are assumed of a typical online shopping parcel size, e.g., the commonly seen Amazon 

parcels. They can be carried by a regular passenger vehicle.  



Page 189 of 240 

 

or distributed by crowdshippers between customers (shippers and end receivers) and the zonal 

microhub. The crowdshippers may be automobile drivers or cyclists. Commercial trucks are 

dispatched periodically to visit only the microhubs in the service area to transfer parcels to their 

respective destination microhubs. Thus, truck traffic and VMT on busy and often narrow city 

streets can be largely avoided. 

 

In this study setting, the service area covered by a logistics carrier is divided into smaller so-called 

‘service zones’ and each zone has a designated microhub that handles the parcels in and out of the 

zone. Figure 5-7 is an example of the service area, service zones, and microhubs. In this example, 

the entire service area (the square) is divided into nine zones. Each zone has a microhub located at 

the centroid of the zone.  

 

 

Figure 5-7. Service Area, service zones, microhubs, and truck routing in M+C 
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All parcel pickup and delivery requests are classified into two categories according to the zonal 

relationship between the pickup and the delivery location: intra-zonal and inter-zonal requests. An 

intra-zonal request refers to one in which both the pickup and delivery addresses are within the 

same service zone (e.g., (P1,D1), (P2,D2), and (P3,D3) in Figure 5-8). For this type of request, 

transshipment may not take place. An inter-zonal request refers to one in which the pickup and 

delivery addresses are not in the same service zone. For this type of request, transshipment service 

is necessary; in other words, an inter-zonal parcel is picked up by a crowdshipper at its shipper’s 

and deposited in its microhub of origin, and then transferred by truck to its microhub of destination, 

and finally delivered by another crowdshipper to its final receiver. 

 

Delivery trucks belong to a carrier’s fleet and carry out routine visits to microhubs only to pick up 

and deliver parcels among the microhubs. As such, congestion due to truck traffic or truck parking 

on urban streets could be largely avoided. Figure 5-7 graphically illustrates the truck routing 

among microhubs in M+C. In M+C, the first and last mile deliveries within a service zone are 

performed by crowdshippers. A crowdshipper can be an automobile driver, a bicyclist, or a 

pedestrian. A crowdshipper’s travel speed, payload capacity, service range, and compensation rate 

vary by the mode of transportation. Figure 5-8 illustrates the kinds of crowdshipper routing in a 

service zone. It is assumed that a crowdshipper visits only customers within the same service zone 

on a route. However, there is no restriction for a crowdshipper to move to another service zone 

after completion of his/her previous routing to look for more work. 
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Figure 5-8: Crowdshipper routing in a service zone in M+C 

 

Based on the above description, we formulate the M+C paradigm as two separate and connected 

routing problems. One concerns the crowdshipper routing within a service zone; and the other 

concerns the truck routing among microhubs.  

 

The truck routing in M+C paradigm a Many-to-Many (M-M) Split Pickup-and-Delivery Problem 

(M-MSPDP) as follows: 

 

(4) Many-to-many pickup and delivery: each microhub can be an origin to many destination 

microhubs and at the same time a destination to many origin microhubs; 

(5) Split pickup: at each microhub 𝑖, the total pickup demand may exceed the available capacity 

of a single truck and therefore not all parcels will be picked up by one truck visit; and 

(6) At least one visit to a microhub by any truck: a microhub may be visited by more than one 

truck. This is due to the split pickup operation as considered in this study.  
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As a comparison baseline, we consider a special case of truck routing in M+C where no splitting 

of loads is allowed at the microhubs and each truck must visit all the microhubs at least once until 

it delivers all the pairwise transshipment demand that it carries. The experimental setup is 

described in detail in Lin and Ballare (2020). We then apply the MS-BTS heuristic to the general 

case of M-MSPDP to obtain a solution (M+C with split loads allowed), while keeping all model 

parameters the same. 

