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Summary

A comparison of simulated Josephson scanning tunneling current against spatial

superconducting order parameter fluctuations was performed in the context of sev-

eral distinct superconducting models. In each case, the Josephson current was

calculated using a Keldysh Green’s formalism to first-order in the superconductor-

tip tunneling. In the case of an isotropic s-wave superconductor, the atomically-

resolved superconducting correlations were self-consistently calculated to produce

fluctuations consistent with magnetic and non-magnetic impurities. These charac-

teristic fluctuations were imaged by the Josephson critical current.

For a dx2−y2-symmetric superconductor, the nonlocal nature of superconduc-

tivity dictated a spatially-extended superconducting tip. Investigating the spatial

extent and possible disorder of the superconducting tip demonstrated that these

variations did not qualitatively change the ability of the Josephson critical current

to image the dx2−y2-wave superconducting correlations. In addition, the high res-

olution of the imaging ability of JSTS allowed for identification of the Fulde-Ferrel-

Larkin-Ovchinnikov phase, and its sensitivity to superconducting correlations al-

lowed it to predict a signature for a precursor pairing-mediated pseudogap phase

based on a realistic model of inhomogenous superconducting and pseudogapped

regions.

In a skyrmion system, the rich phase diagram obtained through the combi-

nation of skyrmion magnetic moments and induced Rashba spin-orbit coupling

xi



SUMMARY xii

was demonstrated. In that system, topological superconductivity was visualized

as p-wave spin-triplet superconducting correlations. Using an extended tip with

corresponding spin-triplet correlations, a Josephson critical current was measured

that identified regions with spin-triplet superconductivity in a phase- and spatially-

resolved way.

In the context of topological superconductivity in an FeSe0.45Te0.55-hosted do-

main wall with a possible a Majorana zero mode, a 5-band model was constructed.

When topologically trivial, the 5-band model of FeSe0.45Te0.55 was demonstrated to

be incapable of matching experimental evidence for a zero-energy mode arising

for either a step-edge commensurate domain wall or a domain wall with a half-unit

cell shift. Revising the topologically trivial model using surface magnetism and the

Rashba spin-orbit effect produced the necessary topological superconductivity in

FeSe0.45Te0.55. In this revised model, detection of a Majorana zero mode using

scanning tunneling spectroscopy was compared to a method of detection using

equilibrium current measurement, with the latter demonstrating qualitatively differ-

ent results in the presence of a Majorana zero mode.



Chapter 1

Introduction

In s-wave superconductors, the explanation of superconductivity in terms of charge

screening and an electron-phonon interaction leads us to suppose that its ori-

gin in high-temperature superconductors may have an intuitive underlying mech-

anism as well. This tantalizing possibility, coupled with the advantages a high-

temperature superconductor could bring, has led to intense research into how

”unconventional” high-temperature superconductors behave, and is a key factor

motivating our models of a copper-oxide (Chapter 3) and iron-pnictide (Chapter 5)

superconductor. For these materials, the usual isotropic s-wave symmetry of su-

perconductivity no longer holds – in the iron pnictide FeSexTe1−x, a spin-fluctuation

between nearly nested hole-like and electron-like Fermi surfaces leads to a sign-

changing s-wave symmetry[1]. In the high-temperature copper-oxide (cuprate) su-

perconductor YBa2Cu3O7−δ, we have learned that superconductivity has a dx2−y2

symmetry[2] based on a phenomenon with unique insight into the pair correlations

responsible for superconductivity – the Josephson effect[3]. This crucial connec-

tion between superconductivity’s pair correlations and a Josephson effect-derived

observable is the one of the key ideas we investigate in the following text.

As Bardeen, Cooper, and Shrieffer’s model[4] demonstrated, an arbitrarily weak

1



CHAPTER 1. INTRODUCTION 2

e-e attraction will couple electrons into Cooper pairs at low temperatures, resulting

in a gapped ground state, superconductivity, and a built-in way to describing the

resulting electron-pair correlations in terms of a superconducting order parameter

(SCOP). However, despite the fact that the SCOP underlies the electronic definition

of superconductivity and its spatially averaged magnitude even appears as the

superconducting gap, it could not be directly measured until the discovery of the

Josephson effect.

In the Josephson effect, a persistent current is predicted to be present between

two superconducting electrodes coupled by an insulating link even in the absence

of an applied voltage[5]. The simplest example of this effect occurs when the two

electrodes are embedded on a substrate in a Josephson junction (the method used

in the discovery of dx2−y2 symmetry in YBa2Cu3O7−δ), where the flow of current is

governed by the Josephson equations,

IS = IC sin ∆ψ (1.1)

d∆ψ

dt
=

2eV

~
(1.2)

Here, IS represents the Josephson current, IC the maximum current the link

can support, known as the critical current, V is the voltage across the junction, and

∆ψ = ψL − ψR is the difference in the phases of the SCOP’s between the left and

right sides of the junction[3, 5].

In a Josephson scanning tunneling spectroscopy (JSTS) configuration (see Fig.

1.1), a superconducting tip separated from a superconducting substrate by a small

air gap exhibits the Josephson effect in a different way than a junction. In our re-

sults for a single- or multi-atomic JSTS tip, the form of Eq. 1.1 changes (see for

example Eq. 2.1) to reflect the atomic geometry of the tunneling sites. Instead of

the broad tunneling interface provided by the terminals of a junction, the atomic
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Figure 1.1: Schematic tunneling picture of a superconducting tip at site r above the
system.

tip in JSTS allows for a measurement of IC with up to atomic precision[6]. In ad-

dition, in a similar way as scanning tunneling microscopy, Josephson scanning

tunneling spectroscopy (JSTS) experiments (see for example [7, 8, 9]) produce a

spatial current distribution that – as we will show – images the spatial supercon-

ducting correlations in a superconductor. In this respect, JSTS may be contrasted

with electron scanning tunneling spectroscopy (STS), where it is possible to ex-

tract a gapmap from the coherence peaks in a measurement of the single-particle

dI/dV . Although these techniques can provide superficially similar measurements,

the gap obtained from measuring superconducting coherence peaks in STS does

not typically reflect the atomically-resolved variations of the SCOP[10, 11, 12]. On

the other hand, JSTS is a probe of the SCOP with atomic resolution as well as a

complex phase. In the results we present in Chapters 1-3 we use these unique

features of JSTS to identify novel phenomena like the long-sought Fulde-Ferrel-

Larkin-Ovchinnikov[13, 14] phase in cuprate superconductors and the emergence

of the spin-triplet superconducting correlations essential for the presence of topo-

logical superconductivity.

In a topological superconductor, the bulk of the superconductor is character-

ized by a topological invariant based on the dimensions and symmetries of the
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material[15]. Furthermore at the superconductor’s edge, the change in its topo-

logical invariant produces a gapless boundary state (a result known as the bulk-

boundary correspondence)[16]. Research into topological superconductivity ex-

ploded after Alexei Kitaev pointed out that a topologically superconducting 1D

chain of atoms[17] is able to host a collective electronic state at zero energy (a

Majorana zero mode) at its ends that is protected from decoherence by its topolog-

ical phase, making it ideal for a qubit used in quantum computing. To make useful

qubits, however, they must be manipulable – a feat hard to accomplish in a topolog-

ical bulk-boundary mode where the topological phase is determined by a material’s

inaccessible bulk. As we show, however, a skyrmion lattice (see Chapter 4) offers

the capability to tune between topological phases. Furthermore, FeSexTe1−x has

emerged as a rare material capable of hosting these exotic topological zero-energy

modes[18]. The ambiguity surrounding the microscopic origin and experimental

detection of Majorana zero modes, however, has led us–in chapter 5–to extend

previous efforts[19, 20] to model the electronic structure of FeSe0.45Te0.55 with the

goal of identifying a domain wall-localized Majorana zero mode in this system.

Investigating the topics detailed in the following chapters has lead to some in-

teresting results, but also many more interesting questions. We hope, however,

that the results we present will provide some insight into the incredible potential

offered by transport experiments on unconventional superconductors.



Chapter 2

Josephson spectroscopy in an

s-wave superconductor

This work was previously published as: M. Graham and D. K. Morr, ”Imaging the

spatial form of a superconducting order parameter via Josephson scanning tunnel-

ing spectroscopy,” Physical Review B, vol. 96, no. 18, pp. 1-7, 2017.

2.1 Introduction to Josephson scanning tunneling

spectroscopy

As we recall from Chapter 1, the Josephson effect in a superconductor-insulator-

superconductor junction led to the following equations,

IS = IC sin ∆ψ (2.1)

d∆ψ

dt
=

2eV

~
(2.2)

Here, IS represents the Josephson current, IC the maximum current the link

can support, known as the critical current, and ∆ψ = ψL − ψR the difference in

5
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the phases of the SCOP’s between the left and right sides of the junction [3, 5].

Shortly after Josephson’s 1962 paper, Ambegaokar and Baratoff[21] connected

the Josephson current IS in Eq. (1.1) to the magnitude of the superconducting

order parameter. In their result for a system of two symmetric superconductors

connected by a weak link, they found[22],

IcRn = (π∆/2e) tanh(∆/2kT ) (2.3)

This general result for a Josephson junction showed that the critical Josephson

current IC scales linearly with the SCOP at increasing temperatures, and, more-

over, is proportional to the magnitude of the SCOP at T = 0[5].

Motivated by the general result in Eq. 2.3 for a junction, the assumption that

the Josephson current produced at zero bias in superconducting STM will im-

age the magnitude of the SCOP has been used extensively in recent experiments

[23, 7, 24, 25, 26, 27]. However, while the ability of the Josephson effect to pro-

vide information about a system’s SCOP is well-established, the correspondence

between the tunneling current in an STM configuration and the magnitude of varia-

tions in the substrate SCOP is in general not understood. To resolve this ambiguity

and as a building block to considering more complex systems, this chapter studies

the correspondence between the JSTS critical current and the SCOP with a s-wave

superconductor, which can already host atomic-scale fluctuations in the SCOP as

a result of impurity scattering[28] that are in general invisible from regular STS

measurements[10].
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2.2 Constructing a model superconductor

The starting point for investigating the relation between the spatial form of the criti-

cal Josephson current and the superconducting order parameter around defects in

an s-wave superconductor is the Hamiltonian H = HS +Htip +Htun where,

HS = −t
∑
〈r,r′〉,σ

c†rσcr′σ − µ
∑
r,σ

c†rσcrσ −
∑
r

(
∆(r)c†r↑c

†
r↓ + h.c.

)
(2.4)

+
∑
R,α,β

(U01̂αβ + J0σ
z
αβ)c†RαcRβ (2.5)

Here, −t is the electronic hopping between nearest-neighbor sites r and r0, µ

is the chemical potential, and c†rσ (crσ) creates (annihilates) an electron with spin

σ at site r. ∆(r) is the superconducting order parameter with s-wave symmetry

at site r in the superconductor and U0 and J0 are the non-magnetic and magnetic

scattering strengths of a defect located at site R, with the last sum running over all

defect sites.

Unless otherwise noted, we set µ = −3.618t, yielding the circular Fermi surface

shown in Fig. 2.1. In the presence of defects, we self-consistently compute the

local superconducting order parameter in the superconductor using

∆(r) = −V0

π

∫ ∞
−∞

dωnF (ω)Im[Fs(r, r, ω)] (2.6)

where V0 is the superconducting pairing potential,nF (ω) is the Fermi distribu-

tion function, and FS(r, r, ω) is the local, retarded anomalous Green’s function of

the s-wave superconductor. We model the JSTS tip as an atomically sharp site,

described by the Hamiltonian Htip = Hn
tip + HSC

tip , where Hn
tip represents the normal
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Figure 2.1: Fermi surfaces representing several different electronics structures,
with µ = t (red), µ = 0 (dashed blue), µ = −3.618t

state electronic structure of the tip, and

Htip = −∆tipd
†
↑d
†
↓ −∆tipd↓d↑

its superconducting correlations. Here, ∆tip is the superconducting s-wave gap

in the tip and d†σ (dσ) creates (annihilates) an electron with spin σ in the tip. Finally,

the tunneling of electrons between the tip and a site r in the s-wave superconductor

is described by

Htun = −t0
∑
σ

(c†rσdσ + d†σcr)σ
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2.3 Definition of Green’s functions in real space

To compute the spatial dependence of the local s-wave order parameter, ∆(r), as

well as the critical Josephson current, IC(r), in the presence of defects, we rewrite

the Hamiltonian in Eq. 2.4 in matrix form by introducing the spinor

Ψ† =
(
c†1↑, c1↓, ..., c

†
i↑, ci↓, ..., c

†
N↑, cN↓

)
(2.7)

where N is the number of sites in the s-wave superconductor, and i = 1, ..., N is

the index for a site r in the system. The Hamiltonian in Eq. 2.4 can then be written

as,

HS = Ψ†ĤsΨ

We define a retarded Green’s function matrix of the system via,

ĜSC(ω + iδ) =
[
(ω + iδ)1̂− Ĥs

]−1

where 1̂ is the (N×N) identity matrix and δ = 0+. The local anomalous Green’s

function at site r (with index i), Fs(r, r, ω), is then given by the (2i−1, 2i) element of

Ĝs corresponding to the Fourier transform of −〈Tci↑(τ)ci↓(0)〉. Moreover, we take

the anomalous Green’s function of the tip (which will enter the Josephson current

in Eq. 2.11) to be that of a bulk system given by

Ft(ω) = −N0∆tip
πi√

(ω + iδ)2 −∆2
tip

sgn(ω) (2.8)

where N0 is the density of states in the tip. This form implies that Ft possess

a non-zero real part only for |ω| < ∆tip, and a non-zero imaginary part only for
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|ω| > ∆tip.

