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ABSTRACT 

What are the objectives, control architectures and encoded information that govern our 

everyday volitional movements? For decades, behavioral experimentalists have carefully analyzed 

human reaching movements under a multitude of conditions and stimuli to understand the hidden 

control objectives of the brain. Similarly, electrophysiologists have recorded neural firing patterns 

during reaching movements to understand what individual neurons encode, how they convey 

information as a population and how they influence the downstream muscle activity. Oftentimes, 

these results are studied in parallel rather than in conjunction. With our normative approach, we 

allow hypotheses to prescribe the rules of constructing mathematical models of neuromotor 

control. These initial hypotheses of the brain’s control architecture have led to scientifically 

grounded predictions of motor behavior and neural firing patterns. To implement this method, the 

limb was modeled as a dynamical system that receives its control input from a collection of 

probabilistically spiking artificial neural networks. These networks are trained to implement 

hypothesized control schemes in order to move the limb to the target state. The output motor 

behavior and spiking patterns can then be compared with the observations found in prior studies. 

Using this method, we have trained models of neural “controllers” that exhibit commonly found 

phenomena in motor and neuron behavior such as: asymmetric and bell-shaped velocity profiles, 

directionally tuned firing rates, population vectors, and low dimensional dynamics. We extend this 

approach to other features of control (state estimators and forward models) to predict neural firing 

patterns for these features. Additionally, these models are used to test how neuron failure can lead 

to frequently seen motor behavior pathologies. Here, we show that a normative approach to the 

study of motor behavior may help accelerate research in this field and bridge the gap between 

behaviorists and electrophysiologists.
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INTRODUCTION 

1.1 Motivation 

Motor control is fundamentally about the interaction of our neurons and our body. That is, 

how do the coupled dynamics of our neurons and musculo-skeletal apparatus give rise to intelligent 

motor behavior? Unfortunately, a detailed analysis of these interactions has proven unwieldy. 

While relatively simple models of our limbs and muscles are adequate for describing reaching 

movements, the collective behavior of neurons is far more complex. The number of neurons 

involved in motor control and the complexity associated with describing their nonlinear stochastic 

interactions, renders their analysis particularly difficult. In part because of this difficulty, a holistic 

neuromotor approach has been avoided in favor of research that examines motor behavior and 

neural activity largely independently. This parallelized approach has been productive for decades, 

but lacking a precise description for how neural activity and motor behaviors are coupled, the 

results are often necessarily correlational.  

1.2 Reaching Experiments as a Tool for Studying Motor Objectives  

Reaching studies are broadly used as a tool to examine the motor system and the control 

of movement. In general, these studies have found that the hand follows a straight path with bell-

shaped velocity profile during both unperturbed reaches (Flash & Hogan, 1985; Morasso, 1981) 

and those made with perturbed visual feedback (Danziger & Mussa-Ivaldi, 2012; Flanagan & Rao, 

1995; Krakauer et al., 2000; Wolpert et al., 1995). When given adequate practice, subjects also 

make straight reaches when interacting with perturbing loads, such as a force field (Berniker et al., 

2014; Berniker et al., 2014; Shadmehr & Mussa-Ivaldi, 1994; Uno et al., 1989), a Coriolis force 

(Dizio & Lackner, 1995), or an external mass (Krakauer et al., 1999; Sainburg et al., 1999). The 
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fact that reaches are straight under these very different circumstances seems to imply that the 

objective of the motor system is to move the hand to a target in a minimum jerk, straight line. 

Despite this evidence, there are several reasons to believe that the objective of the motor 

system is in fact to move the hand efficiently. Studies of human locomotion find that legs are 

controlled for efficient movement (Selinger et al., 2015). In fact, the movements of many animals 

are consistent with mechanical and metabolic efficiency (Hatze & Buys, 1977; Rayner, 1993). The 

wealth of data suggests movements, including reaches, should be efficient. Reaching models that 

minimize metabolic costs predict specific reaches that travel along curved paths (Kistemaker et 

al., 2014; Rosenbaum et al., 1995). Minimizing other mechanical precursors of metabolic costs, 

such as joint torque rates, energy, and work, also predict curved reaches (Alexander, 1997; 

Farshchiansadegh et al., 2016; Nakano et al., 1999; Uno et al., 1989). Indeed, everyday movements 

outside the laboratory setting are often curved (Ramanathan et al., 2000). These results are counter 

to a decades long effort to provide evidence that the hand is controlled to move straight. Studies 

on both sides of this debate have utilized cleverly designed tasks to reveal novel motor behaviors, 

but largely lack a causal link between the neural activity and the witnessed behaviors.  

Additionally, studies have found that altering the feedback provided during reaching tasks 

can influence motor objectives. For example, subjects will move in the opposite direction of a 

visual perturbation of the hand’s position, such that the displayed cursor follows a straight path 

(Wolpert et al., 1995). This is also true when the visual feedback is nonlinearly perturbed (Flanagan 

& Rao, 1995). Even when a cursor’s trajectory is defined through a complex association of finger 

orientation and posture, subjects alter their movement to force the cursor along a straight trajectory 

(Danziger & Mussa-Ivaldi, 2012). Feedback has also been shown to have a large effect on 

movements during object manipulation experiments, where the type or amount of information 
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provided can change how subjects interact with their environment (Ahmed et al., 2008; 

Farshchiansadegh et al., 2016; Kluzik et al., 2008; Vaidyanathan et al., 2019; Zahed and Berniker, 

2018). It is evident, then, that the brain uses feedback information concerning the state of the hand 

or limb to govern motor behavior, but again there is a general lack of a causal link to explain these 

observed phenomena.  

1.3 Neural Recordings Reveal the Encoded Information for Reaches 

Complementary to behavioral studies, electrophysiological results have led to discoveries 

in how neurons encode and relay information during motor control. One famous study found that 

individual neurons had an increased spike activity, or preference, to reaching movements in 

specific directions (Georgopoulos et al., 1982). Others have found neuron preferences for variables 

such as target location, initial movement direction and amount of reach curvature (Hocherman and 

Wise, 1991). Finally, during force field adaptation, where subjects must alter their limb dynamics 

in response to forces in order to maintain a straight movement, recordings have shown that only 

some neurons change their preferred directions into the direction of the field (Padoa-Schioppa et 

al., 2004). Therefore, certain neurons may encode limb dynamics objectives while others represent 

kinematic, or trajectory planning, objectives. Therefore, at the individual neuron level, neurons 

seem to encode specific values that are pertinent to the reaching movement. More broadly, the 

neural population as a whole also seems to encode important information related to the reach. It 

was discovered that the weighted sum of the directional preferences of neurons in the motor cortex 

pointed in the intended movement direction (Georgopoulos et al., 1986). Furthermore, it was found 

that low dimensional projections of the neural populations’ firing rate in the primary motor and 

dorsal premotor cortex may contain hidden dynamic properties (Churchland et al., 2012). These 

studies seem to indicate that the encodings of variables related to control are split amongst many 
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cells and that they must work together to generate an accurate movement.  

1.4 Interpretations of Control Functions in the Brain 

 How do these patterns of neural activity lead to robust control of the upper limb? One 

commonly supported hypothesis is that the population of neurons implements optimal control 

(Harris, 1998; Pandy and Zajac, 1991; Uno et al., 1989; Hoff et al., 1984; Hogan, 1984; Dingwell 

et al, 2004). Optimal controllers require an optimal estimate of the system’s state variables and 

feedback gains which convert errors in the state to motor commands (Stengel, 1994). An optimal 

state estimate uses a copy of the motor command to predict its next state, and often integrates 

information from sensors to make a more informed prediction. The feedback gains, on the other 

hand, are tuned to optimize a motor objective. These properties of optimal controllers have distinct 

parallels with known functionalities and observations of the brain (Wolpert et al., 1995; Todorov 

and Jordan, 2002; Pearson, 1995).  

 

While it is difficult to locate where these control processes might cluster in the brain, some 

useful information has been gathered from neural recordings. Optimal control involves estimating 

the system state and computing a motor command. It is expected, then, that regions of the brain 

controlling the limb should have correlations with the movement of the hand. This association has 

manifested in several brain regions such as: primary motor cortex (Georgeopolus et al., 1982), 

parietal area 5 (Kalaska et al., 1983), the primary somatosensory cortex (Cohen et al., 1994), the 

dorsal premotor cortex, or PMd (Fu et al., 1995; Caminiti et al., 1991), the cerebellum (Fortier et 

al., 1993), and muscle afferents (Jones et al., 2001; Ribot-Ciscar 2003). If the brain does implement 

optimal control, then the operations involved are likely to be distributed over these brain regions. 

Recordings have also shown that the brain does not act as a simple feedback controller. Sensory 
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feedback information can have synaptic delays up to half the duration of a reach (Marsden et al., 

1978) and motor commands exhibit rapid changes well before the feedback is processed (Gordon 

and Ghez, 1987). Hence, it has been widely adopted that a forward model of the limb must be 

involved in estimating the state variables. These findings were used to guide the hypotheses formed 

for this manuscript.  

 

Lastly, regional functionality in the brain can be interpreted from analyzing the movement 

behavior of patients with localized damage. Damage to the cerebellum leads to distinct motor 

pathologies. Cerebellar tremor has been categorized as an intention tremor, meaning that it worsens 

as a target is approached (Bhidayasiri et al., 2005). Often it presents without a tremor at rest or 

when holding a posture (differentiating it from parkinsonian tremor). These movements are often 

shown to have increased trajectory variance (Becker et al., 1991), larger overshoots, and curvature 

(Deuschl et al., 2000). Additionally, it has been found that these characteristics worsen when vision 

is removed (Day et al., 1998), indicating that the cerebellum may play a role in sensory integration 

to estimate the system state (Rondi-Reig et al., 2014). Motor disorders also present in victims of 

stroke. Depending on the stroke location, many different characteristics can develop: weakness on 

the affected side (hemiparesis), parkinson-like tremor and sudden involuntary jerking (Handley et 

al., 2009; Siniscalchi et al., 2012). These movement pathologies lead to increases in initial angular 

error (Beer et al., 2000; Kisiel-Sajewicz et al., 2011). These distinct movement characteristics were 

used to compare with “damaged” versions of the hypothesized models (see sections 2.9 and 3.4).  

