Lifelong Representation Learning for NLP Applications

by

Hu Xu
B.S. China Agricultural University, 2005
M.E. Peking University, 2009

THESIS

Submitted as partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science
in the Graduate College of the
University of Illinois at Chicago, 2020

Chicago, Illinois

Defense Committee:

Prof. Philip S. Yu, Chair and Advisor

Prof. Bing Liu, Co-advisor

Prof. Piotr Gmytrasiewicz

Prof. Natalie Parde

Prof. Sihong Xie, Department of Computer Science and Engineering, Lehigh University

ACKNOWLEDGMENTS

First, my gratitude and appreciation give to my Ph.D. advisors, Prof. Philip S. Yu and
co-advisor Prof. Bing Liu, for their guidance and support throughout my Ph.D. study and
research. It has been my privilege to work with you at different aspects of my Ph.D. journey.
Your invaluable suggestions, guidance and your passion for research not only help me with my
past academic achievements but also will influence my professional career in the future. Besides
my advisors, I would like to thank Prof. Piotr Gmytrasiewicz and Prof. Natalie Parde, for your
valuable time on my dissertation. I am grateful to Prof. Sihong Xie from Lehigh University, for
the mentorship and support of my early years of a research career and enlightening me on the
first glance of research.

I would like to also thank collaborators and lab mates both inside and outside UIC during
this Ph.D. journey. I would like to thank Lei Shu for long-term collaboration, including idea
brainstorming, modeling, and support for each paper. I would also like to thank Prof. Kevin
Gimpel from Toyota Technological Institute at Chicago for external collaboration. Also, I would
like to appreciate numerous researchers from the research community around the world. Your
feedback and support on my research really motivate my future steps of exploring the unknown
world of natural language processing.

I have 3 wonderful summer internships for NLP research. I am lucky to be mentored by
research scientists from the industry. The industry-strength research really helps me to broaden

my views on practical problems and deployments of machine learning models. I would like

ii

ACKNOWLEDGMENTS (Continued)

to thank Dr. Cheng Niu and Dr. Xiliang Zhong from WeChat Al lab, Prof. Katrin Kirchhoff
from Amazon Al and University of Washington, Prof. Mona Diab from Amazon Al and George
Washington University, Dr. Honglei Liu, Dr. Shane Moon, Dr. Bing Liu, Pararth Shah, Dr. Rajen
Subba, Dr. Alborz Geramifard from Facebook Conversational AI. Meanwhile, I would also like
to thank the organizers of the Yelp dataset challenge, such as Dr. Sebastien Couvidat, etc. for
their supports of datasets and awards on my research.

Last but not least, none of this could have happened without my family. [am very grateful
for my parents on their long-term support and encouragement of my Ph.D. research and uncon-

ditional love.

HX

iii

CONTRIBUTION OF AUTHORS

Chapter|[Iis the overview and motivation for my dissertation.

Chapter [2]is from the published papers [[1,2]] and I am the primary author. Prof. Bing Liu,
Prof. Philip S. Yu, and Lei Shu contributed to discussion and writing. Lei Shu contributed to
migrating baselines.

Chapter [3|is from the published papers [3,4]. I am the primary author and Prof. Bing
Liu, Prof. Philip S. Yu, and Lei Shu contributed to the discussion. Prof. Bing Liu and Lei Shu
contributed to revising.

Chapter d]is from the one published paper [5]] and one arXiv paper [6]. I am the primary
author of both papers and Prof. Philip S. Yu, Prof. Bing Liu and Lei Shu contributed to the
discussion. Prof. Bing Liu contributed to paper editing.

Chapter 5|is an ongoing work. I will be the primary author. Collaborators from Facebook
AI (Dr. Seungwhan (Shane) Moon, Dr. Honglei Liu, Dr. Bing Liu, and Pararth Sha) and Prof.
Philip S. Yu and Prof. Bing Liu contributed to the discussion. Dr. Seungwhan (Shane) Moon,
Dr. Honglei Liu, Dr. Bing Liu, and Prof. Bing Liu contributed to editing.

Chapter [p]is about multiple papers for which I am the primary author. Section [6.1)is based
on published papers [4,55] and arXiv paper [7]. Prof. Philip S. Yu, Prof. Bing Liu, and Lei
Shu contributed to the discussion. Prof. Bing Liu contributed to editing. Section 6.2 is from
published papers [[8/9] and Prof. Sihong Xie, Prof. Philip S. Yu, and Lei Shu contributed to the

discussion. Prof. Sihong Xie and Prof. Philip S. Yu contributed to editing. Lei Shu contributed

iv

CONTRIBUTION OF AUTHORS (Continued)

to finding baselines. Section 6.3-6.4.1 is based on published paper [5]] and arXiv paper [6]].
Prof. Bing Liu and Lei Shu contributed to the discussion. Prof. Bing Liu contributed to editing.
Section 6.4.2 is from ongoing work. Collaborators from Facebook AI (Dr. Seungwhan (Shane)
Moon, Dr. Honglei Liu, Dr. Bing Liu, and Pararth Sha) contributed to the discussion of data
collection. Dr. Seungwhan (Shane) Moon, Dr. Honglei Liu, Dr. Bing Liu, and Prof. Bing Liu
contributed to editing.

Chapter [7|discussed conclusion and future work.

TABLE OF CONTENTS

CHAPTER PAGE
1 INTRODUCTIONI 1
[1.1 Motivation of Lifelong Learning| 2

1.2 Research Objectives| 2

13 Outlines 3
........................... 7
2.1 Motivation] 7

2.2 Open-world Learning| 9
............................. 11

2.4 Resultsl 18

27

B.1 Motivationl L 28

3.2 Lifelong Domain Word Embeddings|. 29

B.3 L-DEM Approach| 32

B4 Results] 40

3.5 Fusion of General and Domain Word Embeddings| 47
B.51 —Approachl 47
B.5.2 —Resultl 48

50

51

4.2 Lifelong Training| 52

4.2.1 — Post-training of Language Models| 53

4.2.2 — Pre-tuning for End-tasks|00 60

5 LIFELONG GRAPH REPRESENTATION LEARNING] 66
b1 Moftivationl 66

.2 Lifelong Knowledge Graph Reasoning|. 68

b.3 GraphReasoner]. 71

6 NLP APPLICATIONSI. 77
6.1 Aspect-based Sentiment Analysis|. 78

6.1.1 —AspectExtraction]. 79

6.1.2 — Aspect Sentiment Classification|. 93

6.2 Complementary Entity Recognition| 106

6.2.1 — Knowledge Expansion on Large Unlabeled Product Reviews|. 108

Vi

TABLE OF CONTENTS (Continued)

CHAPTER PAGE
6.2.2 — Augmented Key-value Pairs of Knowledge| 133

6.3 Question Answering]. 145

631 —Motivationl oo 145

6.4 Dialog System|. o oL 155

6.4.1 — Review Conversational Reading Comprehension (RCRC)| .. 156

0.4.2 — Memory-grounded Conversational Recommendation| 163

7 CONCLUSIONI e 178

[APPENDICES|. 180

[CTEDLITERATURE 187

vii

LIST OF TABLES

TABLE PAGE
(L Scores for OWLI 22
- - -Learner| 42

[LIT Accuracyof L-DEM|. 43
v Concatenating Word Embeddings|. 48
Ontology of Memory Graph| 70

I Datasetfor AE 85
VII Fiscorefor AE|. 89
WIT— BERTfor AEInFL] 93
X Statistics of SemEvall4 Task4 with Contrastive sentences|. 101
X ASCin Accuracy and Macro-F1I(MF1).|. 102
XL Resultsof ARWonASCl 104
X1 Dependency relations. 115
XTI Rules of matching attributes of dependency segments and depen- |
dencyrelations| o oo oo ool 117

X1V Summary of dependency paths| 120
XV Summary of dependency paths for extraction|. 123
istics of the CER datasetl 126

XVII Comparison of different methods for CER|. 127
XVIII Running time of expanding domain knowledge| 128
................................ 142

XX Review reading comprehension| L 147
XXT__ Statistics of ReviewRC Datasetl 152
[XXII RRCin EM (Exact Match)and F1,|. 154
XIII Review conversational reading comprehension (RCRC)| 157
XXIV Statistics of (RC)y Datasets.| 160
\Y RCRC on EM (Exact Match)and F1,| 162
XXVI Dialog acts foragent Aanduser| 168
XXVII SlotsSandvalues VI 169
IXXVIIT __ Statistics of MGConvRex Datasetl 171
XXIX_ Resultsof UMGRI 174

viii

LIST OF FIGURES

FIGURE PAGE
1 Overview of the [2AC framework] 13

% Weighted F1 scoresof kand n forOWL} 23

i DEML . o 33

4 Lifelong stages of training| 52

5 BERT forendtasksl. 57

(6 Construction of user memory graph| 72

[7 Dynamic updates of memory graph|, 73

(<] DE-CNNI . .o 83

9 Target entities, their complementary entities and complementary |

I relations. L 107
(10 Visualization of dependency relations.| 115

ix

LL

L2AC

L-DEM

BERT

AE

ASC

CER

RRC

RCRC

R-GCN

UMGR

LIST OF ABBREVIATIONS

Lifelong Learning
Learning to Accept new Class framework
Lifelong Domain Embedding framework

Bidirectional Encoder Representations from Trans-

formers

Aspect Extraction

Aspect Sentiment Classification
Complementary Entity Recognition

Review Reading Comprehension

Review Conversational Reading Comprehension
Relational Graph Convlutional Network

User Memogry Graph Reasoner

SUMMARY

Representation learning lives at the heart of deep learning for natural language processing
(NLP). Traditional representation learning (such as softmax-based classification, pre-trained
word embeddings, and language models, graph representations) focuses on learning general
or static representations with the hope to help any end task. As the world keeps evolving,
emerging knowledge (such as new tasks, domains, entities or relations) typically come with a
small amount of data with shifted distributions that challenge the existing representations to
be effective. As a result, how to effectively learn representations for new knowledge becomes
crucial. Lifelong learning is a machine learning paradigm that aims to build an Al agent that
keeps learning from the evolving world, like humans’ learning from the world. This dissertation
focuses on improving representations on different types of new knowledge (classification, word-
level, contextual-level, and knowledge graph) for a myriad of NLP end tasks, ranging from text
classification, sentiment analysis, entity recognition, question answering to the more complex
dialog system. With the help of lifelong representation learning, models” performance on tasks

is greatly improved beyond existing general representation learning.

Xi

CHAPTER 1

INTRODUCTION

Deep learning (DL) has achieved significant performance boosts for machine learning tasks
over the past a few years [10]. The core driving force behind deep learning is its capability
or capacity to learn knowledgable features or representations automatically from large-scale
data. This significantly reduces the need for asking humans to curate better features manually.
As a result, the learned representation gives the model a great advantage to concur with the
uncertainty during testing from the unknown world, which can be found in many applications
of computer vision and natural language processing. The key advantage of deep learning over
traditional machine learning models is that by having parameter-intensive models, deep learning
models can consume much more data to obtain more general representation by inferring the
features on-the-fly as a form of stacked layers of reasoning. Thus, those features shorten the
gap between the raw inputs and the features required by an end task. Not surprisingly, these
learned features, in the end, boost the performance of many tasks.

Following this advantage, how to smartly consume more data to learn general features
and avoid specific features is essential for the success of DL models. Researchers start to
pre-train DL models with the hope to encode all features of the world into parameters of DL
models. Examples can be found in the large-scale pre-training on ImageNet dataset [[11413]]
in computer vision, or pre-trained word embeddings or language models [14}[15] in natural

language processing (NLP).

1.1 Motivation of Lifelong Learning

Going beyond the classic deep learning approach, simply aggregating existing data into a DL
model may not be enough. For example, looking towards the future, the world keeps evolving
and always yields new data for new tasks, which probably are long-tailed or heavily-tailed.
This greatly challenges the existing learned representations. This is because a trained model
is typically frozen during inference or testing and never changed. The existing approach may
represent the majority general features well and assume they are generally good for any new
knowledge. However, it lacks enough capability to represent the vast kinds of specific features
that are required each (new) task. To make the learning effective in the long-term, an Al agent
must be able to adapt to the changes in the world. In contrast, we humans are very sensitive to
the changes in the world and the wide spectrum of novel details by having a focus with curiosity
on new things. Later we learn new knowledge and updating our understanding of the world. In
contrast to the existing machine learning paradigm, we never use our 6-year-old understanding

of the world to solve the problems now.

1.2 Research Objectives

Motivated by this observation, an Al agent needs to learn representations as to the way
humans do in a new machine learning paradigm or a problem called lifelong learning, which
aims to build Al agents from a sequence of tasks online.

Lifelong Learning (LL) assumes that the learning tasks come in a sequence denoted as
Ti, 72, ..., Tn, where the new or (n + 1)-th task is performed with the help of the knowledge

accumulated over the past n tasks [[16418]].

Note that this definition does not specify or constrain the forms or types of each task. To
name a few, a task can be any learning task, ranging from learning for a new class, learning
for a new domain, learning in a heterogeneous form of a new task, to new concept or relation
for accumulating the knowledge. As such, we can see that the problem or concept of lifelong
learning can be applied to a vast amount of concrete machine learning tasks.

Asaresult, this dissertation focuses on a wide range of machine learning tasks and their usage
in natural language processing (NLP) applications. We aim to cover major types of machine
learning tasks in NLP and provide its applications to concrete datasets with experimental
results and discussions on the role of lifelong learning for the improvements in their models’

performance.

1.3 Outlines

To make a more clear distinction between different forms of learning tasks and NLP applications,
this dissertation is organized by separating lifelong learning tasks of different types and their
applications to concrete NLP tasks. As a result, the structure of this dissertation may not exactly
follow the structure of the papers published in their original form. To build the relevance with
the original paper, I list referenced papers at the beginning of each chapter.

In Chapter 2} I first address open-world learning problems on classification tasks, where
traditional classifiers can easily make mistakes on unseen classes that appear during testing or
inference. This is because most existing classifiers must classify an example from an unseen
class to one of existing pre-defined classes during training. I further extend this problem to a

dynamic classification task, where some unseen classes can be added to or removed from the set

of existing classes while still keeping rejecting the rest unseen classes. We use a meta-learning
approach to address this problem into a very general comparison-based classifier. As a result, it
avoids learning a classifier overfitting to a particular set of classes.

In Chapter 3 I switch to classic representation learning problems in NLP. I first focus on
learning word embedding and propose a problem of learning domain word embeddings. In
this problem, each word has its domain representation. However, emerging domains typically
do not have enough corpus to train fully-fledged embeddings. By applying lifelong learning
into word embeddings, I allow corpus-level sharing of knowledge amongst existing domains.
As such, I first describe how to obtain domain-specific word embeddings from a small domain
corpus in a lifelong learning fashion and show the performance domain-specific embeddings
compare to general-purpose embeddings. Second, I explore the usage of domain-specific word
embeddings and focus on how to leverage both general-purpose embeddings and domain-
specific embeddings together.

In Chapter 4} I switch to contextualized word representation, where each word is strongly
tied to its context in a document. This yields a better representation of the meaning of a word in
a sentence or paragraph. Given the expensive training of contextualized word representation, I
switch to a different style of lifelong learning and focuses on how to obtain domain contextual-
ized word representation via a sequence of different types of learning tasks. I discuss two types
of learning tasks: post-training and pre-tuning. On one hand, post-training is a learning task
intended to address the shifts of distributions such as domains. This ended with a huge gap

between an end task and a general-purpose pre-trained contextualized word representation.

Pre-tuning, on the other hand, aims to solve the discrepancy between a pre-trained contextual-
ized word representation and end tasks. Given existing pre-trained models aim to cover a wide
range of end-tasks, the learned representation is not optimal for each end task. The proposed
pre-tuning task mimics the formulation of an end task with only unlabeled data, which shortens
the gap between a pre-trained model and an end task.

Further, in Chapter 5| I move towards graph representation learning. A graph is a natural
way for sharable and interpretable knowledge for humans. It can be used for both feature
augmentations and reasoning. However, the existing approach of graph representation learning
mostly assumes a static graph, where the knowledge and reasoning upon knowledge are never
changed. Lifelong learning is ideal for graph reasoning as it can keep updating graphs and
reasoning policy. Thus, we rename the term graph as a memory graph, indicating the graph is
dynamic that can maintain and update reasoning based on newly added knowledge.

Lastly, in Chapter 6} I target the usage of lifelong learning over a wide spectrum of NLP
tasks. I first describe the tasks in aspect-based sentiment analysis (ABSA). ABSA has two
important subtasks: aspect extraction and aspect sentiment classification. I first describe the
usage of domain word embeddings (from Chapter 3)) and contextualized word representation
(from Chapter [)) for aspect extraction. Later I discuss the contextualized word representation
and the lifelong training algorithm of hard examples for aspect sentiment classification. One
important issue associated aspect sentiment classification is lacking the capability to learn
hard examples that are important for the aspect-level sentiment. I address this problem by

proposing a training algorithm that focusing on hard examples. Next, I switch to a novel

problem called complementary entity recognition (CER) in my early years of Ph.D. research. I
discuss two papers that have the capability of lifelong learning to accumulate past knowledge
for entity extraction. Then, I go through the question-answering problem and focus on machine
reading comprehension (MRC) and its novel application to reviews. Lastly, I discuss the usage
of lifelong learning for conversational Al I first describe the usage of pre-tuning for a novel
problem called review conversational reading comprehension (RCRC). Then focus on lifelong
graph reasoning for conversational recommendation with dynamic graph reasoning (using the

method in Chapter [f)).

CHAPTER 2

LIFELONG CLASSIFICATION

The content of this chapter was previously published as “Open-world Learning and Applica-
tion to Product Classification” in WWW 2019 [[1]], DOL https://doi.org/10.1145/3308558.3313644,
with an arXiv version|[T] [2]].

Classification is a well-known and classic problem and the deep learning variant of the
classification task typically leverages an activation function that can compute a categorical
distribution over a set of classes (e.g., the softmax function). This type of classification is called
closed-world classification because the classes seen in testing must have appeared in training.
However, this assumption is often violated in real-world applications. For example, new topics
often emerge on a social media site and new categories of products appear daily on an e-
commerce website. A model that cannot detect new/unseen topics or products is hard to
function well in such open environments. This is where lifelong learning can be applied to the

existing classification problem.
2.1 Motivation
Generally speaking, an Al agent working in the real world must be able to recognize the

classes of things that it has seen/learned before and detect new types of things that it has not

seen and later learn to accommodate the new things. This learning paradigm is called open-world

'https:/ /arxiv.org/abs/1809.06004

learning (OWL) [[18-20]]. This is in contrast with the well-known supervised learning paradigm,
which makes the closed-world assumption. This assumption indicates that the classes in testing
must have appeared during the stage of training. With the ever-changing Web, the popularity
of Al agents such as intelligent assistants and self-driving cars that need to face the real-world
open environment with unknowns, OWL capability is crucial.

For example, with the growing number of products sold on Amazon from various sellers, it
is necessary to have an open-world model that can automatically classify a product based on
a set S of product categories. An emerging product not belonging to any existing category in
S should be classified as “unseen” rather than one from S. Further, this unseen set may keep
growing. When the number of products belonging to a new category is large enough, it should
be added to S. An open-world model should easily accommodate this addition with a low cost
of training since it is impractical to retrain the model from scratch every time a new class is
added. As another example, the very first interface for many intelligent personal assistants (IPA)
(such as Amazon Alexa, Google Assistant, and Microsoft Cortana) is to classify user utterances
into existing known domain/intent classes (e.g., Alexa’s skills) and also reject/detect utterances
from unknown domain/intent classes (that are currently not supported). But, with the support
to allow the 3rd-party to develop new skills (Apps), such IPAs must recognize new/unseen
domain or intent classes and include them in the classification model. These real-life examples

present a major challenge to the maintenance of the deployed model.

2.2 Open-world Learning

Most existing solutions to OWL are built on top of closed-world models [19-22], e.g., by
setting thresholds on the logits (before the softmax/sigmoid functions) to reject unseen classes
which tend to mix with existing seen classes. One major weakness of these models is that they
cannot easily add new /unseen classes to the existing model without re-training or incremental
training (e.g., OSDN [21]] and DOC [22]]). There are incremental learning techniques (e.g.,
iCaRL [23] and DEN [24]]) that can incrementally learn to classify new classes. However, they
miss the capability of rejecting examples from unseen classes. This section proposes to solve
OWL with both capabilities in a very different way via meta-learning.

Problem Statement: At any point in time, the learning system is aware of a set of seen classes
S ={ci,...,cn} and hasan OWL model/classifier for S but is unaware of a set of unseen classes
U = {¢m+1,. ..} (any class not in S can be in U) that the model may encounter. The goal of an
OWL model is two-fold: (1) classifying examples from classes in S and reject examples from
classes in U, and (2) when a new class ¢,,+1 (without loss of generality) is removed from U
(now U = {¢m+2,...}) and added to S (now S = {c1, ..., ¢m, cm+1}, still being able to perform
(1) without re-training the model.

Related Work

Open-world learning has been studied in text mining and computer vision (where it is called
open-set recognition) [[18-20]]. Most existing approaches focus on building a classifier that can
predict examples from unseen classes into a (hidden) rejection class. These solutions are built

on top of closed-world classification models [[19,21}22]]. Since a closed-world classifier cannot

10

detect/reject examples from unseen classes (they will be classified into some seen classes), some
thresholds are used so that these closed-world models can also be used to do rejection. However,
as discussed earlier, when incrementally learning new classes, they also need some form of
re-training, either full re-training from scratch [21}22]] or partial re-training in an incremental
manner [[19}20]].

Our work is also related to class incremental learning [[23H25]], where new classes can be
added dynamically to the classifier. For example, iCaRL [23]] maintains some exemplary data
for each class and incrementally tunes the classifier to support more new classes. However, they
also require training when each new class is added. Our work is clearly related to meta-learning
(or learning to learn) [26]], which turns the machine learning tasks themselves as training
data to train a meta-model and has been successfully applied to many machine learning tasks
lately, such as [27-31]]. Our proposed framework focuses on learning the similarity between an
example and an arbitrary class and we are not aware of any open-world learning work based on
meta-learning.

The proposed framework is also related to zero-shot learning [32H34] (in that we do not re-
quire training but need to read training examples), k-nearest neighbors (kNN) (with additional
rejection capability, metric learning [35] and learning to vote), and Siamese networks [36-38]]
(regarding processing a pair of examples). However, all those techniques work in closed-worlds
with no rejection capability. Product classification has been studied in [[39-44]], mostly in a
multi-level (or hierarchical) setting. However, given the dynamic taxonomy in nature, product

classification has not been studied as an open-world learning problem.

11

2.3 L2AC Framework

I summarize two main challenges involved in open-world learning: (1) how to enable the
model to classify examples of seen classes into their respective classes and also detect/reject
examples of unseen classes, and (2) how to incrementally include the new/unseen classes when
they have enough data without re-training the model. As discussed above, existing methods
either focus on the challenge (1) or (2), but not both.

To tackle both challenges in an unified approach, I proposes an entirely new OWL method
based on meta-learning [26-30]]. The method is called Learning to Accept Classes (L2AC). The
key novelty of L2AC is that the model maintains a dynamic set S of seen classes that allow new
classes to be added or deleted with no model re-training needed. Each class is represented by
a small set of training examples. In testing, the meta-classifier only uses the examples of the
maintained seen classes (including the newly added classes) on-the-fly for classification and
rejection. That is, the learned meta-classifier classifies or rejects a test example by comparing
it with its nearest examples from each seen class in S. Based on the comparison results, it
determines whether the test example belongs to a seen class or not. If the test example is not
classified as any seen class in S, it is rejected as unseen. Unlike existing OWL models, the
parameters of the meta-classifier are not trained on the set of seen classes but on a large number
of other classes which can share a large number of features with seen and unseen classes, and
thus can work with any seen classification and unseen class rejection without re-training.

We can see that the proposed method works like the nearest neighbor classifier (e.g., kNN).

However, the key difference is that we train a meta-classifier to perform both classification and

12

rejection based on a learned metric and a learned voting mechanism. Also, kNN cannot do
rejection of unseen classes.

As an overview, depicts how L2AC classifies a test example into an existing seen
class or rejects it as from an unseen class. The training process for the meta-classifier is not
shown, which is detailed in Chapter The L2AC framework has two major components: a
ranker and a meta-classifier. The ranker is used to retrieve some examples from a seen class that
are similar/near to the test example. The meta-classifier performs classification after it reads
the retrieved examples from the seen classes. The two components work together as follows.

Assume we have a set of seen classes S. Given a test example z; that may come from
either a seen class or an unseen class, the ranker finds a list of top-k nearest examples to z;

from each seen class ¢ € S, denoted as = The meta-classifier produces the probability

arxler
plc = 1|z, 24, 4|0,) that the test z; belongs to the seen class c based on ¢’s top-k examples
(most similar to z;). If none of these probabilities from the seen classes in S exceeds a threshold
(e.g., 0.5 for the sigmoid function), L2ZAC decides that z; is from an unseen class (rejection);
otherwise, it predicts z; as from the seen class with the highest probability (for classification).
We denote p(c = 1|z, 4, |2,,c) S p(c|¢, Ty,) for brevity when necessary. Note that although
we use a threshold, this is a general threshold that is not for any specific classes as in other OWL
approaches but only for the meta-classifier. More practically, this threshold is pre-determined

(not empirically tuned via experiments on hyper-parameter search) and the meta-classifier is

trained based on this fixed threshold.

13

v
-

_ e — — — -

|' _— I
| Testing Example | §¢

|(from Unseen C:Iass)I Ranker

e —_——— - - l
E
Top-k Example Indexes
for Each Seen Class

Testing Example
{from Seen Class) \ /D

Top-k
Examples

for a Seen Class 1-vs-many V I xxxx_gg\l

Matching Layer N T~
/ Probability Scores

LMemary for Seen Class Examples Meta-CIassifierJ
LL

Figure 1. Overview of the L2AC framework

As we can see, the proposed framework works like a supervised lazy learning model, such
as the k-nearest neighbor (kNN) classifier. Such a lazy learning mechanism allows the dynamic
maintenance of a set of seen classes, where an unseen class can be easily added to the seen class
set S. However, the key differences are that all the metric space, voting and rejection are learned
by the meta-classifier.

Retrieving the top-k nearest examples z,, , for a given test example z; needs a ranking model
(the ranker). We will detail a sample implementation of the ranker in Chapter[2.4|and discuss
the details of the meta-classifier in the next section.

Meta-Classifier

Meta-classifier serves as the core component of the L2AC framework. It is essentially a

binary classifier on a given seen class. It takes the top-k nearest examples (to the test example

14

x¢) of the seen class as the input and determines whether x; belongs to that seen class or not.
In this part, we first describe how to represent examples of a seen class. Then we describe
how the meta-classifier processes these examples together with the test example into an overall
probability score (via a voting mechanism) for deciding whether the test example should belong
to any seen class (classification) or not (rejection). Along with that we also describe how a joint
decision is made for open-world classification over a set of seen classes. Finally, we describe
how to train the meta-classifier via another set of meta-training classes and their examples.

Example Representation and Memory

Representation learning lives at the heart of neural networks. Following the success of
using pre-trained weights from large-scale image datasets (such as ImageNet [[12]]) as feature
encoders, we assume there is an encoder that captures almost all features for text classification.

Given an example x representing a text document (a sequence of tokens), we obtain its
continuous representation (a vector) via an encoder h = g(z), where the encoder g(-) is typically
a neural network (e.g.,, CNN or LSTM). We will detail a simple encoder implementation in
Chapter

Further, we save the continuous representations of the examples into the memory of the
meta-classifier. So later, the top-k examples can be efficiently retrieved via the index (address)
in the memory. The memory is essentially a matrix F € R"*/"|, where n means the total number
of examples from seen classes and |h| is the size of the hidden dimensions. Note that we will still
use x instead of & to refer to an example for brevity. Given the test example x;, the meta-classifier

tirst looks up the actual continuous representations z,,, of the top-k examples for a seen class.

15

Then the meta-classifier computes the similarity score between z; and each z,, (1 < i < k)
individually via a 1-vs-many matching layer as described next.

1-vs-many Matching Layer

To compute the overall probability between a test example and a seen class, a 1-vs-many
matching layer in the meta-classifier first computes the individual similarity score between
the test example and each of the top-k retrieved examples of the seen class. The 1-vs-many
matching layer essentially consists of k£ shared matching networks as indicated by big yellow
triangles in [Figure 1] We denote each matching network as f(-, -) and compute similarity scores
1., for all top-k examples ry., = f(z¢, 24,)-

The matching network first transforms the test example z; and z,, from the continuous
representation space to a single example in similarity space. We leverage two similarity func-
tions to obtain the similarity space. The first function is the absolute values of the element-wise
subtraction: fipssub(Tt, Ta;) = |7t — %q,|- The second one is the element-wise summation:
fsum (2t 2a;) = ¢ + 24,. Then the final similarity space is the concatenation of these two func-
tions’ results: fsim(%t, Ta;) = fabssub(Tt; Ta;) B foum (21, Ta,), Where & denotes the concatenation
operation. We then pass the result to two fully-connected layers (one with Relu activation) and

a sigmoid function:

ri = (2, 2q,) = O'(WQ . Relu(W1 - fsim (e, Ta;) + bl) + bg). (2.1)

16

Since there are k nearest examples, we have k similarity scores denoted as r;.;. The hyper-
parameters are detailed in Chapter

Open-world Learning via Aggregation Layer

After getting the individual similarity scores, an aggregation layer in the meta-classifier
merges the k similarity scores into a single probability indicating whether the test example x;
belongs to the seen class. By having the aggregation layer, the meta-classifier essentially has a
parametric voting mechanism so that it can learn how to vote on multiple nearest examples (rather
than a single example) from a seen class to decide the probability. As a result, the meta-classifier
can have more reliable predictions, which is studied in Chapter

We adopt a (many-to-one) BiLSTM [45]46]] as the aggregation layer. We set the output size
of BiLSTM to 2 (1 per the direction of LSTM). Later, the output hidden states of BILSTM are
connected to a dense layer followed by a sigmoid function that outputs the probability. The
computation of the meta-classifier for a given test example z; and z,,, for a seen class c can be
summarized as:

p(clzt, 2ay,) = o (W - BILSTM(r1.) + b). (2.2)

Inspired by DOC [22]], for each class c € S, we evaluate as:

reject, if max.es p(c|ze, zq,,) < 0.5;

(2.3)

<
I

arg max,cg p(c|at, Tq,,,), otherwise.

17

If none of existing seen classes S gives a probability above 0.5, we reject x; as an example from
some unseen class. Note that given a large number of classes, can be efficiently
implemented in parallel. We leave this to future work. To make L2AC an easily accessible
approach, we use 0.5 as the threshold naturally and do not introduce an extra hyper-parameter
that needs to be artificially tuned. Note also that as discussed earlier, the seen class set S and its
examples can be dynamically maintained (e.g., one can add to or remove from S any class). So
the meta-classifier simply performs open-world classification over the current seen class set S.

Training of Meta-Classifier

Since the meta-classifier is a general classifier that is supposed to work for any class, training

the meta-classifier pg(c|x¢, z requires examples from another set M of classes called

arklze,c)
meta-training classes.

Alarge | M| is desirable so that meta-training classes have good coverage of features for seen
and unseen classes in testing, which is in a similar spirit to few-shot learning [47]]. We also
enforce (SUU)NM = @ in Chapter so that all seen and unseen classes are unknown to the
meta-classifier.

Next, we formulate the meta-training examples from)M, which consist of a set of pairs (with
positive and negative labels). The first component of a pair is a training document z, from a
class in M, and the second component is a sequence of top-k nearest examples also from a class
in M.

We assume every example (document) of a class in M can be a training document z,.

Assuming z, is from class ¢ € M, a positive training pair is (¢, T4, ., |z,,c), Where x4, |, . are

18

top-k examples from class c that are most similar or nearest to x,; a negative training pair is
(Tgs Ty p|zg,r), Where ¢ € M, ¢ # ¢ and z,, |, » are top-k examples from class ¢’ that are
nearest to z,. We call ¢’ one negative class for z,. Since there are many negative classes ¢’ € M\c
for z,, we keep top-n negative classes for each training example z,. That is, each z, has one
positive training pair and n negative training pairs. To balance the classes in the training loss,
we give a weight ratio n : 1 for a positive and a negative pair, respectively.

Training the meta-classifier also requires validation classes for model selection (during
optimization) and hyper-parameters (k and n) tuning (as detailed in Experiments). Since the
classes tested by the meta-classifier are unexpected, we further use a set of validation classes

M'NM =@ (also M' N (SUU) = &), to ensure generalization on the seen/unseen classes.

2.4 Results

We want to address the following Research Questions (RQs) in experiments: RQ1 - what is
the performance of the meta-classifier with different settings of top-k examples and n negative
classes? RQ2 - How is the performance of L2ZAC compared with state-of-the-art text classifiers
for open-world classification (which all need some forms of re-training).

Dataset

We leverage the huge amount of product descriptions from the Amazon Datasets [48]] and
form the OWL task as the following. Amazon.com maintains a tree-structured category system.
We consider each path to a leaf node as a class. We removed products belonging to multiple
classes to ensure the classes have no overlapping. This gives us 2598 classes, where 1018 classes

have more than 400 products per class. We randomly choose 1000 classes from the 1018 classes

19

with 400 randomly selected products per class as the encoder training set; 100 classes with 150
products per class are used as the (classification) test set, including both seen classes S and
unseen classes U; another 1000 classes with 100 products per class are used as the meta-training
set (including both M and M"). For the 100 classes of the test set, we further hold out 50
examples (products) from each class as test examples. The rest 100 examples are training data
for baselines, or seen classes examples to be read by the meta-classifier (which only reads those
examples but is not trained on those examples). To train the meta-classifier, we further split the
meta-training set as 900 meta-training classes (M) and 100 validation classes (M'). For all datasets,
we use NLTK(https://www.nltk.org/) as the tokenizer, and regard all words that appear
more than once as the vocabulary. This gives us 17,526 unique words. We take the maximum
length of each document as 120 since the majority of product descriptions are under 100 words.

Ranker

We use cosine similarity to rank the examples in each seen (or meta-training) class for a
given test (or meta-training) example x; (or z4)(Given many examples to process, the ranker
can be implemented in a fully parallel fashion to speed up the processing, which we leave to

future work as it is beyond the scope of this work.). We apply cosine directly on the hidden

hsha,

representations of the encoder as cosine(h., hq,) = Tlalhe T2’

where * can be either t or g, | - |2
denotes the /-2 norm and - denotes the dot product of two examples.
Training the meta-classifier also requires a ranking of negative classes for a meta-training

example z,, as discussed in Chapter We first compute a class vector for each meta-training

class. This class vector is averaged over all encoded representations of examples of that class.

https://www.nltk.org/

20

Then we rank classes by computing cosine similarity between the class vectors and the meta-
training example x,. The top-n (defined in the previous section) classes are selected as negative
classes for x,. We explore different settings of n later.

Evaluation

Similar to [22]], we choose 25, 50, and 75 classes from the (classification) test set of 100
classes as the seen classes for three (3) experiments. Note that each class in the test set has 150
examples, where 100 examples are for the training of baseline methods or used as seen class
examples for L2AC and 50 examples are for testing both the baselines and L2AC. We evaluate
the results on all 100 classes for those three (3) experiments. For example, when there are 25
seen classes, testing examples from the rest 75 unseen classes are taken as from one rejection
class crej, as in [22].