 

After that, we compare the performance of the M+C delivery paradigm w/o split loads (special 

case) and the M+C delivery paradigm with split loads (using the MS-BTS heuristic). The 

performance parameters selected for the comparison are the number of trucks dispatched, average 

total fuel consumption and average total VMT.  

 

Table 5-29 presents the results of the solution for the M+C delivery paradigm by using the MS-

BTS heuristic (allowing split loads).   

 

Table 5-29: Results for the M+C delivery paradigm by using the MS-BTS heuristic (standard 

deviation in parenthesis) 

Demand (# of 

customers in the 

service area) 

#trucks dispatched Avg. total fuel 

consumption (gallons) 

Average VMT 

108 2 8.09  

(0.15) 

177.10 

(8.29) 
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180 2 9.78  

(0.12) 

241.16 

(8.38) 

432 4 24.31  

(0.19) 

624.86 

(33.92) 

1,800 16 106.49  

(1.96) 

2,648.77 

(14.58) 

18,000 158 961.73  

(17.81) 

23,478.51 

(277.27) 

180,000 1,583 10,074.99 

(96.79) 

225.063.64 

(2,465.41) 

1,800,000 15,781 98,110.36  

(469.98) 

2,670,731.03 

(11,817.33) 

 

As observed from Table 5-3, the performance parameters for M+C paradigm – the number of 

trucks dispatched, and the average total fuel consumption increase with the number of customers 

in the service area.  
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Figure 5-9. Reduction in the average total VMT for the M+C paradigm with split loads 

compared to without split loads 
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Figure 5-10. Reduction in the average total daily operating cost for the M+C paradigm with 

split loads compared to without split loads 

 

From Figures 5-9 and 5-10, it is observed the M+C delivery paradigm with split loads delivers a 

reduction in the average total VMT and the average total daily operating cost as compared to the  

M+C delivery paradigm without split loads. As compared to the case of M+C delivery paradigm 

without split loads, the M+C with split loads allowed paradigm delivers a small reduction in the 

number of trucks dispatched (1.25-1.37%), average VMT (2.16-2.99%), and total fuel 

consumption (1.16-3.19%) for the large customer demands. The results for both scenarios are 

similar for the smaller customer demand as it represents a smaller opportunity for feasible loads to 

be split. The M+C with split loads allowed paradigm also witnesses a decrease in the average total 

daily operating cost in comparison with the M+C without split loads when the customer demand 

is large (1.68-3.88%). Thus, it is observed from the comparison of the results between the two 

cases of M+C delivery paradigm, allowing loads to be split brings a reduction in the number of 

trucks required to serve the total demand, as well as reduces the truck VMT, fuel consumption and 

the daily operating cost. It is important to note that there is no impact on the performance 

characteristics of the crowdshippers as the split loads are only being considered for the truck 

routing between the microhubs.  
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5.5.2 Case Study 2: Bike Rebalancing in a Bike-sharing System 

 

In the second case study, we apply the MS-BTS heuristic to the Bike-sharing Rebalancing Problem 

(BRP). In this case study, we use the same problem setting described in Dell'Amico et al. (2016) 

and compare our MS-BTS solution with theirs.  

 

The problem setting is described as follows. The BRP consists of a set of 250 bike stations and a 

depot. The coordinates for the bike stations are randomly generated and uniformly distributed over 

the range [-40,40] for both X and Y coordinates. The depot is located at [0,0]. For each bike station, 

requests for bike pick up or drop off are generated, which could be either positive or negative.  A 

positive request indicates that the bike station has bikes available to be picked up for transshipment 

while a negative request indicates that the bike station is need of bikes to be dropped off. Bike 

stations with positive requests are considered as pickup stations and bike stations with negative 

requests are considered as delivery stations. The load demand is interpreted in terms of the number 

of bikes needed to be picked up or dropped off and the truck loaded capacity (TL) is restricted to 

the number of bikes that can be stored in the truck for transshipment. to maintain a specific service 

level. As is the case with the BRP literature, a station with no demand is also scheduled to be 

visited by the truck to allow routine inspection of bikes and stations. No temporary transshipment 

is considered between the bike stations and the trucks leave and return empty from/to the depot. 