1.5 Modern Models of Neuro-motor Control and Large Probabilistic Models  

A computational description of the causal relationship between neurons and the motor 

apparatus could verify and validate our current best theories. Recent work in this direction has 
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described how neural activity may give rise to motor behaviors. Rate-based models, which 

substitute a time averaged value, or rate of firing, for actual spikes, have been used to describe a 

number of empirical and theoretical findings (Laje and Buonomano, 2013; Sussillo and Abbot, 

2009; Mante et al., 2013; Sussillo and Barak, 2013). A model that describes how neurons interact 

when exchanging continuously varying information, however, may not correctly describe the 

interactions of neurons that share binary information. This is true both for a deterministic setting, 

and for more realistic stochastic settings. Models of deterministically spiking neurons, on the other 

hand, can precisely describe the nonlinear interactions of a large number of neurons (Bourdoukan 

et al., 2012; Deneve et al., 2017; Thalmeier et al., 2016). Yet, the validity and use of this approach 

under noisy settings is also uncertain. Ultimately, to examine the relationship between neurons and 

movement we will require models that couple the two through stochastic spiking events (e.g. De 

Wolf et al., 2016). Here, we use a normative approach to prescribe hypotheses concerning the 

control architecture in the brain.  

Due to the stochastic nature of our spiking networks, we must calculate the exact 

probability of the output neurons to train the model. As more hidden neurons or hidden layers are 

added the permutations of hidden unit activity grows exponentially, which makes this computation 

intractable (Neal, 1990). Our initial models use a continuous valued input, which kept the size of 

our networks small. To push the model to be more biologically equivalent, we decided to remove 

all continuous values and encode them into sets of binary inputs. This binary encoding of relevant 

variables (state and command) required more nodes in our networks to represent the same 

information. Therefore, an approximation to the exact probability was required. We adopted the 

mean field learning algorithm to approximate the output probabilities with a tight lower bound 

(Saul et al., 1996; Saul and Jordan, 1998). This method, borrowed from statistical mechanics, uses 
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the mean field equations to approximate the statistics of each hidden unit using their Markov 

Blanket (Pearl, 1988). These estimates can then be used as approximate means of the hidden unit 

probabilities instead of calculating them directly. While this method adds additional learned 

parameters (twice the number of nodes), it significantly reduces the time to calculate the visible 

unit probabilities (from O(2h) to O(h)). Therefore, for networks of larger size (with more than 20 

hidden units), this method makes calculations much more feasible.  

Frequently, computational explanations of electrophysiological data rely on artificial 

neural network models that communicate via firing rate or deterministic spikes. Yet neither can 

accurately describe the interactions of biological neurons that issue spikes, probabilistically. Here, 

we take a normative approach. Instead of constructing models to describe what is found 

experimentally, we first propose testable hypotheses which guide the construction of the model. 

In analyzing the neural firing patterns of these artificial networks, we compared model predictions 

to results that are typically observed in the primate brain during volitional movement: relatively 

straight hand paths, positively-skewed and bell shaped velocity profiles, neural patterns of cosine 

tuning curves, population vectors that correlate with reaching directions, low-dimensional 

dynamics, and changes in neuron’s tuning curves after force field adaptation. Additionally, these 

models can be damaged to simulate trauma or disease, which forms a causal mechanism for motor 

disorder starting with neural activity and ending with physical pathologies. 

 

1.6 Research Objectives 

 Over the past few decades, reaching studies have uncovered the underlying neural activity 

that is fundamental to volitional movements. This thesis serves as a bridge between two mostly 
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separate approaches: research concerning the physical characteristics of movement and the neural 

activity during a movement. More specifically, the goal of this thesis was to model the brain’s 

precise control of a limb and test if it can provide a causal explanation from the neural activity to 

the physical characteristics that they generate. To accomplish this, two stages of hypotheses were 

formed about the neural control architecture that formed the brain model: 

Hypothesis 1: The brain uses LQR control to govern reaching movements. 

Hypothesis 2: The brain uses LQR control, forward model prediction, sensory integration to 

govern reaching movements and an efficient binary neural code to pass information.  

The author has published two peer-reviewed articles that contributed either indirectly helped form 

Hypothesis 1 or directly provided and analyzed the results from that hypothesis: 

#1. "Planned Straight or Biased to Be So? The Influence of Visual Feedback on Reaching 

Movements" Natarajan, V., Penny, S., Berniker, M., Journal of Motor Behavior (2019) 

#2. "A normative approach to neuromotor control," Berniker, M., Penny, S. Biological 
Cybernetics (2018). 
 
The author plans to publish the findings from Hypothesis 2 in a peer-reviewed journal as well.  

 The approach to evaluating these two hypotheses were largely similar. In the next chapter 

(Chapter 2: Methods), the approach for Hypothesis 1 utilized the methodology from a subsection 

of the chapter (sections 2.1-2.4, and 2.8). This approach was built upon for Hypothesis 2, which 

used techniques from all sections outlined in this chapter. The following chapter (Chapter 3: 

Results) outlines the findings from these two hypothesis. Section 3.1 reports the findings from 

Hypothesis 1 and features text and images from the previously published article, Berniker and 
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Penny, 2018, see above. Sections 3.2-3.4 are all unpublished work that reports findings from 

Hypothesis 2. The last chapter (Chapter 4: Discussion), will summarize the findings of both 

hypotheses and provide an in-depth discussion of the results.  

 



 10 

METHODS 

Many computational explanations of electrophysiological data often rely on artificial 

neural network models that communicate via firing rate or deterministic spikes. Yet neither can 

accurately describe the interactions of biological neurons that issue spikes, probabilistically. Here, 

we take a normative approach by designing a control architecture of probabilistic spiking networks 

to implement LQR control, forward model and Kalman filter for a model limb. By analyzing the 

neural firing patterns of these artificial networks we look for typical results that are observed in 

the primate brain during volitional movement: relatively straight hand paths, positively-skewed 

and bell shaped velocity profiles, neural patterns of cosine tuning curves, population vectors that 

correlate with reaching directions, low-dimensional dynamics, and changes in neuron’s tuning 

curves after force field adaptation.  

If there is consistency between our artificial networks and experimental results, then that 

would support the hypothesis that the brain (likely in the primary motor cortex) uses LQR control 

during volitional movements. 

2.1 General Experimental Protocol 

Rather than attempting to precisely model neurons and the motor apparatus, with a 

normative approach our focus is on organizing hypotheses that can explain how these two systems 

interact and what testable predictions can be made. Therefore, we model the salient features that 

describe how the motor apparatus is coupled to neurons. Here, we suggest the motor apparatus is 

approximately a point mass, driven by muscles that are activated through a network of neurons, 

which spike stochastically. Changes in the limb’s state are then fed back to these neurons in the 

form of an error signal so that the network can update its commands to the muscles (Figure 1). Our 
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hypothesis is that the network of neurons is implementing an LQR controller, a commonly 

supported proposition for both upper and lower limbs (Kuo, 1995; Scott, 2004; Todorov, 2004). 

 

Figure 1. The generative model for the neuromotor system. A feed-forward network of probabilistically firing 
neurons is used to generate muscle forces. These forces accelerate the limb model, changing its current state. 
The updated state error is fed back to the network, and a new muscle force is sampled.  
 

 

2.2 Musculo-skeletal Model 

To examine point-to-point reaches, the limb is modeled as a point mass that moves in a 

plane. For the x-axis we have,  

 

 𝑚𝑣# = 	−𝑏𝑥 + 𝑓#+        (1) 

 

The y-component is modeled identically, where m = 1kg, and b = 0.1Ns/m. Analogous to real 

muscles, muscle force, fx
m, is modeled as a linear sum of activated motor units,  
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 𝑓#+ = 	 𝛼-.
- 𝑜-#      (2a)  

 

where αi is the force of the ith motor unit and oi is the corresponding drive to that unit, modeled as 

a spike (zero or one) from the network. In order to “pull” in both the positive and negative 

directions, half the α were positive, and half negative. The muscle force values for each direction 

were defined such that each motor unit’s value was twice that of the previous unit. Additionally, 

the sum of the forces equaled the maximum force provided. The force value for the smallest motor 

unit (X) could be calculated using the following equation: 

 

 𝑋(	 	2-34)./7
-84 = 𝐹+:#    (2b) 

 

where n is the total number of motor units and Fmax is the maximum desired Force from the 

population.  

Our hypothesis is that control of the limb is approximating a Linear Quadratic Regulator, 

driving the limb to a desired location in the workspace.  

 

𝐿<=> = 	
4
7

?
@ ∆𝑋B𝑄∆𝑋 + 𝑈B𝑅𝑈 𝑑𝑡    (3)  

 

where X=[x,y,vx,vy]Tand U=Fm= [fx
m, fy

m]T. The resulting optimal control signal can be found 

from the algebraic Riccati equation, Ulqr = −K∆X. It is important to note, that the optimal feedback 

control law is smooth, continuous, and deterministic, whereas our network can only output 

discrete force values (according the sum in equation 2a), and does so stochastically.  
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2.3 Spiking Network Model 

In rough approximation neurons appear to transmit information through discrete spikes, in 

a probabilistic fashion, based on the spikes they receive from other neurons. These discrete events 

render the relationship between incoming and outgoing spikes nonlinear, and particularly 

challenging for a large number of neurons. However, with two important simplifications we can 

obtain a model with an analytic solution for each neuron’s probability distribution.  

First, we assume each neuron’s probability of emitting a spike is only a function of the 

current incoming spikes, and not the history of incoming or outgoing spikes; that is, our neurons 

have no dynamics. Second, we assume the network only has feed-forward connections. While this 

limits the potential distributions the network can represent, this significantly simplifies the required 

calculations (Jordan et al., 1999). With these two assumptions our network of spiking neurons can 

be modeled as a sigmoidal belief network (Neal, 1990) with a single hidden layer of neurons or H 

= [h1, h2, ..., hm] and an output layer, O = [o1 , o2 , ..., on ]. Parameterized by the hidden and output 

layer weights, {W1, B1} and {W2, B2} respectively, the probability of any neuron firing is given 

by,  

 

𝑝 ℎ- = 1 ∆𝑋 = 	𝜎( 𝑤-M4M ∆𝑥- + 𝑏-4)  (4) 

𝑝 𝑜- = 1 𝐻 = 	𝜎( 𝑤-M7M ℎM + 𝑏-7)   (5) 

where σ(·) is the standard sigmoidal activation function. We can compute the exact probability 

that any output neuron in the network spikes by marginalizing over all the 2m = M permutations 

of the hidden neurons.  