2.4 Extraction of Josephson current

A DC Josephson current [3] arises from a phase difference between the super-

conducting order parameters of the tip and the s-wave superconductor, described

by

∆(r) = |∆(r)|eiΦs ∆tip = |∆tip|eiΦt (2.9)

This phase difference can be gauged away [29], yielding a tunneling parameter

that depends on the phase difference

t0 → t0e
i(Φs−Φt)/2 = t0e

i∆Φ/2 . (2.10)

allowing us to take ∆(r) and ∆t as real parameters below. In the self-consistent

solution of Eq.(2.6), we therefore assume that the phase of ∆(r) does not vary,

and consider only spatial variations in its magnitude. Using the Keldysh Green’s

function formalism [30, 31], we then obtain that the DC-Josephson current between

the tip and a site r in the s-wave superconductor to lowest order in the hopping t0

(i.e., in the weak-tunneling limit) is given by [29]

IJ(r) = 8
e

~
t20 sin (∆Φ)

∫
dω

2π
nF (ω)Im[Fs(r, r, ω)Ft(ω)] (2.11)

≡ Ic(r) sin (∆Φ) (2.12)

where Ft is the retarded anomalous Green’s function of the tip, Ic is the critical

Josephson current, and we set T = 0 below. In the weak-tunneling limit, possible

effects of the JSTS tip on ∆(r) can be neglected. While current JSTS experiments

can only measure the magnitude of Ic(r), future advances could open the possibil-
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Figure 2.2: a.) spin-selective LDOS taken at r = (+1, 0) away from a magnetic
defect of magnitude J = 2t. The substrate is a 401x401 s-wave superconductor
with a gap ∆0 = 0.05t. ∆(r) and IC are calculated along the x-axis for ∆tip = 4.0∆0

and ∆tip = 0.5∆0 in (b) and (c), respectively. (d) presents the normalized spatial
dependence of ∆(r) and (e) of IC(r) for ∆tip = 5.0∆0

ity to measure IJ(r) as well, providing insight into spatial variations of ∆Φ.

2.5 Magnetic point defects

Magnetic and non-magnetic defects exert qualitatively different effects on an s-

wave superconductor: the former induce impurity bound states inside the super-

conducting gap - Shiba states [32, 33, 34] - while the latter do not. Nevertheless,

the spatial oscillations in the superconducting order parameter, ∆(r), induced by
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either type of defect, can be imaged through the critical Josephson current Ic(r),

as shown below. Moreover, the presence of Shiba states results in a characteristic

signature in Ic(r) that allows one to distinguish between these two types of defects.

To demonstrate this, we begin by considering the spatial form of ∆(r) and of

Ic(r) around a magnetic defect. In Fig. 2.2(a), we present the local density of

states (LDOS) in the vicinity of the defect together with that in a clean system.

The magnetic defect induces, as expected an impurity (Shiba) state inside the su-

perconducting gap, whose particle- and hole-like branches possess well-defined,

but opposite spin-polarizations. In Fig. 2.2(b), we present the normalized super-

conducting order parameter, ∆(r)/∆0, and the Josephson current, Ic(r)/I0
c along

ry = 0 for ∆tip = 4∆0. Here, ∆0 and I0
c are the superconducting order parameter

and the critical Josephson current in a clean system. The defect-induced oscilla-

tions of ∆(r) are very well spatially imaged by the Josephson current, despite the

very rapid oscillations of the former around the defect. This result theoretically con-

firms the assumption underlying the JSTS experiments by Hamidian et al., [7] and

Randeria et al. [23]. To gain analytic insight into the spatial relation between ∆(r)

and Ic(r), we consider the limit of large tip gap ∆tip > ωD where ωD is the Debye

energy of the s-wave superconductor. In this case, we have for the integrand in

Eq. (2.11), Im[Fs Ft] = ReFtImFs, and ReFt(ω) can be approximated by a constant

ReF̄t over the energy range where ImFs possesses the largest spectral weight (see

Fig. 2.3.

Using Eq.(2.6) we then obtain from Eq.(2.11)

Ic(r) ∼ ReF̄t

∫
dω

2π
nF (ω)Im[Fs(r, r, ω)] ∼ ∆(r) . (2.13)

Thus, Ic(r)/I0
c = ∆(r)/∆0, and Ic(r) possesses in general the same spatial de-

pendence as ∆(r). There exists, however, an interesting exception to this result at
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Figure 2.3: Anomalous Green’s functions in the integrand of Eq.(2.11), calculated
at a distance r = (+1, 0) from a J = 2t magnetic defect. (a) −Re[Ft(ω)], (b)
Im[Ft(ω)], (c) Im[Fs(r, ω)], (d) Re[Fs(r, ω)].

the site of the magnetic defect, where Ic(r) exhibits a weak peak while ∆(r) does

not [see Fig. 2.2(b)]. This peak arises from an enhanced tunneling of Cooper pairs

from the tip into the Shiba state, whose largest spectral weight resides at the site of

the defect, and thus counteracts the general suppression of ∆(r) in the vicinity of

the defect. As the main contribution to this peak arises from Re[Ft]Im[Fs] in the in-

tegral of Eq. (2.11) (see Fig. 2.3), we expect that the peak height further increases

as ∆tip (and hence the enhancement of Re[Ft] near ∆tip) approaches the energy

of the Shiba state. This expectation is borne out by our results for a smaller tip gap

∆tip = 0.5∆0 [see Fig. 2.2(c)], which shows an even stronger enhancement of the

peak in Ic near the defect. This peak in Ic is therefore a direct signature of the im-

purity induced Shiba state and thus absent for non-magnetic defects (see below).

The peak’s height is not only affected by the value of ∆tip, but also the strength of

the magnetic scattering as well as the electronic structure of the superconductor.

However, even in presence of a strong peak in Ic at the defect site, the spatial de-

pendence of Ic in all other regions still reflects that of ∆(r). This is also confirmed
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Figure 2.4: a.) Shiba states in a system with J = 2.5t b.) ∆(r) and IC calculated
along the x-axis in a system with ∆tip = 4.0∆0, showing a sign change at the site
of the magnetic defect.

by the spatial plots of the normalized ∆(r) and Ic(r), shown in Figs. 2.2(d) and (e),

respectively. Here, the spatially circular oscillations in ∆(r) and of Ic(r) reflect the

form of the underlying circular Fermi surface [see Fig. 2.1], with their wavelength

of λF/2 arising from 2kF scattering.

As the magnetic scattering strength, J0, is increased and exceeds a critical

value, Jc, the superconductor undergoes a phase transition in which its ground

state changes from a singlet S = 0 state to a doublet S = 1/2 state [35, 36, 37, 28].

Simultaneous with this phase transition, the particle- and hole-like branches of the

Shiba state cross at zero energy [34], and the superconducting order parameter

changes sign at the site of the defect [36, 37, 28]. A comparison of the LDOS near

a magnetic defect with J0 = 2.5t > Jc in Fig. 2.4(a) with the LDOS for J0 = 2.0t < Jc

in Fig. 2.2(a) shows that the two branches of the Shiba state have crossed zero

energy, as the particle-like (hole-like) branches for J0 < Jc and J0 > Jc possess

different spin character.

Moreover, the sign of the superconducting order parameter changes at the site

of the defect [see Fig. 2.4(b)], which is mirrored by a sign change in the Josephson

current. This sign change in Ic as a function of distance from the defect is a direct

signature of the S = 1/2 ground state of the superconductor. While current JSTS
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experiments can only measure the magnitude of Ic, they can still detect the S =

1/2 ground state, as |Ic| would exhibit a line of zeros around the defect, which

is qualitatively different from the from of Ic shown in Figs. 2.2(b) and (c). Thus,

the spatial form of the Josephson current not only reflects that of ∆(r), but it is

also a probe for the spin ground states of the superconductor, and hence can

be employed to detect a quantum phase transition of the system. This opens up

the possibility to investigate more complex ground states with even larger spin

polarizations, as arise, for example, from quantum interference effects in multi-

defect systems [37].

2.6 Non-magnetic scattering defects

In contrast to magnetic defects, non-magnetic (potential) defects do not induce

impurity states inside the superconducting gap [38], as follows from a plot of the

LDOS near the site of a repulsive potential defect with U0 = 2t in Fig. 2.5(a). How-

ever, the scattering off non-magnetic defects induces oscillations in the electron

charge density, ne, [Fig. 2.5(b)] which in turn give rise to spatial variations of the

superconducting order parameter [Figs. 2.5(c) and (d)].

While magnetic defects lead to an overall suppression of the superconduct-

ing order parameter, non-magnetic defects, through oscillations in ne(r), give rise

to spatial regions in which ∆(r) is enhanced or suppressed. These spatial oscil-

lations can again be imaged by the Josephson current, as demonstrated by the

spatial contour plots of ∆(r) and Ic(r) in Fig. 2.5(d) and (f), respectively, and the

line cut in Fig. 2.5(c). Due to the absence of a Shiba state, the tunneling of Cooper

pairs from the tip into the superconductor is not enhanced at the site of the defect,

and no peak in Ic is therefore found. Moreover, a non-magnetic defect with an

attractive scattering potential, U0 = −0.5t, leads to an enhancement of the charge
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Figure 2.5: (a) LDOS at a distance r = (+1, 0) from a potential defect with a
repulsive scattering potential U0 = 2t. (b), (d), and (f) present contour plots of the
charge density ne(r)/n0

e, ∆(r)/∆0 and IC(r)/I0
C , respectively. (c) and (e) present a

spatial cut of ∆(r)/∆0 and IC(r)/I0
C along the r = (+x̂, 0) direction for ∆tip = 4∆0

and U0 = 2t (c) and U0 = −0.5t (e).
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Figure 2.6: (a) ∆(r)/∆0 and (b) IC(r)/I0
C for a 1% concentration of randomly dis-

tributed defects of magnitude U0 = 2t. (c) ∆(r)/∆0 and (d) IC(r)/I0
C for a configu-

ration of four magnetic defects of magnitude J0 = t, ∆tip = 4∆0, µ = 0

density and hence the superconducting order parameter near the defect that is also

reflected in the spatial form of Ic(r) [see Fig. 2.5(e)]. Thus, the enhancement or de-

crease of the critical current in the vicinity of a non-magnetic defect can distinguish

between its attractive and repulsive scattering potential.

The ability to image spatial oscillations of the superconducting order parameter

via Ic are independent of the particular form of the material’s Fermi surface or the

strength of the scattering potential. Moreover, ∆(r) can not only be mapped around

isolated defects, as discussed above, but also in disordered superconductors with

a random distribution of defects [9], as shown in Figs. 2.6(a) and (b). Here, we

present ∆(r)/∆0 and of Ic(r)/I0
c , respectively, for a concentration of 1% randomly

distributed non-magnetic defects with U0 = 2t.

While the interference of electrons scattered by multiple defects can lead to spa-

tial regions in which the superconducting order parameter is significantly enhanced
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or suppressed, the spatial form of Ic(r) again very well images that of ∆(r). The

critical Josephson current can even be employed to image ”virtual defects”, i.e., re-

gions in which the superconducting order parameter is strongly suppressed without

the existence of defects. Such virtual defects can be created using quantum inter-

ference effects, as shown in Fig. 2.6(c), where we present the superconducting

order parameter in the presence of four defects located at sites denoted by white

open circles and µ = 0, yielding the dashed blue Fermi surface in Fig. 2.1. Inter-

ference effects give rise to an additional strong suppression of ∆(r) in the center

of the superconductor – the virtual defect – which is again captured by Ic(r), as

shown in Fig. 2.6(d).

Throughout this chapter, we have demonstrated that the Josephson critical cur-

rent images the spatial dependence of the superconducting order parameter. In

the case of magnetic defects, this picture is slightly complicated by the appear-

ance of Shiba states; however, these are identifiable by a specific signature in both

the LDOS and a JSTS current map. The consistency of IC calculations compared

to the order parameter throughout the varied s-wave systems we consider should

provide some reassurance that the experimental measurements of |IC | do, indeed,

correspond to short length-scale fluctuations in the SCOP. Although the discussion

throughout this chapter has been limited to BCS-type, isotropic superconductors, it

sets the stage to investigate Josephson tunneling in more complex unconventional

systems where, in some cases, even the microscopic origin of superconductivity

remains a mystery.