The objective of the problem is to minimize the routing cost of the trucks to serve the demand at 

all bike-stations. For further details regarding the problem, please refer to Dell'Amico et al. (2016). 
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Dell'Amico et al. (2016) use the Destroy and Repair (D&R) metaheuristic algorithm to solve the 

problem of routing a fleet of capacitated vehicles to redistribute bicycles among the bike-stations 

of a bike-sharing system. The D&R algorithm is briefly described below. For detailed information 

on the heuristic, please refer to Dell'Amico et al. (2016). 

 

Step 0. Initial solution by applying the Clark and Wright Savings algorithm, and the concept of 

‘loss of flexibility’ (Dell'Amico et al., 2016) for merging of the routes. At first, dedicated routes 

to each bike station are created. This is followed by iteratively selecting two routes at a time to 

merge them into one, if feasible considering the positive and the negative requests and the truck 

load constraints. Dell'Amico et al., 2016 first introduced the concept of ‘feasibility’ of paths in 

BRP based on the properties such as removing or inserting a bike station, swapping two bike 

stations or merging two (partial) routes. ‘Loss of Flexibility’ for a merged route is then defined as 

the difference between the amount of feasibility for the resulting route (Dell'Amico et al., 2016). 

 

Step 1. “Destroy”. That is, a number of bike stations (number is randomly selected with a uniform 

probability in a predefined interval [0.6582, 4] (Dell'Amico et al., 2016)) are randomly selected, 

one at a time, independent of each other and with uniform probability and are removed from the 

existing solution.  

 

Step 2. “Repair”. This is carried out in two ways. The first involves evaluating the feasibility and 

the cost of inserting each of the non-assigned vertices (left from the destroy step) in any position 

of the route or creating a dedicated route and selecting the option with the minimum cost till all 
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vertices are assigned. The second is to make use of the same Clark and Wright Savings Algorithm 

as in the first step.  

 

Step 3. A set of local search techniques are employed to improve the current solution.  

 

Step 4. Go back to Step 2 and repeat until no further improvement can be achieved.  

 

Since the MS-BTS heuristic is developed to solve the Many-to-Many problem with fixed origins 

and destinations, we make certain changes to the problem for fair comparison between the two 

heuristics. The load demand for the transportation requests is generated randomly and is uniformly 

distributed between the range of 0.1 – 0.9 TL with the truck capacity being 1.0 TL. Instead of the 

unpaired demands at each bike station considered by Dell'Amico et al., 2016 to create the initial 

solution, we generate the requests such that each request has an origin and a destination bike station 

allocated. Thus, each bike-station in our problem could be an origin and destination for other bike-

stations, including more than one bike-station. This is then provided to the D&R meta-heuristic as 

the initial solution with paired pickup and delivery bike stations. The same is also solved using the 

MS-BTS heuristic, which addresses this problem as a many-to-many BRP with fixed origins and 

destinations.  

We consider the problem with 250 bike-stations to compare the performance between the D&R 

meta-heuristic and the MS-BTS heuristic. The parameters for the D&R meta-heuristic are kept the 

same as given in Dell'Amico et al. (2016). 
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Table 5-30present the results of the evaluation of destroy and repair meta-heuristic in comparison 

with the MS-BTS heuristic in terms of solution quality and computational time. 

 

Table 5-30: Comparison of the M+C special case and the M+C with split loads allowed delivery 

paradigm (standard deviation in parenthesis) 

Instance 

no. 