 

𝑝 𝑜- = 1 ∆𝑋 = 	 𝑝(𝑜- = 1|𝐻PQ
P )𝑝(𝐻P|∆𝑋) (6) 
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where 

𝑝 𝐻 ∆𝑋 = 	 𝑝(ℎ-+
- |∆𝑋)    (7) 

 

For all of the forthcoming trained networks, we designed the initial weights to achieve an 

approximate solution (see Results), and then fine-tuned the network by optimizing a cost function 

that penalizes the network’s expected deviations from the desired probability (see Appendix).  

 

2.4 Simulated Experiments and Data Analysis 

We can sample muscle forces from the network by providing an input, ∆X, then drawing 

spikes from the hidden layer according to its probabilities (equation 4), and then drawing spikes 

from the output layer according to its probabilities (equation 5) and computing F (equation 2a). 

With a sample force, the limb’s dynamics could be discretely updated to the next time step (∆t = 

5ms), and the process repeated. Point-to-point reaches were simulated by providing zero input for 

250 milliseconds, and then switching Xd to the desired state value and integrating the equations 

forward for another second. This resulted in time-varying trajectories for the limb, along with a 

spike train history for each neuron.  

 

With our simulated data we performed conventional statistical analyses, including computing 

peristimulus time histograms (PSTH), cosine tuning curves, and population vectors. PSTHs were 

created using a 25 millisecond time bin, aligning spike data at time t=0, and averaging across trials. 

Cosine tuning curves were found using a least squares fit of the parameters A, B and C from the 

equation y = A + B sin(θ) + C cos(θ), where y is the firing rate of a neuron for a specific reach 

angle, θ, and the resulting preferred direction θp = tan−1(B/C). Using these tuning parameters, we 
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computed the population vectors as the vector sum of each neuron’s preferred direction that is 

scaled by its firing rate. In addition, we performed a dynamical systems analysis as described in 

(Churchland et al., 2012), which searches the neural firing rate data for a low-dimensional 

subspace that exhibits oscillatory behavior (representing the dynamics of the limb).  

 

2.5 Encoding Continuous Information into Binary Values 

The first half of this study analyzed a network approximating LQR control that relied on a 

noiseless, continuous error signal. While this provided interesting initial results, this does not 

mimic what is found biologically. To create more biomimetic artificial networks, we encoded all 

inputs and outputs throughout the control architecture into binary values. This binary 

representation of state and command will be referred to as state bits and command (or muscle) 

bits, respectively. With this encoding scheme, only discretized signals could be communicated 

between the networks and the plant. Since neurons communicate via spikes, we considered this a 

necessary change to our model.  

 

The human sensorimotor system has been crafted by many years of optimization through 

evolution; therefore, it is reasonable to hypothesize that the brain encodes and conveys information 

in an efficient manner. This suggestion has led us to construct a binary encoding scheme that, when 

given a number of bits, can encode the maximum discrete values. This encoding scheme is non-

linear. Each bit requires the analog signal value and each of the previous bits’ values (see Figure 

2A). Specifically, the inequality for each bit can be represented as: 

 

𝐵.:			𝑋 − 𝑅+-. ≥
𝑅
2.
+	

𝐵+
2

+8.34

+84

																																(8)					 
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where R is the range of continuous values to be encoded and Rmin is the minimum of that set. If 

this inequality is true, then Bn takes a value of 1, otherwise 0.	In Figure 2B, the provided example 

details how an analog value was encoded into bits and what discrete value those bits represent. In 

the example shown, 3 bits can encode 2^3 = 8 discrete values. Other encoding schemes have taken 

an approach where each bit corresponds to a location in space, such that only one bit can take a 

positive value at a time (Makin et al., 2013; Makin et al., 2015). This simpler encoding is intuitive 

and can be represented as a system of linear inequalities. Therefore, it can be encoded and decoded 

with linear operations. Yet, it quickly becomes impractical to use when higher precision is desired. 

For each variable, it can only represent n discrete values, where n is the number of bits. Our 

encoding method, where each additional bit doubles the precision, can represent 2n discrete values. 

Additionally, the digital-to-analog decoding of these bits is affine. Therefore, to be consistent with 

the efficient inclinations of the brain, the more efficient encoding scheme was adopted.  
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Figure 2 A) Flow diagram of our nonlinear process for encoding continuous values into binary, where R is the 
range of values to be encoded (0.6 in the example). If the inequality value was true or false then that encoding 
bit took a value of 1 or 0, respectively. B) An example value of -0.2 is used to show the encoded value for 3 bits. 
C) The discrete bins that the encoded values represent. For 3 bits, this encoding scheme can represent 23, or 8, 
discrete values. 

For all networks that incorporated a binary encoding of state and command, the state and 

command were encoded into 15 and 10 binary bits, respectively. These variables could take a range 

of discrete values between [-0.3 0.3] m, [-1.5, 1.5] m/s, and [-10 10] N, for the position, velocity 

and command, respectively. These ranges were selected by simulating 100 random reaches over 

the 0.6x0.6 m2 workspace and looking at the most extreme velocity and command values.  

The number of bits in the encodings were chosen specifically. The state encoding should 

be precise enough such that one discrete time step of the smallest possible command can push the 

limb into a different encoded state. This prevents the state from becoming “stuck” at one encoded 

value, despite a given command. For example, with 10 muscle bits and a maximum force of 10N, 

the smallest force (FXm and FYm) generated in either direction could be calculated using Equation 
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2b: 

𝐹V+(	 	2-34)W
-84 = 10𝑁   è  31FXm=10N  è  FXm=0.323 N 

A single discrete time step of this force can generate a change in position using the dynamical 

equations of the point mass system with damping: 

 X+=AdX+BdU, where X=

𝑋
𝑌
𝑉#
𝑉\

, U=
𝐹#
𝐹\
	,	Ad=

1 0 ∆𝑡 0
0 1 0 ∆𝑡
0 0 1 − ^

+
∗ ∆𝑡 0

0 0 0 1 − ^
+
∗ ∆𝑡

 , Bd=

0 0
0 0
∆`
+

0

0 ∆`
+

 

As is evident from the dynamical equations above, the command does directly affect a change in 

position but only through generating a change in velocity. Using these equations, one can find that 

a single discrete command of 0.323N can generate a change in velocity of 0.0032 m/s. In turn, this 

velocity after one discrete time step creates a 3.2e-5 m change in position. Therefore, we can use 

this value to find the minimum precision of our network. Since each additional bit in our encoding 

scheme doubles the precision of the encoding, we can find the number of bits needed with the 

following equation:	 

a
7#cdef

< 𝑀𝑖𝑛𝑖𝑚𝑢𝑚	𝑐ℎ𝑎𝑛𝑔𝑒	 , which for the position state encoding can be solved below: 

@.q
7#cdef

< 3.2𝑒3W , which gives a minimum number of bits of 14.18.  

Therefore, all of the state values in this text were encoded with 15 bits, which means our states can 

take 215 = 32,768 different values.  

As mention above, if less than this calculated number of bits is used, it is possible for a 
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command to be given and the encoding of position to not change. In these simulations, the plant 

operates in continuous time, but the state estimator and controller, both spiking networks, 

communicate with binary encodings of discrete values. Near the target, it is possible for the 

controller to issue a small, nonzero command that does not change the state estimate encoded 

value. Therefore, the plant experiences drift as it is continuously pushed away from the target. A 

few examples of this analysis can be seen in Figure 3. Here, one can see that for only 11 bits of 

encoding there is a significant drift in the plant after reaching the target (Figure 3A). Adding more 

bits, but less than the calculated minimum number, the drift remains but is significantly reduced 

(Figure 3B). Using our calculated minimum number of bits (Figure 3C), accurate control of the 

plant is achieved without any drift. This analysis reinforces the concept of using our calculated 

number of bits for the encoding.  

Figure 3) All plots display the effect of using a discrete approximation of the state (blue trace) to compute the 
error signal for the controller. For lower resolution encodings A) and B), the plant experiences drift at the end 
of some reaches. A 15-bit encoding C) was calculated to be the smallest number of bits needed to achieve 
accurate performance. 

2.6 Applying Mean Field Approximation for Probabilistic Networks 

Using binary encoded variables in place of continuous valued variables leads to much larger 

networks; the state inputs alone have increased 15 times in size. Therefore, calculating the exact 

probability in the traditional manner becomes unwieldy, as it requires summing over 2n 
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permutations of conditional probabilities, where n is the number of hidden nodes. To combat this 

issue, we implemented a variational method for calculating the distribution known as the mean 

field approximation (Saul et al., 1996). To cover in broad terms, the mean field approximation uses 

an approximate, tractable distribution (Q(H|V)) to approximate the actual, intractable distribution 

(P(H|V)). Q is a function of latent variables, which are loosely related to the mean and standard 

deviation of the probability of a node given a specific input. The learning rule for updating the 

weights were calculated by minimizing the KL divergence between Q(H|V) and P(H|V), while 

simultaneously updating the latent variables to make Q a better approximation to P (see Appendix 

for equations). An in depth discussion of using the mean field approximation in the context of 

probabilistic networks was beyond the scope of this manuscript, but is expertly addressed in 

previous literature (Saul et al., 1996; Jordan et al., 1998; Saul and Jordan, 1999).  

 The mean field method was used in conjunction with Adam, a gradient based optimizer 

with momentum, (Kingma and Ba, 2015) to iteratively updated the network weights. The standard 

Adam parameters were used with a base learning rate (alpha) of 0.05 and decayed such that alpha= 

0.05/(1+epoch). One novel method that we implemented to quicken learning was to also decay the 

mean output label. The mean field approximation assumes the visible node mean output is known. 

One advantage to this method is that it allows for flexibility in choosing a non-binary mean output 

value (similar to label smoothing in traditional neural network architectures, see Muller et al, 

2019). We used a decaying mu value that started at .25 and .75 and decayed to 0 and 1, respectively, 

with increasing number of epochs. All of these processes helped increase the stability of gradients 

and to quickly find more optimal minima.  

 The mean field method worked the best for our problem, but another widely used 

algorithm, one-step contrastive divergence (CD1) algorithm (Hinton, 2002), was also attempted. 
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While greatly reducing the computational time, CD1 simplifies the learning rule by collecting one 

sample of the networks activity and using it to calculate the gradient. This works very well for 

non-spiking networks as the hidden nodes can communicate average values between 0 and 1. In 

our spiking model, however, every node only communicates in binary. For our problem, the 

gradient from CD1 was too noisy to use for learning and was not worth the decrease in computation 

time. Another attempted method was to sample just to find the mean field latent variables. On 

average, it took ~ 30 samples to achieve gradients that were within the same noise level as the 

mean field equations. Taking this many samples, however, did not reduce the computation time 

and was not used because of this. Finally, a mean field method variant was attempted (Jordan et 

al., 1998), where there is an assumption of normally distributed activities in the hidden nodes. For 

networks with nodes that have many inputs, it can be a very reasonable approximation and 

dramatically reduce computation time. However, we found that the gradient from this method was 

also too noisy to learn our problem. Based on these findings, the standard mean field method was 

considered the best choice to train our spiking networks.  

