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SUMMARY

In a remarkable series of papers, Zlil Sela classified the first-order theories of free groups and

torsion-free hyperbolic groups using geometric structures he called towers. It was later proved

by Chloé Perin that if H is an elementarily embedded subgroup (or elementary submodel) of a

torsion-free hyperbolic group G, then G is a tower over H. We prove a generalization of Perin’s

results to toral relatively hyperbolic groups using JSJ and shortening techniques.
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CHAPTER 1

INTRODUCTION

Tarski’s problem concerns the elementary theory Th(G) of a group G, the set of all first-

order sentences in the language of groups which are valid over G. The problem asks if all

finitely generated, non-abelian free groups have the same elementary theory. This question was

answered in the affirmative in 2006 by Zlil Sela [11], and independently by Olga Kharlampovich

and Alexei Myasnikov [9]. Sela went on to generalize the techniques he used to solve Tarski’s

problem and prove the following:

Theorem 1.1 ([12, Theorem 7.10]). Let Γ be a torsion-free hyperbolic group, and let G be a

finitely generated group. If Th(G) = Th(Γ), then G is a hyperbolic group.

This result was later generalized by Simon André to apply to hyperbolic groups with torsion,

as well, making hyperbolicity a first-order invariant among finitely generated groups [1].

A concept closely related to elementary equivalence is that of elementary embeddings: Let

H be a subgroup of a group G. The inclusion of H into G is an elementary embedding, denoted

H ↪→Th G, if for any first-order formula ϕ(x1, . . . , xn) and any (h1, . . . , hn) ∈ Hn with n ≥ 0,

H |= ϕ(h1, . . . , hn) ⇐⇒ G |= ϕ(h1, . . . , hn),
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where ϕ is a first-order sentence when n = 0 and G |= ϕ(g1, . . . , gn) denotes that G models

ϕ(x1, . . . , xn) with the assignment xi = gi, i.e., ϕ(g1, . . . , gn) is true over G. In particular,

Th(H) = Th(G) if H is elementarily embedded.

Towers first appeared in Sela’s work, and roughly speaking, towers are built from floors in

which a group retracts onto its base in a nice way, and one can find these retractions if there

exists a preretraction. In this paper we using a version of towers and floors due to Vincent

Guirardel, Gilbert Levitt, and Rizos Sklinos which depend centered and retractable splittings

[7]. Towers, splittings, and preretractions are discussed in more detail in §1.1.

Building upon the work of Sela and others, Chloé Perin proved the following:

Theorem 1.2 ([10, Theorem 1.2]). If G is a torsion-free hyperbolic group and H ↪→Th G is an

elementary embedding, then G is a tower over H.

In this paper we prove a generalization of this result to toral relatively hyperbolic groups,

which are torsion-free groups hyperbolic relative to maximal abelian subgroups. For more on

toral relatively hyperbolic groups, see [3, 4].

Definition 1.3. Let G = 〈S〉 be a finitely generated group (with S finite), let P = {P1, . . . , Pn}

be a collection of finitely generated subgroups of G, and let X be the Cayley graph of G with

respect to S. We construct the coned-off Cayley graph X̃ by joining a unique cone point for

each distinct left coset of an element of P to each vertex of that coset in X, i.e.,

V (X̃) = G ∪ {cgP : gP is a coset with g ∈ G,P ∈ P},
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E(X̃) = E(X) ∪ {(h, cgP ) : h ∈ gP with g ∈ G,P ∈ P}.

Definition 1.4. A finitely generated group G is hyperbolic if its Cayley graph is δ-hyperbolic.

A finitely generated group G is hyperbolic relative to P = {P1, . . . , Pn}, a collection of

finitely generated subgroups, if the coned-off Cayley graph X̃ is δ-hyperbolic and, for each

e ∈ E(X̃) and n ∈ N, there are only finitely many embedded loops of length n containing e.

A toral relatively hyperbolic group is a torsion-free group which is hyperbolic relative to the

conjugacy representatives of its maximal non-cyclic abelian subgroups. In particular, it follows

that all elements of the set P are non-cyclic.

Theorem 1.28. If G is a toral relatively hyperbolic group and H ↪→Th G is an elementary

embedding, then G is a tower over H.

1.1 Towers, splittings, and preretractions

For more information on JSJ trees and splittings, see [5], and for more information on

towers, preretractions, and their associated splittings, see [7].

Definition 1.5. A group G is freely indecomposable relative to a subgroup H if it does not

admit a non-trivial free product decomposition G = A ∗B with H ≤ A.

Definition 1.6. Let G be a torsion-free group acting on a simplicial tree T without edge

inversion. This action is k-acylindrical if the pointwise stabilizer of each arc of length ≥ k + 1

is trivial. Given a vertex v ∈ V (T ), this action is 1-acylindrical at v if, for any pair of distinct

edges meeting at v, all conjugates of the corresponding edge stabilizers intersect trivially.
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Definition 1.7. Let Λ be a splitting of a group G. A vertex v ∈ V (Λ) is a surface-type

vertex (and similarly the vertex group Gv is a surface-type vertex group) if there exists a

compact surface Σ such that Gv ∼= π1(Σ) and there is a bijective correspondence between the

boundary components ∂Σ = C1 q · · · q Cn of Σ and the edges e1, . . . , en incident to v so that

Gei = π1(Ci) ∼= Z for all i.

Definition 1.8. There are four classes of surfaces Σ with χ(Σ) = −1 which do not carry

pseudo-Anosov diffeomorphisms:

• pairs of pants;

• once-punctured Klein bottles;

• twice-punctured projective planes; and

• non-orientable closed surfaces of genus 3.

We refer to such surfaces and surface-type vertices in splittings which carry the fundamen-

tal groups of these surfaces as exceptional. All other hyperbolic surfaces (and the associated

surface-type vertices) are non-exceptional. Because all of the surfaces we will consider have neg-

ative Euler characteristic, non-exceptional surfaces will admit pseudo-Anosov diffeomorphisms.

Furthermore, non-exceptional surfaces all have χ(Σ) ≤ −2.

Definition 1.9. A splitting Λ of a finitely generated, torsion-free group G is JSJ-like if

• edge groups are abelian;

• at most one vertex adjacent a given edge is a surface-type vertex, and at most one is an

abelian vertex;
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• the action of G on the corresponding Bass-Serre tree T is 2-acylindrical; and

• the surfaces of Λ are punctured tori or are non-exceptional.

Vertex groups which are neither abelian nor surface-type are called rigid.

Note that this definition differs from those used in [7,10] by generalizing to abelian splittings

rather than just cyclic splittings.

Definition 1.10. Let G be a non-abelian toral relatively hyperbolic group and let H ≤ G

a subgroup. Let P be a complete set of conjugacy representatives for the maximal non-cyclic

abelian subgroups of G, let B be the collection of subgroups of G which are conjugate to either a

subgroup in P or a virtually cyclic subgroup, and letH = {H}∪P. If G is freely indecomposable

relative to H, then by [5, Corollary 9.19] there exists the JSJ tree T over B relative to H which

is equal to its collapsed tree of cylinders, is invariant under automorphisms of G which fix H,

and is compatible with every (B,H)-tree. For more on the construction of the JSJ tree and the

collapsed tree of cylinders, see [5].

From the construction of T as a collapsed tree of cylinders we also have that Λ := T/G is

bipartite with every edge carrying one abelian vertex and one non-abelian vertex, and that the

action on T is 1-acylindrical near vertices with non-abelian stabilizer. In particular the JSJ

splitting Λ is JSJ-like. We will refer to this splitting as the JSJ splitting of G relative to H (or

simply the JSJ splitting of G if H = {1}.

Lemma 1.11 ([Compare [7, Lemma 2.4]). Let A and G be finitely generated torsion-free groups

acting on trees TA and TG, respectively, with abelian edge stabilizers. Assume that both trees
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are bipartite with verties of types 0 and 1, and that the actions are 1-acylindrical near vertices

of type 1.

Let f : A → G be a homomorphism such that each type 0 vertex stabilizer subgroup of A

maps injectively into a type 0 vertex stabilizer of G, and that each type 1 vertex stabilizer of

A maps bijectively to a type 1 vertex stabilizer of G. If f is not injective, then there exist two

non-conjugate type 1 vertex stabilizer subgroups of A with the same image under f .