VMT Computational Time 

 Destroy 

and Repair 

(A) 

MS-BTS 

(B) 

Difference 

𝐴−𝐵

𝐵
% 

Destroy and 

Repair 

(C) 

MS-BTS 

(D) 

Difference 

𝐶−𝐷

𝐶
% 

1 263.1 262.23 0.33% 23.55 22.60 4.04% 

2 272.26 268.58 1.35% 32.15 31.35 2.48% 

3 265.27 265.27 0.00% 28.26 27.68 2.07% 

4 307.31 299.63 2.50% 25.65 25.22 1.68% 

5 277.93 268.79 3.29% 25.01 24.19 3.28% 

6 345.98 335.57 3.01% 28.93 28.10 2.86% 

7 317.19 317.19 0.00% 21.38 21.01 1.73% 

8 322.96 318.08 1.51% 32.95 32.22 2.21% 

9 346.68 343.14 1.02% 31.33 30.86 1.50% 

10 249.38 244.17 2.09% 26.67 26.08 2.20% 

11 279.36 271.45 2.83% 31.91 31.55 1.12% 

12 265.76 265.76 0.00% 21.92 21.42 2.27% 

13 330.36 330.36 0.00% 33.33 32.18 3.45% 
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14 246.79 246.30 0.20% 24.42 23.70 2.94% 

15 274.74 269.22 2.01% 24.12 23.63 2.02% 

16 308.66 301.44 2.34% 21.27 20.46 3.82% 

17 327.75 327.75 0.00% 33.4 32.25 3.43% 

18 263.99 256.41 2.87% 27.9 26.80 3.95% 

19 257.93 250.97 2.70% 23.56 22.97 2.49% 

20 283.41 274.88 3.01% 34.85 33.73 3.21% 

21 343.3 343.30 0.00% 25.94 25.20 2.86% 

22 304.5 303.59 0.30% 21.64 20.58 4.89% 

23 308.6 299.56 2.93% 24.48 23.62 3.51% 

24 321.8 319.97 0.57% 29.25 28.78 1.61% 

25 294.99 294.99 0.00% 24.78 24.24 2.18% 

26 292.75 292.75 0.00% 33.46 32.42 3.11% 

27 329.43 316.52 3.92% 25.22 24.31 3.59% 

28 311.19 301.39 3.15% 23.98 23.15 3.46% 

29 268.12 268.12 0.00% 26.15 24.95 4.58% 

30 299.32 292.76 2.19% 25.65 24.59 4.12% 

Average 296.03 

(± 29.32) 

291.67 

(± 29.17) 

1.47% 27.10 

(±4.04) 

26.33 

(±3.99) 

2.86% 

 

Thus, from the above table we can observe that on average the MS-BTS delivers a better solution 

in slightly lesser time as compared to the Destroy and Repair meta-heuristic. Both heuristics show 

a similar performance in 8 out of the 30 instances. However, the MS-BTS heuristic delivers a 
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smaller solution (0.20-3.92%) as compared to the Destroy and Repair meta-heuristic for the 

remaining 22 instances and consumes less (1.02-4.89%) computation time. The MS-BTS could be 

improved further by exploring other local search techniques.  

 

7. Conclusion 

 

In this study, we introduce the Many-to-Many Split Pickup and Delivery problem. We develop a 

MS-BTS heuristic based on our understanding of the maximum benefits achieved by allowing split 

loads that can solve large problems requiring a reasonable amount of computational time. Split 

loads to be generated were decided from the tabu list maintained allowing the space in the solution 

space to be searched. A modified form of the Clarke and Wright’s savings algorithm is used to 

make local improvements. Further local improvements are made possible by swap and insertion 

moves.  

 

We evaluate the performance of the MS-BTS heuristic with randomly generated data in 

comparison to the exact solution method as well as two existing heuristics, PDPSL and TESA. We 

find that the MS-BTS heuristic performs well with an acceptable error in the solution quality than 

the exact solution (with an average of 5.87%), the PDPSL heuristic (with an average of 5.13%), 

and the TESA heuristic (with an average of 1.16%). On the other hand, MS-BTS out performs 

those methods in terms of computation time by 5.91% (TESA), 10.14% (PDPSL), and 79.79% 

(the exact solution method).   