Chapter 3

Josephson spectroscopy in cuprate

superconductors

This work was previously published as: M. Graham and D. K. Morr, ”Josephson

scanning tunneling spectroscopy in dx2−y2-wave superconductors: A probe for the

nature of the pseudogap in the cuprate superconductors,” Phys. Rev. Lett., vol.

123, p. 017001, Jul 2019.

3.1 A nonlocal probe of the order parameter

Copper oxide-based superconductors, known as cuprates, are a class of widely-

used unconventional superconductors that host many interesting microscopic prop-

erties.

Recent experiments [7, 39, 27] have performed Josephson scanning tunnel-

ing spectroscopy (JSTS) on this class of unconventional superconductors, with the

intent of exploring the microscopic properties of the superconducting order pa-

rameter. The application of JSTS to cuprate superconductors specifically offers

the unique possibility of exploring the magnetic-field induced Fulde-Ferrel-Larkin-

19
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Ovchinnikov (FFLO) phase [13, 14, 40, 41, 42]. Although the presence of a FFLO

phase has been proposed in several compounds, particularly in strongly type-II su-

perconductors where Pauli paramagnetic pair-breaking suppresses superconductivity[42],

most efforts to detect it have so far relied on indirect probes of the oscillating su-

perconductor order parameter. In contrast, a direct measurement of an oscillating

SCOP using JSTS could provide the incontrovertible proof of this phase that has

so far been lacking.

Furthermore, JSTS could be employed to measure superconducting correla-

tions in the pseudogap phase of cuprate superconductors, potentially offering ev-

idence to settle the question of its origin[43, 44, 45]. In particular, some[46, 47,

48] have argued for phase-incoherent superconducting fluctuations dominating

the pseudogap region, while others[49, 50, 51] have proposed more recent evi-

dence that the superconducting correlations come from a pair-density wave effect.

Recent JSTS experiments on Bi2Sr2CaCu2O8+x[7] have argued that the resulting

nanometer-resolution IC measurements provide evidence for the existence of a

pair-density wave. However, experiments on these systems are complicated by the

nonlocality of the dx2−y2-wave superconducting order parameter, which requires a

spatially extended tip. In order to resolve the question of whether nonlocal tunnel-

ing can result in such precise measurements of the superconducting correlations

in the pseudogap regime, we use a Keldysh nonequilibrium Green’s function for-

malism to model the Josephson current in a comparable system.

3.2 A model for the cuprates

The starting point for investigating the relation between the spatial form of the criti-

cal Josephson current and the SCOP in dx2−y2-wave superconductors is the Hamil-
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Figure 3.1: (a) An example of a spatially extended tip large enough allow nonlocal
tunneling of Cooper pairs. (b) Sign structure of the dx2−y2 order parameter in a
rectangular lattice with next-nearest neighbor tunneling, in which the SCOP has
opposite signs in the vertical/horizontal directions.

tonian H = Hs +Htip +Htun, where

Hs = −
∑
r,r′,σ

trr′c
†
rσcr′σ − µ

∑
r,σ

c†rσcrσ −
∑
r,r′

[
∆rr′c

†
r↑c
†
r↓ + H.c

]
+U0

∑
σ

c†RσcRσ −
guB

2
B ·

∑
r,α,β

c†rασαβcrβ (3.1)

Here, −trr′ is the electronic hopping between sites r and r′ in the supercon-

ductor, µ is the chemical potential, and c†rσ (crσ) creates (annihilates) an electron

with spin σ at site r . ∆rr′ is the nonlocal (bond) SCOP with dx2−y2-wave symmetry,

which is nonzero only between nearest-neighbor sites and changes sign between

the x and y directions, i.e., ∆rr′ = ±∆0 , as shown in Fig. 3.1(b) for a transla-

tionally invariant system. U0 is the scattering potential of a non- magnetic defect

located at R and the last term represents the Zeeman coupling in a Pauli-limited

superconductor, necessary to create the FFLO phase [52, 53]. We employ a set of

parameters that is characteristic of the cuprate superconductors’ electronic struc-

ture with next-nearest- neighbor hopping t′/t = −0.4 , and µ/t = −1. To account
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for spatial oscillations of the SCOP, we compute it self-consistently via

∆rr′ = −Vrr
′

π

∫ ∞
−∞

dωnF (ω)Im[FSC(r′, ↓; r, ↑, ω) (3.2)

where Vrr′ is the superconducting pairing potential between nearest-neighbor

sites, nF (ω) is the Fermi distribution function, and FSC is the nonlocal, retarded

anomalous Green’s function of the dx2−y2-wave superconductor (see Section 3.3).

We model the JSTS tip as a spatially extended dx2−y2-wave superconductor with

(nx × ny) sites [see Fig.3.1(a)], described by the Hamiltonian Htip = Hn
tip + Hsc

tip,

where Hn
tip represents the normal state electronic structure of the tip (see Section

3.3), and

Hsc
tip = −

∑
r,r′

∆t
rr′d

†
r↑d
†
r′↓ + H.c. (3.3)

where ∆t
rr′ = ±∆tip is the tip’s superconducting dx2−y2-wave order parameter,

d†σ (dσ) creates (annihilates) an electron with spin σ in the tip, and the sum runs

over all tip sites. Finally, the tunneling Hamiltonian is given by

Htun = −t0
∑
r,σ

c†rσdrσ + H.c. (3.4)

where r denotes sites both in the tip and the dx2−y2-wave superconductor be-

tween which electrons can tunnel. A dc Josephson current IJ [3] between the

JSTS tip and the superconductor arises from a phase difference ∆Φ between

their SCOPs, which can be gauged away [29], yielding real SCOPs and a phase-

dependent tunneling amplitude tT = t0e
i∆Φ/2. Using the Keldysh Green’s function

formalism[30, 31], one obtains IJ = I↑J + I↓J to lowest order in the hopping tT [29] as

IσJ = 4
e

~
t20 sin(∆Φ)

∫
dω

2π
nF (ω)σr,r′Im [Ft(r, σ; r′, σ̄, ω)Fsc(r

′, σ̄; r, σ, ω)] (3.5)
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where Ft is the retarded anomalous Green’s function of the tip, and the sum

runs over all sites r, r′ in the tip and superconductor that are connected by a tun-

neling element. Finally, IJ = IC sin(∆Φ) with IC being the critical Josephson cur-

rent. Note that while ∆rr′ is nonzero for nearest-neighbor sites only, Fsc is nonzero

for further neighbor sites, which therefore need to be included in the summation in

Eq.3.5.

3.3 Definition of Green’s functions in real space

To compute the spatial dependence of the non-local dx2−y2-wave order parameter,

∆rr′, as well as the critical Josephson current, IC(r), in the presence of defects,

we rewrite the Hamiltonian in Eq.3.1 using the spinor,

Ψ† =
(
c†1↑, c1↓, ..., c

†
i↑, ci↓, ..., c

†
N↑, cN↓

)
(3.6)

where N is the number of sites in the dx2−y2-wave superconductor, and i =

1, ..., N is the index for a site r in the system. The Hamiltonian in Eq.3.1 can then

be written as,

HS = Ψ†ĤsΨ

We define a retarded Green’s function matrix of the system via,

ĜSC(ω + iδ) =
[
(ω + iδ)1̂− Ĥs

]−1

where 1̂ is the (N × N) identity matrix and δ = 0+. The non-local anomalous

Green’s function Fsc(r
′, ↓; r, ↑, ω) between sites r′ (with index j) and r (with index

i) that enters the calculation of I↑J [see Eq. 3.5] is then given by the (2j, 2i − 1)
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element of Ĝs. The anomalous Green’s function FSC(r′, ↑; r, ↓, ω) involved in the

calculations of I↓J is obtained from the relation,

FSC(r′, ↑; r, ↓, ω) = −F ∗SC(r′, ↓; r, ↑,−ω)

Moreover, we take the anomalous Green’s function of the tip, Ft(r, ↑; r′, ↓, ω), to

be that of a bulk system which can be computed from the momentum space form

of the anomalous Green’s function,

Ft(k, ω) = −∆k

Ek

[
1

ω − Ek + iδ
− 1

ω + Ek+iδ

]

via

Ft(r, ↑; r′, ↓, ω) =

∫
d2k

(2π)2
Ft(k, ω)eik(r−r′

where

Ek =
√
ε2k + ∆2

k

εk = −2t[cos kx + cos ky]− 4t′ cos kx cos ky − µ

∆k =
∆0

2
[cos kx − cos ky]

3.4 Imaging defect perturbations

Before discussing the characteristic features of IC in the pseudogap region of the

cuprate superconductors, we first consider its hallmark signatures in a fully phase

coherent dx2−y2-wave superconductor. We begin by investigating the spatial form

of the SCOP near a nonmagnetic defect, which gives rise to the emergence of

an impurity resonance in the local density of states (LDOS) [28, 54, 55, 56, 57,



CHAPTER 3. JOSEPHSON SPECTROSCOPY IN CUPRATE
SUPERCONDUCTORS 25

Figure 3.2: Potential disorder in an dx2−y2 superconductor at T = 0 with (a) Local
density of states for a clean system and at the site of a U0 = 1.5t defect. (b)
Normalized linecuts of the SCOP and critical current in the r = (+1, 0) direction
across the defect site. The tip is a 2-site superconductor with ∆tip = 4∆0. (c) Spatial
dependence of the normalized SCOP, (d) spatial dependence of the normalized
Josephson critical current with ∆tip = ∆0.

36], as shown in Fig. 3.2(a). At the same time, the defect also induces spatial

oscillations in the SCOP [see Figs. 3.2(b) and 3.2(c)], which cannot be measured

via conventional scanning tunneling spectroscopy [7, 23, 58].

In Fig. 3.2 (b), we present the spatial form of the critical current, IC , for a tip

that consists of 2 sites, which is the smallest possible tip size that still exhibits non-

local dx2−y2-wave correlations. The tip is aligned either along the x or y direction,

representing a (2x1) or (1x2) tip, respectively. The resulting IC probes the super-

conducting correlations between nearest-neighbor sites only, thus providing direct

insight into the nonlocal bond SCOP. The spatial form of IC for ∆tip = 4∆0 agrees

very well with that of the SCOP [Fig. 3.2(b)], implying that the spatial structure

of an unconventional dx2−y2-wave order parameter can be spatially imaged by the
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critical current. This good agreement is independent of the particular magnitude

of the SCOP in the tip, as follows from a comparison of the spatial structure of the

SCOP [Fig. 3.2(c)] and of IC [Fig. 3.2(d)] for ∆tip = ∆0. The wavelength of the

oscillations along the x and y axis both in ∆(r, r′) and IC is approximately 4a0 [Fig.

3.2(b)], which is close to that observed by Hamidian et al. [6]. This wavelength

arises from scattering of electrons between the nearly parallel parts of the Fermi

surface near (0,±π) and (±π, 0). Finally, we note that the energy position of the

coherence peaks, as measured with a normal STM tip in conventional dI/dV , re-

mains unchanged in the vicinity of the defect, and hence does not reflect the local

SCOP (for a more detailed discussion, see Section 3.3). While the above results

were obtained with the smallest possible tip size still exhibiting dx2−y2-wave cor-

relations, the JSTS tip employed by Hamidian et al. [7], was created by picking

up a nanometer-sized flake of Bi2Sr2CaCu2O8+x with a tungsten tip. This immedi-

ately brings into question to what extent the critical current IC measured by such a

spatially extended JSTS tip can still image the ”local” SCOP.

3.5 Implementing an extended STM tip

To investigate this crucial question, we compare in Fig. 3.3 the critical current mea-

sured by several spatially extended JSTS tips of different sizes, with the SCOP

averaged over the area covered by the tip, 〈∆〉r. We find as expected that with

increasing tip size, the agreement between the IC and the bond SCOP between

nearest neighbor sites (at the center of the tip) worsens [cf., e.g., ∆(r, r′) in Fig.

3.2(b) with IC in Fig. 3.3(c)]. However, the agreement between the spatial form of

IC and the averaged SCOP 〈∆〉 remains very good, as shown in Fig. 3.3. More-

over, even for a large (5x5) tip [Fig. 3.3(c)] (which is approximately the size of flake

of Bi2Sr2CaCu2O8+x used by Hamidian et al. [7]) the λ = 4α0 spatial oscillations
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Figure 3.3: Comparison of IC(r), with r being the center of the tip, and the spatially
average SCOP 〈∆〉r for (a) (2×2), (b) (3×3), (c) (5×5), and (d) (11×11) JSTS tips
(the tip sizes are shown as insets). 〈∆〉r is calculated by averaging the magnitude
of ∆rr′ over the region covered by the JSTS tip.

are still visible. As with increasing tip size, the contribution to IC from nearly unper-

turbed areas increases even when the tip is centered above the defect, the relative

spatial variation of IC around the defect becomes weaker, as follows from Figs.