2.7 Implementing State Estimation with Networks 

With the encoding scheme proposed here, training a network to preform accurate state 

estimation requires more input and output nodes than to train a network to act as a controller. The 

controller required 4, 15-bit state inputs and 2, 10-bit command outputs, for a total of 80 

input/output (I/O) bits. On the other hand, the forward model required 4 state inputs, 2 command 

inputs and 4 state outputs and the Kalman filter required 8 state inputs and 4 state outputs (140 and 

180 I/O bits, respectively). As the network sizes grew for state estimation, so did the importance 

of computation time and the approximate methods mentioned above. The mean field method with 

Adam optimizer was able to provide decent network performance for the task, but the best results 
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were found when we provided initial guess for the weights.  

To solve for initial weights, networks with binary encoded state values as outputs were 

assumed to have a depth of n+1 and n fully connected feedforward layers (input layer is exempt). 

This means that skip connections, weights connecting two nodes that are two or more layers 

removed, were allowed (although training could reduce them to a negligible value). These 

assumptions provided a solid framework for solving the weights by hand. To do so, we started 

with the discrete equations governing each control task. For the forward model, that is: 

X+ =AdX+BdU 

To decode a bitwise encoded version of X and U signals, the affine transformation D2Ax and linear 

transformation D2Au were applied. These matrices are functions of the range of encoded values 

and number of bits: 

D2Ax= 

𝑅#/24 𝑅#/27 𝑅#/2s … 𝑅#/2.

𝑅P#/24 𝑅P#/27 𝑅P#/2s … 𝑅P#/2.

𝑅\/24 𝑅\/27 𝑅\/2s … 𝑅\/2.

𝑅P\/24 𝑅P\/27 𝑅P\/2s … 𝑅P\/2.
, where n is number of state bits for encoding. 

XBias = 

−𝑅#𝑚𝑖𝑛
−𝑅P#𝑚𝑖𝑛
−𝑅\𝑚𝑖𝑛
−𝑅P\𝑚𝑖𝑛

 , where Rmin is the minimum value to encode for that state 

D2Au = −2
@𝐹V −24𝐹V … −2

uvw
x 𝐹V			, 2@𝐹V 24𝐹V … 2

uvw
x 𝐹V

−2@𝐹y −24𝐹y … −2
uvw
x 𝐹y	, 2@𝐹y 24𝐹y … 2

uvw
x 𝐹y

   

where FX and FY are the minimum value force as found in Equation 2b. Using these matrices, X 

and U can be rewritten as: 
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X = D2AxBX + XBias ;  U = D2AuBU  

where BX and BU are the binary encoding of X and U, respectively. The original dynamical 

equation can be substituted in with these variables: 

X+ = AdD2AxBX + BdD2AuBU + AdXBias               (9) 

It is evident from this equation that a discrete output X+ is a linear function of binary encoded 

inputs BX and BU. Therefore, if we did not restrict our networks to only outputting binary encoded 

values then a simple two-layer feedforward network would suffice to learn this problem. However, 

due to this restriction a deep network is required for the nonlinear binary encoding of X+.  

Each bit in the encoding (see Figure 2A) requires its own equation, which relies on the 

discretized value X+ and all preceding bits, or equations, in the encoding. This idea motivated the 

assumption of a fully connected output layer. We can use the encoding equations to compute an 

initial guess for the weights and biases of the fully connected layer. Using the same example as in 

Figure 2A, the second equation (X++0.3 >= R/4 + B1*R/2) can be written in the form: 

X+*(1) + B1*(R/2) + (0.3 + R/4) >= 0 

Here, it can be seen that the weights from X+ and the first encoding bit (B1) would be 1 and R/2. 

Similarly, the bias on the second output node would be 0.3 + R/4 (in addition to the bias from X+ 

in Equation 9). Since we used sigmoidal activation functions, these weights only provided outputs 

that were on the correct side of 0.5. In other words, if the desired output was 0 or 1 then an output 

of 0.3 or 0.7 were likely. With this initial guess for weights, frequent bit flips leading to noisy state 

trajectories, but these errors subsided after several epochs of training.  
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A similar method was applied to solve the weights of the Kalman Filter network as it too 

relies on D2Ax to decode the incoming signals and the output is the binary encoded state. One 

additional caveat, however, was that we assumed that the covariance matrices had stabilized 

(Kalman, 1960). Therefore, this is not a model of learning under novel task or stimulus. The focus 

here is on generating results similar to what would be seen in practiced reaches. 

2.8 Training the Spiking Network Models 

The networks were all separately trained on uniformly distributed data over the input bits. To 

accomplish this, we generated 1000-10,000 pseudorandom vectors of length equal to the input size 

of the network (i.e. length of 60 for the controller). To treat these values as samples from a 

Bernoulli distribution, a threshold was applied at a probability of p=0.5. These binary values were 

used as the training inputs for the network. To calculate the binary output associated with each 

input training vector, the input was first decoded to a discrete value. Then, this value was used as 

if it were the input to the equation that the network approximates. For example, the controller 

network approximates U = −K ∆X. Therefore, the randomly generated binary vector was decoded 

to give a discrete version of ∆X and then used to calculate U. This output value was then encoded 

back to a binary vector to be used in training. For larger sample sizes (>500 sampled vectors), 

training data was also uniformly distributed over the decoded input and output values. It is 

important to note that the training data for the controller and forward model contained no noise 

besides the small loss of precision associated with encoding scheme. The Kalman filter, however, 

was trained with a noisy sensory observation whose covariance was equivalent to the covariance 

of the forward model prediction. The Kalman filter, then, was intended to learn to equally weigh 

the two signals, although after training it more heavily weighed the forward model prediction.  
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Once the three networks (controller, forward model, and Kalman filter) were trained and 

producing reaches resembling LQR control trajectories, we injured this “healthy” network to 

analyze its reaching and neural behavior under these “diseased” conditions. There were three 

methods that we sought to injure the model: lower the spike probability of a node, increase the 

spike probability of a node, silence a node (representing cell death). This was rather 

straightforward to do since all of the software for training and simulations was handwritten by the 

author. For this document, terms such as “neuron #X was killed” will be used to represent the 

silencing of a particular node.  

2.9 Evaluating Reaching Characteristics 

To evaluate the simulated reaching behaviors, several metrics were utilized. When testing 

the model’s capability of generating a reliable state estimate, the mean squared error (MSE) was 

calculated. In this manuscript, the state estimate error referred to the error in both position and 

velocity compared to the trajectory generated by LQR control. In general, the values of velocity 

were larger than those of position, so errors were also larger on average. This reinforced a harsher 

penalty for errors in velocity, which have a larger effect on the overall trajectory.  

The start and end of a movement was important to define for accurate comparisons across 

simulations. The movement onset was defined as the first moment that the velocity reaches 1/8th 

of its maximum value during the reach. Usually, this was between 0.01-0.03 seconds after the 

signal to move was given. The end of the movement was defined as the first point after the start 

time, where the velocity falls below 1/8th of its maximum value. It is important to note that for all 

reaches that do not reach this threshold an ending time of 2 seconds was assigned (the total time 

of the simulation). The movement time of the reach was then the end time subtracted by the time 
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of movement onset.  

Other reaching metrics were calculated similarly to what was used in the literature. The 

reach overshoot was calculated as the point on the trajectory furthest from the target in the direction 

parallel to the straight line trajectory. This value was normalized such that reaches past the target 

had values > 1 and ones that did not make it to target had values < 1. The initial angular error was 

defined as the angle between the line connecting the position at movement onset and peak velocity 

and the straight line trajectory. A positive error referred to deviations in the counterclockwise 

direction.  

The path length was calculated as the cumulative sum of distance between two points on 

the trajectory normalized by the straight distance between those two points. The two points used 

to calculate path length differed depending on the experiment that was being compared. Unless 

otherwise specified, the path length was calculated between position at movement onset and end 

of movement. The acceleration phase path length was calculated between position at movement 

onset and at peak velocity. In a similar way, the deceleration phase path length was calculated 

between the position at peak velocity and at end of movement. 

All comparisons between our models used two-sample Student t-test to determine 

significant differences (p<0.05).  For some studies used as comparisons, however, only mean and 

standard deviations of a metric were provided. Therefore, the raw data was not available to perform 

standard statistical tests. In these cases, a Kolmogorov-Smirnov (KS) test was used to determine 

whether our simulated data could have come from the distribution reported in the study. To 

accomplish this, we first normalized our data (of length N) to a standard normal distribution using 

the approximate mean and variance reported in the study. For path length, it was normalized 
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similarly but to a standard half-normal distribution (values could not be below 1). Then, N data 

points were sampled from a standard normal distribution and compared to our normalized data 

with a two-sample KS Test. For small sample sizes, the test can vary in its outcome. Therefore, 

we conducted 1000 iterations and report the number of times the null-hypothesis was not able to 

be rejected.  
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RESULTS 

3.1 A Spiking Network Controller with Exact, Continuous State Information  

The following results reflect the examination of a network that implements the LQR control 

law, U = −K ∆X. The state, X, was assumed to be known exactly and continuously valued. While 

this cannot accurately portray how the brain receives information, it proved to be a useful proof of 

concept with its own interesting results. The results in this section have been taken from published 

work by the author. 

We designed a network to accurately encode the linear LQR control law, U = −K∆X , while 

limited to discrete force values (15 for the x and y-axis each, see Methods). Note that an ideal 

function would achieve this by mapping arbitrary inputs to the nearest discrete muscle force value. 

Thus, the input space would effectively be categorized into k linearly separable regions if there 

were k discrete muscle forces. This is precisely what the hidden layer of a sigmoidal network does; 

regions of the input space separated by the probability, p = 0.5 of eliciting a spike (the line obeying 

𝑤-M4 ∆x{ + 𝑏M4 = 0), are effectively decision boundaries, determining whether a spike is likely or 

not. In other words, the hidden layer acts like a common flash analog-to-digital converter (Walden, 

1999). As such, the hidden layer requires k-1 neurons to precisely encode the k discrete input space 

regions (see Figure 4).  
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Figure 4) To design the network weights the input space (shown here as x and vx) is broken into linearly 
separable regions. The ideal decision boundary for the 15 force levels of an LQR controller are shown in red. 
These boundaries are then used to initialize the hidden neuron’s weights such that the boundaries align with the 
hidden neuron’s probability of p = 0.5. After training, these boundaries are altered (black lines).  