 



Page 202 of 240 

 

We further apply the MS-BTS heuristic to solve for two applications of the M-MSPDP: parcel 

pickup and delivery among parcel stations (i.e., M-MSPDP-FPD) and bike rebalancing in a bike-

sharing system (i.e., M-MSPD-OC). We find the MS-BTS to be useful in solving large scale 

problems for both applications. 

 

This research indicates that the M-MSPDP should be further explored, with opportunities to decide 

the order of splitting the loads to search the solution space more efficiently. Research may also be 

conducted in the local improvement techniques order to improve the vehicle routing. 
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Chapter 6 Future Logistics: Impact of automation 

 

In light of the potential benefits and implications of complete automation in freight handling and 

delivery, we also consider a futuristic delivery paradigm where all stages of the last-mile demand 

fulfillment are handled without any involvement of human factor. In this paradigm, the parcels are 

sorted, loaded onto and unloaded from trucks at the central hub using robots or machines which 

are fully automated and require minimum human intervention. In addition, all vehicles transporting 

freight between the customer and the central hub are fully automated/self-driving. We assume that 

no human decision maker is present in the entire system which completes the tasks based on the 

pre-programmed rules. A brief commentary on the impacts of such a proposed delivery paradigm 

is presented here. 

 

6.1 Introduction 

Automation is expected to have an impact on the way we go about our day to day lives, including 

how we work and commute. Recent developments in artificial intelligence (AI), advanced robotics, 

3D printing, deep learning, and the Internet of Things (IoT) have made it feasible for these 

technologies to be adapted in our workplaces (Baker, 2004; Klumpp, 2018). From virtual assistants 

to self-driving vehicles, some levels of automation have already penetrated our lives, while 

improving our efficiency but also posing a threat to our livelihoods itself at the same time (Klumpp, 

2018). 

 

With the rapid developments in technology, significant research has also been conducted on the 

potential positives and negatives of automation in the future. Most researchers agree on two 
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possible future scenarios (Arntz et al., 2016). The first scenario results in several negative 

outcomes of automation, including a threat to the labor workforce. In this scenario, due to most of 

the jobs being undertaken by robots and artificial intelligence, a permanent rate of high 

unemployment is predicted. The second scenario delivers the benefits of automation – safer 

workplace, cleaner environment, more productive and prosperous society. In this scenario, most 

of the displaced workers are able to be reskilled and find alternative or better jobs (Acemoglu, and 

Restrepo, 2017). 

 

Automation helps in increasing labor productivity, quality of products, employee safety and reduce 

labor cost and lead time (Groover, 2008). Though, automation also suffers from various problems. 

These include high cost of equipment, lack of flexibility, integration into existing systems, 

maintenance issues and need for training of workforce etc. (Dadzie and Johnston, 1991; Naish and 

Baker, 2004; Baker and Halim, 2007). Automation in the logistics industry involves applications 

such as automated loading and unloading systems, conveyor belts, bar code systems, sorting or 

screening systems, item picking systems etc. (Dadzie and Johnston, 1991; Öjmertz, 1998; Frazelle 

and Frazelle, 2002; Baker, 2004; Echelmeyer et al., 2008).  

 

6.2 Automation in the logistics industry 

In the United States, motorized freight has been dominating the vast and growing freight 

transportation market. By 2045, the transportation sector is expected to represent $1.6trillion of 

total GDP for the United States with over 40% increase in freight movement tonnage for the 

trucking industry alone (US DOT, 2018). Low wages, long work hours and related health impacts 

has led to a high voluntary in the trucking industry, which also suffers from hours of service 
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violations and has witnessed an increase in large truck-related crashes in the recent years 

(Tompkins et al., 2010). With the rising public concern regarding environmental, labor and safety 

issues, and the reluctance of the government to add capacity to the existing highway network, it is 

prudent to consider other alternatives to the traditional freight transport (Sharma et al., 2015). 