3.3(a)–3.3(d). Thus, while with increasing tip size IC does not any longer image

the spatial structure of the bond order parameter ∆(r, r′), it nevertheless provides

insight into the form of the spatially averaged SCOP. We note that this result is

largely robust against disorder in the tunneling amplitude (see Section 3.3), and

thus also holds for disordered tips.

3.6 Effects of disorder in the JSTS tip

In the previous section, we considered highly ordered tips with identical tunneling

amplitudes between the sites in the tip and the sites in the system. However, it
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Figure 3.4: Normalized ∆(r, r′) and IC for a (3 × 3) tip in the presence of disorder
in the tunneling amplitude with standard deviation (a) σ = 0.2t0, and (b) σ = 0.5t0,
where t0 is the tunneling amplitude in the clean case.

is very likely that in the experimental case, the tip is disordered to some extent,

resulting in disorder in the tunneling amplitudes. To investigate the effects of such

a disorder on the spatial structure of the measured Josephson current, we consider

a spatially varying tunneling amplitude,t0(r). In this case, the Josephson current is

given by

IσJ = 4
e

~
sin(∆Ψ)

∑
r,r′

t0(r)t0(r′)

∫
dω

2π
nF (ω)Im[Ft(r, σ; r′, σ̄, ω)Fsc(r

′, σ̄; r, σ, ω)] (3.7)

In Fig. 3.4, we compare the normalized ∆(r, r′) and IC for a (3× 3) tip in which

the tunneling amplitude possesses a standard deviation of σ = 0.2t0 [Fig. 3.4(a)]

and σ = 0.5t0 [Fig. 3.4(b)], where t0 is the tunneling amplitude in the clean case.

We find that even for the case of σ = 0.5t0 [Fig. 3.4(b)], which represents already

a significant amount of disorder, the agreement between the spatial structure of

∆(r, r′) and IC is still quite good. The reason for the good agreement even in

the stronger disorder case is that for the spatially extended tip considered here,

the measured IC is proportional to the spatially averaged superconducting order

parameter, due to the summations over r and r′. These summations also lead to

an averaging out of the disorder effects, implying that site-dependent disorder has
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Figure 3.5: (a) ∆(r, r′) in the FFLO phase for gµBB/2 = 0.1t. (b) Line cut of ∆(r, r′)
and IC = I↑C + I↓C along the black dashed line in (a) with ∆tip = ∆0. (c) Modulus of
∆(r, r′) and (d) IC for a (2× 1)/(1× 2) tip.

less of an impact for spatially extended tips. This demonstrates that the ability of IC

to spatially image ∆(r, r′) persists even in the presence of significant tip disorder.

3.7 Identification of the Fulde-Ferrell-Larkin-Ovchinikoff

phase

The magnetic-field induced Fulde-Ferrell-Larkin-Ovchinikoff (FFLO) phase repre-

sents another example for a phase in which the SCOP exhibits characteristic spa-

tial oscillations. Such a phase might be realized in the heavy fermion superconduc-

tor CeCoIn5 [40, 41, 42], which was argued to possess a superconducting dx2−y2-

wave symmetry [59, 60].

Solving Eq. 3.2 for ∆rr′ in the presence of a magnetic field, we find that the
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SCOP shows sinusoidal spatial oscillations accompanied by a sign change [see

Figs. 3.5(a) and 3.5(b)], reflecting a nonzero center-of-mass momentum of the

Cooper pairs in the FFLO phase [52, 53]. As current JSTS experiments can mea-

sure only the magnitude of IC , but not IJ itself, we compare in Figs. 3.5(c) and

3.5(d) the spatial structures of the modulus of ∆(r, r′) and IC , which show very

good agreement. Moreover, a line cut of the SCOP and IC in Fig. 3.5(b) reveals

that the sign change in ∆(r, r′) leads to a characteristic | sin(kr)| structure in IC .

Thus the measured IC does not only reflect |∆(r, r′)|, but its spatial form can also

detect sign changes in the SCOP. These results, taken together, show for the first

time that it is possible to detect the presence of the FFLO phase, and reveal its

much anticipated spatial SCOP structure via JSTS. Finally, we note that the Zee-

man splitting of the spin-↑ and spin-↓ bands [61] also possesses a counterpart in

IC : its spin-↑ (I↑C) and spin-↓ (I↓C) contributions, shown by the dashed blue and

green lines in Fig. 3.5(b), respectively, are spatially split due to the SCOP’s finite

center-of-mass momentum.

3.8 Critical current in the pseudogap regime

As the measurement of the critical current is a local probe, we expect that a

nonzero IC is measured as long as a system exhibits local superconducting corre-

lations. As such, JSTS possesses the potential to probe the nature of the pseudo-

gap, and, in particular, its proposed origin arising from phase-incoherent supercon-

ducting correlations (precursor pairing) [46, 47, 48, 62]. To explore this possibility,

we start from the observations of conventional STS experiments[9, 63, 64] that re-

ported the existence of a heterogeneous, domainlike structure in the underdoped

cuprates at T << TC : in one type of domain, the LDOS exhibits all the traits of

a dx2−y2-wave superconductor with well-defined coherence peaks (the SC region),
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Figure 3.6: Theoretical (to-scale) model of the gapmap shown in Fig. 1(a) of Ref.
[9]. (a) Spatial plot of ∆(r, r′) with τ−1

ph = 0.05t/~ for the PG regions (red) and
τ−1

ph → 0 for the SC regions (blue). (b) LDOS along the black dashed line in (a).
Blue (red) curves correspond to the SC (PG) regions. (d) Spatial plot of IC(r) for a
(2× 1)/(1× 2) tip.

and one in which the gap appears larger than in the superconducting regions, but

in which the coherence peaks are significantly broadened (the PG region). Be-

low, we model the pseudogap as arising from phase incoherent superconducting

correlations [48, 62], as characterized by a finite phase-coherence coherence time

τph, such that ∆(r, r′) in the PG regions should be interpreted as a measure for

the bond superconducting correlations, rather than a phase-coherent bond order

parameter [48, 62]. To investigate the form of IC in such a heterogeneous system,

we created a theoretical real-space (to-scale) model of the experimental gap map

shown in Fig. 1(a) of Ref. [9], which reflects the existence of the two domains.

The self-consistently computed OP shown in Fig. 3.6(a) reproduces well the
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spatial structure of the experimental gap map. Here, ∆pg
rr′ is calculated via,

∆pg
rr′ = −Vrr

′

π

∫ ∞
−∞

dωnF (ω)Im[Fpg(r, r
′, ω)]

with

Ĝpg(ω + iγ) =
[
(ω + iγ)1̂− Ĥs

]−1

and we describe the pseudo-gap regions as a phase-incoherent dx2−y2-wave

superconductor where the finite phase coherence time τph is included in γ = ~/τph,

as modeled elsewhere[62]. A finite τph immediately leads to a broadening of the

coherence peaks, as shown in Figs. 3.6(b) and 3.6(c), where we used γ = 0.05t

in the PG regions, and γ = 0.005t in the SC regions. In order to achieve that the

coherence peaks in the PG regions are located at higher energies (while at the

same time being broadened), we increased the effective pairing interaction in the

PG regions over that in the superconducting regions. As a result, the OP in the PG

regions is larger than in the superconducting regions.

In a heterogeneous system, the theoretical OP is in general not identical to the

gap which is experimentally determined from the position of the coherence peaks.

In Fig. 3.6(b), we show a line cut of the LDOS [along the dashed black line in

Fig. 3.6(a)], which exhibits the characteristic evolution of the LDOS between the

SC and PG regions also found in STS experiments [see Fig. 3(a) of Ref. [9]]. To

directly compare our results with the spatially averaged experimental dI/dV data

[see Fig. 3(b) in Ref. [64]], we present in Fig. 3.6(c), the LDOS spatially averaged

over the SC and PG regions along the line cut in Fig. 3.6(a) [these regions are

defined by an OP that lies within the shaded blue (SC) or red (PG) regions of the

legend in Fig. 3.6(a), respectively].

Our results reproduce a series of characteristic traits exhibited by the experi-
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mentally averaged data [see Fig. 3(b) in Ref. [64]]: (i) while the gap in the PG

region is larger than in the SC region, the coherence peaks in the PG region are

smeared out, (ii) the LDOS in the PG regions (red dashed line) exhibits shoulderlike

features (see arrows) at the energies of the coherence peaks in the SC regions, (iii)

the shoulderlike feature is more pronounced at positive than at negative energies,

and(iv) the spectra exhibit overall a strong particle-hole asymmetry.

All of these results are in good agreement with the experimental findings, thus

supporting the validity of the model employed here. In Fig. 3.6(d), we present a

spatial plot of IC obtained for the heterogeneous system shown in Fig. 3.6(a). We

again find that IC spatially images the OP, and that despite the incoherent nature of

the PG region, the Josephson current in these regions is nonzero (though IC in the

PG regions decreases with decreasing τph). This implies that IC indeed reflects

the presence of local superconducting correlations, rather than global phase co-

herence. In contrast, if the PG were to arise from nonsuperconducting correlations

or order parameters, such as charge- or spin-density wave correlations, IC would

vanish. Thus, a nonzero measurement of IC in the PG region would provide strong

evidence for precursor pairing as its origin.

Throughout this chapter, we have consistently shown that JSTS is able to

closely image the superconducting order parameter in dx2−y2-wave superconduc-

tors. In the FFLO phase, the spatially oscillating SCOP was visible in a sign change

of the critical current, and variations in the SCOP’s magnitude could be identified

in JSTS tips ranging from atomic- to flake-sized. Furthermore, the ability of JSTS

to detect the presence of phase-incoherent superconducting correlations offers the

potential to use it as a probe to discriminate between precursor pairing and other

possible mechanisms underlying superconductivity in the PG regime.



Chapter 4

Topological superconductivity in

skyrmion lattices

This chapter is based off of an unpublished manuscript[65],

Mascot, E., J. Bedow, M. Graham, S. Rachel, and D. K. Morr (2020, April).

Topological Superconductivity in Skyrmion Lattices. arXiv e-prints, arXiv:2005.00027.

4.1 Motivating a topologically tunable system

Detection, operation, and manipulation of fault-tolerant qubits is essential for the

realization of a quantum computer, one of the holy grails of modern physics. One of

the most promising ways to construct fault-tolerant qubits relies on the topological

protection offered by non-Abelian braiding operations on Majorana zero modes[66].

These modes have been observed in one-[67, 68, 69, 70, 71] and two-dimensional

(2D) topological superconductors [72, 73, 74], with 2D systems also exhibiting chi-

ral Majorana edge currents [75, 76, 77]. Magnet-superconductor hybrid (MSH) sys-

tems consisting of chains, islands or layers of magnetic adatoms deposited on the

surface of conventional s-wave superconductors have proven to be suitable candi-

34
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dates for the creation of topological superconductivity via atomic manipulation[71],

interface engineering techniques[76], and for the study of Majorana modes using

STS. 2D MSH systems, in particular, offer a rich topological phase diagram char-

acterized by a topologically invariant Chern number [78, 79, 80]. However, tuning

these systems between topological phases, a key requirement for the operation of

qubits, remains experimentally inaccessible.

In the following chapter, we propose a magnetic skyrmion lattice as an exam-

ple of an MSH system that offers a complex topological phase diagram along with

the potential to tune the system through phase transitions by changing the ap-

plied magnetic field and thus the skyrmion radius[81]. In the skyrmion lattice, this

tunability is realized by a magnetically-induced Rashba spin-orbit interaction that

images the local skyrmion charge and is reflect in the spatial structure of the zero-

energy LDOS. Finally, we show that the superconducting spin-triplet correlations

underlying the emergence of topological superconductivity can be visualized by

Josephson scanning tunneling spectroscopy (JSTS). Taken together, these results

demonstrate the viability of 2D skyrmion MSH systems, which can be constructed

with current techniques[81], as an avenue to explore topological superconductivity

and manipulate Majorana zero modes.

4.2 Model of a skyrmion lattice

We investigate the emergence of topological superconductivity in a 2D MSH sys-

tem, in which a magnetic skyrmion lattice (see Fig. 4.1a) is placed on the surface

of a conventional s-wave superconductor, as described by the Hamiltonian

H =
∑
r,r′,σ

(−trr′ − µδr,r′)c†rσcr′σ + ∆
∑
r

(
c†r↑c

†
r↓ + H.c.