Besides using macro F1 as used in [22], we also use weighted F1 score overall classes

(including seen and the rejection class) as the evaluation metric. Weighted F1 is computed as

N,
< -Fl, (2.4)

c€SU{crej} ZCGSU{Cre}'} Ne

where N, is the total number of examples for class c. F1. is the F1 score of that class. We use
this metric because macro F1 has a bias on the importance of rejection when the seen class
set is small (macro F1 treats the rejection class as equally important as one seen class). For
example, when the number of seen classes is small, the rejection class should have a higher

weight as a classifier on a small seen set is more likely challenged by examples from unseen

21

classes. Further, to stabilize the results, we train all models with 10 different initializations and
average the results.

Hyper-parameters

For simplicity, we leverage a BILSTM [[45,46]] on top of a GloVe [49] embedding (840b.300d)
layer as the encoder (other choices are also possible). Similar to feature encoders trained from
ImageNet [[12]], we train classification over the encoder training set with 1000 classes and use
5% of the encoding training data as encoder validation data. We apply dropout rates of 0.5
to all layers of the encoder. The classification accuracy of the encoder on validation data is
81.76%. The matching network (the shared network within the 1-vs-many matching layer) has
two fully-connected layers, where the size of the hidden dimension is 512 with a dropout rate
of 0.5. We set the batch size of meta-training as 256.

To answer RQ1 on two hyper-parameters k£ (number of nearest examples from each class)
and n (number of negative classes), we use the 100 validation classes to determine these two
hyper-parameters. We formulate the validation data similar to the testing experiment on 50
seen classes. For validation, we select 50 examples for each class. The rest 50 examples from
each validation seen class are used to find top-k nearest examples. We perform grid search of
averaged weighted F1 over 10 runs for k € {1,3,5,10,15,20} and n € {1,3,5,9}, where k = 5
and n = 9 reach a reasonably well weighted F1 (87.60%). Further increasing n gives limited
improvements (e.g., 87.69% for n = 14 and 87.68% for n = 19, when k = 5). But a large n
significantly increases the number of training examples (e.g., n = 14 ended with more than 1

million meta-training examples) and thus training time. So we decide to select k = 5and n =9

22

Methods S| = 25 (WF1) | |S] = 25 (MF1) | |S] = 50 (WF1) | |S| = 50 (MF1) | |S| =75 (WF1) | |S| = 75 (MF1)
DOC-CNN 53.25(1.0) 55.04(0.39) 70.57(0.46) 76.91(0.27) 81.16(0.47) 86.96(0.2)
DOC-LSTM 57.87(1.26) 57.6(1.18) 69.49(1.58) 75.68(0.78) 77.74(0.48) 84.48(0.33)
DOC-Enc 82.92(0.37) 75.09(0.33) 82.53(0.25) 84.34(0.23) 83.84(0.36) 88.33(0.19)
DOC-CNN-Gaus 85.72(0.43) 76.79(0.41) 83.33(0.31) 83.75(0.26) 84.21(0.12) 87.86(0.21)
DOC-LSTM-Gaus 80.31(1.73) 70.49(1.55) 77.49(0.74) 79.45(0.59) 80.65(0.51) 85.46(0.25)
DOC-Enc-Gaus 88.54(0.22) 80.77(0.22) 84.75(0.21) 85.26(0.2) 83.85(0.37) 87.92(0.22)
L2AC-n9-NoVote 91.1(0.17) 82.51(0.39) 84.91(0.16) 83.71(0.29) 81.41(0.54) 85.03(0.62)
L2AC-n9-Vote3 91.54(0.55) 82.42(1.29) 84.57(0.61) 82.7(0.95) 80.18(1.03) 83.52(1.14)
L2AC-k5-n9-AbsSub | 92.37(0.28) 84.8(0.54) 85.61(0.36) 84.54(0.42) 83.18(0.38) 86.38(0.36)
L2AC-k5-n9-Sum 83.95(0.52) 70.85(0.91) 76.09(0.36) 75.25(0.42) 74.12(0.51) 78.75(0.57)
L2AC-k5-n9 93.07(0.33) 86.48(0.54) 86.5(0.46) 85.99(0.33) 84.68(0.27) 88.05(0.18)
L2AC-k5-n14 93.19(0.19) 86.91(0.33) 86.63(0.28) 86.42(0.2) 85.32(0.35) 88.72(0.23)
L2AC-k5-n19 93.15(0.24) 86.9(0.45) 86.62(0.49) 86.48(0.43) 85.36(0.66) 88.79(0.52)

TABLE I. Scores for OWL

for all ablation studies below. Note the validation classes are also used to compute (formulated
in a way similar to the meta-training classes) the validation loss for selecting the best model
during Adam [50]] optimization.

Compared Methods

DOC [22] is a state-of-the-art baseline for text classification in the open-world learning (with
rejection) setting. It has been shown in [22]] that DOC significantly outperforms the methods
CL-cbsSVM and cbsSVM in [20] and OpenMax in [21]]. OpenMax is a state-of-the-art method
for image classification with rejection capability. To answer RQ2, we use DOC and its variants to

show that the proposed method has comparable performance with the best open-world learning

23

92 1 92 4

7

90 1 90 1

88 -

o)
©
s

*

86

Weighted-F1
Weighted-F1

|

84 1

84 1

82 A

—A— 25 Seen cls —A— 25 Seen cls

82 —— 50 Seencls 80 - —— 50 Seencls

—¥— 75 Seencls —¥— 75 Seen cls

1 3 5 10 15 20 1 3 5 9 14 19
Top-k Neg-n

Figure 2. Weighted F1 scores of k£ and n for OWL

method with re-training. Note that DOC cannot incrementally add new classes. So we re-train
DOC over different sets of seen classes from scratch every time new classes are added to that
set.

It is thus actually unfair to compare our method with DOC because DOC is trained on the
actual training examples of all classes. However, our method still performs better in general.

We used the original code of DOC and created six (6) variants of it.

DOC-CNN: CNN implementation as in the original DOC paper without Gaussian fitting (using
0.5 as the threshold for rejection). It operates directly on a sequence of tokens.

DOC-LSTM: a variant of DOC-CNN, where we replace CNN with BiLSTM to encode the input
sequence for a fair comparison. BiLSTM is trainable and the input is still a sequence of tokens.

DOC-Enc: this is adapted from DOC-CNN, where we remove the feature learning part of

24

DOC-CNN and feed the hidden representation from our encoder directly to the fully-connected
layers of DOC for a fair comparison with L2AC.

DOC-*-Gaus: applying Gaussian fitting proposed in [22]] on the above three baselines, we have
3 more DOC baselines. Note that these 3 baselines have the same models as above respectively.
They only differ in the thresholds used for rejection. Gaussian fitting in [22] is used to set a
good threshold for rejection. We use these baselines to show that the Gaussian fitted threshold
improves the rejection performance of DOC significantly but may lower the performance of

seen class classification. The original DOC is DOC-CNN-Gaus here.

The following baselines are variants of L2AC.

L2AC-n9-NoVote: this is a variant of the proposed L2AC that only takes one most similar
example (from each class), i.e., k = 1, with one positive class paired with n = 9 negative classes
in meta-training (n = 9 has the best performance as indicated in answering RQ1 above). We use
this baseline to show that the performance of taking only one sample may not be good enough.
This baseline does not have/need the aggregation layer and only has a single matching network
in the 1-vs-many layer.

L2AC-n9-Vote3: this baseline uses the same model as L2ZAC-n9-NoVote. But during the evalua-
tion, we allow a non-parametric voting process (like kNN) for prediction. We report the results
of voting over top-3 examples per seen class as it has the best result (ranging from 3 to 10). If
the average of the top-3 similar examples in a seen class has example scores with more than 0.5,
L2AC believes the testing example belongs to that class. We use this baseline to show that the

aggregation layer is effective in learning to vote and L2AC can use more similar examples and

25

get better performance.

L2AC-£k5-n9-AbsSub/Sum: To show that using two similarity functions (fapssub(-,) and

fsum(+,)) gives better results, we further perform ablation study by using only one of those
similarity functions at a time, which gives us two baselines.
L2AC-k5-n9/14/19: this baseline has the best k¥ = 5 and n = 9 on the validation classes,
as indicated in the previous subsection. Interestingly, further increasing k£ may reduce the
performance as L2ZAC may focus on not-so-similar examples. We also report results on n = 14
or 19 to show that the results do not get much better.

Results Analysis

From Table we can see that L2ZAC outperforms DOC, especially when the number of
seen classes is small. First, fromwe can see that k = 5 and n = 9 gets reasonably good
results. Increasing k£ may harm the performance as taking in more examples from a class may
let L2AC focus on not-so-similar examples, which is bad for classification. More negative classes
give L2AC better performance in general but further increasing n beyond 9 has little impact.

Next, we can see that as we incrementally add more classes, L2ZAC gradually drops its
performance (which is reasonable due to more classes) but it still yields better performance
than DOC. Considering that L2ZAC needs no training with additional classes, while DOC needs
full training from scratch, L2AC represents a major advance. Note that testing on 25 seen
classes is more about testing a model’s rejection capability while testing on 75 seen classes is

more about the classification performance of seen class examples. From[Table I, we notice that

26

L2AC can effectively leverage multiple nearest examples and negative classes. In contrast, the
non-parametric voting of L2ZAC-n9-Vote3 over top-3 examples may not improve the performance
but introduce higher variances. Our best k = 5 indicates that the meta-classifier can dynamically
leverage multiple nearest examples instead of solely relying on a single example. As an ablation
study on the choices of similarity functions, running L2AC on a single similarity function gives
poorer results as indicated by either L2AC-£5-n9-AbsSub or L2AC-£5-n9-Sum.

DOC without encoder (DOC-CNN or DOC-LSTM) performs poorly when the number of
seen classes is small. Without Gaussian fitting, DOC’s (DOC-CNN, DOC-LSTM or DOC-Enc)
performance increases as more classes are added as seen classes. This is reasonable as DOC
is more challenged by fewer seen training classes and more unseen classes during testing. As
such, Gaussian fitting (DOC-*-Gaus) alleviates the weakness of DOC on a small number of

seen training classes.

CHAPTER 3

LIFELONG WORD REPRESENTATION LEARNING

The content of this chapter was previously published as “Lifelong Domain Word Embedding
via Meta-Learning” in [JCAI 2019 [51]] with an arXiv VersionEI [3], and partially as “Double
Embeddings and CNN-based Sequence Labeling for Aspect Extraction” in ACL 2018 [52]] (DOI:
http://dx.doi.org/10.18653/v1/P18-2094, with arXiv VersionEI [4])-

Learning word embeddings [49/53-55] has received a great deal of attention due to its success
in numerous NLP applications, e.g., named entity recognition [56]], sentiment analysis [57]]
and syntactic parsing [58]]. The key points to the great performance of word embeddings is its
capability to leverage a large-scale corpus with statistically general training examples.

There are two assumptions are often made about the effectiveness of embeddings: 1) the
training corpus is much larger than the training data of the down-stream task; 2) the domain of
the embedding corpus is well-aligned with the topic of the downstream task. Unfortunately, it
is very hard to meet both assumptions in real-world applications.

In the most common case, the in-domain corpus is of limited size so it is insufficient for
training good embeddings. As such, applications often use some general-purpose embeddings

trained from a very large general-purpose corpus (which satisfies the first assumption). This

'https://arxiv.org/abs/1805.09991

https://arxiv.org/abs/1805.04601

27

28

corpus covers almost all possible topics (for example, the GloVe embeddings [49]] uses a corpus
of 840 billion tokens, which covers almost all domains on the Web). Such embeddings have been
shown to work reasonably well in many tasks, because the meanings of a word are largely shared
across domains and tasks. However, this solution violates the second assumption mentioned
above. As a result, it often leads to sub-optimal results for domain-specific tasks, as shown in
our experiments.

One obvious explanation is that the general-purpose embeddings may not be ideal for the
domain. In some cases, they may even conflict with the meanings of the words in the end
task domain. This is because words often have multiple senses or meanings. As an example
of programming domain, if we have the word “Java”, a large-scale general-purpose corpus is
very likely to include texts about supermarkets the Java island of Indonesia or coffee shops
etc. This main domains can easily squeeze the room for representing “Java”” corpus from the
programming domains such as context words like “function”, “variable” or “Python”. As
such, the resulted embeddings have poor representation of the word “Java” for the task in
programming.

3.1 Motivation

As discussed, learning domain word embeddings of high-quality is important for many
NLP tasks. General-purpose embeddings trained on large-scale corpora are often sub-optimal
for domain-specific applications. However, on the other hand, domain-specific tasks often do

not have large in-domain corpora for training high-quality domain embeddings.

29

As such, I believe the setting of lifelong learning is ideal to resolve this issue. We can view
domains come in sequence. As a result, when performing the new domain embedding, the
system has seen many past domains. Although the corpus for the new domain may come of
limited sizes, it can try to expand the new in-domain corpus by exploiting the corpora from the
past domains.

There are existing research for cross-domain embeddings [59-61]] via transfer learning [62]].
These methods allow some in-domain words to leverage general-purpose embeddings. It is
expected to have the meanings of these words in the general-purpose embeddings do not deviate
much from the in-domain meanings of these words. However, these methods cannot improve
the embeddings of many other words with domain-specific meanings as discussed above (i.e.,
“Java”). Further, some words in the general-purpose embeddings may carry meanings that are
different from those in the domain.

This chapter is organized in two sections: we first address the problem of learning word
embeddings for a new domain in a lifelong learning setting; then we discuss how to leverage

both general and domain-specific embeddings.

3.2 Lifelong Domain Word Embeddings

We propose a novel direction for domain embedding learning by expanding the in-domain
corpus. The problem in this new direction can be stated as follows:

Problem statement: the lifelong learning setting assumes that the agent has seen n domain
corpora: Dy., = {Dy,...,D,}. When a new domain corpus D,,;; comes with a certain task,

the system is expected to learn word embeddings for the (n + 1)-th domain by utilizing useful

30

knowledge from the past n domains. The knowledge learned from the (n + 1)-th domain will
be stored for future use.

This problem definition is in the lifelong learning (LL) setting, where the new or (n + 1)-th
task is performed with the help of the knowledge accumulated over the past n tasks [63]]. The
problem does not have to be defined this way with the domains corpora coming sequentially. It
will still work as long as we have n existing domain corpora and we can use them to help with
our target domain embedding learning, i.e., the (n + 1)-th domain.

I summarize the main challenges of this problem is 2-fold. First, how to identify relevant
information from the past n domains without human help. Second how to integrate that
information into the (n + 1)-th domain corpus.

The paper focuses on a meta-learning system called L-DEM (Lifelong Domain Embedding
via Meta-learning). For the first challenge, L-DEM learns to identify similar contexts of the
word in the past domains for each word in the new domain. The context of a word means the
surrounding words of that word in a domain corpus. Thus, we call such context domain context.
To solve this challenge, we introduce a multi-domain meta-learner that can identify similar (or
relevant) domain contexts. This meta-learner can later be used in embedding learning in the
new domain.

To tackle the second challenge, L-DEM aims to augment or combine the new domain corpus
with the relevant domain contexts (knowledge). Note that those relevant contexts are the
predictions from the meta-learner. As in the previous example of the word “Java”, the meta-

learner can produce similar domain contexts from some previous domains like a programming

31

language, software engineering, operating systems, etc. In the end, these domain contexts will
be combined with the new domain corpus (for “Java”) to train the new domain embeddings.

Related Works

Learning word embeddings has been studied for a long time [53]]. Many earlier methods
used complex neural networks [[64]]. More recently, a simple and effective unsupervised model
called skip-gram (or word2vec in general) [[55}|64]] was proposed to turn a plain text corpus
into large-scale training examples without any human annotation. It uses the current word to
predict the surrounding words in a context window. The learned weights for each word are
the embedding of that word. Although there exists pre-trained embeddings [[49}/65], they are
sub-optimal for domain tasks [52,/59,/60}66|]]. However, a single domain corpus is often too small
for training high-quality embeddings [66]].

Our problem setting is related to Lifelong Learning (LL). Much of the work on LL focused
on supervised learning [|63,/67,68]]. In recent years, several LL works have also been done
for unsupervised learning, e.g., topic modeling [|69]], information extraction [[70] and graph
labeling [71]]. However, we are not aware of any existing research on using LL for word
embedding. Our method is based on meta-learning, which is very different from existing
LL methods. Our work is related to transfer learning and multi-task learning [62]]. Transfer
learning has been used in cross-domain word embeddings [[59}60]]. However, LL is different
from transfer learning or multi-task learning [63]]. Transfer learning mainly transfers common
word embeddings from general-purpose embeddings to a specific domain. We expand the

in-domain corpus with similar past domain contexts identified via meta-learning.

32

To expand the in-domain corpus, a good measure of the similarity of domain contexts of
the same word from two different domains is needed. We use meta-learning [26]] to learn such
similarities. Recently, meta-learning has been applied to various aspects of machine learning,
such as learning an optimizer [27], and learning initial weights for few-shot learning [29]]. The
way we use meta-learning is about domain-independent learning [72]]. It learns similarities of

domain contexts of the same word.

3.3 L-DEM Approach

The proposed L-DEM system is depicted in [Figure 3] Given a series of past domain corpora
Dy, = {D1,Ds,...,D,}, and a new domain corpus D, 1, the system learns to generate the
new domain embeddings by exploiting the relevant information or knowledge from the past n
domains. Firstly, a base meta-learner M is trained from the first m past domains (not shown in
the figure) (see Section 4), which is later used to predict the similarities of domain contexts of the
same words from two different domains. Secondly, assuming the system has seen n — m past
domain corpora D, +1.,, When anew domain D, 1 comes, the system produces the embeddings
of the (n + 1)-th domain as follows: (i) the base meta-learner first is adapted to the (n + 1)-th
domain as M4+ (not shown in the figure) using the (n + 1)-th domain corpus; (ii) for each
word w; in the new domain, the system uses the adapted meta-learner M, to identify every
past domain j that has the word w; with domain context similar to w;’s domain context in the
new domain (we simply call such domain context from a past domain similar domain context);
(iii) all new domain words’ similar domain contexts from all past domain corpora Dy, 1.

are aggregated. This combined set is called the relevant past knowledge and denoted by A; (iv)

33

g

‘ﬁﬂ ‘l o % rdd
> | e
1

&2 |1
gblele]s
Relevant Past Knowledge

O >oPe
\—.:{> Similarity Score

-l

Yl ./ Meta-Learner < 7 —
il Poj=-
l > KFE =T
New Domain Ne/w l;Bmain
Corpus Word2vec Embedding

Figure 3. Overview of L-DEM

a modified word2vec model that can take both domain corpus D, and the relevant past
knowledge of A is applied to produce the embeddings for the (n + 1)-th new domain. The
meta-learner here plays a central role in identifying relevant knowledge from past domains. We
propose a pairwise model as the meta-learner.

To enable the above operations, we need a knowledge base (KB), which retains the informa-
tion or knowledge obtained from the past domains. Once the (n + 1)-th domain embedding is
done, its information is also saved in the KB for future use.

Base Meta-Learner

34

This section describes the base meta-learner, which identifies similar domain contexts. The
input to the meta-learner is a pair of word feature vectors (we simply call them feature vectors)
representing the domain contexts of the same word from two similar / non-similar domains.
The output of the meta-learner is a similarity score of the two feature vectors.

Training Examples

We assume the number of past domains is large and we hold out the first m domains, where
m < n, as the domains to train and test the base meta-learner. In practice, if n is small, the
m domains can be sampled from the n domains. The m domains are split into 3 disjoint sets:
training domains, validation domains, and testing domains.

To enable the meta-learner to predict the similarity score, we need both positive examples
(from similar domains) and negative examples (from dissimilar domains). Since each past
domain can be unique (which makes it impossible to have a positive pair from two similar
domains), we sub-sample each domain corpus D; into 2 sub-corpora: D;; ~ P(D;), where
1 < j < mandk = {1,2}. This sampling process is done by drawing documents (each
domain corpus is a set of documents) uniformly at random from D;. The number of documents
that a domain sub-corpus can have is determined by a pre-defined sub-corpus (file) size. We
enforce the same file size across all sub-corpora so feature vectors from different sub-corpora
are comparable.

Next, we produce feature vectors from domain sub-corpora. Given a word w; ; ;, (instance
of the word w; in the domain sub-corpus D ;;), we choose its co-occurrence counts on a fixed

vocabulary V;,r within a context window (similar to word2vec) as the word w; ; 1’s feature vector

35

Xuw; j - The fixed vocabulary V¢ (part of the KB used later, denoted as K. V) is formed from the
top-f frequent words over m domain corpora. This is inspired by the fact that an easy-to-read
dictionary (e.g., Longman dictionary) uses only a few thousand words to explain all words
of a language. A pair of feature vectors (xu, ; ,, Xu, ,) With k # &, forms a postive example;
whereas (Xu, ; ., Xw, ,,) With j # j’ forms a negative example. Details of settings are in Section
6.

Pairwise Model of the Meta-learner

We train a small but efficient pairwise model (meta-learner) to learn a similarity score.
Making the model small but high-throughput is crucial. This is because the meta-learner is
required in a high-throughput inference setting, where every word from a new domain needs
to have context similarities with the same word from all past domains.

The proposed pairwise model has only four layers. One shared dense layer (with /;-norm)
is used to learn two continuous representations from two (discrete) input feature vectors. A
matching function is used to compute the representation of distance in a high-dimensional
space. Lastly, a fully-connected layer and a sigmoid layer together predicts the similarity score.
The model is parameterized as follows:

o (W - abs((W - Wik) (W7, tld gy g, 3.1)

’Xwi,j,kh |Xwi’]-/7k/‘l

where | - |; is the [;-norm, abs(-) computes the absolute value of element-wise subtraction (—)

as the matching function, W's and b are weights and o (-) is the sigmoid function. The majority

36

of trainable weights resides in W7, which learns continuous features from the set of f context
words. These weights can also be interpreted as a general embedding matrix over V;r. These
embeddings (not related to the final domain embeddings in Chapter help to learn the
representation of domain-specific words. As mentioned earlier, we train the base meta-learner
M over a hold-out set of m domains. We further fine-tune the base meta-learner using the new
domain corpus for its domain use, as described in the next section.

Embedding Using Past Relevant Knowledge

We now describe how to leverage the base meta-learner)/, the rest n — m past domain
corpora, and the new domain corpus D,,; to produce the new domain embeddings.

Identifying Context Words from the Past

When it comes to borrowing relevant knowledge from past domains, the first problem is what
to borrow. It is well-known that the embedding vector quality for a given word is determined by
the quality and richness of that word’s contexts. We call a word in a domain context of a given
word a context word. So for each word in the new domain corpus, we should borrow all context
words from that word’s similar domain contexts. The algorithm for borrowing knowledge is
described in Algorithm [I} which finds relevant past knowledge A (see below) based on the
knowledge base (KB) K and the new domain corpus D, 1.

The KB K has the following pieces of information: (1) the vocabulary of top- f frequent words
K.Vyyr (as discussed in Section 4.1), (2) the base meta-learner K.M (discussed in Section 4.2),
and (3) domain knowledge X, +1.,. The domain knowledge has the following information: (i)

the vocabularies V};, 1., of past n —m domains, (ii) the sets of past word domain contexts Cy, 1.5,

37

from the past n—m domains, where each C} is a set of key-value pairs (w; ;, Cu,)and Cu; ; isalist
of context words (We use list to simplify the explanation. In practice, bag-of-word representation
should be used to save space.) for word w; in the j-th domain, and (iii) the sets of feature
vectors Ep, 1., of past n —m domains, where each set £; = {x,, ;,|w; € V; and k = {1,2} }.

The relevant past knowledge A of the new domain is the aggregation of all key-value pairs
(wt, Cy,), where C,,, contains all similar domain contexts for w.

Algorithm (1] retrieves the past domain knowledge in line 1. Lines 2-4 prepare the new
domain knowledge. The BuildFeatureVector function produces a set of feature vectors as
Eny1 = {Xuw; 1, /wi € Vyjand k = {1,2}} over two sub-corpora of the new domain corpus
Dy, +1. The ScanContextWord function builds a set of key-value pairs, where the key is a word
from the new domain wj; ,,+1 and the value Cy, ,,,, is a list of context words for the word w; ,+1
from the new domain corpus. We use the same size of the context window as the word2vec
model.

Adapting Meta-learner

In line 5, AdaptMeta-learner adapts or fine-tunes the base meta-learner K.M to produce
an adapted meta-learner M, for the new domain. A positive tuning example is sampled
from two sub-corpora of the new domain (Xw, ,, 11, Xw; .41.)- A negative example is exampled
as (Xuw; 115 Xw; ;»), where m + 1 < j < n. The initial weights of M, are set as the trained

weights of the base meta-learner M.

38

Algorithm 1: Identifying Context Words from the Past

Input :a knowledge base K containing a vocabulary K.V, a base meta-learner K.M,
and domain knowledge Ky, 11:n;
a new domain corpus Dy, 1.

Output:relevant past knowledge A, where each element is a key-value pair (w, Cy,) and

Cuw, is a list of context words from all similar domain contexts for ws.

1 (Vingins Cotiins BEmgim) < Kmgiin

2 Vp41 < BuildVocab(D,,41)

3 Ch41 « ScanContextWord (D, 11, Vit1)

4 Epy1 BuildFeatureVector(Dpy1, K. Vi)

5 Mp41 < AdaptMeta-learner(IC.M, Eyy1:n, Eny1)
6 A+ 0

7 for (V;, Cy, Ej) € (Vint1:ns Crni1ins Bm1:n) do

s | O« ViNVu

9 F + {(XO,jJ,XO"nﬁ,Ll)‘U €Oand X, € Ejand Xopn41,1 € En+1}
10 S < Mp1.inference(F)

1 O + {olo € O and S[o] > 4}

12 foroe€ Odo

13 Alo].append(Cj[o])
14 end
15 end

=

6 IC7L+1 — (Vn+17 Cn+1w, En+1)

17 return A

Retriving Relevant Past Knowledge
Algorithm (1] further produces the relevant past knowledge A from line 6 through line
16. Line 6 defines the variable that stores the relevant past knowledge. Lines 7-15 produce

the relevant past knowledge A from past domains. The For block handles each past domain

39

sequentially. Line 8 computes the shared vocabulary O between the new domain and the j-th
past domain. After retrieving the sets of feature vectors from the two domains in line 9, the
adapted meta-learner uses its inference function (or model) to compute the similarity scores on
pairs of feature vectors representing the same word from two domains (line 10). The inference
function can parallelize the computing of similarity scores in a high-throughput setting (e.g.,
GPU inference) to speed up. Then we only keep the words from past domains with a score
higher than a threshold ¢ at line 11. Lines 12-14 aggregate the context words for each word in
O from past word domain contexts C;. Line 16 simply stores the new domain knowledge for
future use. Lastly, all relevant past knowledge A is returned.

Augmented Embedding Training

We now produce the new domain embeddings via a modified version of the skip-gram
model [55]] that can take both the new domain corpus D,,;1 and the relevant past knowledge A.
Given a new domain corpus D,, 1 with the vocabulary V,,11, the goal of the skip-gram model is
to learn a vector representation for each word w; € Vj,41 in that domain (we omit the subscript

n+1 in w; 41 for simplicity). Assume the domain corpus is represented as a sequence of words

D11 = (wy, ..., wr), the objective of the skip-gram model is:
T
Loy=> (Y, (logo(ul, -vu)+ D logo(—uf, -vu,))), (32)
t=1 U)CEth 'LUC/ ert

where W, is the set of words surrounding word w; in a fixed context window; N is a set of

words (negative samples) drawn from the vocabulary V;,; for the ¢-th word; v and v are word

40

vectors (or embeddings) we are trying to learn. The objective of skip-gram on data of relevant

past knowledge A is as follows:

L= Z (Z (logo(ul, - vw,) + Z log o(—ul, - vu,,))). (3.3)

(wt,Cwy)EA WeECw, W ENw,

Finally, we combine the above two objective functions as a single objective function:

ﬁan+1 = EDn+1 + ﬁ.A <3~4)

We use the default hyperparameters of skip-gram model [55]] to train the domain embeddings.

3.4 Results

Following [73]], we use the performances of down-stream tasks to evaluate the proposed
method. We do not evaluate the learned embeddings directly as in [49,55]] because domain-
specific dictionaries of similar / non-similar words are generally not available. Our down-stream
tasks are text classification that usually requires fine-grained domain embeddings.

Datasets

We use the Amazon Review datasets from [74]], which is a collection of multiple-domain
corpora. We use the second-level categories (the first level is a department) as domains. In the
end, we have a rather diverse domain collection. We aggregate all reviews under each category
to form one domain corpus. We first randomly select 56 (1) domains as the first m past domains
to train and evaluate the base meta-learner. Then from rest domains, we sample three random

collections with 50, 100 and 200 (n — m) domains corpora, respectively, as three settings of

41

past domains. These collections are used to test the performance of different numbers of past
domains. Due to the limited computing resource, we limit each past domain corpus up to 60
MB. We further randomly selected 3 rest domains (Computer Components (CC), Kitchen Storage
and Organization (KSO) and Cats Supply (CS)) as new domains for down-stream tasks. These
give us three text classification problems, which have 13, 17, and 11 classes respectively. The
tasks are topic-based classification rather than sentiment classification. Since the past domains
have different sizes (many have much less than 60 MB) and many real-world applications do
not have big in-domain corpora, we set the size of the new domain corpora to be 10 MB and 30
MB to test the performance in the two settings.

Evaluation of Meta-Learner

We select the top f = 5000 words from all 56 domains’ corpora as word features. Then we
split the 56 domains into 39 domains for training, 5 domains for validation and 12 domains for
testing. So the validation and testing domain corpora have no overlap with the training domain
corpora. We sample 2 sub-corpora for each domain and limit the size of each sub-corpus to 10
MB. We randomly select 2000, 500, 1000 words from each training domain, validation domain,
and testing domain, respectively, and ignore words with all-zero feature vectors to obtain
pairwise examples. The testing 1000 words are randomly drawn and they have 30 overlapping
words with the training 2000 words, but not from the same domains. So in most cases, it’s
testing the unseen words in unseen domains. We set the size of a context window to be 5 when
building feature vectors. This ends up with 80484 training examples, 6234 validation examples,

and 20740 test examples. For comparison, we train an SVM model as a baseline. The F1-score

42

CC | KSO | CS

10MB || 0.832 | 0.841 | 0.856

30MB || 0.847 | 0.859 | 0.876

TABLE II

Fl-score for L-DEM Meta-Learner

(for positive pairs) of SVM is 0.70, but the Fl-score of the proposed base meta-learner model is
0.81.

To adapt the base meta-learner for each new domain. We sample 3000 words from each
new domain, which results in slightly fewer than 6000 examples after ignoring all-zero feature
vectors. We select 3500 examples for training, 500 examples for validation and 2000 examples for
testing. The Fl-scores on the test data are shown in Table 1. Finally, we empirically set 6 = 0.7
as the threshold on the similarity score in Algorithm 1} which roughly doubled the number of
training examples from the new domain corpus. The size of the context window for building
domain context is set to 5, which is the same as word2vec.

Baselines and Our System

Unless explicitly mentioned, the following embeddings have 300 dimensions, which are the
same size as many pre-trained embeddings (GloVec.840B [49]] or fastText English Wiki [|65]]).

No Embedding (NE): This baseline does not have any pre-trained word embeddings. The

CC(13) | KSO(17) | CS(11)
NE 0.596 0.653 0.696
fastText 0.705 0.717 0.809
GoogleNews 0.76 0.722 0.814
GloVe.Twitter.27B 0.696 0.707 0.80
GloVe.6B 0.701 0.725 0.823
GloVe.840B 0.803 0.758 0.855
ND 10M 0.77 0.749 0.85
ND 30M 0.794 0.766 0.87
200D + ND 30M 0.795 0.765 0.859
L-DENP 200D + ND 30M || 0.806 0.762 0.870
L-DEM 200D + ND 10M 0.791 0.761 0.872
L-DEM 50D + ND 30M 0.795 0.768 0.868
L-DEM 100D + ND 30M 0.803 0.773 0.874
L-DEM 200D + ND 30M 0.809 0.775 0.883
TABLE III

Accuracy of L-DEM

43

44

system randomly initializes the word vectors and train the word embedding layer during the
training process of the downstream task.

fastText: This baseline uses the lower-cased embeddings pre-trained from English Wikipedia
using fastText [[65]]. We lower the cases of all corpora of down-stream tasks to match the words
in this embedding.

GoogleNews: This baseline uses the pre-trained embeddings from word2vec (https://code.
google.com/archive/p/word2vec/|based on part of the Google News dataset, which con-
tains 100 billion words.

GloVe.Twitter.27B: This embedding set is pre-trained using GloVe (https://nlp.stanford.
edu/projects/glove/) based on Tweets of 27 billion words. This embedding is lower-cased
and has 200 dimensions.

GloVe.6B: This is the lower-cased embeddings pre-trained from Wikipedia and Gigaword 5,
which has 6 billion tokens.

GloVe.840B: This is the cased embeddings pre-trained from the Common Crawl corpus, which
has 840 billion tokens. This corpus contains almost all web pages available before 2015. We
show that the embeddings produced from this very general corpus are sub-optimal for our
domain-specific tasks.

New Domain 10M (ND 10M): This is a baseline embedding pre-trained only from the new
domain 10 MB corpus. We show that the embeddings trained from a small corpus alone are not
good enough.

New Domain 30M (ND 30M): This is a baseline embedding pre-trained only from the new

https://code.google.com/archive/p/word2vec/
https://code.google.com/archive/p/word2vec/
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/

45

domain 30 MB corpus. We increase the size of the new domain corpus to 30 MB to see the effect
of the corpus size.
200 Domains + New Domain 30M (200D + ND 30M): The embedding set trained by combin-
ing the corpora from all past 200 domains and the new domain. We use this baseline to show
that using all past domain corpora may reduce the performance of the down-stream tasks.
L-DENP 200D + ND 30M: This is a Non-Parametric variant of the proposed method. We use
TFIDF as the representation for a sentence in past domains and use cosine as a non-parametric
function to compute the similarity with the TFIDF vector built from the new domain corpus.
We report the results on a similarity threshold of 0.18, which is the best threshold ranging from
0.15 to 0.20.
L-DEM Past Domains + New Domain (L-DEM [P]D + ND [X]M): These are different vari-
ations of our proposed method L-DEM. For example, “L-DEM 200D + ND 30M” denotes the
embeddings trained from a 30MB new domain corpus and the relevant past knowledge from
200 past domains.

Down-stream Tasks and Experiment Results

As indicated earlier, we use classification tasks from 3 new domains (“Computer Compo-
nents”, “Cats Supply” and “Kitchen Storage and Organization”) to evaluate the embeddings
produced by our system and compare them with those of baselines. These 3 new domains have
13,17 and 11 classes (or product types), respectively. For each task, we randomly draw 1500
reviews from each class to make up the experiment data, from which we keep 10000 reviews

for testing (to make the result more accurate) and split the rest 7:1 for training and validation,

46

respectively. All tasks are evaluated on accuracy. We train and evaluate each task on each
system 10 times (with different initializations) and average the results.

For each task, we use an embedding layer to store the pre-trained embeddings. We freeze
the embedding layer during training, so the result is less affected by the rest of the model
and the training data. To make the performance of all tasks consistent, we apply the same
Bi-LSTM model [45] on top of the embedding layer to learn task-specific features from different
embeddings. The input size of Bi-LSTM is the same as the embedding layer and the output
size is 128. All tasks use many-to-one Bi-LSTMs for classification purposes. In the end, a fully-
connected layer and a softmax layer are applied after Bi-LSTM, with the output size specific to
the number of classes of each task. We apply a dropout rate of 0.5 on all layers except the last
one and use Adam [50] as the optimizer.