 

Automation is already present in significant amounts in most of the modern industries worldwide 

and has been integrated with the traditional operations. This level of automation has resulted in a 

considerable rise in the productivity of these industries. However, no or limited progress can be 

observed in automating trucks, where the established labor-intensive practices pose a challenge to 

enhancing productivity levels. The present highway system would remain adequate for 

considerable period in the future with no new investment required, if only the trucks on the 

highway system could be displaced by automation. With automation of the trucks, a reduction in 

traffic congestion and an improvement in the highway safety would be expected with reduced wear 

and tear of the highway infrastructure (Winroth et al., 2007; Nowakowski, 2015). 

 

As freight and logistics solutions are getting smarter and connected, researchers are increasingly 

faced with the question as to how it would transform the logistics industry in the future. Automated 

warehouses and ports may reduce the number of jobs available, potentially save lives and increase 

the operation efficiency of the facility several folds. Gantry cranes, transport vehicles and stacking 

cranes can all be completely and remotely operated by software, reducing the number of errors. 

Also, human workers need not be present in more dangerous areas of the port where goods are 

being loaded and unloaded, and the entire operations can be sped up considerably. Automated 
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freight trucks, on the other hand could bring a reduction in operational cost, thereby allowing more 

capital to be invested in improving operations and enhancing capabilities (Gregor et al., 2017).  

 

Apart from the Automated Parcel Lockers which would be described in detail in Chapter No. 4, 

other examples of automation in urban logistics are presented below. 

 

Warehousing operations 

Modern warehouses already deploy autonomous vehicles to pickup, position and parcel products 

inside the warehouse. These vehicles follow a preprogrammed route which requires a relatively 

low investment for adapting the warehouse infrastructure. The vehicles reply on inputs received 

from the cameras and lasers installed on them to navigate the warehouse environment (Mora et al., 

2006). The vehicle is able to create a 3-D map of its surroundings from the inputs received from 

the cameras and lasers and the next generation vehicles are even able to have more navigational 

freedom and independent decision-making authority to serve a wide variety of applications (Zhou 

et al., 2017). 

 

Autonomous loading and transport 

Deployment of self-driving vehicles in a warehouse environment allows for optimization of the 

loading and unloading process, thereby increasing the overall efficiency as well as safety. For e.g. 

consider the KARIS PRO System developed by the Karlsruhe Institute of Technology (KIT), 

Germany. In this system, a fleet of a number of small autonomous vehicles are deployed to 

transport goods in coordination with each other to form a continuous conveyer system (Di et al., 

2017; Zhou et al., 2017). 
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Self-driving vehicles  

Google is already testing technology with driverless cars on the road. It can be reasonably assumed 

that after overcoming the regulatory and labor organization barriers, driverless trucks would soon 

be deployed on the roads. Other than reducing the transportation costs, this would also eliminate 

the need for the restriction on hours of service and maintaining log-books, improving the overall 

supply-chain efficiency (Zhou et al., 2017). Japan has successfully conducted trials on 

coordinating a fleet of vehicles to identify self- position and potential obstacles, allowing them to 

travel close to each other to take advantage of reducing aerodynamic drag to reduce fuel costs up 

to 15% (NEDO, 2019). 

 

Even, the loading and unloading process for a truck can be completely automated once the truck 

has arrived at a distribution center or a customer facility. This is already being implemented by 

Amazon for their several distribution centers in the United States. The robotic system deployed by 

Amazon enables the product shelves to be brought directly to the human handler saving the time 

for locating the product on the aisles (Zuden et al., 2004; Zhou et al., 2017). 

 

Although, there is still time for the regulations to allow traffic to share the roads with fully-

automated trucks, the main argument for their adoption would be improved road safety. Several 

fatal incidents are a result of preventable human driver-error (distracted driving, reduced blind spot 

visibility etc.), which can be significantly reduced by a driverless vehicle (Fagnant et al., 2015). 
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6.3 Possible impacts of automation in the logistics industry 

Adoption of automation is driven by the inherent labor and cost efficiencies. Several potential 

outcomes of automation have been identified by the researchers, including significant health 

benefits for the environment and the population but with unprecedented workforce related 

challenges (Baker, 2006). With the recent advances in automation, data analysis will allow to 

increase the efficiency in routine tasks in transportation and warehousing thereby threatening jobs 