 

Note, that since our muscle units contain identical positive and negative values, for n output 

units the net- work can only generate k = 2n/2+1−1 unique forces, not 2n. Recognizing this, the 

hidden layer’s weights can be chosen to create these decision boundaries by setting W1 = K, and 

B1 to the values of 14 linearly spaced forces between -30 and 30 N (see Figure 4). Therefore, in 

total the network had 40 neurons: 28 in the hidden layer, and 12 in the output layer.  

Determining the output layer’s weights was similarly straight forward. Each of the 15 

discrete force values is generated from a set of output spikes. These force values also correspond 

to inputs from a unique region of the input, with an associated expected hidden layer activity. The 

output weights were initially chosen to map these expected hidden layer spikes to values that would 

increase the probability of the appropriate forces.  

 

To explain, let Hi be the expected hidden neuron values corresponding to the ith discrete muscle 

force value, and µi∗ be the desired expected output for this same force value. µi∗ = E[Oi] = σ(W2Hi 
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+B2) is composed of terms approximately zero and one, so the argument must correspond to large 

positive and negative numbers (which we arbitrarily chose as ±3). Therefore, for each of the 

discrete force values, and associated hidden and output values, we assume W2Hi + B2 = 6µi∗ + 3In, 

and solve a linear set of equations for W2 and B2. With these designed initial weights, the network 

approximately represented the LQR controller. To fine-tune these weights, we performed gradient 

descent on the expected error in the output probabilities (see Methods, Appendix).  

With the network complete, muscle forces, obtained by sampling over a probabilistically 

firing group of neurons, are noisy and may vary from the desired force (Figure 5). However, we 

can analytically compute the expected value and variance of a muscle force conditioned on the 

current input. For unperturbed movements, 𝑓#+ is only a function of deviations in x and vx, so we 

can depict the expected muscle force, the expected error in muscle forces and its variance as a 

surface (Figure 5B, C & D). Although the network can only generate 15 discrete force values over 

a range of 60 Newtons, the expected error in 𝑓#+ averaged over the workspace was 0.45 ± 0.72 

Newtons (mean and standard error of data in Figure 5C), while the analytically derived standard 

deviation in the expected error, averaged over the workspace was 3.14 ± 0.23 Newtons (mean and 

standard error of data in Figure 5D).  
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Figure 5 A) Sample forces obtained from the network. The input is held constant for 1 second and muscle forces 

are sampled every 5ms. The desired output forces are 21.4, 0 and -21.4 Newtons (black lines). B) The expected 

forces the network generates over the workspace in the x-component (y-component is identical). C), D) The 

expected error between the network and an LQR controller and standard deviation in muscle forces can also be 

computed analytically across the limb’s entire workspace.  

3.1.1 Neuromotor Model Dynamics 

To simulate movement, the limb’s state is integrated forward in time discretely, at each 

time step getting a randomly sampled muscle force from the network using the previous time step’s 

state information. To illustrate, 20 random reaches were simulated (Figure 6A). As was expected, 

reaches exhibit realistic characteristics: straight paths with approximately bell-shaped velocity 
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profiles (Figure 6B). As with experimental data, speed profiles are positively skewed (Mutha and 

Sainburg, 2007; Corcos et al., 1989; Nagasaki, 1989). Although movement times are not specified, 

they generally reached their target within approximately 0.8 seconds. In addition to generating 

movement, the neuromotor model also generates spike trains, predicting a variety of patterns 

(Figure  6C). For a given reach, some neurons are largely silent, others are tonically active and still 

others display phasic activity.  

 

 

 

Figure 6 A) Randomly generated reaches with the neuromotor control model. Each reach starts at a green circle 
and ends at a red circle. In red, one such example reach is shown. B) The corresponding velocities of these 
reaches exhibit roughly bell-shaped profiles. The x- and y- components are shown in solid and dashed lines, 
respectively. In red are the velocity profiles for the example reach. C) For each simulated reach there is an 
associated history of neural activity. A raster plots is shown for 10 illustrative neurons for the example reach in 
red. Neuron indices are arbitrary labels in the network with indices 1-28 corresponding to hidden units and 
indices 29-40 corresponding to output, muscle units.  

 

3.1.2 Virtual Experiment and Analysis 

To model a typical electrophysiological study, e.g. (Georgopoulos et al., 1982 ;Li et al., 

2001; Churchland et al.,2012), we simulated center-out point-to-point reaches to eight evenly 

spaced targets, 50 times each for a total of 400 trials (see Figure 7A, B). With this data we obtained 
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average spike rates and other commonly computed neural statistics. As is seen experimentally, 

during these center-out reaches, half of our neurons were largely silent, and did not have firing 

rates significantly greater than zero (Georgopoulos, 1982). Of those neurons that were active, most 

had phasic activity with clear signs for a preferred reach direction (Figure 7C-H). We can quantify 

this preference with a cosine tuning curve. Of the 16 neurons that were active, 11 showed 

significant tuning (R2 > 0.5, see Figure 7C, D).  

 

 

Figure 7 A), B) Average paths and speed profiles for the simulated 8 center-out reach directions. C), D) Two 
neuron’s tuning curves reveal a strong correlation with reach direction. E), G), Raster plots for the same two 
neurons are displayed for each of the 8 reach directions. They reveal phasic activity that initially increases during 
leftwards and downwards reaches respectively. F), H) PSTH’s for the same neurons.  
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We then used this cosine tuning to construct population vectors (Georgopoulos et al., 

1986), and we found that these population vectors point in the direction of movement. Throughout 

the duration of the reach, the population vector for all eight directions consistently points towards 

the desired target and the direction of movement (Figure 8). The error between the mean population 

vector and reaching direction was 0.53o±2.5o.  

 

 

 

Figure 8) Population vectors (red arrows) for each reach are displayed along with their individual neuron 
components (blue arrows).  

Do neural populations encode limb dynamics in their firing patterns? Performing the 

identical analysis as done in Churchland et al., we too find oscillatory trajectories in low 

dimensional projections of firing rate (jPCA) for center out reaches (Figure 9A) as well as 100 

random reaches (Figure 9B). Thus the simulated data of our normative neuro-motor model is 

consistent with the hypothesis that neurons are encoding the dynamics of movement. Furthermore, 
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we re-trained our network to make reaches in a force field. The original network weights are re-

trained to implement an LQR feedback controller for a velocity-dependent clockwise curl field 

Overall the average change in preferred direction was 25.94o, thus rotating into the direction of the 

field. Interestingly, we find that while some neurons’ preferred directions have changed, others 

have not (Li et al, 2001; Padoa-Schioppa et al., 2004). 

 

 

Figure 9) A dynamical systems analysis of average firing rates identical to that presented in [15]. Even though 
center out A) and random B) reaches are not cyclic a low-dimensional projection of their activity appears to be.  
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3.1.3 Normative Explanation 

With our normative approach, we can uncover the “black box” of the network and analyze 

when, and why each neuron fires to understand the population as a whole. First we note that despite 

the evidence, our neurons are not encoding any of the experimentally motivated descriptions 

described above (i.e. tuning curves and limb dynamics). These features are in fact epiphenomena. 

The neurons collectively encode the linear mapping from state errors to motor units that results in 

the LQR controller.  

As explained above, the neurons of the output layer use the spikes from the hidden layer to 

probabilistically command appropriate motor units and generate forces. Much like tuning curves, 

we can visualize these probabilities by looking at how they change as we vary errors in position 

and velocity (Fig 10). While the hidden neurons only depend on state errors, we can compute the 

probability of an output neuron spiking conditioned on state errors by integrating out their 

dependence on the hidden states (Figure 10A-C). From these plots we see how movement across 

the workspace results in activity that is correlated with reach direction and velocity. For example, 

some neurons fire with higher probability when the hand is to the left of the target (Figure 10D), 

some to the right (Figure 10E), whereas some are silent during these movements and only fire 

during larger speeds and positional errors (Figure 10F).  
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Figure 10 A), B), C) The probability of firing conditioned on errors in x and vx for three of the twelve output 
neurons. The non-trivial shape is the result of designing the neurons to activate motor units that precisely 
approximate the LQR control signal. D), E), F), The x and vx components of the average center out reaches 
projected onto the same distributions shows how the neurons correlate with reach directions to the right and left 
or remain silent, respectively.  

Finally, with regard to the oscillatory components of the networks firing rates, we see that 

this behavior is due to the dynamics of the limb itself. Not only does the network not encode 

dynamics, it has no dynamics itself. The firing rate trajectories are a consequence of the coupling 

of the limb with the network. In particular, the velocity of the limb beginning and ending at zero, 

gives rise to a subspace that appears oscillatory.  
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3.2 A Spiking, Network Controller with Binary Encoded State Input 

By using binary encoded inputs, our goal was to approach a more realistic model. Since 

neurons can only convey information in spikes, it seemed impractical to use continuously valued 

state inputs for the controller. We will use similar analyses, here, to compare the physical and 

neuronal properties of the model with these new inputs. 

3.2.1 Virtual Experiment: Limb Dynamics 

As expected, providing a network with a binary encoding of the state rather than continuous 

values led to similar, but noisier results in both the physical and neural components of the model. 

Using the same simulated experimental setup as before (8 center-out reaches), we found that 

reaches were relatively straight and had bell-shaped velocity profiles (Figure 11A, B) with 

movement times of 0.87±0.08 s. Furthermore, the simulated hand’s path curvature can be 

quantified with initial angles and path length (See Methods). These metrics displayed small values 

of curvature, which were 0.12±1.61° and 1.07±0.03, respectively. As before, reaches also had bell-

shaped velocity profiles with positive skew. Due to the binary encoding, there was now a 

noticeable overshoot of 1.09±0.01 (or 9% overshoot). Small overshoot is common in healthy 

subjects, but it is often exacerbated in those with movement abnormalities. Therefore, this metric 

will be used to compare models and human experiments going forward.   
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Figure 11 A), B) Average paths with SEM (shaded region) and velocity profiles for the simulated 8 center-out 
reach directions with binary encoded input. C), E) Two neuron’s tuning curves show preferences for certain 
reaches with a weak to average cosine fit. D), F), Raster plots for the same two neurons are displayed for each 
of the 8 reach directions. They reveal a strong preference for movements to the right (D) and for the leftward 
diagonal movements (F).  