Table 2 shows the main results. We observe that the proposed method L-DEM 200D + ND
30M performs the best. The difference in the numbers of past domains indicates more past
domains give better results. The GloVe.840B trained on 840 billion tokens does not perform as
well as embeddings produced by our method. GloVe.840B’s performance on the CC domain
is close to our method indicating mixed-domain embeddings for this domain are not bad and
this domain is more general. Combining all past domain corpora with the new domain corpus
(200D + ND 30M) makes the result worse than not using the past domains at all (ND 30M).
This is because the diverse 200 domains are not similar to the new domains. The L-DENP 200D
+ ND 30M performs poorly indicating the proposed parametric meta-learner is useful, except

the CC domain which is more general.

47

3.5 Fusion of General and Domain Word Embeddings

The performance gain of domain word embeddings comes from the dense corpus focusing
on a particular domain and the feature space dedicated to that particular domain. Although
domain word embeddings are good at domain-specific features, many NLP tasks also require
good features for general words that are unlikely to be affected by a particular domain too, such
as those stop words. As a result, those words are unlikely to be trained well due to the limited
corpus of a particular domain, whereas general word embeddings have such an advantage by
aggregating corpora from multiple domains together. To the end, for a particular end task, how
to leverage the benefits from both types of embeddings is essential for the success of an end

task.

3.5.1 - Approach

One simple way is to concatenate the general word embeddings and domain-specific word
embeddings. Assume the input is a sequence of word indexes x = (1, ..., ;). This sequence
gets its two corresponding continuous representations x¢ and x? via two separate embedding
layers (or embedding matrices) W9 and W¢. The first embedding matrix W9 represents general
embeddings pre-trained from a very large general-purpose corpus (usually hundreds of billions
of tokens). The second embedding matrix W9 represents domain embeddings pre-trained
from a small in-domain corpus, where the scope of the domain is exactly the domain that the
training/testing data belongs to.

We do not allow these two embedding layers trainable because small training examples may

lead to many unseen words in test data. If embeddings are tunable, the features for seen words’

48

CC(13) | KSO(17) | CS(11)

GloVe.840B&ND 30M 0.811 0.78 0.885

GloVe.840B&L-DEM 200D+30M 0.817 0.783 0.887

TABLE IV

Concatenating Word Embeddings

embeddings will be adjusted (e.g., forgetting useless features and infusing new features that
are related to the labels of the training examples). But the embeddings of unseen words from
test data still have the old features that may be mistakenly extracted by future layers. As such,
we concatenate two embeddings x(!) = x9 @ x? and feed the hidden states to the rest layers of

the network for the end task.

3.5.2 —Result

We conducted experiments on two settings, one is in the same setting as for lifelong domain
embeddings [51]]; the other is for a sequence labeling task in sentiment analysis. We detail the
architecture for aspect extraction later in Chapter

L-DEM for Text Classification

We evaluate two methods: (1) GloVe.840B&ND 30M, which concatenates new domain only
embeddings with GloVe.840B; (2) GloVe.840B&L-DEM 200D + ND 30M, which concatenates

our proposed embeddings with GloVe.840B. The results of concatenating general and domain-

49

specific embeddings are shown in Chapter Our method boosts the domain-specific parts
of the embeddings further. Note the ideal LL setting is to perform L-DEM on all domain corpora

of the pre-trained embeddings.).

CHAPTER 4

LIFELONG CONTEXTUALIZED REPRESENTATION LEARNING

The part of this chapter was previously published as “BERT Post-Training for Review
Reading Comprehension and Aspect-based Sentiment Analysis” in NAACL 2019 [j5]], DOI:
http://dx.doi.org/10.18653 /v1/N19-1242, with an arXiv VersionEI [[75], together with an arXiv
paper “Review Conversational Reading Comprehension”E] [6l.

Beyond word embeddings that only carry independent word-level features, the meaning
(thus features or representations) of a word is also heavily affected by its contexts. As a result,
a good representation for an end task may not be only from a word embedding layer, but also
from an encoder E(x) that can consume a piece of text and provide representations for each
word based on its nearby context in that sequence. To learn such an encoder E(x), researchers
need to define a general proxy task that is close to almost all end tasks so to learn features for
those end tasks. The proxy task also needs to be self-supervised as the training corpora are
unlabeled and can be as large as the corpus for word embeddings.

Language Model is a natural choice for such a proxy task, which aims to generate the rest
texts given the input is corrupted from a piece of text. Recent years of representation learning for

NLP has a large focus on language models from large-scale unlabeled corpora, such as Elmo [[14]],

'https://arxiv.org/1904.02232

2h’ctps://arxiv.org/abs/1902.00821

50

51

GPT/GPT2 [[76,77]], BERT [15]], XLNet [78]], RoBERTa [[79]], ALBERT [80]], ELECTRA [81]]. The
idea behind the progress is that even though the word embedding [[49,55]] layer (in a typical
neural network for NLP) is trained from large-scale corpora, training a wide variety of neural
architectures that encode contextual representations only from the limited supervised data on
end tasks is insufficient.

BERT [[15] is one of the key innovations in the recent progress. The magic behind BERT is
the proposed proxy task of masked language model(MLM), which does not aim to generate the
next token from the previous token but randomly masking out a portion of tokens from a whole
text and task the model to predict. The key benefit of MLM is that it enables a more complex
reasoning process of learning and reasoning from the corrupted (masked) input that not only
learns from a unidirectional context (e.g., left side of the current token) but from bidirectional
contexts. This naturally ended with more deeper reasoning and general features from contexts

rather than hard-coded features from a particular piece of text.

4.1 Motivation

Although BERT aims to learn contextualized representations across a wide range of NLP
tasks (to be task-agnostic), we notice that using BERT alone still leaves the domain challenges
unsolved. This is because BERT’s training corpus is Wikipedia articles, which has almost no
understanding of the text on a particular domain. As such, BERT only learns features for text
in general but largely ignores knowledge for a particular domain. Also, since BERT aims to
learn features for almost all end tasks, it introduces another challenge of task-awareness, called

the task challenge. This challenge arises when the task-agnostic BERT meets the limited number

52

Fine-tuning

Pre-tuning Task 1

Pre-tuning
Pre-training Post-training

Pre-tuning

Figure 4. Lifelong stages of training

of fine-tuning examples in end tasks, which is insufficient to fine-tune BERT to ensure full
task-awareness of the system. For example, the end tasks from the original BERT paper typically
use tens of thousands of examples to ensure that the system is task-aware. Inspired by these

observations, I introduce a lifelong learning style of training.

4.2 Lifelong Training

To address the challenges, I propose a lifelong learning style training by introducing extra
training tasks within the well-known pre-training and fine-tuning framework. I explore two (2)

training task (or step) into the existing framework: post-training and pre-tuning, as depicted in

O 4
H

53

Post-training aims to adapt pre-trained LM from general text to domain-specific text, whereas

pre-tuning aims to adapt pre-trained LM to a particular task.

421 - Post-training of Language Models

I propose a novel joint post-training technique that takes BERT’s pre-trained weights as
the initialization (Due to limited computation resources, it is impractical for us to pre-train
BERT directly on reviews from scratch [[15].) for basic language understanding and adapts
BERT with domain knowledge. I also incorporate tasks from a supervised learning corpus
from a machine reading comprehension task (MRC) that carries high-quality QA knowledge
annotated by humans. Results show that this task further improves the learned representation.
As a result, post-training leverages knowledge from two sources: unsupervised domain reviews
and supervised (yet out-of-domain) MRC data.

BERT has two parameter intensive settings:

BERTgasE: 12 layers, 768 hidden dimensions and 12 attention heads (in transformer) with the
total number of parameters, 110M;

BERTARGE: 24 layers, 1024 hidden dimensions and 16 attention heads (in transformer) with
the total number of parameters, 340M.

To post-train on domain knowledge, we use two novel objectives: masked language model
(MLM) and next sentence (The BERT paper refers a sentence as a piece of text with one or more
natural language sentences.) prediction (NSP). MLM predicts randomly masked words from
the input. NSP is a binary classification task that detects whether two sides of the input are from

the same document. A training example is formulated as ([CLS],z1.j, [SEP],Zj4+1:n, [SEP]),

54

where z1., is a document (with randomly masked words) split into two sides z1.; and 1.5,
and [SEP] separates those two.

MLM is an important task to inject domain knowledge and reduce the bias of knowledge
of Wikipedia. For example, in the Wikipedia domain, BERT may learn to guess the [MASK] in
“The [MASK] is bright” as “sun”. But in a laptop domain, it could be “screen”. Further, if the

[MASK]ed word is an opinion word in “The touch screen is [MASK]”, this objective challenges
BERT to learn the representations for fine-grained opinion words like “great” or “terrible” for
[MASK]. The objective of NSP further encourages BERT to learn contextual representation
beyond word-level. In the context of reviews, NSP formulates a task of “artificial review predic-
tion”, where a negative example is an original review but a positive example is a synthesized fake
review by combining two different reviews. This task exploits the rich relationships between
two sides in the input, such as whether two sides of texts have the same rating or not (when two
reviews with different ratings are combined as a positive example), or whether two sides are
targeting the same product or not (when two reviews from different products are merged as a
positive example). In summary, these two objectives encourage to learn a myriad of fine-grained
features for potential end tasks.

We let the loss function of MLM be Lym and the loss function of next text piece prediction
be Lnsp, the total loss of the domain knowledge post-training is Lpk = Lmrm + L£Nsp-

To post-train BERT on general QA knowledge, we use SQuAD (1.1), which is a popular

large-scale MRC dataset.

55

We let the loss on SQuUAD be Lyrc, which is in a similar setting as the loss Lrrc for RRC.
As a result, the joint loss of post-training is defined as £ = Lpk + Lmrc.

One major issue of post-training on such a loss is the prohibitive cost of GPU memory usage.
Instead of updating parameters over a batch, we divide a batch into multiple sub-batches and
accumulate gradients on those sub-batches before parameter updates. This allows for a smaller

sub-batch to be consumed in each iteration.
Algorithm 2: Post-training Algorithm

Input: Dpk: one batch of DK data;

Dwmre one batch of MRC data;

u: number of sub-batches.

1 V@C «~0
2 {Dpk,1, -+ Pk} + Split(Dpk, u)
3 {DMmrc,1, - - - s DMrC,u} = Split(Dwvre, v)

4 forie{l,...,u} do
5 Lopartal link('DDKJ)Jruﬁ\mc(DMRc,w,)
6 VoL < VoL + BackProp(Lpartial)

7 end

8 © < ParameterUpdates(VeL)

Algorithm 1 illustrates one training step. It assumes to take one batch of data about domain
knowledge (DK) Dpk and one batch of MRC training data Dyrc to update the parameters © of
BERT. In line 1, it first initializes the gradients Vg of all trainable weights to 0. Then in lines 2
and 3, each batch of training data is split into u sub-batches. Lines 4-7 spread the calculation of
gradients to u iterations, where the data from each iteration of sub-batches are supposed to be
able to fit into GPU memory. In line 5, it computes the partial joint 1oss Lparial 0f two sub-batches

Dpk i and Dyre,; from the i-th iteration through forward pass. Note that the summation of two

56

sub-batches’ losses is divided by u, which compensates the scale change introduced by gradient
accumulation in line 6. Line 6 accumulates the gradients produced by backpropagation from
the partial joint loss. To this end, accumulating the gradients u times is equivalent to computing
the gradients on the whole batch once. But the sub-batches and their intermediate hidden
representations during the i-th forward pass can be discarded to save memory space. Only the
gradients Vg are kept throughout all iterations and used to update parameters (based on the
chosen optimizer) in line 8.

Setting for End Tasks

We aim for 3 review-based tasks to evaluate the post-trained BERT: review reading compre-
hension (RRC), aspect extraction (AE) and aspect sentiment classification (ASC). The details of
these 3 tasks are introduced in[6] Here we only discuss the formulation of these 3 tasks under
the setting of BERT. The overall illustrations of the formulation are depicted in[Figure 5

Following the success of SQuUAD [[82]] and BERT’s SQuAD implementation, we design review
reading comprehension as follows. Given a question ¢ = (q1, . . ., ¢,) asking for an answer from a
review d = (dy, . .., dy), we formulate the inputasa sequence x = ([CLS],q1, ..., ¢m, [SEP],d1,

.,dp, [SEP]), where [CLS] is a dummy token not used for RRC and [SEP] is intended to sep-

arate g and d. Let BERT(-) be the pre-trained (or post-trained as in the next section) BERT model.
We first obtain the hidden representation as h = BERT(z) € R™*/*/, where || is the length of
the input sequence and ry, is the size of the hidden dimension. Then the hidden representation
is passed to two separate dense layers followed by softmax functions: /; = softmax(W; - h + b1)

and [y = softmax(Ws - h + by), where Wi, Wy € R™ and by,b2 € R. The softmax is applied

Start Pointer End Pointer

h[CLS] hg1 hgm h[SEP] hd1 hdn h[SEP]

LEE B () T)

) Review Reading Comprehension

hm

(51) e e 8

2) Aspect Extraction

Positjive/Negative/Neutral

h[CLS] hg1t hgm h[SEP] hd1 hdn h[SEP]

BERT

[ESI I I) I

3) Aspect Sentiment Classification

Figure 5. BERT for end tasks

57

58

along the dimension of the sequence. The output is a span across the positions in d (after the
[SEP] token of the input), indicated by two pointers (indexes) s and e computed from /1 and l5:
§ = arg MaXgy ..., <s<|e| (1) and e = argmax .|, (l2), where Idx sz is the position of token
[SEP] (so the pointers will never point to tokens from the question). As such, the final answer
will always be a valid text span from the review as a = (ds, . . ., de).
Training the RRC model involves minimizing the loss that is designed as the averaged cross
entropy on the two pointers:

> log11(s) + > loglsl(e)
7)

LRrC = —

where [(s) and I(e) are one-hot vectors representing the ground truths of pointers.

As a core task in ABSA, aspect extraction (AE) aims to find aspects that reviewers have
expressed opinions on [83]]. In supervised settings, it is typically modeled as a task of sequence
labeling. In such a task, each token from a sentence is labeled as one of {Begin, Inside, Outside}.
A continuous chunk of tokens that are labeled as one B and followed by zero or more Is forms
an aspect. The input sentence with m words is constructed as © = ([CLS], z1,...,Zm, [SEP]).
After h = BERT(z), we apply a dense layer and a softmax for each position of the sequence:
I3 = softmax (W3 - h + b3), where W3 € R3*"» and b3 € R? (3 is the total number of labels (BIO)).
Softmax is applied along the dimension of labels for each position and I3 € [0, 1]**/#l. The
labels are predicted as taking argmax function at each position of /3 and the loss function is the

averaged cross entropy across all positions of a sequence.

59

As a subsequent job of AE, aspect sentiment classification (ASC) aims to find the sentiment
polarity expressed on an aspect. There are two inputs to ASC: an aspect and a review sentence
mentioning that aspect.

Letz = ([CLS],q1,---,4m, [SEP],d1,...,dyn, [SEP]), where ¢, ..., gy, now is an aspect
(with m tokens) and dy, . . ., d,, is a review sentence containing that aspect. After h = BERT(x),
we leverage the representations of [CLS] h[crs}, which is the aspect-aware representation of
the whole input. The distribution of polarity is predicted as 4 = softmax(Wj - hicrs) + bs),
where W, € R3*"» and by € R? (3 is the number of polarities). Softmax is applied along the
dimension of labels on [CLS]: 14 € [0, 1]>. Training loss is the cross-entropy on the polarities.

As a summary of these tasks, insufficient supervised training data significantly limits the
performance gain across these 3 review-based tasks. Although BERT’s pre-trained weights
strongly boost the performance of many other NLP tasks on formal texts, we observe in Chapter
that BERT’s weights only result in a limited gain or worse performance compared with
existing baselines.

Post-training datasets

For domain knowledge post-training, we use Amazon laptop reviews [[74] and Yelp Dataset
Challenge reviews (https://www.yelp.com/dataset/challenge). For laptop domain,
we filtered out reviewed products that have appeared in the validation/test reviews to avoid
training bias for test data (Yelp reviews do not have this issue as the source reviews of SemEval

are not from Yelp). Since the number of reviews is small, we choose a duplicate factor of 5 (each

https://www.yelp.com/dataset/challenge

60

review generates about 5 training examples) during BERT data pre-processing. This gives us
1,151,863 post-training examples for laptop domain knowledge.

For the restaurant domain, we use Yelp reviews from restaurant categories that the SemEval
reviews also belong to [52]]. We choose 700K reviews to ensure it is large enough to generate
training examples (with a duplicate factor of 1) to cover all post-training steps that we can afford
(discussed in Section) (We expect that using more reviews can have even better results but
we limit the number of reviews based on our computational power.). This gives us 2,677,025
post-training examples for restaurant domain knowledge learning.

For general RC knowledge, we leverage SQuAD 1.1 [|82] that comes with 87,599 training
examples from 442 Wikipedia articles. The experiments are discussed in Chapter [when

addressing each specific task.

4.2.2 —Pre-tuning for End-tasks

Different from post-training that aims for domain adaption, pre-tuning is preparing a pre-
trained (or even post-trained) model for a particular end-task. Pre-tuning is proposed to
improve the performance of potential end tasks that are limited by training data. Although
BERT is successful on many end tasks, those end tasks typically have thousands of training
data. In real-world settings of machine learning, it is often the case humans have limited power
to provide enough training data for each end task. This makes the proposed pre-tuning very
important because the pre-training stage is targeting a general proxy task, not one particular

end task, which leads to a large discrepancy or gap between the pre-training and fine-tuning

61

task. This is especially true when the masked language model aims to guess the correct tokens
for [MASK]s, which are never appear in an end task.

Beyond that, many NLP tasks have more complex formats than the format of MLM (or
next sentence prediction (NSP) if the proxy task has that). This difference yields an even
larger discrepancy that a limited training data for an end task cannot fine-tune the pre-trained
model enough. In my research on pre-tuning, I give a task called review conversational reading
comprehension (RCRC), which needs to carry multiple past turns of question answering as
input to the model that does not appear in the pre-training stage of BERT. We define the textual
format of RCRC in the following way and form a pre-tuning task to improve the supervised
learning from limited end task data.

Textual Format

Inspired by the DrQA system [84]], we formulate an input example z for both RCRC fine-
tuning and pre-tuning (We share the same notation for both tasks for brevity.) as a composition

of the context C, the current question ¢, and a review d:

([cLsl[Qlqi[Alar... [Qlqx—1[Alak—1[Q]qr[SEP]dy., [SEP]),

where past QA pairs g1, a1, ..., qx—1,ar—1 in C are concatenated and separated by two tokens
[Q] and [A] and then concatenated with the current question gy, as the left side of BERT and
the right side is the review document. One can observe that BERT lacks the basic understanding
of the RCRC task regarding both the input and output, such as the above input format and

textual spans in a review. Limited training data of (RC), may not be sufficient to learn such a

62

complex input and output. We propose a pre-tuning stage that can enhance the understanding
of the input/output before fine-tuning on (RC),.

Data Formulation for Pre-tuning

We first formulate the data for pre-tuning that aims to address the understanding of the
textual format. As we have no annotated data except the limited (RC)2 data, we harvest domain
QA pairs and reviews, which are typically organized under an entity (a laptop or a restaurant).
The QA pairs and reviews are combined to produce the pre-tuning examples. The process is

given in Algorithm

Algorithm 3: Data Generation Algorithm

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

Input :Q: aset of QA pairs; R: a set of reviews; hpq,: maximum turns in context.

Output: 7 pre-tuning data.

T+« {}

for (¢,a’) € Qdo

T < [CLS]

h <+ RandInteger([0, hmax])

for1 — h do
q",a" < RandSelect(Q\(¢,a’))
Tz Q8¢ @ [Al @ad”

end

x4 x® [Q] ®q¢ [SEP]

r1.m < RandSelect(R)

if RandFloat([0.0,1.0]) > 0.5 then
(_,a) < RandSelect(Q\ (¢, a’))
(u,v) < (1,1)

end

else

a<+a
(u,v) < (|l |z[+ |al)

end

l < RandInteger([0, u])

din < 101 DA D Tig1

if u > 1 then
(u,v) < (u+ |roql, v + |rou])

end

IFI@dl:nGB [SEP]

T+ T+ (2, (u,v))

end

64

The inputs to Algorithm 3are a set of QA pairs and a set of reviews belonging to the same
entity and the maximum number of turns in the context. The output is the pre-tuning data,
which is initialized in Line 1. Each example is denoted as (x, (u, v)), where z is the input example
and (u, v) indicates the boundary (starting and ending indexes) of an answer for the auxiliary
objective (discussed in the next section). Given a QA pair (¢’, a’) in Line 2, we first build the left
side of input example z in Line 3-9. After initializing input = in Line 3, we randomly determine
the number of turns in the context in Line 4 and concatenate & these turns of QA pairs in Line
5-8, where O\ (¢,) ensures the current QA pair (¢, a’) is not chosen. In Line 9, we concatenate
with the current question ¢’. Lines 10-23 build the right side of input example x and the answer
boundary. In Line 10, we randomly draw a review of r with m sentences. To challenge the pre-
tuning stage to discover the semantic relatedness between ¢’ and a’ (for the auxiliary objective),
we first decide whether to allow the right side of x contains ¢’ (Line 16) for ¢’ or a random
(negative/no) answer a in Lines 11-12. We also come up with two indexes u and v initialized
in Lines 13 and 17. Then, we insert a into review r by randomly picking one from the m + 1
locations in Lines 19-20. This gives us di.,, which has n tokens. We further update v and v
to allow them to point to the chunk boundaries of a’. Otherwise, BERT should detect no o’
on the right side and point to [CLS] (u,v = 1). Finally, examples are aggregated in Line 25.
Algorithm B]is run k times to allow for enough samplings. Following BERT, we still randomly
mask some words in each example but omitted here for brevity.

Auxilary Objective

65

Besides the input, we further adapt BERT to the output of RCRC with an auxiliary objective.
The design of this auxiliary objective is to mimic a prediction of a textual span in RCRC, which
aims to predict the token spans of an answer randomly inserted in the review or NO ANSWER if
a randomly drawn negative answer appears. The implementation of both the auxiliary objective
and the RCRC model is similar to BERT for SQuAD 2.0 [[85], so we omit them for brevity. After

pre-tuning, we fine-tune using the (RC)2 dataset to show the performance of RCRC. The results

of RCRC is discussed in[6.4.1]

CHAPTER 5

LIFELONG GRAPH REPRESENTATION LEARNING

Besides classification and word representations that aims to turn unstructured text into
a structured form, a knowledge graph is an important form of structured data that possess
human knowledge. Different from unstructured text, the knowledge graph is more interpretable
and maintainable by a human. Given the discrete nature of the knowledge graph, it enables
the dynamic accumulation of structured knowledge for future use, which is well-aligned with
the goal of lifelong learning. In this setting, one task in lifelong learning can contribute to
the updates of a knowledge graph and the future task can leverage the updated knowledge
graph for better reasoning or prediction. Different from lifelong learning in the latent space,
knowledge graph yields the advantages of interpretability, maintenance by both humans and
machines and a stable structure to avoid catastrophic forgetting. Thus, I target a lifelong graph
representation learning task, where the model should learn representations for the changes of

knowledge graph for better reasoning or prediction.
5.1 Motivation

Existing research on the knowledge graph mostly assumes a static graph. This is because they
assume a (factoid) knowledge graph, where knowledge inside is rather stable and seldom change.

This is true for most factoid-based knowledge in the world. The changes of the knowledge

mostly happen when new events happen and engineers can periodically add new entity or

66

67

relation to the knowledge graph when enough statistics of data are collected for more reliable
updates of knowledge.

However, in contrast, non-factoid knowledge is rather dynamic and needs more updates.
Non-factoid knowledge typically contains knowledge that does not have good agreement among
a group of people, but rather particular to one or a small group of people, at least during the
period before it comes factoid knowledge. There is probably no true or false regarding these
kinds of knowledge. One type of non-factoid knowledge can be the experience of a particular
user and their preference or sentiment. This kind of knowledge is rather unstable because even
the same person can change their mind quickly and a lifelong learning system should be able to
capture such changes quickly.

One important application regarding this kind of knowledge is in personalized machine
learning. And one well-known personalized machine learning model is a recommendation, as
almost all recommendation models are user-specific models, which have different predictions for
different users. Typically these models aim to learn users and items profile, such as using matrix
factorization based on click-through data. Unfortunately, existing recommendation models aim
to learn static user and item profiles. These static profiles cannot capture the changes in users’
needs. As such, conversational recommendation [[86}87]] is a novel type of task that allows
using an interactive dialog to collect users” up-to-date preference to update the user profile.
Although existing research in conversational recommendation aims to update the user profile
in the hidden space, modeling users’ profile as a knowledge graph has the following two (2)

benefits: (1) it allows for easier updates and maintenance of user profile for long-term use given

68

the semantics of the hidden space is mostly undefined and determined by random initialization;
(2) it allows for interpretability given the discrete structure of knowledge graph.

To this end, a user’s profile can be ideally represented as a knowledge graph, which requires
frequent updates, even in one turn of a dialog between the Al agent and a user. More impor-
tantly, I aim to design a universal knowledge graph that contains almost all knowledge in a
recommendation setting, including information from both the users and items. As such, this
chapter focuses on designing and maintaining a knowledge graph for recommendation under a
conversation setting, where the representation of the knowledge graph needs to be updated

frequently for reasoning a better dialog policy.

5.2 Lifelong Knowledge Graph Reasoning

As an example of lifelong representation learning over a dynamic knowledge graph, we
demonstrate the usage of dynamic knowledge graph reasoning with an application in a task is
called conversational recommendation. Conversational recommendation is a combination of a
dialog system and recommender system and aims to collect a user’s up-to-date knowledge for
recommendation. We focus on the graph maintenance aspect of conversational recommendation
in this chapter and detail the application side of this task in Chapter[6.4.2 We call the knowledge
graph about a user memory because it is the agent’s memory about a user.

Memory-grounded Conversational Recommendation: Given the history of previous items
‘H (interacted or visited, etc.), candidate items C for recommendation, and their attributes
(values), an agent first (1) constructs a user memory graph G = {(e,r,€')|e,e’ € €,r € R} for

user e,,; then (2) for each turn d € D of a dialog, the agent updates G with tuples of preference

69

G < GU{(eu,r1,€1),-..}; (3) performs reasoning over G’ to yield a dialog policy 7 that either
(i) performs more rounds of interaction by asking for more preference, or (ii) predicts optimal
(or ground truth) items for recommendations 7 C C.

Graph Formulation

In this section, we describe the formulation of a user memory graph based on each scenario of
dialog (the formulation of a scenario in conversational recommendation can be found in Chapter
[6.4.2)). There are many design choices of constructing a user memory graph and our goal is to
model the graph with easy extensibility, maintenance and interpretability for the generation
of dialog policy 7 through the course of a conversation. As a reminder, a user memory graph
is denoted as G = {(e,r, €')|e, ¢’ € E,r € R}, which is essentially a heterogeneous graph with
typed (or meta) entities and relations.

We first define the entity sets and relations in To illustrate the construction of
a user memory graph and its maintenance, we describe an example in Consider
a user Bob epyp, which has a memory (epob; "has_mem, €m) (not shown in the figure). This
memory entity has a (e, I'visited, €Seas) relation to item eseas (@ restaurant). esess has values
(€Seass Thas_aspects Caffordable) AN (€Seas; Thas_aspects €Japanese)- Those two values belong to slots sprice
and scategory, Tespectively. The values e,gordable and €japanese are also shared by items eyayoi
and ep,g, respectively. As a result, we can see this user memory graph is highly extendable
as new relations or entities can be easily integrated as more experience or preference come
from the user. This can be further illustrated in [Figure 7, where we add relations about users’

sentiment over 3 rounds of interactions. When it comes to the final recommended item ep,gj,

Entity Sets Explanation
u user entities
M memory entities
z item entities: C U H
S slot entities defined in|Table XXVII
vV value entities
Relation Types

(U, has_mem, M)
(M, visited, T)
(Z,has_aspect, V)
(V,is_a,S)
(M, pos_on, V/T)
(M,neg _on,V/T)

(M,neu_on, V/7)

a user u has a memory entity m
a memory m is about an item ¢
an item 4 has a value v

a value v belongs to a slot s

m is positive on a value or item
m is negative on a value or item

m is neutral on a value or item

TABLE V

Ontology of Memory Graph

70

71

we can provide explanations that the user is positive on eagordable and €japanese, leading to the
recommendation ep,g; (as in Paths (eBob — Tpos_on —7 €affordable —> Thas_aspect —7 €Basil) and
(€Bob — Tpos_on — €Japanese — Thas_aspect —* €Basil), Tespectively). Further, another important
explanation is the Path (eBob — Tyisited — €Seas — Thas_aspect — €affordable —7 Thas_aspect — eBasil)
which draws the relevance from a visited item to the current recommendation.

As such, another benefit of formulating such a user memory graph is that all items, slots,
values of a generated dialog policy 7 can be directly mapped to certain (item, slot or value)
entities in the user memory graph. This paves the way for reasoning over the user memory

graph for explainable dialog policy generation (Chapter|5.3)).

5.3 Graph Reasoner

We propose a model called User Memory Graph Reasoner (UMGR) to reason the turn-level
dialog policy over the user memory graph.
Input: the input of UMGR is the past dialog acts up to the current turn from the user a,
the updated user memory graph G’, which contains all the knowledge about the items their
associated values and slots, and visited items. We further accumulate all updates from the user
(e.g., via the assumed results from NLU or state tracking) in the form of last 3 types of relations
in Table 4 (Similar to visited items, we add a new memory entity for the current dialog and
then associate all the new relations to that memory entity.).

A »C
)

Output: UMGR’s output is the dialog policy © = (34, 9¢,9°, 9"

9°,9") for the current turn, where
A, C, S, V indicate the space of dialog acts, candidate items, slots and values, respectively.

The predictions from ¢, S and 9" essentially provides a ranking over those entity sets. For

is_

a

visited

Figure 6. Construction of user memory graph

has_aspect

72

73

ias_aspect

Y i is.a is_a,
is.a sa category

= @ @
(what kinds of food do you like ?) (are you still interested in affordable restaurant ?) -
. : C

TTike Thai food.

how about Basil, which is affordable
and serves Thai food.

Figure 7. Dynamic updates of memory graph

example, when j* = Recommendation, the top-1 entity arg max,, . (§¢) will be provided to the
user. Similarly, A = Open Question is related to the top-1 slot arg max, 5(@%) and A = Yes/no
Question is related to the top-1 value arg max, «,(7"). In this way, all arguments of a dialog
policy can be mapped to certain entities in the user memory graph for a structured explanation
instead of decoding from latent space.

To enable the reasoning over a user memory graph on-the-fly, we incorporate a Relational
Graph Convolutional Networks (R-GCN) inside UMGR. R-GCN is a GCN with

typed relations, where each relation is associated with their weights to enable reasoning over

74

a heterogeneous graph. UMGR first encodes past dialog acts a and entities e € £ into hidden
dimensions.

ha = LSTM(W(a)), (5.1)

0
nY =W ey,
where W4 and W¢ are embedding layers and the past dialog acts are further encoded by
an LSTM encoder. We further allow on-the-fly reasoning over (new) items by sharing the
embedding weights for different items (as a special entity <ITEM>) in W¢. Then each entity in

the user memory graph is encoded by multiple layers of R-GCN.

(1+1) 1 R0
! _LeakyReLU<Z 3 ’ NT‘Wﬁ)hj) (5.2)
TERKENT ")

where hg-l) (j can be any type of entity) is the hidden dimensions for entity e; for the i-th layer
of R-GCN. V] is entity e;s neighbor in relation type and W is the weights associated with
r in the [-th layer to transform h;l). The R-GCN layer updates the hidden states of each entity
with the incoming messages in the form of their neighbors” hidden states type-by-type. Then
R-GCN sums over all types before passing through the activation. The hidden states from the

last layer of R-GCN is pasted into an aggregation layer.

1

T
ICUS UV

> (WA 1%, (53)
¢;€CUSUV

75

where W2 and 0% are weights for aggregation layer. The purpose of having an aggregation
layer is to leverage the information in the user memory graph for predicting the dialog acts,
which is a classification problem. The loss for dialog acts is defined as

g4 = Softmax (W (hg & h38) + b4),
(5.4)

L4 = CrossEntropyLoss (g4, y4),

where @ is the concatenation operation and y““ is the annotated dialog act. Further, all item,
slot and value entities are trained by log loss for ranking. For example, the loss for candidate
items C is defined as

3; = Sigmoid(W7h; + b7),
(5.5)

L¢ = LogLoss (¢, 4°).
Similarly, we obtain loses Ls, Ly for slot entities S and value entities V, respectively. Finally, the

total loss is the sum over all losses for dialog acts, items, slots and values:

L=/L"+acL’ +6L5+~LY, (5.6)

where o, 3 and v are hyper-parameters to align losses of different scales. Note that during
training and prediction, all invalid dialog acts (e.g., user dialog acts) and entities (e.g., not
appear in a user memory graph) are masked out. As we can see, unlike traditional recommender

systems, UMGR does not learn (or “overfit to”) any prior knowledge about users into the weights.

76

Instead, it reasons the dialog policy on-the-fly in each turn based on the updated user memory
graph. We will detail the task of conversational recommendation and experiments in the next

chapter.

CHAPTER 6

NLP APPLICATIONS

Parts of this chapter were previously published or arXived as the following papers:

e “Double Embeddings and CNN-based Sequence Labeling for Aspect Extraction” in ACL
2018 [52]] (DOIL: http://dx.doi.org/10.18653/v1/P18-2094, with arXiv version https:

//arxiv.org/abs/1805.04601 [4]);

e “BERT Post-Training for Review Reading Comprehension and Aspect-based Sentiment
Analysis” in NAACL 2019 [5] (DOI: http://dx.doi.org/10.18653/v1/N19-1242, with an

arXiv version https://arxiv.org/abs/1904.02232 [75]);

e arXiv paper “Review Conversational Reading Comprehension” https://arxiv.org/

abs/1902.00821 [6]];

e arXiv paper “A Failure of Aspect Sentiment Classifiers and an Adaptive Re-weighting

Solution” https://arxiv.org/abs/1911.01460 [7];

e “CER: Complementary Entity Recognition via Knowledge Expansion on Large Unlabeled

Product Reviews ” in BigData 2016 [|§] (with arXiv version https://arxiv.org/abs/
77

https://arxiv.org/abs/1805.04601
https://arxiv.org/abs/1805.04601
https://arxiv.org/abs/1904.02232
https://arxiv.org/abs/1902.00821
https://arxiv.org/abs/1902.00821
https://arxiv.org/abs/1911.01460
https://arxiv.org/abs/1612.01039
https://arxiv.org/abs/1612.01039
https://arxiv.org/abs/1612.01039

78

1612.01039/[90]);

e arXiv paper “Supervised Complementary Entity Recognition with Augmented Key-value

Pairs of Knowledge ” https://arxiv.org/abs/1705.10030/[9].

In this chapter, I apply the concept of lifelong representation learning for a wide spectrum
of NLP applications. Natural language processing needs lifelong learning because as a form of
human knowledge, texts need to be integrated into the agent for understanding and reasoning
for an agent’s policy.