Proof. The 1-acylindricity condition ensures that edges which meet at a type 1 vertex are

malnormal, so because edge stabilizers are abelian we have that type 1 vertex stabilizers are

non-abelian and fix a unique type 1 vertex. Type 0 vertex stabilizers similarly fix unique type

0 vertices. Given a vertex v ∈ V (TA), let ϕ(v) ∈ V (TG) be the unique vertex which is of the

same type as v and is fixed by f(Av) ≤ Gϕ(v). By 1-acylindricity ϕ preserves adjacency, so we

can extend to a map ϕ : TA → TG which maps edges to edges. Because f is non-injective but

is injective on vertex stabilizers, there exist distinct edges e = (u, v), e′ = (u′, v) ∈ E(TA) such

that ϕ(u) = ϕ(u′) and ϕ(e) = ϕ(e′). In particular, we must have that v is type 0 and both u

and u′ are type 1 by 1-acylindricity.

If u and u′ lie in different orbits then the result follows immediately, so suppose that there

exists a ∈ A such that u′ = a · u. Then f(a) · ϕ(u) = ϕ(a · u) = ϕ(u′) = ϕ(u), so f(a) ∈

Gϕ(u) = f(Au) and hence there exists b ∈ Au such that f(a) = f(b). Let c = ab−1. Then

c · u = a · (b−1 · u) = a · u = u′ and c ∈ ker(f). In particular c · v 6= v because f is injective on

vertex stabilizers. Let d ∈ Ae and let d′ ∈ Ae′ ≤ Au′ be nontrivial. Then cdc−1 ∈ Ac·e ≤ Au′ ,

and by 1-acylindricity near u′ we have that D := 〈cdc−1, d′〉 is non-abelian. But then we must
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have that f(D) = 〈f(cdc−1), f(d′)〉 = 〈f(d), f(d′)〉 is abelian because f(D) is a subgroup of the

abelian group Gϕ(e), which contradicts the injectivity of f on Au′ .

Definition 1.12. A cyclic splitting Λ of a finitely generated torsion-free group A is centered

if it has vertices v, v1, . . . , vn with n ≥ 1 such that v is surface-type and every edge joins v to

some vi. Let Q = π1(Σ) = Av, let Bi = Avi , and let T be the Bass-Serre tree with respect

to this splitting. We further require that the splitting Λ is minimal in the sense that, if vi is

incident to only one edge, then that edge group must be a proper subgroup of Bi.

We will refer to v as the central vertex and each vi as exterior vertices. The base of Λ is the

(abstract) free product BΛ := B1 ∗ · · · ∗Bn. We say that a centered splitting is simple if n = 1,

and that it is non-exceptional if Σ is non-exceptional.

Definition 1.13. Let Q = π1(Σ) be the fundamental group of a compact surface and suppose

that Q is a subgroup of G. A boundary-preserving map (with values in G) is a morphism

p : Q → G (denoted p : Q  G) which restricts to conjugation by an element of G on each

boundary subgroup of π1(Σ). Such a map is non-degenerate if, additionally, p(Q) is non-

abelian, p is not an isomorphism onto a conjugate of Q, and Σ is non-exceptional. If Q = Av

is a surface-type vertex in some splitting Λ of A ≤ G, we say that p is with respect to Λ.

Definition 1.14. Let Q = π1(Σ) be the fundamental group of a compact surface and let

p : Q→ G be a group homomorphism. A 2-sided simple closed curve γ is a pinched curve if it

is not nullhomotopic and if π1(γ) ≤ ker(p). A family of pinched curves is a family of disjoint,

pairwise non-parallel pinched curves. The map p is a pinching map if there is a pinched curve.
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Lemma 1.15 ([7, Lemma 3.9]). Let Λ be a centered splitting of G with central vertex group

Q = π1(Σ). Let S be another compact surface and let p : π1(S) → G such that the image of

each boundary subgroup of π1(S) is contained in a conjugate of an exterior vertex group of Λ.

Let C be a maximal family of pinched curves on S and let S′ be a component of S obtained

by cutting S along C. Then either

(i) p(π1(S′)) is contained in a conjugate of an exterior vertex group of Λ; or

(ii) there is an incompressible subsurface Z ⊆ S′ such that p(π1(Z)) is finite index in Q and

p maps boundary subgroups of π1(Z) into boundary subgroups of Q.

Proposition 1.16 ([7, Proposition 3.17]). Let Λ be a non-exceptional centered splitting of

a finitely generated torsion-free group A with central vertex subgroup Q and exterior vertex

subgroups B1, . . . , Bn.

(1) If n > 1 or if n = 1 and B1 6∼= Z, then there exists a non-degenerate boundary-preserving

map p : Q A if and only if there exist conjugates B̃i of each Bi such that

B := 〈B̃1, . . . , B̃n〉 ∼= B̃1 ∗ · · · ∗ B̃1
∼= BΛ

and there is exists a retraction r : A� B with r(Q) non-abelian.

(2) If n = 1 and B := B1
∼= Z, then there exists a non-degenerate boundary preserving map

p : Q A if and only if there exists a retraction r : A ∗ Z� B ∗ Z with r(Q) non-abelian.

Definition 1.17. Let A be a finitely generated torsion-free subgroup of G. A splitting Λ of A

is retractable in G if there exists a non-exceptional surface-type vertex Q = π1(Σ) = Av and



9

a non-degenerate boundary-preserving map p : Q  G. If A = G, we simply say that Λ is

retractable.

In particular, a centered splitting Λ of A is retractable if and only if it satisfies the equivalent

conditions of Proposition 1.16, and if Λ is a retractable splitting of A, then so is the centered

splitting obtained from Λ by collapsing edges not carrying v.

Definition 1.18. A group G is a floor over a subgroup H if either G = H ∗ Z or if G has a

retractable centered splitting with base isomorphic to H.

A group G is a tower over a subgroup H if there exists a chain of subgroups G = G0 >

G1 > · · · > Gm = H with each Gi a floor over Gi+1. This tower is trivial if m = 0.

Example 1.19 ([7, Example 3.26]). All non-exceptional surface groups are towers over {1}.

Lemma 1.20 ([7, Remarks 3.21–22]). (1) If G is a floor over H, then G ∗ G′ is a floor over

H ∗G′.

(2) If G is a tower over H, then G ∗G′ is a tower over H ∗G′.

(3) If G > H > K are floors in a tower such that G = H ∗ Z and H has a retractable centered

splitting with base isomorphic to K, then G has a retractable centered splitting with base

isomorphic to H ′ = K ∗ Z, making G > H ′ > K a tower, i.e., we may assume that floors

at the tops of towers are surface-type.

Proof. It is clear that (2) follows from (1), so assume G is a floor over H. If G = H ∗ Z, then

G ∗ G′ = (H ∗ Z) ∗ G′ = (H ∗ G′) ∗ Z is a floor over H ∗ G′. If G has a retractable centered



10

splitting with base isomorphic to H, then we can make G ∗G′ a floor over H ∗G′ by replacing

the base of this splitting with H ∗G′. Then (3) follows similarly.

Lemma 1.21 ([7, Proposition 3.31]). If A is a free factor of G and a splitting of A is retractable

in G, then it is retractable in A.

Lemma 1.22 ([7, Lemma 4.12]). Let ΛG be a retractable centered splitting of G with central

vertex group QG = π1(ΣG). Let A be an exterior vertex group of ΛG, let QA = π1(ΣA) be a

proper surface subgroup of A, and let p : QA  G be a non-degenerate boundary-preserving

map. Then there exists a non-degenerate boundary-preserving map p′ : QA  A if either

(i) no conjugate of p(QA) contains a finite index subgroup of QG; or

(ii) p is pinching.

Definition 1.23. Let G be a group and let g ∈ G. We will denote the inner automorphism

x 7→ gxg−1 by ιg ∈ Aut(G).

Definition 1.24. Let Λ be an abelian splitting of a group A. We say that two morphisms

f, f ′ : A→ G are Λ-related if

• for each edge e of Λ, there exists ge ∈ G such that f ′|Ae = ιge ◦ f |Ae .

• for each vertex v of Λ which is either an exceptional surface-type vertex or a non-surface-

type vertex, there exists gv ∈ G such that f ′|Av = ιgv ◦ f |Av ; and

• for each non-exceptional surface-type vertex v of Λ, f(Av) is non-abelian if and only if

f ′(Av) is non-abelian.
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Definition 1.25. Let A be a subgroup of G and let Λ be an abelian splitting of A. A morphism

p : A→ G is a preretraction (with respect to Λ, with values in G) if it is Λ-related to the inclusion

A ↪→ G. As with boundary-preserving maps, we will denote preretractions p : A G.

Proposition 1.26 (Compare [7, Proposition 5.17]). Let G be a tower over G′ and let A be a

free factor of G′. Suppose that Λ is an abelian splitting of A which is bipartite with every edge

carrying one abelian vertex and one non-abelian vertex, and that the Bass-Serre tree of Λ is 1-

acylindrical near vertices with non-abelian stabilizer. If there exists a non-injective preretraction

p : A G with respect to Λ, then Λ is retractable in A.