 

3.2.2 Virtual Experiment: Neural Properties 

While the physical characteristics of movement were largely similar, the 

electrophysiological results displayed new differences with binary encoded inputs. As before, 

many neurons exhibited directional tuning. Of the 126 active neurons, 66 of them showed 

significant cosine tuning (R2 > 0.5). In contrast, some neurons adopted more unique tuning 

preferences, such as only increasing activity for one of the reaches (Figure 11C, D) or to only 

diagonal reaches in one direction (Figure 11E, F). With continuous state input, most tuning profiles 

varied smoothly with reach angle. The binary encoded inputs, however, are nonlinear. It is intuitive 

then, that non-smooth tuning profiles developed as a result of these new inputs.  
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We can study the network further on a population level. Here, cosine shaped tuning curves 

were once again used to construct population vectors. We found that the population vector pointed 

in the direction of the intended movement (Figure 12) with an average deviation of -0.20±6.89°. 

As the standard deviation is roughly three times larger, it is evident that the binary encoding adds 

noise to this analysis. Interestingly, when analyzing the low dimensional oscillations, we noticed 

projections that qualitatively appeared more similar to those found in the literature (Figure 13, 

Churchland et al. 2012). In the previous results, the trajectories started far from the origin and 

rotated towards it, yet in the new results and in the literature these trajectories start at the origin, 

oscillate away and then back to the center. Additionally, the percentage variance explained in the 

projection was closer to what was found in the literature (8% difference compared to the 16%).    

 

Figure 12) Population vectors (red arrows) for the controller network with binary encoded inputs are displayed 
along with their individual neuron components (blue arrows).  
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Figure 13) A dynamical systems analysis of average firing rates during 50 center out reaches. The trajectories 
display oscillatory behavior with clustered preparatory states (colored circles at origin). 

 

 

3.3 A Spiking, Network Controller and State Estimator 

In reality, the brain cannot intuitively know the state of the hand. It must get this 

information from either a noisy observation of the state (vision or proprioception) or through a 

well-tuned forward model prediction. A biological forward model prediction would rely on the 

previous state estimate and the efference copy of the motor command given to the muscles. To 

more appropriately simulate this in our model, two additional networks were trained to implement 

state estimation. One network used state and command information to approximate a forward 

model prediction of the next state. Another, acting as a Kalman filter, combined the state prediction 
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with a noisy observation of the state. It was imperative that the estimated state was highly precise 

to exhibit smooth control of the plant with a spiking controller network. Therefore, several stages 

of tests were utilized to locate the noise in the system and train these networks to produce viable 

state estimates. The mean squared error (MSE) was used to compare the model estimated state 

trajectories to those produced from an LQR controller with exact state information.  

 

3.3.1 Virtual Experiment: Limb Dynamics 

The first test was to generate an accurate state estimate with what will be referred to as a 

One-Step prediction (see Figure 14A for control architecture and trajectories). Here, the state is 

known exactly and the command is generated from this exact state. The forward model used these 

two values to make a prediction at each time step. The total MSE for these 8 trajectories was 2.47, 

the lowest value of the four tests. Similar to previous results the reaches were straight (angular 

deviation: 0.49±1.97°, path curvature: 1.10±0.03, movement time: 0.92±0.03s) the velocity 

profiles were bell-shaped, and contained small overshoots 1.09±0.02. Therefore, the network 

passed this first test, but further analysis was needed to assess how small errors in the network 

integrate over time.  
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Figure 14) For all plots, the control architecture (left) generated a plant state trajectory (right, X) and a state 
estimate (right, X̂ or X+) with SEM (dashed line). For network inputs and outputs, these variables are binary 
encoded as BX, BX̂ and BX+. The state estimate produced by the networks were evaluated with a one-step 
prediction A), feedback control B), feedforward control C), and feedforward control with Kalman Filter D).   
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To better understand error integration in the model, a feedback controller was used to 

control the limb. Here, the forward model ran in parallel, not affecting the plant. It used its own 

prediction as its next state input (see Figure 14B for control architecture and trajectories). In 

general, these reaches move straight to the target (angular deviation: -0.29±2.39°, path curvature: 

1.06±0.02, movement time: 0.86±0.04 s), but the estimated state drifts away from the target after 

a short time (Figure 14B, X̂ plot). These reaches had an MSE of 4.26, which was the highest value. 

Again, slight overshoots were observed in these reaches (1.09±0.02). The next step was to test 

models ability to generate command purely on the feedforward signal.  

To create a feedforward prediction, the control law is calculated from the error in the state 

estimate. Therefore, no sensory estimation was used to control the plant (see Figure 14C for control 

architecture and trajectories). Here, the state estimate converges to the target, but the plant drifts 

after reaching the target (see Methods for analysis). Despite the individual reaches drifting from 

the target, the average of each reach was relatively straight. Therefore, the MSE on the average 

reach trajectories were lower than the previous test 3.16. The reaches had an increase in overshoot 

(1.16±0.06), longer movement times (0.94±0.09 s), and more variable initial angular deviation 

(1.12±3.28°). There was also a large increase in path length (1.26±0.35), which was clearly due to 

the drift in the plant not necessarily a curving reach. It is important to note that these trajectories 

can reach the target with feedforward control alone. It was apparent, however, that a feedback 

signal was needed for the precise control needed to keep the limb from drifting off target.  
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In this final test, a network that approximated a Kalman filter combined the forward model 

prediction with a noisy observation of the state to make the next state prediction (see Figure 14D 

for architecture and trajectories). As expected, the addition of a noisy sensory observation keeps 

the plant from drifting off the target, and the MSE further reduced to 3.07. The average trajectories 

were again straight (angular deviation: -0.04±1.64°, path curvature: 1.08±0.04, movement time: 

0.89±0.05 s) with positively skewed velocity profiles. The overshoot reduced from the previous 

test to 1.10±0.03. These results indicated that three spiking networks implementing LQR control, 

a forward model, and a Kalman filter can generate realistic and accurate reaching movements. This 

model was considered the model of “healthy” reaching movements, or Model H, and all 

comparisons to patients with movement pathologies start with this model as the base. 

 

3.3.2 Virtual Experiment: Neural Properties 

In the controller network, the input was an encoded state error signal and the output was a 

binary encoded command. The inputs and outputs of the forward model and Kalman Filter were 

also combinations of encoded state and encoded command. Therefore, these networks performed 

computations on similar variables and the spiking activity should reflect this. It was not expected, 

then, that the neural properties would differ strongly among the three networks.  

For the forward model, half of the active neurons (58 of 136) exhibited cosine shaped 

tuning profile (R^2 > 0.5). As before, some of these neurons had very strict cutoffs for phasic 

activity (closer to a square wave, see Figure 15A. B), while others appeared to transition smoothly 

(Figure 15C, D). These tuning profiles were used to calculate a population vector that pointed 

within 0.99±9.16° of the direction of movement (Figure 15E). It is important to note that this 

population vector is slightly noisier than what was reported on previous networks. This population 
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vector had the integrated noise of three spiking network models, whereas the previous population 

vector only contained noise from the controller network. The Kalman filter’s neural activation 

properties were nearly identical to that of the forward model (roughly half of the active neurons 

were tuned and population vector was within 0.12±8.97° of the direction of movement). For more 

detailed results, the representative neural analysis for the Kalman filter network can be found in 

Figure 16. Overall, no differences were observed between the forward model and Kalman filter 

networks using these neural analyses.   

 

 

Figure 15) Simulated electrophysiological results of the forward model network during the 8 center-out reaches 
task, similar to Figures 11 and 12. A), C) Two neuron’s tuning curves show sharp and smooth tuning profiles. 
B), D), Raster plots for the same two neurons are displayed for each of the 8 reach directions. E) Population 
vectors for the 8-center out reaches.  
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Figure 16) Simulated electrophysiological results of the Kalman filter network during the 8 center-out reaches 
task. A), C) Two neuron’s tuning curves also show sharp and smooth tuning profiles as in Figure 15. B), D), 
Raster plots for the same two neurons are displayed for each of the 8 reach directions. E) Population vectors for 
the 8-center out reaches.  
 

When looking at the low dimensional projections, some interesting differences were 

observed among the three networks. The controller network trajectories initially start at the origin, 

disperse outward from it, and then circle back to the center (Figure 17A). On the other hand, the 

forward model and Kalman filter networks had preparatory activity that was more dispersed 

(Figure 17B, C) before the oscillations began. A similar phenomenon was observed in Churchland 

et al. when recording from the dorsal premotor and primary motor cortex. While only qualitative 

in nature, a comparison with our model provides evidence for hypotheses of what computations 

occur in these brain regions. For the primary motor cortex, it has been suggested that the activity 

in this region is directly related to the control of muscles during the execution of movement 

(Georgopoulos et al., 1986). Therefore, little preparatory activity in this region should be expected 

before movement onset, regardless of the distance, direction, or forces related to the reach. The 
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starting points for the neural trajectories in the low dimensional projections should then be 

clustered together. In our network controller, this phenomenon is observed similarly (Figure 17A). 

The premotor cortex, however, has long been associated with movement preplanning (Kaufman et 

al., 2010; Messier and Kalaska, 2000; Churchland et al., 2006). Across random reaches, the 

preplanning of movement would be unique for the different movement directions, magnitudes, etc. 

It is intuitive, then, that the preparatory activity of the neurons would not be similar among several 

unique reaches. Here, the forward model and Kalman filter networks display similar preparatory 

activity characteristics (Figure 17B, C). Therefore, the controller network seems to resemble a 

different region of the brain than the forward model and Kalman filter networks. 

 

Figure 17) A dynamical systems analysis of average firing rates during 50 random reaches for the controller A), 
forward model B), and Kalman filter C) networks. As before, all three exhibited low dimensional oscillations. 
Importantly, the preparatory activity (circles) for the controller networks is clustered at the origin, but spread 
along the first principle axis for the other two networks (as seen in PMd recordings in Churchland et al. 2012).  
 

A normative explanation for these differences can then be derived from this model. The 

controller network computes an appropriate muscle activity given a state error signal. Therefore, 

there would be relatively little preparatory activity before the movement onset, leading to the 

clustered initial points of the jPCA trajectories. Conversely, the preparatory activity of the forward 
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model and Kalman filter networks are computing future values of state. Since these starting values 

are unique for different random reaches, the preparatory activity is spread out along the axes of the 

low dimensional projection. Therefore, this model provides causal evidence that the M1 and PMd 

regions of the brain could compute the command and state estimate (or estimated state error), 

respectively.  