I will first focus on two (2) tasks in aspect-based sentiment analysis: aspect extraction and
aspect sentiment classification. Then I switch to a novel task in my earlier years of Ph.D. study:
complementary entity recognition, which aims to identify multiple entities and their relations
about compatibility. Then I switch to review-based question answering. Reading comprehension
is an important task in question answering because of its good usage of human written texts
for answers. I will propose some novel review-based QA tasks, with results indicating the
importance of lifelong representation. Lastly, I will switch to the dialog system. I will first
talk about the conversational version of QA and then switch to a novel type of dialog system:
conversational recommendation, which leverages lifelong graph representation learning for
reasoning dialog policy.

6.1 Aspect-based Sentiment Analysis

Sentiment analysis aims to detect people’s polarity from opinion text such as reviews and

tweets [91]]. More specifically, aspect-based sentiment analysis (ABSA) focuses on fine-grained

https://arxiv.org/abs/1612.01039
https://arxiv.org/abs/1612.01039
https://arxiv.org/abs/1612.01039
https://arxiv.org/abs/1705.10030

79

sentiment analysis over aspects and possibly their categories. ABSA aims to detect the aspects a
in opinion texts and their associated polarities (a, p)s. This naturally has two sub-tasks in ABSA:

aspect extraction and aspect sentiment classification.

6.1.1 - Aspect Extraction

Aspect extraction is an important task in sentiment analysis [92] and has many applications
to its downstream tasks [91]]. It aims to extract opinion targets (or aspects) from opinion text.
In product reviews, aspects are product attributes or features. For example, from “Its speed is
incredible” in a laptop review, it aims to extract “speed”.

Aspect extraction has been performed using supervised [93-95]] and unsupervised ap-
proaches [92,96H100]]. Recently, supervised deep learning models achieved state-of-the-art
performances [101]]. Many of these models use handcrafted features, lexicons, and complicated
neural network architectures [101H104]]. Although these approaches can achieve better perfor-
mances than their prior works, two other considerations are also important. (1) Automated
feature (representation) learning is always preferred. How to achieve competitive performances
without manually crafting features is an important question. (2) According to Occam’s razor
principle [[105]], a simple assumption about a model is preferred over a complex one. This is
very important when the model is deployed in a real-world application (e.g., chatbot) because
a complex model will slow down the speed of inference. Thus, to achieve competitive perfor-
mance whereas keeping the model as simple as possible is important. This paper proposes such

a model.

80

To address the first consideration, we propose a double embeddings mechanism (as dis-
cussed in Chapter[3)) that is shown crucial for aspect extraction. The embedding layer is the
very first layer, where all the information about each word is encoded. The quality of the
embeddings determines how easily later layers (e.g., LSTM, CNN or attention) can decode
useful information. Existing deep learning models for aspect extraction use either a pre-trained
general-purpose embedding, e.g., GloVe [[49]], or a general review embedding [102]]. However,
aspect extraction requires domain embeddings in fine-grain. For example, in the previous
example, detecting “speed” may require embeddings of both “Its” and “speed”. However, the
criteria for good embeddings for “Its” and “speed” can be different. “Its” is a general word and
the general embedding (trained from a large corpus) is likely to have better representation for
“Its”. But, “speed” has a very fine-grained meaning (e.g., how many instructions per second) in
the laptop domain, whereas “speed” in general embeddings or general review embeddings may
mean how many miles per second. So using in-domain embeddings is important even when
the in-domain embedding corpus is not large. Thus, we leverage both general embeddings and
domain embeddings and let the rest of the network to decide which embeddings have more
useful information.

To address the second consideration, we use a pure Convolutional Neural Network (CNN)
[[106]] model for sequence labeling. Although most existing models use LSTM [45] as the
core building block to model sequences [[101}[107]], we noticed that CNN is also successful in
many NLP tasks [[108-110]]. One major drawback of LSTM is that LSTM cells are sequentially

dependent. The forward pass and backpropagation must serially go through the whole sequence,

81

which slows down the training/testing process. One challenge of applying CNN on sequence
labeling is that convolution and max-pooling operations are usually used for summarizing
sequential inputs and the outputs are not well-aligned with the inputs. We call the proposed
model Dual Embeddings CNN (DE-CNN). To the best of our knowledge, this is the first paper
that reports a double embedding mechanism and a pure CNN-based sequence labeling model
for aspect extraction.

Related Work

Sentiment analysis has been studied at document, sentence and aspect levels [91}[111,112]].
This work focuses on the aspect level [92]]. Aspect extraction is one of its key tasks and has been
performed using both supervised and unsupervised methods. The unsupervised approach
can be frequent pattern mining [92,113]], syntactic rules-based extraction [96,98,[114]], topic
modeling [97}[115H117]].

Traditionally, the supervised approach [93}95|[118]] uses Conditional Random Fields (CRF)
[119]]. Recently, deep neural networks are applied to learn better features for supervised aspect
extraction, e.g., using LSTM [45,107,120]] and attention mechanism [100,/104]] together with
manual features [102,103]]. Further, [[101}/103}/104]] also proposed aspect and opinion terms
co-extraction via a deep network. They took advantage of the gold-standard opinion terms or
sentiment lexicon for aspect extraction. The proposed approach is close to [[107]], where only
the annotated data for aspect extraction is used. However, we will show that our approach is

more effective even compared with baselines using additional supervision and/or resources.

82

The proposed embedding mechanism is related to cross domain embeddings [61}[121]]
and domain-specific embeddings [51}/66|]. However, we require the domain of the domain
embeddings must exactly match the domain of the aspect extraction task. CNN [[106}[108] is
recently adopted for named entity recognition [[122]]. CNN classifiers are also used in sentiment
analysis [[102}123]]. We adopt CNN for sequence labeling for aspect extraction because CNN is
simple and parallelized.

Double Embedding for Sequence Labeling

Following the idea of fusion general and domain-specific embeddings in 3| we have the
following CNN-based model for aspect extraction.

The proposed model is depicted in [Figure 8| It has 2 embedding layers, 4 CNN layers, a
fully-connected layer shared across all positions of words, and a softmax layer over the labeling
space Y = {B, 1,0} for each position of inputs. Note that an aspect can be a phrase and B,
I indicate the beginning word and non-beginning word of an aspect phrase and O indicates

non-aspect words.

83

[Fully-connected layer+Softmax]

° ° ° CNN Layers
° °
® ®

LT R R R TR RN T T IR IR TN

| | General Embedding

uHHJ'J'JHJM'\.WJHHHJHJM.'\.WJHHHJHH\MWJHHHJHJM'\.'\HNHHJ'JJHHM'\HNHHJ'JJ'J'HJ'M'\.WHHHHJHM‘\.WHJHHHHH‘

" ' " ' " ' ' ' ' DomalnEmbeddlngé

Figure 8. DE-CNN

After leveraging the double embedding layers discussed in Chapter[3.5, we apply CNN layers

for building representations for aspect extraction. A CNN layer is composed of 1D-convolution

84

filters. Each (the r-th) filter has a kernel size of k = 2c + 1. Each kernel performs the following

operation, followed by ReLU activation:

j=—c

where [indicates the [-th CNN layer. We apply each filter to all positions i = 1 : n. So each
filter computes the representation for the i-th word along with 2c nearby words in its context.
Note that we force the kernel size k to be an odd number and set the stride step to be 1 and
further pad the left c and right c positions with all zeros. In this way, the output of each layer is
well-aligned with the original input x for sequence labeling purposes. For the first (I = 1) CNN
layer, we employ two different filter sizes. For the rest 3 CNN (! € {2, 3,4}) layers, we only use
one filter size. We will discuss the details of the hyper-parameters in the experiment section.
Finally, we apply a fully-connected layer with weights shared across all positions, followed by
a softmax layer to classify token labels. The output size is || = 3. We apply dropout after
the embedding layer and each ReLU activation. In contrast to common practice in computer
vision, we do not apply any max-pooling operation. This is because sequence labeling needs
good position-wise representations. But the max-pooling operation mixed representations from
different positions.

We further conduct BERT model for aspect extraction. We omit the details of BERT for aspect
extraction as it is already discussed in Chapter {4

Experiments

85

Description Training | Testing

#S./#A. | #S./#A.

SemEval-14 Laptop 3045/2358 | 800/654

SemEval-16 Restaurant | 2000/1743 | 676/622

TABLE VI

Dataset for AE

Following the experiments of a recent aspect extraction paper [[101]], we conduct experiments
on two popular datasets from SemEval [[124,125]], as in Table Specifically, the first dataset
is from the laptop domain of SemEval-2014 Task 4. The second dataset is from the restaurant
domain of SemEval-2016 Task 5. These two datasets consist of review sentences with aspect
terms labeled as spans of characters. We use NLTKD as the tokenizer.

For the general-purpose embeddings, we use the glove.840B.300d embeddings [49]], which
are pre-trained from a corpus of 840 billion tokens that cover almost all web pages. These
embeddings have 300 dimensions. For domain-specific embeddings, we collect a laptop review
corpus and a restaurant review corpus and use fastText [65]] to train domain embeddings. The

laptop review corpus contains all laptop reviews from the Amazon Review Dataset [48]]. The

"http://www.nltk.org/

http://www.nltk.org/

86

restaurant review corpus is from the Yelp Review Dataset Challenge ﬂ We only use reviews
from restaurant categories that the second dataset is selected from H We set the embedding
dimensions to 100 and the number of iterations to 30 (for a small embedding corpus, embeddings
tend to be under-fitted), and keep the rest hyper-parameters as the defaults in fastText. We
further use fastText to compose out-of-vocabulary word embeddings via subword N-gram
embeddings.
Baseline Methods for DE-CNN
We perform a comparison of DE-CNN with three groups of baselines using the standard
evaluation of the datasetsﬂﬂ The results of the first two groups are copied from [[101]]. The first
group uses single-task approaches.
CREF is conditional random fields with basic featureﬂ and GloVe word embedding [49].
IHS_RD [94] and NLANGP [[126]] are best systems in the original challenges [124}[125]].
WDEmb [99]] enhanced CRF with word embeddings, linear context embeddings and de-
pendency path embeddings as input.

LSTM [101,107] is a vanilla BiLSTM.

"https://www.yelp.com/dataset/challenge
2http://www.cs.cmu.edu/~mehrbod/RR/Cuisines.wht
3http://alt.qgcri.org/semeval2014/task4
http://alt.gcri.org/semeval2016/task5

Shttp://sklearn-crfsuite.readthedocs.io/en/latest/tutorial.html

https://www.yelp.com/dataset/challenge
http://www.cs.cmu.edu/~mehrbod/RR/Cuisines.wht
http://alt.qcri.org/semeval2014/task4
http://alt.qcri.org/semeval2016/task5
http://sklearn-crfsuite.readthedocs.io/en/latest/tutorial.html

87

BiLSTM-CNN-CREF [[127] is the state-of-the-art from the Named Entity Recogntion (NER)
community. We use this baselineﬂ to demonstrate that a NER model may need further adaptation
for aspect extraction.

The second group uses multi-task learning and also take advantage of gold-standard opinion
terms/sentiment lexicon.

RNCREF [[103] is a joint model. It uses dependency trees for a recursive neural network.
Then a layer of CRF is applied for aspect and opinion terms co-extraction. Besides opinion
annotations, it also uses handcrafted features.

CMLA [[104] is a stacked network with coupled-attention. Note that it performs aspect and
opinion terms co-extraction. It uses gold-standard opinion labels in the training data.

MIN [101]] is a multi-task learning framework that has (1) two LSTMs for jointly extraction of
aspects and opinions, and (2) a third LSTM for discriminating sentimental and non-sentimental
sentences. Note that this method uses a sentiment lexicon and dependency rules of high
precision.

The third group is the variations of DE-CNN.

GloVe-CNN only uses glove.840B.300d to show that domain embeddings are important.

Domain-CNN does not use the general embeddings to show that domain embeddings
alone are not good enough as the domain corpus is limited for training good general word

embeddings.

"https://github.com/UKPLab/emnlp2017-bilstm-cnn-crf

https://github.com/UKPLab/emnlp2017-bilstm-cnn-crf

88

MaxPool-DE-CNN adds max-pooling in the last CNN layer. We use this baseline to show
that the max-pooling operation used in the traditional CNN architecture is harmful to sequence
labeling.

DE-OOD-CNN replaces the domain embeddings with out-of-domain embeddings to show
that a large out-of-domain corpus is not a good replacement for a small in-domain corpus for
domain embeddings. We use all electronics reviews as the out-of-domain corpus for the laptop
and all the Yelp reviews for restaurant.

DE-Google-CNN replaces the glove embeddings with GoogleNews embeddingsﬂ which
are pre-trained from a smaller corpus (100 billion tokens). We use this baseline to demonstrate
those general embeddings that are pre-trained from a larger corpus performs better.

DE-CNN-CREF replaces the softmax activation with a CRF layelﬂ We use this baseline to
demonstrate that CRF may not further improve the challenging performance of aspect extraction.

Hyper-parameters of DE-CNN

We hold out 150 training examples as validation data to decide the hyper-parameters. The
first CNN layer has 128 filters with kernel sizes k = 3 (where ¢ = 1 is the number of words
on the left (or right) context) and 128 filters with kernel sizes k = 5 (¢ = 2). The rest 3 CNN
layers have 256 filters with kernel sizes k = 5 (¢ = 2) per layer. The dropout rate is 0.55 and the

learning rate of Adam optimizer [50]] is 0.0001 because CNN training tends to be unstable.

"https://code.google.com/archive/p/word2vec/

2https://github.com/allenai/allennlp

https://code.google.com/archive/p/word2vec/
https://github.com/allenai/allennlp

Model Laptop | Restaurant
CRF 74.01 69.56
IHS_RD 74.55 -
NLANGP - 72.34
WDEmb 75.16 -
LST™M 75.25 71.26
BiLSTM-CNN-CRF 77.8 72.5
RNCRF 78.42 -
CMLA 77.80 -
MIN 77.58 73.44
GloVe-CNN 77.67 72.08
Domain-CNN 78.12 71.75
MaxPool-DE-CNN 77.45 71.12
DE-LSTM 78.73 72.94
DE-OOD-CNN 80.21 74.2
DE-Google-CNN 78.8 72.1
DE-CNN-CRF 80.8 74.1
DE-CNN 81.59 74.37
TABLE VII

F; score for AE

89

90

Results and Analysis of DE-CNN

Table shows that DE-CNN performs the best. The double embedding mechanism
improves the performance and in-domain embeddings are important. We can see that using
general embeddings (GloVe-CNN) or domain embeddings (Domain-CNN) alone gives an
inferior performance. We further notice that the performance on Laptops and Restaurant domains
are quite different. Laptops has many domain-specific aspects, such as “adapter”. So the domain
embeddings for Laptops are better than the general embeddings. The Restaurant domain has
many very general aspects like “staff”, “service” that do not deviate much from their general
meanings. So general embeddings are not bad. Max pooling is a bad operation as indicated
by MaxPool-DE-CNN since the max pooling operation loses word positions. DE-OOD-CNN’s
performance is poor, indicating that making the training corpus of domain embeddings to
be exactly in-domain is important. DE-Google-CNN uses a much smaller training corpus for
general embeddings, leading to poorer performance than that of DE-CNN. Surprisingly, we
notice that the CRF layer (DE-CNN-CRF) does not help. The CRF layer can improve 1-2%
when the laptop’s performance is about 75%. But it doesn’t contribute much when the laptop’s
performance is above 80%. CRF is good at modeling label dependences (e.g., label I must
be after B), but many aspects are just single words and the major types of errors (mentioned
later) do not fall in what CRF can solve. Note that we did not explore the hyperparameters of
DE-CNN-CREF. This is because training the CRF layer is extremely slow.

One important baseline is BILSTM-CNN-CRF, which is markedly worse than our method.

We believe the reason is that this baseline leverages dependency-based embeddings [128]], which

91

could be very important for NER. NER models may require further adaptations (e.g., domain
embeddings) for opinion texts.

DE-CNN has two major types of errors. One type comes from inconsistent labeling (e.g.,
for the restaurant data, the same aspect is sometimes labeled and sometimes not). Another
major type of error comes from unseen aspects in test data that require the semantics of the
conjunction word “and” to extract. For example, if A is an aspect and when “A and B” appears,
B should also be extracted but not. We leave this to future work.

We further conduct experiments for the results of DE-CNN with language model (BERT)
based methods.

Hyper-parameters of BERT

We adopt BERTgasg (uncased) as the basis for all experimentﬂ Since post-training may
take a large footprint on GPU memory (as BERT pre-training), we leverage FP16 Computatiorﬂ
to reduce the size of both the model and hidden representations of data. We set a static loss
scale of 2 in FP16, which can avoid any over/under-flow of floating-point computation. The
maximum length of post-training is set to 320 with a batch size of 16 for each type of knowledge.
The number of sub-batch w is set to 2, which is good enough to store each sub-batch iteration

into a GPU memory of 11G. We use Adam optimizer and set the learning rate to be 3e-5. We

1We expect BERTparGE to have better performance but leave that to future work due to limited
computational power.

2https://docs.nvidia.com/deeplearning/sdk/mixed-precision-training/index.
html

https://docs.nvidia.com/deeplearning/sdk/mixed-precision-training/index.html
https://docs.nvidia.com/deeplearning/sdk/mixed-precision-training/index.html

92

train 70,000 steps for the laptop domain and 140,000 steps for the restaurant domain, which
roughly have one pass over the pre-processed data on the respective domain.

Baseline Methods for BERT

BERT is the model of the original BERT. We use this baseline to show that BERT’s pre-trained
weights alone have limited performance gains on review-based tasks.
BERT-DK post-trains BERT’s weights only on domain knowledge (reviews) and fine-tunes on
the 3 end tasks.
BERT-MRC post-trains BERT’s weights on SQuAD 1.1 and then fine-tunes on the 3 end tasks.
BERT-PT (proposed method) post-trains BERT’s weights using the joint post-training algorithm
in Chapter and then fine-tunes on the 3 end tasks.

Results of BERT

93

Domain Laptop | Rest.

Methods F1 F1

DE-CNN [52] 81.59 | 74.37

BERT 79.28 74.1
BERT-DK 83.55 | 77.02
BERT-MRC 81.06 | 74.21
BERT-PT 84.26 | 77.97
TABLE VIII
BERT for AE in F1.

we found that a great performance boost comes mostly from domain knowledge post-
training, which indicates that contextualized representations of domain knowledge are very im-
portant for AE. BERT-MRC has almost no improvement in restaurant, which indicates Wikipedia
may not know aspects of restaurant. We suspect that the improvements on laptop come from the
fact that many answer spans in SQuAD are noun terms, which bear a closer relationship with
laptop aspects. Errors mostly come from annotation inconsistency and boundaries of aspects
(e.g., apple OS is predicted as OS). Restaurant suffers from rare aspects like the names of dishes.

6.1.2 — Aspect Sentiment Classification

As a downstream task of aspect extraction, Aspect-based sentiment classification (ASC) is

to find the sentiment for an aspect appear in an opinion text. In this subsection, we focus on two

94

(2) improvements of ASC: (1) using pre-trained / post-trained BERT for ASC; (2) improving
the post-trained BERT with the technique of hard example learning. Hard examples are one
challenge for ASC because of its datasets that are typically rare but very important for learning
aspect-level sentiment (e.g., sentences with different polarities for different aspects).

Hard Examples Learning for Aspect Sentiment Classification

Hard examples play a non-neglectable role in many machine learning applications. Many
datasets contain a certain number of rare examples that are hard to learn, as can be found in
imbalance issues or fairness issues in machine learning H On one hand, the reason is from data
collection that can easily and unintentionally bias a dataset. It is very hard, if not impossible,
for humans to provide an ideal dataset to a machine learning model. As in the object detection
problem [129,[130] in computer vision, it can easily come up with long-tailed hard examples,
given it is almost impossible to manually balance objects appear in one image. On the other
hand, it is important for machine learning algorithms to avoid such issues.

Aspect-based sentiment classification (ASC) is an important task in detecting the opinion
expressed about an aspect (or an opinion target) [[83}[131]]. However, ASC also suffers from
the difficulty of learning from hard examples. For example, “The screen is good but not the
battery” requires to detect two fine-grained and contrastive opinions within the same sentence:
a positive opinion towards “screen” and a negative opinion towards “battery”. We call this

type of sentence contrastive sentence and [[132]] found that such sentences are rare but hard to

"https://venturebeat.com/2019/01/24/amazon-rekognition-bias-mit/

https://venturebeat.com/2019/01/24/amazon-rekognition-bias-mit/

95

learn from existing ASC datasets. But these sentences are extremely important because, without
them, the task of ASC turns into detecting sentence-level sentiment without the need to know
the referred aspects.

Instead of manually addressing this issue from data collection, we focus on algorithms that
automatically learn from such hard examples. We propose a simple training algorithm called
adaptive re-weighting (ARW), which dynamically keeps focusing on hard examples. Since
other types of hard examples are hard to identify, we thus use contrastive sentences as the
proxy to evaluate ASC on hard examples. We experimentally show that models trained with
ARW significantly improve contrastive sentences, while still keep competitive or even better
performance on the full set of test examples.

Related Work

Hard example mining is mostly studied in object detection [[129,130]], which aims to detect
long-tailed and imbalanced classes of sub-regions in one image. In [130], a loss-based weighting
is proposed to adjust weights without explicitly re-balance the complex class distribution.

Aspect sentiment classification (ASC) [|83] is an essential task in aspect-based sentiment
analysis [[131}[133]]. Aspect-based sentiment is different from document or sentence-level senti-
ment classification (SSC) [[108|[133H135] as it focuses on fine-grained opinion on each specific
aspect. It is either studied as a single task or a joint learning task together with aspect extrac-
tion [101,/104/[136]]. The problem has been widely dealt with using neural networks [[137H139]].
ASC is also studied in transfer learning or domain adaptation, such as leveraging large-scale

corpora that are unlabeled or weakly labeled (e.g., using an overall rating of a review as the

96

label) [5/[140]] and transferring from other tasks/domains [[141H143]]. Our re-weighting method
is related to AdaBoost [144]], which is a well-known ensemble algorithm that makes predictions
collectively via a sequence of weak classifiers. Our work is different as we don’t build a sequence
of classifiers like AdaBoost but only one classifier. Neither is our model an ensemble model.
Our weight updating is also different from AdaBoost as we do it in each epoch of training.
We aim to improve the training process of a deep learning model by adaptively discovering
incorrect examples (which cover contrastive sentences) and give them higher weights to focus
on for subsequent training process. We also notice that AdaBoost is not frequently used in deep
learning [[145/[146]] probably due to the complexity of deep learning models that are not weak
learners.

Adaptive Re-Weighting Algorithm

The hardness of an example is highly associated with its rareness in a dataset because those
rare examples cannot help each other in learning. As an example, contrastive sentences are rare
in ASC datasets (see Experiment). Existing research showed that rare and noisy examples are
seldom optimized at the early stage of training (e.g., a few epochs) [[147]]. This is in contrast to
its importance as discussed in the introduction. As a result, examples should not be treated
equally as the mean of example losses as in most training. Given this unwanted behavior of
optimization, a natural idea is to detect them and then increase their contribution to the total
loss during training.

Since training in supervised learning has access to ground-truth labels, detecting hard exam-

ples naturally means to find examples the current model cannot classify correctly. Assuming we

97

Algorithm 4: ARW Algorithm

Input :Dy: training set with n examples;
e: maximum number of epochs.

Output:py(7|,-): a trained model.
1 Wiy < %
2 forepoch € {1,...,e} do

3 for (a’, 2%y, w®) € Batchify(Dyr, w1.,) do

4 1’ < CrossEntropy(pg(9°|a®, %), y)
5 Lb — Zz(éﬂz)lfb)
6 BackProp&ParamUpdate(L, M)
7 end
8 ?;lzn < arg maxp@(gl:n’alznv xl:n)
9 r e Z?:l(lgiﬂ[yi#ﬁi])
i=1Wi

(1—7)+e

10 a < log(*——%—)

11 W1y — W1y exXp(dyr:n # Y1:n])

12 end

98

have n training examples. Let incorrect (hard) examples to be those with y; # 9; for i € [1,n],
where 7; is the prediction of the i-th training example from the current model and y; is the
ground-truth label. Then we associate each example a weight, which decides how much this
example contributes to the total loss (e.g., in a batch of optimization). We let w;.,, denote the
weights associated with n training examples and the total loss of L is computed as the weighted
sum of the training examples. As deep learning models are typically trained on a batch-by-batch
basis, we define the total loss L? as the loss from a batch. Let [® be the example-wise losses for
examples within a batch. Since a batch is randomly drawn from the training set, we re-normalize
the weights w® for examples in that batch L? = %Zﬂfb) to avoid fluctuation caused by randomly
drawing examples with weights of different magnitudes.

Given the dynamics of a training process, we aim to design an adaptive weighting function
that keeps adjusting the weights. This is because a used-to-be hard example can later be an easy
example and vice-versa. At the beginning, we assume an uniform distribution of weights across
all training examples w.,, < % We adjust the weights at the end of the training of each epoch
because every example has been consumed once. We define an indicator variable I[y; # ¢;] to
pick the incorrect (hard) examples and estimate the overall weighted error rate » € [0, 1] to
detect whether the current model tends to make more mistakes or not. Note that the reason
for using the weighted error rate instead of just the error rate is that the weighted error rate
reflects the hardness on optimizing hard examples instead of simply example-level errors. We

will detail the formula in the next subsection. For example, when the weighted error rate is

high (e.g., > 0.5), instead of increasing the weights for incorrect examples, we probably need to

99

reduce them so as to avoid learning too much noise. Lastly, the weight adjustment for incorrect
examples is determined by the (correct-versus-incorrect) ratio (%) So when this value
is larger than 1, multiply it to increase the weights; otherwise to decrease the weights. Here
we introduce a weight assignment factor ¢, which is a hyperparameter to control whether the
model should favor even more weights (e.g., ¢ > 0) or not (e.g., € < 0).

ARW Algorithm

The proposed ARW algorithm is shown in Algorithm @ In Line 1, it initializes the weights of
all training examples uniformly. Lines 2-12 pass through the training data epoch-by-epoch and
update the example weights at the end of each epoch. Specifically, Line 3 retrieves one randomly
sampled batch of aspects a’, sentences 2%, polarity labels 3° and their (current) corresponding
weights w’. Line 4 makes a forward pass on aspects and sentences py(j|a’, #°). Then we compute
example-wise loss [” for each training example in the batch. Line 5 computes the weighted
loss and re-normalize these weights throughout the batch to get the total loss L”. Line 6 does
normal backpropagation and parameter updating as in ordinary neural networks training. Line
8 gets the prediction on the training set. Line 9 first discovers the hard examples represented
by an indicator variable I[y; # ¢;]. It then computes the weighted error rate. Line 10 computes
the log of the correct-incorrect ratio. a > 0 indicates increasing the weights and o < 0 means
decreasing the weights. Lastly, in Line 11, we only adjust the weights via the indicator variable

I[y1:n # ¥1.n] since the weights of correctly classified (easy) examples are always multiply by 1.

As a result, Algorithm [keeps track of the weights wy.,, for all training examples and always

100

focuses on adjusting weights of incorrect examples from contrastive sentences. We also perform
a normal validation process after each epoch (omitted in the Algorithm [4for brevity).

Experiment

Dataset

We adopt the SemEval 2014 Task 4EI datasets, which contain two domains: laptop and restau-
rant. The statistics are shown in In addition to the Full Testing Set, we further form a
Contrastive Test Set to specifically test aspect-level sentiments. The contrastive test set of laptop
is augmented with extra annotated examples from Amazon laptop reviews to ensure enough
testing examples.

Results of BERT

We first discuss the results of post-training BERT from Chapter[d We have the following
state-of-the-art baseline:
MGAN [[141]] reaches the state-of-the-art ASC on SemEval 2014 task 4. We compute both
accuracy and Macro-F1 over 3 classes of polarities, where Macro-F1 is the major metric as the
imbalanced classes introduce biases on accuracy. To be consistent with existing research [[148]],
examples belonging to the conflict polarity are dropped due to a very small number of examples.

ASC, we observed that large-scale annotated MRC data is very useful. We suspect the reason
is that ASC can be viewed as a special MRC problem. For example, all questions are about

asking the polarity of some aspects. MRC training data may help BERT to understand the input

'http://alt.qcri.org/semeval2014/task4

Laptop | Restaurant

Training
#Sentence 3045 2000
#Aspect 2358 1743
#Positive 987 2164
#Negative 866 805
#Neutral 460 633
#Sent. /w Asp. 1462 1978
#Contrastive Sent. 165 319
%Contrastive Sent. 11.3% 16.1%
Full Testing Set
#Sentence 800 676
#Aspect 654 622
#Positive 341 728
#Negative 128 196
#Neutral 169 196
#Sent. /w Asp. 411 600
#Contrastive Sent. 38 80
%Contrastive Sent. 9.2% 13.3%
Contrastive Test Set
#Contrastive Sent. 78 80
#Aspect 203 228
#Positive 72 85
#Negative 71 60
#Neutral 60 83

TABLE IX

Statistics of SemEvall4 Task4 with Contrastive sentences

101

Domain Laptop Rest.

Methods Acc. MF1 | Acc. MF1
MGAN [[141] 7621 7142 | 8149 71.48
BERT 7529 7191 | 81.54 71.94
BERT-DK 77.01 73.72 | 83.96 75.45
BERT-MRC 7719 741 | 83.17 7497
BERT-PT 78.07 75.08 | 8495 76.96

TABLE X

ASC in Accuracy and Macro-F1(MF1).

102

format of ASC given their closer input formulation. Again, domain knowledge post-training

also helps ASC. ASC tends to have more errors as the decision boundary between the negative

and neutral examples is unclear (e.g., even annotators may not sure whether the reviewer shows

no opinion or slight negative opinion when mentioning an aspect). Also, BERT-PT has the

problem of dealing with one sentence with two opposite opinions (“The screen is good but not

for windows.”). We believe that such training examples are rare.

Next we discuss the results of ARW.

Baselines for ARW

103

We evaluate all baselines on both accuracy (Acc.) and macro F1 (MF1) and adopt the
following baselines: RAM [149]]T} AOA [150], MGAN [[141]], TNET [139]). BERT-DK [5]} For
the last model, we further challenge it by removing the aspects from the testing examples as
there is no architecture change in doing so. In this way, we want to test the performance of

BERT-DK under a setting with no access to aspects.

We use BERT-DK as a base model to compare the following re-weighting schemes.
+Manual Re-weighting. This baseline first counts the number of training examples C, that
are contrastive sentences and gives these examples/sentences the weight (n — C.) and other
examples the weight C,, where n is the total number of training examples. These weights are
re-normalized within a batch. Note that we also experimented with a number of other manual
weighting schemes and this method does the best.
+Focal Loss. We compute weights as (1 — p)” [[130]], where p is the probability of prediction on
the ground-truth label (from softmax) and « is a hyper-parameter. We use v = 2.0 from the
original paper that works best for ASC, too.
+ARW. This is the proposed training algorithm. This method discovers all incorrect examples,
which include examples from the contrastive sentences set and other examples. We search
e € {-0.2,-0.1,-0.05,0.0,0.05,0.1,0.2} and use ¢ = —0.05 for results.
+ARW w/ manual initial weighting. We further investigate the use of +Manual Re-weighting’s

weighting function as the initial weights and then use ARW for adaptive re-weighting.

I The first 4 baselines are adopted from https://github.com/songyouwei/ABSA-PyTorch.

2https://github.com/howardhsu/BERT-for-RRC-ABSA

https://github.com/songyouwei/ABSA-PyTorch
https://github.com/howardhsu/BERT-for-RRC-ABSA

Laptop Rest.

Acc MF1 | Acc. MF1
RAM [[149]
on Full Test Set 7449 71.35|80.23 708
on Contrastive Test Set 41.87 38.65 | 52.19 55.19
AOA [150]
on Full Test Set 74.5 - 81.2 -
on Contrastive Test Set 4286 33.53 | 42.98 33.66
MGAN [[141)
on Full Test Set 7539 7247 | 8125 71.94
on Contrastive Test Set 46.8 4338 | 53.95 b57.64
TNET [139)
on Full Test Set 76.54 71.75 | 80.69 71.27
on Contrastive Test Set 49.75 49.86 | 56.58 58.05
BERT-DK [j5]
on Full Test Set 769 7365|8421 762
on Full Test Set w/o aspect 76.0 73.05 | 80.03 72.95
on Contrastive Test Set 51.13 50.04 | 65.53 66.92
BERT-DK Acc. MF1 | Acc. MF1
+ Manual Re-weighting
on Full Test Set 7541 7199 | 8436 76.35
on Contrastive Test Set 5345 52.76 | 68.03 69.51
+ Focal Loss [|130
on Full Test Set 76.33 7324 | 8457 76.56
on Contrastive Test Set 5148 5043 | 66.4 67.14
+ ARW w/ manual initial weighting
on Full Test Set 70.08 65.89 | 84.48 77.41
on Contrastive Test Set 55.37 54.68 | 75.31 75.81
+ ARW
on Full Test Set 77.23 73.81 | 85.35 78.46
on Contrastive Test Set 61.08 60.34 | 71.84 72.66

TABLE XI

Results of ARW on ASC

104

105

Hyper-parameters

For all methods, we use Adam optimizer and set the learning rate to 3e-5. The batch size is
set as 32. To perform model selection, we hold out 150 examples from the training set as the
validation set. We set the maximum epochs to 12. Lastly, all results are averaged over 10 runs.
Result Analysis

From we can see that all existing ASC baselines have significant drops on the
contrastive test set for both Accuracy (Acc.) and F1 score, indicating the hardness of this testing
set. When the aspects are dropped from the input (on Full Test Set w/o aspect), the BERT-DK
ASC classifier dropped a little and still comparable to other baselines on the full test set.

BERT-DK + ARW outperforms other baselines mostly. If we compare it with BERT-DK, it
gives nearly 10% of improvement for laptop and 6% for restaurant on the contrastive test set.
After examining the errors, we notice that contrastive sentences with neutral polarity are harder.
This is because there may be no transition, but just one aspect with pos/neg opinion and one
aspect with no opinion (neutral). Some implicit transition word is also hard to learn (e.g., “The
screen is great and I can live with the keyboard’s slightly smaller size.”). Manual re-weighting
improves the performance on laptop and restaurant by about 3% for the contrastive test sets.
BERT-DK + ARW w/ manual initial weighting has the best performance on the contrastive test set
but not laptop. Focal loss does not perform well. The reason is that the “soft” probability may

not explicitly distinguish whether the model is making a mistake on an example or not.

106

6.2 Complementary Entity Recognition

E-commerce websites (e.g., Amazon.com) contain a huge amount of products reviews
and most existing works of sentiment analysis [133] (or opinion mining) on reviews focus on
extracting opinion targets (aspects or features) of the reviewed product and the associated
opinions [83,131,/151]] (e.g., extract “battery” and pos from “It has a good battery”). Besides
features about the reviewed product itself (e.g., “battery” or “screen”), one important feature
is whether the reviewed product is compatible/incompatible with another product. We call
the reviewed product target entity and the other product complementary entity. A pair of a target
entity and its complementary entity forms a complementary relation. They may work together to
fulfill some shared functionalities. So, they are usually co-purchased. For example, in[Figure 9}
we assume there are some reviews of several accessories (on the left) talking about compatibility
issues. We consider these accessories as the target entities and they have some complementary
entities (on the right side) mentioned in reviews. The target entities are one micro SD card,
one tablet stand and one mouse; the complementary entities are one Nikon DSLR, one iPhone,
one Samsung Galaxy S6 and one MS Surface Pro. An arrow pointing from a target entity to a
complementary entity indicates that they have a complementary relationship and shall work
together. For example, the micro SD card can help the Samsung Galaxy S6 to expand its memory
capacity. Knowing these complementary entities is important because compatible products are
preferred over incompatible ones. Thus, recognizing complementary entities is an important

task in text mining.