Proof. First suppose that G′ = G, so that A is a free factor of G. If some surface-type vertex

subgroup Q ≤ A is not mapped isomorphically to a conjugate, then p|Q : Q  G is a non-

degenerate boundary-preserving map, so Λ is retractable in G and hence in A by Lemma

1.21. Otherwise if every surface-type vertex group is mapped isomorphically to a conjugate, let

r : G� A be the retraction of G onto its free factor A. But then r ◦ p : A→ A is injective by

Lemma 1.11, which contradicts the assumption that p is non-injective.

Now suppose that G = G0 > G1 > · · · > Gm = G′ with each Gi a floor over Gi+1. By

Lemma 1.20 we may assume that each floor is of surface type, so let Γi be the retractable cen-

tered splitting of Gi with central vertex group Qi and base isomorphic to Gi+1. Fix retractions

ri : Gi � Gi+1 and define pi := ri−1 ◦ri−2 ◦ · · · ◦r0 ◦p : A→ Gi with p0 = p. Because A is freely

indecomposable it is contained in a conjugate of an exterior vertex subgroup of each Γi and ri|A

agrees with conjugation. If pm is a preretraction then the result follows from the previous case.

Otherwise the splitting Λ has a non-exceptional surface-type vertex group Q such that pm(Q)
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is abelian. Because p(Q) is non-abelian there exists some maximal index i such that pi(Q) is

non-abelian.

Let p′ := pi|Q : Q→ Gi. Then p′ is a boundary-preserving map and p′(Q) is not conjugate

to Q because ri|A is injective and pi+1(Q) = ri ◦pi(Q) is abelian by assumption. Thus p′ is non-

degenerate. Furthermore, p′(Q) cannot contain a finite index subgroup of Qi because ri(Qi) is

non-abelian, nor can p′(Q) be contained in an exterior vertex group of Γi. Thus p′ is pinching

by Lemma 1.15. By applying Lemma 1.22 m − i times we obtain a pinching non-degenerate

boundary-preserving map Q Gm = G′. Then Λ is retractable in H and hence in A by Lemma

1.21.

1.2 Proof of the main theorem

Lemma 1.27. If G is a toral relatively hyperbolic group and H is a retract of G, then H is

also a toral relatively hyperbolic group.

Proof. Let G = 〈SG〉 with SG finite and let r : G � H be the retraction. Then H = 〈r(SG)〉

is finitely generated as well. Without loss of generality, we may choose SG so that r(s) = s

or r(s) = 1 for all s ∈ SG. Otherwise if r(s) = t with t 6= s and t 6= 1, we can define a new

generating set (SG \ {s})∪{st−1, t} with r(t) = t and r(st−1) = 1. In particular, we can choose

SH ⊆ SG so that H = 〈SH〉 and

r(s) =


s s ∈ SH

1 s /∈ SH
.



13

Let (XG, dG) and (XH , dH) be the Cayley graphs of G and H with respect to SG and SH ,

respectively. Suppose that a, b ∈ H with dG(a, b) = n. Then there exist s1, . . . , sn ∈ SG such

that a−1b = s1 · · · sn. It is clear that si ∈ SH for all i, as otherwise we could find a shorter

word by applying the retraction r. Thus dH(a, b) = n = dG(a, b), so H is quasi-isometrically

embedded in G. Then H is relatively quasiconvex by [8, Theorem 1.5] and hence a toral

relatively hyperbolic group by [8, Theorem 1.2].

The proof of the main theorem relies on the following, which are the main technical results

of this paper and are proved in §6.

Proposition 6.3 (Compare [10, Proposition 5.13]). Let G be a toral relatively hyperbolic group

and let H ↪→Th G be an elementarily embedded subgroup. If A is a retract of G which properly

contains H, is toral relatively hyperbolic, and is freely indecomposable relative to H, then there

exists a non-injective preretraction p : A G with respect to the JSJ splitting of A relative to

H.

Proposition 6.4 (Compare [10, Proposition 5.14]). Let G be a toral relatively hyperbolic group

and let H ↪→Th G be an elementarily embedded subgroup. If H is a toral relatively hyperbolic

retract of G and C is a freely indecomposable torsion-free hyperbolic subgroup of G such that

no non-trivial elements of C are conjugate into H by an element of G and C is neither cyclic

nor a non-exceptional surface group, then there exists a non-injective preretraction p : C  G

with respect to the JSJ splitting of C.
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Theorem 1.28. If G is a toral relatively hyperbolic group and H ↪→Th G is an elementary

embedding, then G is a tower over H.

Proof. If G ∼= Zr is abelian then H = G because Zr has no proper elementarily embedded

subgroups (see Lemma 2.7). Then trivially G is a tower over H, so suppose that G is a non-

abelian toral relatively hyperbolic group and H is a proper subgroup of G.

Let G0 = G, and assuming that G is a tower over a toral relatively hyperbolic group Gm

containing H for m ≥ 0, let

Gm = Am ∗ Cm1 ∗ · · · ∗ Cmkm

be the Grushko decomposition of Gm relative to H, where Am is the factor containing H.

Suppose that Am 6= H, and let Λ be the JSJ splitting of Am relative to H. Then by Proposition

6.3 there exists a non-injective preretraction Am  G with respect to Λ, so Λ is retractable

in Am by Proposition 1.26. We can then collapse edges of Λ as in Definition 1.17 to obtain

a retractable centered splitting of Am, making Am a floor over the base Bm of this splitting.

Then Bm is a toral relatively hyperbolic group because it is the image of a series of retractions

G = G0 � G1 � · · ·� Gm � Am � Bm

by the definition of a tower, so we define Gm+1 = Bm ∗ Cm1 ∗ · · · ∗ Cmkm making G a tower over

Gm+1.
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Thus we obtain a sequence of G-limit groups

G = G0 > G1 > G2 > · · ·

which terminates at some GN by [3, Theorem 5.2]. Because this sequence terminates we must

have GN = H ∗ C1 ∗ · · · ∗ Ck. Each Ci is a toral relatively hyperbolic group because each is a

retract of G, and in particular they are all torsion-free hyperbolic groups because the conjugates

of H and Ci intersect trivially in GN and H is torally complete in both G and GN . If each Ci

is either cyclic or a non-exceptional surface group, then each Ci would be a tower over {1} by

Example 1.19.

Suppose that some factor Ci is neither cyclic nor a non-exceptional surface group. Conju-

gates of H and Ci intersect trivially in GN and hence in G because GN is a retract of G. By

Proposition 6.4 we obtain a non-injective preretraction p : Ci  G with respect to the JSJ

splitting Λ of Ci. By Proposition 1.26 we obtain a retractable centered splitting of Ci, making

Ci a floor over the base Di of this splitting. Because Di is also a retract of G we may apply

this process again to the Grushko decomposition of Di if any factors are neither cyclic nor a

non-exceptional surface group. This process again must terminate, so we find that Ci is a tower

over {1}.

Then GN = H ∗ C1 ∗ · · · ∗ Ck is a tower over H ∗ 1 ∗ · · · ∗ 1 ∼= H by Lemma 1.20, so G is a

tower over H.



16

Corollary 1.29. If G is a toral relatively hyperbolic group and H ↪→Th G is an elementary

embedding, then H is a toral relatively hyperbolic group.
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16 The Tower

(a) A preretraction A  A “breaks” the

“top floor” Q off of A, leaving the base B

onto which A retracts.

(b) The Tower by Pamela Colman Smith,

from the Rider-Waite tarot deck (public do-

main).

Figure 1: Towers, floors, and preretractions.
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Figure 2: A centered splitting with the exterior vertex B1 “blown up” to show its Grushko

decomposition relative to the boundary subgroups.



CHAPTER 2

FIRST-ORDER LOGIC

For n ≥ 0, we will use the notations x or (x) to denote finite ordered tuples (x1, . . . , xn). A

sequence of elements xn ∈ X for n ∈ N will be denoted (xn)n.

In first-order formulas, we will use the notations ∃x and ∀x to denote ∃x1∃x2 . . . ∃xn and

∀x1∀x2 . . . ∀xn, respectively.

Given first-order formulas ϕ1(x), . . . , ϕm(x) we will use ϕ(x) to denote ϕ1(x)∧ · · · ∧ϕm(x),

and similarly given words σ1(x), . . . , σm(x) ∈ F(x) := 〈x〉 we will use σ(x) = 1 to denote

(σ1(x) = 1) ∧ · · · ∧ (σm(x) = 1).