(Baker, 2006). However, the World Economic Forum (WEF) estimates the creation of new jobs 

due to the new skillsets required to manage the digital platforms, thus resulting in a net positive 

impact on jobs (Baker and Halim, 2007; WEF, 2019). It is believed that automation will bring 

about a net benefit to the society though with some detrimental impacts. A report by the National 

Bureau of Economic Research outlining the impacts of automation in the United States workforce 

did not estimate any gains in employment due to automation. According to the study, the 

automation not only resulted in loss of employment in most scenarios but also a reduction of wages 

for occupations where automation was not deployed (Dadzie and Johnston, 1991). 

 

The degree of autonomy in the vehicles will also decide the magnitude of impact that it will have. 

The trucking industry will start benefitting even with the smallest amount of automation for truck-

driving, leading to a decrease in the shortage of drivers and their turnover due to their improved 

wellness. At the same time, more comfortable conditions, technology-adoption and associated 

higher driving wages (due to the advanced skills required to manage an autonomous driving truck) 

in truck-driving will attract newer drivers (Mora et al., 2017). In the future, platooning of 

autonomous trucks is possible where the lead truck may be either controlled from the operations 

center or the truck depot or might be driven by a human while focusing on planning and logistics 
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during motion (Di et al., 2017). However, adoption of the automated technologies in the trucking 

industry is directly dependent on the scale of investment, applicable legislations in place, as well 

as how the support infrastructure evolves, thus almost requiring a decade to achieve full 

automation (Zuden et al., 204). 

 

The most obvious benefit to the society from automation will be through improvement health of 

the environment and the population through reduced emissions, and considerable improvement in 

workplace safety, especially in hazardous occupations and also bring a reduction in road fatalities 

(Eden and Gaggl, 2018). Automation will also contribute to the improved public heath not just 

through reduction in emissions and workplace accidents, but also by expediting the health-care 

delivery by implementing AI leading to reduced workload and increased productivity for the 

medical staff (Baker, 2006; Eden and Gaggl, 2018). Automation is expected to have several 

environmental benefits as well other than the reduced emissions. Approximate, 8.5 % reduction in 

global emissions has been estimated by WEF due to the implementation of automation in 

automotive, electricity and logistics industries by 2025 (WEF, 2019). The improved efficiency in 

all sectors will also have the benefit of reduction in the consumption of natural resources but will 

add to the growing e-waste issues especially in developing and under-developed countries (Zuden 

et al., 2017). 

 

Along with the positives, several social concerns exist with the increased automation. Changes in 

the employment profiles to the scale of those observed during the industrial revolution are 

anticipated. During the industrial revolution, agricultural workers were increasingly replaced by 

the steam-powered machines, but at the same time created much larger number of employment 
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opportunities in the factories where these machines were assembled, overall resulting in an 

improved standard of living. Automation is expected to bring about a similar change in the 

employment markets with opportunities arising in production, programming, sales, service and 

maintenance of automated machines. There are also discussions at the workplace to investigate 

collaboration opportunities between automated machines and human workers at larger scale. At 

the same time, health issues related to unemployment and anxiety may witness a rise due to the 

increase in automation worldwide (Frazelle and Frazelle, 2001). With all its positives and 

negatives, there is still clarity on the long-term implications to incorporating automation in the 

logistics sector. Automation in the logistics sector will no doubt improve operational efficiencies, 

add value to the service, delivery better economic returns and create higher value-adding 

employment opportunities.  