107

v

./
Target Entities Complementary Entities

Figure 9. Target entities, their complementary entities and complementary relations.

Problem Statement: we study the problem of finding complementary entities from texts
(e.g., extracting “Samsung Galaxy S6” from “It works with my Samsung Galaxy S6”). We
coin this problem as Complementary Entity Recognition (CER). We observe that compatibility
issues are more frequently discussed in reviews of electronics accessories, so we choose reviews
of accessories for experiments. To the best of our knowledge, accessory reviews are not well
studied before. This section focuses on two lifelong learning settings on CER: we first focus on an
unsupervised method that using knowledge expansion over a large number of unlabeled reviews;
then we switch to a supervised method of CER by collecting key-value pair of knowledge to

enhance the performance of CER.

108

My early years of Ph.D. focus on CER and its related works [8}9,152-154]]. I will focus on
two papers of CER with lifelong style knowledge accumulation.

6.2.1 -Knowledge Expansion on Large Unlabeled Product Reviews

The proposed CER problem has a few challenges and also provides more research opportu-

nities:

e To the best of our knowledge, the linguistic patterns of complementary relations are not
studied in computer science. There is no largely annotated dataset for supervised methods.
We propose an unsupervised method, which does not require any labeled data to solve

this problem (we only annotate a small amount of data for evaluation purposes).

e Similar to the aspect (feature) extraction problem in reviews [131]], CER is also a domain-
specific problem. We leverage domain knowledge to help the unsupervised method to
adapt to different products. This novel product domain knowledge is expanded using
a few seed words on a large number of unlabeled reviews under the same category as
the target entity. The idea of using reviews under the same category as the target entity
is that the number of reviews for one target entity is small. We observe that products
(target entities) under the same category share similar complementary entities (i.e., two
different micro SD cards may share complementary entities like phone or tablet). So the
domain knowledge expanded on reviews from the same category is larger than that on
reviews from a single target entity. Therefore, there is almost no labor-intensive effort
to get domain knowledge. Our domain knowledge contains candidate complementary

entities and domain-specific verbs.

109

e Although the problem may be closely related to the well-known Named Entity Recogni-
tion (NER) problem on surface [155], recognizing a complementary entity requires more
contexts. For example, given a review for a micro SD card, we should not treat “Samsung
Galaxy S6” in “Samsung Galaxy S6 is great” as a complementary entity. However, we
should consider the same entity in “It works with my Samsung Galaxy S6” as a comple-
mentary entity. The domain knowledge contains domain-specific verbs, which greatly

help to detect the contexts of complementary entities.

e We further notice that some linguistic patterns of complementary relations are similar
to other extraction patterns (e.g., patterns for aspect extraction). Candidate complemen-
tary entities in the domain knowledge can help to filter out non-complementary entities

extracted by similar patterns.

Related Works

The proposed problem is closely related to product recommender systems that are able to
separate substitutes and complements [|156,/157]]. Zheng et al. [[157] first propose to incorporate
the concepts of substitutes and complements into recommendation systems by analyzing navi-
gation logs. More specifically, predicting complementary relations is pioneered by McAuley et
al. [156]]. They utilize topic models and customer purchase information (e.g., the products in the
“items also viewed” section and the “items also bought” section of a product page) to predict
category-level substitutes and complements. However, we observe that purchase information
generated by the unknown algorithm from Amazon.com tends to be noisy and inaccurate for

complementary entities since co-purchased products may not be complementary to each other.

110

We demonstrate that their predictions are non-complementary entities for the products that
we use for experiments in Section[12] Also, category-level predictions are not good enough for
specific pairs of products (i.e., DSLR lens and webcam are not complements). Furthermore, their
predictions do not provide information about incompatible entities, which are valuable buying
warnings for customers. Thus, fine-grained extraction of complementary entities from reviews
that express firsthand user experience is important. To the best of our knowledge, the linguistic
patterns of complementary relations are not studied in computer science.

The proposed problem is closely related to aspect extraction [|83}[131,[151}/158]], which is to
extract product features from reviews. More specifically, extracting comparable products (i.e,
one type of substitutes, or products that can replace each other) from reviews is studied by
Jindal and Liu [[159]]. Recently, dependency paths [[160] are used for aspect extraction [[158}/161]].
Shu et al. [[71]] use unsupervised graph labeling method to identify entities from opinion
targets. However, since aspects are mostly context independent and the same aspect may appear
multiple times, aspect extraction, in general, does not need to extract each occurrence of an
aspect (as long as the same aspect can be extracted at least once). In contrast, the CER problem
is context-dependent and many complementary entities are infrequent (i.e., Samsung Galaxy
S6 is infrequent than the aspect price). We use dependency paths to accurately identify each
occurrence of complementary entities. Since extracting each complementary entity can be
inaccurate, we further utilize domain knowledge to improve the precision.

CER s closely related to Named Entity Recognition (NER) [[155]] and relation extraction [[162]].

NER methods utilize annotated data to train a sequential tagger [[163[164]]. However, our task is

111

totally different from NER since we care about the context of a complementary entity and many
complementary entities are not named entities (e.g., phone). CER is also different from relation
extraction [[162}165-167]], which assumes that two entities are identified in advance. In reviews,
the target entity is, unfortunately, missing in many cases (i.e., “Works with my phone”). The
proposed method only cares about the relational context of a complementary entity rather than
a full relation.

Term Definitions

Our problem is to recognize entities that functionally complement to the reviewed product.
There are several definitions involved in this problem.

Target Entity: We define target entity er as the reviewed product.

We do not extract target entities from reviews but assume that the target entity can be
retrieved from the metadata (product title) of reviews. This is because many mentions of the
target entity are co-referenced or implicitly assumed in reviews. For example, if the reviewed
product is a tablet stand, “It works with my Samsung Galaxy S6” uses “It” to refer to the target
entity tablet stand; “Works well with Samsung Galaxy S6” completely omits the target entity.

Complementary Entity: Given a set of reviews Ry of a target entity er, a complementary entity

ec is an entity mentioned in reviews that are functionally complementary to the target entity
er. A target entity has a set of complementary entities: ec € Ec.

A complementary entity can either be a single noun (e.g., iPhone) or a noun phrase (e.g.,
Samsung Galaxy S6). There are two types of complementary entities: a named entity or a general

entity. A named entity is usually a specific product name containing a brand name and a model

112

name (e.g., Samsung Galaxy S6 or Apple iPhone). A general entity (e.g., phone or tablet) represents
a set of named entities. General entities are informative. For example, in a review of a tablet
stand, “phone” in “It also works with my phone” is a good assurance for phone owners who
want to use this tablet stand as a phone stand.

Complementary Relation: Each complementary entity ec € E¢ forms a complementary rela-

tion (er, ec) with the target entity er.

Complementary Entity Recognition: Given a set of reviews Ry for a target entity er, the

problem of Complementary Entity Recognition (CER) is to identify a set of complementary
entities E, where each ec € E¢ has a complementary relation (er, ec’) with the target entity
er.

We do not extract an entity without a complementary context (e.g., “Samsung Galaxy S6” in
“Samsung Galaxy S6 is great”, even though Samsung Galaxy S6 may be a complementary entity).

Domain: We assume that every target entity ez belongs to a pre-defined domain (or category)
Dom(er) = d € D. A review corpora RP*"(7) is all reviews under the same category as the target
entity er.

Domain Knowledge: Each domain d has its own domain knowledge. We consider two types

of domain knowledge: candidate complementary entity e, € EZ, and domain-specific verb v¢ € V4.
All target entities e under the same domain share the same domain knowledge.

Basic Ideas

The basic idea of the proposed method is to use dependency paths to identify complemen-

tary entities. Due to different linguistic patterns, these dependency paths may have different

113

performance on extraction. Some dependency paths may have high precision but low recall and
vice versa. To ensure the quality of extraction, high precision dependency paths are preferred.
The idea of using domain knowledge is that high precision dependency paths can expand high
quality (precision) domain knowledge on a large number of unlabeled reviews, which in turn
helps low precision but high recall dependency paths to improve their precisions. In the end,
the domain knowledge serves as a filter to remove noises in low precision paths. This framework
can potentially be generalized to any extraction task when a large amount of unlabeled data is
accessible. We describe the proposed method in the following two parts:

Basic Entity Recognition: We analyze the linguistic patterns and leverage multiple dependency
paths to recognize complementary entities. The major goal of the basic entity recognition is to
get high recall because each complementary entity can be infrequent and we care about each
mention of a complementary entity. Due to similarity with other noisy patterns, these paths
tend to have low precision.

Recognition via Domain Knowledge Expansion: We expand the domain knowledge on a large
number of unlabeled reviews using a set of high precision dependency paths to compensate
for the low precision (noisy) dependency paths. First, we extract candidate complementary
entities for each domain using only verbs fit and work. Then we use the extracted candidate
complementary entities to induce domain-specific verbs (e.g., insert for micro SD card, or hold for
tablet stand). Finally, we integrate these two types of domain knowledge into the dependency
paths of basic entity recognition to improve precision.

Dependency Paths

114

In this subsection, we briefly review the concepts used by dependency paths. We further
describe how to match a dependency path with a sentence.

Dependency Relation: A dependency relation is a typed relation between two words in a

sentence with the following format of attributes:

type(gov, govidx, govpos, dep, depidx, deppos),

where type is the type of a dependency relation. gov is the governor word. govidx is the index
(position) of the gov word in the sentence. govpos is the Part-Of-Speech tag of the gov word. dep
is called dependent word, depidx is the index of the dep word in the sentence and deppos is the POS
tag of the dep word. The direction of a dependency relation is from the gov word to the dep word.

A sentence can be parsed into a set of dependency relations through dependency parsingﬂ
[[160,[168]. For example, “It works with my phone” can be parsed into a set of dependency

relations in[Table XII, which is further illustrated in

Dependency Segment: A dependency segment is an abstract form of a dependency relation. A

dependency segment has the following format of attributes, which is similar to a dependency
relation:

tht
(src, srcpos) Lt/ AN (dst, dstpos),

'We utilize Stanford CoreNLP as the tool for dependency parsing.

ID Dependency Relation Syntactic Dependency Relation Type | Explanation

1 nsubj(works, 2, VBZ, It, 1, PRP) nsubj: nominal subject Relate the 1st word “It”
to the 2nd word “works”

2 root (ROOT, 0, None, works, 2, VBZ) root: root relation Relate the 2nd word “works”
to the virtual word ROOT

3 case(phone, 5, NN, with, 3, IN) case: case-marking Relate the 3rd word “with”
to the 5th word “phone”

4 | nmod:poss(phone, 5, NN, my, 4, PRP$) | nmod:poss: possessive nominal modifier | Relate the 4th word “my”
to the 5th word “phone”

5 | nmod:with(works, 2, VBZ, phone, 5, NN) | nmod:with: nominal modifier via with | Relate the 5th word “phone”

to the 2nd word “works”

TABLE XII

Dependency relations.

y
""" NvBz
r.A_1 _——-‘\——_

It works with my

1 2

nmod:with
case
d:
ano poss 0
—_—— —_— A
phone .
3 4 5

Figure 10. Visualization of dependency relations.

115

116

where src is the source word. srcpos is the source word'’s the POS tag. dst is the destination word,
dstpos is the POS tag of the destination word and pathtype is the dependency type of the segment.
Similarly, the direction of an segment is from the src word to the dst word.

Dependency Segment Matching: A dependency segment can have a dependency segment

matching with a dependency relation. To have such a match, we must ensure that attributes src,
srcpos, dst, dstpos and pathtype in an segment match attributes gov, govpos, dep, deppos and type in
a dependency relation respectively. So the direction of a dependency segment also matches the
direction of a dependency relation.

To allow matching to cover more specific dependency relations, we further define a set of
rules when matching the attributes, which are summarized in Please note that we
finally want to extract the complementary entity covered by tag CETT. Other kinds of attributes
are defined to make the dependency paths more compact.

The segment:

nmod:cmprel

(“work”, V) (CETT, N) (6.2)

can match the dependency relation 5 in This is because source word “work” is the
lemmatized governor word “works”; V covers VBZ; N covers NN; and nmod:cmprel covers
dependency type nmod:with. Since the tag CETT as the destination word in the segment covers
the dependent word “phone” in dependency relation 5, this segment indicates “phone” is a
possible complementary entity.

Dependency Path: A dependency path is a finite sequence of dependency segments connected

by a sequence of src/dst attributes.

Path Attr. Value Rel. Attr. Value
src/dst [lem. word] | gov/dep [specific form]
src/dst */ CETT gov/dep [any word]
srcpos/dstpos N gov/dep | NN NNP NNPS NP
srcpos /dstpos Vv gov/dep VB VBD VBG
VBN VBP VBZ

srcpos/dstpos] gov/dep JTTIRJJS
pathtype nmod:cmprel type nmod:with nmod:for

nmod:in nmod:on

nmod:to nmod:inside

nmod:into

TABLE XIII

Rules of matching attributes of dependency segments and dependency relations

117

118

Given different directions of 2 adjacent dependency segments, there are 4 possible types of
a connection: ——, =<, «+— and <<.

Dependency Path Matching: A procedure of dependency path matching is specified as the

following: when matching a dependency path with a sentence, we first check whether there
are at least one dependency relation for each segment. If so, we further check whether the two
directions of dependency segments for each connection match the directions of two correspond-
ing dependency relations and whether the connected governor/dependent words from two
matched dependency relations have the same index (they are the same word in the original
sentence).

Finally, after we have a successful dependency path matching, we extract the gov/dep in
dependency relations labeled as CETT by the dependency path.

The following path

nmod:poss

(*, V) Lmodwith (CETT, N) (“my”, PRP$) (6.3)

can match the sentence “It works with my phone” since the two segments match dependency
relation 5 and 4 respectively. Here wildcard * matches word “works”. Further the dependent
word “phone” of the dependency relation 5 have the same index (the 5th word described in
Table XII)) as the governor word of the dependency relation 4.

Basic Entity Recognition

Syntactic Patterns of Complementary Relation

119

There are many ways to mention complementary relations in reviews. Complementary
relations are usually expressed with or without a preposition. In the first case, the preposition
is used to bring out the complementary entity and is usually associated with a verb, a noun, an
adjective or a determiner; in the second case without a preposition, reviewers only use transitive
verbs to bring out the complementary entities. The verbs used in both cases can either be general
verbs such as “fit” or “work”, or domain-specific verbs such as “insert” for micro SD card or
“hold” for tablet stand. Complementary relations can also be expressed through nouns, adjectives
or determiners. We discuss the syntactic patterns of complementary relations as the following:
Verb+Prep: The majority of complementary relations are expressed through a verb followed
by a preposition. For example, “It works with my phone” falls into this pattern, where the
verb “works” and the preposition “with” work together to relate the pronoun “It” to “phone”.
The target entity can appear in this pattern either as the subject or as the object of the verb. In
the previous example, the subject “It” indicates the target entity. In “I insert the card into my
phone”, “the card” is the object of the verb “insert”. The target entity can also be implicitly
assumed as in “Works with my phone.”

Noun+Prep: Complementary relation can be expressed through nouns. Those nouns typically
have opinions. For example, “No problem” in “No problem with my phone” has a positive
opinion on “phone”.

Adjective+Prep: Complementary relation can also be expressed through adjectives with prepo-
sitions. For example, the adjective “useful” together with the preposition “for” in “It is useful

for my phone” expresses a positive opinion on a complementary relation.

120

Path Type 1D Path Example
Verb+Prep 1 (verb, V) modcprel, (CETT,N) It works/V with my phone[CETT].
Noun+Prep 2 (*, N) e cpTT, Ny No problem/N with my phone[CETT].
Adjective+Prep 3 * i (CETT, N) It is compatible/] with my phone[CETT].
Determiner+Prep | 4 (*,DT) % (CETT, N) I use this/DT for my phone[CETT].

5 | (verb, V) “% (CETT, N) ™", (“4my”, PRPS) It fits my phone[CETT].
ver 6 | (“it"s"this”, DT) <= (verb, v) “% (CETT, N) It fits iPhone[CETT].

TABLE XIV

Summary of dependency paths

Determiner+Prep: Determiner “this” in “I use this for my phone” refers to the target entity. It
is associated with the preposition “for” in dependency parsing.
Verb: Complementary relation can be expressed only through verbs without using any prepo-
sition. For example, in “It fits my phone”, the subject “It” is related to the object “phone” via
only the transitive verb “fits”. This pattern has low precision on extraction since almost every
sentence has a subject, a verb, and an object. We improve the precision of this pattern using
domain knowledge.

Dependency Paths for Extraction

According to the discussed patterns, we implement dependency paths, which are sum-
marized in For patterns with a preposition (e.g., Verb+Prep, Noun+Prep, Adjec-

tive+Prep, Determiner+Prep), we use dependency type nmod:cmprel to encode all prepositions,

121

because cmprel represents with, for, in, on, to, inside and into. Then type nmod:cmprel can relate
verbs, nouns, adjectives or determiners to the complementary entities. As shown in Example 1
and 2, nmod:cmprel can match nmod:with and relates the verb “works” to the complementary
entity “phone” for dependency relation 5 in[Table XTI} This path is defined as Path 1 in[Table XIV]

For pattern Verb, we use dependency type dobj to relate a verb to the complementary entity.
Since this pattern tends to have low precision, we further constrain the pattern by connecting a
nsubj relation or a nmod:poss relation, as described in Path 5 or Path 6 respectively in
For example, “It fits iPhone” has the following two dependency relations: nsubj(“fits”, VBZ, 2,
“It”, PRP, 1) and dobj(“fits”, VBZ, 2, “iPhone”, NNP, 3). Path 6 can match these two dependency
relations separately and then check the two “fits”s have the same index 2 in these two dependency
relations. So “iPhone” tagged as CETT can be extracted.

Finally, these paths may appear multiple times in a sentence. So multiple complementary
entities in a sentence can be extracted. For example, “It works with my phone, laptop and tablet”
has 3 complementary entities. It has the following 3 dependency relations: nmod:with(“works”,
VBZ, 2, “phone”, NN, 5), nmod:with(“works”, VBZ, 2, “laptop”, NN, 7) and nmod:with(“works”,
VBZ, 2, “tablet”, NN, 9). So Path 1 can have 3 matches to extract “phone”, “laptop” and “tablet”.

Please note that|[Table XIV]does not list all possible dependency paths. For example, com-
plementary entities can also serve as the subject of a sentence: “My phone likes this card”. We
simply demonstrate typical dependency paths and new dependency paths can be easily added
into the system to improve the recall.

Post-processing

122

Since a dependency relation can only handle the relation between two individual words,
a complementary entity (labeled by CETT) extracted from Subsection B can only contain a
single word. In reality, many complementary entities are named entities that represent product
names such as “Samsung/NNP Galaxy /NNP S6/NNP”. Dependency relations usually pick
a single noun (e.g., “S6”) and relate it with other words in the phrase via other dependency
relations (e.g., type compound). We use the regular expression pattern (N)(N|CD)* to chunk
a single noun into a noun phraseﬂ This pattern means one noun (N) followed by 0 to many
nouns or numbers. Nouns and numbers (model number) are typical POS tags of words in a
product name.

Recognition via Domain Knowledge Expansion

Using the paths defined tends to have low precision (noisy) of extractions since syntactic
patterns may not distinguish a complementary relation from other relations. For example, Path 6
can match any sentence with type dobj. A sentence like “It has fast speed” uses type dobj to bring
out “speed”, which is a feature of the target entity itself. To improve precision, we incorporate
category-level domain knowledge (candidate complementary entities and domain-specific
verbs) into the extraction process. Those knowledge can help to constrain possible choices of
CETT and verb in dependency paths.

We mine domain knowledge from a large number of unlabeled reviews under the same

category. We get those two types of domain knowledge by bootstrapping them only from

!We implement the noun phrase chunker via NLTK: http://www.nltk.org/

123

Type | ID Path Example
CCE | 7 | (“fit"/ work”, V) modicmprel, (CETT,N) modiposs, (“my”, PRP$) It works with my phone[CETT].
8 (verb, V) rmedenprel (CETT,N) modposs (“my”, PRP$) Iinsert[verb] the card into my phone[CETT].
DSV : oSS
9 (“this”, DT) < (verb, V) "™, (“uy”, PRPS) This holds[verb] my phone[CETT] well.
TABLE XV

Summary of dependency paths for extraction

general verb fit and work. We randomly select 6000 reviews for each domain (category) to
accumulate enough knowledge (knowledge from reviews of a single target entity may not be
sufficient). One important observation is that products under the same domain share similar
complementary entities and use similar domain-specific verbs. For example, all micro SD cards
have camera, camcorder, phone, tablet, etc. as their complementary entities and use verbs like insert
to express complementary relations. But these complementary entities and domain-specific
verbs do not make sense for category tablet stand. To ensure the quality of the domain knowledge,
we utilize several high precision dependency paths. These paths have a low recall, so applying
them directly to the testing reviews of the target entity has poor performance. High precision
paths can leverage big data to improve the precision of other paths.

Exploiting Candidate Complementary Entities

Knowing category-level candidate complementary entities is important for extracting com-

plementary entities for a target entity under that category. For example, the sentences “It works

124

77 4

in iPhone”, “It works in practice” and “It works in 4G” have similar dependency relations
nmod:in(“works”, VBZ, 2, “iPhone” | “practice”/ “4G”, NN, 4). But only the first sentence has a
mention of a complementary entity; the second sentence has a common phrase “in practice”
with a preposition “in”; the third sentence expresses an aspect of the target entity. The key idea
is that if we know that iPhone is a potential complementary entity under the category of micro SD
card and “practice” and “4G” are not, we are confident to extract “iPhone” as a complementary
entity.

We use Path 7 to extract candidate complementary entities as described in [Table XV] It has
high precision because given a verb like “fit” or “work”, a preposition that relates to another
entity and the possessive pronoun “my”, we are confident that the entity modified by “my”
is a complementary entity. Lastly, all extracted complementary entities are stored as domain
knowledge for each category.

Exploiting Domain-Specific Verbs

Similarly, knowing category level domain-specific verbs is also important. This is because
each category of products may have its own domain verbs to describe a complementary relation.
If we only use general verbs (e.g., fit and work), we may miss many complementary entities that
are bring out via domain-specific verbs (e.g., insert for micro SD card or hold for tablet stand),
and this leads to poor recall rate. In contrast, if we consider all verbs into the paths without
distinguishing them, we may bring in lots of noisy false positives. For example, if the target
entity is a tablet stand, “It holds my tablet” and “It prevents my finger going numb” have similar

dependency relations (dobj(“holds” | “prevents”, VB, 2, “tablet” | “finger”, NN, 4)). The former

125

one has a complementary entity since “holds” indicates functionality that a tablet stand can have.
The latter does not have one. So if we know hold (we lemmatize the verbs) is a domain-specific
verb under the category of tablet stand and “prevents” is not, we are more confident to get rid of
the latter one. Therefore, we design dependency paths to extract high-quality domain-specific
verbs. This time, candidate complementary entities can help to identify whether a verb has a
semantic meaning of complement. So we leverage the domain knowledge extracted in Subsection
A to extract domain-specific verbs. In the end, we get domain-specific verbs from general seed
verbs fit and work.

Path 8 and 9 in are used to get verbs in pattern Verb+Prep and Verb respectively.
These paths also have high precision because given possessive modifier “my” modifying a
complementary entity or determiner “this” indicating a target entity it is almost certain that the
verb between them indicates a complementary relation. Then we keep the words tagged by verb
more than once (to reduce the noise) and store them as domain knowledge. Please note that we
do not further expand domain knowledge to avoid reducing the quality of domain knowledge.

Entity Extraction using Domain Knowledge

We use the same dependency paths to perform the extraction. But this time we utilize the
knowledge of candidate complementary entities and domain-specific verbs under the same
category as the target entity. During matching, we look up candidate complementary entities
and domain-specific verbs for tags CETT and verb respectively. But there is an exception for
CETT. Since a named entity as a complementary entity may rarely appear again in a large

number of reviews, we ignore such a check if the word covered by CETT can be expanded

126

Product Revs. | Sents. | Rel. | Revs. w/ Rels.
Stylus 216 892 | 165 116
Micro SD Card 216 802 | 193 149
Mouse 216 | 1158 | 221 136
Tablet Stand 218 784 | 154 115
Keypad 114 | 618 | 113 76
Notebook Sleeve || 109 405 | 125 84
Compact Flash 113 347 | 99 82
TABLE XVI

Statistics of the CER dataset

into a noun phrase (more than 1 word) during post-processing. Furthermore, we notice that
knowledge about target entities is also useful. For example, “I insert this card into my phone”
uses “this” to bring out the target entities, which may indicate nearby entities are complementary
entities. However, knowledge about a target entity may be expanded on reviews of that target
entity (test data) rather than reviews under the same category because target entities are not
the same under the same category.

Experimental Results

Dataset

NP Chunker OpenNLP UIUC NER CRF Sceptre
Product
P R A|P R FA|P R FAH|P R F P@25
Stylus 021 096 035|003 013 005|041 021 028 |0.69 046 0.55 0.04
MicroSD Card | 026 099 041 | 0.04 0.14 007|034 039 036|085 047 06 0.16
Mouse 022 098 036| 01 04 015| 03 026 028|065 04 049 0.16
Tablet Stand 025 097 04 | 006 021 009|082 016 027|073 044 0.55 0.04
Keypad 02 098 033|005 021 008| 04 025 031063 024 035 0.04
Notebook Sleeve | 0.33 097 05 | 005 01 006|079 026 04 | 064 026 037 0.0
Compact Flash 03 095 046|006 016 0.09|056 036 044|077 033 046 0.04
“My” Entity CER CER1K+ CER3K+ CER6K+
P R A|P R A|P R A|P R FA|P R kA
Stylus 05 054 052|035 08 05 |08 064 075|088 069 077|086 071 0.78
Micro SD Card 063 051 056|039 08 052|081 0.64 071|079 0.66 072 | 08 0.67 0.73
Mouse 054 037 044|035 091 05 |0.69 0.69 0.69 | 0.66 0.7 0.68|0.66 0.72 0.69
Tablet Stand 058 043 049|041 084 055|068 039 05 |075 0.69 072|075 0.72 0.74
Keypad 054 046 05 | 033 092 049|066 067 066|067 073 07 |069 082 0.75
Notebook Sleeve | 0.69 0.38 049 | 046 071 056|093 05 065|093 065 076|092 0.66 0.77
CompactFlash | 075 0.61 0.67 | 046 088 0.6 | 086 0.63 073|086 0.68 076|085 0.7 0.77
TABLE XVII

Comparison of different methods for CER

127

128

Category 1K(s) | 3K(s) | 6K(s) Candidate Complementary Entity Domain-Specific Verbs
Cat:Stylus 1.16 4.53 749 | ipad 2, tablet, iPhone, Samsung Galaxy 2 | scratch, match, press, draw, sketch, sign
Cat:Micro SD Card 1.23 3.67 | 558 laptop, psp, galaxy s4, Galaxy tab add, insert, plug, transfer, store, stick
Cat:Mouse 1.61 5.1 7.71 Macbook pro, laptop bag, MacBook Air move, rest, carry, connect, click
Cat:Tablet Stand 1.51 4.08 6.93 | Nook, ipad 2, Kindle Fire, Galaxy tab, fire rest, insert, stand, support, hold, sit
Cat:Keypad 1.25 2.93 6.17 MacBook, MacBook pro, Mac hook, connect, go, need, use, fit, plug
Cat:Notebook Sleeve | 1.11 2.79 5.46 backpack, Macbook pro, Lenovo x220 show, scratch, bring, feel, protect
Cat:Compact Flash 149 3.29 6.45 dslr, Canon rebel, Nikon d700 load, pop, format, insert, put
TABLE XVIII

Running time of expanding domain knowledge

We select reviews of 7 products that have frequent mentions of complementary relations
from the Amazon review datasets [[156]]. We choose accessories because compatibility issues
are more frequently discussed in accessory reviews. The products are stylus, micro SD card,
mouse, tablet stand, keypad, notebook sleeve and compact flash. We select nearly 220 reviews for the
first 4 products and 110 reviews for the last 3 products. We select 50% reviews of the first 4
products as the training data for Conditional Random Field (CRF) (one supervised baseline).
The remaining reviews of the first 4 products and all reviews of the last 3 products are test data.
We split the training/testing data for 5 times and average the results. We label complementary
entities in each sentence. The whole datasets are labeled by 3 annotators independently. The

initial agreement is 82%. Then disagreements are discussed and final agreements are reached.

129

The statistics of the datasetd'| can be found in[Table XVIl We observe that more than half of the
reviews have at least one mention of complementary entities and more than 10% sentences have
at least one mention of complementary entities.

We also utilize the category information in the metadata of each review to group reviews
under the same category together. Then we randomly select 1000 (1K), 3000 (3K), 6000 (6K)
reviews from each category and use them for extracting domain knowledge. We choose different
scales of reviews to see the performance of CER under the help of different sizes of domain
reviews and the scalability of the running time of domain knowledge expansion.

Compared Methods and Evaluation

Since the proposed problem is novel, there are not so many existing baselines that can di-
rectly solve the problem. Except for CRF, we compare existing trained models or unsupervised
methods with the proposed methods.

NP Chunker: Since most product names are Noun Phrases (NP), we use the same noun phrase
chunker ((N)(N|CD)*) as the proposed method to extract nouns or noun phrases and take them
as names of complementary entity. This baseline is used to illustrate a close to random results.
OpenNLP NP Chunker: We utilize the trained noun phrase chunking model from OpenNLPEI
to tag noun phrases. We only consider chunks of words tagged as NP as predictions of comple-

mentary entities.

I'The annotated dataset is available at/https://www.cs.uic.edu/~hxu/

Zhttps:/ /opennlp.apache.org/

https://www.cs.uic.edu/~hxu/

130

UIUC NER: We use UIUC Named Entity Tagger [169] to perform Named Entity Recognition
(NER) on product reviews. It has 18 labels in total and we consider entities labeled as PRODUCT
and ORG as complementary entities. We use this baseline to demonstrate the performance of a
named entity tagger.

CREF: We retrain a Conditional Random Field (CRF) model using 50% reviews of the first 4 prod-
ucts. We use BIO tags. For example, “Works with my Apple iPhone” should be trained /predicted
as “Works/O with/O my/O Apple/B iPhone/I”. We use MALLETEI as the implementation of
CRF.

Sceptre: We also retrieve the top 25 compliments for the same 7 products from Sceptre [[156]]
and adapt their results for comparison. Direct comparison is impossible since their task is a link
prediction problem with different labeled ground truths. We label and compute the precision
of the top 25 predictions and assume annotators have the same background knowledge for both
datasets. We observe that the predicted products are mostly non-complementary products (e.g.,
network cables, mother board) and all 7 products have similar predictions.

“My” Entity: This baseline extracts complementary entities by finding all nouns/noun phrases
modified by the word “my” via dependency type nmod:poss (e.g., “It works with my phone”).
The word “my” usually indicates a product already purchased, so the modified nouns/noun

phrases are highly possible complementary entities. We use path

nmod:poss

(CETT, N) (“my”, PRP$)

'http://mallet.cs.umass.edu/

131

to extract complementary entities and use the same post-process step as CER/CER1K/3K/6K+.
CER: This method uses all paths without using any domain knowledge.

CER1K+, CER3K+, CER6K+: These methods incorporate domain knowledge extracted from
1000/3000/6000 domain reviews respectively.

We perform our evaluation on each mention of complementary entities and compute pre-
cision and recall of extraction. We compute the following terms in confusion matrix: true
positive (tp), false positive (fp) and false negative (fnn) of each prediction. For each sentence, one
extracted complementary entity that is contained in the annotated complementary entities from
the sentence is considered as one count for ¢p; one extracted complementary entity that is not
found contributes one count to fp; any annotated complementary entity that can not be extracted
contributes one count to fn. We run the system on an i5 laptop with 4GB memory. The system
is implemented using Python. All reviews are preprocessed via dependency parsing [[168]].

Result Analysis

demonstrates results of different methods. We can see that CER6K+ performs
well on all products. It significantly outperforms CER for each product. This shows that
domain knowledge can successfully reduce the noise and improve precision. More importantly,
we notice that using just 3K reviews already gets good performance. This is important for
categories with less than 6K reviews. We notice that the F1-scores of CER are close or worse
than baselines such as CRF or “My” Entity. The major reason for its low precisions is that Path
5 and Path 6 in [Table XIV|can introduce many false positives as we expected. Please note that

removing Path 5 and 6 can increase the F1-score of CER. But to have a fair comparison with

132

CER1K/3K/6K+ and demonstrate the room of improvement, we keep noisy Path 5 and 6 in
CER. “My” Entity has better precision but lower recall than those of CER baselines since not all
complementary entities are modified by “my”. CRF performs relatively well on these products.
But the performance drops for the last 3 products because of the domain adaptation problem.
In reality, it is impractical to have training data for each product. Sceptre performs poorly, we
guess the reason is that products in “Items also bought” are noisy for training labels. The overall
recall of UIUC NER is low because many complementary entities (e.g., general entities like
tablet) are not named entities. Please note that the information about domain knowledge (or
unlabeled data) may help other baselines, but all those baselines may not able to adopt domain
knowledge easily. The running time of all testing is short (less than 1 second), so we omit the
discussion here.

Next, we demonstrate the running time of domain knowledge expansion and samples of
domain knowledge in We observe that expanding knowledge is pretty fast and
scalable as the size of reviews grows. We can see that for each category most entities and verbs
are reasonable based on our common sense. For example, for category Cat:Stylus, the system
successfully detects capacitive screen devices as its candidate complementary entities and most
drawing actions as domain-specific verbs.

Case Studies

We notice that category-level domain knowledge is useful for extraction. Knowing candidate
complementary entities can successfully remove many words that are not complementary

entities or even entities. In the reviews of micro SD card, many features such as speed, data, etc.

133

a7 /a7

are mentioned; also, common phrases like “in practice”, “in reality”, “in the long run” are
also mentioned. Handling these cases one-by-one is impractical since identifying different
types of false-positive examples needs different techniques to identify. But knowing candidate
complementary entities can easily remove those false positives.

Domain-specific verbs such as draw, insert and hold are successfully mined for stylus, micro SD
card and tablet stand respectively. Taking tablet stand for example, the significant improvement of
the precision of CER1K/3K/6K+ comes from taking hold as a domain-specific verb. Reviewers
are less likely to use general verbs such as fit or work for tablet stand. The reason could be that
a tablet is loosely attached to a tablet stand. So people tend to use “It holds tablet well” a lot.
However, this sentence has a dobj relation that usually relates a verb to an object, which can
appear in almost any sentence. Knowing hold is a domain-specific verb is important to improve

the precision. The major errors come from parsing errors since reviews are informal texts.

6.2.2 - Augmented Key-value Pairs of Knowledge

This subsection focuses on the supervised method of complementary entity recognition. A
traditional supervised method like Conditional Random Field (CRF) may have good precision
on such extraction yet suffer from low recall due to unseen context words appear in the test
data but not in the training data. To solve this problem, instead of using supervised method, [§]]
uses an unsupervised method by leveraging manually-crafted high precision dependency
rules [[162}/165,[167,(170]] to expand (bootstrap) context words as knowledge on a large amount
of unlabeled data and combine those context words with another set of manually-crafted high

recall dependency rules for CER. However, crafting dependency rules for both context words

134

and CER can be time-consuming and such rules may be domain-dependent and subject to
change for new domains.