More generally, if Σ = Σ(x) ⊆ F = 〈x〉 is a (possibly infinite) set of words in the variables

x, we denote

Σ(x) = 1 ⇐⇒ σ(x) = 1 for all σ ∈ Σ

for a system of equations, and similarly

Σ(x) 6= 1 ⇐⇒ σ(x) 6= 1 for all σ ∈ Σ

for a system of inequations.

Lemma 2.1. If G = 〈s | σ(s) = 1〉 is a finitely presented group, then G |= ∃x (σ(x) = 1) as

witnessed by x = s.

19
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Definition 2.2. Let G be a group. The elementary theory of G is the set of first-order sentences

in the language of groups modeled by G,

Th(G) := {ϕ : G |= ϕ}.

Two groups G and H are said to be elementarily equivalent if Th(G) = Th(H).

Let H be a subgroup of a group G. The inclusion of H into G is an elementary embedding,

denoted H ↪→Th G, if for any first-order formula ϕ(x) and any h ∈ H,

H |= ϕ(h) ⇐⇒ G |= ϕ(h).

In particular, Th(H) = Th(G).

Definition 2.3. A group G is commutative-transitive if for all x, y, z ∈ G \ {1} we have

[x, y] = [y, z] = 1 =⇒ [x, z] = 1.

A subgroup H of a group G is malnormal if gHg−1 ∩H = {1} for all g ∈ G \H. A group G is

CSA if every maximal abelian subgroup of G is malnormal.

Lemma 2.4. CSA groups are commutative-transitive.

Proof. Let x, y, z ∈ G \ {1} and suppose that [x, y] = [y, z] = 1. Let M be the maximal abelian

subgroup of G containing both x and y. If z /∈M then y = zyz−1 ∈ zMz−1 ∩M = {1}, which

contradicts the assumption that y 6= 1.
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Remark 2.5. Because CSA groups are commutative-transitive, the centralizer ZG(g) of an ele-

ment g ∈ G \ {1} is the maximal abelian subgroup of G containing g.

Lemma 2.6. A group G is commutative-transitive if and only if

G |= ∀x, y, z ((y 6= 1) ∧ ([x, y] = 1) ∧ ([y, z] = 1)) =⇒ ([x, z] = 1).

Lemma 2.7. Let G be a commutative-transitive group, let H ↪→Th G be an elementarily em-

bedded subgroup, and let h ∈ H \ {1}.

(1) ZH(h) ≤ ZG(h).

(2) If G is torsion-free and [ZG(h) : ZH(h)] <∞, then ZH(h) = ZG(h).

Proof. (1) is immediate from the definition of centralizers, so to prove (2) suppose that ZH(h) �

ZG(h). Let z ∈ ZG(h) \ ZH(h) and let n > 1 be the minimal integer such that zn ∈ ZH(h).

Then

G |= ∃x (xn = zn) ∧ ([x, h] = 1) ∧ ([x, z] = 1),

so

H |= ∃x (xn = zn) ∧ ([x, h] = 1) ∧ ([x, z] = 1)

and hence there exists y ∈ ZH(h) such that yn = zn and [y, z] = 1. Then 1 = ynz−n =

(yz−1)n, so because G is torsion-free we must have yz−1 = 1 and z = y ∈ ZH(h), which is a

contradiction.



22

Lemma 2.8. Suppose that G is a torsion-free commutative-transitive group with all abelian

subgroups finitely generated. For r ≥ 1, there exist first-order formulas Zr(x) such that for any

g ∈ G \ {1}, the centralizer ZG(g) is a free abelian group of rank r if and only if G |= Zr(g).

Proof. Note that the centralizer ZG(g) is a free abelian group because G is torsion-free, and

that, for all r, s ≥ 1,

Zr |= ∃t1, . . . , ts∀x∃y
∨

(εi)∈{0,1}s
x = y2tε11 · · · t

εs
s

if and only if r ≤ s. This follows because the formula states that H1(Zr;Z/2Z) contains at most

2s elements, and hence we may use this formula to distinguish maximal free abelian subgroups

of different ranks.

Then we may define the formula

Z̃r(g) : ∃t1, . . . , tr∀x

 ∧
1≤i≤r

[g, ti] = 1


∧

([g, x] = 1) =⇒

∃y ([g, y] = 1) ∧

 ∨
(εi)∈{0,1}r

x = y2tε11 · · · t
εr
r



so that G |= Z̃r(g) if and only if rank(ZG(g)) ≤ r. Define the formulas

Z1(g) : Z̃1(g) ∧ (g 6= 1)

Zr(g) : ¬Z̃r−1(g) ∧ Z̃r(g) ∧ (g 6= 1) (r > 1)
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Then G |= Zr(g) if and only if rank(ZG(g)) = r.

Lemma 2.9. Suppose that G is a torsion-free commutative-transitive group with all abelian

subgroups finitely generated and finitely many conjugacy classes of maximal non-cyclic abelian

subgroups. There exists a first-order formula AG(x) such that G |= AG(a) if and only if {ZG(a)}

forms a complete set of conjugacy representatives for the maximal non-cyclic abelian subgroups

of G with 1 < rank(ZG(ai)) ≤ rank(ZG(ai+1)) for all i. In particular, G |= ∃x AG(x).

Proof. Let Z1, . . . , Zn ≤ G be a maximal set of non-conjugate, maximal non-cyclic abelian

subgroups of G. Each Zi is free abelian, so let ri = rank(Zi) > 1 and order these subgroups so

that ri ≤ ri+1 for all i. Define the formula

AG(x) :

 ∧
1≤i≤n

Zri(xi)

 ∧
∀w ∧

1≤i<j≤n
[xi, wxjw

−1] 6= 1]


∧

∀y (y = 1) ∨ (Z1(y)) ∨

∃z ∨
1≤i≤n

[y, zxiz
−1] = 1



where Zr(x) is as in Lemma 2.8. Then G |= ∃x AG(x), where any solution x = a with

ai ∈ Zi \ {1} satisfies this sentence. Furthermore, G |= AG(a) if and only if {ZG(a)} forms a

complete set of conjugacy representatives for the maximal non-cyclic abelian subgroups of G

with 1 < rank(ZG(ai)) ≤ rank(ZG(ai+1)) for all i.

Lemma 2.10 ([3, Lemma 2.2]). If G is a toral relatively hyperbolic group, then all non-cyclic

abelian subgroups of G are finitely generated.
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Lemma 2.11 ([4, Lemma 2.5]). Toral relatively hyperbolic groups are CSA and hence commutative-

transative.

Definition 2.12. A subgroup H of a toral relatively hyperbolic group G is torally complete

in G if for every maximal non-cyclic abelian subgroup Z ≤ G there exists g ∈ G such that

gZg−1 ≤ H.

Lemma 2.13. Let H be a subgroup of a toral relatively hyperbolic group G. If H ↪→Th G, then

H is torally complete in G.

Proof. Suppose that H 6= G. The subgroup H is also torsion-free, and further it is commutative-

transitive because this property can be determined with first-order logic. Let AG(x) as in

Lemma 2.9. Then H |= ∃x AG(x), so let a ∈ H such that H |= AG(a). Then G |= AG(a) by the

elementary embedding, so {ZG(a)} is a complete set of conjugacy class representatives for the

maximal non-cyclic abelian subgroups of G. We also have that rank(ZH(ai)) = rank(ZG(ai))

by the elementary embedding, so [ZG(ai) : ZH(ai)] <∞ and hence ZH(ai) = ZG(ai) by Lemma

2.7. Thus H is torally complete in G.



CHAPTER 3

Γ-LIMIT GROUPS AND R-TREES

For more information on limiting actions on R-trees, see [2, 5].

Definition 3.1. Let G be a finitely generated group and let Γ be a toral relatively hyperbolic

group. A sequence (fn)n in Hom(G,Γ) is stable if for all g ∈ G either (i) g ∈ ker(fn) for all but

finitely many n; or (ii) g /∈ ker(fn) for all but finitely many n. The stable kernel of a stable

sequence is

ker−→ (fn) := {g ∈ G : g ∈ ker(fn) for all but finitely many n}.

A finitely generated group L is a Γ-limit group if there is a finitely generated group G and a

stable sequence (fn)n in Hom(G,Γ) such that L ∼= G/ker−→ (fn).

Definition 3.2. An R-tree is a geodesic metric space in which any two distinct points a, b ∈ T

are connected by a unique topological arc [a, b]. A non-empty subtree of T is degenerate if it is

a single point, and otherwise it is non-degenerate.

A tripod in an R-tree T is a union of three arcs [a, b]∪ [b, c]∪ [c, a] defined by three distinct

points a, b, c ∈ T which contains a branch point x ∈ T such that T \ {x} consists of three

connected components.