)
+ J

∑
r,α,β

Sr · c†rασαβcrβ(4.1)
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where c†rα creates an electron at lattice site r with spin α,and σ is the vector of

spin Pauli matrices. We consider a triangular lattice with lattice constant a0, chem-

ical potential µ, and hopping amplitude −trr′ = −t between nearest-neighbor sites

only. ∆ is the superconducting s-wave order parameter. The spatial spin struc-

ture of the skyrmion lattice is encoded in Sr, which represents the direction of an

adatom’s spin located at site r, and J is its exchange coupling with the conduction

electron spin. Note that the creation of Majorana modes in single skyrmions has

previously been discussed in Refs [82, 83]. As Kondo screening is suppressed

by the full superconducting gap, the spins Sr are taken to be classical vectors of

length S. We assume that the triangular lattice of skyrmions is commensurate with

the underlying triangular surface lattice, thus allowing the skyrmion radius R to

take integer and half-integer values of a0. Note that in contrast to earlier studies of

2D MSH systems [78, 79, 80], the above Hamiltonian does not contain an intrinsic

Rashba spin-orbit (RSO) interaction. Moreover, due to the broken time-reversal

symmetry arising from the presence of magnetic moments, and the particle-hole

symmetry of the superconducting state, the topological superconductor belongs to

class D [84].

To characterize the topological superconducting phases of the system, we com-

pute the topological invariant - the Chern number C - given by

C =
1

2π

∫
BZ
d2kTr(Pk[∂kxPk, ∂kyPk]) (4.2)

Pk =
∑

En(k)<0

|Ψn(k)〉〈Ψn(k)| (4.3)

where En(k) and |Ψn(k)〉 are the eigenenergies and the eigenvectors of the

Hamiltonian in Eq.4.1, with n being a band index, and the trace is taken over

Nambu and spin-space. Further insight into the origin underlying the emergence

of topological superconductivity in skyrmion MSH systems can be gained by con-
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Figure 4.1: MSH system with a magnetic skyrmion lattice. a Schematic picture
of a skyrmion lattice. Spatial plot of b the magnitude of the induced Rashba spin
orbit interaction, |α(r)|, c the skyrmion number density, nS(r), and d the Chern
number density C(r) for skyrmion radius R = 5a0, and parameters (µ,∆, JS) =
(−5, 0.4, 0.5)t.

sidering the spatial structure of the skyrmion and Chern number densities, ns(r)

and C(r), respectively. The former is given by

ns(r) =
1

4π
S(r) · [∂xS(r)× ∂yS(r)] (4.4)

yielding a skyrmion number ns =
∑

r ns(r). The latter, C(r) [85, 86], represents

the real-space analog of the Berry curvature, and allows[87, 88] a real space cal-

culation of the Chern number C = 1/N2
∑

rC(r) that coincides with that obtained

from Eq. 4.2.
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4.3 Topological phase diagram

A crucial aspect for the emergence of topological superconductivity in 2D skyrmion

MSH systems is that the magnetic skyrmion lattice induces an effective, spatially

varying Rashba spin-orbit interaction. To demonstrate this, a unitary transforma-

tion [89] may be applied to the Hamiltonian in Eq.4.1 that rotates the local spin S(r)

to the ẑ axis, yielding an out-of-plane ferromagnetic order and a spatially inhomo-

geneous RSO interaction, α(r) (see Fig.4.1b). α(r) possesses the same spatial

structure as the skyrmion number density, ns(r), (see Fig.4.1c) – reflecting its ori-

gin in the local topological charge of the skyrmion lattice – with its largest value,

αmax = πa0t/(2R), in the center of the skyrmion and a vanishing α(r) at the cor-

ners of the skyrmion lattice Wigner-Seitz unit cell. The existence of a non-zero

α(r), of an out-of-plane ferromagnetic order in the rotated basis, and of a hard

s-wave gap, satisfies all necessary requirements for the emergence of topologi-

cal superconductivity [78, 79, 80], resulting in the rich topological phase diagram

shown in Fig.4.2. The phase diagram in the (µ,R) plane (see Fig.4.2a) reveals

the intriguing result that it is possible to tune a skyrmion MSH system between

different topological phases by changing the skyrmion radius R, which can be ex-

perimentally achieved through the application of an external magnetic field [81].

This unprecedented ability arises from the facts that (a) varying the skyrmion ra-

dius leads to changes in the induced α(r), and (b) in contrast to MSH systems with

a homogeneous ferromagnetic structure, topological phase transitions in magnet-

ically inhomogeneous MSH systems (as given here) are controlled not only by µ

and J , but also by α.

Indeed, the results in Fig.4.2a reveal that the phase transition lines in the (µ,R)

plane are determined u = Ai + Bi/R
2 (see dashed lines) with constants Ai, Bi.

Since αmax ∼ 1/R, our result suggests that the induced RSO interaction leads
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Figure 4.2: Topological phase diagrams of a skyrmion MSH system. Topological
phase diagrams representing the Chern number, C, in the a (µ,R) plane for JS =
0.5t, b (µ, JS) planes for various skyrmion radii R, and c the (JS,R) plane for
µ = −5t and ∆ = 0.4t. Dashed lines in a represent phase transition lines described
by µ = Ai +Bi/R

2 with constants Ai,Bi.
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to an effective renormalization of the chemical potential [82], thus facilitating the

ability to tune between topological phases. This dependence of the phase transi-

tion lines on R is also revealed when considering the phase diagrams in the (µ, J)

plane for different skyrmion radii (see Fig. 4.2b). These phase diagrams show a

very similar structure of topological phases for different R, with the phases moving

to lower values of µ with increasing R. We note that the topological phases that

are accessible through tuning of R strongly depend on JS(see Fig. 4.2c): for suf-

ficiently large JS, every change in the skyrmion radius by a half-integer leads to

a change in the system’s Chern number. Thus, a rich topological phase diagram

can be accessed and explored through changes in the skyrmion radius R. The

inhomogeneous magnetic structure of the MSH system also allows us to reveal

an intriguing connection between the Chern number density, C(r), which is a local

marker for the topological nature of the system, and the Berry curvature in momen-

tum space. In particular, the spatial structure of C(r) (see Fig. 4.1d) reflects that

of the skyrmion lattice, but is complementary to that of the induced α(r) (see Fig.

4.1b), with the maximum in C(r) occurring at the corners of the skyrmion lattice

unit cell. However, it is in these regions that the lowest energy states possess their

largest spectral weight, establishing a real space analogue of the observation that

the lowest energy states in momentum space in general possess the largest Berry

curvature.

4.4 Electronic structure at a topological phase tran-

sition

The real space structure of the induced RSO interaction, and hence that of the

local topological skyrmion charge, is reflected in the electronic structure of the
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MSH system, and becomes particularly evident at a topological phase transition.

To demonstrate this, we consider the transition between a C = 8 and C = 6 phase,

as indicated by the solid black dot in Fig. 4.2c. While the system possesses a

topological gap on either side of the transition, the gap at the transition closes at

the K,K ′-points (see Fig. 4.3a), as confirmed by a plot of the dispersion Ek of

the lowest energy band (see Fig.4.3b) in the reduced Brillouin zone (RBZ). This

gap closing is reflected in a unique spatial and energy structure of the zero-energy

local density of states (LDOS) [see (xy)-plane in Fig.4.3c]. In particular, the spatial

structure of the LDOS reveals that the largest (smallest) spectral weight of the zero-

energy state, associated with the phase transition, is located where the induced

RSO interaction is the smallest (largest), at the corners of the Wigner-Seitz unit

cell (the skyrmion center). Thus, the spatial pattern of the zero-energy LDOS is

complementary to that of the local topological skyrmion charge, ns(r). Moreover,

as the topological gap in general increases with increasing RSO interaction, we find

that the large induced RSO interaction in the skyrmion center leads to a dome-

like region in energy in which the LDOS is suppressed [see (x,E)- and (y, E)-

planes in Fig. 3c]. The electronic structure of the skyrmion MSH systems also

provides a unique example to demonstrate that the multiplicity m of the momenta

in the Brillouin zone, at which the gap closing occurs, determines and is equal to

the change in the Chern number at the transition. For the time-reversal invariant

Γ,M, (K,K ′) points, the multiplicity is m = 1, 3, 2 (note that by symmetry, a gap

closing at the K point implies a gap closing at K ′ as well), respectively, as each M

(K,K ′) point is shared by 2(3) BZs, leading to a change in the Chern number by

∆C = 1, 3, 2 at the transition.

Gap closings can also occur at non-TRI points, e.g., at points along the Γ−M

line, which possess a multiplicity of m = 6, resulting in a change of the Chern

number by ∆C = 6. While all of the above gap closings exhibit a Dirac cone (see
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Figure 4.3: Electronic band structure at a topological phase transition. a Electronic
bands at the phase transition between two topological phases with C = 6 and
C = 8 (as indicated by the solid black dot in Fig. 4.2c) for R = 6a0 and parameters
(µ,∆, JS) = (−5, 0.4, 0.657)t. Shown is the Brillouin zone(BZ) of the skyrmion
lattice, i.e., the reduced BZ (RBZ) of the underlying surface lattice. Spatial plot of
b the dispersion Ek of the lowest energy band in the RBZ (as = 2R is the lattice
constant of the skyrmion lattice), and c the LDOS at the phase transition, as a
function of position and energy.
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Fig. 4.3a), there also exist gap closings that exhibit lines of zero-energy, rather

than discrete zero energy Dirac points. These gap closings, however, are not

accompanied by a change in the Chern number.

4.5 MSH system with a skyrmion ribbon

To study the emergence of chiral Majorana edge modes in a skyrmion MSH sys-

tem, we next consider a skyrmion ribbon placed on the surface of an s-wave su-

perconductor (see Fig. 4.4a). In a topological phase with Chern number C, the

bulk-boundary requires that such a MSH system possess |C| chiral Majorana edge

modes per edge. These modes traverse the superconducting gap and disperse lin-

early near the chemical potential as a function of the momentum along the ribbon

edge, as shown in the inset of Fig. 4.4b for the C = 3 phase. A spatial plot of the

zero-energy LDOS (see Fig. 4.4b) demonstrates that the chiral Majorana mode is

as expected localized along the edges of the ribbon, and that its spatial structure is

complementary to that of the local skyrmion topological charge. The spatial struc-

ture of the skyrmion lattice, and hence of the induced α(r), is also reflected in the

combined energy and spatial dependence of the LDOS (see Fig. 4.4c) as revealed

by a line-cut of the LDOS from the bottom to the top of the ribbon along x = 0 (left

edge of Fig. 4.4b). In particular, in the center of the skyrmions, where α is the

largest, the spectral weight in the LDOS is pushed to higher energies. The spatial

structure of the LDOS is therefore similar to that exhibited by the MSH system at a

phase transition (see Fig. 4.3c).

In addition to the chiral Majorana edge modes, the magnetic structure of the

skyrmion ribbon leads to two unique physical features. The first one is the spa-

tial form of persistent supercurrents that are induced by the broken time-reversal

symmetry. While these supercurrents are generally confined to the edges of an
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Figure 4.4: MSH system with a skyrmion ribbon. a Schematic form of a skyrmion
lattice ribbon on the surface of an s-wave superconductor. b Spatial plot of the zero
energy LDOS. Inset: electronic band structure as a function of momentum, k‖ long
the ribbon with a width of 27 skyrmions in the C = 3 phase. c Energy-dependent
LDOS for positions from the bottom to the top of the ribbon at x = 0 as shown in
b. d Persistent supercurrents in the skyrmion ribbon. Spatial structure of e the su-
perconducting s-wave order parameter, ∆(r), and f the critical Josephson current
Ic measured via JSTS using an s-wave order parameter in the tip (shown area cor-
responds to black square in a). Spatial structure of the g real and h imaginary part
of the superconducting triplet correlations between nearest neighbor sites. Spa-
tial structure of Ic(r) measured via JSTS with the tip possessing a i purely real,
and j purely imaginary triplet superconducting order parameter. Parameters are
(JS,∆, µ) = (0.5, 0.4,−5.5)t and R = 5a0, corresponding to the C = 3 phase, with
a width of 10 skyrmions.
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MSH system [80], the inhomogeneous magnetic structure of the skyrmion lattice

leads to supercurrents that circulate each skyrmion, not only along the ribbon’s

edge, but also in its interior (see Fig. 4.4d). These supercurrents screen the out-

of-plane component of the local magnetic moments, similar to the case of a vortex

lattice, and are carried by both the in-gap and bulk states. The second unique fea-

ture is the presence of spin-triplet superconducting correlations which are a crucial

requirement for the emergence of topological superconductivity [80].