To benefit from both the supervised and unsupervised methods, we consider to automatically
learn patterns for both CER and knowledge expansion (of context words) from training data
and expand context word knowledge on unlabeled data. So when making predictions on the
test data, the model can leverage more contextual knowledge from unlabeled data to make
better predictions. Or put it another way, we wish the prediction behavior of a supervised
model can change after training when it sees more unlabeled data. This framework is inspired
by the lifelong sequence labeling method proposed in [95,171]]. However, we do not expand
knowledge for lifelong learning here and we make one step further: we automatically learn
knowledge-based features and knowledge (or context words) as key-value pairs rather than
manually crafting them. We use CRF as the base learner and augment CRF with knowledge-
based features (a modified dependency relation) that are automatically learned from the training
data. The augmented CREF is called Knowledge-based CRF (KCRF).

The proposed method has the following steps:

Pre-training We first train a CRF as a traditional sequence labeling training process using
hand-crafted features, including primitive features (defined later) such as dependency relation
based features. Then we automatically select from those primitive features as knowledge-based
features to build a group of key-value pairs as initial knowledge, where keys are selected feature
types and values are feature values (e.g., context words) appear in the training data.

Knowledge-based Training Then we train a Knowledge-based CRF (KCRF) based on the initial

135

knowledge. So KCRF knows which features (as keys) can be used to expand knowledge (get
more values for the same key).
Knowledge Expansion We expand the values in initial knowledge by iteratively collecting
reliable knowledge from reliable predictions on plenty of unlabeled reviews. Experiments
demonstrate that expanded knowledge is effective in predicting test data.

Preliminaries

We briefly review the terms used throughout this paper. We use dependency relations as
the major type of knowledge-based features since a dependency relation associates one word
(current word) with another word (context word), which can be viewed as a piece of context
knowledge.

Dependency Feature: A dependency feature for the n-th word is a simplified dependency

relation with the following attributes:

(role, type, gov/dep, govpos/deppos),

where role can be either “GOV” or “DEP” indicating whether the n-th word is a governor word
or a dependent word; type is the type of the original dependency relation; gov/dep is the other
word associated with the n-th word via the original dependency relation and govpos/deppos is
the POS tag of the other word.

Note here we omit the n-th word, its POS-tag in a dependency relation and define them as

separate features since they are the same for all dependency features of the n-th word.

136

Primitive Feature: A primitive feature can be either a dependency feature or a current word fea-

ture (taking the current word as a feature). Primitive features are used to generate a knowledge
base.

Knowledge Base: A knowledge base is a set of key-value pairs (k,v) € KB, where k is the

knowledge type and v is the knowledge value belonging to that type. The same k£ may have multiple
knowledge values. We further define separate knowledge bases KB for each tag t, € T, where
T is the set of output labels for sequence labeing and KB = {KB'|t, € T}.

Knowledge-based Feature: A knowledge-based feature is defined based on a knowledge type k&

in a knowledge base. We use d € D to denote an index about a knowledge-based feature in a
feature vector z,,. So x, 4 = 1 indicates that the d-th feature of the n-th word is a knowledge-
based feature of type kq with some (kq, v) found in KB. We use K = Uy, crK' to denote all
knowledge types in KB.

A primitive feature can generate a knowledge-based feature in the form of (k,v). Cur-
rent word feature has a corresponding knowledge type k¥ = [WORD] and takes the current
word as the knowledge value v (e.g., we use ([WORD], “phone”) to indicate “phone” is in the
knowledge base as type [WORD]). Dependency features have a corresponding knowledge
type k = [role, type, govpos/deppos], which is similar to a dependency feature. The gov/dep
part (the other word related to the current word in a dependency relation) is considered as
the knowledge value v = gov/dep. For example, if K={[WORD], [DEP, nmod:with, VBZ],
[GOV, nmod:poss, PRP$|} and we have knowledge value “phone” and “works” for the first

two types, we may have KB={([WORD], “phone”), ([DEP, nmod:with, VBZ], “works”) }. We

137

describe how to automatically obtain all knowledge types K and how to get initial knowledge
values in the next section.

Pre-training

The role of pre-training is to identify knowledge types K and initial knowledge values. It
is important to obtain useful knowledge types and reliable knowledge values because some
knowledge types may not help the prediction task and wrong knowledge values may be harmful
to the performance of predictions. Fortunately, a trained CRF model can tell us which features
are more useful for prediction and need to be enhanced with knowledge. The basic idea is to
perform a traditional CRF training using primitive features and select knowledge-based features
K and initial knowledge values based on the weights A of primitive features in the trained CRF
model.

Let 2], denote a feature vector of the n-th word in an input sequence for pre-training. We
use r € R to denote an index about a primitive feature so z;,, = 1 means the n-th word
has a primitive feature (e.g., WORD="phone” or (DEP, nmod:with, works, VBZ)) indexed by
r. We distinguish different feature functions according to the value of y,, and the primitive
features indexed by r in z/,. We care about the following type of feature function, which is a

multiplication of 2 indicator functions:

fro (ym x%) = H(yn = to)H($;L7r)7 (64)

138

It turns all combinations of primitive features r € R and tag set 7" into {0, 1}. Further we use
a similar notation Al¢ for the corresponding weight. A positive weight Ale > 0 indicates a
primitive feature indexed by r has positive impact on predicting tag t,; while a negative weight
Ale < 0 indicates a primitive feature indexed by r has negative impact on predicting tag t,.
After training CRF using primitive features, we obtain the weights \l> forr € Rand t, € T,
which are very important to know which primitive features are more useful for prediction and
need to be expanded. We use entropy to measure the usefulness of a primitive feature. We

compute the probability of each tag ¢, for r:

(L) = exp(Ar°)

=7 (6.5)
El exp()\ff)

Based on Equation [Equation 6.5, we compute the entropy for a primitive feature indexed by 7:

7|
H(r) == p (to)logp’ (to). (6.6)
o=1

The intuition of using entropy is that a salient primitive feature should favor some tags over the
others so it has low entropy. We select primitive features that attain the maximum probability

for tag t, and have entropies below § (We set § = 0.3 for |T'| = 2):

Rl = {r|H(r) < § At, = argmaxp"(t)}. (6.7)

17}

139

We obtain a set of primitive features indexed by R’ and use it to generate (k,v) for tag ¢, since
each primitive feature can be interpreted as a (k,v). We group the same k under R’ to form
the set K and use the associated v as initial knowledge value.

Knowledge-based Training

We train KCRF using knowledge-based features in this section. A knowledge-based feature
simply tells whether a feature found in an example with a specified knowledge type has some
values found in the current knowledge base (or KB). We use z,, to denote the feature vectors
with knowledge-based features for the n-th word and use d € D to denote a knowledge-based
feature indexed by d in x,,. So x, 4 = 1 indicates that the d-th feature is a knowledge-based
feature and the n-th word has a knowledge with type £, and initial knowledge value v found in

KB:

Tp,d =]I((kd, U) S KB). (68)

For example, if (| DEP, nmod:with, VBZ], “works”) € KB, the word “phone” has a dependency
relation knowledge-based feature with type £ = [DEP, nmod:with, VBZ] and v = “works” and
current word knowledge-based feature £k = [WORD] and v = “phone”. We denote the trained
KCREF as c and its parameters A°. It predicts on « and generates probabilities p(y|z; A°) fory € V.
Knowledge Expansion
We perform sequence labeling on a large amount of unlabeled reviews under the same

category as the target entity to expand the KB using c. We assume that target entities under

140

the same category share similar knowledge. Here the key point is to ensure the quality of the
expanded knowledge since it is very easy to have harmful knowledge from unlabeled reviews
without human supervision. We aggregate knowledge from reliable predictions on those reviews.
To obtain a reliable prediction for the n-th word, we marginalize over .y of other positions

except n as:

Plynle; A) =D -y > - Zp (y1:n]2; A°) (6.9)

Y1 Yn—1 Yn+1

Then if a tag ¢, attains the maximum probability that is larger than a threshold: max;, (p(y, =
to|x; X¢)) > &', we consider it as a reliable prediction for tag ¢, at position n. The knowledge-
based features k4 and potential knowledge values associated with such a reliable prediction are
considered as candidate knowledge. We use cKB as the set of candidate knowledge for tag t,.
We further prune the knowledge since similar knowledge may appear in the knowledge base of

another tag so this can make candidate knowledge from reliable predictions not reliable.

141

Algorithm 5: Knowledge Expansion
Input :(c,KB), with KB = {KB"|t, € T}, U = {u1, ..., uu}

Output: (¢, KB), with updated KB

1 do
2 transform each u € U into a sequence of knowledge-based feature vectors = € X using
KB

3 for x € X do

4 use (¢, KB) to predict

5 use[Equation 6.9|to compute p(yn|z; X°) forn=1: N
6 forn=1,...,N do

7 fort, € T do

8 if maxy, (p(yn = to|z)) > ' then

9 add associated (k, v) to cKB™ for k € K'
10 end

1 end

12 end

13 end

14 fort, € T do

15 cKBte « cKBte — Utl#tUcKBtl
16 KB.KBt + KB!* UcKB'°
17 end

18 | cKB ¢+ U, cKBP
19 while cKB # ()

20 return (c, KB)

Algorithm [f]is to maintain high-quality knowledge during expansion. We use U to denote a
set of unlabeled sequences and we transform u € U to knowledge-based feature vectors x € X

based on current knowledge base KB (line[2]). We apply KCRF ¢ and current KB on x and get

142

CRF(-)DR CRF CRF-Init KCRF
Product

P R F1 P R F1 P R F1 P R F1
Stylus 05 054 052075 050 060|084 064 073|066 084 0.74

Micro SD Card 0.63 051 056|089 044 059|087 057 069|077 070 0.74

Mouse 054 037 044|080 048 060|075 053 0.62|0.68 0.68 0.68
Tablet Stand 058 043 049|079 040 053|085 046 0.60 | 0.75 0.65 0.70
Keyboard 054 046 05 | 08 042 055| 08 034 048 | 066 0.72 0.69

Notebook Sleeve | 0.69 0.38 049 | 090 0.23 0.37 | 091 023 037|077 0.63 0.69

Compact Flash 075 0.61 067|092 046 062|089 051 0.65|082 073 0.77

TABLE XIX

Results of KCRF

reliable prediction in line[8] We add associated knowledge in line[9]) and prune it to get reliable
knowledge and update KB in line[I4}{17] The whole process will stop once no reliable knowledge
is available. Note that during knowledge expansion, KCRF c itself is never re-trained.

Experimental Results

Dataset

We use the datasetﬂ from [8], which includes 7 products. We take 50% reviews of the first 4

products as the training data for all methods that require supervised training. The remaining

"https://www.cs.uic.edu/~hxu/

https://www.cs.uic.edu/~hxu/

143

reviews of the first 4 products (for the in-domain test) and all reviews of the last 3 products (for
the out-of-domain test) are test data. Similar to 8], we also randomly select 6000 unlabeled
reviews for each category from [[156]] and use them as unlabeled reviews to expand knowledge.
Compared Methods
Since this paper proposes a supervised method on CER, we focus on the improvements of
KCRF over CRFE. We use CRFSuiteEI as the base implementation of CRF.
CRF(-)DR: This is a very basic CRF without dependency relations as features to show that
dependency relations are useful features. We use the following features: current word, POS-tags,
4 nearby words and POS-tags on the left and right, number of digits and whether a current
word has slash/dash.
CREF: This is the baseline with dependency relations as features. It is also the same learner as in
the pre-training step of KCRF.
CRF-Init: This baseline uses the trained KCRF and initial KB directly on test data without
knowledge expansion on unlabeled data.
KCREF: This is the proposed method that uses trained KCRF and initial KB to expand knowledge
on unlabeled reviews under the same category as the target entity. We empirically set 6’ = 0.8
as the precisions of most predictions are around 0.8.

Evaluation Methods

thttp:/ /www.chokkan.org/software/crfsuite/

144

We perform evaluation on each mention of complementary entities. We compute the fol-
lowing terms in confusion matrix: true positive (tp), false positive (fp) and false negative (fn).
For each sentence, one recognized complementary entity that is contained in the annotated
complementary entities for that sentence is considered as one count for the tp; one recognized
complementary entity that are not found contributes one count to the fp; any annotated comple-
mentary entity that can not be recognized contributes one count to the fin. Then we compute
precision P, recall R and Fl-score F1 based on tp, fp and fn.

Result Analysis

From Table XIX] we can see that KCRF performs well on F1-score. It significantly outperforms
other methods on recall, which indicates that the expanded knowledge is helpful. CRF-Init
performs better than CRF on most products, which indicates that knowledge-based features are
better than primitive features in general. However, we notice that in order to get a higher recall,
KCREF sacrifices its precision a lot. So how to further ensure that the expanded knowledge is of
high quality to keep high precision is still an open problem.

The performance of KCRF does not drop much for the last 3 products even though we do
not have any training data for those products. This is because KCRF can utilize unlabeled data
to expand knowledge about the last 3 products separately from the knowledge of the first 4
products. One intuitive example is that “work” can be a frequent general verb knowledge that
exists in the training data for some verb related knowledge type. Then later KCRF expands such
a verb to other domain-specific verbs like “insert” for Compact Flash that does not have training

data.

145

6.3 Question Answering

In this section, we discuss the usage of post-training to question answering. We focus on a

novel review-based task called review reading comprehension (RRC).

6.3.1 - Motivation

For online commerce, question-answering (QA) serves either as a standalone application of
customer service or as a crucial component of a dialog system that answers user questions. Many
intelligent personal assistants (such as Amazon Alexa and Google Assistant) support online
shopping by allowing the user to speak directly to the assistants. One major hindrance to this
mode of shopping is that such systems have limited capability to answer user questions about
products (or services), which are vital for customer decision making. As such, an intelligent
agent that can automatically answer customers” questions is very important for the success of
online businesses.

Given the ever-changing environment of products and services, it is very hard, if not impos-
sible, to pre-compile an up-to-date and reliable knowledge base to cover a wide assortment of
questions that customers may ask, such as in factoid-based KB-QA [172H175]. As a compromise,
many online businesses leverage community question-answering (CQA) [176]] to crowdsource
answers from existing customers. However, the problem with this approach is that many ques-
tions are not answered, and if they are answered, the answers are delayed, which is not suitable
for interactive QA. We explore the usage of product reviews as a large knowledge pool of user
experiences that can be exploited to answer users’ questions. Although there are existing studies

that have used information retrieval (IR) techniques [[176}[177]] to find a whole review as the

146

response to a user question, giving the whole review to the user is undesirable as it is quite
time-consuming for the user to read it.
Inspired by the success of Machine Reading Comphrenesions (MRC) [182},85]], we propose a

novel task called Review Reading Comprehension (RRC) as following.

Problem Definition: Given a question ¢ = (q1, . .., g) from a customer (or user) about a
product and a review d = (dy, ..., d,) for that product containing the information to answer
¢, find a sequence of tokens (a text span) a = (ds, ..., d.) in d that answers ¢ correctly, where

1<s<n,1<e<nands<e.

A sample laptop review is shown in [Table XX| We can see that customers may not only ask
factoid questions such as the specs about some aspects of the laptop as in the first and second
questions but also subjective or opinion questions about some aspects (capacity of the hard
drive), as in the third question. RRC poses some domain challenges compared to the traditional
MRC on Wikipedia, such as the need for rich product knowledge, informal text, and fine-grained
opinions (there is almost no subjective content in Wikipedia articles). Research also shows that
yes/no questions are very frequent for products with complicated specifications [[66}/176]].

To my knowledge, there is no existing work on RRC. We first build a dataset called ReviewRC,
using reviews from SemEval 2016 Task ﬂ which is a popular dataset for aspect-based sentiment
analysis (ABSA) [183]] in the domains of laptop and restaurant. We detail ReviewRC in Chapter

Given the wide spectrum of domains (types of products or services) in online businesses

"ttp://alt.qcri.org/semeval2016/task5/. We choose these review datasets to align RRC
with existing research on sentiment analysis.

http://alt.qcri.org/semeval2016/task5/

147

Questions

Q1: Does it have an internal hard drive ?
Q2: How large is the internal hard drive ?

Q3: is the capacity of the internal hard drive OK ?

Review

Excellent value and a must buy for someone
looking for a Macbook . You ca n't get any
better than this price and it come witha; an
internal disk drive . All the newer MacBooks
do not . Plus you get 500GB > which is also a
greatas feature . Also, the resale value on

this will keep . I highly recommend you get one

before they are gone .

TABLE XX

Review reading comprehension

148

and the prohibitive cost of annotation, ReviewRC can only be considered to have a limited
number of annotated examples for supervised training, which still leaves the domain challenges
partially unresolved.

To simplify the writing, we refer MRC as a general-purpose RC task on formal text (non-
review) and RRC as an end-task specifically focused on reviews.), where the former enhances
domain-awareness and the latter strengthens MRC task-awareness. Although BERT gains great
success on SQuAD, this success is based on the huge amount of training examples of SQuAD
(100,000+). This amount is large enough to ameliorate the flaws of BERT that has almost no
questions on the left side and no textual span predictions based on both the question and the
document on the right side. However, a small amount of fine-tuning examples is not sufficient
to turn BERT to be more task-aware.

Related Works

Many datasets have been created for MRC from formally written and objective texts. For
example, some datasets are from Wikipedia (SQuAD [82}85]], WikiHop [[178]], DRCD [[179]],
QuAC []180], HotpotQA [181]). Also, CoQA [84] is built from multiple sources, such as
Wikipedia, Reddit, News, Mid/High School Exams, Literature, etc. To the best of our knowledge,
MRC has not been used on primarily subjective reviews. As such, we created a review-based
MRC dataset called ReviewRC. Answers from ReviewRC are extractive (similar to SQuAD
[82,185]) rather than abstractive (or generative) (such as in MS MARCO [[182] and CoQA [84]).

This is crucial because online businesses are typically cost-sensitive and extractive answers

149

written by humans can avoid generating incorrect answers beyond the contents in reviews by
an Al agent.

Community QA (CQA) is widely adopted by online businesses [[176]] to help users. However,
since it solely relies on humans to give answers, it often takes a long time to get a question
answered or even not answered at all as we discussed in the introduction. Although there exists
researches that align reviews to questions as an information retrieval task [[176|[177]], giving
a whole review to the user to read is time-consuming and not suitable for customer service
settings that require interactive responses.

Knowledge bases (KBs) (such as Freebase [[172,/183||184]] or DBpedia [[185}/186]]) have been
used for question answering [[177]]. However, the ever-changing nature of online businesses,
where new products and services appear constantly, makes it prohibitive to build a high-quality
KB to cover all new products and services.

Reviews also serve as a rich resource for sentiment analysis [83,131,[133}[187]]. Although
document-level (review) sentiment classification may be considered as a solved problem (given
ratings are largely available), aspect-based sentiment analysis (ABSA) is still an open challenge,
where alleviating the cost of the human annotation is also a major issue. ABSA aims to turn
unstructured reviews into structured fine-grained aspects (such as the “battery” of a laptop)
and their associated opinions (e.g., “good battery” is positive about the aspect battery). Two
important tasks in ABSA are aspect extraction (AE) and aspect sentiment classification (ASC)
[83]], where the former aims to extract aspects (e.g., “battery”) and the latter targets to identify

the polarity for a given aspect (e.g., positive for battery). Recently, supervised deep learning

150

models dominate both tasks [52,/103|[104}148,[188]] and many of these models use handcrafted
features, lexicons, and complicated neural network architectures to remedy the insufficient
training examples from both tasks. Although these approaches may achieve better performances
by manually injecting human knowledge into the model, human baby-sat models may not be
intelligent enoug}ﬂ and automated representation learning from review corpora is always
preferred [52/[188]]. We push forward this trend with the recent advance in pre-trained language
models from deep learning [[14}[15)76/189,[190]. Although it is practical to train domain word
embeddings from scratch on large-scale review corpora [52]], it is impractical to train language
models from scratch with limited computational resources. As such, we show that it is practical
to adopt language models pre-trained from formal texts to domain reviews.

RRC may suffer from the prohibitive cost of annotating large-scale training data covering a
wide range of domains. And BERT severely lacks two kinds of prior knowledge: (1) large-scale
domain knowledge (e.g., about a specific product category), and (2) task-awareness knowledge
(MRC/RRC in this case). We detail the technique of jointly incorporating these two types of
knowledge as a post-training stage in Chapter

Results

As there are no existing datasets for RRC and to be consistent with existing research on
sentiment analysis, we adopt the laptop and restaurant reviews of SemEval 2016 Task 5 as the

source to create datasets for RRC. We do not use SemEval 2014 Task 4 or SemEval 2015 Task 12

"http://www.incompleteideas.net/IncIdeas/BitterLesson.html

http://www.incompleteideas.net/IncIdeas/BitterLesson.html

151

because these datasets do not come with the review (document)-level XML tags to recover whole
reviews from review sentences. We keep the split of training and testing of the SemEval 2016
Task 5 datasets and annotate multiple QAs for each review following the way of constructing
QAs for the SQuUAD 1.1 datasets [[82]].

To make sure our questions are close to real-world questions, 2 annotators are first exposed
to 400 QAs from CQA (under the laptop category in Amazon.com or popular restaurants
in Yelp.com) to get familiar with real questions. Then they are asked to read reviews and
independently label textual spans and ask corresponding questions when they feel the textual
spans contain valuable information that customers may care about. The textual spans are labeled
to be as concise as possible but still human-readable. Note that the annotations for sentiment
analysis tasks are not exposed to annotators to avoid biased annotation on RRC. Since it is
unlikely that the two annotators can label the same QAs (the same questions with the same
answer spans), they further mutually check each other’s annotations and disagreements are
discussed until agreements are reached. Annotators are encouraged to label as many questions
as possible from testing reviews to get more test examples. A training review is encouraged to
have 2 questions (training examples) on average to have good coverage of reviews.

The annotated data is in the format of SQUAD 1.1 [82] to ensure compatibility with existing
implementations of MRC models. The statistics of the RRC dataset (ReviewRC) are shown in
Since SemEval datasets do not come with a validation set, we further split 20% of

reviews from the training set for validation.

152

Dataset Num. of Questions | Num. of Reviews
Laptop Training 1015 443
Laptop Testing 351 79
Restaurant Training 799 347
Restaurant Testing 431 90
TABLE XXI

Statistics of ReviewRC Dataset

Compared Methods

As BERT outperforms existing open-source MRC baselines by a large margin, we do not
intend to exhaust existing implementations but focus on variants of BERT introduced in this
paper.

DrQA is a baseline from the document readelﬂ of DrQA [[191]]. We adopt this baseline
because of its simple implementation for reproducibility. We run the document reader with
random initialization and train it directly on ReviewRC. We use all default hyper-parameter
settings for this baseline except the number of epochs, which is set as 60 for better convergence.

DrQA+MRC is derived from the above baseline with official pre-trained weights on SQuAD.

We fine-tune document reader with ReviewRC. We expand the vocabulary of the embedding

1h’ctps: //github.com/facebookresearch/DrQA

153

layer from the pre-trained model on ReviewRC since reviews may have words that are rare in
Wikipedia and keep other hyper-parameters as their defaults.
For AE and ASC, we summarize the scores of the state-of-the-arts on SemEval (based the

best of our knowledge) for brevity.

Lastly, we have the following BERT variants.
BERT is the vanilla BERT fine-tuned on all 3 end tasks. We use this baseline to show that BERT’s
pre-trained weights alone have limited performance gains on review-based tasks.
BERT-DK post-trains BERT’s weights only on domain knowledge (reviews) and fine-tunes on
the 3 end tasks. We use BERT-DK and the following BERT-MRC.
BERT-MRC post-trains BERT’s weights on SQuAD 1.1 and then fine-tunes on the 3 end tasks.
BERT-PT (proposed method) post-trains BERT’s weights using the joint post-training algorithm
in Section A.2.1]and then fine-tunes on the 3 end tasks.

Evaluation Metrics and Model Selection

To be consistent with existing research on MRC, we use the same evaluation script from
SQuAD 1.1 [82] for RRC, which reports Exact Match (EM) and F1 scores. EM requires the
answers to have an exact string match with human-annotated answer spans. F1 score is the
averaged F1 scores of individual answers, which is typically higher than EM and is the major
metric. Each F1 score is the (harmonic) mean of individual precisions and recalls. It is computed
based on the number of overlapped words between the predicted answer and human-annotated

answers.

154

We set the maximum number of epochs to 4 for BERT variants, though most runs converge
just within 2 epochs. Results are reported as averages of 9 runs (9 different random seeds for
random batch generation) EI

Result Analysis

Domain Laptop Rest.
Methods EM F1 EM F1
DrQA [|191] 3826 50.99 | 49.52 63.73

DrQA+MRC [|191] 4043 58.16 | 52.39 67.77

BERT 39.54 5472 | 4439 5876

BERT-DK 4267 57.56 | 48.93 62.81

BERT-MRC 47.01 63.87 | 54.78 68.84

BERT-PT 48.05 6451 | 59.22 73.08
TABLE XXII

RRC in EM (Exact Match) and F1.

The results of RRC are shown in[Iable XXIIl We observed that the proposed joint post-training

(BERT-PT) has the best performance on all tasks in all domains, which show the benefits of

!We notice that adopting 5 runs used by existing researches still has a high variance for a fair
comparison.

155

having two types of knowledge. To our surprise, we found that the vanilla pre-trained weights
of BERT do not work well for review-based tasks, although it achieves state-of-the-art results
on many other NLP tasks [[15]]. This justifies the need to adapt BERT to review-based tasks.
We noticed that the roles of domain knowledge and task knowledge vary for different tasks
and domains. For RRC, we found that the performance gain of BERT-PT mostly comes from
task-awareness (MRC) post-training (as indicated by BERT-MRC). The domain knowledge helps
more for restaurant than for laptop. We suspect the reason is that certain types of knowledge
(such as specifications) of laptop are already present in Wikipedia, whereas Wikipedia has little
knowledge about restaurant. We further investigated the examples improved by BERT-MRC
and found that the boundaries of spans (especially short spans) were greatly improved.

The errors on RRC mainly come from boundaries of spans that are not concise enough and
incorrect location of spans that may have certain nearby words related to the question. We
believe precisely understanding user’s experience is challenging from only domain post-training

given limited help from the RRC data and no help from the Wikipedia data.

6.4 Dialog System

Given the recent popularity of research in dialog system, I further discuss the usage of
lifelong representation learning for conversational Al I mainly focus on two tasks: one is the
extension of RRC discussed in the previous section; the other is a novel task called conversational

recommendation that aims to learn dynamic graph reasoning.

156

6.41 - Review Conversational Reading Comprehension (RCRC)

Seeking information to assess whether a product or service suits one’s needs is an important
activity in consumer decision making. One major hindrance for online businesses is that the
consumers often have difficulty to get answers to their questions. With the ever-changing envi-
ronment, it is very hard, if not impossible, for businesses to pre-compile an up-to-date knowledge
base to answer user questions as in KB-QA [172-175]]. Although community question-answering
(CQA) helps [[176], one has to be lucky to get an existing customer to answer a question quickly.
There is work on retrieving whole reviews relevant to a question [176,177]], but it is not ideal for
the user to read the whole reviews to fish for answers.

Inspired by conversational reading comprehension (CRC) [84}/180,/192]], we explore the
possibility of turning reviews into a valuable source of knowledge of real-world experiences
and using it to answer customer or user multi-turn questions. We call this Review Conversational
Reading Comprehension (RCRC). The conversational setting enables the user to go into details
via more specific questions and to simplify their questions by either omitting or co-referencing
information in the previous context. As shown in[6.4.1} the user first has an opinion question
about “retina display” (an aspect) of a laptop. Then he/she carries (or omits) the question type
opinion from the first question to the second question about another aspect “boot-up speed”.
Later, he/she carries the aspect of the second question, but changes the question type to opinion
reason and then co-references the aspect “SSD” from the third answer and asks for the capacity
(a sub-aspect) of “SSD”. Unfortunately, there is no answer in this review. Finally, the customer

asks another aspect as in the fifth question. RCRC is defined as follows.

157

A Laptop Review:

I purchased my Macbook Pro Retina from my school since I
had a student discount , but I would gladly purchase it from
Amazon for full price again if I had too . The Retina is great
, its amazingly fast when it boots up because of the

and the clarity of the screen is amazing as well...

Turns of Questions from a Customer:

¢1: how is retina display ?

q2: speed of booting up ?

g4: what ’s the capacity of that ? (NO ANSWER)

¢5: is the screen clear ?

TABLE XXII

Review conversational reading comprehension (RCRC)

RCRC Definition: Given a review that consists of a sequence of n tokens d = (di,...,dy), a
history of past £ — 1 questions and answers as the context C' = (q1, a1, g2, a2, . . ., gx—1, ax—1) and
the current question ¢, find a sequence of tokens (a textual span) a = (ds,...,d.) in d that

answers g based on C', where 1 < s <n, s < e <mn,and s < e, or return NO ANSWER (s,e = 0)
if the review does not contain the answer for g;.

Note that although RCRC focuses on one review, it can potentially be deployed on the setting
of multiple reviews (e.g., all reviews for a product), where the context C' may contain answers
from different reviews. To the best of our knowledge, there are no existing review datasets
for RCRC. We first build a dataset called (RC); based on laptop and restaurant reviews from
SemEval 2016 Task 5]

Given the wide spectrum of domains in online businesses and the prohibitive cost of anno-
tation, (RC); has limited training data, as in many other tasks of sentiment analysis.

As a result, the challenge is how to effectively improve the performance of RCRC. We adopt
BERT [[15] as our base model since it can be either a feature encoder or a standalone model that
achieves good performance on CRC [[84]]. BERT bears with task-agnostic features, which require
task-specific architecture and many supervised training examples to train(fine-tune) on an end
task. As (RC)3 has limited training data, we propose a novel task-aware pre-tuning to further
bridge the gap between BERT pre-training and RCRC task-awareness, as discussed in Chapter

Pre-tuning requires no annotation of CRC (or RCRC) data but just QA pairs (from CQA)

"nttp://alt.qcri.org/semeval2016/task5/ We choose this dataset to better align with ex-
isting research in sentiment analysis.

http://alt.qcri.org/semeval2016/task5/

159

and reviews that are largely available online. The data are general and can potentially be used
in other machine reading comprehension tasks. Experimental results show that the proposed
approach achieves competitive performance even compared with the supervised approach
using a large-scale annotated dataset.

Datasets

We adopt SemEval 2016 Task 5 as the review source for RCRC (to be consistent with research
in sentiment analysis), which contains two domains laptop and restaurant. We kept the split of
training and testing and annotated dialogs on each review. The annotation guideline can be
found in supplemental materia]ﬂ To ensure questions are real-world questions, annotators are
tirst asked to read hundreds of community questions and answers (CQA) from real customers.
The statistics of the annotated (RC), dataset is shown in We use 20% of the training
reviews as the validation set for each domain.

For the proposed pre-tuning, we collect QA pairs and reviews for these two domains. For
laptop, we collect the reviews from [48]] and QA pairs from [|66]] both under the laptop category
of Amazon.com. We exclude products in the test data of (RC),. This gives us 113,728 laptop
reviews and 19,104 QA pairs. For restaurant, we crawl reviews and all QA pairs from the top
60 restaurants in each U.S. city from Yelp.com. This ends with 197,333 restaurant reviews and
49,587 QA pairs. Based on the number of QAs, Algorithm 1 is run £ = 10 times for laptop and

k = 5 times for restaurant.

!The annotated data is in the format of CoQA [|84] to help future research. But we do not focus on
generative annotation as in CoQA because businesses are sensitive to errors of generative models

Training Laptop | Restaurant
of reviews 445 350
of dialogs 506 382
of dialog /w 3+ turns 375 315
of questions 1679 1486
% of no answers 24.3% 24.2%
Testing Laptop | Restaurant
of reviews 79 90
of dialog 170 160
of dialog /w 3+ turns 148 135
of questions 804 803
% of no answers 26.6% 28.0%
TABLE XXIV

Statistics of (RC)2 Datasets.

160

161

To compare with the performance of a fully-supervised approach, we leverage the CoQA
dataset with 7,199 documents (covering domains in Children’s Story, Mid/High School Lit-
erature, News, Wikipedia, etc.) and 108,647 turns of question/answer span annotated via
crowdsourcing.

Compared Methods

We compare the following methods:

DrQA is a CRC baseline coming with the CoQA datasetﬂ

DrQA+CoQA is the above baseline pre-tuned on the CoQA dataset and then fine-tuned on
(RC); to show that even DrQA pre-trained on CoQA is sub-optimal.

BERT[is the pre-trained BERT weights directly fine-tuned on (RC), for ablation study on the
effectiveness of pre-tuning.

BERT+review first tunes BERT on domain reviews using the same objectives as BERT pre-
training and then fine-tunes on (RC),. We use this baseline to show that a simple domain-
adaptation of BERT is not sufficient.

BERT+CoQA first fine-tunes BERT on the supervised CoQA data and then fine-tunes on (RC)s,.
We use this method to show that our pre-tuning is still very competitive even compared with
using this large-scale supervised data.

BERT+Pre-tuning is the proposed approach.

Thttps://github.com/stanfordnlp/coqga-baselines

2We choose BERTpasg as we cannot fit BERT arcg into the memory.

Domain Laptop Rest.
Methods EM F1 EM F1
DrQA 28.5 36.6 | 41.6 50.3
DrQA+CoQA (supervised) 40.4 514 | 47.7 585
BERT 38.57 48.67 | 46.87 55.07
BERT +review 3453 43.83 | 4723 53.7
BERT+CoQA (supervised) 471 589 | 56.57 67.97
BERT+Pre-tuning 46.0 5723 | 54.57 64.43
TABLE XXV

RCRC on EM (Exact Match) and F1.

Hyper-parameters and Evaluation

162

We set the maximum length of BERT to 256 with the maximum length of context+question

t0 96 (hmax = 9 for Algorithm [3|) and the batch size to 16. We perform pre-tuning for 10k steps.

CoQA fine-tuning converges in 2 epochs. Fine-tune RCRC is performed for 4 epochs and most

runs converged within 3 epochs. We search the maximum number of turns in context C' for

RCRC fine-tuning using the validation set, which ends with 6 turns for laptop and 5 turns for

restaurant. Results are reported as averages of 3 runs. To be consistent, we leverage the same

evaluation script as CoQA, which reports turn-level Exact Match (EM) and F1 scores for all

turns in all dialogs.

Result Analysis

163

As shown in[Table XXV] BERT+Pre-tuning has significant performance gains over BERT
fine-tuned directly on (RC), by 9%. BERT is overall better than DrQA. But directly using
review documents to adapt BERT does not yield better results as in BERT+review. We suspect
the task of RCRC still requires a certain degree of general language understanding on the
question side and BERT+review also has the effect of (catastrophic) forgetting [[193]] on such
representation. Further, large-scale annotated CoQA data can boost the performance for both
DrQA and BERT. However, our pre-tuning approach still has competitive performance and it
requires no annotation at all. We examine the errors of BERT+Pre-tuning and realize that both
locations of span and span boundaries tend to have errors, indicating a significant room for

improvement.