 

3.4 Normative Models for Movement Disorder  

The previous evidence showed that a collection of three networks performing approximate 

computations of LQR control, forward model, and Kalman filter can reasonably mimic the 

physical and neural characteristics of healthy, volitional movements. To generate abnormal 

movements, neurons in these networks were systematically “killed”. The source of damage in these 

artificial networks may provide insight into the causes of biological movement abnormalities and 

disorders. Mathematically, killing a neuron was accomplished by setting the probability of a 

neuron firing to zero. Initially, neurons were killed in a methodical manner. All of the networks’ 

outputs were binary encodings of a state or command. The decoding matrices (See Methods) 

provided clear indications of how each binary node impacted the discrete value that was being 

encoded. Therefore, it was possible to choose nodes that were likely to cause the most severe 

effect.  

Starting with the forward model, we killed neurons of high and low impact on the encoded 

value of position and velocity (Figure 18). When high-impact encoding neurons were killed 

(Figure 18A), oscillations of the hand’s path are observed in the damaged direction. Killing lower 

impact neurons (Figure 18B) had little effect on the trajectory. It is important to note that some 

neurons were very important to accurately encode a state value. When these neurons were killed, 
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some reaches were unstable (Figure 18C). For the network with high-impact damage, a significant 

increase in path length, overshoot and initial angular error was observed (p<1e-6, p<1e-4, and     

p<1e-10, respectively). Hence, unique trajectories could be achieved by killing high-impact 

neurons. 

 

Figure 18) A) Hand path trajectories and velocity profiles for a model with a high-impact neuron killed from 
the forward model network. Similar plots are shown for a killed low-impact neuron B) and a neuron that when 
killed led to the control of a reach (moving right) to become unstable C).  
 

A similar process was used to generate abnormal reaching behavior for the Kalman Filter 

network. The output was also an encoding of state, so the results were largely expected to be 
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similar to that of the forward model. Qualitatively, damaging neurons in the sensory observation 

(Figure 19A) encoding appeared to have less of an effect than damaging an equivalent neuron 

involved with the forward model output (Figure 19B). For sensory observation damage, the 

trajectories demonstrated a significant increase in path length (p<1e-4) compared to Model H, but 

no difference could be found in percent overshoot or angular error (p=0.33 and p=0.056, 

respectively). This result indicated that the trajectories deviated at the end of some reaches, but 

before the target was reached. This type of error was not seen in the simulations with forward 

model damage (compare with Figure 18A). When the neurons representing the forward model 

prediction in the Kalman filter were killed, the paths are similar to Figure 18A. All metrics were 

significantly increased compared to Model H (overshoot: p<1e-6, initial angular error: p<1e-10, path 

length: p<1e-10, and movement time p<1e-10). A comparison could also be drawn between the 

model in Figure 19A and 19B. Killing the neurons associated with the forward model prediction 

(19B) produced a significant increase in all metrics compared to killing those associated with 

sensory feedback information (overshoot: p=0.02, initial angular error: p<1e-8, path length:      

p<1e-4, and movement time p<1e-4). Therefore, distinctly different trajectories were generated 

depending on the type of state information that was damaged.  
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Figure 19) A) Hand path trajectories and velocity profiles for a model with killed high-impact neurons that were 
involved with the sensory feedback information in the Kalman filter. Similar plots for killing the equivalent 
neurons that contributed to forward model information B). Killing equivalent neurons related to the forward 
model signal in the Kalman filter had a larger effect on reaching accuracy and curvature.  
 

Finally, the impact of neuron death on the controller network was also analyzed. One 

intuitive way of affecting the network would be to kill output nodes, which are directly responsible 

for muscle activity. By destroying this communication, the muscle units would not fire when 

commanded by the controller. By killing neurons connected to small force producing muscle units 

(Model C1), jerky, imprecise movements arose due to the lack of fine control of the limb near the 

target (Figure 20A). These movements had a significant increase in curvature, compared to Model 
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H, based on path length and initial angle  (p<5e-4 and p<2e-6, respectively). The model’s inability 

recruit lower force producing muscles to slow movements caused a drastic increase in overshoot 

and movement time (p<1e-10 and p<1e-10, respectively).  Killing neurons connected to the larger 

force producing muscle units (Model C2) also led to much slower movements compared to the 

healthy model (p<1e-10). Many of the reaches did not finish given the time constraint of the 

simulation (Figure 20B). Interestingly, Model C2 (Figure 20B) had no difference in initial angle 

and even a significant decrease in path length (p=0.02), indicating that these reaches were less 

curved than the healthy model. Damaging the command to the motor units, therefore, slowed 

movements, but demonstrated unique results depending on the force production of the damaged 

units.  

 

Figure 20) Hand path trajectories and velocity profiles for a model with killed neurons in the controller network. 
A) All neurons were killed except for those associated with muscle units contributing large forces.  B) All 
neurons were killed except for those associated with muscle units contributing weak forces. The reaches in B) 
did not all come to a stop by the end of the 2 second simulation.   
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3.4.1 Randomized Cell Death in Networks 

This normative approach of killing neurons provided key insights into how damage to each 

network impacts the physical characteristics of movement. To visualize the integrated effect of 

cell death across many networks, simulations were conducted with randomly killed neurons. Both 

the number of neurons (maximum of 10% of total neuron population) and the indices of the 

neurons to be killed were randomly chosen. While some simulations (<20%) lead to completely 

unstable trajectories, many of them produced interesting limb paths with different kinds of tremor-

like movements. Some representative trajectories were selected to exemplify this diverse set of 

trajectories (Figure 21). On occasion, some disease simulations displayed asymmetric hand paths 

or velocity profiles, an unexpected result considering these movements are governed by point mass 

dynamics. It is important to note that each simulation is unique in its variance of movement, 

severity of overshoot, curvature, movement time, or type of tremor-like behavior. These 

characteristics were used to make quantitative comparisons to the trajectories of patients with 

movement disorders. 
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Figure 21) Average hand path trajectories (left), velocity profiles (middle) and individual hand path trajectories 
(right) for models with randomly killed neurons. The representative models were selected to display a diverse 
set of movement characteristics.  
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3.4.2 Simulating Movement Disorders 

One common movement disorder, known as cerebellar tremor, is commonly found in 

patients with lesions in the upper brainstem, thalamus, or cerebellum. Common movement side 

effects of this disorder are slow kinetic tremors that worsen as a target is approached, or terminal 

tremor (Choi, 2016). This often leads to large overshoots at the end of the reach. These tremors 

are rarely accompanied by a resting or postural tremor. To compare with biological results, Model 

D1 from Figure 21 was selected as a representative model for a cerebellar tremor. Only neurons 

from the Kalman Filter network were damaged in Model D1, and all of them were involved with 

predicting the next position state. Qualitatively, this model displayed the characteristic intention 

tremor and overshoot, but importantly did not oscillate at the end of the reach (rest tremor). One 

study of reaching movements in a patient with Purkinje cell death found substantial increase in the 

variance in initial angle error compared to healthy subjects (Becker et al., 1991). The study 

reported the standard deviation of angle errors of ~2.8° for healthy subjects (approximated from 

Figure 3 in the article) and ~16.7° for the patient with cerebellum damage. Using the same method 

of computation as described in the article, we found that the trajectories of the healthy model and 

Model D1 had a standard deviation of 5.7° and 14.9°, respectively. No statistical comparisons were 

made, as only one patient was studied in this article, but the increase in standard deviation was 

similar enough to justify the comparison.  

To further comprehend cerebellar tremor, Model A was compared with another study that 

analyzed the path length of patients’ trajectories (Deuschl et al., 2000). These patients displayed 

tremor behavior due to either cerebellar dysfunction or one of two types of essential tremor. It is 

important to note that path length was calculated differently in this study and was only over the 
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deceleration phase of the movement. Additionally, the patients made 50 cm, three-dimensional 

reaches, whereas the simulations were 20cm, two-dimensional reaches. To compare exactly, path 

lengths were calculated over the distance of deceleration (see Deuschl et al., 2000) and scaled by 

2.5 to simulate the longer reach. Using this scaled metric, Model H and Model D1 had an average 

path length of 5.9±8.6mm and 27.6±41.4mm, respectively. In the study, the path length for controls 

and Cerebellar disease patients were 5.4±1.3mm and 26.5±33.9mm. A student t-test comparing 

the simulated path lengths of Model H and D1 to that of the average control and cerebellar disease 

patient could not find statistical difference (p=0.095 and p=0.796, respectively). To further test 

whether the simulated metrics could have come from the distribution reported in the study, a two-

sample Kolmogorov-Smirnov test (K-S test). Of 1000 samples from a half-normal distribution, 

54% of them were not statistically different from Model D1 simulated data. A similar test found 

that all simulations of the control and patient distributions were statistically different from Model 

H simulations. Therefore, the simulated control group had a significantly larger standard deviation 

in path length compared to the control group in the study, but no significant difference was found 

between that of Model D1 and the patient group. These results provide evidence that damaging the 

integration of state signals leads to trajectories similar to that seen in patients with cerebellar 

disease; thus, supporting the hypothesis that one job of the cerebellum may be the integration of 

state information.   

Victims of stroke also have abnormal movement behaviors. Depending on the epicenter of 

the stroke, many different characteristics can develop: weakness on the affected side (hemiparesis), 

parkinson-like tremor, and sudden involuntary jerking (Handley et al., 2009). One study analyzed 

reaching behavior for patients who were one year removed from a stoke incident and had 

hemiparesis (Beer et al., 2000). When reaching to one of 16 center-out targets, a systematic angular 
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error was found that depended on the target direction (Figures 2, 4 in Beer et al.). To compare with 

these trajectories, Model D2 was selected. Model D2 had neuron damage related to the forward 

model prediction of position and the Kalman filter output of velocity. As in the Beer et al. 

experiment, 16 center-out reaches were simulated for a healthy and damaged model (Figure 22A, 

B). Qualitatively, the degree of curvature appears similar and there are clear differences of angular 

error across the target directions. For a statistical comparison, the angular error from Model H and 

Model D2 simulations were displayed as presented in Beer et al. (Figure 22C). The study found 7 

of the 16 reaches had a significant increase in angular error for the patient’s limb with hemiparesis. 