4.6 Spatial imaging of the spin-triplet superconduct-

ing correlations

The development of Josephson scanning tunneling spectroscopy (JSTS) [26, 7,

23, 27, 8] has provided a unique opportunity to visualize not only these correla-

tions in real space at the atomic level, but also to investigate the effects of the

inhomogeneous magnetic structure of the skyrmion lattice on the superconduct-

ing s-wave order parameter, ∆(r) [90]. Specifically, pair-breaking effects of the

magnetic moments lead to a spatially non-uniform suppression of ∆(r) inside the

skyrmion ribbon (see Fig. 4.4e), with the largest suppression occurring where the

induced RSO interaction is the weakest. This spatial structure of ∆(r) is well im-

aged by that of the critical Josephson current, IC(r) (see Fig. 4.4f), measured via

JSTS using a tip with an s-wave superconducting order parameter [90], thus pro-

viding direct insight into the strength of local pair breaking effects. Moreover, the

inhomogeneous magnetic structure of the skyrmion lattice enables the emergence

of superconducting spin-triplet correlations not only in the equal-spin channels | ↑↑〉

and | ↓↓〉 (corresponding to Cooper pair spin states Sz = ±1), but also in the mixed-

spin (Sz = 0) channel, | ↑↓〉 + | ↓↑〉. These correlations are a direct consequence
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Figure 4.5: a-d Spatial structure of the superconducting triplet correlations be-
tween nearest-neighbor sites (red corresponding to positive in +x direction) and f-i
the Josephson current measured with a superconducting spin-triplet JSTS tip. e
Spatial structure of the local superconducting singlet correlations and j the Joseph-
son current measured with an s-wave JSTS tip as shown in Fig. 4.4 for comparison.
Parameters used are (JS,∆, µ) = (0.5, 0.4,−5)t and R = 5a0.

of the magnetic structure of the skyrmions, and thus vanish outside the ribbon.

The spatial spin-triplet superconducting correlations between nearest-neighbor

sites r and r+ δ in the equal-spin-pairing states | ↑↑〉 and | ↓↓〉, and in the opposite

spin-pairing state | ↑↓〉+ | ↓↑〉 are given by,

〈cr+δ,↑cr,↑〉 =
1

2πi

∫
dωg<14(r, r + δ, ω)

〈cr+δ,↓cr,↓〉 =
1

2πi

∫
dωg<23(r, r + δ, ω)

〈cr+δ,↑cr,↓〉+ 〈cr+δ,↓cr,↑〉 =
1

2πi

∫
dω[g<24(r, r + δ, ω) + g<13(r, r + δ, ω)]

(4.5)

Here, gr,a,<mn (r, r + δ, ω) is the (m,n)-th element of the retarded, advanced, or

lesser Green’s function matrix in Nambu space. The Green’s function is defined in
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Matsubara time via,

ĝ(r, r + δ, τ) = −
〈
TτΨr(τ)Ψ†r+δ(0)

〉
(4.6)

with spinor,

Ψ†r =
(
c†r,↑, c

†
r,↓, cr,↓, cr,↑

)
(4.7)

The Green’s functions in Eq.4.5 are calculated by diagonalizing the Hamiltonian

(Eq.4.1). This produces energy eigenvalues Ek and eigenvectors umk(r), so that

the Green’s functions can be calculated as:

grmn(r, r′, ω) =
∑
k

umk(r)u
∗
nk(r

′)

ω − Ek + iδ
(4.8)

gamn(r, r′, ω) =
∑
k

umk(r)u
∗
nk(r

′)

ω − Ek − iδ
(4.9)

g<mn(r, r′, ω) = 2πinF (ω)
∑
k

umk(r)u
∗
nk(r

′)δ(ω − Ek) (4.10)

We are considering superconducting correlations between nearest-neighbor

sites only, as would be expected, for example, for a triplet superconductor with

a (px + ipy)-wave symmetry. Similarly, the local spatial correlations in the super-

conducting spin-singlet channel with s-wave symmetry are obtained via

〈cr+δ,↑cr,↓〉 − 〈cr+δ,↓cr,↑〉 =
1

2πi

∫
dω[g<24(r, r + δ, ω)− g<13(r, r + δ, ω)] (4.11)

The spatial form of the local superconducting correlations in the s-wave chan-

nel are shown in Fig. 4.4e, and for the real and imaginary parts of 〈cr+δ,↑cr,↑〉 in

Figs. 4.4g and h, respectively.. The real and imaginary parts of 〈cr+δ,↓cr,↓〉 and of

〈cr+δ,↑cr,↓〉 + 〈cr+δ,↓cr,↑〉 are shown in Fig. 4.5a-b, and Figs.4.5c-d, respectively. To
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spatially image these correlations via JSTS, the superconducting order parameter

in the JSTS tip needs to possess the same symmetry and spin-structure as the

correlations we intend to probe. The spin-singlet, s-wave channel was previously

described in Chapter 1 (see also [90]). For that case, a JSTS tip ending in a single

site is sufficient to probe the s-wave correlations, and the resulting spatial structure

of the critical Josephson current, Ic, is shown in Fig. 4.4. In contrast, the triplet

superconducting correlations are by definition odd in real space, implying that they

are non-local. To probe them via JSTS thus requires a tip that also exhibits a non-

local superconducting order parameter (similar to the case of a dx2−y2-wave order

parameter, discussed in chapter 2). This implies that the JSTS tip has to end in

at least 2 sites from which electrons can tunnel into the system, a case we will

consider in the following (we refer to such a JSTS tip as a 2-site tip). As in chapter

2 (see also [91]), using tips with a larger number of end sites does not change

our qualitative conclusions. Assuming equal-spin-pairing states | ↑↑〉 and | ↓↓〉,

and the opposite spin-pairing state | ↑↓〉 + | ↓↑〉 in the tip then leads to the follow-

ing expressions for the critical Josephson current between the tip and the system,

respectively,

I↑↑c =
ie

~
∑

rt,r′t,rs,r
′
s

∫
dω

2π
[gr14(r′t, rt, ω)g<41(rs, r

′
s, ω) + g<14(r′t, rt, ω)ga41(rs, r

′
s, ω)

+gr14(r′s, rs, ω)g<41(rt, r
′
t, ω) + g<14(r′s, rs, ω)ga41(rt, r

′
t, ω) ]

I↓↓c =
ie

~
∑

rt,r′t,rs,r
′
s

∫
dω

2π
[gr23(r′t, rt, ω)g<32(rs, r

′
s, ω) + g<23(r′t, rt, ω)ga32(rs, r

′
s, ω)

+gr23(r′s, rs, ω)g<32(rt, r
′
t, ω) + g<23(r′s, rs, ω)ga32(rt, r

′
t, ω) ]

I↑↓+↓↑c =
ie

~
∑

rt,r′t,rs,r
′
s

∫
dω

2π
[gr24(r′t, rt, ω)g<42(rs, r

′
s, ω) + g<24(r′t, rt, ω)ga42(rs, r

′
s, ω)

+gr24(r′s, rs, ω)g<42(rt, r
′
t, ω) + g<24(r′s, rs, ω)ga42(rt, r

′
t, ω)

+gr13(r′t, rt, ω)g<31(rs, r
′
s, ω) + g<13(r′t, rt, ω)ga31(rs, r

′
s, ω)

+gr13(r′s, rs, ω)g<31(rt, r
′
t, ω) + g<13(r′s, rs, ω)ga31(rt, r

′
t, ω) ]
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Here, the sums over rs,r′s (rt,r′t) run over all sites in the system (tip), with a

non-zero tunneling amplitude trt,rs (tr′t,r′s) between sites rs and rt (sites r′t and r′s

). Thus, the above equations for the critical Josephson currents are valid for an

arbitrary number of sites in the tip. Moreover, we take the tunneling amplitude

between sites to be the same for all sites, i.e., trt,rs = t0 if electrons can tunnel

between site rt and rs. Note that all Greens functions in Eq.4.12 are anomalous,

non-local Greens functions.

To image the spatial structure of the non-local triplet correlations, we compute

IC(r) using an extended (2×1) JSTS tip with a superconducting triplet order param-

eter. We assume that the 2-site JSTS tip is always perfectly aligned with the bond

connecting two nearest-neighbor sites in the triangular lattice. If the tip’s order pa-

rameter is chosen to be either purely real (see Fig. 4.4i) or purely imaginary (see

Fig. 4.4j), the resulting Josephson current very well images the spatial structure of

the real or imaginary parts, respectively, of the superconducting triplet correlations.

We note that these triplet correlations can be imaged despite the fact that the MSH

system possesses neither a long-range nor a local triplet superconducting order

parameter. Thus JSTS can provide unprecedented insight into the existence of

one of the most crucial aspects of topological superconductivity, the existence of

spin-triplet correlations. Finally, the Josephson current is given by IJ = Ic sin(∆ψ)

where ∆ψ is the spatially-invariant phase difference between the superconducting

order parameters in the tip and the system. To compute the Greens function of the

2-site JSTS tip, we consider for simplicity the two cases where the triplet supercon-

ducting order parameter in the tip is either completely real or completely imaginary.

Note that in an infinitely large square lattice with a (px+ ipy)-wave superconducting

order parameter, such a change in the phase of the triplet superconducting order

parameter can be achieved by rotating the lattice by π/2. To compute the non-local
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anomalous Greens function for the two sites at the tip end, we use

gr,anm(rt, r
′
t, ω) =

∫
d2k

(2π)2

∆(k)eiki

(ω ± iδ)2 − ε(k)2 − |∆(k)|2
(4.12)

g<nm(rt, r
′
t, ω) = −nF (ω)[grnm(rt, r

′
t, ω)− ganm(rt, r

′
t, ω)] (4.13)

where

ε(k) = −2t(cos kx + cos ky)− µ; ∆(k) = −i∆0

2
(sin kx + i sin ky) (4.14)

with µ = −0.3t, ∆0 = 0.3t. The indices (n,m) denote the spin structure of the

superconducting gap in the JSTS tip. For ki = kx, the superconducting order pa-

rameter along the bond of the 2-site tip is real, for ki = ky, it is imaginary. In Figs.

4.4i-j, we denote these two cases by ∆tip = ∆p and ∆tip = i∆p, respectively. Our

results imply that by changing the phase of the superconducting order parameter

in the tip, we can probe the real and imaginary parts of the triplet superconducting

correlations in the system. These results can be straightforwardly generalized to an

arbitrary complex order parameter in the tip. In Figs.4.5f-g, we present the critical

Josephson current in the | ↓↓〉 channel for ∆tip = i∆p and ∆tip = ∆p,respectively,

while in Figs.4.5h-i, we show Ic in the opposite spin-pairing state (| ↑↓〉 + | ↓↑〉 for

∆tip = i∆p and ∆tip = ∆p, respectively. For the 2-site tip, we plot the correspond-

ing Ic(r) as a bond quantity. For all of these cases, the spatial form of the critical

current very well images that of the superconducting triplet correlations. For com-

parison, we also present the spatial structure of the superconducting s-wave order

parameter, ∆(r) (see Fig. 4.5e) and the corresponding Ic(r) (see Fig. 4.5j).
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As we have seen, magnetic-superconductor hybrid systems like skyrmions pos-

sess a rich topological phase diagram. By varying the skyrmion radius through an

externally applied magnetic field, these systems can be tuned into different topo-

logical phases and through topological phase transitions. This tuning is possible

because of a spatially inhomogenous Rashba spin-orbit interaction that is induced

by the magnetic skyrmion lattice and which carries a spatial signature in the zero-

energy LDOS that can be observed at a topological phase transition. Skyrmions

offer a possible venue to engineer Majorana zero modes and chiral Majorana edge

currents, but these features can be notoriously hard to measure. As an avenue to

investigate these systems experimentally, we have shown that JSTS is able to vi-

sualize the MSH’s underlying spin-triplet superconducting correlations. The detail

of the information that JSTS can provide varies according to how feasible micro-

scopic manipulations of the tip are, however, it’s ability to detect both real and

imaginary superconducting correlations via a 90◦ rotation between the tip and the

system could offer a precise way to detect and study topological superconductivity.



Chapter 5

Engineering zero-energy modes in

FeSe0.45Te0.55

This chapter was previously published as:

Z. Wang, J. O. Rodriguez, L. Jiao, S. Howard, M. Graham, G. D. Gu, T. L.

Hughes, D. K. Morr, and V. Madhavan, ”Evidence for dispersing 1D Majorana chan-

nels in an iron-based superconductor,” Science, vol. 367, no. 6473, pp. 104–108,

2020.

5.1 Background

In recent years, the realization of Majorana zero modes, strong candidates for

qubit registers in topological quantum computing[66], has been greeted with much

excitement. Evidence for these unique emergent modes has been observed in

numerous 1D and 2D topological superconductors[67, 69, 70, 71, 75, 76], where

zero-energy states are typically identified via spectroscopic measurements[68, 77,

72, 73]. Recently, the iron-based superconductor FeSe0.45Te0.55 has been predicted

to host topological superconductivity, as indicated by the observation of a Dirac

52
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cone[92], vortex core measurements[72, 73], and topological edge modes[18, 77].

In addition, this material has a number of features that make it experimentally at-

tractive including a large superconducting gap (on the order of a few meV[20]),

ease of thin-film fabrication[93], and the ability to modify TC by doping, pressure,

and strain[93, 94]. Despite strong experimental and theoretical interest, however,

the microscopic mechanism underlying the onset of topological superconductivity

remains unclear. Furthermore, the spectroscopic identification of Majorana zero

modes in this system is complicated by the presence of defect-induced trivial states

close to zero energy. In this chapter, we address these outstanding questions by

proposing a magnetic-superconductor hybrid model for topological superconduc-

tivity in FeSe0.45Te0.55, contrast the zero-energy Majorana modes it can host with

trivial defect-induced states close to zero energy, and propose a method to distin-

guish between them.