An action of a finitely generated group G on an R-tree T is superstable if, for any two non-

degenerate arcs [a, b] ( [c, d] such that StabG[c, d] � StabG[a, b], we have that StabG[c, d] = {1}.
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Definition 3.3. Let G be a group with a subgroup H and let Γ be a group with a fixed

embedding i : H ↪→ Γ. A morphism f : G→ Γ fixes H if f |H = i. We also define

HomH(G,Γ) := {f ∈ Hom(G,Γ) : f |H = i}.

Definition 3.4. Let G = 〈S〉 be a finitely generated group (with S finite) and let Γ be a toral

relatively hyperbolic group which acts by isometries on a pointed metric space (X, d, ∗). The

length of a morphism f : G→ Γ is defined to be

|f | := max
s∈S

d(∗, f(s) · ∗).

Definition 3.5. Let G = 〈S〉 be a finitely generated group (with S finite) which is freely

indecomposable relative to a subgroup H, and let Γ be a toral relatively hyperbolic group with

a fixed embedding i : H ↪→ Γ. Let (X, d) be the Cayley graph of G with respect to S with the

word metric, and denote the ball in G of radius r (with respect to S) by

BG(r) := {g ∈ G ⊆ X : d(1, g) ≤ r}

We say that a sequence (fn)n in Hom(G,Γ) fixes H in the limit if for all r ≥ 1 there exists

Nr such that fn coincides with i on BG(r) ∩H for all n ≥ Nr.
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Theorem 3.6 (Compare [4, Theorem 6.5]). Let G be a finitely generated group, let Γ be a toral

relatively hyperbolic group, and let H be a non-abelian subgroup of G with a fixed embedding

i : H ↪→ Γ.

Suppose that (fn)n is a sequence of distinct morphisms in Hom(G,Γ) fixing H in the limit.

Then there is a stable subsequence (hn)n of (fn)n and an R-tree T equipped with an isometric

G-action with no global fixed point which have the following properties, where K is the kernel

of this action and L = G/K:

(1) H ∩K = {1}, and in particular we may consider H ≤ L.

(2) If [a, b] is a non-degenerate arc in T , then StabL[a, b] is abelian.

(3) If T is isometric to a real line, then hn(G) is free abelian for all but finitely many n.

(4) ker−→ (hn) ≤ K.

(5) If g ∈ G stabilizes a tripod in T , then g ∈ ker−→ (hn).

(6) If [a, b] ⊆ [c, d] are non-degenerate arcs in T and StabL[c, d] 6= {1}, then StabL[a, b] =

StabL[c, d], and in particular the action of L on T is superstable.

(7) L is torsion free.

(8) H fixes the basepoint of T .

Proof. The R-tree T and the isometric G-action are constructed as in [4]. In particular, parts

(2)–(7) follow from [4, Theorem 6.5]. It will remain to show that H ∩K = {1}, that H fixes

the basepoint, and that the is no global fixed point. Note that the non-existence of a global

fixed point is not immediate from [4, Lemma 6.2] because in order to keep H fixed in the
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limit, we cannot use conjugation to ensure that the basepoint is centrally located. For more on

Gromov-Hausdorff limits of pointed spaces, see [2].

Let (X, d0, 1) be the metric space constructed as in [4, §4] in which Γ isometrically embeds

with basepoint corresponding to 1 ∈ Γ, and for each n define the scaling factors δn := |fn|.

Define a sequence of pointed spaces (Xn, dn, ∗n) with Xn = X, dn = d0/δn, ∗n = 1, and a

G-action fn(g) · x. A subsequence of these actions converge in the pointed Gromov-Hausdorff

topology to a space (X∞, d, ∗) upon which G acts with no global fixed point. Let C∞ be the

subspace of X∞ consisting of the union of all geodesic segments [∗, g · ∗] and all flats containing

geodesic triangles ∆(g · ∗, g′ · ∗, g′′ · ∗) for g, g′, g′′ ∈ G. After projecting from the flats of C∞

as in [4, §6.1] we obtain an R-tree T ⊆ C∞ containing the basepoint ∗ and upon which G acts

isometrically with no global fixed point by [4, Lemma 6.2], and if K is the kernel of this action

we obtain an action of L = G/K on T .

Let g ∈ H. Then

dn(∗n, fn(g) · ∗n) = dn(∗n, i(g) · 1) for n� 1, so

dn(∗n, fn(g) · ∗n) = dn(∗n, i(g) · 1) = d0(1, i(g) · 1)/δn → 0 = d(∗, g · ∗)

and hence g fixes ∗ in T for all g ∈ H. Thus H fixes ∗.

It is clear that H ∩ ker−→ (hn) = {1} because H is fixed in the limit, so suppose there exists

g ∈ K \ ker−→ (hn). But then g cannot stabilize a tripod by (5), so h /∈ K. Thus H ∩K = {1}

and hence we may consider H ≤ L.
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Because H is non-abelian and fixed in the limit each hn(G) is non-abelian as well, so T is

not isometric to a real line by (3). Then if there existed a global fixed point x ∈ T we would

have H ≤ StabL[∗, x], which would contradict (2) because H is non-abelian.



CHAPTER 4

MODULAR AUTOMORPHISMS, BENDING, AND SHORTENING

Definition 4.1. Let G be a finitely generated group with a splitting Λ over abelian edge groups.

If Z = Gv is an abelian vertex subgroup of G in Λ, let I(Z) ≤ Z be the subgroup generated by

the incident edge stabilizers in Z. The incidental subgroup I(Z) is the minimal direct factor of

Z containing I(Z). We say that an abelian vertex subgroup Z is incidental if I(Z) = Z.

Definition 4.2. Let G be a finitely generated group. A Dehn twist is an automorphism of one

of the following types:

• If G = A ∗C B and c ∈ Z(C), then define σ ∈ Aut(G) such that σ(a) = a for a ∈ A and

σ(b) = cbc−1 for b ∈ B.

• If G = A∗C with stable letter t and c ∈ Z(C), then define σ ∈ Aut(G) such that σ(a) = a

for a ∈ A and σ(t) = tc.

If G has a splitting Λ over abelian groups and Z = Gv is an abelian vertex subgroup of G

in Λ, a generalized Dehn twist is an automorphism σ ∈ Aut(G) which restricts to the identity

on I(Z) and all other vertex groups.

The modular automorphism group of G is the subgroup Mod(G) of Aut(G) generated by

Dehn twists, generalized Dehn twists, and inner automorphisms. If H is a subgroup of G, the

relative modular automorphism group of G relative to H is the subgroup ModH(G) of Mod(G)

consisting of modular automorphisms which restrict to the identity on H.
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Definition 4.3. Let G be a finitely generated group which is freely indecomposable relative

to a subgroup H, and let Γ be a toral relatively hyperbolic group with a fixed embedding

i : H ↪→ Γ. Two morphisms f, f ′ : G→ Γ fixing H differ by a bending move if either

(i) there is a splitting G = A ∗C B relative to H over an abelian subgroup C with H ≤ A

such that f(C) is contained in a maximal non-cyclic abelian subgroup Z ≤ Γ and there

exists z ∈ Z such that f ′|A = f |A and f ′|B = ιz ◦ fB; or

(ii) there is a splitting G = A∗C = 〈A, t〉 relative to H over an abelian subgroup C with

H ≤ A such that f(C) is contained in a maximal non-cyclic abelian subgroup Z ≤ Γ and

there exists z ∈ Z such that f ′|A = f |A and f ′(t) = zt.

Remark 4.4. These are the type (B2) bending moves of [3, Definition 3.4]. We do not require

the type (B1) bending moves for shortening because we restrict to splittings relative to a torally

complete subgroup, and such a splitting can contain no non-incidental abelian vertex groups.

Lemma 4.5. Let G be a toral relatively hyperbolic group which is freely indecomposable relative

to a non-abelian torally complete subgroup H, and let Λ be the JSJ splitting of G relative to H.

Then Λ contains no non-incidental abelian vertex groups.

Proof. Cyclic vertex groups are trivially incidental because edge groups are nontrivial, so let T

be the Bass-Serre tree corresponding to this splitting, let Z = Gv be a non-cyclic abelian vertex

subgroup of Λ, and let A = Gu be the vertex subgroup of Λ which contains H. Then A is

non-abelian and Z is conjugate into H because H is torally complete in G, so gZg−1 ≤ H ≤ A

for some g ∈ G. Choose lifts ṽ, ũ ∈ V (T ). Then gZg−1 stabilizes g · ṽ and ũ, so it stabilizes
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the arc [g · ṽ, ũ]. Because T is bipartite and A is non-abelian this arc must have odd length,

and in particular it must be an edge ẽ = (g · ṽ, ũ) ∈ E(T ) stabilized by gZg−1 because the

action of G on T is 2-acylindrical. But then the edge g−1 · ẽ = (ṽ, g−1 · ũ) is stabilized by Z, so

Z ≤ I(Z) ≤ Z and hence Z = I(Z) is incidental.