 

6.4 Future Trends 

3D printing technology (additive manufacturing) has witnessed some serious investments from 

global manufactures in recent times, due to the rapid progress made by the technology. However, 

the possible impact of 3D printing on the supply chains globally is not known at present. 3D 

printing is not yet mature to threaten the benefits delivered by the economies of scale in several 

sector (Economidou et al., 2018). The cost of the raw material used in the 3D printing machines is 

quite expensive compared to the conventional production lines built for handling high-volume of 

raw materials at present. With the fall in price of the raw material for the 3D printing machines in 

future, other factors may dictate the nature of the supply chains for e.g. urgency, acceptable quality, 

flexibility etc. (Balletti et al., 2017). 
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Chapter 7 Future Work 

 

In this dissertation we have examined a range of methods of increasing the efficiency and reducing 

the cost of the last-mile delivery in urban areas. In this chapter we also identify several other areas 

which may be explored for further research in future. This proposed future work is presented in 

the following sections. 

 

7.1 Crowdsourced delivery 

In this study, we analyze the performance of an existing crowdsourced company. Further research 

should be conducted on identifying the behavior and motivation of crowdshipping participants, 

both senders and drivers, as well as the correct pricing and compensation mechanism to increase 

participation is such a system. The success of the crowdsourcing delivery system depends on 

achieving and maintain critical mass of customers and drivers, and thus efforts to attract 

participation from them should be investigated. It will also be interesting to obtain details of what 

is being transported in the parcels (for e.g. raw materials, spare components etc.) to analyse spatial 

autocorrelation trends in the neighboring areas. At the same time, insights should be drawn from 

other shared economy examples like ridesharing (Uber, Lyft etc.) and housing (AirBnB) to identify 

potential challenges for the crowdsourced delivery system. 

 

7.2 Microhubs with Crowdshipping  

Here, we analyze the performance of a proposed delivery paradigm that combines microhubs with 

crowdshipping. Though, we consider a static problem in our study, a dynamic problem can be 
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considered in the future. A bidding process also can be considered for the compensation 

mechanism of the crowdshippers. In future, a relay between the crowdshippers can be considered 

to extend the range of delivery for crowdshippers. Crowdshippers with variable carrying capacity 

and using other modes like walking or e-scooters should also be explored. The microhubs also do 

not have to be located at a fixed position but could dynamically change their position based on the 

demand, i.e. facility location problem (Kafle et al., 2017). Also, we did not consider any failed 

deliveries and any potential parcel returns which may be considered in the future. Additionally, 

we could consider road network condition to see the real impact of the M+C delivery paradigm 

for on-time delivery. Furthermore, the environmental impact analysis of the crowdsourced delivery 

system could be conducted in future. And finally, a fully automated scenario could be considered 

where parcels are delivered by autonomous vehicles and parcel sorting is done without human 

effort at the microhubs.  

 

7.3 Many-to-Many Split Pickup-and-Delivery Problem 

We present a heuristic solution to solve introduce the general Many-to-Many Split Pickup-and-

Delivery Problem (M-MSPDP). We also apply the MS-BTS heuristic to solve for two applications 

of the M-MSPDP: parcel pickup and delivery among parcel stations (i.e., M-MSPDP-FPD) and 

bike rebalancing in a bike-sharing system (i.e., M-MSPD-OC). In future, further applications of 

the MS-BTS heuristic could be investigated. We did not consider time windows during our 

evaluation of the heuristic, but this could be addressed in the future. Also, compensation and 

operating hours constraints for the truck drivers could be considered in the future. The tabu search 

heuristic could also be used to improve the local neighborhood search than just for simply deciding 

the selection of the split loads.  
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7.4 Future automated logistics 

Automated logistics in the future is expected to improve the transparency, safety and overall 

efficiency of the entire supply chain. However, research needs to be conducted in evaluating how 

this would impact the human workforce, customer expectations of data privacy and security, and 

bring changes in the regulatory environment. In addition, questions regarding the rate of adoption 

of automation technology by the logistics companies and addressing the liability issues also need 

to be investigated. Automation in logistics is expected to bring a reduction in the workforce 

requirement but will also create a need for a more skilled workforce to oversee the automated 

operations. In addition, the scale of technology adoption (both automation and 3-d printing) at 

which the transportation costs will become equal or lesser than the conventional delivery paradigm 

needs to be investigated.  
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