5.2 A 5-band model for FeSeTe

To begin, we consider a topologically trivial 5-band model that has been estab-

lished to match differential conductance measurements on FeSe0.45Te0.55[20], with

an experimentally-consistent definition of the superconducting order parameter[1]

and Fermi surface[19].

In real space, the Hamiltonian is given by,

H =H0 +HMF
SC

H0 =
∑
r,σ

5∑
α=1

(εαα − µ)c†r,α,σcr,α,σ −
∑
r,r′,σ

5∑
α,β=1

tαβr,r′c
†
r,α,σcr′,β,σ

HMF
SC =

∑
〈r,r′〉

5∑
α=1

∆ααc
†
r,α,↑c

†
r′,α,↓ + H.c. (5.1)
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where α, β = 1, ..., 5 are the orbital indices corresponding to the dxz-, dyz-, dx2−y2-

, dxy-, and d3z2−r2-orbitals, respectively, −tαβr,r′ represents the electronic hopping

amplitude between orbital α at site r and orbital β at site r′, εαα is the on-site

energy of orbital α, µ represents the overall chemical potential, and c†r,α,σ(cr,α,σ)

creates (annihilates) an electron with spin σ at site r in orbital α. −tαβr,r′ is nonzero

to the fifth-nearest neighbor, where |r− r′| = 3.

In momentum space, the hopping parameters lead to the following dispersions:

ε11/22(k) =2t11
x/y cos kx + 2t11

y/x cos ky + 4t11
xy cos kx cos ky ± 2t11

xx(cos 2kx − cos 2ky)

+ 4t11
xxy/xyy cos 2kx cos ky + 4t11

xyy/xxy cos 2ky cos kx + 4t11
xxyy cos 2kx cos 2ky

ε33(k) =2t33
x (cos kx + cos ky) + 4t33

xy cos kx cos ky + 2t33
xx(cos 2kx + cos 2ky)

ε44(k) =2t44
x (cos kx + cos ky) + 4t44

xy cos kx cos ky + 2t44
xx(cos 2kx + cos 2ky)

+ 4t44
xxy(cos 2kx cos ky + cos 2ky cos kx) + 4t44

xxyy cos 2kx cos 2ky

ε55(k) =2t55
x (cos kx + cos ky) + 2t55

xx(cos 2kx + cos 2ky)

+ 4t55
xxy(cos 2kx cos ky + cos 2ky cos kx) + 4t55

xxyy cos 2kx cos 2ky

ε12(k) =− 4t12
xy sin kx sin ky − 4t12

xxy(sin 2kx sin ky + sin 2ky sin kx)− 4t12
xxyy sin 2kx sin 2ky

ε13/23(k) =± 2it13
x sin ky/x ± 4it13

xy sin ky/x cos kx/y ∓ 4it13
xxy(sin 2ky/x cos kx/y − cos 2kx/y sin ky/x)

ε14/24(k) =2it14
x sin kx/y + 4it14

xy cos ky/x sin kx/y + 4it14
xxy sin 2kx/y cos ky/x

ε15/25(k) =2it15
x sin ky/x − 4it15

xy sin ky/x cos kx/y − 4it15
xxyy sin 2ky/x cos 2kx/y

ε34(k) =4t34
xy(sin 2ky sin kx − sin 2kx sin ky)

ε35(k) =2t35
x (cos kx − cos ky) + 4t35

xxy(cos 2kx cos ky − cos 2ky cos kx)

ε45(k) =4t45
xy sin kx sin ky + 4t45

xxyy sin 2kx sin 2ky

The onsite orbital energies are given by ε1= 7.0 meV, ε2=7.0meV, ε3=-25.0meV,

ε4=20.0meV, and ε5=-25.1 meV, while the hopping parameters are given in tables



CHAPTER 5. ENGINEERING ZERO-ENERGY MODES IN FESE0.45TE0.55 55

tmmi i = x i = y i = xy i = xx i = xxy i = xyy i = xxyy

m = 1 −11.0 −43.0 28.0 2.0 −3.5 0.5 3.5
m = 3 32.0 −10.5 −2.0
m = 4 22.0 15.0 −2.0 −3.0 −3.0
m = 5 −10.0 −4.0 2.0 −1.0

Table 5.1: Intra-orbital hoppings (meV) for the FeSe0.45Te0.55 5-band model

tmmi i = x i = xy i = xxy i = xxyy

mm = 12 5.0 −1.5 3.5
mm = 13 −35.4 9.9 2.1
mm = 14 33.9 1.4 2.8
mm = 15 −19.8 −8.5 −1.4
mm = 34 −1.0
mm = 35 −30.0 −5.0
mm = 45 −15.0 1.0

Table 5.2: Inter-orbital hoppings (meV) for the FeSe0.45Te0.55 5-band model

5.1 and 5.2.

To obtain the mean-field form of HSC given in Eq. 5.1, we decouple the super-

conducting pairing interaction,

HSC = −
∑
〈r,r′〉

5∑
α=1

Iαr,r′c
†
r,α,↑c

†
r′,α,↓cr,α↓cr′,α,↑

such that,

∆αα = Iαr,r′〈crα↓cr′α↑〉 = Iαr,r′〈c
†
rα↑c

†
r′α↓〉

and set the intra-orbital superconducting order parameters to match the three

spectroscopically-observed coherence peaks,

∆xz = ∆yz = 0.55meV

∆xy = 0.38meV
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with ∆αβ = 0 in all other orbitals. Assuming pairing between next-nearest Fe

sites (with hopping parameters aligned with the square Fe-Fe lattice) then yields

an s±-wave order parameter.

5.3 Evidence for dispersing 1D Majorana channels

in a 1D iron-based superconductor

In a recent measurement on FeSe0.45Te0.55, 1D dispersing Majorana modes were

reported near a domain-wall defect[77]. This defect was discovered with atomi-

cally resolved topography as a 1D feature on the surface represented by a bright

line (Fig. 5.1A). A zoomed-in view (Fig. 5.1D) reveals that this bright line separates

two crystal domains where the lattice shows a relative phase shift. This shift is re-

flected as a split in reciprocal-space Bragg peaks of the Fourier transform of the

image (Fig. 5.1). The magnitude of the split in reciprocal space corresponds to a

spatial scale of 12 nm (half of the field of view of Fig. 5.1), which is consistent with

the domain size in this FOV. Accompanying the split, a displacement analysis indi-

cated that the lattice underwent a half-unit-cell shift at the crystal domain wall. In

comparison to other crystallographic defects, this half-unit-cell shift was essential

for the realization of dispersing Majorana modes.

Differential conductance spectra obtained along three distinct paths traversing

the domain wall (Fig. 5.1F) reveal an intriguing evolution. As one approaches

the domain wall, the superconducting coherence peaks in the dI/dV spectra are

suppressed and new electronic states emerge inside the gap, resulting in a nearly

featureless, constant finite dI/dV inside the gap at the domain wall center as in-

dicated with the highlighted lines in Fig. 5.1F, inset. Despite the constant DOS

inside the superconducting gap, the DOS at the domain wall still exhibits supercon-
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Figure 5.1: Signature of dispersing 1D Majorana modes on a domain wall. a.
25nm X 25nm topographic image showing a domain wall. b. 2D FFT of a, showing
the splitting of the Bragg peaks which indicates the presence of domains in this
image. Inset: zoom-in near one of the Bragg peaks. c. Height scans taken at
different bias voltage along the yellow dashed line in a. d. Zoom in of the domain
wall. The dashed lines track the atomic lattice on both sides of the domain wall. A
half-unit cell shift can be observed between one side and the other. e. Schematic
of the half unit cell shift across the domain wall. The schematic also depicts how
one might obtain a π-phase in the superconducting order parameter shift across
such a domain wall. Superimposed on the lattice are red and green bars, which
denote the parity of next-nearest neighbor pairing[95, 1]. Concentrating now on
the atoms inside the dashed box, one observes that the parity shifts from red on
the left of the domain wall, to green on the right. This creates a π-phase shift in the
superconducting order parameter. f. Linecut profiles of dI/dV spectra along the
three blue lines in a (L1, L2 and L3 shown in sequence from left to right), which
cross the domain wall. The spectra shape obtained right on the domain wall (at
position of dots in a) are highlighted with a dark blue color. A direct comparison of
the spectra taken on the domain wall (orange) and far away (dark) is shown in the
inset.

ducting signatures (Fig. 5.1F and inset), which indicates that the flat DOS is not

simply caused by a region of normal metal. One explanation for this observation
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is the presence of linearly dispersing Majorana states at the domain wall because

it would naturally give rise to a constant dI/dV in one dimension. According to the

Fu-Kane model [96], realizing 1D dispersing Majorana states requires three ingre-

dients: nontrivial topological surface states, s-wave superconductivity that gaps the

surface states, and a π-phase shift in the superconducting order parameter across

the domain wall. Detailed gap maps already indicate the presence of proximity-

gapped Dirac surface states, thus satisfying the first two criteria. This leaves us

with the question of how to generate a superconducting phase shift. For the pair-

ing symmetries allowed in Fe(Se,Te), it is possible to have an interplay between

the crystal structure and the phase of the superconducting order parameter. One

possibility comes from the predicted odd parity s-wave pairing in iron-based super-

conductors, which encodes pairing between next-nearest-neighbor sites [95, 97]

in the 2-Fe unit cell. In this case, the order parameters on the two Fe-sublattices

have a π-phase difference. A half-unit-cell shift of the lattice in such a system

would naturally create a π-phase shift across the domains (Fig. 5.1E). It has also

been argued that the s± pairing in iron-based superconductors can generate a

π-phase shift at the intersections of crystal terminations with different orientations

[98]. Thus, Fe(Se,Te) is an excellent candidate, with all the essential ingredients

necessary for hosting dispersing Majorana modes.

One might wonder whether the experimentally observed domain wall modes

could also possess a topologically trivial origin, unrelated to existence of a topo-

logical surface state. On the basis of previous studies, the superconducting order

parameter in Fe(Se,Te) is expected to be a sign-changing s± state [99, 1]. In

such a state, defects, regardless of their magnetic properties, would induce impu-

rity states inside the superconducting gap. The experimentally observed domain

wall representing a 1D defect could therefore lead to the emergence of an impu-

rity band inside the superconducting gap even in a topologically trivial phase. To
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distinguish this possibility from other scenarios, we studied other extended defects

(Section 5.4) that are not expected to give rise to a π-phase shift and found that

the flat DOS signature is absent; 1D defects without the half-unit-cell shift have

the effect of decreasing the gap magnitude, whereas step edges, which are strong

potential scatterers, induce resonant bound states inside the superconducting gap

(Fig. 5.2).

To investigate this, we used a theoretical model for a topologically trivial super-

conducting state of Fe(Se,Te) [20] and represented the domain wall as a line of

potential scatterers (Fig. 5.3). We found, as expected, that the domain wall gives

rise to impurity states inside the superconducting gap. However, these states do

not in general traverse the superconducting gap (only for fine-tuned values of the

scattering potential do impurity states near zero energy emerge). Moreover, such

states are not uniformly distributed in energy inside the gap and cannot result in

the observed constant density of states. The same conclusion holds if the do-

main wall-separated, π-phase–shifted superconducting regions are present in an

otherwise topologically trivial phase. Although such domain walls give rise to a

suppression of the superconducting gap, they do not result in a constant DOS.

These theoretical and experimental findings, taken together, make it unlikely that

the observed constant DOS near the domain wall can arise in a topologically triv-

ial superconducting phase, which further emphasizes the important role played by

nontrivial topology of FeSe0.45Te0.55 in creating the observed domain wall modes.

5.4 Domain walls in the topologically trivial model

To model a step-edge boundary in the model presented in Section5.2, in which a

Dirac cone is absent, we introduce an on-site non-magnetic scattering defect given



CHAPTER 5. ENGINEERING ZERO-ENERGY MODES IN FESE0.45TE0.55 60

by

Hscat =
∑
R,σ

5∑
α=1

U0c
†
R,α,σcR,α,σ . (5.2)

where the sum runs over all defect sites in a line along the crystal axis. The total

Hamiltonian in real space in the superconducting state is then given by H = H0 +

HMF
SC +Hscat. Using Nambu spinors Ψ†,Ψ, the Hamiltonian can be written as

H = Ψ†ĤΨ (5.3)

Diagonalization of Ĥ then yields the eigenenergies of the system. The local,

orbitally-summed density of states is then obtained from

N(r, E) = − 1

π

∑
α

ImGα,α(r, r, E) (5.4)

where Gα,α(r, r, E) is the local retarded Greens function of orbital α. These are

given as the diagonal elements of the Greens function matrix

Ĝ−1 = (ω + iδ)1̂− Ĥ (5.5)

In Fig. 5.2(a), we present the lowest eigenenergies of the system as a function

of the defect line’s scattering strength, U0. For comparison, we present the DOS of

the clean system in Fig.5.2(b). With increasing U0, impurity states are pulled into

the gap, and cross zero energy around U0 ≈ 60 meV and U0 ≈ 90 meV. However,

the defect line does not give rise to generic (or symmetry protected) zero energy

states – thus, as expected, this topologically trivial model cannot support the in-gap

modes observed in Fig. 5.1.