Definition 4.6. Let G be a finitely generated group which is freely indecomposable relative

to a subgroup H, and let Γ be a toral relatively hyperbolic group with a fixed embedding

i : H ↪→ Γ such that Γ acts by isometries on a pointed metric space (X, d, ∗). Define an

equivalence relation on HomH(G,Γ) generated by the relation f ∼ f ′ if either (i) f ′ = f ◦α for

some α ∈ ModH(G) or (ii) f ′ differs from f by a bending move. Note that any f ′ : G→ Γ such

that f ∼ f ′ must fix H, so a morphism f : G→ Γ fixing H is short if, for all f ′ : G→ Γ such

that f ′ ∼ f , |f | ≤ |f ′|.

Theorem 4.7 (Shortening Argument). Let G = 〈S〉 be a finitely generated group (with S

finite) which is freely indecomposable relative to a non-abelian subgroup H, and let Γ be a toral

relatively hyperbolic group with a fixed embedding i : H ↪→ Γ such that i(H) is torally complete

in Γ.

Suppose that (fn)n is a sequence of distinct morphisms in Hom(G,Γ) fixing H in the limit.

If (fn)n converges to a faithful isometric G-action on an R-tree T , then all but finitely many

fn are not short.

Proof. We will use the Rips machine to analyze the action of G on T . Because H is fixed

in the limit, H fixes the basepoint point ∗ ∈ T by Theorem 3.6, and further we can shorten
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using elements of ModH(G) and bending moves. Because G is freely indecomposable relative

to H there are no Levitt components, and there are no axial components because non-cyclic

abelian subgroups in the image of fn are conjugate into the elliptic subgroup i(H). Thus T

only consists of IET and discrete components, so we can shorten the segments [∗, s · ∗] for s ∈ S

as in [3, Theorem 3.7].



CHAPTER 5

APPLICATIONS OF THE SHORTENING ARGUMENT

5.1 Shortening quotients

Definition 5.1. Let A = 〈S〉 be a finitely generated group (with S finite) which is freely

indecomposable relative to a subgroup H, and let G be a toral relatively hyperbolic group with

a fixed embedding i : H ↪→ G.

A G-limit quotient of A (relative to H) is a quotient L = A/K, where K = ker−→ (fn) is the

stable kernel of a stable sequence (fn)n of non-injective morphisms in Hom(A,G) (which fix H

in the limit). Note that L is a G-limit group which contains a copy of H in the relative case

because we will have H ∩K = {1}. If each fn is short (relative to H), then L is a G-shortening

quotient of A (relative to H).

Define an order ≥ on the set of (relative) G-limit quotients by setting (q : A � L) ≥ (q′ :

A � L′), or simply L ≥ L′, if there exists a morphism f : L → L′ such that q′ = f ◦ q. The

quotients L and L′ are said to be equivalent if the map f is an isomorphism. This defines

an equivalence relation on the set of (relative) G-limit quotients. Additionally, this defines an

order and an equivalence relation on the set of (relative) G-shortening quotients.

Remark 5.2. (1) It is not standard to assume that the morphisms fn are non-injective.

(2) Any sequence L1 ≥ L2 ≥ L3 ≥ · · · of (relative) G-limit quotients terminates by [3, Theorem

5.2].
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(3) If q : A � L is a (relative) G-limit quotient corresponding to a stable sequence (fn)n in

HomH(A,G), then all but finitely many fn factor through q by [3, Theorem 5.6].

(4) Given any sequence L1 ≤ L2 ≤ L3 ≤ · · · of (relative) G-limit quotients of A, there exists a

G-limit quotient L of A such that L ≥ Li for all i by [3, Proposition 5.13]. In the relative

case, if (fn)n is the stable sequence in HomH(A,G) corresponding to L, then H must be

fixed in the limit by (3) because L contains a copy of H as noted above. Thus L is a

relative G-limit quotient. We note that [3, Proposition 5.13] applies and that L is a G-limit

quotient in our sense because L is defined by a sequence of non-injective morphisms in the

original proof.

Lemma 5.3. Let A be a non-abelian toral relatively hyperbolic group which is freely indecom-

posable relative to a non-abelian subgroup H, and let G be a toral relatively hyperbolic group

with a fixed embedding i : H ↪→ G. Then G-shortening quotients of A relative to H are proper

quotients.

Proof. Let L = A/K be a G-shortening quotient relative to H, where K = ker−→ (fn) for a stable

sequence (fn)n of non-injective short morphisms in Hom(A,G) which fix H in the limit. If L is

not proper, then K = {1} is trivial, so the morphisms are distinct and this sequence converges

to a faithful A-action on an R-tree (possibly after passing to a subsequence) by Theorem 3.6.

This action has no global fixed point, trivial tripod stabilizers, and H acting elliptically, so by

Theorem 4.7 not all fn could have been short, which is a contradiction.
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Lemma 5.4. Let A = 〈S〉 be a finitely generated group (with S finite) which is freely indecom-

posable relative to a subgroup H, and let G be a toral relatively hyperbolic group with a fixed

embedding i : H ↪→ G. There are only finitely many proper maximal G-shortening quotients of

A (relative to H) up to equivalence.

We omit the proof of the preceding proposition as it is nearly identical to that of [3, Lemma

6.2], except that we only consider morphisms which fix a subgroup. As above, the proof of

[3, Lemma 6.2] applies in our context because the morphisms used are non-injective.

Definition 5.5. Let A be a toral relatively hyperbolic group which is freely indecomposable

relative to a subgroup H, let G be a toral relatively hyperbolic group with a fixed embedding

i : H ↪→ G, and let Λ be the JSJ splitting of A relative to H. We say that a map f : A → G

satisfies ∗H,A,G if f fixes H and, for all e ∈ E(Λ),

rank(ZA(Ae)) = rank(ZG(f(Ae))).

Lemma 5.6. Let A be a toral relatively hyperbolic group which is freely indecomposable relative

to a subgroup H, let G be a toral relatively hyperbolic group with a fixed embedding i : H ↪→ G.

Suppose that f : A→ G satisfies ∗H,A,G for some JSJ splitting Λ of A relative to H. If either (i)

H is torally complete in A and the image i(H) is torally complete in G; or (ii) H = {1} and A

contains no non-cyclic abelian subgroups (i.e., A is freely indecomposable and hyperbolic), then

for any f ′ : A → G such that f ′ differs from f by a bending move there exists σ ∈ ModH(A)

such that f ′ = f ◦ σ, i.e., f admits no non-trivial bending moves.
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Proof. The result is clear in case (ii) because the parabolic subgroups of G are the non-cyclic

abelian subgroups of G, so the condition ∗H,A,G ensures that ZG(f(Ae)) is cyclic and hence not

conjugate into a parabolic subgroup, so suppose that H is torally complete in A and i(H) is

torally complete in G.

Any Ae which is not conjugate in A into H must have a cyclic centralizer, so because

ZG(f(Ae)) is also cyclic the image of Ae is not contained in a parabolic subgroup of G and

hence there are no bending moves in such edges.

Suppose that Ae is conjugate into H by a ∈ A. Let M = ZA(Ae) and N = ZG(f(Ae)).

Then aMa−1 is maximal abelian in H, so i(aMa−1) is maximal abelian in i(H) and hence also

in G because i(H) is torally complete. We also have that f(a)Nf(a)−1 is maximal abelian in

G, so because

f(a)f(M)f(a)−1 = f(aMa−1) = i(aMa−1) ≤ i(H)

is a finite index subgroup of f(a)Nf(a)−1 by ∗H,A,G we have that f(a)Nf(a)−1 is maximal

abelian in i(H). Then N = f(M), so for any n ∈ N there exists m ∈ M such that n = f(m).

Thus any bending in the edge Ae by the element n can be realized as precomposing by a Dehn

twist by the element m.

Lemma 5.7. Let G be a toral relatively hyperbolic group and let A be a toral relatively hyperbolic

retract of G which is freely indecomposable relative to a subgroup H. If either (i) H is torally

complete in G; or (ii) H = {1} and no element of A is conjugate into a non-cyclic abelian

subgroup of G, then the usual embedding A ↪→ G satisfies ∗H,A,G.
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Proof. Again, the result is clear in case (ii), so suppose that H is torally complete in G.