6.4.2 —Memory-grounded Conversational Recommendation

Conversational recommendation aims to collect users’ up-to-date preferences through dialog,
instead of relying only on preferences learned offline. However, most existing systems make an
unnatural assumption that users’ preferences can only be collected offline or online, and neglect
the fact that the knowledge about a user is dynamic and cumulative. To this end, we propose a
novel concept called user memory graph, which aims to maintain the knowledge about a user in a
structured form for interpretability. Each turn of the dialog is grounded onto this user memory
graph for the reasoning of dialog policy, and more importantly, further accumulation of user
knowledge.

Motivation

164

Traditional recommender systems (such as the collaborative filtering (CF) system) often
aim to learn the static correlations between users’ preferences and associated items” attributes.
While it is a powerful approach that can leverage the vast offline user preferences data for
effective recommendations, such a system is challenged when operating in the dynamic world,
in which new users and items unseen during training frequently appear (so-called cold-start
problems). More importantly, static systems fail to capture users’ preferences that may change
from time to time.

Conversational recommendation systems [86]] are recently introduced to mitigate some of
these challenges by tracking users’ up-to-date preferences through dialogs. Most of the previous
works focus on extending the conventional task-oriented dialog literature with a recommender
system, which allows the conversational system to update user preferences online by asking
relevant questions (called “System Ask User Respond (SAUR)” for the current dialog.

In summary, existing systems either favor a static offline recommendation over existing
users or items or obtain short-term online updates on users’ preferences via dialogs. However,
they unnaturally contrast offline with online preference learning and neglect the fact that
the knowledge about a user is cumulative in nature. An intelligent system should be able to
dynamically maintain and utilize knowledge about a user collected so far for recommendations.

To this end, we first introduce a novel concept called user memory graph to represent dynamic
knowledge about users and associated items in a structured graph (e.g., previous offline history
of items visited /recommended, user preferences newly obtained through dialogs, etc.), allowing

for easy and holistic reasoning for recommendations. We then propose a new conversational

165

recommendation system grounded onto this graph, conceptually defined more formally as
follows:
Memory-grounded Conversational Recommendation: Given the history of previous items ‘H
(interacted or visited, etc.), candidate items C for recommendation, and their attributes (values),
an agent first (1) constructs a user memory graph G = {(e,r,€')|le,e’ € &,r € R} for user
ey; then (2) for each turn d € D of a dialog, the agent updates G with tuples of preference
G+ GU{(eu,r1,€1),--.}; (3) performs reasoning over G’ to yield a dialog policy 7 that either
(i) performs more rounds of interaction by asking for more preference, or (ii) predicts optimal
(or ground truth) items for recommendations 7" C C.

Related Work
Conversational Recommendation: Much existing research on conversational recommendation
focus on combining a recommender system with a dialog state tracking system, through the
“System Ask User Respond (SAUR)” paradigm. Once enough user preference is collected, such
systems often make personalized recommendations to the user. For instance, [86]] proposes to
mitigate cold-start users by learning users’ preferences during conversations and by linking the
learned preferences to existing similar users in a traditional recommender system.

[187,194]] propose a reinforcement learning (RL) setting for a conversational recommendation
system, where the dialog policy is learned with multiple policies and recommendation signals.

[[195] leverages reviews to mimic online conversations to update an existing user’s preference

and re-rank items.

166

Task-oriented Dialogue Systems are widely studied with multiple popular benchmark datasets
[[196-200]. Most of the state-of-the-art approaches [201-203]] focus on improving dialog state
tracking with span-based pointer networks, which predicts information essential in completing
a specified task (e.g., hotel booking, etc.)

Note that while conversational recommendation systems bears similarity to task-oriented

dialog systems, the key difference is that conversational recommendation aims to collect user’s
fine-grained soft preferences or sentiments, and utilize them collectively for ranking of items or
asking better questions (policy selection), instead of collecting hard constraints (e.g., number
of people, time and location) to filter a database and locate a record.
Graph Reasoning: Graph network [89,204-206]] is a type of neural networks proposed to
operate on graph structures. Several extensions to the original GCN have been proposed
[207,208]]. R-GCNs [88]] can be applied to large-scale and highly multi-relational data. Many
applications of GNNs include [209]], which introduces graph-based reasoning for an offline
recommendation system. A few works have recently been proposed to allow graph reasoning in
dialog systems. [210,211]] propose a new corpus to learn knowledge graph paths that connect
dialog turns. [212] introduces a knowledge-grounded dialog generation task given a knowledge
graph that is dynamically updated. However, these workes often focus on response generation
and do not address the conversational recommendation task.

Definition of Dialog Acts, SLots and Values

One key step to enable a dialog being grounded and maintained on a user memory graph is

to first define the semantic space of dialog acts, items, their slots and values (we borrow these

167

terms from task-oriented dialog system, which refer to items’ attributes) for utterances from both
the user and agent. As a result, agents can turn unstructured utterances into structured data for
user memory graph maintenance, integration and potentially future explainable reasoning for
policy. In this section, we first introduce the dialog acts for recommendation and then introduce
slots and values specifically defined for the recommendation in a restaurant domain.

Dialog Acts

The goal of designing dialog acts A is to formalize the intentions from both the user and
agent sides. demonstrates the dialog acts for both the user and the agent. From the
agent’s perspective, note that although existing conversational recommendation [[86}194,195]]
assumes a passive user interacts with the system and propose a System Ask — User Respond
(SAUR) paradigm, we further allow the user to actively participate in the recommendation by
allowing User Ask - System Respond (UASR) paradigm. In our dialog act, Open question, Yes/no
question and Inform can be used by a user to actively participate in the conversation. The dataset
we created from crowd workers also indicates that human likes to use these active dialog acts in
the context of conversational recommendation.

Slots and Values

This paper focuses on the recommendation in the restaurant domain. We utilize the customer
review dataset, which is widely used in existing research in recommender systems. By leveraging
the metadata of restaurants, we define slots S and their values V as shown in We

select |S| = 10 popular slots with rich values that can be encountered in the restaurant domain.

168

Dialog Act a Description Examples

User-side

Greeting Greeting to the agent I'd like to find a place to eat.
Inform Actively inform the agent your preference I'd like to find a thai restaurant .
Answer Answer to a question from the agent I prefer thai food.

Reply Reply to a recommendation I'll give it a try.

Open question

Yes/no question

Actively ask an open question about a recommended item.

Actively ask an yes/no question about a recommended item.

What kind of food do they serve ?

Do they serve thai food ?

Thanks Thanks the agent Thanks for your help.
Agent-side
Greeting Greeting to the user. How may I help you today ?

Open question
Yes/no question
Recommendation
Answer

Thanks

Ask an open question about a slot to the user
Ask a yes/no question about a value of a slot
Recommend items to the user.

Answers user’s questions on an item.

Thanks the user

What kind of food do you prefer ?

I saw you've been to thai restaurant, do you still like that ?
How about burger king, which serves fast food ?

They serve thai food.

Enjoy your meal.

TABLE XXVI

Dialog acts for agent A and user

169

Slot e,

Example Value e,

location
category
price

parking

noise
ambience
alcohol

good for meal
wifi

attire

Las Vegas, NV; Toronto, ON
fast food; burger; thai
cheap; expensive

garage; valet; lot

average; quiet

classy; intimate

full bar; beer and wine
brunch; lunch; dinner

paid; free

casual; formal

TABLE XXVII

Slots S and values V.

We omit the full set of values for brevity and only list a few examples. (Please refer to our

dataset for the exhaustive list).

Dataset

Based on the definition in Chapter we create a large-scale dataset called MGConvRex.

To my knowledge, it is the first dataset for conversational recommendation that is grounded

onto structured data of users’ profile and items. Although curating a dataset for a task-oriented

dialog system may involve building artificial scenarios (a pre-defined setting for collecting a

dialog) [213,214]] due to limited access of real-world data for a particular task, conversational rec-

ommendation can leverage rich user behaviors that persist in the wild datasets of recommender

170

system. As a result, we first introduce a simple way to create large-scale scenarios for dialog
transcription, as in Chapter Then we set up a Wizard-of-Oz environment [[196-199] to
collect dialogs from crowd workers and further annotate transcribed dialogs based on scenarios,
as in Chapter Our MGConvRex can be used for research in almost all crucial components
of a dialog system such as natural language understanding, sentiment analysis, dialog state
tracking, dialog policy generation, natural language generation, etc.

Scenario Generation

A scenario is a pre-defined user-agent setting to collect a dialog between two crowd workers,
where one plays the user and the other plays the agent. Let B = {0, 1} be a binary number.
We define a scenario consisting of the following parts: (e,,C, H,V, P,T), where ¢, is a user,
C e BICIXIVI means the candidate items C and their associated values V, H € B/®*Vl is about
visited items H and their values user e, has been to and known to the agent, V' € BIVIXISI
indicates values with their associated slots, P € B!S/*[V! is the user preference (which value the
user prefer for a slot) and 7 C C is the ground-truth items. Each scenario is constructed in the

following way:

e Preprocess reviews to keep users and items (restaurants) with at least 10 reviews (10-core
users/items). We further filter out users with more than 100 reviews as they are suspected

to be spam reviewers (not real-world users).

e Sort items (of reviews) by time and use a pre-defined timestamp (e.g., 01/01/2014) to

separate items into two groups: visited items and future items for all users.

171

Dataset All Dialogs Dialogs w/ History Dialogs w/o History

#of Dial. | #of Turns | Avg. # of Turns || # of Dial. | Avg. # of Turns | # of Dial. | Avg. # of Turns

Train 3225 30858 9.57 1570 9.52 1655 9.62
Dev 266 2488 9.35 137 9.18 129 9.53
Test 2078 19818 9.54 982 9.45 1096 9.61

TABLE XXVIII. Statistics of MGConvRex Dataset

e For each user, random select | 7| =1 Ditems (with 4 or 5 ratings) as the ground-truth items

T. Use the slots / values of the ground-truth items as user preference P.

e For each user, negatively sample |C| — | 7| items and combine them with the ground-truth

items T as candidate items C Bl from all available itemdl

e For each user ¢, create two scenarios: one with visited items H and one without. We keep

|H| € [5,20] visited items to ensure enough statistical information for a user’s past history.

Wizard-of-Oz Collection
We build a wizard-of-oz system to randomly pair two crowd workers to engage in a chat

session, where each scenario is split into two parts: (P, 7") for user and (e, C, H, V') for the agent.

!We use 1 ground-truth item to reduce the load of the transcribers and increase the difficulty of
reasoning.

2We choose |C| € [10,20] candidate items.

3To allow real-world recommendation setting, we ensure certain similarity over candidate items such
as all locations are from the same state as the ground-truth items.

172

So in each session, the worker playing the user can see a user’s preference P and ground-truth
items 7. The worker playing the agent can only see candidate items C' and the user’s visited
items H (if a scenario contains that). The user can tell the agent information from preference P
via utterance or check whether recommended items e; € 7 and reply to agent accordingly (they
are not allowed to tell the ground-truth directly). The job of a worker playing the agent is trying
to guess the ground-truth item e; € T, based on the values of the available candidate items
C, the current preference collected from the user via dialog, and optionally the user’s visited
items H. As a result, the goal of a conversation is like a game between the user and the agent,
where the agent needs to guess the user’s current preference and find the ground-truth item.
The collected behavior from the agent side reflects human-level intelligence of reasoning over
candidate items for recommendation. After transcribing a dialog, we further ask the workers
to rate the whole dialog and each other’s work, where dialogs with ratings lower than 4 are
filtered out. Lastly, we annotate dialog acts, items, slots, values and users’ utterance-level and
entity-level sentiment for each turn of dialogs.
Summary of MGConvRex: After annotation, we split the dialogs by their associated scenarios
into training, development and test sets. Note that we enforce all sets to have no overlapping on
users so that the training cannot carry the knowledge from any particular user into testing. The
statistics of MGConvRex can be seen in [Table XXVIII

Experimental Framework

While there exist many frameworks for task-oriented dialog systems [213-215]] due to its

popularity, to the best of our knowledge, there’s no existing framework for conversational

173

recommendation. Hence we first develop a new framework for training, offline and online
evaluation of supervised (imitation) learning and reinforcement learning agents. One key
component of our framework is the rule-based user simulator, which can be served for both the
evaluation and training of a reinforcement learning agent.

Results

Evaluation Metrics

We propose the following metrics to evaluate UMGR over the MGConvRex dataset both
offline (against the collected dialogs) and online (against user simulator).

Offline metrics

We report the following metrics to evaluate the model’s performance on dialog acts pre-
diction, turn-level prediction over entities (items, slots, and values), and dialog-level item
prediction.
Act Accuracy & F1 are reported for all dialog acts against turns in the testing set.
Entity Matching Rate (EMR, k@1, 3, 5) (Turn-level): these metrics measure the predicted
top-k entities against the annotated test dialogs. Note that the types of predicted entities (items,
slots or values) depend on the predicted dialog acts §*, so correctly predicted entities must
have correctly predicted dialog acts first.
Item Matching Rate (IMR) (Dialog-level): this measures all predicted items in a dialog against
the ground-truth item e;.

Online metrics

174

Offline Evaluation Online Evaluation
Methods Act Acc. | ActF1 EMR IMR Success Rate
@1 @3 @5

RandomAgent 0.1769 0.182 | 0.0229 | 0.0229 | 0.0229 | 0.052 0.0659
RecAgent 0.2568 0.0681 | 0.0262 | 0.0262 | 0.0262 | 0.3826 0.3855
Pretrained Emb. 0.2859 0.0741 | 0.1264 | 0.2484 | 0.316 | 0.0 0.0
UMGR (Proposed) 0.643 0.5534 | 0.2329 | 0.4416 | 0.487 | 0.5226 0.4315

- No Dialogue Acts 0.3914 0.2137 | 0.2503 | 0.4383 | 0.4777 | 0.6165 0.4293

- Prev. User Act Only | 0.6187 0.5375 | 0.2255 | 0.4175 | 0.4561 | 0.5693 0.4032

- Static G 0.6355 0.5452 | 0.0957 | 0.2769 | 0.3494 | 0.0914 0.11
UMGR w/ History 0.5778 0.4761 | 0.0769 | 0.2111 | 0.2987 | 0.2872 0.2592
UMGR w/o History | 0.6146 0.4575 | 0.0597 | 0.1546 | 0.2498 | 0.1122 0.1032

TABLE XXIX. Results of UMGR

In addition to offline evaluation, we report the following online metric against the user
simulator to dynamically test the performance of recommendation. This mitigates an assumption
in offline metrics that all past turns (from the human-annotated dialogs) are correct, which
limits the interactive evaluation of conversations.

Success Rate: tracks whether the interaction with user simulators yields the ground-truth item
e;. We use the scenarios from the same test-set dialogs used for the offline evaluation. The
maximum number of turns is simulated as 11.

Compared Methods

175

Our framework implements the following methods:
RandomAgent: As a baseline, we implement an agent that randomly picks a dialog act and
randomly pick a candidate item/slot/value to fill the current response to the user.
RecAgent: The agent always chooses Recommendation as the dialog act to enact and select a
random item that has not been tried from candidate items. This leads to sub-optimal performance
as it does not use or collect user preferences.
Pretrained Embeddings: We pre-train the graph embeddings for all entities and relations
from the MG across all scenarios in the training set using the TransE-based graph prediction
approaches [216]]. We utilize these for prediction of the future item/slot/value without having
the R-GCN layers. While this approach is widely used in the related literature and carries cross-
scenario knowledge, we show that using pre-trained graph embedding alone is sub-optimal for
a particular user and that the dialog policy needs to perform dynamic reasoning over the user
memory graph.
UMGR (Proposed): This is the proposed R-GCN based model. We choose the batch size to be
32, all hidden states to be size 64. The number of maximum dialog acts is set to 10. We use 5
layers of R-GCN based on validation on the development set. «, 3,y are set as 10, 10, 100 based
on the scales of losses of different types, respectively. We further conduct the following ablation
studies.
- No Dialog Acts: this study removes the dialog acts encoder, demonstrating the importance of

the dialog acts in policy generation.

176

- Prev. User Act Only: this study only uses the most recent dialog act from the user. We use
this to show how many past dialog acts are needed for good policy generation.

- Static G: uses the initial user memory graph without making any updates during the conver-
sation. We use this study to demonstrate that dynamic update of the user memory graph is

crucial for reasoning better dialog policy.

- w/ History v.s. - w/o History: analyzes the effect of the history of visited items (the last two
dataset folds in [Table XXVIII)). We use these two baselines to demonstrate that prior knowledge
of user memory history aids in predicting dialog policy.

Result Analysis

From the results in[Table XXIX} we can see that UMGR achieves good performance for most
of the metrics.
UMGR is effective in leveraging knowledge in the user memory graph. While the UMGR
model already achieves reasonable accuracy in dialog policy prediction relying just on the user
memory graph (-No Dialogue Acts), adding previous dialog act from the user (- Prev. User Act
Only) significantly improves the performance. Lastly, we show that keeping user memory graph
updated is crucial, as seen in static G not providing good rankings for entities.
UMGR vs. Pre-trained Graph Embeddings. We confirm that the static pre-trained graph
embeddings provide limited capacity for reasoning over a large-graph across multiple scenarios

to learn user-specific dialog policy, leading to poor performance in the recommendation.

177

w/ vs w/o Hisory. Lastly, the contrasting results for with and without visited items H in a user
memory graph indicate that having more knowledge about a user’s experience is important in
conversational recommendation.

We release a novel dataset with user memory graph grounding based on scenarios generated
from the behaviors of real-world users. The user memory graph has the benefits of both
accumulating pieces of knowledge about a user and interpretability. Experimental results on
our R-GCN based reasoning model (UMGR) show promising results for dialog acts, items,

slots, and values prediction.

CHAPTER 7

CONCLUSION

The combination of deep learning with lifelong learning yields rich directions for NLP
researches. The paradigm of lifelong learning is essential for learning beyond the classic deep
learning approach. To make the learning effective in the long-term, an Al agent must be able
to adapt to the changes in the world. This dissertation explores different forms of lifelong
learning tasks, including classification, word embedding, contextualized word embedding,
graph reasoning, with their applications in many NLP tasks that require lifelong learning.
Although the topic covered in this dissertation is rather diverse, the research about lifelong
representation learning is still at its initial stage. The research of lifelong learning does not stop
just at these formulations presented in this dissertation.

In the future, I expect some sub-directions of lifelong representation learning that are worth

for future research.

e Representation space for lifelong learning: Existing hidden space of deep learning is not
very lifelong learning-friendly and does not yield certain properties for lifelong learning.
This is because all parameters in a deep learning model are equally “trainable”. The
hidden space is pretty much decided by random initialization, the order to feeding training
examples, the choice of optimizers, etc. Moreover, hidden space gets drifted to unknown

new space when new knowledge comes in. This naturally causes research problems such

178

179

as catastrophic forgetting and incompatible drifting of hidden space. As a result, it is more
desirable to re-define the hidden space of the neural network that has better supports of

adding new knowledge and keeping existing knowledge;

e Learning to maintain structured data: unlike hidden space, structured data such as knowl-
edge graph yield more stable and extendable properties for lifelong learning. However, it
is still not clear how to learn the maintenance of such a knowledge graph. And more impor-
tantly, how to correct errors in existing knowledge when the Al agent noticed something

that is wrong in future knowledge accumulation;

e Meta-learning for lifelong learning: meta-learning is a natural solution to lifelong learning
as it aims to learn more abstractive tasks rather than concrete machine learning tasks.
As such, meta-learning is not limited to data preprocessing (as in my work on word
embedding) or general classifiers (as in my work on open-world learning). The Al agent
should automatically design and explore the tasks in the meta-learning space for future

use. One example is the case of maintaining the knowledge graph.

I hope to explore these directions in my future research and I also welcome brilliant researchers

to join the journey of exploring lifelong representation learning.

APPENDICES

180

181

= ACL Anthology

e FAQ
e Corrections
¢ Submissions

Search... Q

What is the copyright for materials in the ACL Anthology?

The ACL materials that are hosted in the Anthology are licensed to the general public under a liberal usage
policy that allows unlimited reproduction, distribution and hosting of materials on any other website or medium,
for non-commercial purposes. Prior to 2016, all ACL materials are licensed using the Creative Commons 3.0
BY-NC-SA (Attribution, Non-Commercial, Share-Alike) license. As of 2016, this policy has been relaxed
further, and all subsequent materials are available to the general public on the terms of the Creative Commons
4.0 BY (Attribution) license; this means both commercial and non-commercial use is explicitly licensed to all.

Note that these policies only cover ACL materials. As with the DOIs, this policy does not cover third-party
materials. For reproduction privileges for such materials, please approach the respective organizations.

—G)
ACL materials are Copyright © 1963-2019 ACL; other materials are copyrighted by their

respective copyright holders. Materials prior to 2016 here are licensed under the Creative Commons Attribution-
NonCommercial-ShareAlike 3.0 International License. Permission is granted to make copies for the purposes of
teaching and research. Materials published in or after 2016 are licensed on a Creative Commons Attribution 4.0
International License.

The ACL Anthology is managed and built by the ACL Anthology team of volunteers.

Site last built on 02 February 2020 at 23:50 UTC with commit ca34aeb0.

182

ACM Copyrighlﬂ

Reuse

Authors can reuse any portion of their own work in a new work of their own (and no fee is expected)
as long as a citation and DOI pointer to the Version of Record in the ACM Digital Library are included.

Contributing complete papers to any edited collection of reprints for which the author is notthe
editor, requires permission and usually a republication fee.

e Authors can include partial or complete papers of their own (and no fee is expected) in a
dissertation as long as citations and DOI pointers to the Versions of Record in the ACM Digital
Library are included. Authors can use any portion of their own work in presentations and in the
classroom (and no fee is expected).

e Commercially produced course-packs that are sold to students require permission and possibly a
fee.

"https://authors.acm.org/author-services/author-rights

https://authors.acm.org/author-services/author-rights

183

.fgflﬂﬁf?é RightsLink A 2 = 2 2

Center Home Help Email Support Signin Create Account

CER: Complementary entity recognition via knowledge expansion on
large unlabeled product reviews

<IEEE

Conference Proceedings: 2016 IEEE International Conference on Big Data (Big Data)

mqumlnq

permission Author: Hu Xu
to reuse

content from Publisher: IEEE
an IEEE

publication Date: Dec. 2016

Copyright © 2016, IEEE

Thesis / Dissertation Reuse

The IEEE does not require individuals working on a thesis to obtain a formal reuse license, however, you may
print out this statement to be used as a permission grant:

Requirements to be followed when using any portion (e.g., figure, graph, table, or textual material) of an IEEE
copyrighted paper in a thesis:

1) In the case of textual material (e.g., using short quotes or referring to the work within these papers) users must
give full credit to the original source (author, paper, publication) followed by the IEEE copyright line © 2011 IEEE.
2) In the case of illustrations or tabular material, we require that the copyright line © [Year of original publication]
IEEE appear prominently with each reprinted figure and/or table.

3) If a substantial portion of the original paper is to be used, and if you are not the senior author, also obtain the
senior author's approval.

Requirements to be followed when using an entire IEEE copyrighted paper in a thesis:

1) The following IEEE copyright/ credit notice should be placed prominently in the references: © [year of original
publication] IEEE. Reprinted, with permission, from [author names, paper title, IEEE publication title, and month/year
of publication]

2) Only the accepted version of an IEEE copyrighted paper can be used when posting the paper or your thesis on-
line.

3) In placing the thesis on the author's university website, please display the following message in a prominent place
on the website: In reference to IEEE copyrighted material which is used with permission in this thesis, the IEEE does
not endorse any of [university/educational entity's name goes here]'s products or services. Internal or personal use
of this material is permitted. If interested in reprinting/republishing IEEE copyrighted material for advertising or
promotional purposes or for creating new collective works for resale or redistribution, please go to
http://www.ieee.org/publications_standards/publications/rights/rights_link.html to learn how to obtain a License
from RightsLink.

If applicable, University Microfilms and/or ProQuest Library, or the Archives of Canada may supply single copies of
the dissertation.

BACK CLOSE

© 2020 Copyright - All Rights Reserved | Copyright Clearance Center, Inc. | Privacy statement | Terms and Conditions
Comments? We would like to hear from you. E-mail us at customercare@copyright.com

arXiv.org - Non-exclusive license to distribute

The URI http://arxiv.org/licenses/nonexclusive-distrib/1.0/ is used to record the fact that the
submitter granted the following license to arXiv.org on submission of an article:

o [grant arXiv.org a perpetual, non-exclusive license to distribute this article.

o [certify that I have the right to grant this license.

¢ I understand that submissions cannot be completely removed once accepted.

¢ I understand that arXiv.org reserves the right to reclassify or reject any submission.

Revision history

2004-01-16 - License above introduced as part of arXiv submission process
2007-06-21 - This HTML page created

Contact

184

185

IJCAI Copyright Letter

Returned Rights

In return for these rights, JCAI hereby grants to the above authors, and the employers for whom
the work was performed, royalty-free permission to:

1. retain all proprietary rights (such as patent rights) other than copyright and the publication
rights transferred to IJCAL

2. personally reuse all or portions of the paper in other works of their own authorship;

3. make oral presentation of the material in any forum;

4. reproduce, or have reproduced, the above paper for the author’s personal use, or for company
use provided that IJCAI copyright and the source are indicated, and that the copies are not
used in a way that implies IJCAI endorsement of a product or service of an employer, and
that the copies per se are not offered for sale. The foregoing right shall not permit the posting
of the paper in electronic or digital form on any computer network, except by the author or
the author’s employer, and then only on the author’s or the employer’s own World Wide Web
page or ftp site. Such Web page or ftp site, in addition to the aforementioned requirements of
this Paragraph, must provide an electronic reference or link back to the IJCAI electronic server
(http://www.ijcai.org), and shall not post other IJCAI copyrighted materials not of the
author’s or the employer’s creation (including tables of contents with links to other papers)
without I[JCAI’s written permission;

5. make limited distribution of all or portions of the above paper prior to publication.

6. In the case of work performed under U.S. Government contract, IJCAI grants the U.S. Govern-

http://www.ijcai.org

186

ment royalty-free permission to reproduce all or portions of the above paper, and to authorize
others to do so, for U.S. Government purposes. In the event the above paper is not accepted
and published by IJCAI, or is withdrawn by the author(s) before acceptance by IJCAI, this

agreement becomes null and void.

CITED LITERATURE

. Xu, H,, Liu, B,, Shu, L., and Yu, P: Open-world learning and application to product
classification. In The World Wide Web Conference , pages 3413-3419. ACM, 2019.

. Xu, H,, Liu, B, Shu, L., and Yu, P.: Open-world learning and application to product
classification. arXiv preprint arXiv:1809.06004 , 2018.

. Xu, H,, Liu, B, Shu, L., and Yu, P. S.: Lifelong domain word embedding via meta-learning.
In Proceedings of the 27th International Joint Conference on Artificial Intelligence , pages
4510-4516. AAAI Press, 2018.

. Xu, H., Liu, B, Shu, L., and Yu, P. S.: Double embeddings and cnn-based sequence labeling
for aspect extraction. arXiv preprint arXiv:1805.04601 , 2018.

. Xu, H,, Liu, B., Shu, L., and Philip, S. Y.: Bert post-training for review reading comprehen-
sion and aspect-based sentiment analysis. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short Papers) , pages 2324-2335, 2019.

. Xu, H,, Liu, B., Shu, L., and Yu, P. S.: Review conversational reading comprehension. arXiv
preprint arXiv:1902.00821 , 2019.

. Xu, H,, Liu, B., Shu, L., and Yu, P. S.: A failure of aspect sentiment classifiers and an
adaptive re-weighting solution. arXiv preprint arXiv:1911.01460 , 2019.

. Xu, H, Xie, S., Shu, L., and Philip, S. Y.: Cer: Complementary entity recognition via
knowledge expansion on large unlabeled product reviews. In 2016 IEEE International
Conference on Big Data (Big Data) , pages 793-802. IEEE, 2016.

. Xu, H,, Shu, L., and Yu, P. S.: Supervised complementary entity recognition with aug-
mented key-value pairs of knowledge. arXiv preprint arXiv:1705.10030 , 2017.

. Goodfellow, I., Bengio, Y., and Courville, A.: Deep learning. Book in preparation for MIT
Press, 2016.

187

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

188

Deng, J., Dong, W., Socher, R., Li, L.-J,, Li, K., and Fei-Fei, L.: Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern
recognition , pages 248-255. Ieee, 2009.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A,
Khosla, A., Bernstein, M., et al.: Imagenet large scale visual recognition challenge.
International Journal of Computer Vision , 115(3):211-252, 2015.

Krizhevsky, A., Sutskever, 1., and Hinton, G. E.: Imagenet classification with deep convolu-
tional neural networks. In Advances in neural information processing systems , pages
1097-1105, 2012.

Peters, M. E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., and Zettlemoyer, L.:
Deep contextualized word representations. In Proceedings of NAACL-HLT , pages
2227-2237,2018.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K.: Bert: Pre-training of deep bidirectional
transformers for language understanding. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short Papers) , pages 4171-4186, 2019.

Thrun, S.: Lifelong learning algorithms. In Learning to learn , pages 181-209. Springer,
1998.

Silver, D. L., Yang, Q., and Li, L.: Lifelong machine learning systems: Beyond learning
algorithms. In AAAI Spring Symposium: Lifelong Machine Learning , pages 49-55.
Citeseer, 2013.

Chen, Z. and Liu, B.: Lifelong machine learning . Morgan & Claypool Publishers, 2018.

Bendale, A. and Boult, T.: Towards open world recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition , pages 1893-1902, 2015.

Fei, G., Wang, S., and Liu, B.: Learning cumulatively to become more knowledgeable. In
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining , pages 1565-1574. ACM, 2016.

Bendale, A. and Boult, T. E.: Towards open set deep networks. In Proceedings of the IEEE
conference on computer vision and pattern recognition , pages 1563-1572, 2016.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

189

Shu, L., Xu, H., and Liu, B.: Doc: Deep open classification of text documents. In Proceedings
of the 2017 Conference on Empirical Methods in Natural Language Processing , pages
2911-2916, Copenhagen, Denmark, September 2017. Association for Computational
Linguistics.

Rebulffi, S.-A., Kolesnikov, A., Sperl, G., and Lampert, C. H.: icarl: Incremental classifier
and representation learning. In Computer Vision and Pattern Recognition (CVPR),
2017 IEEE Conference on , pages 5533-5542. IEEE, 2017.

Lee, J., Yun, J., Hwang, S., and Yang, E.: Lifelong learning with dynamically expandable
networks. arXiv preprint arXiv:1708.01547 , 2017.

Rusu, A. A., Rabinowitz, N. C., Desjardins, G., Soyer, H., Kirkpatrick, J., Kavukcuoglu,
K., Pascanu, R., and Hadsell, R.: Progressive neural networks. arXiv preprint
arXiv:1606.04671 , 2016.

Thrun, S. and Pratt, L.: Learning to learn . Springer, 2012.

Andrychowicz, M., Denil, M., Gomez, S., Hoffman, M. W,, Pfau, D., Schaul, T., Shillingford,
B., and De Freitas, N.: Learning to learn by gradient descent by gradient descent.
In NIPS , pages 3981-3989, 2016.

Fernando, C., Banarse, D., Blundell, C., Zwols, Y., Ha, D., Rusu, A. A., Pritzel, A., and Wier-
stra, D.: Pathnet: Evolution channels gradient descent in super neural networks.
arXiv preprint arXiv:1701.08734 , 2017.

Finn, C., Abbeel, P, and Levine, S.: Model-agnostic meta-learning for fast adaptation of
deep networks. In International Conference on Machine Learning , pages 1126-1135,
2017.

Finn, C., Xu, K., and Levine, S.: Probabilistic model-agnostic meta-learning. arXiv preprint
arXiv:1806.02817 , 2018.

Fan, Y., Tian, F,, Qin, T,, Li, X.-Y,, and Liu, T.-Y.: Learning to teach. arXiv preprint
arXiv:1805.03643 , 2018.

Lampert, C. H., Nickisch, H., and Harmeling, S.: Learning to detect unseen object classes
by between-class attribute transfer. In Computer Vision and Pattern Recognition, 2009.
CVPR 2009. IEEE Conference on , pages 951-958. IEEE, 2009.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

190

Palatucci, M., Pomerleau, D., Hinton, G. E., and Mitchell, T. M.: Zero-shot learning with
semantic output codes. In NIPS , pages 1410-1418, 2009.

Socher, R., Ganjoo, M., Manning, C. D., and Ng, A.: Zero-shot learning through cross-
modal transfer. In NIPS , pages 935-943, 2013.

Xing, E. P, Jordan, M. I, Russell, S. J., and Ng, A. Y.: Distance metric learning with
application to clustering with side-information. In Advances in neural information
processing systems , pages 521-528, 2003.

Bromley, J., Guyon, L., LeCun, Y., Sackinger, E., and Shah, R.: Signature verification using
a" siamese" time delay neural network. In Advances in Neural Information Processing
Systems , pages 737-744, 1994.

Koch, G., Zemel, R., and Salakhutdinov, R.: Siamese neural networks for one-shot image
recognition. In ICML Deep Learning Workshop , volume 2, 2015.

Vinyals, O., Blundell, C., Lillicrap, T., Wierstra, D., et al.: Matching networks for one shot
learning. In Advances in Neural Information Processing Systems , pages 3630-3638,
2016.

Shen, D., Ruvini, J. D., Somaiya, M., and Sundaresan, N.: Item categorization in the
e-commerce domain. In Proceedings of the 20th ACM international conference on
Information and knowledge management , pages 1921-1924. ACM, 2011.

Shen, D., Ruvini,].-D., and Sarwar, B.: Large-scale item categorization for e-commerce.
In Proceedings of the 21st ACM international conference on Information and knowledge
management , pages 595-604. ACM, 2012.

Chen, J. and Warren, D.: Cost-sensitive learning for large-scale hierarchical classification.
In Proceedings of the 22nd ACM international conference on Conference on information &
knowledge management , pages 1351-1360. ACM, 2013.

Gupta, V., Karnick, H., Bansal, A., and Jhala, P.: Product classification in e-commerce
using distributional semantics. In Proceedings of COLING 2016, the 26th International
Conference on Computational Linguistics: Technical Papers , pages 536-546, 2016.

Cevahir, A. and Murakami, K.: Large-scale multi-class and hierarchical product categoriza-
tion for an e-commerce giant. In Proceedings of COLING 2016, the 26th International
Conference on Computational Linguistics: Technical Papers , pages 525-535, 2016.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

191

Kozareva, Z.: Everyone likes shopping! multi-class product categorization for e-commerce.
In Proceedings of the 2015 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies , pages 1329-1333, 2015.

Hochreiter, S. and Schmidhuber, J.: Long short-term memory. Neural computation ,
9(8):1735-1780, 1997.

Schuster, M. and Paliwal, K. K.: Bidirectional recurrent neural networks. IEEE Transactions
on Signal Processing , 45(11):2673-2681, 1997.

Lake, B., Salakhutdinov, R., Gross,]J., and Tenenbaum, J.: One shot learning of simple
visual concepts. In Proceedings of the Annual Meeting of the Cognitive Science Society ,
volume 33, 2011.

He, R. and McAuley, J.: Ups and downs: Modeling the visual evolution of fashion trends
with one-class collaborative filtering. In proceedings of the 25th international conference
on world wide web , pages 507-517. International World Wide Web Conferences
Steering Committee, 2016.

Pennington, J., Socher, R., and Manning, C.: Glove: Global vectors for word representation.
In Proceedings of the 2014 conference on empirical methods in natural language processing
(EMNLP) , pages 1532-1543, 2014.