For the simulated movements, the angular error of Model D2 was significantly larger than Model 

H for 9 of the 16 movements, where Model H is used to simulate the unaffected limb. Interestingly, 

the disease model simulations and patient study both had the largest clockwise deviation between 

the 67.5°-225° targets. This was not expected as the simulations are generated from the dynamics 

of a point mass system and does not account for nonlinearities of the true limb. Therefore, 

simulated damage to networks calculating both the forward model prediction and integration of 

state signals lead to trajectories that are similar to stroke victims with hemiparesis.   

 

Figure 22 A) Average hand path trajectories for the healthy model, which for comparison to Beer et al. is 
assumed to be the patient arm not affected by stroke. B) Model D2 was selected from Figure 21 to compare with 
the patient’s stroke-affected arm. C) The simulated angular errors over 16 targets, where a positive value 
corresponds with a counterclockwise error.  
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DISCUSSION 

Here we’ve argued for a holistic neuro-motor approach to examining the motor system, 

combining known features of both limb biomechanics and the neurons that drive it. Taking a 

normative approach, we have designed a probabilistic network of spiking neurons to control 

movement of the limb. By design, the resulting reaches were largely consistent with known 

kinematic features of human and non-human primate movements. And while not designed as such, 

the electrophysiological data was also consistent with many statistical correlations observed 

experimentally. Furthermore, disrupting the neural activity led to abnormal reach trajectories with 

characteristics similar to patients with movement disorders. Importantly, we can analyze the causal 

mechanisms of our model to explain these phenomena.  

In order for our networks to communicate in spikes, we needed to assume that an efficient 

encoding scheme existed to store information in binary digits. The encoding scheme chosen for 

this study was somewhat arbitrary. The binary tags associated with the discrete bins can be 

randomly rearranged to create many unique, yet viable mappings from bits to discrete values. 

Nevertheless, this encoding scheme was chosen for its capacity to represent the most discrete states 

per number of bits and could be decoded with a linear transformation. These characteristics 

allowed for quick conversion from a binary output to discrete values and an easy derivation for 

good initial weight values. One negative aspect of this encoding was that a single bit flip could 

lead to drastically different discrete value representations. For example, the first bit in the encoding 

essentially determined if the encoded value was a positive or negative number. These bit flips were 

mostly benign when close to zero, but for large values could lead to extreme differences. Despite 

this potential flaw, our spiking networks were able to learn to minimize the effect of bit flips on 

their output values. There are ways to avoid this bit flip issue. One could simply grid up the 



 60 

workspace and assign one region of space to each neuron as in (Makin et al., 2013). However, to 

get the same resolution as reported in this study, it would require over 32,000 neurons to encode a 

value compared to the 15 used here. One way the brain could compensate for these bit flips would 

be to have many copies of the same network running in parallel with a grouping of neurons used 

to average over all the copies. Then, when a random bit flip does occur, it is diluted in the average 

and reduces the downstream impact.  

Our incorporation of sensory feedback could be altered to approach a more biologically 

similar model. We assumed that the sensory observation was simply the true value of the state plus 

Gaussian noise with variance equal to the variance in the forward model prediction. While this 

appeared to be an intuitive choice, there was no biological inspiration behind the decision. 

Additionally, the Kalman filter network uses the relative variance of the signals to weigh each 

signal’s contribution to the output. Therefore, the feedforward prediction and feedback command 

were weighed evenly. If the variance of the feedback signal were to change, then the Kalman filter 

network would need to be retrained on data from the new feedback signal. To test how the feedback 

noise could affect the system we trained networks on sensory observation with up to a 10-fold 

increase in variance. Even in this extreme case, the network produced reliable state estimates that 

were only slightly different from the base model (see Appendix F2). Finally, the issue of feedback 

delay was completely ignored in this study. Sensory information does not arrive immediately and 

usually must jump multiple synapses before reaching the cortex. It has been suggested that 

uncoordinated movements or tremors are caused by the brain’s failure to handle this delay 

(Dovzhenok and Rubchinsky, 2012). To handle large time delays, a network approximating a 

Smith Predictor could be utilized (Smith, 1957; Ingimundarson and Hagglund, 2000). Any future 

work on this project will address this issue robustly. 
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It is important to state that the author of this manuscript was not trained to classify certain 

tremors or reaching pathologies. In general, this classification process is often performed by a 

highly trained physician and is not based on quantitative measurements. For example, the 

Movement Disorder Society’s Unified Parkinson’s Disease Rating Scale is simply a series 4-point 

scales based on the severity of oscillations during a series of tasks (Goetz et al., 2008). Therefore, 

when it is mentioned in this manuscript that a certain model exhibited characteristics of a tremor, 

this is merely a best guess given limited experience. Going forward, a trained physician could 

classify the simulated movements for more reliable comparisons to the motor diseases presented.   

In this study, each model was trained separately based on data generated from our 

hypothesized control architecture. The training data for the networks used a perfect encoding of 

state error and command, which would not be available to a naïve brain. As we learn the dynamics 

of our limb or when the dynamics change for various reasons, errors from an inaccurate controller 

would be propagated to the forward model and errors in state estimation would be propagated back 

to the controller. Therefore, this model for motor control should not also be seen as a model for 

motor learning. This work assumed that reaches have been well practiced and that the network 

connectivity is mostly stationary. To train the networks in a more biological fashion, one could 

use the discrepancy between the forward model prediction and sensory feedback as a learning 

signal to train all the networks simultaneously. This hypothesis is popular among the motor 

learning community (Miall and Wolpert, 1996), and would be interesting to study within our 

normative model framework. In general, to study motor learning, some manner of concurrent 

network training should be adopted.  

For this manuscript, all of the networks were examined using point mass dynamics. While 

the hand can be considered a point in space to be controlled, in reality it is the rotation of the lower 
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and upper limb that directs the location of the end effector. The debate over whether motor neurons 

encode extrinsic (hand-based) or intrinsic (limb-based) variables has been extensive 

(Georgopoulos, 1991, Mussa-Ivaldi, 1988; Todorov, 2000; Reina et al., 2001; Soechting & 

Flanders, 1992; Scott & Kalaska, 1997). Preliminary data of studying a network implementing 

LQR control of a 2-link arm has shown unique neural predictions based on the input during training 

(intrinsic vs. extrinsic, see Appendix F3). Using this methodology, the two hypotheses could be 

tested for their physical and neural similarity to biological data.  

The idea that the brain uses a structured control architecture for movement is not novel. 

For many years, reaching movements have been studied under a variety of complex conditions to 

understand the control processes governing the upper limb. The novelty, here, lies in the normative 

method used to study this complex problem. By training artificial, spiking networks to implement 

unique and specific control functions, we have proposed truly falsifiable hypotheses. These 

hypotheses concern the existence of these control functions, where in the brain they could be 

clustered, and how damage to those areas are manifested in the physical reach. Evidence was 

provided that a network implementing LQR control alone mirrored the physical (straight reaches 

with bell-shaped velocity profiles) and neural (directionally tuned activity, population vectors, and 

oscillatory jPCA activity) characteristics commonly observed in reaching experiments. These 

features were largely maintained with the addition of spiking networks simulating a forward model 

and Kalman filter. Additionally, it was found that networks computing state related values 

produced simulated jPCA trajectories resembling those recorded from the premotor cortex, rather 

than the primary motor cortex. Finally, damaging these networks in unique ways generated 

trajectories similar to those found in patients with cerebellar disease and stroke, providing a hint 

to the causal link driving these impairments. These findings not only assist in our understanding 
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of volitional reaching movements, but also provide a solid framework for studying other control 

hypotheses executed by the brain. 
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APPENDIX 
 
A. Mean Field Equations 
 
 

By minimizing the KL divergence between a tractable distribution, Q, and the desired, 
intractable distribution, P, the cost function becomes: 

𝐿P = 	 𝐽-M𝜇-𝜇M +	 ℎ-𝜇- −	 𝜉- 𝐽-M-𝜇M + ℎ-	
M

− ln 𝑒-
3�d�d + 𝑒-

(43�d)�d

--

	
--M

− 	 𝜇-	ln𝜇- + (1 − 𝜇-)ln(1 − 𝜇-)
-

	 

where Jij is the connective weight from node j to node i and hi is the bias on node i.  Latent 
parameters 𝜇	and	𝜉 are calculated for each training sample through concurrent updates of the mean 
field equation and solving for a minimum 𝜉 through one dimensional search. The mean field 
equation can be found below: 

𝜇- = 	𝜎(ℎ- +	 𝐽-M𝜇M + 𝐽M- 𝜇M −	𝜉M + 𝐾M-
M

 

where  

𝐾-M = 	−
𝜕
𝜕𝜇M

𝑒3�d�d + 𝑒(43�d)�d  

The following gradients were used in traditional backpropagation algorithms to find weights and 
biases that minimize the cost function: 

𝜕𝐿P
𝜕𝐽-M

= 	− 𝜉- −	𝜇- 𝜇M +	
1 − 𝜙- 𝜉-𝜇M𝑒3�d�d�

1 − 𝜇M +	𝜇M𝑒3�d�d�
− 	
𝜙- 1 − 𝜉- 𝜇M𝑒(43�d)�d�

1 − 𝜇M +	𝜇M𝑒(43�d)�d�
 

𝜕𝐿P
𝜕ℎ-

= 	𝜇- − 𝜙- 

where 

𝜙- =
𝑒(43�d)�d

𝑒3�d�d + 𝑒(43�d)�d
 

These equations, taken from Saul et al., 1996, were used exactly as written in the reference.  
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B. Gradient on Expected Error Output (From Berniker and Penny, 2018) 

The cost function used in section 3.1 was the error in the expected output probability:  

 

The gradient for the cost function can be represented as follows 

 

where 

 

then we find the following 
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where p and dp are the sigmoid function and its derivative, respectively.  
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C. Supplementary Figures 

 

Figure F1) Similar to Figure 21, but with more unique trajectories. It should be noted that Model D8 has high-
frequency tremor-like movements towards the body, but not away from the body. This will be explored in the 
future. 
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Figure F2) An analysis of the effect on observation noise on the system. To highlight the effect of noise on the 
state estimate, an LQR controller was used, not a network approximating LQR. Simulations are shown where 
the variance of the sensory observation noise was equal to that of the forward model A) 5 times the forward 
model B) and 10 times the forward model C). As the observation noise increased the trajectories became more 
variant but still reached the target.  
 

 
Figure F3) The population vectors for a spiking network trained to approximate an LQR controller for the 
dynamics of a two link arm. This was trained on two different inputs: A) intrinsic inputs (joint, or rotational, 
variables) and B) extrinsic inputs (hand, or translational, variables). It can be seen that distinct predictions were 
generated with the two different inputs.  
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