It is clear that the usual embedding i : A ↪→ G fixes H, so let Λ be the JSJ splitting of A

relative to H and let r : G � A be the retraction of G onto A. Let e ∈ E(Λ), M = ZA(Ae),

and N = ZG(i(Ae)) = ZG(Ae).

Suppose that Ae is conjugate into H by a ∈ A. Then aMa−1 ≤ H is maximal abelian

in both G and H because H is torally complete in G, and further aMa−1 ≤ aNa−1. Then

aMa−1 = aNa−1 and hence M = N , so rank(M) = rank(N).

Any Ae which is not conjugate into H in A is also not conjugate into H in G by the

retraction, so both Ae and M must be cyclic. Suppose that rank(N) > rank(M) = 1. Then

there exists g ∈ G such that gNg−1 ≤ H. But then

r(g)Aer(g) ≤ r(g)Mr(g)−1 = r(gMg−1) ≤ r(gNg−1) = gNg−1 ≤ H,

which contradicts the assumption that Ae is not conjugate into H.

Thus A ↪→ G satisfies ∗H,A,G.

Corollary 5.8. Let G be a toral relatively hyperbolic group and let A be a toral relatively

hyperbolic retract of G which is freely indecomposable relative to a subgroup H. If either (i) H

is torally complete in G; or (ii) H = {1} and no element of A is conjugate into a non-cyclic

abelian subgroup of G, then the usual embedding A ↪→ G admits no non-trivial bending moves.
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Lemma 5.9. Let A be a toral relatively hyperbolic group which is freely indecomposable relative

to a subgroup H, let G be a toral relatively hyperbolic group with a fixed embedding i : H ↪→ G,

and let f, f ′ : A→ G be morphisms fixing H such that f ∼ f ′. If either (i) H is torally complete

in A and the image i(H) is torally complete in G; or (ii) H = {1} and A contains no non-cyclic

abelian subgroups, then

(1) f satisfies ∗H,A,G if and only if f ′ satisfies ∗H,A,G; and

(2) If f satisfies ∗H,A,G, then f is injective if and only if f ′ is injective.

Proof. Suppose that f satisfies ∗H,A,G. Then f admits no nontrivial bending moves by Lemma

5.6, so f ′ = f ◦σ for some σ ∈ ModH(A), and thus f ′ satisfies ∗H,A,G because σ clearly satisfies

∗H,A,A. Similarly we find that f is injective if and only if f ′ is injective.

Proposition 5.10. Let A be a toral relatively hyperbolic group which is freely indecomposable

relative to a subgroup H, and let G be a toral relatively hyperbolic group with a fixed embedding

i : H ↪→ G. If H is torally complete in A and the image i(H) is torally complete in G, then

there exists a finite set of proper quotients of A and a finite subset H0 ⊆ H such that 〈H0〉 is

torally complete in A, i(〈H0〉) is torally complete in G, and, for any non-injective morphism

f : A → G fixing H0 and satisfying ∗〈H0〉,A,G, there exists σ ∈ ModH(A) making f ◦ σ factor

through one of these proper quotients.

Proof. Suppose that no such subset H0 exists and let S be the finite set consisting of generators

from representatives of each of the conjugacy classes of non-cyclic abelian subgroups of H. Then

there exists a sequence of integers (rn)n such that rn →∞ and a stable sequence (fn)n of non-



40

injective morphisms in Hom(A,G) such that each fn fixes the finite subset Bn := (BA(rn) ∪

S) ∩ H, satisfies ∗〈Bn〉,A,G and does not not factor through any of the maximal G-shortening

quotients relative to H, and such that 〈Bn〉 is torally complete in A and i(〈Bn〉) is torally

complete in G.

Then H is fixed in the limit, and furthermore we may assume each fn is short relative to

〈Bn〉 because any morphism f ′ ∼ fn is also non-injective by Lemma 5.9. Let q : A � L be

the corresponding G-shortening quotient of A relative to H. Then there exists some maximal

relative G-shortening quotient M such that M ≥ L by Lemma 5.4. However, all but finitely

many fn factor through q and hence factor through A�M , which is a contradictiton.

Proposition 5.11. Let A be a freely indecomposable, torsion-free hyperbolic group, and let G

be a toral relatively hyperbolic group. There exists a finite set of proper quotients of A such

that, for any non-injective morphism f : A → G satisfying ∗{1},A,G, there exists σ ∈ Mod(A)

making f ◦ σ factor through one of these proper quotients.

Proof. Suppose the result does not hold. Then there exists a stable sequence (fn)n of non-

injective morphisms in Hom(A,G) such that each fn satisfies ∗〈1〉,A,G, and does not not factor

through any of the maximal G-shortening quotients relative to {1}.

Then H is fixed in the limit, and furthermore we may assume each fn is short relative to

〈Bn〉 because any morphism f ′ ∼ fn is also non-injective by Lemma 5.9. Let q : A � L be

the corresponding G-shortening quotient of A relative to H. Then there exists some maximal

relative G-shortening quotient M such that M ≥ L by Lemma 5.4. However, all but finitely

many fn factor through q and hence factor through A�M , which is a contradictiton.
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Proposition 5.12. Let A be a freely indecomposable, torsion-free hyperbolic group and let G

be a toral relatively hyperbolic group. There exists a finite set of embeddings A ↪→ G such that,

for any embedding i : A ↪→ G satisfying ∗{1},A,G, there exists σ ∈ Mod(A) and g ∈ G so that

ιg ◦ i ◦ σ is equal to one of the embeddings in the finite set.

Proof. Suppose no such set of embeddings exists. Then there exists a stable sequence (jn)n

in Hom(A,G) of distinct, non-equivalent embeddings satisfying ∗{1},A,G with ker−→ (jn) = {1}.

We may also assume that each jn is short relative to {1} because any morphism f ′ ∼ jn is

also an embedding by Lemma 5.9. Furthermore, no jn will admit non-trivial bending moves by

Corollary 5.8. The sequence will converge to a faithful isometric G-action on an R-tree T , so

not all jn could have been short by [3, Theorem 3.7].

5.2 Not the co-Hopf property

Definition 5.13. A group G is co-Hopf (or has the co-Hopf property) if any injective morphism

G ↪→ G is an isomorphism. Similarly, if H is a subgroup of G, then G is co-Hopf relative to H

if any injective morphism G ↪→ G which restricts to the identity on H is an isomorphism.

Remark 5.14. If G has a splitting Λ over abelian groups which contains a non-incidental abelian

vertex subgroup, then G is not co-Hopf: Suppose Z = I(Z) × B is a non-incidental abelian

vertex subgroup. We can define a monomorphism G ↪→ G which is not an epimorphism by

mapping B into a proper finite-index subgroup of itself and restricting to the identity map

elsewhere.
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Unfortunately we were unable to prove the more general relative co-Hopf property we had

hoped for. The co-Hopf property for torsion-free hyperbolic groups was used in [10] to rule out

the existence of injective preretractions, but we found a workaround using the property ∗H,A,G.

We do not know if there exist injective morphisms A ↪→ G which fix H but do not satisfy

∗H,A,G, but it is clear that the usual embedding i : A ↪→ G satisfies ∗H,A,G, and hence so would

i ◦ α for any α ∈ ModH(G). Then any morphism which is Λ-related to i also satisfies ∗H,A,G,

and hence preretractions satisfy ∗H,A,G.

Lemma 5.15. Let G be a toral relatively hyperbolic group, let H be a non-abelian, torally

complete subgroup of G, and let A be a toral relatively hyperbolic retract of G which contains

and is freely indecomposable relative to H. There exists a finite set H0 ⊆ H such that any

embedding A ↪→ G satisfying ∗〈H0〉,A,G fixes H.

Proof. Suppose that no such subset H0 exists and let S be the finite set consisting of generators

from representatives of each of the conjugacy classes of non-cyclic abelian subgroups of H. Then

there exists a sequence of integers (rn)n such that rn → ∞ and a sequence (in)n of distinct

embeddings in Hom(A,G) such that each in fixes the finite subset Bn := (BA(rn)∪S)∩H but

not H and satisfies ∗〈Bn〉,A,G, and such that 〈Bn〉 is torally complete in G. Then H is fixed in the

limit, and furthermore we may assume each in is short relative to 〈Bn〉 because any morphism

f ′ ∼ in is also an embedding. Then ker−→ (in) = {1} is trivial, so this sequence converges to a

faithful action on an R-tree (possibly after passing to a subsequence) by Theorem 3.6, so by

Theorem 4.7 not all in could have been short, which is a contradiction.
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Proposition 5.16. Let H be a proper torally complete subgroup of a toral relatively hyperbolic

group A which is freely indecomposable relative to H, and let Λ be the JSJ splitting of A relative

to H. Then there exists a finite subset H0 ⊆ H and a finite set K0 ⊆ A \ {1} such that for any

morphism f : A → H which fixes H0 and satisfies ∗〈H0〉,A,H , there exists σ ∈ ModH(A) and

k ∈ K0 such that f ◦ σ(k) = 1.