Kingma, D. P. and Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 , 2014.

Xu, H., Liu, B., Shu, L., and Yu, P. S.: Lifelong domain word embedding via meta-learning.
In Proceedings of the 27th International Joint Conference on Artificial Intelligence . AAAI
Press, 2018.

Xu, H., Liu, B, Shu, L., and Yu, P. S.: Double embeddings and cnn-based sequence labeling
for aspect extraction. In Proceedings of the 56th Annual Meeting of the Association for
Computational Linguistics . Association for Computational Linguistics, 2018.

Mnih, A. and Hinton, G.: Three new graphical models for statistical language modelling.
In ICML , pages 641-648, 2007.

Mikolov, T., Chen, K., Corrado, G., and Dean, J.: Efficient estimation of word representations
in vector space. arXiv:1301.3781 , 2013.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

192

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and Dean, J.: Distributed representations
of words and phrases and their compositionality. In Advances in neural information
processing systems , pages 3111-3119, 2013.

Sien¢nik, S. K.: Adapting word2vec to named entity recognition. In NCCL , pages 239-243,
2015.

Maas, A. L., Daly, R. E., Pham, P. T.,, Huang, D., Ng, A. Y., and Potts, C.: Learning word
vectors for sentiment analysis. In ACL , pages 142-150, 2011.

Durrett, G. and Klein, D.: Neural crf parsing. arXiv , 2015.

Bollegala, D., Maehara, T., and Kawarabayashi, K.-i.: Unsupervised cross-domain word
representation learning. In ACL , pages 730-740, 2015.

Yang, W., Lu, W,, and Zheng, V.: A simple regularization-based algorithm for learning
cross-domain word embeddings. In EMNLP , pages 2898-2904, 2017.

Bollegala, D., Hayashi, K., and Kawarabayashi, K.-i.: Think globally, embed locally—locally
linear meta-embedding of words. arXiv:1709.06671 , 2017.

Pan, S.]. and Yang, Q.: A survey on transfer learning. IEEE TKDE , pages 1345-1359, 2010.
Chen, Z. and Liu, B.: Lifelong Machine Learning . Morgan & Claypool Publishers, 2016.

Mikolov, T., Yih, W.-t., and Zweig, G.: Linguistic regularities in continuous space word
representations. In hlt-Naacl , pages 746-751, 2013.

Bojanowski, P., Grave, E., Joulin, A., and Mikolov, T.: Enriching word vectors with subword
information. arXiv , 2016.

Xu, H., Xie, S., Shu, L., and Yu, P. S.: Dual attention network for product compatibility
and function satisfiability analysis. In Proceedings of AAAI Conference on Artificial
Intelligence (AAAI) , 2018.

Thrun, S.: Is learning the n-th thing any easier than learning the first? In NIPS , pages
640-646, 1996.

Silver, D. L., Yang, Q., and Li, L.: Lifelong Machine Learning Systems: Beyond Learning
Algorithms. In AAAI Spring Symposium: LML , page 05, 2013.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

193

Chen, Z. and Liu, B.: Topic modeling using topics from many domains, lifelong learning
and big data. In ICML , pages 703-711, 2014.

Mitchell, T., Cohen, W., Hruschka, E., Talukdar, P, Yang, B., Betteridge, J., Carlson, A.,
Dalvi, B., Gardner, M., Kisiel, B., et al.: Never-ending learning. Communications of
the ACM , 61(5):103-115, 2018.

Shu, L., Liu, B., Xu, H., and Kim, A.: Lifelong-rl: Lifelong relaxation labeling for separating
entities and aspects in opinion targets. In Proceedings of the 2016 Conference on
Empirical Methods in Natural Language Processing , pages 225-235, 2016.

Ganin, Y., Ustinova, E., Ajakan, H., Germain, P,, Larochelle, H., Laviolette, F., Marchand,
M., and Lempitsky, V.: Domain-adversarial training of neural networks. JMLR ,
pages 2096-2030, 2016.

Nayak, N., Angeli, G., and Manning, C. D.: Evaluating word embeddings using a repre-
sentative suite of practical tasks. ACL 2016 , pages 19-23, 2016.

He, R. and McAuley,].: Ups and downs: Modeling the visual evolution of fashion trends
with one-class collaborative filtering. In World Wide Web , 2016.

Xu, H., Liu, B., Shu, L., and Yu, P. S.: Bert post-training for review reading comprehension
and aspect-based sentiment analysis. arXiv preprint arXiv:1904.02232 , 2019.

Radford, A., Narasimhan, K., Salimans, T., and Sutskever, I.: Improving language under-
standing by generative pre-training. URL https:/ /s3-us-west-2.amazonaws.com /openai-
assets [research-covers /languageunsupervised / language understanding paper.pdf , 2018.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and Sutskever, I.: Language models
are unsupervised multitask learners. OpenAl Blog , 1(8):9, 2019.

Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R. R., and Le, Q. V.: Xlnet:
Generalized autoregressive pretraining for language understanding. In Advances
in neural information processing systems , pages 5754-5764, 2019.

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettlemoyer, L.,
and Stoyanov, V.: Roberta: A robustly optimized bert pretraining approach. arXiv
preprint arXiv:1907.11692 , 2019.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

194

Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., and Soricut, R.: Albert: A lite bert
for self-supervised learning of language representations. In International Conference
on Learning Representations , 2019.

Clark, K., Luong, M.-T,, Le, Q. V., and Manning, C. D.: Electra: Pre-training text encoders
as discriminators rather than generators. In International Conference on Learning
Representations , 2019.

Rajpurkar, P, Zhang, J., Lopyrev, K., and Liang, P.: Squad: 100,000+ questions for machine
comprehension of text. arXiv preprint arXiv:1606.05250 , 2016.

Hu, M. and Liu, B.: Mining and summarizing customer reviews. In Proceedings of the tenth
ACM SIGKDD international conference on Knowledge discovery and data mining , pages
168-177. ACM, 2004.

Reddy, S., Chen, D., and Manning, C. D.: Coqga: A conversational question answering
challenge. arXiv preprint arXiv:1808.07042 , 2018.

Rajpurkar, P, Jia, R., and Liang, P.: Know what you don’t know: Unanswerable questions
for squad. arXiv preprint arXiv:1806.03822 , 2018.

Li, R., Kahou, S. E., Schulz, H., Michalski, V., Charlin, L., and Pal, C.: Towards deep
conversational recommendations. In Advances in Neural Information Processing
Systems , pages 9725-9735, 2018.

Kang, D., Balakrishnan, A., Shah, P, Crook, P. A., Boureau, Y.-L., and Weston,].: Recom-
mendation as a communication game: Self-supervised bot-play for goal-oriented
dialogue. In Proceedings of the 2019 Conference on Empirical Methods in Natural
Language Processing and the 9th International Joint Conference on Natural Language
Processing (EMINLP-IJCNLP) , pages 1951-1961, 2019.

Schlichtkrull, M., Kipf, T. N., Bloem, P.,, Van Den Berg, R., Titov, 1., and Welling, M.:
Modeling relational data with graph convolutional networks. In European Semantic
Web Conference , pages 593-607. Springer, 2018.

Kipf, T. N. and Welling, M.: Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907 , 2016.

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

100

101

195

Xu, H., Xie, S., Shu, L., and Yu, P. S.: Cer: Complementary entity recognition via knowledge
expansion on large unlabeled product reviews. arXiv preprint arXiv:1612.01039 ,
2016.

Liu, B.: Sentiment Analysis and Opinion Mining . Morgan & Claypool Publishers, 2012.

Hu, M. and Liu, B.: Mining and summarizing customer reviews. In KDD 04 , pages
168-177, 2004.

Jakob, N. and Gurevych, I.: Extracting opinion targets in a single- and cross-domain setting
with conditional random fields. In EMNLP "10, pages 1035-1045, 2010.

Chernyshevich, M.: Ths r&d belarus: Cross-domain extraction of product features using
crf. In Proceedings of the 8th International Workshop on Semantic Evaluation (SemEuval
2014) , pages 309-313, 2014.

Shu, L., Xu, H., and Liu, B.: Lifelong learning crf for supervised aspect extraction. In
Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics
(Volume 2: Short Papers) , pages 148-154, 2017.

Zhuang, L., Jing, F., and Zhu, X.-Y.: Movie review mining and summarization. In CIKM
06 , pages 43-50, 2006.

Mei, Q., Ling, X., Wondra, M., Su, H., and Zhai, C.: Topic sentiment mixture: Modeling
facets and opinions in weblogs. In WWW "07 , pages 171-180, 2007.

Qiu, G, Liu, B,, Bu, J., and Chen, C.: Opinion word expansion and target extraction
through double propagation. Computational Linguistics , 37(1):9-27, 2011.

Yin, Y., Wei, F., Dong, L., Xu, K., Zhang, M., and Zhou, M.: Unsupervised word and depen-
dency path embeddings for aspect term extraction. arXiv preprint arXiv:1605.07843
, 2016.

He, R., Lee, W.S., Ng, H. T., and Dahlmeier, D.: An unsupervised neural attention model
for aspect extraction. In Proceedings of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers) , volume 1, pages 388-397, 2017.

Li, X. and Lam, W.: Deep multi-task learning for aspect term extraction with memory
interaction. In Proceedings of the 2017 Conference on Empirical Methods in Natural
Language Processing , pages 2886-2892, 2017.

102.

103.

104.

105.

106.

107.

108.

109.

110.

111.

112.

113.

114.

196

Poria, S., Cambria, E., and Gelbukh, A.: Aspect extraction for opinion mining with a deep
convolutional neural network. Knowledge-Based Systems , 108:42-49, 2016.

Wang, W, Pan, S. J., Dahlmeier, D., and Xiao, X.: Recursive neural conditional random
fields for aspect-based sentiment analysis. arXiv preprint arXiv:1603.06679 , 2016.

Wang, W, Pan, S. J., Dahlmeier, D., and Xiao, X.: Coupled multi-layer attentions for co-
extraction of aspect and opinion terms. In Thirty-First AAAI Conference on Artificial
Intelligence , 2017.

Blumer, A., Ehrenfeucht, A., Haussler, D., and Warmuth, M. K.: Occam’s razor. Information
processing letters , 24(6):377-380, 1987.

LeCun, Y., Bengio, Y., et al.: Convolutional networks for images, speech, and time series.
The handbook of brain theory and neural networks , 3361(10):1995, 1995.

Liu, P, Joty, S., and Meng, H.: Fine-grained opinion mining with recurrent neural networks
and word embeddings. In Proceedings of the 2015 Conference on Empirical Methods in
Natural Language Processing , pages 14331443, 2015.

Kim, Y.: Convolutional neural networks for sentence classification. arXiv preprint
arXiv:1408.5882 , 2014.

Zhang, X., Zhao, J., and LeCun, Y.: Character-level convolutional networks for text classifi-
cation. In Advances in neural information processing systems , pages 649—-657, 2015.

Gehring, J., Auli, M., Grangier, D., Yarats, D., and Dauphin, Y. N.: Convolutional sequence
to sequence learning. arXiv preprint arXiv:1705.03122 , 2017.

Pang, B. and Lee, L.: Opinion mining and sentiment analysis. Found. Trends Inf. Retr. ,
2:1-135, 2008.

Cambria, E. and Hussain, A.: Sentic Computing Techniques, Tools, and Applications 2nd Edition
. Springer, 2012.

Popescu, A.-M. and Etzioni, O.: Extracting product features and opinions from reviews.
In HLT-EMNLP 05, pages 339-346, 2005.

Wang, B. and Wang, H.: Bootstrapping both product features and opinion words from
chinese customer reviews with cross-inducing. In IJCNLP 08 , pages 289-295, 2008.

115.

116.

117.

118.

119.

120.

121.

122.

123.

124.

125.

197

Titov, I. and McDonald, R.: A joint model of text and aspect ratings for sentiment summa-
rization. In ACL "08: HLT , pages 308-316, 2008.

Lin, C. and He, Y.: Joint sentiment/topic model for sentiment analysis. In CIKM "09, pages
375-384, 2009.

Moghaddam, S. and Ester, M.: ILDA: interdependent lda model for learning latent aspects
and their ratings from online product reviews. In SIGIR 11, pages 665-674, 2011.

Mitchell, M., Aguilar, J., Wilson, T., and Van Durme, B.: Open domain targeted sentiment.
In ACL "13, pages 16431654, 2013.

Lafferty, J., McCallum, A., and Pereira, F. C.: Conditional random fields: Probabilistic
models for segmenting and labeling sequence data. In ICML 01 , pages 282-289,
2001.

Williams, R. J. and Zipser, D.: A learning algorithm for continually running fully recurrent
neural networks. Neural computation , 1(2):270-280, 1989.

Bollegala, D., Maehara, T., and Kawarabayashi, K.-i.: Unsupervised cross-domain word
representation learning. arXiv preprint arXiv:1505.07184 , 2015.

Strubell, E., Verga, P, Belanger, D., and McCallum, A.: Fast and accurate entity recognition
with iterated dilated convolutions. In Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing , pages 2670-2680, 2017.

Chen, T., Xu, R., He, Y., and Wang, X.: Improving sentiment analysis via sentence type
classification using bilstm-crf and cnn. Expert Systems with Applications , 72:221-230,
2017.

Pontiki, M., Galanis, D., Pavlopoulos, J., Papageorgiou, H., Androutsopoulos, I., and Man-
andhar, S.: Semeval-2014 task 4: Aspect based sentiment analysis. In Proceedings
of the 8th International Workshop on Semantic Evaluation (SemEval 2014) , pages 27—
35, Dublin, Ireland, August 2014. Association for Computational Linguistics and
Dublin City University.

Pontiki, M., Galanis, D., Papageorgiou, H., Androutsopoulos, I., Manandhar, S., Moham-
mad, A.-S., Al-Ayyoub, M., Zhao, Y., Qin, B., De Clercq, O., et al.: Semeval-2016
task 5: Aspect based sentiment analysis. In Proceedings of the 10th international
workshop on semantic evaluation (SemEval-2016) , pages 19-30, 2016.

126.

127.

128.

129.

130.

131.

132.

133.

134.

135.

198

Toh, Z. and Su, J.: Nlangp at semeval-2016 task 5: Improving aspect based sentiment
analysis using neural network features. In Proceedings of the 10th international
workshop on semantic evaluation (SemEval-2016) , pages 282-288, 2016.

Reimers, N. and Gurevych, I.: Reporting Score Distributions Makes a Difference: Perfor-
mance Study of LSTM-networks for Sequence Tagging. In Proceedings of the 2017
Conference on Empirical Methods in Natural Language Processing (EMNLP) , pages
338-348, Copenhagen, Denmark, 09 2017.

Levy, O. and Goldberg, Y.: Dependency-based word embeddings. In Proceedings of the
52nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short
Papers) , volume 2, pages 302-308, 2014.

Shrivastava, A., Gupta, A., and Girshick, R.: Training region-based object detectors with
online hard example mining. In CVPR , pages 761-769, 2016.

Lin, T.-Y., Goyal, P, Girshick, R., He, K., and Dollar, P.: Focal loss for dense object detection.
In ICCV , pages 2980-2988, 2017.

Liu, B.: Sentiment analysis: Mining opinions, sentiments, and emotions . Cambridge University
Press, 2015.

Jiang, Q., Chen, L., Xu, R, Ao, X., and Yang, M.: A challenge dataset and effective models for
aspect-based sentiment analysis. In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP) , pages 6279-6284, Hong Kong,
China, November 2019. Association for Computational Linguistics.

Pang, B., Lee, L., and Vaithyanathan, S.: Thumbs up?: sentiment classification using
machine learning techniques. In Proceedings of the ACL-02 conference on Empiri-
cal methods in natural language processing-Volume 10 , pages 79-86. Association for
Computational Linguistics, 2002.

He, Y. and Zhou, D.: Self-training from labeled features for sentiment analysis. Information
Processing & Management , 47(4):606-616, 2011.

He, Y, Lin, C.,, and Alani, H.: Automatically extracting polarity-bearing topics for cross-
domain sentiment classification. In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human Language Technologies-Volume 1,
pages 123-131. Association for Computational Linguistics, 2011.

136.

137.

138.

139.

140.

141.

142.

143.

144.

145.

199

Li, X., Bing, L., Li, P, and Lam, W.: A unified model for opinion target extraction and target
sentiment prediction. In Proceedings of the AAAI Conference on Artificial Intelligence ,
volume 33, pages 6714-6721, 2019.

Dong, L., Wei, F,, Tan, C., Tang, D., Zhou, M., and Xu, K.: Adaptive recursive neural
network for target-dependent twitter sentiment classification. In Proceedings of the
52nd annual meeting of the association for computational linguistics (volume 2: Short
papers) , volume 2, pages 49-54, 2014.

Nguyen, T. H. and Shirai, K.: PhraseRNN: Phrase recursive neural network for aspect-
based sentiment analysis. In Proceedings of the 2015 Conference on Empirical Methods
in Natural Language Processing , pages 2509-2514, Lisbon, Portugal, September 2015.
Association for Computational Linguistics.

Li, X., Bing, L., Lam, W., and Shi, B.: Transformation networks for target-oriented sentiment
classification. arXiv preprint arXiv:1805.01086 , 2018.

He, R, Lee, W. S, Ng, H. T., and Dahlmeier, D.: Exploiting document knowledge for
aspect-level sentiment classification. In Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics . Association for Computational Linguistics.

Li, Z., Wei, Y., Zhang, Y., Zhang, X, Li, X., and Yang, Q.: Exploiting coarse-to-fine task
transfer for aspect-level sentiment classification. arXiv preprint arXiv:1811.10999 ,
2018.

Wang, S., Lv, G., Mazumder, S., Fei, G., and Liu, B.: Lifelong learning memory networks
for aspect sentiment classification. In 2018 IEEE International Conference on Big Data
(Big Data) , pages 861-870. IEEE, 2018.

Wang, S., Mazumder, S., Liu, B., Zhou, M., and Chang, Y.: Target-sensitive memory
networks for aspect sentiment classification. In Proceedings of the 56th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers) ,
pages 957-967, 2018.

Freund, Y. and Schapire, R. E.: A decision-theoretic generalization of on-line learning and
an application to boosting. Journal of computer and system sciences , 55(1):119-139,
1997.

Schwenk, H. and Bengio, Y.: Boosting neural networks. Neural computation ,12(8):1869—
1887, 2000.

146.

147.

148.

149.

150.

151.

152.

153.

154.

155.

156.

200

Mosca, A. and Magoulas, G. D.: Deep incremental boosting. arXiv preprint arXiv:1708.03704
,2017.

Gao, T. and Jojic, V.: Sample importance in training deep neural networks. 2016.

Tang, D., Qin, B., and Liu, T.: Aspect level sentiment classification with deep memory
network. arXiv preprint arXiv:1605.08900 , 2016.

Chen, P, Sun, Z,, Bing, L., and Yang, W.: Recurrent attention network on memory for
aspect sentiment analysis. In Proceedings of the 2017 conference on empirical methods
in natural language processing , pages 452—-461, 2017.

Huang, B., Ou, Y., and Carley, K. M.: Aspect level sentiment classification with attention-
over-attention neural networks. In International Conference on Social Computing,
Behavioral-Cultural Modeling and Prediction and Behavior Representation in Modeling
and Simulation , pages 197-206. Springer, 2018.

Popescu, A.-M. and Etzioni, O.: Extracting product features and opinions from reviews.
In Natural language processing and text mining , pages 9-28. Springer, 2007.

Xu, H., Shu, L., Zhang, J., and Yu, P. S.: Mining compatible/incompatible entities from ques-
tion and answering via yes/no answer classification using distant label expansion.
arXiv preprint arXiv:1612.04499 , 2016.

Xu, H., Xie, S., Shu, L., and Philip, S. Y.: Product function need recognition via semi-
supervised attention network. In 2017 IEEE International Conference on Big Data (Big
Data) , pages 1369-1374. IEEE, 2017.

Xu, H., Xie, S., Shu, L., and Philip, S. Y.: Dual attention network for product compatibility
and function satisfiability analysis. In Thirty-Second AAAI Conference on Artificial
Intelligence , 2018.

Nadeau, D. and Sekine, S.: A survey of named entity recognition and classification.
Lingvisticae Investigationes , 30(1):3-26, 2007.

McAuley, J. J., Pandey, R., and Leskovec, J.: Inferring networks of substitutable and
complementary products. In KDD , 2015.

157.

158.

159.

160.

161.

162.

163.

164.

165.

166.

167.

201

Zheng, J., Wu, X,, Niu, J., and Bolivar, A.: Substitutes or complements: another step
forward in recommendations. In Proceedings of the 10th ACM conference on Electronic
commerce , pages 139-146. ACM, 2009.

Qiu, G,, Liu, B., Bu, J., and Chen, C.: Opinion word expansion and target extraction
through double propagation. Computational linguistics , 37(1):9-27, 2011.

Jindal, N. and Liu, B.: Mining comparative sentences and relations. In AAAI , volume 22,
pages 1331-1336, 2006.

Kiibler, S., McDonald, R., and Nivre, J.: Dependency parsing. Synthesis Lectures on Human
Language Technologies , 1(1):1-127, 2009.

Liu, Q., Gao, Z,, Liu, B, and Zhang, Y.: Automated rule selection for aspect extraction in
opinion mining. In International Joint Conference on Artificial Intelligence (IJCAI) ,
2015.

Bach, N. and Badaskar, S.: A review of relation extraction. Literature review for Language
and Statistics 11 , 2007.

Rabiner, L. R. and Juang, B.-H.: An introduction to hidden markov models. ASSP Magazine,
IEEE , 3(1):4-16, 1986.

McCallum, A., Freitag, D., and Pereira, F. C.: Maximum entropy markov models for
information extraction and segmentation. In ICML , volume 17, pages 591-598,
2000.

Culotta, A. and Sorensen, J.: Dependency tree kernels for relation extraction. In Proceedings
of the 42nd Annual Meeting on Association for Computational Linguistics , page 423.
Association for Computational Linguistics, 2004.

Mintz, M., Bills, S., Snow, R., and Jurafsky, D.: Distant supervision for relation extraction
without labeled data. In Proceedings of the Joint Conference of the 47th Annual Meeting
of the ACL and the 4th International Joint Conference on Natural Language Processing of
the AFNLP: Volume 2-Volume 2 , pages 1003-1011. Association for Computational
Linguistics, 2009.

Bunescu, R. C. and Mooney, R. J.: A shortest path dependency kernel for relation extraction.
In Proceedings of the conference on human language technology and empirical methods in

168.

169.

170.

171.

172.

173.

174.

175.

176.

177.

202

natural language processing , pages 724-731. Association for Computational Linguis-
tics, 2005.

De Marneffe, M.-C. and Manning, C. D.: Stanford typed dependencies manual. Technical
report, Technical report, Stanford University, 2008.

Ratinov, L. and Roth, D.: Design challenges and misconceptions in named entity recogni-
tion. In Proceedings of the Thirteenth Conference on Computational Natural Language
Learning , pages 147-155. Association for Computational Linguistics, 2009.

Joshi, M. and Penstein-Rosé, C.: Generalizing dependency features for opinion min-
ing. In Proceedings of the ACL-I[CNLP 2009 Conference Short Papers , pages 313-316.
Association for Computational Linguistics, 2009.

Shu, L., Liu, B., Xu, H., and Kim, A.: Supervised opinion aspect extraction by exploiting
past extraction results. arXiv preprint arXiv:1612.07940 , 2016.

Xu, K., Reddy, S., Feng, Y., Huang, S., and Zhao, D.: Question answering on freebase via
relation extraction and textual evidence. arXiv preprint arXiv:1603.00957 , 2016.

Fader, A., Zettlemoyer, L., and Etzioni, O.: Open question answering over curated and
extracted knowledge bases. In Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining , pages 1156-1165. ACM, 2014.

Kwok, C., Etzioni, O., and Weld, D. S.: Scaling question answering to the web. ACM
Transactions on Information Systems (TOIS) , 19(3):242-262, 2001.

Yin, J., Jiang, X., Lu, Z., Shang, L., Li, H., and Li, X.: Neural generative question answering.
arXiv preprint arXiv:1512.01337 , 2015.

McAuley, J. and Yang, A.: Addressing complex and subjective product-related queries
with customer reviews. In Proceedings of the 25th International Conference on World
Wide Web , pages 625-635. International World Wide Web Conferences Steering
Committee, 2016.

Yu, Q. and Lam, W.: Aware answer prediction for product-related questions incorporating
aspects. In Proceedings of the Eleventh ACM International Conference on Web Search
and Data Mining , pages 691-699. ACM, 2018.

178.

179.

180.

181.

182.

183.

184.

185.

186.

187.

203

Welb], J., Stenetorp, P., and Riedel, S.: Constructing datasets for multi-hop reading compre-
hension across documents. Transactions of the Association of Computational Linguistics
, 6:287-302, 2018.

Shao, C. C,, Liu, T,, Lai, Y., Tseng, Y., and Tsai, S.: Drcd: a chinese machine reading
comprehension dataset. arXiv preprint arXiv:1806.00920 , 2018.

Choi, E., He, H,, Iyyer, M., Yatskar, M., Yih, W.-t., Choi, Y., Liang, P., and Zettlemoyer, L.:
Quac: Question answering in context. arXiv preprint arXiv:1808.07036 , 2018.

Yang, Z., Qi, P, Zhang, S., Bengio, Y., Cohen, W. W,, Salakhutdinov, R., and Manning, C. D.:
Hotpotqa: A dataset for diverse, explainable multi-hop question answering. arXiv
preprint arXiv:1809.09600 , 2018.

Nguyen, T., Rosenberg, M., Song, X., Gao,]J., Tiwary, S., Majumder, R., and Deng, L.: Ms
marco: A human generated machine reading comprehension dataset. arXiv preprint
arXiv:1611.09268 , 2016.

Dong, L., Wei, F., Zhou, M., and Xu, K.: Question answering over freebase with multi-
column convolutional neural networks. In Proceedings of the 53rd Annual Meeting of
the Association for Computational Linguistics and the 7th International Joint Conference
on Natural Language Processing (Volume 1: Long Papers) , volume 1, pages 260-269,
2015.

Yao, X. and Van Durme, B.: Information extraction over structured data: Question answer-
ing with freebase. In Proceedings of the 52nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers) , volume 1, pages 956-966, 2014.

Lopez, V., Nikolov, A., Sabou, M., Uren, V., Motta, E., and d’Aquin, M.: Scaling up question-
answering to linked data. In International Conference on Knowledge Engineering and
Knowledge Management , pages 193-210. Springer, 2010.

Unger, C., Bithmann, L., Lehmann, J., Ngonga Ngomo, A.-C., Gerber, D., and Cimiano,
P.: Template-based question answering over rdf data. In Proceedings of the 21st
international conference on World Wide Web , pages 639-648. ACM, 2012.

Liu, B.: Sentiment analysis and opinion mining. Synthesis lectures on human language
technologies , 5(1):1-167, 2012.

188.

189.

190.

191.

192.

193.

194.

195.

196.

197.

204

He, R, Lee, W. S, Ng, H. T., and Dahlmeier, D.: Exploiting document knowledge for
aspect-level sentiment classification. arXiv preprint arXiv:1806.04346 , 2018.

Howard, J. and Ruder, S.: Universal language model fine-tuning for text classification. In
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers) , volume 1, pages 328-339, 2018.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and Sutskever, I.: Language models
are unsupervised multitask learners. URL https:/ /openai.com/blog/better-language-
models/ ,2018.

Chen, D., Fisch, A., Weston, J., and Bordes, A.: Reading wikipedia to answer open-domain
questions. arXiv preprint arXiv:1704.00051 , 2017.

Xu, H., Liu, B, Shu, L., and Yu, P.: BERT post-training for review reading comprehension
and aspect-based sentiment analysis. In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers) , pages 2324-2335, Minneapolis,
Minnesota, June 2019. Association for Computational Linguistics.

Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Desjardins, G., Rusu, A. A., Milan,
K., Quan, J., Ramalho, T., Grabska-Barwinska, A., et al.: Overcoming catastrophic
forgetting in neural networks. Proceedings of the national academy of sciences , page
201611835, 2017.

Sun, Y. and Zhang, Y.: Conversational recommender system. In The 41st International ACM
SIGIR Conference on Research & Development in Information Retrieval , pages 235-244.
ACM, 2018.

Zhang, Y., Chen, X., Ai, Q., Yang, L., and Croft, W. B.: Towards conversational search
and recommendation: System ask, user respond. In Proceedings of the 27th ACM

International Conference on Information and Knowledge Management , pages 177-186.
ACM, 2018.

Henderson, M., Thomson, B., and Williams, J. D.: The second dialog state tracking
challenge. In Special Interest Group on Discourse and Dialogue (SIGDIAL) , 2014.

Wen, T.-H., Vandyke, D., Mrksic, N., Gasic, M., Rojas-Barahona, L. M., Su, P-H., Ultes,
S., and Young, S.: A network-based end-to-end trainable task-oriented dialogue

198.

199.

200.

201.

202.

203.

204.

205.

206.

205

system. In European Chapter of the Association for Computational Linguistics (EACL) ,
2016.

Budzianowski, P., Wen, T.-H., Tseng, B.-H., Casanueva, ., Ultes, S., Ramadan, O., and Gasi¢,
M.: MultiWOZ - a large-scale multi-domain wizard-of-Oz dataset for task-oriented
dialogue modelling. In Proceedings of the Conference on Empirical Methods in Natural
Language Processing (EMINLP) , 2018.

Eric, M., Goel, R., Paul, S., Kumar, A., Sethi, A., Ku, P., Goyal, A. K., Agarwal, S., Gao, S.,
and Hakkani-Tur, D.: Multiwoz 2.1: Multi-domain dialogue state corrections and
state tracking baselines. arXiv preprint arXiv:1907.01669 , 2019.

Rastogi, A., Zang, X., Sunkara, S., Gupta, R., and Khaitan, P.: Towards scalable multi-
domain conversational agents: The schema-guided dialogue dataset. In Association
for the Advancement of Artificial Intelligence (AAAI) , 2019.

Wu, C.-S., Madotto, A., Hosseini-Asl, E., Xiong, C., Socher, R., and Fung, P.: Transferable
multi-domain state generator for task-oriented dialogue systems. In Proceedings of
the Annual Meeting of the Association for Computational Linguistics , 2019.

Gao, S., Abhishek Seth and, S. A., Chun, T., and Hakkani-Ture, D.: Dialog state tracking: A
neural reading comprehension approach. In Special Interest Group on Discourse and
Dialogue (SIGDIAL) , 2019.

Chao, G.-L. and Lane, I.: Bert-dst: Scalable end-to-end dialogue state tracking with
bidirectional encoder representations from transformer. In Annual Conference of the
International Speech Communication Association (INTERSPEECH) , 2019.

Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., and Monfardini, G.: The graph neural
network model. IEEE Transactions on Neural Networks , 20(1):61-80, 2008.

Duvenaud, D. K., Maclaurin, D., Iparraguirre, J., Bombarell, R., Hirzel, T., Aspuru-Guzik,
A., and Adams, R. P.: Convolutional networks on graphs for learning molecular
fingerprints. In Advances in neural information processing systems , pages 2224-2232,
2015.

Defferrard, M., Bresson, X., and Vandergheynst, P.: Convolutional neural networks on
graphs with fast localized spectral filtering. In Advances in neural information pro-
cessing systems , pages 3844-3852, 2016.

207.

208.

209.

210.

211.

212.

213.

214.

215.

216.

206

Li, Y., Tarlow, D., Brockschmidt, M., and Zemel, R.: Gated graph sequence neural networks.
arXiv preprint arXiv:1511.05493 , 2015.

Pham, T., Tran, T., Phung, D., and Venkatesh, S.: Column networks for collective classifica-
tion. In Thirty-First AAAI Conference on Artificial Intelligence , 2017.

Xian, Y., Fu, Z., Muthukrishnan, S., de Melo, G., and Zhang, Y.: Reinforcement knowledge
graph reasoning for explainable recommendation. In SIGIR , 2019.

Moon, S., Shah, P, Kumar, A., and Subba, R.: Opendialkg: Explainable conversational
reasoning with attention-based walks over knowledge graphs. ACL , 2019.

Moon, S., Shah, P, Kumar, A., and Subba, R.: Memory grounded conversational reasoning.
EMNLP , 2019.

Tuan, Y.-L., Chen, Y.-N., and Lee, H.-y.: DyKgChat: Benchmarking dialogue generation
grounding on dynamic knowledge graphs. In Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Processing and the 9th International Joint
Conference on Natural Language Processing (EMINLP-IJCNLP) , pages 1855-1865,
Hong Kong, China, November 2019. Association for Computational Linguistics.

Li, X., Lipton, Z. C., Dhingra, B., Li, L., Gao, J., and Chen, Y.-N.: A user simulator for
task-completion dialogues. arXiv preprint arXiv:1612.05688 , 2016.

Li, X., Panda, S, Liu, J., and Gao, J.: Microsoft dialogue challenge: Building end-to-end
task-completion dialogue systems. arXiv preprint arXiv:1807.11125 , 2018.

Lee, S., Zhu, Q., Takanobu, R,, Li, X., Zhang, Y., Zhang, Z., Li, ., Peng, B., Li, X., Huang, M.,
et al.: Convlab: Multi-domain end-to-end dialog system platform. arXiv preprint
arXiv:1904.08637 , 2019.

Nickel, M., Rosasco, L., and Poggio, T.: Holographic embeddings of knowledge graphs.
AAAI, 2016.

VITA

207

NAME:

EDUCATION:

ACADEMIC EX-

PERIENCE:

208

Hu Xu

Ph.D., Computer Science, University of Illinois at Chicago,

Chicago, Illinois, 2020.

M.E., Electronics and Communication Engineering, Peking Uni-

versity, Beijing, China, 2009.

Research Assistant, Big Data and Social Computing Lab, De-
partment of Computer Science, University of Illinois at Chicago,

2015 - 2020.

Research Assistant, Social Media and Data Mining Lab, Depart-
ment of Computer Science, University of Illinois at Chicago,

2017 - 2020.

Teaching Assistant, Department of Computer Science, Univer-

sity of Illinois at Chicago:

e Language and Automata, Fall 2015, Spring/Summer/Fall 2016
and Fall 2017.

e Compiler Design, Spring 2017

	to1 Introduction
	 Motivation of Lifelong Learning
	 Research Objectives
	 Outlines

	to2 Lifelong Classification
	 Motivation
	 Open-world Learning
	 L2AC Framework
	 Results

	to3 Lifelong Word Representation Learning
	 Motivation
	 Lifelong Domain Word Embeddings
	 L-DEM Approach
	 Results
	 Fusion of General and Domain Word Embeddings
	 – Approach
	 – Result

	to4 Lifelong Contextualized Representation Learning
	 Motivation
	 Lifelong Training
	 – Post-training of Language Models
	 – Pre-tuning for End-tasks

	to5 Lifelong Graph Representation Learning
	 Motivation
	 Lifelong Knowledge Graph Reasoning
	 Graph Reasoner

	to6 NLP Applications
	 Aspect-based Sentiment Analysis
	 – Aspect Extraction
	 – Aspect Sentiment Classification

	 Complementary Entity Recognition
	 – Knowledge Expansion on Large Unlabeled Product Reviews
	 – Augmented Key-value Pairs of Knowledge

	 Question Answering
	 – Motivation

	 Dialog System
	 – Review Conversational Reading Comprehension (RCRC)
	 – Memory-grounded Conversational Recommendation

	to7 Conclusion
	to APPENDICES
	to CITED LITERATURE