Next, we consider the effects of a linear domain wall in the superconductor that
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Figure 5.2: Eigenenergies of a 1D potential scattering line defect (a) Lowest-energy
electronic states for a 121x121-site system, as a function of the defect line’s scat-
tering strength U0. (b) Density of states spectra for a clean system.

separates two regions in which the SCOPs possess a π-phase shift, and hence

differ in their overall sign. In this case, the SCOP is position-dependent,

HMF
SC → HMF

SC(r) =
∑
〈r,r′〉

5∑
α=1

∆αα(r)c†r,α,↑c
†
r′,α,↓ +H.c. (5.6)

Such that the full Hamiltonian for the topologically trivial π-phase shift is,

H = H0 +HMF
SC(r)

Fig. 5.3(a), presents the LDOS near the domain wall [Fig.5.3(b) shows a
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Figure 5.3: (a) Orbitally-summed LDOS N(r, E) at various distances from the π-
phase domain wall. The LDOS for a clean system (dashed line) is provided as a
guide to the eye. (b) Zoom-in of the results shown in (a).

zoomed-in view]. While the π-phase domain wall created here clearly leads to

the emergence of in-gap states, these in-gap states are located at finite energy

(we do not find that these energy states move to lower energies with increasing

system size). Thus, a topologically trivial π-phase domain wall does not lead to the

emergence of generic zero-energy states (though states can be located close to

the zero energy).
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5.5 Revising the 5-band model

As we have seen, the 1D defects in Section 5.4 were unable to recreate the broadly

dispersing Majorana modes found in FeSe0.45Te0.55, further corroborating the ex-

planation that their origin came from the topological surface states that have so far

been absent from our model[77]. To further address the question of how to distin-

guish topological zero-energy states from those that appear in a trivial model, we

modify the Hamiltonian from Eq. 5.1 to include two elements which were essential

for the engineering of Majorana modes and chiral Majorana currents in the MSH

system in chapter 3 and elsewhere[100, 85, 76]: surface magnetism and a non-

zero Rashba spin-orbit (RSO) interaction. For FeSexTe1−x, a recent photoemission

experiment near TC [101] has shown evidence consistent with the formation of a fer-

romagnetic surface layer; there is also strong evidence of short-range magnetism

near TC in the parent compound, FeSe[102]. Correspondingly, recent evidence of

inversion symmetry breaking[18] in FeSe0.45Te0.55 suggests that Rashba spin-orbit

coupling is present.

For the purposes of our model we include the Rashba effect and a possible

out-of-plane magnetic alignment in each of the 5 orbitals via,

HRSO = iα
∑

r,αβ c
†
r,α

(
δ̂ × σ

)z
αβ
c
r+δ̂,β

HJ = J
∑

R,α,β SR · c†RασαβcRβ + H.c. (5.7)

Here, α represents the Rashba spin-orbit coupling arising from broken inversion

symmetry[18], δ̂ connects nearest-neighbor sites, SR is a classical vector denoting

the direction of a surface atom’s spin at position R with an exchange coupling J to a

conduction electron, and σ is a vector of Pauli matrices. Throughout the following,

we assume an out-of-plane magnetic alignment such that SR = Sẑ. The inclusion
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Figure 5.4: Topological phase diagram of FeSe0.45Te0.55 in the a.) (µ, J)-plane with
α = 7.0meV. Fermi surfaces are shown for b. C = 2 and c. C = 3 phases.
(Source: Private correspondence with Dirk Morr and Sagen Cocklin, included with
permission)

of these contributions leaves us with an overall Hamiltonian,

H = H0 +HMF
SC +HRSO +HJ (5.8)

To explore the topological phase diagram of this model, the Chern number may

be calculated (see Fig. 5.4) as in Chapter 3 using,
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C =
1

2π

∫
BZ
d2kTr(Pk[∂kxPk, ∂kyPk]) (5.9)

Pk =
∑

En(k)<0

|Ψn(k)〉〈Ψn(k)| (5.10)

where En(k) and |Ψn(k)〉 are the eigenenergies and the eigenvectors of the

Hamiltonian in Eq. 5.8, with n being a band index, and the trace is taken over

Nambu and spin-space.

As we can see from Fig. 5.4a, the phase diagram of the modified Hamiltonian

now hosts a rich interplay of topological phases, even for relatively small variations

in the exchange coupling J . In order to create a domain wall for FeSe0.45Te0.55 that

can support Majorana modes while maintaining close agreement with the spectro-

scopic accuracy of the model, we take µ = 0, J = 7.0meV, α = 7.5meV.

5.6 Domain walls in a topological model

To investigate the appearance of Majorana modes across a domain wall, we con-

sider the trivial model with the addition of the Rashba spin-orbit interaction and

out-of-plane magnetic moment from Eq. 5.7, in a ribbon geometry. Using param-

eters µ = 0, α = 7.0meV, J = 7.5meV places the system in a C = −1 phase (see

Fig. 5.4). In this case, to maintain the model’s agreement with spectroscopically-

measured coherence peaks [20], we further modify the orbitally-selective super-

conducting order parameter such that,

∆xz = ∆yz = 1.10meV

∆xy = 0.76meV
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This represents a change from ∆αα → 2∆αα from the trivial model, and is a

consequence of the onset of magnetic pair-breaking effects that were absent from

the original time-reversal invariant model presented in section 5.2. Furthermore,

propose for comparison a spin-domain wall such that SR → −SR across the 1D

edge defect. Continuing to use the definition of a 1D π-phase shift in Eq. 5.6, we

find (see Fig. 5.5a) several linearly dispersive Majorana modes (solid red lines)

for the spin-domain wall, but none for the π-phase domain (although the π-phase

domain generates strong spectral weight at zero energy).

To understand this result, we note that bulk-boundary correspondence only re-

quires the emergence of Majorana modes at topological domain edges. In our

configuration, the ribbon’s periodic boundary conditions generate two domain walls

for both the π-phase and spin-domain walls, however only the spin-domain walls

are associated with a change in Chern number across the domain. There, the

change across the domain wall is entirely due to the change in sign of the magnetic

alignment[85]. Corresponding to the move from a C = −1 phase with J = 7.5meV

to C = +1 and J = −7.5meV, we find a total number of Majorana modes corre-

sponding to 2|∆C| = 4, as expected for two domain walls.

In contrast, the π-phase shift in the SCOP does not change the Chern num-

ber, and thus is not associated with a topological domain edge generating a chiral

Majorana edge current. Additionally, upon closer examination of the π-phase do-

main, while the many in-gap bands generate a heavy spectral weight (Fig. 5.5b, d)

which is strongly localized at the domain wall (Fig. 5.5f), upper and lower bands do

not connect across the Fermi level to form a Dirac cone, instead resulting in other

avoided crossings and sometimes small electron- or hole-like pockets.

To more quantitatively investigate the difference between the trivial (π-phase)

and topological (spin-reversed) domain walls, we calculate the supercurrents along
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Figure 5.5: Domain walls in the topological FeSe0.45Te0.55 model with a ribbon ge-
ometry. a.) Dispersion in a system with a spin-reversed domain wall (J → −J) and
in b.) a system with a π-phase domain wall (∆αα → −∆αα). The two The LDOS
across the domain walls are shown for the spin-reversed and π-phase walls as a
function of energy in c.) and d.) respectively, and the spatial distribution of spectral
weight at E = 0 is shown in e.) for the spin-reversed wall and f.) for the π-phase
domain wall. The equilibrium current at the domain wall edge is shown in g.) for
the spin-reversed domain wall and h.) for the π-phase domain wall.

the domain wall edges, using

Iαβ = −2e

~

∫
dω

2π
Re
[
tαβG

<
αβ(r, r + x̂, ω)

]
(5.11)

Where tαβ corresponds to the electronic hopping connecting bands α, β along

the direction parallel to the domain wall, and G<
αβ(r, r + x̂, ω) is the lesser Green’s

function connecting r and r + x̂. In our results, these were calculated according

to the kernel polynomial method[103] for a 64x64-site system with periodic domain

walls. Comparison with Tables 5.1 and 5.2 reveals nine non-zero intra- and inter-

orbital supercurrents (see Fig. 5.6). Overall, the relative current magnitudes are

roughly proportional to each bands’ respective hopping elements (note that here

the domain wall is aligned with the y-axis), which were pre-determined by matching
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a tight-binding model to FeSe0.45Te0.55’s band structure. The key feature, shared by

the current in all orbitals, is the even (odd) spatial distribution of the current in the

spin (π-phase) domain cases.

Figure 5.6: Orbitally-resolved equilibrium current parallel to the domain walls for
a.) a spin-domain wall configuration and for b.) a π-phase domain wall.

In Fig. 5.5g (spin-domain) and h (π-phase domain), which present the total of

the orbitally-resolved currents from Fig. 5.6a and b, we see a crucial difference in

behavior that is a direct consequence of the topological phase defined on either

side of the domain walls. In the π-phase shift case, the superconductors on oppo-

site sides of the domain wall have an identical Chern number, and thus produce

the anti-aligned currents with identical chirality that effectively cancel at the domain

wall. In contrast, opposing sides of the spin-domain wall are associated with an op-

posite Chern number, leading to supercurrents with reversed chirality that combine

to produce a non-vanishing supercurrent parallel to the domain wall. This quali-

tatively different edge current behavior represents a topological signature that can

be used to distinguish between near zero-energy trivial states (as in the π-phase
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domain considered here) and non-trivial Majorana modes (as in the spin-domain

wall case). In the future, we hope that this fundamental difference in edge current

behavior will be measured experimentally, since recent superconducting quantum

interference device (SQUID) measurements[104] have demonstrated a capability

to do so.

Throughout this chapter, we have considered a series of domain wall models

of FeSe0.45Te0.55 in which the presence of Majorana modes is difficult to distinguish

from trivial in-gap states located close to zero energy. In the case of the π-phase

domain wall specifically, the strong spectral weight in the zero-energy LDOS points

toward zero-energy states which, even if they occur within a topologically nontrivial

phase, are not necessarily associated with a Majorana zero mode. To address

the problem of how to detect topologically non-trivial states in a domain wall con-

figuration like the experiment by Wang, et. al[77], we propose measuring the su-

percurrent parallel to the domain wall. Within our FeSe0.45Te0.55 model, we find

that topologically distinct domains are associated with a qualitative difference in

the supercurrent, allowing for more reliable identification of Majorana modes as

compared to STS measurements. Taken together, these results offer an exciting

new possibility for the detection and manipulation of the topological edge modes

proposed to exist in FeSe0.45Te0.55.



Chapter 6

Conclusion

In the preceding chapters, we have analyzed a series of novel superconducting

systems to find possible experimental signatures of their microscopic behavior.

Our overarching findings have been that transport measurements are typically ex-

tremely useful for these purposes, if indeed the experimental difficulty of perform-

ing them can be overcome. In the case of the BCS superconductor we considered

in Chapter 2, we simulated current measurements obtainable through Josephson

scanning tunneling spectroscopy. Although this technique itself is well-established,

our comparison of the critical current deviations with the s-wave superconducting

correlations on the substrate provided a missing proof that the Josephson current

could be used to image the superconducting order parameter directly.

Building from the connection between the Josephson current and the super-

conducting correlations in the s-wave superconductor, we then extended the cur-

rent calculation to a cuprate model with a non-local, anisotropic order parameter.

There, we tested the imaging capability of JSTS extensively using potential and

magnetic scattering defects, a spatially oscillating order parameter in the FFLO

phase, spatially extended, optionally disordered tips, and a to-scale model of a

cuprate’s highly localized heterogenous superconducting and pseudogap regions.

70
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Throughout, we found that the critical current generally images the SCOP, offering

defining evidence of the FFLO phase and a unique way to test for precursor pairing

as a microscopic origin for the cuprates’ pseudogap phase.

Recently, the question of how to build a quantum computer has motivated in-

tense study of topological superconductors capable of hosting and manipulating

Majorana zero modes. In Chapter 4, we demonstrated an MSH system where

tunability can be engineered by an applied magnetic field, generating a complex

topological phase diagram. Through application of JSTS to this system, we were

able to image the unconventional spin-triplet superconducting correlations that are

essential for topological superconductivity. Furthermore, introducing topological

superconductivity into a 5-band model of FeSe0.45Te0.55 allowed us to discriminate

between topologically trivial and non-trivial in-gap states that can be induced along

domain walls. Using this model, we showed that the dissimilarity in the equilibrium

current between spin-domain and π-phase domain walls can identify whether a chi-

ral Majorana edge mode is present even when it is unclear from the local density of

states. Our hope is that these methods of detection will provide an experimentally

accessible way to gain insight into the many unique properties of unconventional

and topological superconductors.
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