Proof. Choose H0 to satisfy the conditions of Proposition 5.10 and Lemma 5.15 for morphisms

A → A satisfying ∗〈H0〉,A,A and choose K0 to consist of a single non-trivial element from the

kernel of each of the proper quotients of Proposition 5.10. If f is non-injective the result follows

immediately by Proposition 5.10, so suppose that there exists an injective f : A ↪→ H as above

and let i : H ↪→ A be the usual embedding. Then g := i ◦ f : A ↪→ A fixes H0 and satisfies

∗〈H0〉,A,A. Then g and hence f must both fix H by Lemma 5.15, so f is surjective and could

not have been injective because H is a proper subgroup fixed by f .



CHAPTER 6

PRERETRACTIONS FROM ELEMENTARY EMBEDDINGS

Lemma 6.1 (Compare [10, Lemma 5.18]). Let A = 〈a〉 be a finitely generated group with a

JSJ-like splitting Λ such that all vertex and edge groups are finitely generated. There exists a

first-order formula ρΛ(x, y) such that for any morphisms f, f ′ : A → G given by a 7→ s and

a 7→ t, f and f ′ are Λ-related if and only if G |= ρΛ(s, t).

Proof. Given a tuple x = (x1, . . . , xn), define

α(x) :
∧

1≤i<j≤n
[xi, xj ] = 1.

Then G |= α(x) if and only if the subgroup 〈x〉 is abelian.

For each v ∈ V (Λ) and each e ∈ E := E(Λ) choose finite generating sets Sv := {b = b(a)}

and Se := {c = c(a)} so that Av = 〈Sv〉 and Ae = 〈Se〉. Partition V (Λ) = U q V so that V

consists of the non-exceptional surface-type vertices of Λ and U consists of all other vertices.

For each u ∈ U and e ∈ E define

ρu(x, y) : ∃z
∧
b∈Su

b(x) = zb(y)z−1,

ρe(x, y) : ∃z
∧
c∈Se

c(x) = zc(y)z−1,

44
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and for each v ∈ V let Sv = {b = b(a)} and define

ρv(x, y) : ¬α(b(x)) =⇒ ¬α(b(y)).

Then the result follows if we define

ρΛ(x, y) :

(∧
u∈U

ρu(x, y)

)
∧

(∧
v∈V

ρv(x, y)

)
∧

(∧
e∈E

ρe(x, y)

)
.

Lemma 6.2. Let A = 〈a〉 be a finitely generated group with the JSJ-like splitting Λ and let

G be a torsion-free commutative-transitive group with all abelian subgroups finitely generated.

There exists a first-order formula εΛ(x) such that for any morphism f : A→ G given by a 7→ s

with f(ZA(Ae)) 6= {1} for all e ∈ E(Λ), f satisfies

rank(ZA(Ae)) = rank(ZG(f(Ae)))

for all e ∈ E(Λ) if and only if G |= εΛ(s).
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Proof. For each e ∈ E(Λ) let re = rank(ZA(Ae)) and choose a basis {be,i = be,i(a)}rei=1 for

ZA(Ae). Since E(Λ) is finite by Lemma 2.8 we can define

εe(x) :

(
re∨
i=1

be,i(x) 6= 1

)
∧

(
re∧
i=1

((be,i(x) 6= 1) =⇒ Zre(be,i(x)))

)
,

εΛ(x) :
∧

e∈E(Λ)

εe(x).

Then f(be,i) = be,i(s), so G |= εe(s) if and only if f(ZA(Ae)) 6= {1} and

rank(ZG(f(Ae))) = rank(ZG(f(be,i))) = re = rank(ZA(Ae)),

so the result follows.

Proposition 6.3 (Compare [10, Proposition 5.13]). Let G be a toral relatively hyperbolic group

and let H ↪→Th G be an elementarily embedded subgroup. If A is a retract of G which properly

contains H, is toral relatively hyperbolic, and is freely indecomposable relative to H, then there

exists a non-injective preretraction p : A G with respect to the JSJ splitting of A relative to

H.

Proof. Let Λ be the JSJ splitting of A relative toH, let A = 〈a|Σ(a) = 1〉 be a finite presentation

for A, and let H0 = {h1, . . . , hn} ⊆ H and K0 = {k1, . . . , km} ⊆ A as in Proposition 5.16 with

hi = hi(a) and kj = kj(a), where we are concerned with maps A→ H which satisfy ∗〈H0〉,A,H .
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Define the first-order formula

ϕ(z1, . . . , zn) : ∀x∃y

(
(Σ(x) = 1) ∧ εΛ(x) ∧

(
n∧
i=1

zi = hi(x)

))

=⇒

(
(Σ(y) = 1) ∧ ρΛ(x, y) ∧

(
m∨
i=1

ki(y) = 1

))

Then by Lemmas 6.1 and 6.2, ϕ(h1, . . . , hn) can be interpreted as meaning that, for any

morphism f : A → H given by a 7→ x which satisfies ∗〈H0〉,A,H , there exists a Λ-related

morphism f ′ : A→ H given by a 7→ y such that f ′(ki) = 1 for some i. Then H |= ϕ(h1, . . . , hn)

by Proposition 5.16, so because H ↪→Th G we have G |= ϕ(h1, . . . , hn). Interpreted over G,

this implies that because the inclusion A ↪→ G satisfies ∗〈H0〉,A,G, there exists a non-injective

morphism p : A → G which is Λ-related to the inclusion A ↪→ G. Then p : A  G is a

non-injective preretraction with respect to Λ.

Proposition 6.4 (Compare [10, Proposition 5.14]). Let G be a toral relatively hyperbolic group

and let H ↪→Th G be an elementarily embedded subgroup. If H is a toral relatively hyperbolic

retract of G and C is a freely indecomposable torsion-free hyperbolic subgroup of G such that

no non-trivial elements of C are conjugate into H by an element of G and C is neither cyclic

nor a non-exceptional surface group, then there exists a non-injective preretraction p : C  G

with respect to the JSJ splitting of C.

Proof. Let Λ be the JSJ splitting of C, let C = 〈c|Σ(c) = 1〉 be a finite presentation for C,

let {u} = {u1, . . . , un} ⊆ Hom(C,H) be the finite set of embeddings as in Proposition 5.12,

and choose K0 = {k1, . . . , km} ⊆ C to consist of a single non-trivial element from the kernel of
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each of the proper quotients of Proposition 5.11 with kj = kj(c), where in both cases we are

concerned with maps C → H which satisfy ∗{1},C,H .

Define the first-order formula with constants ui(c) ∈ H

ϕ(x) : ((Σ(x) = 1) ∧ εΛ(x))

∧ ∀y

(
((Σ(y) = 1) ∧ ρΛ(x, y)) =⇒

(
n∧
i=1

y 6= ui(c)

))

Then H |= ϕ(x) if and only if c 7→ x defines a morphism f : C → H which satisfies

rank(ZA(Ae)) = rank(ZH(f(Ae)))

for all e ∈ E(Λ) and is not Λ-related to any of the embeddings ui. By Proposition 5.12, this is

sufficient to ensure that morphisms satisfying ∗{1},C,H are non-injective, i.e., if H |= ϕ(x) then

c 7→ x defines a non-injective morphism C → H.

Define the first-order sentence with constants in H

ψ : ∀x ϕ(x)

=⇒ ∃y

(
(Σ(y) = 1) ∧ ρΛ(x, y) ∧

(
m∨
i=1

ki(y) = 1

))

Then H |= ψ because any non-injective morphism C → H given by c 7→ x and satisfying

∗{1},C,H is Λ-related to a morphism c 7→ y with some ki in its kernel by Proposition 5.11. By

the elementary embedding we have G |= ψ.
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Because C is neither cyclic nor a non-exceptional surface group, Λ has at least one non-

surface-type vertex subgroup B. Any f : C → G which is Λ-related to the embedding C ↪→ G

given by c 7→ c restricts to conjugation on B. Then f(B) cannot be in H by hypothesis, so the

tuple f(c) 6= ui(c) for all i and hence G |= ϕ(c). Then there exists a non-injective morphism

p : C → G which is Λ-related to the inclusion C ↪→ G, so p : C  G is a non-injective

preretraction with respect to Λ.



CITED LITERATURE
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